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Chapter 1

Introduction

In the fast evolving world of quantum information, several key ideas are reshaping how we understand
and utilize quantum systems. One of the most fascinating is quantum non-locality, the concept that the
predictions of quantum theory fundamentally challenge the classical notion of local realism. Roughly
speaking, quantum non-locality reveals that the behavior of entangled particles cannot be explained
by any theory that assumes objects are only influenced by their immediate surroundings (a more
precise definition will be given in chapter 2). Two main contributions that developed this idea are the
EPR (Einstein–Podolsky–Rosen) paradox [7] and the work of J.S. Bell [1], both of which forced us
to rethink the very nature of reality and had profound implications for the development of quantum
technologies.

A fundamental framework for exploring quantum non-locality is the Bell’s scenario. It involves a
physical system, prepared in an entangled state, that is shared and measured by two spatially separated
users, that have access to a set of quantum observables. Since the measurement process is intrinsically
probabilistic, their outcomes can be used to generate random numbers. This task is crucial in many
fields: for instance, in cryptography, the security of encryption keys and protocols relies on generating
truly random values, ensuring that keys are unpredictable and resistant to attacks. Another example
is in statistics, where Monte Carlo methods depend on the quality of the random number generator, as
their accuracy is tied to the randomness of the samples. Furthermore, quantum mechanics is the only
known way to generate true randomness: generators based on classical mechanics are deterministic
and thus output pseudo-random numbers, which are, in principle, predictable.

The challenging part of generating random number with Bell’s scenarios is making sure that everything
is working as expected, for example it has to be verified that the system is actually entangled and
the functionality of the complex measurement apparatus. To address these problems, the concept
of self-testing has become an invaluable tool: it allows the verification of quantum devices without
requiring knowledge of their internal workings. By analyzing the outcomes of a Bell’s scenario, self-
testing can confirm that all devices are performing the expected quantum operations, even if their
internal mechanisms are not known or trusted. Hence, outcomes are used both to generate random
bits and to ensure the integrity of the system.

A major limitation of the proposed scenario is the low extraction rate: since there are only two
users, we can generate at most two numbers from each entangled state, but creating and preserving
entanglement is particularly challenging. A natural solution is to sequentially increase the number of
users, in the sense that each new pair will measure on the post-measurement state of the previous one.
This works provided that each post-measurement state is still entangled, which is achieved by using
generalized operators in place of projective ones.

In this thesis we will explore those topics explaining in more details what is non-locality, self-testing
(chapters 2 and 3) and their applications to generate secure random numbers (chapter 5). In chapter
4 we will cover the NPA (Navascués-Pironio-Aćın) hierarchy, a fundamental tool to perform numerical
simulations and characterize non-locality. In chapter 6, we will talk about sequential Bell’s scenario
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CHAPTER 1. INTRODUCTION

and generalized operators. Finally, we will propose an innovative approach to extend a large family
of Bell’s scenario to the sequential case with three users. Those results will be theoretically proved in
chapter 7, and validated with numerical simulations techniques in chapter 8.
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Chapter 2

Non-locality

2.1 Space of behaviors

Consider two spatially separated observers, Alice and Bob, that perform measurements on a shared
physical system, generated by a source S. Each observer can choose from a set of m observables to
measure their part of the system and each observable can yield ∆ possible outcomes. In particular
we label the inputs of Alice an Bob as x, y ∈ {1, 2, ...,m} and their outputs as a, b ∈ {1, 2, ...,∆}
respectively, see figure 2.1. After measuring many pairs with different observables they can build the
joint probability distribution

p(a, b|x, y),

which is the probability of having outcomes a and b from the observables x and y. The set with all
probabilities

p = {p(a, b|x, y); a, b = 1, ...,∆; x, y = 1, ...,m}

is called a behavior, and can be seen as a point of R∆2m2
that satisfies the following constraints:

p(a, b|x, y) ≥ 0, positivity constraint;

∆∑
a,b=1

p(a, b|x, y) = 1, normalization constraint.

Then, based on the actual physical model behind this experiment, we define different classes of joint
probability distributions:

No-signaling behaviors A behavior is no-signaling if it satisfies the additional constraints

∆∑
a=1

p(a, b|x, y) =
∆∑
a=1

p(a, b|x′, y), ∀x, y, x′, b;

∆∑
b=1

p(a, b|x, y) =
∆∑
b=1

p(a, b|x, y′), ∀x, y, y′, a.

(2.1)

This is equivalent to requiring that the marginal probability of Alice

p(a|x) ≡ p(a|x, y) ≡
∆∑
b=1

p(a, b|x, y)

doesn’t depend on the choice of the Bob’s observable y, and analogous property holds for Bob’s
marginal probability. Note that the assumption of Alice and Bob being spatially separated ensures
the no-signaling condition: indeed if this was not the case, Bob’s choice of the input would have a
faster-than-light consequence on the probability distribution measured by Alice, thereby contradicting
special relativity. Finally the subset of R∆2m2

made by all no-signaling behaviors is called NS.
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CHAPTER 2. NON-LOCALITY 2.1. SPACE OF BEHAVIORS

Figure 2.1: Representation of the experiment: A shared physical system is generated by a source S, and
measured by Alice and Bob. They respectively choose an observable labeled by x, y, that outputs two numbers
a,b.

Quantum behaviors A behavior is quantum if it can be written as:

p(a, b|x, y) = Tr[ρABΛ
x
a ⊗Πyb ], (2.2)

where ρAB is a quantum state belonging to a generic Hilbert state H ≡ HA⊗HB and Λxa : HA → HA,
Πyb : HB → HB are generic POVM operators, thus satisfying

Λxa ≥ 0, Πyb ≥ 0;

∆∑
a=1

Λxa = 1,
∆∑
b=1

Πxb = 1.

The subset of R∆2m2
made by all quantum behaviors is called Q′. There is also an alternative definition

in which instead of using the tensor product of local operators Λxa and Πyb we consider behaviors of
the form

p(a, b|x, y) = Tr[ρABΛ̃
x
aΠ̃

y
b ], (2.3)

where ρAB is again a quantum state belonging to a generic Hilbert state H and Λ̃xa : H → H,
Π̃xa : H → H are commuting POVM operators, thus satisfying the additional condition

[Λ̃xa, Π̃
y
b ] = 0.

The subset of R∆2m2
made by those behavior is called Q. Clearly from the definition it follows that

Q′ ⊆ Q,

however is still an open question whether the two sets are equal. In the special case of finite dimensional
Hilbert spaces, they turn out to be identical as proven in [8]. Practically we will use the subset Q′ for
proving theoretical result and Q for numerical simulations.

Local behaviors A behavior is local if it can be written as:

p(a, b|x, y) =
∫
dλq(λ)p(a, b|x, y, λ) =

∫
dλq(λ)p(a|x, λ)p(b|y, λ), (2.4)

where λ is a random variable, with distribution q(λ), that can be thought as a hidden variable that cor-
relates the two parts of the shared system. Consequently, the outcome of a measurement now depends
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2.2. BELL’S INEQUALITIES CHAPTER 2. NON-LOCALITY

both on the observable and the value of λ. The idea behind this model is that, after marginalizing,
there could be correlations between the outcomes of Alice and Bob, so in general

p(a, b|x, y) ̸= p(a|x)p(b, y),

but those correlations depends only on the hidden variable. The measurement of Alice doesn’t influ-
ence Bob and vice versa, indeed we assumed that for fixed x, y and λ the outcomes are completely
uncorrelated

p(a, b|x, y, λ) = p(a|x, λ)p(b|y, λ).

The subset of R∆2m2
made by all local behaviors is called L. The sets NS, Q and L are closed, bounded,

convex [5] [11] and satisfy

L ⊂ Q ⊂ NS

see figure 2.2 for a pictionary representations of the three sets.

Bell inequality

Figure 2.2: Sketch of the L,Q, and NS sets. Image taken from [5].

2.2 Bell’s inequalities

Let q ∈ R∆2m2
be a behavior that doesn’t belong to one of the sets K = NS,Q,L. Since those

sets are convex, we can apply the hyperplane separation theorem that guarantees the existence of an
hyperplane that separates q from K. So there must exist an inequality of the form

s · p ≡
∑
a,b,x,y

sa,bx,yp(a, b|x, y) ≤ Sk, s ∈ R∆2m2
,

that is satisfied by all p ∈ K, but is violated by q:

s · q > Sk,

for K = L those inequalities are called Bell’s inequalities. Instead, for K = Q, they are referred to as
quantum Bell’s inequalities or Tsirelson inequalities.
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CHAPTER 2. NON-LOCALITY 2.2. BELL’S INEQUALITIES

Characterization of local and quantum set As proved in [5], the local set is a polytope, that
is the convex hull of a finite numbers of points, and can be characterized by a finite number of Bell’s
inequality. The quantum set Q instead, is not a polytope and characterizing it is more difficult. A
possible way is using the NPA hierarchy, a numerical algorithm that we will describe in chapter 4.

CHSH inequality As an example consider the particular case in which m = ∆ = 2 so that

x, y ∈ {0, 1}; a, b ∈ {−1,+1}.

Note that outcomes belongs to the set {−1, 1} rather than {1, 2}, it is a convention that we will be
using when ∆ = 2. Consider the following expression

S = ⟨a0b0⟩+ ⟨a0b1⟩+ ⟨a1b0⟩ − ⟨a1b1⟩, (2.5)

where the expectation values ⟨ab⟩ are defined as

⟨axby⟩ ≡
∑

a,b=±1

abp(a, b|x, y).

If we constraint the theory to be local, then by applying equation (2.4) we derive that:

⟨axby⟩ =
∫
dλq(λ)⟨ax⟩λ⟨by⟩λ

where we introduced
⟨ax⟩λ ≡

∑
a=±1

ap(a|x, λ), ⟨by⟩λ ≡
∑
b=±1

bp(b|y, λ)

and S can be rewritten as

S =

∫
dλq(λ)(⟨a0⟩λ⟨b0⟩λ + ⟨a0⟩λ⟨b1⟩λ + ⟨a1⟩λ⟨b0⟩λ − ⟨a1⟩λ⟨b1⟩λ) ≤

≤
∫
dλq(λ)(|⟨b0⟩λ + ⟨b1⟩λ|+ |⟨b0⟩λ − ⟨b1⟩λ|) ≤

∫
dλq(λ)2 = 2,

(2.6)

where we used that both ⟨ax⟩λ and ⟨by⟩λ take values in [−1, 1]. Equation (2.6) is an example of Bell’s
inequality for the local set L and is known as CHSH inequality. It’s also easy to see that there is a
quantum strategy that violates it: consider the 2-qubits pure state

|ψ⟩ = 1√
2
(|00⟩+ |11⟩) ≡ |ϕ+⟩

and let Alice and Bob measure the two observables

A0 = σx, A1 = σz, B0 =
σx + σz√

2
, B1 =

σx − σz√
2

, (2.7)

in such a way that the expectation values ⟨ab⟩ can be computed as

⟨axby⟩ = ⟨ψ|Ax ⊗By|ψ⟩

and a simple calculation shows that

⟨a0b0⟩ = ⟨a1b0⟩ = ⟨a0b1⟩ =
1√
2
, ⟨a1b1⟩ = − 1√

2
=⇒ S = 2

√
2 > 2.

Hence violating the bound (2.6). As we will see later Sq = 2
√
2 is also the maximal violation of the

CHSH inequality achievable on the quantum set.
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Chapter 3

Self-testing

So far we have treated our system as a black box: we didn’t specify what is the actual physical system
being measured (for example it could be photons, electrons, atoms...) and we didn’t specify the,
usually very complex, experimental apparatus used to measure, indeed we only focused on the final
joint probability distribution p(a, b|x, y). This limited knowledge of the system is usually called device-
independent scenario. Then, from the sole knowledge of the joint probability distribution p(a, b|x, y)
we derived a sufficient condition to determine if the system is entangled (i.e. there is non-locality):
we compute the CHSH value with equation (2.5) and check if the result is greater than 2. In general
we can compare the probability distribution against all known Bell’s inequalities and if at least one is
violated we can conclude that the system is entangled. Such procedure is called device-independent
certification of entanglement and is an example of self-testing. In this chapter we will formalize this
concept and show that from the maximal violation of a Bell’s inequality we might even certify the
quantum state and the measurements done by Alice and Bob.

Self-testing scenario Let us begin by formally defining the device-independent scenario to perform
self-testing. As already said, we want to consider an abstraction of the system that hides the internal
mechanics of the measurement devices and the source. However, we regardless need to make some
basic physical assumptions, that are:

• The experiment admits a quantum description: there exists a quantum state and measurement
operators that lead to the observed outcomes;

• Alice and Bob are very distant and there is no communication between them. In particular Alice
cannot communicate her choice of the observable to Bob and vice versa;

• Each round of the experiment is independent and physically equivalent to each other. With
round we mean the choice of the observables and measurement process.

These conditions are necessary to write behaviors by using the quantum formalism

p(a, b|x, y) = Tr[ρABΛ
x
a ⊗Πyb ],

and in particular imply that the set of operators Λxa, Π
y
b and the density matrix ρAB are the same at

every round.

3.1 Purified quantum behaviors

In the previous chapter we characterized the set of quantum behaviors, see equation (2.2), by using
density matrices and generalized POVM operators. As proved in [6], without loss of generality we
can always assume to live in a larger Hilbert space in which the state is pure and all operators are
projective, more precisely:

10



CHAPTER 3. SELF-TESTING 3.2. LOCAL ISOMETRIES

• The Hilbert space becomes H = HA⊗HB ⊗HP , where HA is the Hilbert space of Alice, HB is
the Hilbert space of Bob and HP is the purification space.

• In this expanded space the wave function |ψ⟩ABP is pure and we can recover the original one by
tracing on the purification space:

ρAB = TrP [|ψ⟩⟨ψ|];

• In this expanded space Alice and Bob observables are projective

Λxa ≥ 0, ΛxaΛ
x
a′ = δa,a′ , Λxa : HA → HA;

Πyb ≥ 0, ΠybΠ
x
b′ = δb,b′ , Πxb : HB → HB.

(3.1)

This procedure is called Stinespring dilation and it is a powerful theoretical tools, because working with
projectors is much easier than considering generic POVM. Finally the joint probability distribution
can be written as

p(a, b|x, y) = ⟨ψABP |Λxa ⊗Πyb ⊗ IP |ψABP ⟩ , (3.2)

where IP is the identity on the purification space.

3.2 Local isometries

As anticipated the aim of self-testing is to infer the state and the measurements by knowing the joint
probability distribution. In other words given a behavior p(a, b|x, y) we want to prove that there is a
unique choice of state |ψ⟩ and projectors Λxa, Π

y
b that satisfy equation (3.2). However, notice that if

we find a state and projectors compatible with p(a, b|x, y) we can build infinitely many more:

• We can apply the local unitary transformation

|ψ⟩ → U ⊗ V |ψ⟩ , Λxa → UΛxaU
†, Πyb → VΠybV

†,

where
V : HA → HA, UU † = U †U = IA, V : HB → HB, V V † = V †V = IB,

and this transformation clearly leaves equation (3.2) unchanged

• We can expand the space and let the operators act trivially on the extra degrees of freedom

|ψ⟩ → |ψ⟩ ⊗ |ξ⟩ , Λxa → Λxa ⊗ I, Πyb → Πyb ⊗ I.

This transformation also leaves the probability distribution p(a, b|x, y) unchanged.

So there is no way to infer unique state and measurements from a behavior p(a, b|x, y), and we need
to take in account those additional degrees of freedom. This is done by using a particular class of
transformations: local isometries. In general an isometry

Φ : HA → HA ⊗HA′

is a linear transformation that preserve the inner product. The action of an isometry on a vector |ψ⟩A
can always be decomposed as the composition of a dilatation, in which the state is embedded in a
larger Hilbert space, and a unitary transformation UAA′

|ψ⟩A
dilatation−−−−−−→ |ψ⟩A ⊗ |0⟩A′

unitary map−−−−−−−→ UAA′(|ψ⟩A ⊗ |0⟩A′).

Then, a local isometry on the Hilbert space HA ⊗HB

Φ = ΦA ⊗ ΦB : HA ⊗HB → (HA ⊗HA′)⊗ (HB ⊗HB′)

is a tensor product of isometries acting locally on HA and HB. This is implemented by embedding the
initial state in a larger Hilbert space (HA ⊗HA′)⊗ (HB ⊗HB′) and then performing a local unitary
transformation on (HA ⊗HA′) and (HB ⊗HB′), see figure ??:

|ψ⟩AB
dilatation−−−−−−→ |ψ⟩AB |00⟩A′B′

unitary map−−−−−−−→ UAA′ ⊗ VBB′(|ψ⟩AB |00⟩A′B′).

The generic state |00⟩A′B′ is called ancilla state.

11



3.3. SELF-TESTING OF STATES CHAPTER 3. SELF-TESTING

|0⟩A′
UA′A

Φ[|ψ⟩]|ψ⟩AB
VB′B

|0⟩B′

Figure 3.1: Representation of a local isometry

3.3 Self-testing of states

We are finally ready to formalize the concept of self-testing: the behavior p(a, b|x, y) self-tests the
state |ψ′⟩A′B′ if for any state ρAB compatible with p(a, b|x, y) (for some choice of local measurements)
and for any purification |ψ⟩ABP of ρAB there exists a local isometry

ΦA ⊗ ΦB : HA ⊗HB → HA′ ⊗HĀ ⊗HB′ ⊗HB̄

such that

ΦA ⊗ ΦB ⊗ IP |ψ⟩ABP = |ψ′⟩A′B′ ⊗ |ξ⟩ĀB̄P (3.3)

for some state |ξ⟩ĀB̄P which is called junk state. This definition is consistent with what we said in
the previous section: self-test is achieved when the infinite number of states, compatible with the
behavior, are all connected by local isometries. Finally is also possible to get rid of the purification
space by performing the partial trace on equation (3.3):

ΦA ⊗ ΦB TrP [|ψ⟩⟨ψ|] = ΦA ⊗ ΦBρAB = |ψ′⟩⟨ψ′| ⊗ TrP [|ξ⟩ ⟨ξ|ĀB̄P ],

and this shows how, with the local isometry, we can extract the state |ψ′⟩A′B′ from the density matrix
ρAB.

3.4 Self-testing of states and measurements

We can extend the definition to cover also the certification of measurements. The behavior p(a, b|x, y)
self-test the state |ψ′⟩A′B′ and projective measurements Λ̃xa, Π̃

y
b if for any state and projective mea-

surements ρAB, Λ
x
a, Π

y
b compatible with p(a, b|x, y) and for any purification |ψ⟩ABP of ρAB there exist

a local isometry

ΦA ⊗ ΦB : HA ⊗HB → HA′ ⊗HĀ ⊗HB′ ⊗HB̄

such that it satisfies equation (3.3) and

ΦA ⊗ ΦB ⊗ IP (Λ
x
a ⊗Πyb ⊗ IP |ψ⟩ABP ) = (Λ̃xa ⊗ Π̃yb |ψ

′⟩A′B′)⊗ |ξ⟩ĀB̄P

for all x, y ∈ {1, ...m}, a, b ∈ {1, ...,∆} and for some junk state |ξ⟩ABP .

3.5 Complex conjugation

Let’s say that we have a probability distribution p(a, b|x, y) and a state and measurements (|ψ⟩ ; Λxa; Π
y
b )

compatible with it. Since p(a, b|x, y) is real, equation (3.2) is invariant under the complex conjugation
operator ∗ and therefore the state and measurements (|ψ⟩∗ ; (Λxa)∗; (Π

y
b )

∗) are also compatible with

12
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p(a, b|x, y). So we have to make sure that the ∗ operator is unitary, otherwise we would always have
two sets of state and measurements not connected by an isometry, thus nullifying the definitions of
self-testing. For the state |ψ⟩ this is the case: indeed with a Schmidt decomposition we can always
find two orthonormal sets

{|u1⟩ , ... |um⟩} ∈ HA, {|v1⟩ , ... |vm⟩} ∈ HB

such that

|ψ⟩ =
m∑
j=1

αj |uj⟩ ⊗ |vj⟩ , αj = ρje
iθj ∈ C,

where m is the so called Schmidt rank, which is smaller or equal than the smallest Hilbert space
dimension:

m ≤ min(dim(HA),dim(HB)).

The action of complex conjugation operator is

|ψ⟩ → |ψ⟩∗ =
m∑
j=1

ρe−iθj |uj⟩ ⊗ |vj⟩

but this can always achieved with a unitary transformation, such as

|uj⟩ → e−iθj |uj⟩ , |vj⟩ → e−iθj |vj⟩ .

Therefore |ψ⟩ and |ψ⟩∗ are always connected by a unitary transformation, and definition (3.3) remains
well defined. Unfortunately the same result doesn’t hold for observables: in general an operator
O ∈ H is not unitary connected to O∗, and therefore the definition given in (3.4) becomes useless.
It is however still applicable to some special cases, for example when all observables are real. In the
most general case in which operators can be complex we need to find a new definition for self-testing
that takes in account the additional degree of freedom given by the complex conjugation.

3.6 Self-testing of states and complex measurements

The generalization of self-testing to complex operators is the following: the behavior p(a, b|x, y) self-
test the state |ψ′⟩A′B′ and (complex-valued) projective measurements Λ̃xa, Π̃yb if for any state and
projective measurements ρAB, Λ

x
a, Π

y
b compatible with p(a, b|x, y) and for any purification |ψ⟩ABP of

ρAB there exist a local isometry

ΦA ⊗ ΦB : HA ⊗HB → HA′ ⊗HĀ ⊗HB′ ⊗HB̄

such that it satisfies equation (3.3) and

ΦA ⊗ ΦB ⊗ IP (Λ
x
a ⊗Πyb ⊗ IP |ψ⟩ABP ) =Mx

a ⊗Ny
b ⊗ IP (|ψ′⟩A′B′ ⊗ |ξ⟩ĀB̄P )

for all x, y ∈ {1, ...m}, a, b ∈ {1, ...,∆} and where

Mx
a = Λ̃xa ⊗ S0 + (Λ̃xa)

∗ ⊗ S1;

Ny
b = Π̃yb ⊗ T0 + (Π̃yb )

∗ ⊗ T1;

S0 + S1 = IĀ, T0 + T1 = IB̄;

⟨ξ| (S0 ⊗ T0 + S1 ⊗ T1)⊗ IP |ξ⟩ = 1.

The above definition can be understood by tracing out the ancilla and purification spacesHĀ⊗HB̄⊗HP

ΦA ⊗ ΦB ⊗ (Λxa ⊗ΠybρAB) = ⟨ξ|S0 ⊗ T0 |ξ⟩ · Λ̃xa ⊗ Π̃yb |ψ
′⟩⟨ψ′|+ ⟨ξ|S1 ⊗ T1 |ξ⟩ · (Λ̃xa)∗ ⊗ (Π̃yb )

∗|ψ′⟩⟨ψ′|

So we are effectively measuring a convex combination of Λ̃xa ⊗ Π̃yb and their complex conjugate. No-
tice that the probability of performing the conjugate depends on the junk state |ξ⟩ and therefore is
unknown.

13
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3.7 SOS decomposition

We can rewrite the left hand side of any Bell’s inequality

S =
∑
a,b,x,y

sa,bx,yp(a, b|x, y) ≤ β

as the expectation value of an observable B called Bell operator

S =
∑
a,b,x,y

sa,bx,yp(a, b|x, y) = ⟨ψ|B |ψ⟩ ;

B =
∑
a,b,x,y

sa,bx,yΛ
x
a ⊗Πyb ,

where |ψ⟩ is a purification of the mixed state ρ shared by Alice and Bob. Furthermore, let βq be the
maximal violation of S achievable with quantum strategy (i.e. its quantum bound), so that

βq − S ≥ 0 =⇒ ⟨ψ|βqI −B |ψ⟩ ≥ 0, ∀ |ψ⟩ . (3.4)

The operator βqI − B is called shifted Bell operator and equation (3.4) tells us that it is positive
semidefinite. Now assume that the shifted Bell operator admits the following decomposition

βqI −B =
∑
λ

P †
λPλ

where each Pλ is a polynomial in Λxa and Πyb . Such decomposition is called SOS (sum of squares).
Now, if the state |ψ⟩ maximally violates the Bell inequality, we can extract useful constraints on the
system:

0 = ⟨ψ|βqI −B |ψ⟩ =
∑
λ

⟨ψ|P †
λPλ |ψ⟩ =

∑
λ

⟨Pλψ|Pλψ⟩ =
∑
λ

∥Pλ |ψ⟩∥2,

and since the only vector with norm zero is the null vector, we conclude that

Pλ |ψ⟩ = 0, ∀λ. (3.5)

Those relations often contains nontrivial statements about the system that can be used for self-testing.

3.8 An example of self-testing

In this section we will explicitly prove that from a maximal violation of the CHSH inequality, see
section (2.2), we can self-test both state and measurements. For simplicity we will work with the
observables, which are related to the projectors as

Ax =
∑
a=±1

aΛxa;

By =
∑
b=±1

bΠyb .

From the properties of the projectors, equation (3.1), is easy to see that the observables satisfy:

A†
x = Ax, A2

x = I;

B†
y = By, B2

y = I;

[Ax, By] = 0,

(3.6)

the last property follows from the fact that Alice and Bob operators act on different Hilbert spaces.
As usual, following the definition of self-testing, we will work with a purification |ψ⟩ of the general
mixed state ρ shared by Alice and Bob. Finally from equation (2.5) we see that the Bell operator
corresponding to the CHSH inequality is

B = A0B0 +A1B0 +A0B1 −A1B1.

14
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Quantum bound of the CHSH The quantum bound of the CHSH inequality is βq = 2
√
2. Indeed

the operator 2
√
2I −B has the following SOS decomposition

2
√
2I −B =

1√
2

[(
A0 +A1√

2
−B0

)2

+

(
A0 −A1√

2
−B1

)2
]
, (3.7)

which follows from properties (3.6). Such decomposition ensures that 2
√
2I−B is positive semidefinite,

therefore
2
√
2 ≥ ⟨ψ|B |ψ⟩ , ∀ |ψ⟩

and in section (2.2) we found a realization that saturates the inequality. This concludes the proof.

Proof of self-testing Now assume that our state and measurements maximally violated the CHSH
inequality. We will prove that, up to local isometries, Alice and Bob are measuring

Ã0 = σx, Ã1 = σz, B̃0 =
σx + σz√

2
, B̃1 =

σx − σz√
2

,

on the shared state

|ψ′⟩ = 1√
2
(|00⟩+ |11⟩) ≡ |ϕ+⟩ .

The proof will be divided in two parts:

• Show that the observables anticommute on the support of the shared state

{A0, A1} |ψ⟩ = {B0, B1} |ψ⟩ = 0; (3.8)

• Explicitly build the local isometry |Φ⟩, required by definition (3.3), with a quantum circuit.

Proof of anticommutativity To prove the anticommutativity we begin by applying equation (3.5)
on the SOS decomposition (3.7), from which we derive:

A0 +A1√
2

|ψ⟩ = B0 |ψ⟩ ;
A0 −A1√

2
|ψ⟩ = B1 |ψ⟩ , (3.9)

Then consider the action of {B0, B1} on |ψ⟩:

{B0, B1} |ψ⟩ = (B0B1 +B1B0) |ψ⟩ =
B0(A0 −A1) +B1(A0 +A1)√

2
|ψ⟩ =

=
(A0 −A1)(A0 +A1) + (A0 +A1)(A0 −A1)

2
|ψ⟩ = 0

where we applied equations (3.9) and (3.6). Symmetrically, it is easy to see that the same results
holds for {A0, A1}.

Building the local isometry At this point we are ready to explicitly build the local isometry
required to perform self-testing. As anticipated we will use the swap gate circuit, as shown in figure
3.2. We choose

ZA =
1√
2
(A0 +A1), XA =

1√
2
(A0 −A1), ZB = B0, XB = B1.

By applying equation (3.6) it is easy to see that ZA and XA anticommute:

{ZA, XA} =
1

2
{A0 +A1, A0 −A1} = A2

0 −A2
1 = 0 (3.10)

and from equation (3.8) we derive that the same result applies for ZB and XB, on the support of the
shared state

{ZB, XB} |ψ⟩ = {B0, B1} |ψ⟩ = 0. (3.11)
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Finally, equation (3.9) can be rewritten as

ZA |ψ⟩ = ZB |ψ⟩ ;
XA |ψ⟩ = XB |ψ⟩ .

(3.12)

With those relations we are ready to apply the swap gate circuit. As you can see from figure 3.2 it is
made by two components:

• The Hadamard gate. It is a one-qubit operator that acts on the basis (|0⟩ , |1⟩) as follows

|0⟩ → 1√
2
(|0⟩+ |1⟩);

|1⟩ → 1√
2
(|0⟩ − |1⟩).

• The controlled-U gate. It is a (1+n)-qubits operator, defined for any n-qubits operator U . Its
action is the following:

|0⟩ ⊗ |ψ⟩ → |0⟩ ⊗ |ψ⟩ ;
|1⟩ ⊗ |ψ⟩ → |1⟩ ⊗ U |ψ⟩ ,

where |ψ⟩ is a generic n-qubits vector. So basically it applies U on |ψ⟩ only when the first qubit
(usually called control qubit) is |1⟩.

So let’s compute the output of the swap and gate circuit: with reference to figure 3.2 we begin by
applying the two Hadamard gates and the controlled ZA and ZB:

|00⟩ ⊗ |ψ⟩ Hadamard−−−−−−→ 1

2
(|00⟩+ |01⟩+ |10⟩+ |11⟩)⊗ |ψ⟩

controlled ZA and ZB−−−−−−−−−−−−−→ 1

2
(|00⟩+ |01⟩ZB + |10⟩ZA + |11⟩ZAZB)⊗ |ψ⟩ .

On this state we then apply again two Hadamard gates on the ancilla qubits

1

4

[
(|00⟩ (1+ZA)(1+ZB)+ |01⟩ (1+ZA)(1−ZB)+ |10⟩ (1−ZA)(1+ZB)+ |11⟩ (1−ZA)(1−ZB)

]
⊗ |ψ⟩ ,

and eventually we apply the controlled XA and XB to get the final state

1

4

[
(|00⟩ ⊗ (1 + ZA)(1 + ZB) + |01⟩ ⊗XB(1 + ZA)(1− ZB)+

+ |10⟩ ⊗XA(1− ZA)(1 + ZB) + |11⟩ ⊗XA(1− ZA)XB(1− ZB)

]
|ψ⟩ ≡ |ψ⟩F .

(3.13)

This result can be simplified, for example the terms proportional to |01⟩ and |10⟩ vanish:
|01⟩ ⊗XB(1 + ZA)(1− ZB) |ψ⟩ = |01⟩ ⊗XB(1− Z2

B) |ψ⟩ = 0;

|10⟩ ⊗XA(1− ZA)(1 + ZB) |ψ⟩ = |10⟩ ⊗XA(1− Z2
B) |ψ⟩ = 0,

where we used equation (3.12) and the unitarity of ZB = B0. Furthermore, notice that the terms
proportional to |11⟩ can be rewritten as:

|11⟩ ⊗XA(1− ZA)XB(1− ZB) |ψ⟩ = |11⟩ ⊗ (1 + ZA)XAXB(1− ZB) |ψ⟩ =
= |11⟩ ⊗ (1 + ZA)(1 + ZB)XAXB |ψ⟩ = |11⟩ ⊗ (1 + ZA)(1 + ZB)X

2
B |ψ⟩ =

= |11⟩ ⊗ (1 + ZA)(1 + ZB) |ψ⟩ .
Where we used the two anti commutation relations (3.10), (3.11) and the unitarity of XB = B1. By
plugging everything back in final state |ψ⟩F we find the simplified expression

|ψ⟩F =
|00⟩+ |11⟩√

2
⊗
(

1

4
√
2
(1 + ZA)(1 + ZB) |ψ⟩

)
≡ |00⟩+ |11⟩√

2
⊗ |ξ⟩ .

And this concludes the proof: with the swap gate circuit we managed to build an isometry that maps
the initial, purified, state |ψ⟩ to the maximal entangled state |ϕ+⟩, with the addition of some junk
state |ξ⟩. Notice that the local isometry does not act on the purification space, as required by the
definition given in section (3.3).
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Self-testing of measurements with the same circuit it’s also possible to self-test measurements.
As an example we will do the explicit calculation for the observable B0. So first of all we have to find
the action of the swap gate circuit on the initial state B0 |ψ⟩. It is easy to see that the result is

1

4

[
(|00⟩ ⊗ (1 + ZA)(1 + ZB) + |01⟩ ⊗XB(1 + ZA)(1− ZB)+

+ |10⟩ ⊗XA(1− ZA)(1 + ZB) + |11⟩ ⊗XA(1− ZA)XB(1− ZB)

]
ZB |ψ⟩ ≡ |ψ⟩F ,

(3.14)

which is the same as equation (3.13) with the substitution

|ψ⟩ → B0 |ψ⟩ = ZB |ψ⟩ .

Similarly to what happened in self-testing of the state, the terms proportional to |01⟩ and |10⟩ vanish:

|10⟩ ⊗XA(1− ZA)(1 + ZB)ZB |ψ⟩ = |10⟩ ⊗XA(1− ZA)(1 + ZB) |ψ⟩ = 0;

|01⟩ ⊗XB(1 + ZA)(1− ZB)ZB |ψ⟩ = − |01⟩ ⊗XB(1 + ZA)(1− ZB) |ψ⟩ = 0.

Then, we rewrite the term proportional to |11⟩ as

|11⟩ ⊗XA(1− ZA)XB(1− ZB)ZB |ψ⟩ = − |11⟩ ⊗ (1 + ZA)XAXB(1− ZB) |ψ⟩ =
= − |11⟩ ⊗ (1 + ZA)(1 + ZB) |ψ⟩ = .− |11⟩ ⊗ (1 + ZA)(1 + ZB)ZB |ψ⟩

Finally, by plugging everything back in equation (3.14), we find that the state after the application of
the circuit is

|ψF ⟩ =
|00⟩ − |11⟩

2
⊗ |ξ⟩ = (I ⊗ σz)

|00⟩+ |11⟩
2

⊗ |ξ⟩ ,

where the junk state |ξ⟩ is
|ξ⟩ = 1

4
√
2
(1 + ZA)(1 + ZB)ZB |ψ⟩

This concludes the proof: as required by definition (3.4), we showed that after the application of the
isometry the initial state B0 |ψ⟩ is mapped to σzϕ+ with the addition of a junk state |ξ⟩. The same
proof can be easily adapted to the other three measurements A0, A1 and B1.

|0⟩A′ H H

|ϕ⟩+ ⊗ |ξ⟩|ψ⟩AB
ZA XA

ZB XB

|0⟩B′ H H

Figure 3.2: Swap gate circuit used to self test the CHSH inequality. It is made by H which is the Hadamard
gate, and controlled-U gates, with U = ZA, ZB , XA, XB .

Operator regularization In the above proof of self-testing we overlooked an important detail: is
the isometry made by unitary operators? To verify that, we need to check if all elements of the swap
gate circuit are unitary. Clearly it is the case for both the Hadamard gate and for

ZB = B0, XB = B1.
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since we assumed the Bob’s observables to be unitary, see equation (3.6). However, the two operators

ZA =
A0 +A1√

2
, Xa =

A0 −A1√
2

(3.15)

are in general not unitary and, in particular, they might have some zero eigenvalues. To fix this issue
we apply a regularization procedure where:

• We change all zero eigenvalues of ZA and XA to 1, resulting in two new operators Z̃A and X̃A

• We re-normalize both operators by defining

ẐA =
Z̃A

|Z̃A|
≡ Z̃A|Z̃A|−1; X̂A =

X̃A

|X̃A|
≡ X̃A|X̃A|−1,

where in general, for any operator O, we define |O| to be

|O| =
√
OO†,

so that ẐA and X̂A are both unitary by construction;

• We prove these new operators act on the state |ψ⟩ in the same way the original ones do:

ZA |ψ⟩ = ẐA |ψ⟩ , XA |ψ⟩ = X̂A |ψ⟩ .

Let us prove the last step for ZA (for XA the proof is the same), it is sufficient to show that

∥(ẐA − ZA) |ψ⟩∥ = 0.

The left hand site of the equation can be written as

∥(ẐA − ZA) |ψ⟩∥ = ∥ẐA(I − Ẑ†
AZA) |ψ⟩∥ = ∥(I − Ẑ†

AZA) |ψ⟩∥, (3.16)

where we used that ẐA is unitary. Then, notice that for any function f(Z̃A) the following equality
holds:

f(Z̃A)ZA |ϕ⟩ = f(ZA)ZA |ϕ⟩ , ∀ |ϕ⟩ ∈ HA.

Indeed if |ϕ⟩ is in the kernel of ZA we have that

f(Z̃A)ZA |ϕ⟩ = f(ZA)ZA |ϕ⟩ = 0,

and in all other cases by definition the action of Z̃A is the same of ZA. With this property in mind
and by choosing

f(Z̃A) =
Z̃†
A

|Z̃A|
,

we can rewrite the right hand side of equation (3.16) as

∥(I − Ẑ†
AZA) |ψ⟩∥ =

∥∥∥∥∥
(

I −
Z̃†
A

|Z̃A|
ZA

)
|ψ⟩

∥∥∥∥∥ =

∥∥∥∥∥
(

I −
Z†
A

|ZA|
ZA

)
|ψ⟩

∥∥∥∥∥ = ∥(I − |ZA|) |ψ⟩∥ .

Finally we have that

∥(I − |ZA|) |ψ⟩∥ = ∥(I − |ZAZB|) |ψ⟩∥ ≤ ∥(I − ZAZB) |ψ⟩∥ = 0,

where we used the unitarity of ZB, the operator inequality |AB| ≤ AB and equation (3.12). So we
can conclude that

∥(ẐA − ZA) |ψ⟩∥ ≤ 0 =⇒ ∥(ẐA − ZA) |ψ⟩∥ = 0,

which is exactly what we wanted to prove.
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Chapter 4

NPA hierarchy

Many problems of quantum information theory require solving an optimization problem on the quan-
tum set Q. Two examples, that we will discuss in more details in section 4.9 and chapter 5, are finding
the quantum bound of a Bell’s inequality and generating random numbers from the outcomes of mea-
surements. To perform an optimization we need first of all a way to characterize the quantum set,
that could be done by solving the following problem: given a behavior p(a, b|x, y) does it belongs to
the quantum set? In other words, we would like to determine the existence of state and measurements
such that

p(a, b|x, y) = Tr[ρABΛ
x
a ⊗Πyb ].

In this chapter we will present an algorithm, called NPA hierarchy, that allows us to asymptotically
solve such problem. It has been originally developed in [9] and our discussion will be based on this
paper. As we will see the NPA hierarchy consists in checking the existence of an infinite sequence of
matrices

Γ0,Γ1,Γ2,Γ3, ...

These matrices, referred to as certificates, must satisfy the following conditions:

• Certain constraints dependent on p(a, b|x, y);

• The positive semidefinite condition Γn ≽ 0 ∀n ∈ N.

More details will be provided later, for now we anticipate only that checking their existence can be
formulated as a semidefinite program (SDP). Therefore, we will begin by explaining what a SDP is.

4.1 Semidefinite programming

Semidefinite programming is a subfield of mathematical optimization concerned in solving the following
problem: maximizing (or minimizing) a linear combination of the entries of an (unfixed) positive
semidefinite matrix, with the optional addition of linear constraints. It is also known as the primal
problem, and can be mathematically formulated as:

maximizeTr[GZ];

subject toTr[FiZ] = ci, i = 1, ..., d;

subject to Z ≽ 0,

(4.1)

where the variable of the problem is the n × n matrix Z, while G and Fi are fixed n × n matrices
and ci are fixed scalars. Due to the generality of equation (4.1) SDP have numerous applications and
they can be efficiently solved with the interior point method [12]. To each primal problem there is an
associated dual problem, which is a minimization of the form

minimize cTx;

subject to F (x) = G−
p∑
i=1

xiFi ≽ 0.
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This time the variable is the d-dimensional vector x. The dual problem is also semidefinite program,
which means that it can be rewritten in the form (4.1). A vector x is said to be dual feasible when
F (x) ≽ 0, and similarly a matrix Z that satisfy all constraints of (4.1) is said to be primal feasible.
An important property of the dual program is that it yields a bound on the optimal value of the
primal program. To see this let x and Z be respectively a dual and primal feasible points of the same
problem, then

Tr[GZ]− cTx = Tr[GZ]−
p∑
i=1

Tr[FiZ]xi = Tr[F (x)Z] ≥ 0.

where the last inequality follows from the fact that both F (x) and Z are positive semidefinite. There-
fore the optimal primal values p∗ and the optimal dual value d∗ satisfy

d∗ ≤ p∗. (4.2)

This result is called weak duality. Under certain conditions, for example the existence of a positive
definite primal feasible solution Z ≻ 0, it can be proven that

d∗ = p∗,

this result is called strong duality. Concretely, there are many algorithms that allow to solve the
primal and dual problem at the same time and output a pair (p, d). Then, duality theorems are a
powerful tool to verify their optimality: for example if the strong duality holds, the condition p = d
(or a small gap between then), guarantees that the solution is indeed the optimal one. There are many
numerical software packages that can be used to solve a SDP. In this work we have used SDPA and
SDPA-DD, both open source and written in C++.

4.2 Characterizing the quantum set

At this point we go back to the original problem: given a behavior p(a, b|x, y), can we write it in
the form of equation (2.3)? In analogy to what we did in the previous chapter, we can perform a
purification and the problem is simplified to finding two sets of operators Λ = {Λxa} and Π = {Πyb}
satisfying

(Λxa)
† = Λxa, (Πyb )

† = Πyb , (hermiticity);

ΛxaΛ
x
a′ = δa,a′Λ

x
a, ΠybΠ

y
b′ = δb,b′Π

y
b , (orthogonality);∑

a

Λxa = I,
∑
b

Πyb = I, (completeness);

[Λxa,Π
y
b ] = 0, (commutativity),

(4.3)

and a pure state |ψ⟩ such that there is compatibility with the behavior:

p(a, b|x, y) = ⟨ψ|ΛxaΠ
y
b |ψ⟩ .

The completeness condition is there to ensure that the marginal distributions

p(a|x) ≡
∑
b

p(a, b|x, y);

p(b|y) ≡
∑
a

p(a, b|x, y),

are well defined, more precisely the no-signaling condition is satisfied, see equation (2.1). It also
generates some redundancy: not all operators are independent, for each x we can pick an observable
Λxax and rewrite it in function of the others

Λxax = I −
∑
a̸=ax

Λxa, ∀x
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and same for Bob’s operators

Πyby = I −
∑
b̸=by

Πyb , ∀y.

So it’s not restrictive defining two reduced sets

Λ̃ = {Λxa, ∀a, x} − {Λxax , ∀x};

Π̃ = {Πyb , ∀b, y} − {Πyby , ∀y},
(4.4)

on which we build an alternative definition: a behavior p(a, b|x, y) is quantum if we can find a pure
state |ψ⟩ and two sets of operators Λ̃ and Π̃ such that for each Λxa ∈ Λ̃ and Πyb ∈ Π̃:

p(a, b|x, y) = ⟨ψ|ΛxaΠ
y
b |ψ⟩ ;

p(a|x) = ⟨ψ|Λxa |ψ⟩ ;
p(b|y) = ⟨ψ|Πyb |ψ⟩ ,

and the operators satisfy

(Λxa)
† = Λxa, (Πyb )

† = Πyb , (hermiticity);

ΛxaΛ
x
a′ = δa,a′Λ

x
a, ΠybΠ

y
b′ = δb,b′Π

y
b , (orthogonality);

[Λxa,Π
y
b ] = 0, (commutativity),

(4.5)

The two definitions are of course equivalent but for practical reasons we will use the second, as it
requires less operators and therefore a smaller running time of the NPA algorithm.

4.3 Sets of sequences

Before presenting the NPA algorithm we need a few more definitions. Let E be the complete set of
reduced projectors with the addition of the identity

E = Λ̃ ∪ Π̃ ∪ I

and let O be a set of n operators
O = {O1, O2, ..., On},

where each Oi is a linear combination of products of projectors in E. Then define F(O) as the set of
all independent equalities of the form

n∑
i,j=1

Fi,j ⟨ψ|O†
iOj |ψ⟩ = g(p), (4.6)

where Fi,j are real numbers and g(p) is a linear function of the probabilities

g(p) = g0 +
∑
a,b,x,y

gx,ya,b p(a, b|x, y), (4.7)

with coefficients chosen in such a way that equation (4.6) is satisfied. Concretely the set F(O) depends
on the choice of O and on the properties of the projectors given in equation (4.5). As an example
assume that O is made by

O = {ΛxaΠ
y
b , Λ

x
a ∈ Λ̃, Πyb ∈ Π̃}.

In this case simple case F(O) is made by the following equalities

⟨ψ| (Λxa1Π
y
b1
)†(Λxa2Π

y
b2
) |ψ⟩ = ⟨ψ|Λxa1Λ

x
a2Π

y
b1
Πyb2 |ψ⟩ = δa1,a2δb1,b2p(a1, b1|x, y).

Let a sequence S be a non-null operator made as product of projectors in E. The length |S| is the
minimum number of projectors needed to generate it. For example the length of S = ΛxaΠ

y
bΛ

x
a is

|S| = |ΛxaΠ
y
bΛ

x
a| = |ΠybΛ

x
aΛ

x
a| = |ΠybΛ

x
a| = 2 (4.8)
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By convention, we say that the identity operator has length |I| = 0. We define Sn as the sets of
sequences with length smaller or equal to n:

S0 = {I}

S1 = S0 ∪ {Λi ∈ Λ̃} ∪ {Πi ∈ Π̃}

S2 = S0 ∪ S1 ∪ {ΛiΛj ∈ Λ̃} ∪ {ΠiΠj ∈ Λ̃} ∪ {ΛiΠj , Λi ∈ Λ̃, Πj ∈ Π}
S3 = ...

(4.9)

It follows that S0 ⊆ S1 ⊆ S2... and that each Oi ∈ O can be written as linear combination of elements
of Sn for n big enough. Finally notice that we are considering only non-null operators, so for example

S = Λxa1Λ
x
a2 = 0, a1 ̸= a2

doesn’t belong to any Sn.

4.4 Certification of quantum behaviors

With the formalism defined in the previous section we can begin finding conditions that restricts
quantum behaviors.

Proposition, a necessary condition for quantum behaviors: Let O be a set of n operators
and let F(O) be the set of independent equalities defined in (4.6). Then, a necessary condition for the
behavior p(a, b|x, y) to be quantum is that there exist a n×n complex hermitian positive semidefinite
matrix Γ, that satisfy

n∑
i,j=1

Fi,jΓi,j = g(p), ∀F, g ∈ F(O). (4.10)

Furthermore, if all g(p) and Fi,j are real Γ can be chosen real as well.

The proof of this proposition is simple: as Γ choose

Γi,j = ⟨ψ|O†
iOj |ψ⟩ ,

which by definition of F(O) satisfies equation (4.10). Then, Γ is positive semidefinite since for all
∈ Cn

v†Γv =
∑
i,j

v∗i ⟨ψ|O
†
iOj |ψ⟩ vj = ⟨ψ|V †V |ψ⟩ ,

where V =
∑

iOivi. If all g(p) and F are real we can re-define

Γ → Γ + Γ∗

2
,

which is positive semidefinite, real and satisfies equation (4.10). Such Γ is usually called a certificate
associate to O.

An example of certification To make an explicit example let’s consider the most simple case in
which both Alice and Bob have only 2-inputs and 2-outputs. Define the following average quantities

CAx =
∑
a

p(a|x)a, x ∈ {0, 1};

CBy =
∑
a

p(b|y)b, y ∈ {0, 1};

Cxy =
∑
a,b

p(a, b|x, y)ab, x, y ∈ {0, 1}.
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There are 8 such numbers and they are fully equivalent to the probability distribution p(a, b|x, y). For
this case if the data measured by Alice and Bob corresponds to a quantum system, then there exists
a real 5× 5 positive semidefinite matrix Γ of the form

Γ =


1 CA0 CA1 CB0 CB1
CA0 1 u C00 C01

CA1 u 1 C10 C11

CB0 C00 C10 1 v
CB1 C01 C11 v 1

 (4.11)

where u and v are arbitrary real entries. Indeed, if the behavior is quantum we have the usual state
|ψ⟩ and projectors Λxa and Πyb satisfying (4.5). Then, let O be

O = {σ0, σA0 , σA1 , σB0 , σB1 }, where
σ0 = I;

σAx =
∑
a

Λxaa;

σBy =
∑
b

Πybb.

The corresponding set F(O) is made by the following equalities

⟨ψ|σ†0σ0 |ψ⟩ = 1;

⟨ψ|σ†0σ
A
x |ψ⟩ = CAx , ⟨ψ|σ†0σ

B
y |ψ⟩ = CBy

⟨ψ|
(
σAx
)†
σAx |ψ⟩ = ⟨ψ|

(
σBy
)†
σBy |ψ⟩ = 1;

⟨ψ|
(
σAx
)†
σBy |ψ⟩ = Cx,y.

and therefore we can conclude that the associated certification Γi,j = ⟨ψ|O†
iOj |ψ⟩ has the form of

equation (4.11). So practically Alice and Bob will perform their measurements, estimate the proba-
bility distribution and build the Γ matrix (4.11), up to the two unknown coefficients u and v. Then, if
they prove that for each value of u and v the matrix Γ is NOT positive semidefinite, they can conclude
that surely their behavior is NOT quantum. As anticipated, this last part can be solved efficiently
with a SDP.

4.5 Casting to SDP

In general checking the existence of a certificate Γ, see equation (4.10), is analogous to solving the
following optimization problem:

maximize λ;

subject toTr[F TΓ] = g(p), ∀F, g ∈ F(O);

subject to Γ− λI ≽ 0.

(4.12)

Indeed a solution λ ≥ 0 implies that
Γ ≽ λI ≽ 0,

and therefore a valid certificate exists. On the other hand a strictly negative solution λ < 0 implies
that any solution Γ compatible with (4.10) is negative definite, and hence the behavior is not quantum.
Equation (4.12) has the form of a primal SDP problem, and it can be proven that the corresponding
dual is

minimize
∑

gk(p)∈F(O)

gk(p)yk

subject to F (y) =
∑

Fk∈F(O)

F Tk yk ≽ 0

subject to
∑

Fk∈F(O)

yk Tr[F
T
k ] = 1.
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From the dual problem we can also generate Bell inequalities: assume that a given behavior q(a, b|x, y)
returns a negative solution λ for the primal problem. This implies that q(a, b|x, y) is not quantum
and furthermore, from the weak duality theorem, see equation (4.2), we know that the solution of the
dual problem is negative as well

S ≡
∑

gk(q)∈F(O)

gk(q)yk < 0,

and such expression is a Bell inequality violated by q(a, b|x, y) indeed:

• The coefficients gk(q) are linear in q(a, b|, y), as we showed in equation (4.7);

• All quantum behaviors yield S ≥ 0, because

S =
∑

gk(q)∈F(O)

gk(q)yk = Tr[F (y)Γ] ≥ 0,

and where the last inequality follows from Γ, F (y) ≽ 0.

4.6 Equivalence between certificates

Consider a given probability distribution p(a, b|x, y). We saw that to each set of operators O cor-
responds a different certificate Γ. In this section we will see that not all certificates are linearly
independent:

Proposition Let O and O′ be two sets of operators such that every operator in O′ is a linear
combination of operators in O. Then, the existence of a certificate Γ associated to O (for a given
p(a, b|x, y)) implies the existence of a certificate Γ’ associated to O′.

To prove the proposition we begin by applying the hypothesis of linear dependence: each O′
i ∈ O′ can

be written as

O′
i =

∑
k

Ci,kOk, Ok ∈ O.

Therefore, the corresponding certificate for O′ is related to the one of O:

Γ′
i,j = ⟨ψ| (O′

i)
†O′

j |ψ⟩ =
∑
k,h

C∗
k,i ⟨ψ|O

†
kOh |ψ⟩Cj,h =

∑
k,h

C∗
k,iΓk,hCj,h

from which we derive that

Γ′ = C†ΓC.

By hypothesis Γ is positive semidefinite and this implies that Γ′ has the same property. Therefore Γ′

is a certificate associated to O′ and this ends the proof.

So when looking for certificates we do not have to consider generic sets of operators O. We can instead
just focus on the sets of sequences Sn ∀n ≥ 0, since their linear combination generate all other possible
operators, see equation (4.9).

4.7 A hierarchy of necessary conditions

Following the results of the previous section, we define a certificate of order n, denoted as Γn, to be
a certificate associated to the set Sn. Γn is a |Sn|x|Sn| matrix and we will index its entries with this
convention:

• Generic operators S, T ∈ Sn are indexed with s and t respectively;

• The identity I is indexed with 1;

• Alice’s projectors Λxa are indexed with ax and similarly Bob’s projectors Πyb are indexed with by;
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• A product of operators is indexed by concatenating the indexes of each operator. For example
SΛxa is indexed with sax.

So with those rules Γn entries are

Γns,t = ⟨ψ|S†T |ψ⟩ , S, T ∈ Sn. (4.13)

and in particular we can link some of them to the probability distribution p(a, b|x, y):

Γn1,1 = 1, Γn1,ax = p(a|x), Γn1,by = p(b|y), Γnax,by = p(a, b|x, y). (4.14)

Not all entries are independent, indeed projectors properties (4.5) lead to constraints, for example:

Γnaxby ,ax = Γnaxby ,1, Γnax,a′x = 0, ... (4.15)

and of course it is also symmetric Γns,t = Γnt,s. The property S0 ⊆ S1 ⊆ S2... implies that the positive
semidefiniteness of certificates Γ0,Γ1,Γ2, ... represents a hierarchy of conditions satisfied by quantum
probabilities and where each condition Γn ≽ 0 is stronger than the previous one Γn−1 ≽ 0. So for each
behavior p(a, b|x, y) we can build an algorithm to check its quantum properties:

1. Set n = 1;

2. Build the matrix Γn by using its relation with the behavior p(a, b|x, y), equation (4.14), and the
constraints between entries, equation (4.15);

3. Check if Γn is positive semidefinite. If the result is true, set n = n+ 1 and repeat from step 2,
otherwise the behavior is non-quantum and the algorithm ends.

It is also natural to define, for any n ≥ 0, a set Qn, that contains all behaviors p(a, b|x, y) such that
the corresponding matrix Γn is positive semidefinite. Those sets satisfy

Q1 ⊇ Q2 ⊇ ... ⊇ Q ⊇ Q′, (4.16)

where we recall that Q′ is the quantum set with the tensor product structure between Alice and Bob,
while Q is the less constrained where we just require that Alice and Bob operators commute, see
section 2.1. Equation (4.16) is geometrically represented in figure 4.1.

Figure 4.1: Geometric representation of the NPA hierarchy.

Furthermore, it can be proven, see [9], that in the limit n→ ∞ we recover exactly the quantum set

lim
n→∞

Qn = Q, (4.17)

which means that, for all non-quantum behaviors p(a, b|x, y), there exist a n such that Γn is not
positive semidefinite.
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Intermediate levels of the hierarchy Sometimes the running time needed to perform a simulation
at the second order of the hierarchy is already too big. In this cases instead of stopping at the level
Γ1 it is useful to introduce an intermediate order:

S1+AB = S0 ∪ S1 ∪ {ΛiΠj , Λi ∈ Λ̃, Πj ∈ Π̃}. (4.18)

The name AB comes from the fact that we are considering the mixed term ΛiΠj , which is made by
one Alice’s projector (A) and one Bob’s projector (B). Concretely, we are neglecting the AA and BB
elements of the S2 set:

{ΛiΛj} ∪ {ΠiΠj}.

This has the overall effect of making the certificate matrix Γ smaller in size, hence checking if its
positive semidefinite require less time. Similar intermediate levels can be defined for higher orders in
the hierarchy.

4.8 Stopping criteria

So far we derived a hierarchy of conditions that allow us to asymptotically characterize the quantum
set. While it is a good theoretical result, in practice it only allows us to test if a given behavior is
non-quantum, more precisely whether it belongs to Qn where n is the maximum value that we can
numerically test with a viable running time. However, in some cases it’s possible to prove, at a finite
order n in the hierarchy, that a behavior belongs to Q. To see how we first have to introduce the
concept of rank loops.

Rank loops Let Γn be a certificate of order n associated to a given behavior p(a, b|x, y). For two
fixed inputs x and y consider the set Jxy made by all sequences of the form

Jxy = {ΛxaΠ
y
bT ∀a, b, T, with T ∈ Sn} ∪ Sn−1,

and let Γnxy be the sub matrix of Γn with entries

(Γnxy)s,t = Γns,t, such that S, T ∈ Jxy ∩ Sn.

If for any choice of the inputs the rank of the two matrices is the same

rank(Γnxy) = rank(Γn), ∀x, y,

we say that the certificate Γn has a rank loop. With this definition we are ready to state the stopping
criteria theorem.

Theorem, stopping criteria A behavior p(a, b|x, y) has a quantum representation of finite dimen-
sion d if and only if p(a, b|x, y) admits, for a finite n, a certificate Γn of order n, with a rank loop and
rank(Γn) ≤ d.

Note that with representation of finite dimension d, we mean that the behavior can be realized with
states and measurements belonging to a Hilbert state H of dimension dim(H) = d. For a proof of
the theorem see [9], here we will only focus on some practical applications: assume that the behavior
p(a, b|x, y) we are testing admits a quantum representation of dimension d and consider the series of
certificates Γ1,Γ2, ... From Sn ⊆ Sn+1 it follows that Γn is a sub matrix of Γn+1, and therefore

rank(Γn) ≤ rank(Γn+1),

so the sequence of ranks is non-decreasing. At the same time the theorem tells us that

rank(Γn) ≤ d, ∀n,

and we can conclude that there exist a N such that

rank(ΓN ) = rank(ΓN+1). (4.19)
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On the other hand, for all x, y

rank(ΓN ) ≤ rank(ΓN+1
xy ) ≤ rank(ΓN+1),

and therefore we can conclude that ΓN+1 has a rank loop

rank(ΓN+1) = rank(ΓN+1
xy ).

This means that we don’t have to actually compute the sub matrices Γnxy. We can just run the NPA
hierarchy algorithm described above, compute order by order the ranks of the certificates, and in the
lucky case in which we find a N such that equation (4.19) holds, we can conclude that the behavior
belongs to the quantum set. In particular if p(a, b|x, y) has a d-dimensional quantum representation,
we will always find such N ≤ d.

4.9 Applications of the NPA hierarchy

Apart from checking if a behavior belongs to the quantum set, the NPA hierarchy has many more
applications. In this work we will focus on two of them:

• Estimating the quantum bound of Bell’s inequalities;

• Finding a lower bound on the number of secure bits of randomness that can be generated from
each round of a Bell scenario.

In this section we will focus on the first point, and analyze the generation of random bits in chapter
5.

Quantum bound of Bell’s inequalities We saw in previous chapters that Bell’s inequalities have
the following form

S ≤ Iq =⇒
∑
a,b,x,y

sa,bx,yp(a, b|x, y) ≤ Iq,

where in this case Iq is the quantum bound, i.e. the maximum value of S obtainable with quantum

strategies. Finding analytically the value of Iq (for fixed s
a,b
x,y) is in general a difficult problem: we saw

that there are some techniques like the SOS decomposition, see section 3.7, but they do not always
work. Luckily we can always find a numerical upper bound of Iq with the NPA hierarchy. This is
possible for two main reasons:

• We want to find the maximum value of S, which is a function of the behavior;

• S is a linear function of the behavior.

In general the problem of maximizing (or minimizing) a linear function of the probability is always
solvable with the NPA hierarchy. Indeed recall that at any order n, the certificate Γn has entries

Γnax,by = p(a, b|x, y).

So, by defining the matrix

βni,j =

{
sa,bx,y if i = ax, j = by

0 else

we can view S, in the formalism of SDP, as

S = Tr[βnΓn] =
∑
a,b,x,y

sa,bx,yp(a, b|x, y).

Therefore solving the following SDP problem

maximize Tr[βnΓn];

subject to Tr[F Tγ] = g(p), ∀F, g ∈ F(O);

subject to Γ ≽ 0.
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outputs both a valid certificate Γn for the n-th order NPA hierarchy and an estimate In of Iq. Since
we are finding the maximum in the set Qn ⊇ Q, see equation (4.16), In is also an upper bound of Iq,
and hence by repeating at all orders we find the sequence

I1 ≥ I2 ≥ .... ≥ Iq.

that also satisfies, see equation (4.17):
lim
n→∞

In = Iq.

Practically, due to the running time of the algorithm, it’s usually only possible to compute the sequence
up to I3 and, by testing the algorithm with known Bell’s inequalities, like the CHSH, it has been found
that it is already a very good upper bound of Iq, even though there is no theoretical proof of it.
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Chapter 5

Generating random numbers

In this chapter we will describe the possible ways to quantify the amount of randomness that can be
generated in a Bell’s scenario. To keep things simple, consider the particular case in which ∆ = m = 2.
In this scenario Both Alice and Bob have two inputs that yield binary outputs

x, y ∈ {0, 1}; a, b ∈ {+1,−1}.

As usual assume that their devices can be described by the theory of quantum mechanics and that,
up to purification, their observables are projective and the state being measured is pure

Λxa ≽ 0, ΛxaΛ
x
a′ = δa,a′Λ

x
a;

Πyb ≽ 0, ΠybΠ
y
b′ = δb,b′Π

y
b ;

p(a, b|x, y) = ⟨ψ|Λxa ⊗Πyb |ψ⟩ ,
(5.1)

for more details, see chapter 3. Finally, without loss of generality, assume that Alice and Bob want to
generate random numbers from the outcomes of the inputs corresponding to x = y = 0.

Number of bits generated per round The quantity of interest for extracting randomness is r,
defined as the number of random bits generated per round of the Bell’s experiment. It satisfies

0 ≤ r ≤ 2.

Indeed, in a single round we have two binary outcomes: the bit generated by Alice and the bit
generated by Bob. If those numbers are random (as a coin flip) and completely uncorrelated we have
the best case r = 2. We want to find an analytical expression of r in function of the probability
distribution, in such a way that we can measure how good is a protocol, intended as the choice of Λ,
Π and |ψ⟩. We will begin by considering the trusted case.

5.1 Trusted case

This is the most simple case: trusted because we assume to know the explicit form of operators and
wave function that produced the observed probability distribution (for example we trust the person
that built the devices). They might not be projective, but as usual by purifying the space we find an
explicit form of everything appearing in equation (5.1), that can be used for theoretical calculations.
With that said, by direct generalization from classical information theory it can be proven, see [2],
that a good definition for r is the Von Neumann entropy

rvn = −Tr[ρ log2(ρ)], (5.2)

where ρ is the post-measurement state, defined as the quantum state after Alice and Bob measure the
observables corresponding to x = y = 0:

ρ =
∑
a,b

|ab⟩ ⟨ab| ⟨ψ|Λ0
a ⊗Π0

b |ψ⟩ =
∑
a,b

|ab⟩ ⟨ab| p(a, b|0, 0);

where |ab⟩ ≡ |a⟩ ⊗ |b⟩ ,
(5.3)
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and |a⟩ and |b⟩ are the eigenvectors of the operators being measured:

A0 =
∑
a

aΛ0
a, B0 =

∑
b

bΠ0
b ;

A0 |a⟩ = a |a⟩ ;
B0 |b⟩ = b |b⟩ .

(5.4)

Notice in particular that ρ is a diagonal matrix, therefore the Von Neumann entropy reduces to the
Shannon entropy:

rvn = −
∑
a,b

p(a, b|0, 0) log2[p(a, b|0, 0)]. (5.5)

An alternative definition is the min-entropy:

rme = − log2(∥ρ∥op),

where ρ is the post-measurement state of equation (5.3) and the operator norm ∥ρ∥op outputs the
largest eigenvalue of ρ. Since in our case ρ is diagonal, the min-entropy reduces to

rme = − log2(pmax);

where pmax ≡ max
a,b

[p(a, b|0, 0)]. (5.6)

Notice that the Von Neumann entropy is never smaller than the min-entropy

rvn ≥ rme,

because the former averages among all probabilities p(a, b|0, 0), while the latter considers only the
worst case pmax. So in the trusted case we should always stick to the Von Neumann entropy, however,
as we will see later, the min-entropy has its advantages in the device-independent scenario:

• Computing the min-entropy numerically (NPA hierarchy) is always much faster;

• From a theoretical point of view, maximizing the guessing probability to compute rme is usually
easier than finding the inf of equation (5.9) to calculate rvn.

5.2 Device-independent case

In the device independent case things are more complex because we cannot trust neither the devices
nor the wave function. To extract randomness, in addition to what we assumed in chapter 3, we
include the possibility of an adversary Eve, who has the role of trying to guess the outcomes of Alice
and Bob. More precisely Eve has access to a part of the wavefunction |ψ⟩, which now becomes a
tripartite system

|ψ⟩ ∈ HA ⊗HB ⊗HE ⊗HP (5.7)

where HA ⊗HB is the Alice and Bob Hilbert space, HE is the Eve space and HP is the purification
space. Actually, in this case it’s convenient to trace out the purification space and work with the
mixed density matrix:

ρ0 = TrP [|ψ⟩ ⟨ψ|].

As before Alice and Bob can measure only on their sub-system (they do not even know of the presence
of Eve)

Λxa : HA → HA, Πyb : HB → HB.

Similarly Eve has an hermitian operator E, that acts only on her subspace HE and that can be written
with projector formalism as

E =
∑
e1,e2

e1e2Ee1e2 ,
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where, as usual, the projectors satisfy

Ee1e2 : HE → HE ;

Ee1e2 ≽ 0;∑
e1,e2

Ee1e2 = IE ;

Ee1e2Ee3e4 = δe1e3δe2e4Ee1e2 .

(5.8)

So with the presence of Eve the Bell’s scenario becomes

• Alice and Bob choose their input, perform their measurement and get outputs a, b;

• If their input was x = y = 0, then Eve perform her measurement and finds a two-bits output
e1, e2. Her hope is that the probability of having

e1 = a; e2 = b,

is very high, in such a way that she can likely guess the random numbers generated by Alice
and Bob.

As in the trusted case, to define r we need an expression for the post-measurement state ρ (after Alice
and Bob measured their input x = y = 0):

ρ =
∑
a,b

|ab⟩ ⟨ab|TrA,B
[
ρ0Λ

0
a ⊗Π0

b ⊗ IE
]
,

where |ab⟩ is the same of equation (5.4) and TrA,B[] is the partial trace operator over Alice and Bob
subspace HA ⊗HB.

Von Neumann entropy The number of bits generated per round with the Von Neumann entropy
is

rvn = inf
ρ0,Λ,Π

H(AB|E)ρ;

inf among ρ0,Λ,Π satisfying TrA,B,E [ρ0Λ
x
a ⊗Πyb ⊗ IE ] = p(a, b|x, y),

(5.9)

where H(AB|E)ρ is the conditional Von Neumann entropy (conditioned on Eve space) for the post-
measurement state ρ. Such definition is a direct generalization of the corresponding one for the trusted
case, see equation (5.2), indeed:

• We are in a device-independent scenario, so we find the minimum among all the state and
measurements compatible with the probability distribution (we cannot assume their form as in
the trusted case);

• Due to the presence of Eve, we have to use the conditional Von Neumann entropy instead of the
unconditional one.

A special case Computing analytically equation (5.9) is, in general, very difficult. However, there
are some cases in which it can be simplified: for example if we manage to prove that the Eve’s part
of the state is uncorrelated from Alice and Bob

ρ0 = ρAB ⊗ ρE ,

then, the same result holds for the post-measurement state

ρ =

∑
a,b

|ab⟩ ⟨ab|TrA,B
[
ρABΛ

0
a ⊗Π0

b

]⊗ ρE ≡ ρ̃AB ⊗ ρE ,
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and in this case it can be proven that the conditional Von Neumann entropy reduces to the uncondi-
tional one:

rvn = inf
ρ0,Λ,Π

−Tr[ρ̃AB log2 ρ̃AB];

inf among ρ0,Λ,Π satisfying TrA,B,E [ρ0Λ
x
a ⊗Πyb ⊗ IE ] = p(a, b|x, y).

Finally notice that

ρ̃AB =
∑
a,b

|ab⟩ ⟨ab|TrA,B
[
ρABΛ

0
a ⊗Π0

b

]
,

is a diagonal matrix. This implies that the Von Neumann entropy reduces to a Shannon entropy

rvn = inf
ρ0,Λ,Π

−
∑
a,b

TrA,B
[
ρABΛ

0
a ⊗Π0

b

]
log2

{
TrA,B

[
ρABΛ

0
a ⊗Π0

b

]}
,

but at the same time

TrA,B
[
ρABΛ

0
a ⊗Π0

b

]
= p(a, b|0, 0).

Hence the result doesn’t depend on the choice of state and observables ρ0,Λ,Π and we end up with:

rvn = −
∑
a,b

p(a, b|0, 0) log2[p(a, b|0, 0)].

Min-entropy Similarly, equation (5.6) can be generalized to the device independent case. It is
found that

rme = − log2(G),

where G is called guessing probability:

G ≡ max
ρ0,Λ,Π,E

∑
a,b

TrA,B,E [ρ0Λ
0
a ⊗Π0

b ⊗ Ea,b]


max among ρ0,Λ,Π, E satisfying TrA,B,E [ρ0Λ

x
a ⊗Πyb ⊗ IE ] = p(a, b|x, y).

(5.10)

G represents the maximum probability that Eve has to guess Alice and Bob outcomes, among all
possible states and operators compatible with p(a, b|x, y).

A special case As for the Von Neumann entropy, in the special case in which the Eve’s part of the
state is uncorrelated from Alice and Bob

ρ0 = ρAB ⊗ ρE

we can find a simplified expression for the guessing probability:

G = max
ρ0,Λ,Π,E

∑
a,b

TrA,B[ρABΛ
0
a ⊗Π0

b ] Tr[ρEEa,b]

 = max
ρ0,Λ,Π,E

∑
a,b

p(a, b|0, 0)Tr[ρEEa,b]

 =

= max
E,ρE

∑
a,b

p(a, b|0, 0)Tr[ρEEa,b]

 .

(5.11)

where we used that

TrA,B[ρABΛ
0
a] = p(a, b|0, 0),

and therefore there is no need to maximize on state and measurements ρ0,Π,Λ. We still need to find
the maximum among all possible choices of Eve’s state and observables ρE , E. To do this define

pmax ≡ max
a,b

p(a, b|x, y) = p(ã, b̃, 0, 0)
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and notice that equation (5.11) can be bounded from above

G = max
E,ρE

∑
a,b

p(a, b|0, 0)Tr[ρEEa,b]

 ≤ pmax ·max
E,ρE

Tr

ρE∑
a,b

Ea,b

 = pmax · Tr [ρE ] = pmax

where we used equation (5.8), the linearity of the trace and the normalization of the density matrix.
Finally note that the bound can actually be achieved by choosing E and ρE in such a way that

Tr[ρEEa,b] =

{
1 if a = ã and b = b̃

0 else

For such choice is easy to see that
G = pmax,

and therefore the min entropy is
rme = − log2(pmax).

Comparison between the two entropies The two definitions of r, with the Von Neumann entropy
and the min entropy, are used in different contexts. Indeed, as discussed in [13], rvn is the most suited
in the limit of many repetitions of Bell’s experiment, rme instead is more appropriate in the ”single
shoot” case, in which the experiment is repeated a few times.

5.3 Numerical simulations

In this section we will see how the NPA hierarchy algorithm can be adapted to find numerical lower
bounds on rme and rvn in the device-independent case. Having an algorithm to perform this task is
very helpful for two main reasons:

• Studying the effects of the noise on the system: usually noised systems don’t maximally vio-
late any Bell’s inequality, so performing self-testing and finding analytical values for r is often
impossible. From numerical simulations instead, we get regardless reliable lower bounds.

• Help in theoretical proofs: let’s say that we found a trusted protocol, with generic probability
distribution p(a, b|x, y), that generates many random bits per round rtrust ≈ 2, and we want to
determine if it’s possible to extend the result to the device-independent case. In other words,
by assuming only the observed behavior p(a, b|x, y) and the possibility of an adversary Eve, can
we still generate r = rtrust?. This is usually a difficult task, but if from the simulation we find a
lower bound rsim ≈ rtrust then the answer is likely yes.

Numerical algorithm for rme Let us begin by the min-entropy rme, defined as

rme = − log2(G).

The guessing probability G is defined in function of the density matrix ρ, in equation (5.10). To
translate the problem in the NPA formalism is convenient to work with the purified weave function
(5.7), so that equation (5.10) can be rewritten as

G ≡ max
|ψ⟩,Λ,Π,E

∑
a,b

⟨ψ|Λ0
a ⊗Π0

b ⊗ Ea,b] |ψ⟩


such that ⟨ψ|Λxa ⊗Πyb ⊗ IE |ψ⟩ = p(a, b|x, y);

such that Ee1e2 ≽ 0;
∑
e1,e2

Ee1e2 = IE ; Ee1e2Ee3e4 = δe1e3δe2e4Ee1e2 ; E†
e1e2 = Ee1e2 ;

such that Λxa ≽ 0;
∑
a

Λxa = IA; Λxa1Λ
x
a2 = δa1a2Λ

x
a1 ; (Λxa)

† = Λxa;

such that Πyb ≽ 0;
∑
b

Πyb = IB; Πyb1Π
y
b2

= δb1b2Π
y
b1
; (Πyb )

† = Πyb ,

(5.12)
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where we also added explicitly all the constraints on the operators and we omitted the identity on the
purification space Ip. We have three differences with the NPA formalism that we have to address:

1. In the original NPA hierarchy we didn’t consider any Eve’s operator Ee1,e2 , see equation (4.9);

2. We are currently working on the quantum set Q′: Alice and Bob (and Eve) projectors act on
different Hilbert spaces and we consider their tensor product. In the NPA hierarchy instead
we considered the set Q, where Alice and Bob projectors satisfy the weaker condition of just
commuting, see equation (4.5);

3. We are considering the completeness relations∑
e1,e2

Ee1e2 = IE ;
∑
a

Λxa = IA;
∑
b

Πyb = IB,

that, as we saw in section (4.2), generates some redundancy.

All those issues are easily addressed: first of all we get rid of the redundancy by defining the reduced

sets, where for each x we remove an Alice’s operator Λaxa , for each y we remove a Bob’s operator Π
by
b ,

and we also remove an Eve’s operator Eẽ1,ẽ2 .

Λ̃ = {Λxa, ∀a, x} − {Λxax , ∀x};

Π̃ = {Πyb , ∀b, y} − {Πyby , ∀y};

Ẽ = {Ee1e2 , ∀e1, e2} − {Eẽ1ẽ2}.

Since, analogously to what we did in section (4.2), they are a linear combination of the others

Λxax = IA −
∑
a̸=ax

Λxa, ∀x;

Πyby = IB −
∑
b̸=by

Πyb , ∀y;

Eẽ1ẽ2 = IE −
∑

e1 ̸=ẽ1,e2 ̸=ẽ2

Ee1,e2 .

(5.13)

Equation (5.13) also needs to be substituted in equation (5.12), so that we have an expression of G that
depends only on the reduced set of projectors. The next step is performing a relaxation by considering
behaviors belonging to the quantum set Q instead of Q′. Practically we only have to substitute the
tensor product of local operators with product of commuting operators, in particular equation (5.12)
becomes:

G ≡ max
|ψ⟩,Λ,Π,E

∑
a,b

⟨ψ|Λ0
aΠ

0
bEa,b] |ψ⟩


such that ⟨ψ|ΛxaΠ

y
b |ψ⟩ = p(a, b|x, y);

such that [Λxa,Π
y
b ] = [Λxa, Ee1e2 ] = [Πyb , Ee1e2 ] = 0;

...

Performing this relaxation is not a problem: in chapter 2 we showed that

Q′ ⊆ Q,

therefore we are effectively finding G as the maximum in a larger set, which corresponds to a smaller
lower bound on rme. Finally, to take in account Eve’s operator we simply add them to the set of
sequences, equation (4.9):

S0 = {I}

S1 = S0 ∪ {Λi ∈ Λ̃} ∪ {Πi ∈ Π̃} ∪ {Ei ∈ Ẽ}

S2 = S0 ∪ S1 ∪ {ΛiΛj ∈ Λ̃} ∪ {ΠiΠj ∈ Λ̃} ∪ {EiEj ∈ Ẽ} ∪ {ΛiΠj , Λi ∈ Λ̃, Πj ∈ Π} ∪ ...
S3 = ...

(5.14)
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this has the only effects of having larger certificates Γn at each level n. So overall, with these changes
the maximization problems for G, equation (5.12), becomes:

G ≡ max
|ψ⟩,Λ̃,Π̃,Ẽ

∑
a,b

⟨ψ|Λ0
aΠ

0
bEa,b] |ψ⟩


such that ⟨ψ|ΛxaΠ

y
b |ψ⟩ = p(a, b|x, y);

such that Ee1e2 ≽ 0; Ee1e2Ee3e4 = δe1e3δe2e4Ee1e2 ; E†
e1e2 = Ee1e2 ;

such that Λxa ≽ 0; Λxa1Λ
x
a2 = δa1a2Λ

x
a1 ; (Λxa)

† = Λxa;

such that Πyb ≽ 0; Πyb1Π
y
b2

= δb1b2Π
y
b1
; (Πyb )

† = Πyb ,

such that [Λxa,Π
y
b ] = [Λxa, Ee1e2 ] = [Πyb , Ee1e2 ] = 0.

(5.15)

Which is solvable with the NPA hierarchy: indeed let Γn be a certificate of order n > 1 and let ia, jb,
be its row and column indexes such that

(Γn)ia,ja = ⟨ψ|Λ0
aΠ

0
bEa,b] |ψ⟩ , ∀a, b ∈ {−1,+1}. (5.16)

If we define the matrix βn as

βni,j =

{
1 if i = ia, j = jb, ∀a, b ∈ {−1,+1}
0 else

Then clearly ∑
a,b

⟨ψ|Λ0
aΠ

0
bEa,b] |ψ⟩ = Tr[Γnβn],

and solving the following SDP problem

maximize Tr[βnΓn];

subject to Tr[F TΓn] = g(p), ∀F, g ∈ F(O);

subject to Γn ≽ 0.

outputs both a valid certificate Γn for the n-th order NPA hierarchy and an estimate Gn of G as
defined in equation (5.15). As usual, solving the problem at any order of the NPA hierarchy will yield
a sequence of better and better approximations

G2 ≥ G3 ≥ ... ≥ G,

that also satisfies

lim
n→∞

Gn = G.

Furthermore, by testing the program with known protocols, it is found that most of the time G2 is
already a very good approximation of G. Finally, notice that we assumed n > 1, because the first
order matrix Γ1 doesn’t contain the correlations of equation (5.16), therefore we cannot define G1.
In cases where solving the second order is already computationally infeasible, the best thing to do is
considering the intermediate level 1 +AB, as defined in equation (4.18).

Numerical algorithm for rvn For the Von Neumann entropy things are more complex, and con-
verting equation (5.2) to a NPA hierarchy problem is not easy. Here we will just show the final result,
for a proof see [4]:
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Let m ∈ N and let ti, wi be the nodes and weight of a m-point Gauss-Radau rule with tm = 1. Then,
in a device independent scenario, rvn is bounded below by

cm + inf
m−1∑
i=1

wi
ti ln 2

∑
a,b

⟨ψ|ΛxaΠ
y
b (Zab,i + Z†

ab,i + (1− ti)Z
†
ab,iZab,i) + tiZab,iZ

†
ab,i |ψ⟩

such that ⟨ψ|ΛxaΠ
y
b |ψ⟩ = p(a, b|x, y);

such that Zab,iZ
†
ab,i ≤ αi;

such that Λxa ≽ 0; Λxa1Λ
x
a2 = δa1a2Λ

x
a1 ; (Λxa)

† = Λxa;

such that Πyb ≽ 0; Πyb1Π
y
b2

= δb1b2Π
y
b1
; (Πyb )

† = Πyb ,

such that [Λxa,Π
y
b ] = [Λxa, Zcb,i] = [Πyb , Zac,i] = [Λxa, Z

†
cb,i] = [Πyb , Z

†
ac,i] = 0

where cm =
m−1∑
i=1

wi
ti ln 2

.

(5.17)

Overall it is quite similar to the result we found for the min-entropy, see equation (5.15). The main
differences are:

• Eve’s operator Zab,i are no longer projective. They are only bounded linear operators (not even
hermitian). To reduce the running time of simulations, the bounded condition

Zab,iZ
†
ab,i ≤ αi (5.18)

can be neglected, with the trade off of computing a worse estimate of rvn;

• The goodness of the approximation will depend on two variables: the NPA hierarchy level n and
the number of points m of the Gauss Radau quadrature. To converge to the real value of rvn
we have to consider the limit (n,m) → ∞;

• The number of Eve’s operator is

2∆2(m− 1) = 8(m− 1),

where the 2 factor is there because for each Z we have to consider its hermitian conjugate Z†.
In the min-entropy case instead Eve’s had only ∆2 = 4 operators, so computing rvn has a much
larger running time.

• We have the addition of ti and wi coefficients, but at the end of the day they are just real
numbers that can be numerically computed with existing libraries.

The optimization problem of equation (5.17) can be converted to a SDP, solvable with the NPA hierar-
chy algorithm, by following the same steps we did for the min entropy. Notice that the computational
complexity can be reduced by considering the following inequality

inf
m−1∑
i=1

wi
ti ln 2

∑
a,b

⟨ψ|ΛxaΠ
y
b (Zab,i + Z†

ab,i + (1− ti)Z
†
ab,iZab,i) + tiZab,iZ

†
ab,i |ψ⟩ ≥

m−1∑
i=1

inf

 wi
ti ln 2

∑
a,b

⟨ψ|ΛxaΠ
y
b (Zab + Z†

ab + (1− ti)Z
†
abZab) + tiZabZ

†
ab |ψ⟩

 ,

(5.19)

where we have swapped the outer sum with the inf. The main advantage of solving this new problem
is that instead of running a single computationally heavy SDP, we run (m − 1) smaller SDP, where
Eve has only 2∆2 = 8 operators, and sum their results. In this way the running time scales linearly
in the number of nodes of the Gauss Radau quadrature and we still find a lower bound of rvn. The
only drawback is that there is no guarantee on the goodness of the result, which could be much worse
than the one found by solving the original minimization (5.17).
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Chapter 6

Sequential extensions

In the previous chapter we discussed the generation of random numbers from a Bell’s scenario with
two inputs and outputs, and we found that a big limitation is the impossibility of generating more
than 2 bits per round

r < 2.

This limit follows from the fact that in a single round only two measurements happens and each of
them yields a 1-bit result. A natural way to overcome this restriction is adding more users, that will
sequentially measure the state. Protocols that follow such generalization are called ”sequential Bell’s
scenarios”.

Figure 6.1: Sequential Bell’s scenario

6.1 Sequential Bell’s scenarios

Consider two groups of spatially separated observers that perform measurements on a shared physical
system, generated by a source S. Each group is made respectively by N and M users that we’ll label
as Alice-1, Alice-2, ..., Alice-N and Bob-1, Bob-2,..., Bob-M. Then, we define round of sequential Bell’s
scenario to be made of the following steps:

• The physical system is generated and sent to Alice-1 and Bob-1;

• Alice-1 and Bob-1 respectively choose operators x1, y1, measure their part of the system, obtain
an output a1, b1 and send the post-measurement state to Alice-2 and Bob-2;

• The process is iterated until all Alice and Bob performed a measurement.

37



6.2. SEQUENTIAL QUANTUM SET CHAPTER 6. SEQUENTIAL EXTENSIONS

See figure 6.1 for a representation of the case N = M = 2. After many rounds the probability
distribution

p(⃗a, b⃗|x⃗, y⃗),

where a⃗ ≡ (a1, ..., aN ); b⃗ ≡ (b1, ..., bM );

where x⃗ ≡ (x1, ..., xN ); y⃗ ≡ (y1, ..., yM );

can be built, which represents the probability of measuring the N +M outputs a⃗ and b⃗, for fixed
choice of the inputs x⃗ and y⃗. As in the original Bell’s scenario p(⃗a, b⃗|x⃗, y⃗) is also called behavior and
satisfies the following constraints

p(⃗a, b⃗|x⃗, y⃗) ≥ 0, (positivity constraint);∑
a⃗,⃗b

p(⃗a, b⃗|x⃗, y⃗) = 1, (normalization constraint);

∑
bk,...,bM

p(⃗a, b⃗|x⃗, y⃗) =
∑

bk,...,bM

p(⃗a, b⃗|x⃗, y⃗′)

∀x⃗, a⃗;
∀k = 2, ...,M ;

∀b1, ...bk−1; (sequential constraint).

∀y⃗, y⃗′, such that yj = y′j , j = 1, ..., k − 1,

(6.1)

The last condition is called sequential constraint, and it means that the input chosen by the last
(M − k + 1) Bobs cannot influence the first (k − 1) Bobs. Clearly an analogous constraint holds on
Alice’s side.

6.2 Sequential Quantum Set

In the quantum case we can assume that, up to space purification, the physical system is described
by a pure wavefunction |ψ⟩ and each Alice and Bob are doing generalized measurements described by
sets of Kraus operators

{Λxiai,µi}; {Πyjbj ,µj}; i = 1, ..., N and j = 1, ...,M ;

with
∑
ai,µi

(Λxiai,µi)
†Λxiai,µi = I;

with
∑
bj ,µj

(Π
yj
bj ,µj

)†Π
yj
bj ,µj

= I.

Where the index µ considers the case in which there are multiple Kraus operators associated to the
same outcome measurement a or b. Then, the (non-normalized) post-measurement state found after
Alice-1 obtains outcome a1 from input x1 is

ρa1|x1 =
∑
µ1

Λx1a1,µ1 |ψ⟩ ⟨ψ| (Λ
x1
a1,µ1)

†,

and the corresponding probability is

p(a1|x1) = Tr[ρa1|x1 ].

Continuing this process for the entire sequence with inputs x⃗ and outputs a⃗, we find that

p(⃗a|x⃗) = ⟨ψ|Λx⃗a⃗ |ψ⟩ ,

where
Λx⃗a⃗ ≡

∑
µ1,...,µn

(Λx1a1,µ1)
†...(Λxnan,µn)

†Λxnan,µn ...Λ
x1
a1,µ1 . (6.2)

The same results holds for the sequence of Bobs

p(⃗b|y⃗) = ⟨ψ|Πy⃗
b⃗
|ψ⟩ ,
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where

Πy⃗
b⃗
≡

∑
µ1,...,µn

(Πy1b1,µ1)
†...(Πynbn,µn)

†Πynbn,µn ...Π
y1
b1,µ1

. (6.3)

Therefore, we can define the set of sequential quantum behaviors Q′
SEQ, as the set of probability

distributions p(⃗a, b⃗|x⃗, y⃗) of the form

p(⃗a, b⃗|x⃗, y⃗) = ⟨ψ|Λx⃗a⃗ ⊗Πy⃗
b⃗
|ψ⟩ ⇐⇒ p(⃗a, b⃗|x⃗, y⃗) ∈ Q′

SEQ,

where Λx⃗a⃗ and Πy⃗
b⃗
are operators that can be written as in equations (6.2) and (6.3). Furthermore, we

can define a larger set QSEQ in which, instead of using the tensor product of local operators, we use
global and commuting operators:

p(⃗a, b⃗|x⃗, y⃗) ∈ QSEQ ⇐⇒

{
p(⃗a, b⃗|x⃗, y⃗) = ⟨ψ|Λx⃗a⃗Π

y⃗

b⃗
|ψ⟩ ;

[Λx⃗a⃗,Π
y⃗

b⃗
] = 0.

,

As we have already seen, this definition is more natural for performing numerical simulations with the
NPA hierarchy.

Why generalized measurements In a sequential protocol to fully exploit the power of quantum
mechanics, we need a way to preserve the entanglement of the wave function throughout the whole
measurement round. In other words, the post-measurements states received by Alice-1,...Alice-N
and Bob-1,...,Bob-M have to be entangled. Without entanglement the protocol would reduce to a
trivial classical system, from which extracting random bits is much more difficult. Unfortunately
projective measurements (in the non-purified space) often lead to entanglement loss: for example if
Bob-1 measures σz ⊗ I on the Bell’s state |ϕ+⟩, it collapses to

|ϕ+⟩ =
1√
2
(|00⟩+ |11⟩) →

{
either |00⟩ ;
or |11⟩ ,

and the next user would receive a useless classical mixture

ρ =
1

2
(|00⟩ ⟨00|+ |11⟩ ⟨11|).

The only solution to this problem is to use generalized operator. Let’s make some examples that we
will use in protocols of the next chapter.

An example of Kraus operators As an example of generalized measurements consider the simple
1-qubit case with N = µ = 1 and binary outputs. Such system is described only by two Kraus
operators Λ1

+1,1, Λ
1
−1,1, that we define as:

Λ1
+1,1 = cos θ |0⟩ ⟨0|+ sin θ |1⟩ ⟨1| ;

Λ1
−1,1 = cos θ |1⟩ ⟨1|+ sin θ |0⟩ ⟨0| ,

where (|0⟩ , |1⟩) is a basis of the 1-qubit Hilbert space and θ ∈ [0, π4 ] is a fixed parameter. Then,
following equation (6.2), we can compute the observables Λ1

±1:

Λ1
+1 = cos2(θ) |0⟩ ⟨0|+ sin2(θ) |1⟩ ⟨1| ;

Λ1
−1 = cos2(θ) |1⟩ ⟨1|+ sin2(θ) |0⟩ ⟨0| .

Such generalized operator can be seen as a weak version of σz: indeed for θ = 0 we recover the two
projectors of σz

Λ1
+1 = |0⟩ ⟨0| ; Λ1

−1 = |1⟩ ⟨1| ,
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so we are performing a projective measurement. Instead, in the other limit θ = π
4 it reduces to the

non-interactive measurement

Λ1
+1 = Λ1

−1 =
1

2
I.

More generally, given any 1-qubit unitary operator O, we define its weak version w(O, θ) as the
operator made by the two Kraus

Λ1
+1,1 = cos θ

(
O + I
2

)
+ sin θ

(
−O + I

2

)
;

Λ1
−1,1 = cos θ

(
−O + I

2

)
+ sin θ

(
O + I
2

)
,

and, again, from equation (6.2), we derive that

Λ1
+1 = cos2(θ)

(
I +O

2

)
+ sin2(θ)

(
I −O

2

)
;

Λ1
−1 = cos2(θ)

(
I −O

2

)
+ sin2(θ)

(
I +O

2

)
.

6.3 Stinespring dilation

So far we considered a purified space in which the state |ψ⟩ is pure but all operators are generalized.
We managed to characterize any sequential quantum state

p(⃗a, b⃗|x⃗, y⃗) = ⟨ψ|Λx⃗a⃗ ⊗Πy⃗
b⃗
|ψ⟩ ,

but equations (6.2) and (6.3), that define Λx⃗a⃗ and Πy⃗
b⃗
, are quite messy and it’s not clear how to work

with them. As we already discussed in section 3.1, the space can be further expanded with a technique
called Stinespring dilation, and we can find a realization where Λx⃗a⃗ and Πy⃗

b⃗
are projective operators.

More precisely:

A given behavior p(⃗a, b⃗|x⃗, y⃗) belongs to Q′
SEQ if and only if it can be realized as

p(⃗a, b⃗|x⃗, y⃗) = ⟨ψ|Λx⃗a⃗ ⊗Πy⃗
b⃗
|ψ⟩ ,

with the measurements operators being projective and satisfying the one-way ’no-signaling’ and or-
thogonality condition. That is

Λx⃗a⃗Λ
x⃗
a⃗′ = δa⃗,⃗a′Λ

x⃗
a⃗;

∑
ak+1,...,an

(
Λx⃗a⃗ − Λx⃗

′

a⃗

)
= 0,

∀a1, ..., ak
∀x⃗, x⃗′ such that xi = x′i(i ≤ k)

1 ≤ k ≤ n− 1

;

Λx⃗a⃗Λ
x⃗′

a⃗′ = 0,∀x⃗, x⃗′, a⃗, a⃗′ such that

xi = x′i, (i ≤ k)

(a1, ..., ak) ̸= (a′1, ..., a
′
k)

1 ≤ k ≤ n

;

∑
a1,...,an

Λx⃗a⃗ = I;

(Λx⃗a⃗)
† = Λx⃗a⃗,

(6.4)

and similarly for Πy⃗
b⃗
.

A proof of this result can be found in [3], here we will only discuss its applications to numerical
simulations.
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6.4 Sequential NPA hierarchy

Everything we said in chapter 4 about the NPA hierarchy can be easily adapted to the sequential case,
and we can find an algorithm that solves the following problem: given a behavior p(⃗a, b⃗|x⃗, y⃗) does it
belong to the sequential quantum set QSEQ? Indeed, the only differences between the two cases is that
in the sequential one operators have more constraints, as it can be seen by comparing equation (6.4)
with (4.3). To take them in account, we repeat the derivation of the NPA hierarchy done in chapter
4, with the following additions:

• When defining the reduced sets, see equation (4.4), we need to take in account the new additional
redundancy added by the one-way no-signaling conditions

∑
ak+1,...,an

(
Λx⃗a⃗ − Λx⃗

′

a⃗

)
= 0,

∀a1, ..., ak
∀x⃗, x⃗′ such that xi = x′i(i ≤ k)

1 ≤ k ≤ n− 1

;

Indeed, since they are linear in Λ, from each of them we can write a Λx⃗a⃗ in function of the others,
as we did with the completeness relation ∑

a1,...,an

Λx⃗a⃗ = I;

• Then, the remaining new orthogonal constraints

Λx⃗a⃗Λ
x⃗′

a⃗′ = 0, ∀x⃗, x⃗′, a⃗, a⃗′ such that

xi = x′i, (i ≤ k)

(a1, ..., ak) ̸= (a′1, ..., a
′
k)

1 ≤ k ≤ n

are simply included, at each order n of the NPA hierarchy, in the sets of constraints of the
certificate Γn, similarly to what we did in (4.15).

6.5 Another characterization of Q′
SEC

Notation In this section we will use the following notation: given a sequence of input

x⃗ = (x1, ..., xN )

we will denote with x⃗k its truncation to the k-th element:

x⃗k = (x1, ..., xk).

Furthermore, we will say that x⃗l ≥ x⃗k if l ≥ k and the first k elements in x⃗l are the same of x⃗k
(i.e. x⃗k is a truncation of x⃗l).

Characterizing Q′
SEQ The set of constraints we found in equation (6.4), are particularly

useful in numerical simulations since they are a superset of the non-sequential case, see (4.3).
However, for theoretical calculations a better characterization can be found:

A given behavior p(⃗a, b⃗|x⃗, y⃗) belongs to the sequential quantum set Q′
SEQ if and only if it can be

written as
p(⃗a, b⃗|x⃗, y⃗) = ⟨ψ|

∏
k

Λx⃗kak ⊗
∏
k

Πy⃗kbk |ψ⟩ ,

where the operators satisfy ∑
ak

Λx⃗kak = I, ∀k, x⃗k;

(Λx⃗kak )
† = Λx⃗kak , ∀k, x⃗k, ak;

Λx⃗kakΛ
x⃗k
a′k

= δak,a′kΛ
x⃗k
ak
, ∀k, x⃗k, ak, a′k

[Λx⃗kak ,Λ
x⃗l
al
] = 0, ∀k, l, ak, al, x⃗l ≥ x⃗k,

(6.5)
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and symmetrical results for Bob-1,...,Bob-M operators Πy⃗kbk . The proof of this result can be found in
[10]. Moreover, in this work we will focus on the case with 1 Alice and 2 Bob, each of them with
binary inputs x1, y1, y2 ∈ {0, 1} and outputs a1, b1, b2 ∈ {−1,+1}. In this special case Alice’s side is
non-sequential and equation (6.5) reduces to to∑

a1=±1

Λx1a1 = I, ∀x1 ∈ {0, 1};

(Λx1a1)
† = Λx1a1 , ∀x1 ∈ {0, 1}, a1 ∈ {±1};

Λx1a1Λ
x1
a′1

= δa1,a′1Λ
x1
a1 , ∀x1 ∈ {±1}, a1, a′1 ∈ {±1},

(6.6)

which is indeed the correct set of non-sequential constraints. On Bob side instead, by explicitly
expanding the vector y⃗ ≡ y1y2, we can rewrite equation (6.5) as∑

b1=±1

Πy1b1 = I, ∀y1 ∈ {0, 1};

∑
b2=±1

Πy1y2b2
= I, ∀y1, y2 ∈ {0, 1};

(Πy1b1 )
† = Πy1b1 , ∀y1 ∈ {0, 1}, b1 ∈ {±1};

(Πy1y2b2
)† = Πy1y2b2

, ∀y1, y2 ∈ {0, 1}, b2 ∈ {±1};
Πy1b1Π

y1
b′1

= δb1,b′1Π
y1
b1
, ∀y1 ∈ {±1}, b1, b′1 ∈ {±1};

Πy1y2b2
Πy1y2
b′2

= δb2,b′2Π
y1y2
b2

, ∀y1, y2 ∈ {±1}, b2, b′2 ∈ {±1};

[Πy1b1 ,Π
y1y2
b2

] = 0, ∀b1, b2 ∈ {±1}, y1, y2 ∈ {0, 1}.

(6.7)

The interpretation of those projectors is the following: let us assume that they are measuring on a
pure state |ψ⟩, then

p1 = ⟨ψ|Πy1b1 |ψ⟩

is the probability of Bob-1 having b1 as output, given that he chose y1 as input, instead

p2 = ⟨ψ|Πy1y2b2
|ψ⟩

is the probability of Bob-2 having b2 as output, given that Bob-1 and Bob-2 chose respectively y1 and
y2 as inputs. In other words we found a representation in which Bob-2 projectors act directly on |ψ⟩,
in place of the post-measurement state of Bob-1, but as drawback they acquire an explicit dependence
on the input chose by Bob-1. Finally, notice that the first 6 constraints of (6.7) trivially state that
both Πy1b1 and Πy1y2b2

are projectors. The only interesting addition of sequentiality is the commutation
relation

[Πy1b1 ,Π
y1y2
b2

] = 0, ∀b1, b2 ∈ {±1}, y1, y2 ∈ {0, 1},

that we will exploit in next chapter for self-testing proofs.

42



Chapter 7

New protocols

With all the theoretical tools presented, we are ready to derive new results. The final aim is find-
ing sequential protocols, with three users from which we can extract random numbers in a device-
independent way. In the non-sequential case such task is usually done by considering behaviors
p(a, b|x, y) that are self-testable thanks to the maximal violation of one (or more) Bell’s inequality.
Then, by using self-testing results is possible to compute rate of extractions, for example by using
the Von-Neumann entropy (5.9) or the min-entropy (5.11). In our, sequential, case we would like
to do something similar: we want to find behaviors that maximally violate some Bell’s inequalities,
and exploit these violations to acquire knowledge about the system, that can be used to generate
device-independent random bits. However, finding maximally violated Bell’s inequalities is difficult,
and therefore a natural idea is using the method of sequential extensions:

1. We start by considering a non-sequential protocol which has already been self-tested;

2. Then, we sequentially extend it by adding another user;

3. Finally we try to self-test the operators we added in the previous step. Note that, thanks to
the initial assumption, everything else is already self-tested, thus simplifying the part of finding
maximally violated Bell’s inequalities.

7.1 Non-sequential starting point

So, let us begin with step 1 and consider all behaviors of the form

p(a, b|x, y) = ⟨ψ| Λ̃xa ⊗ Π̃yb |ψ⟩

such that state and operators

Ãx =
∑
a

aΛ̃xa;

B̃y =
∑
b

bΠ̃yb ,

admit a self-testing of the following form

Ã0 = cos(α0)σx + sin(α0)σz; Ã1 = cos(α1)σx + sin(α1)σz;

B̃0 = cos(β0)σx + sin(β0)σz; B̃1 = cos(β1)σx + sin(β1)σz;

|ψ⟩ = |ϕ+⟩ =
1√
2
(|00⟩+ |11⟩).

(7.1)

where α0, α1, β0, β1 are four fixed parameters. So basically, up to local isometries, Alice and Bob
are measuring two generic 1-qubit real operators, with binary outcomes a, b ∈ {−1,+1}. Indeed
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(I, σx, σy, σz) is a basis for the 1-qubit operators, and therefore a generic element O can be expanded
as

O = c1I + c2σx + c3σy + c4σz.

Observables are Hermitian, and this add the constraint

c1, c2, c3, c4 ∈ R.

The condition of being real is equivalent to requiring that operators have no component along σy,
c3 = 0. Finally having binary outcomes a, b ∈ {−1,+1} is possible only if

c1 = 0, c22 + c23 = 1,

consequently

O = cos(θ)σx + sin(θ)σz

for some angle θ, consistent with equation (7.1). Notice that we are just requiring the existence of
such self-testing, we don’t really care how it is actually done, for example there could be one (or more)
maximally violated Bell’s inequalities. Some examples of protocol satisfying these conditions are the
CHSH, described in section 3.8, or the ones proposed in [15].

7.2 Invariance under rotation

In equation (7.1) we parameterized a family of non-sequential protocols with 4 parameters (α0, α1, β0, β1).
In this section we will see that the system is symmetric and by ”rotating the x and z axis”, we can
get rid of one angle, thus ending up with only 3 degrees of freedom. The symmetry can be seen by
computing the only relevant physical quantity: the behavior p(a, b|x, y)

p(a, b|x, y) = 1

4
⟨ϕ+| (I + aÃx)⊗ (I + bB̃y) |ϕ+⟩ =

1

4

[
1 + (−1)ab cos(αx − βy)

]
.

It depends only on the difference

αx − βy,

and therefore is invariant under translation of all angles

αx → αx + c; βy → βy + c, c ∈ R.

So without loss of generality we can fix β1 = 0.

Summary We found that the space of non-sequential protocol that satisfy the set of conditions
described above, has 3 degrees of freedom and consists of Alice and Bob measuring

Person Measurement 1 Measurement 2

Alice 1 cos(α0)σx + sin(α0)σz cos(α1)σx + sin(α1)σz
Bob 1 cos(β0)σx + sin(β0)σz σx

on the state |ψ⟩ = |ϕ+⟩. The angles α0, α1, β0 can take any values, provided that from the correspond-
ing probability distribution p(a, b|x, y) is possible to self-test both state and measurements.

7.3 Sequential extension of the protocol

At this point we want to find a sequential extension of the protocol. It can be done in many ways,
our choice is to focus on the following points

• We will extend the protocol on the Bob’s side, so there will be 3 users: 1-Alice and 2-Bob and
a corresponding behavior of the form p(a, b1, b2|x, y1, y2);
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• All users will still have binary inputs and binary outputs

x, y1, y2 ∈ {0, 1} a, b1, b2 ∈ {−1, 1}.

• Extension in the sense that the four original operators will still be measured and the shared state
will be |ψ⟩ = |ϕ+⟩. This is important because it will allow us to exploit the previous assumption
about self-testing;

• Bob-1 will have to perform at least one generalized weak measurement. Indeed projective mea-
surements remove the entanglement between the two qubits. Without entanglement the quan-
tum system decays to a classical one, making the presence of Bob-2 (who would measure on the
unentangled post-measurement state of Bob-1) useless.

Therefore, we propose the sequential extension of table 7.1, where all operators are measured on the
shared state |ϕ⟩ = |ϕ+⟩. An important point: our results will not depend on the protocol, otherwise
we would be in a trusted scenario. Indeed, results will depend only on the behavior p(a, b1, b2|x, y1, y2)
generated by it, so that from any other protocol that yields the same probability distribution we would
be able to generate the same number of random bits (basically the definition of device-independence).
The points of table 7.1 is just giving the intuition on how such probability distribution has been found.
With that said let us analyze the table: Alice-1 is still measuring Ã0 and Ã1, Bob-1 is measuring B̃0

Person Measurement 1 Measurement 2

Alice 1 cos(α0)σx + sin(α0)σz cos(α1)σx + sin(α1)σz
Bob 1 w(cos(δ1)σx + sin(δ1)σz, θ) cos(β0)σx + sin(β0)σz
Bob 2 cos(δ)σx + sin(δ)σz σx

Table 7.1: Operators for the sequential protocol

and the generalized operator
w(cos(δ1)σx + sin(δ1)σz, θ),

where with w(Ô, θ), as discussed in section (6.2), we denote the non-projective measurement of a
1-qubit operator Ô, defined by the two Kraus

K+(θ) = cos(θ)
I + Ô

2
+ sin(θ)

I − Ô

2
;

K−(θ) = sin(θ)
I + Ô

2
+ cos(θ)

I − Ô

2
.

Bob-2 instead is measuring B̃1 and a new operator

cos(δ)σx + sin(δ)σz.

Overall we have three new degrees of freedoms δ, δ1 and θ. The last one in particular measure the
”weakness” of the measurement, while δ and δ1 should be chosen in such a way to maximize the
device-independent number of bits generated per round. Again, we are always implicitly focusing on
the behavior generated by the protocol (and not on the protocol itself, or we would be in a trusted
scenario). Therefore a choice of the angles has to be thought has a choice of probability distribution.

Steps of the protocol In a single round the following steps are performed

• The state |ψ⟩ is sent to Alice-1 and Bob-1, that randomly measure one of their operator.

• Then, if Bob-1 chose the projective measurement the protocol ends, otherwise the post-measurement
state is sent to Bob-2 who randomly measure one of his operators.

This is slightly different from what described in chapter 6, because we are stopping the protocol if
Bob-1 measures his projective operator. Such choice is an optimization because, as already said, after
a projective measurement the system’s entanglement is lost.
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Effective set of operators Bob-2 operators defined on table (7.1) are not really useful, because they
act on the post-measurement state of Bob-1. Instead we would like to define some effective operators
of the form By1y2 that act directly on |ψ⟩ with the downside of acquiring an explicit dependence on
the Bob-1 input y1. We have already seen in equation (6.3) how to do such transformation and the
result is

Bnd
00 = K+(θ, δ1)(cos(δ)σx + sin(δ)σz)K

†
+(θ, δ1) +K−(θ, δ1)(cos(δ)σx + sin(δ)σz)K

†
−(θ, δ1);

Bnd
01 = K+(θ, δ1)σxK

†
+(θ, δ1) +K−(θ, δ1)σxK

†
−(θ, δ1),

where superscript nd stands for ”non-dilated”, and its significance will become clear shortly. So Bnd
00

and Bnd
01 are respectively the first and second operators measured of Bob-2 on |ψ⟩, given that Bob-1

chose y1 = 0. Note that we don’t have to define Bnd
10 and Bnd

11 since the protocol stops after the
choice y1 = 1. Therefore, by putting everything together, we conclude that the protocol consists of
the following 6 effective operators

And
0 = Ã0 = cos(α0)σx + sin(α0)σz, And

1 = Ã1 = cos(α1)σx + sin(α1)σz;

Bnd
0 = w(cos(δ1)σx + sin(δ1)σz, θ), Bnd

1 = B̃0 = cos(β0)σx + sin(β0)σz;

Bnd
01 = K+(θ, δ1)σxK

†
+(θ) +K−(θ, δ1)σxK

†
−(θ, δ1);

Bnd
00 = K+(θ, δ1)(cos(δ)σx + sin(δ)σz)K

†
+(θ, δ1) +K−(θ, δ1)(cos(δ)σx + sin(δ)σz)K

†
−(θ, δ1),

(7.2)

This characterization is almost equivalent to the one defined in section 6.5, the only difference is that
here we are using the Kraus operator formalism, in place of projectors. The discrepancy can be fixed
by performing a Stinespring dilation that maps the generalized operator

Bnd
0 = w(cos(δ1)σx + sin(δ1)σz, θ)

to a unitary one. To denote the dilated version we will just drop the nd superscript

And
x1 → Ax1 ; Bnd

y1 → By1 ; Bnd
0y1

→ B0y1 .

Those new operators exactly match the definition given in section 6.5, and in particular they satisfy
the full set of constraints (6.6) and (6.7):

A†
x1 = Ax1 , ∀x1 ∈ {0, 1};

A2
x1 = I, ∀x1 ∈ {0, 1};

B†
y1 = By1 , ∀y1 ∈ {0, 1};

B2
y1 = I, ∀y1 ∈ {0, 1};

B2
0y2 = I ∀y2,∈ {0, 1};

(B0y2)
† = B0y2 , ∀y2,∈ {0, 1};

[B0, B0y2 ] = 0, ∀y2 ∈ {0, 1};
[Ax1 , By1 ] = [Ax1 , B0y2 ] = 0, ∀x1, y1, y2 ∈ {0, 1},

(7.3)

which are extremely important and will be used for self-testing in next sections. Notice that we do
not need the explicit form of the Stinespring dilation because it doesn’t change expectation values,
hence we can still compute all physical quantities with their generalized (weak) version of equation
(7.2). So for example:

• To prove that on our protocol a given Bell’s operator S̃ has quantum bound Ĩs we would formally
work on the Stinespring dilated space, therefore assuming constraints (7.3);

• To prove that our choice of state and measurements yield

⟨S̃⟩ = Ĩs,

can be done in the non-dilated space with generalized operators.

The explicit form of the Stinespring map is never needed, it’s enough to know that it exists.
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7.4 Bell inequalities

We assumed that from the original non-sequential behavior p(a, b|x, y) is possible to self-test state and
measurements

Ã0, Ã1, B̃0, B̃1, |ϕ+⟩ . (7.4)

Clearly, in the sequential version we would like to exploit this result, and to achieve this we just need
to make sure that we are still measuring somewhere those same operators (on the same wavefunction)
in such a way to extract p(a, b|x, y) from p(a, b1, b2|x, y1, y2). Well, the wavefunction is still |ϕ+⟩ and
the results holds for Alice since

Ã0 = A0, Ã1 = A1,

and for one of Bob’s operator
B̃0 = B1.

What about B̃1 = σx? Its corresponding in the sequential protocol is B01, see equation (7.2), but it
is a priori different, since it takes in consideration the previous measurement of Bob-1. Therefore we
need to explicitly impose B̃1 = B01:

B01 = B̃1 ⇐⇒ σx = K+(θ, δ1)σxK
†
+(θ, δ1) +K−(θ, δ1)σxK

†
−(θ, δ1),

and by doing the calculation it is found that the result holds if and only if

δ1 = 0.

So by fixing δ1 = 0, the joint probability distribution generated by

A0, A1, B1, B01, |ϕ+⟩ (7.5)

is the same as the one generated by (7.1), and this allows us to perform self-testing on all elements of
equation (7.5). As already said, we don’t care how this self-testing is actually done, however for the
sake of giving a name, we will symbolically say that it follows from the saturation of a given set of
Tsirelson inequalities

⟨Sk⟩ ≤ Ik, k ∈ N. (7.6)

From the self-testing it follows that, up to local isometries:

{A0, A1} |ψ⟩ = 2(cosα0 cosα1 + sinα0 sinα1) |ψ⟩ . (7.7)

For completeness we report the updated version of table 7.1, with the additional constraint of δ1 = 0.

Person Measurement 1 Measurement 2

Alice 1 cos(α0)σx + sin(α0)σz cos(α1)σx + sin(α1)σz
Bob 1 w(σx, θ) cos(β0)σx + sin(β0)σz
Bob 2 cos(δ)σx + sin(δ)σz σx

Table 7.2: Updated operators for the sequential protocol: we have two parameters θ, that measure the weakness
of Bob-1 first operator, and δ that should be chosen in such a way to maximize the RNG ratio.

At this point we have self-tested the wave function and 4 of the 6 operators. We still need to self-
test B0 and B00. To perform such task we need another Bell’s inequality, so consider the following
operator:

Sθ,δ = −1

2
I +

cos(δ) sin2(2θ)fx(A0, A1)⊗B00 + cos(2θ) sin2(δ)fx(A0, A1)⊗B0

2(1− cos2(δ) cos2(2θ))
+

+
sin(δ) sin(2θ)fz(A0, A1)⊗B00 − sin(δ) cos(δ) cos(2θ) sin(2θ)fz(A0, A1)⊗B0

2(1− cos2(δ) cos2(2θ))
;

where

(
fx(A0, A1)
fz(A0, A1)

)
=

(
cosα0 sinα0

cosα1 sinα1

)−1

·
(
A0

A1

)
,

(7.8)
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well defined for
1− cos2(δ) cos2(2θ) ̸= 0.

The important result is that for any behavior that saturates all Tsirelson inequalities of (7.6), then

⟨Sθ,δ⟩ ≤ 0,

and moreover our state and operators (7.2), with δ1 = 0, saturate the bound, i.e they yield

⟨Sθ,δ⟩ = 0.

To prove this results we need to use two properties

• All operators in Sθ,δ are unitary and hermitian, in particular they satisfy (7.3);

• Relation (7.7) holds, since all ⟨Sk⟩ are maximally violated.

With those properties and a lot of algebra it is possible to show that

S2
θ,δ |ψ⟩ = −Sθ,δ |ψ⟩ ,

then by using the hermiticity of Sθ,δ:

0 ≤ ∥Sθ,δ |ψ⟩∥2 = ⟨ψ|S2
θ,δ |ψ⟩ = −⟨Sθ,δ⟩ =⇒ 0 ≥ ⟨Sθ,δ⟩, (7.9)

ant this concludes the proof. In case of maximal violation of ⟨Sθ,δ⟩ we have that:

Sθ,δ |ψ⟩ = 0 =⇒ |ψ⟩ = C1fx(A0, A1)⊗B0,0 + C2fx(A0, A1)⊗B0+

+ C3fz(A0, A1)⊗B0,0 + C4fz(A0, A1)⊗B0.
(7.10)

Where C1, C2, C3, C4 are four real coefficients defined as:

C1 =
cos(δ) sin2(2θ)

1− cos2(δ) cos2(2θ)
;

C2 =
cos(2θ) sin2(δ)

1− cos2(δ) cos2(2θ)
;

C3 =
sin(δ) sin(2θ)

1− cos2(δ) cos2(2θ)
;

C4 = −sin(δ) cos(δ) cos(2θ) sin(2θ)

1− cos2(δ) cos2(2θ)
,

(7.11)

that in particular satisfy
C1C2 − C3C4 = 0. (7.12)

Finally let us define

η ≡ C1

C2
1 + C2

3

, (7.13)

such combination will appear often in the following sections.

7.5 Partial self testing

By assuming that all ⟨Sk⟩ and ⟨Sθ,δ⟩ are saturated we want to characterize our state and measurements.
From the former it follows that:

|ψ⟩ = |ϕ+⟩ ⊗ |ξ⟩
A0 |ψ⟩ = (cos(α0)σx + sin(α0)σz) |ϕ+⟩ ⊗ |ξ⟩
A1 |ψ⟩ = (cos(α1)σx + sin(α1)σz) |ϕ+⟩ ⊗ |ξ⟩
B1 |ψ⟩ = (cos(β0)σx + sin(β0)σz) |ϕ+⟩ ⊗ |ξ⟩
B01 |ψ⟩ = σx |ϕ+⟩ ⊗ |ξ⟩
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At this point we cannot fully determine B0 and B00 but, up to local isometries, we can decompose
them with Pauli matrices:

B0 |ψ⟩ = (1 ⊗ γ0 + σx ⊗ γ1 + σy ⊗ γ2 + σz ⊗ γ3) |ϕ+⟩ ⊗ |ξ⟩
B00 |ψ⟩ = (1 ⊗ τ0 + σx ⊗ τ1 + σy ⊗ τ2 + σz ⊗ τ3) |ϕ+⟩ ⊗ |ξ⟩

All γ and τ operators are unfixed, but we can extract additional information by imposing all constraints
of equation (7.3): for example by requiring [B0, B01] = 0 we find

γ2 |ξ⟩ = γ3 |ξ⟩ = 0. (7.14)

Then by imposing the maximal violation of Sθ,δ, see equation (7.10), we get 4 additional equations

C1τ1 |ξ⟩+ C2γ1 |ξ⟩+ C3τ3 |ξ⟩ = |ξ⟩ ; (7.15)

C1τ0 |ξ⟩+ C2γ0 |ξ⟩+ iC3τ2 |ξ⟩ = 0; (7.16)

−iC1τ2 |ξ⟩+ C3τ0 |ξ⟩+ C4γ0 |ξ⟩ = 0; (7.17)

−C1τ3 |ξ⟩+ C3τ1 |ξ⟩+ C4γ1 |ξ⟩ = 0. (7.18)

In particular consider their linear combination:

(7.16) · C1 + (7.17) · C3 =⇒ (C2
1 + C2

3 )τ0 |ξ⟩+ (C1C2 + C3C4)γ0 |ξ⟩ = 0 =⇒ τ0 |ξ⟩ = 0;

(7.15) · C1 + (7.18) · C3 =⇒ (C2
1 + C2

3 )τ1 |ξ⟩+ (C1C2 + C3C4)γ1 |ξ⟩ = C1 |ξ⟩ =⇒

=⇒ τ1 |ξ⟩ =
C1

C2
1 + C2

3

|ξ⟩ = ηI |ξ⟩ ,
(7.19)

where equation (7.12) has been used. By substituting what we just found in equation (7.15) and (7.16)
we obtain

C2γ1 |ξ⟩+ C3τ3 |ξ⟩ = (1− C1η) |ξ⟩ ; (7.20)

C2γ0 |ξ⟩+ iC3τ2 |ξ⟩ = 0. (7.21)

Let us also impose [B0, B00] = 0

0 = [B0, B00] |ψ⟩ = [1 ⊗ γ0 + σx ⊗ γ1, σx ⊗ τ1 + σy ⊗ τ2 + σz ⊗ τ3] |ϕ+⟩ |ξ⟩ =
σy |ϕ+⟩ ⊗ ([γ0, τ2]− i{γ1, τ3}) |ξ⟩+ σz |ϕ+⟩ ⊗ ([γ0, τ3] + i{γ1, τ2}) |ξ⟩ ,

and the only possibility is that both addends are zero, in particular:

([γ0, τ2]− i{γ1, τ3}) |ξ⟩ = 0. (7.22)

Similarly, imposing B2
0 = I yields

|ψ⟩ = B2
0 |ψ⟩ =⇒ |ϕ+⟩ |ξ⟩ = (1 ⊗ γ0 + σx ⊗ γ1)(1 ⊗ γ0 + σx ⊗ γ1) |ϕ+⟩ |ξ⟩ =

= |ϕ+⟩ ⊗ (γ20 + γ21) |ξ⟩+ σx |ϕ+⟩ ⊗ {γ0, γ1} |ξ⟩ ,

and we conclude that the two gamma operators anti-commute

{γ0, γ1} |ξ⟩ = 0; (7.23)

(γ20 + γ21) |ξ⟩ = I |ξ⟩ . (7.24)

Finally, we can exploit that B00 is unitary

|ψ⟩ = B2
00 |ψ⟩ =⇒ |ϕ+⟩ |ξ⟩ = (σx ⊗ τ1 + σy ⊗ τ2 + σz ⊗ τ3)

2 |ϕ+⟩ |ξ⟩ =
= |ϕ+⟩ ⊗ (τ21 + τ22 + τ23 ) |ξ⟩+ iσx |ϕ+⟩ ⊗ [τ2, τ3] |ξ⟩ ,

and the only possibility is

(τ21 + τ22 + τ23 ) |ξ⟩ = |ξ⟩ =⇒ (τ22 + τ23 ) |ξ⟩ = (1− η2) |ξ⟩ . (7.25)
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7.6 Guessing probability with min entropy

By using the previous self-testing results, we have enough information to generate device-independent
random numbers. We will extract them from the outcomes of the measurements where all users select
the first input (x1 = y1 = y2 = 0). Following what we did in chapter 5 we need to take in consideration
an adversary, Eve, with her set of projectors Ee1,e2,e3 that has the role of trying to guess the outcomes
of Alice-1 and all Bob. Recall also that the quantity to compute is the guessing probability G, see
equation (5.10):

G = max
∑

a1,b1,b2

p(e1 = a1, e2 = b2, e3 = b3|x1 = y1 = y2 = 0).

Which can also be written in functions of the projectors

G = max
∑

a1,b1,b2

⟨ψ|Λ0
a1 ⊗Π0

b1Π
00
b2 ⊗ Ee1,e2,e3 |ψ⟩ .

At this point we can use what we found in the self-testing section:

Λ0
a1 |ψ⟩ =

1

2
[I + a1(cos(α0)σx + sin(α0)σz)⊗ I ⊗ I]] |ϕ+⟩ |ξ⟩ ;

Π0
b1 |ψ⟩ =

1

2
[I + b1I ⊗ (1 ⊗ γ0 + σx ⊗ γ1)] |ϕ+⟩ |ξ⟩ ;

Π00
b2 |ψ⟩ =

1

2
[I + b2I ⊗ (σx ⊗ τ1 + σy ⊗ τ2 + σz ⊗ τ3)] |ϕ+⟩ |ξ⟩ .

(7.26)

so that the guessing probability becomes:

G =
1

8
max

{ ∑
a1,b1,b2

⟨ϕ+| ⟨ξ| [I + a1(cos(α0)σx + sin(α0)σz)⊗ I ⊗ I] ·

· [I + b1I ⊗ (1 ⊗ γ0 + σx ⊗ γ1)] [I + b2I ⊗ (σx ⊗ τ1 + σy ⊗ τ2 + σz ⊗ τ3)]⊗ Ea1,b1,b2 |ϕ+⟩ |ξ⟩

}
.

(7.27)

The expression can be hugely simplified by noticing that for any Pauli matrix σi we have that:

⟨ϕ+| 1 ⊗ σi |ϕ+⟩ = ⟨ϕ+|σi ⊗ 1 |ϕ+⟩ = 0;

⟨ϕ+|σi ⊗ σj |ϕ+⟩ = 0, If i ̸= j.

Eventually the terms that survive are:

G =
1

8
+

1

8
max

{ ∑
a1,b1,b2

(
b1⟨γ0 ⊗ Ea1,b1,b2⟩+ b1b2⟨γ1τ1 ⊗ Ea1,b1,b2⟩

)
+

+ cos(α0)
∑

a1,b1,b2

a1

(
b1⟨γ1 ⊗ Ea1,b1,b2⟩+ b2⟨τ1 ⊗ Ea1,b1,b2⟩+ b1b2⟨γ0τ1 ⊗ Ea1,b1,b2⟩

)
+

+ sin(α0)
∑

a1,b1,b2

a1

(
b2⟨τ3 ⊗ Ea1,b1,b2⟩+ b1b2⟨γ0τ3 ⊗ Ea1,b1,b2⟩+ ib1b2⟨γ1τ2 ⊗ Ea1,b1,b2⟩

)}
.

(7.28)

We can get rid of τ1 by using equation (7.19). The guessing probability becomes:

G =
1

8
+

1

8
max

{ ∑
a1,b1,b2

(b1⟨γ0 ⊗ Ea1,b1,b2⟩+ ηb1b2⟨γ1 ⊗ Ea1,b1,b2⟩)+

+ cos(α0)
∑

a1,b1,b2

a1 (b1⟨γ1 ⊗ Ea1,b1,b2⟩+ ηb2⟨Ea1,b1,b2⟩+ b1b2η⟨γ0 ⊗ Ea1,b1,b2⟩)+

+ sin(α0)
∑

a1,b1,b2

a1 (b2⟨τ3 ⊗ Ea1,b1,b2⟩+ b1b2⟨γ0τ3 ⊗ Ea1,b1,b2⟩+ ib1b2⟨γ1τ2 ⊗ Ea1,b1,b2⟩)

}
.

(7.29)

At this point we compute each expectation value individually.

50



CHAPTER 7. NEW PROTOCOLS 7.6. GUESSING PROBABILITY WITH MIN ENTROPY

Computation of ⟨γ0 ⊗ Ea1,b1,b2⟩ We will prove that

⟨γ0 ⊗ Ea1,b1,b2⟩ = 0. (7.30)

Indeed, multiply both sides of equation (7.21) by ⟨ξ|Ea1,b1,b2 :

C2⟨γ0 ⊗ Ea1,b1,b2⟩ = −iC3⟨τ2 ⊗ Ea1,b1,b2⟩. (7.31)

Since

• The operators γ0 ⊗ Ea1,b1,b2 and τ2 ⊗ Ea1,b1,b2 are Hermitian;

• The coefficients C2, C3 are real,

we can conclude that the left hand side of equation (7.31) is a real number, and the right hand side
is imaginary. Therefore the only possibility is that

⟨γ0 ⊗ Ea1,b1,b2⟩ = ⟨τ2 ⊗ Ea1,b1,b2⟩ = 0,

provided that C2 ̸= 0 (the effects of these additional constraints will be discussed in section 7.8). This
is exactly what we wanted to prove and with this result we can simplify equation (7.29):

G =
1

8
+

1

8
max

{ ∑
a1,b1,b2

ηb1b2⟨γ1 ⊗ Ea1,b1,b2⟩+

+ cos(α0)
∑

a1,b1,b2

a1

(
b1⟨γ1 ⊗ Ea1,b1,b2⟩+ ηb2⟨Ea1,b1,b2⟩

)
+

+ sin(α0)
∑

a1,b1,b2

a1

(
b2⟨τ3 ⊗ Ea1,b1,b2⟩+ b1b2[⟨γ0τ3 ⊗ Ea1,b1,b2⟩+ i⟨γ1τ2 ⊗ Ea1,b1,b2⟩]

)}
.

Computation of ⟨γ0τ3 ⊗ Ea1,b1,b2⟩+ i⟨γ1τ2 ⊗ Ea1,b1,b2⟩ This expectation value is also zero

⟨γ0τ3 ⊗ Ea1,b1,b2⟩+ i⟨γ1τ2 ⊗ Ea1,b1,b2⟩ = ⟨(γ0τ3 + iγ1τ2)⊗ Ea1,b1,b2⟩ = 0.

To see that, let us rewrite τ2 in terms of γ0, by using equation (7.21) and assuming that C3 ̸= 0:

⟨(γ0τ3 + iγ1τ2)⊗ Ea1,b1,b2⟩ =
〈(

γ0τ3 −
C2

C3
γ1γ0

)
⊗ Ea1,b1,b2

〉
,

and τ3 in terms of γ0 by using equation (7.20):〈(
γ0τ3 −

C2

C3
γ1γ0

)
⊗ Ea1,b1,b2

〉
= −C2

C3
⟨{γ0, γ1} ⊗ Ea1,b1,b2⟩+

1− C1η

C3
⟨γ0 ⊗ Ea1,b1,b2⟩.

Finally equations (7.30) and (7.23) imply that both addends of the last expression are zero. This
concludes the proof. With this relation the guessing probability can be further simplified:

G =
1

8
+

1

8
max

{ ∑
a1,b1,b2

ηb1b2⟨γ1Ea1,b1,b2⟩+

+ cos(α0)
∑

a1,b1,b2

a1 (b1⟨γ1Ea1,b1,b2⟩+ ηb2⟨Ea1,b1,b2⟩)+

+ sin(α0)
∑

a1,b1,b2

a1b2⟨τ3Ea1,b1,b2⟩

}
.
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At this point we can rewrite the expectation value ⟨τ3 ⊗Ea1,b1,b2⟩ in terms of ⟨γ1 ⊗Ea1,b1,b2⟩ by using
equation (7.20). The guessing probability becomes:

G =
1

8
+

1

8
max

{ ∑
a1,b1,b2

ηb1b2⟨γ1 ⊗ Ea1,b1,b2⟩+

+ cos(α0)
∑

a1,b1,b2

a1 (b1⟨γ1 ⊗ Ea1,b1,b2⟩+ ηb2⟨Ea1,b1,b2⟩)+

+ sin(α0)
∑

a1,b1,b2

a1b2

(
(1− C1η)⟨Ea1,b1,b2⟩ − C2⟨γ1 ⊗ Ea1,b1,b2⟩

C3

)}
.

(7.32)

Computation of ⟨γ1Ea1,b1,b2⟩ This is the last expectation value we need to compute, we will prove
that

⟨γ1 ⊗ Ea1,b1,b2⟩ =
C2

1− C1η
⟨Ea1,b1,b2⟩. (7.33)

We begin by splitting it in two addends

⟨γ1 ⊗ Ea1,b1,b2⟩ =
1

2
⟨(γ1 + γ1)⊗ Ea1,b1,b2⟩,

on the first addend we substitute equation (7.20) and on the second its adjoint form

1

2
⟨(γ1 + γ1)⊗ Ea1,b1,b2⟩ =

C2

1− C1η
⟨γ21 ⊗ Ea1,b1,b2⟩+

C3

2(1− C1η)
⟨{γ1, τ3} ⊗ Ea1,b1,b2⟩

Then we use equation (7.24) to write γ1 in terms of γ0

C2

1− C1η
⟨γ21 ⊗ Ea1,b1,b2⟩+

C3

2(1− C1η)
⟨{γ1, τ3} ⊗ Ea1,b1,b2⟩ =

=
C2

1− C1η
⟨Ea1,b1,b2⟩ −

C2

1− C1η
⟨γ20 ⊗ Ea1,b1,b2⟩+

C3

2(1− C1η)
⟨{γ1, τ3} ⊗ Ea1,b1,b2⟩.

Therefore, to get the final result, equation (7.33), we have to show that

− C2

1− C1η
⟨γ20 ⊗ Ea1,b1,b2⟩+

C3

2(1− C1η)
⟨{γ1, τ3} ⊗ Ea1,b1,b2⟩ = 0,

which is done by using equation (7.21) and its adjoint:

− C2

1− C1η
⟨γ20 ⊗ Ea1,b1,b2⟩+

C3

2(1− C1η)
⟨{γ1, τ3} ⊗ Ea1,b1,b2⟩ =

= − C2

2(1− C1η)
⟨(γ20 + γ20)⊗ Ea1,b1,b2⟩+

C3

2(1− C1η)
⟨{γ1, τ3} ⊗ Ea1,b1,b2⟩ =

= −i C3

2(1− C1η)
⟨[τ2, γ0]⊗ Ea1,b1,b2⟩+

C3

2(1− C1η)
⟨{γ1, τ3} ⊗ Ea1,b1,b2⟩ =

=
iC3

2(1− C1η)
⟨([γ0, τ2]− i{γ1, τ3})⊗ Ea1,b1,b2⟩ = 0.

Where in the last line we used equation (7.22). This concludes the proof. By substituting the result
in the guessing probability, equation (7.32), we find that

G =
1

8
max

{
1 +

∑
a1,b1,b2

⟨Ea1,b1,b2⟩

[
b1b2 ·

ηC2

1− C1η
+

+ cos(α0)a1

(
b1

C2

1− C1η
+ ηb2

)
+sin(α0)a1b2

(
(1− C1η)

2 − C2
2

C3(1− C1η)

)]}
.

52



CHAPTER 7. NEW PROTOCOLS 7.7. EXTENSION TO VON NEUMANN ENTROPY

Notice that we managed to express it in function of only one expectation value ⟨Ea1,b1,b2⟩, that depends
only on Eve’s operator. Finally by using the definition of η, equation (7.13), we can find an alternative
expression for G:

G =
1

8
max

{
1 +

∑
a1,b1,b2

⟨Ea1,b1,b2⟩

[
b1b2 ·

C1C2

C2
3

+ cos(α0)a1

(
b1
C2(C

2
1 + C2

3 )

C2
3

+ b2
C1

C2
1 + C2

3

)
+

+ sin(α0)a1b2

(
C4
3 − C2

2 (C
2
1 + C2

3 )
2

C3
3 (C

2
1 + C2

3 )

)]}
.

A nicer expression can be found by substituting equation (7.11), in such a way that it depends explicitly
on δ and θ. It is found:

G =
1

8
max

{
1 +

∑
a1,b1,b2

⟨Ea1,b1,b2⟩

[
b1b2 cos(δ) cos(2θ)+

+ cos(α0)a1

(
b1 cos(2θ) + b2 cos(δ)

)
+a1b2 sin(α0) sin(2θ) sin(δ)

]}
.

We still have to compute the maximum among all possible Eve’s operator Ea1,b1,b2 and states |ξ⟩. This
task is done by recalling that, see equation (5.8):

⟨Ea1,b1,b2⟩ ≥ 0;
∑

a1,b1,b2

⟨Ea1,b1,b2⟩ = 1.

Therefore, the best strategy for Eve is finding the triplet (ã1, b̃1, b̃2) ∈ {−1,+1}3 that maximizes

p(a1, b1, b2) ≡ 1 + b1b2 cos(δ) cos(2θ) + cos(α0)a1

(
b1 cos(2θ) + b2 cos(δ)

)
+a1b2 sin(α0) sin(2θ) sin(δ)

and then picking her operators in such a way that

⟨Ea1,b1,b2⟩ = δa1ã1δb1b̃1δb2b̃2 .

With this choice G assumes its maximum value

G =
1

8
p(ã1, b̃1, b̃2).

From which we can find the number of bits of randomness generated per round

rme = − log2(G) = − log2

[
1

8
p(ã1, b̃1, b̃2)

]
= 3− log2

[
p(ã1, b̃1, b̃2)

]
(7.34)

The value for the triplet (ã1, b̃1, b̃2) will depend on the protocol, in particular on the angles θ, α0, δ.
Furthermore a simple calculation shows that the result is optimal, in the sense that it matches the
number of bits generated in the trusted case from equation (5.6).

7.7 Extension to Von Neumann entropy

In this section we will repeat the calculation by using the Von Neumann Entropy and verify that we
can generate more than rme bits of randomness. Following chapter 5 we have to compute

rvn = inf
|ψ⟩,Λ,Π

H(AB|E)ρ

where ρ is the state after the measurement of Alice-1 Bob-1 and Bob-2

ρ =
∑
a1b1b2

|a1b1b2⟩ ⟨a1b1b2|TrA,B
[
|ψ⟩ ⟨ψ|Λ0

a1 ⊗Π0
b1Π

0,0
b2

]
(7.35)
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and |a1b1b2⟩ are the eigenvalues of the chosen operators:

A0 |a1⟩ = a1 |a⟩ ;
B0 |b1⟩ = b1 |b1⟩ ;
B00 |b2⟩ = b2 |b2⟩ ;
|a1b1b2⟩ ≡ |a1⟩ ⊗ |b1⟩ ⊗ |b2⟩ .

As mentioned in chapter 5 calculating rvn is in general very difficult, but we know how to solve the
simple case in which the Eve’s part of ρ is uncorrelated from the rest

ρ ≡ ρAB ⊗ ρE . (7.36)

Luckily this is indeed the case, and we will now see how to factorize ρ. The first step is computing
the trace of equation (7.35):

GV ≡ TrA,B

[
|ψ⟩ ⟨ψ|Λ0

a1 ⊗Π0
b1Π

0,0
b2

]
,

all projectors can be expanded by using the results about self-testing, see equation (7.26):

GV =
1

8
TrA,B

{
|ϕ+⟩ ⟨ϕ+| ⊗ |ξ⟩ ⟨ξ|

[
I + a1(cos(α0)σx + sin(α0)σz)⊗ I ⊗ I

]
·

[
I + b1I ⊗ (1 ⊗ γ0 + σx ⊗ γ1)

]
·
[
I + b2I ⊗ (σx ⊗ τ1 + σy ⊗ τ2 + σz ⊗ τ3)

]}
.

At this point it’s convenient computing the trace over the 2-qubits subspace in which |ϕ+⟩ lives, which
is uncorrelated from the rest. Notice that for any Pauli matrix σi it holds that:

Tr[|ϕ+⟩ ⟨ϕ+| I ⊗ σi] = 0;

Tr[|ϕ+⟩ ⟨ϕ+|σi ⊗ σi] = 0, If i ̸= j.

This makes the computation easier and, eventually only a few terms survive

GV =
1

8
TrB

{
|ξ⟩ ⟨ξ|+ b1 |ξ⟩ ⟨ξ| γ0 + b1b2 |ξ⟩ ⟨ξ| γ1τ1+

+ cos(α0)a1

(
b1 |ξ⟩ ⟨ξ| γ1 + b2 |ξ⟩ ⟨ξ| τ1 + b1b2 |ξ⟩ ⟨ξ| γ0τ1

)
+

+ sin(α0)a1

(
b2 |ξ⟩ ⟨ξ| τ3 + b1b2 |ξ⟩ ⟨ξ| γ0τ3 + ib1b2 |ξ⟩ ⟨ξ| γ1τ2

)}
.

In particular notice the similarity with the corresponding equation for the min entropy (7.28). We
can get rid of τ1 by using equation (7.19) and the expression simplifies to

GV =
1

8
TrB

{
|ξ⟩ ⟨ξ|+ b1 |ξ⟩ ⟨ξ| γ0 + b1b2η |ξ⟩ ⟨ξ| γ1+

+ cos(α0)a1

(
b1 |ξ⟩ ⟨ξ| γ1 + b2η |ξ⟩ ⟨ξ|+ b1b2η |ξ⟩ ⟨ξ| γ0

)
+

+ sin(α0)a1

(
b2 |ξ⟩ ⟨ξ| τ3 + b1b2 |ξ⟩ ⟨ξ| γ0τ3 + ib1b2 |ξ⟩ ⟨ξ| γ1τ2

)}
.

Now we compute each partial trace individually:
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Computation of TrB[|ξ⟩ ⟨ξ| γ0] This one is zero, indeed we can trivially write

TrB[|ξ⟩ ⟨ξ| γ0] =
1

2
TrB[|ξ⟩ ⟨ξ| γ0 + γ0 |ξ⟩ ⟨ξ|],

where the cyclicity of the trace has been used. Then on the first addend we substitute equation (7.21)
and on the second its adjoint:

1

2
TrB[|ξ⟩ ⟨ξ| γ0 + γ0 |ξ⟩ ⟨ξ|] =

iC3

2C2
TrB[|ξ⟩ ⟨ξ| τ2 − τ2 |ξ⟩ ⟨ξ|] = 0.

Where in the last equality we used again the cyclicality of the trace. With this result the expression
of GV can be simplified to

GV =
1

8
TrB

{
|ξ⟩ ⟨ξ|+ b1b2η |ξ⟩ ⟨ξ| γ1+

+ cos(α0)a1

(
b1 |ξ⟩ ⟨ξ| γ1 + b2η |ξ⟩ ⟨ξ|

)
+

+ sin(α0)a1

(
b2 |ξ⟩ ⟨ξ| τ3 + b1b2 |ξ⟩ ⟨ξ| γ0τ3 + ib1b2 |ξ⟩ ⟨ξ| γ1τ2

)}
.

Computation of TrB[|ξ⟩ ⟨ξ| γ0τ3 + iTrB[|ξ⟩ ⟨ξ| γ1τ2] This partial trace is also zero

TrB[|ξ⟩ ⟨ξ| γ0τ3 + iTrB[|ξ⟩ ⟨ξ| γ1τ2] = 0.

To see that, let us rewrite τ2 in terms of γ0, by using equation (7.21):

TrB[|ξ⟩ ⟨ξ| (γ0τ3 + iγ1τ2)] = TrB

[
|ξ⟩ ⟨ξ|

(
γ0τ3 −

C2

C3
γ1γ0

)]
,

and τ3 in terms of γ0 by using equation (7.20):

TrB

[
|ξ⟩ ⟨ξ|

(
γ0τ3 −

C2

C3
γ1γ0

)]
= −C2

C3
TrB[|ξ⟩ ⟨ξ| {γ0, γ1}] +

1− C1η

C3
TrB[|ξ⟩ ⟨ξ| γ0].

Finally equations (7.30) and (7.23) imply that both addends of the last expression are zero. This
concludes the proof and we can further simplify the expression for GV :

GV =
1

8
TrB

{
|ξ⟩ ⟨ξ|+ b1b2η |ξ⟩ ⟨ξ| γ1+

+ cos(α0)a1

(
b1 |ξ⟩ ⟨ξ| γ1 + b2η |ξ⟩ ⟨ξ|

)
+

+ sin(α0)a1b2 |ξ⟩ ⟨ξ| τ3

}
.

Notice that TrB[|ξ⟩ ⟨ξ| τ3] can be rewritten in terms of TrB[|ξ⟩ ⟨ξ| γ1] by using equation (7.20). GV
becomes:

GV =
1

8
TrB

{
|ξ⟩ ⟨ξ|+ b1b2η |ξ⟩ ⟨ξ| γ1+

+ cos(α0)a1

(
b1 |ξ⟩ ⟨ξ| γ1 + b2η |ξ⟩ ⟨ξ|

)
+

+ sin(α0)a1b2

(1− C1η

C3
|ξ⟩ ⟨ξ| − C2

C3
|ξ⟩ ⟨ξ| γ1

)}
.
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Computation of TrB[|ξ⟩ ⟨ξ| γ1] This is the last expectation value we need to compute, we will show
that

TrB[|ξ⟩ ⟨ξ| γ1] =
C2

1− C1η
TrB[|ξ⟩ ⟨ξ|]. (7.37)

We begin with the trivial identity

TrB[|ξ⟩ ⟨ξ| γ1] =
1

2
TrB[|ξ⟩ ⟨ξ| γ1 + |ξ⟩ ⟨ξ| γ1],

on the first addend we substitute equation (7.20) and on the second its adjoint form

1

2
TrB[|ξ⟩ ⟨ξ| γ1 + |ξ⟩ ⟨ξ| γ1] =

C2

1− C1η
TrB[|ξ⟩ ⟨ξ| γ21 ] +

C3

2(1− C1η)
TrB[|ξ⟩ ⟨ξ| {γ1, τ3}]

Then we use equation (7.24) to write γ1 in terms of γ0

C2

1− C1η
TrB[|ξ⟩ ⟨ξ| γ21 ] +

C3

2(1− C1η)
TrB[|ξ⟩ ⟨ξ| {γ1, τ3}] =

=
C2

1− C1η
TrB[|ξ⟩ ⟨ξ|]−

C2

1− C1η
TrB[|ξ⟩ ⟨ξ| γ20 ] +

C3

2(1− C1η)
TrB[|ξ⟩ ⟨ξ| {γ1, τ3}].

Therefore, to match the result (7.37) we have to prove that

− C2

1− C1η
TrB[|ξ⟩ ⟨ξ| γ20 ] +

C3

2(1− C1η)
TrB[|ξ⟩ ⟨ξ| {γ1, τ3}] = 0,

which is done by using equation (7.21) and its adjoint:

− C2

1− C1η
TrB[|ξ⟩ ⟨ξ| γ20 ] +

C3

2(1− C1η)
TrB[|ξ⟩ ⟨ξ| {γ1, τ3}] =

= − C2

2(1− C1η)
TrB[|ξ⟩ ⟨ξ| (γ20 + γ20)] +

C3

2(1− C1η)
TrB[|ξ⟩ ⟨ξ| {γ1, τ3}] =

= −i C3

2(1− C1η)
TrB[|ξ⟩ ⟨ξ| [τ2, γ0]] +

C3

2(1− C1η)
TrB[|ξ⟩ ⟨ξ| {γ1, τ3}] =

=
iC3

2(1− C1η)
TrB[|ξ⟩ ⟨ξ| ([γ0, τ2]− i{γ1, τ3})] = 0.

Where in the last line we used equation (7.22). This concludes the proof, and we can use the result
to re-write GV as

GV =
1

8
TrB

[
|ξ⟩ ⟨ξ|

(
1 + b1b2 ·

ηC2

1− C1η
+ cos(α0)a1

(
b1

C2

1− C1η
+ ηb2

)
+sin(α0)a1b2

(
(1− C1η)

2 − C2
2

C3(1− C1η)

))]
.

Equivalently we can substitute the definition of η, equation (7.13):

GV =
1

8

{
1 + b1b2 ·

C1C2

C2
3

+ cos(α0)a1

(
b1
C2(C

2
1 + C2

3 )

C2
3

+ b2
C1

C2
1 + C2

3

)
+

+ sin(α0)a1b2

(
C4
3 − C2

2 (C
2
1 + C2

3 )
2

C3
3 (C

2
1 + C2

3 )

)}
TrB[|ξ⟩ ⟨ξ|],

and finally by substituting equation (7.11), we can write it in function of δ and θ:

GV =
1

8

{
1 + b1b2 cos(δ) cos(2θ) + cos(α0)a1

(
b1 cos(2θ) + b2 cos(δ)

)
+a1b2 sin(α0) sin(2θ) sin(δ)

}
TrB[|ξ⟩ ⟨ξ|].
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By inserting this result back in equation (7.35) we obtain the post-measurement state

ρ =
∑
a1b1b2

|a1b1b2⟩ ⟨a1b1b2|
1

8

{
1 + b1b2 cos(δ) cos(2θ)+

+ cos(α0)a1

(
b1 cos(2θ) + b2 cos(δ)

)
+a1b2 sin(α0) sin(2θ) sin(δ)

}
TrB[|ξ⟩ ⟨ξ|],

which is separable and has the form of equation (7.36), up to defining

ρE ≡ TrB[|ξ⟩ ⟨ξ|]

and

ρAB =
∑

a1,b1,b2

1

8

[
1 + b1b2 cos(δ) cos(2θ) + cos(α0)a1 (b1 cos(2θ) + b2 cos(δ))+

+ a1b2 sin(α0) sin(2θ) sin(δ)

]
|a1b1b2⟩ ⟨a1b1b2| .

As discussed in chapter 5, since the Eve’s part of the state is uncorrelated from the rest, the conditioned
Von Neumann entropy reduces to the unconditioned one

rvn = inf
|ψ⟩,Λ,Π

H(AB|E)ρ = inf
|ψ⟩,Λ,Π

H(AB)ρAB ,

but ρAB is a diagonal matrix, and this implies that Von Neumann entropy reduces to the Shannon
entropy:

rvn = 3−
∑

a1,b1,b2

p(a1, b1, b2) log2
[
p(a1, b1, b2)

]
8

Where p(a1, b1, b2) ≡ 1 + b1b2 cos(δ) cos(2θ)+

+ cos(α0)a1 (b1 cos(2θ) + b2 cos(δ)) + a1b2 sin(α0) sin(2θ) sin(δ),

(7.38)

and this concludes the proof. This result is also optimal and matches the number of bits generated in
the trusted case, as it can be seen by computing equation (5.5) and we can conclude that

rvn ≥ rme,

since we proved the inequality for the trusted case in section 5.1.

7.8 Constraints on the parameters

In the previous section we found a family of protocols, defined by the angles

α0, α1, θ, β0, δ

from which we can safely generate random numbers in a device independent way. However, those
parameters are not free because in the proofs we made the following assumptions:

1. The angles α0, α1 and β0 are such that the operators and the state

Ã0 = cos(α0)σx + sin(α0)σz; Ã1 = cos(α1)σx + sin(α1)σz;

B̃0 = cos(β0)σx + sin(β0)σz; B̃1 = σx;

|ψ⟩ = |ϕ+⟩ =
1√
2
(|00⟩+ |11⟩).

are self-testable

2. The Bell’s operator Sθ,δ is finite, see equation (7.8) which implies the constraint

1− cos2(δ) cos2(2θ) ̸= 0.
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3. We assumed C2 ̸= 0:

C2 =
cos(2θ) sin2(δ)

1− cos2(δ) cos2(2θ)
̸= 0 ⇐⇒ cos(2θ) sin2(δ) ̸= 0

4. We assumed C3 ̸= 0:

C3 =
sin(δ) sin(2θ)

1− cos2(δ) cos2(2θ)
̸= 0 ⇐⇒ sin(δ) sin(2θ) ̸= 0

5. The weak operator of Bob-1 w(σx, θ) is periodic with period π
4 , therefore is not restrictive to

consider
θ ∈

[
0,
π

4

]
.

From conditions 2. 3. 4. and 5. it follows that

θ ̸= 0, θ ̸= π

4
=⇒ θ ∈

(
0,
π

4

)
,

which implies that the weak measurement of Bob-1 w(σx, θ) must not be neither projective (θ = 0)
nor the trivial identity operator (θ = π

4 ). From those conditions it also follows that

δ ̸= 0, δ ̸= π,

which implies that Bob-2 operators cannot be both along σx, see table 7.2. Condition 1. instead,
cannot be directly converted as a constraint on the three remaining angles (α0, α1, β0), we just have
to make sure that the original non-sequential protocol is self-testable, some examples are the CHSH
inequality of section (3.8) and the ones presented in [15].

7.9 Generating 3 bits of randomness

Our hope is finding a protocol, seen as choice of parameters (α0, δ, θ), that maximizes the bits generated
per round rvn = 3. Three bits is the maximum, because from each round we have three 1-bit outcomes
(the one of Bob-1, Bob-2 and Alice-1) that we could potentially use. From equation (7.38) we see that
the only possibility for it to happen is that

p(a1, b1, b2) = 1 ∀a1, b1, b2 ∈ {−1,+1}3 ⇐⇒ b1b2 cos(δ) cos(2θ)+

+ cos(α0)a1 (b1 cos(2θ) + b2 cos(δ)) + a1b2 sin(α0) sin(2θ) sin(δ) = 0, ∀a1, b1, b2 ∈ {−1,+1}3,
(7.39)

which is a non linear system of 8 (dependent) equations in three variables. In particular by summing
the case a1 = b1 = b2 = 1 with a1 = −1, b1 = b2 = 1 we obtain that

2 cos(δ) cos(2θ) = 0 =⇒ cos(δ) = 0,

the other possibility cos(2θ) = 0 cannot happen since θ ∈
(
0, π4

)
. Therefore, equation (7.39) reduces

to
0 = a1(b1 cos(α0) cos(2θ)± b2 sin(α0) sin(2θ)), ∀a1, b1, b2 ∈ {0, 1}3

where the plus minus sign depends on the value of sin(δ) = ±1. By choosing b1 = ±b2 and by summing
and subtracting the two equations we find that

cos(α0) cos(2θ) = 0;

sin(α0) sin(2θ) = 0.

But such system has no solution for θ ∈
(
0, π4

)
, and this implies that generating 3 bits of randomness

per round is impossible. An intuitive explanation is that we are extracting randomness from three
measurements

cos(α0)σx + sin(α0)σz;

w(σx, θ);

cos(δ)σx + sin(δ)σz,
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that have components, in the 1-qubit basis of (I, σx, σy, σz), only along σx and σz. Hence, from the
pigeonhole principle it follows that at least two measurements will have a common component (for any
choice of α0 and δ), and this is the reason for which we cannot generate 3 bits. A possible solution
would be exploring a larger space in which operators can have components along σx,σy and σz, in such
a way that we could pick the orthogonal triplet

σy; w(σx, θ); σz,

from whose outcomes we could potentially extract 3 bits of randomness (we have no theoretical proofs,
but numerical simulations seems to confirm).

7.10 Summary

In this chapter, we proposed a method to sequentially extend a large family of behaviors to the
sequential case with three users

p(a, b|x, y) sequential extension−−−−−−−−−−−−→ p(a, b1, b2|x, y1, y2).

These new behaviors, in particular, are guaranteed to saturate two sets of Tsirelson inequalities:

• The first set is symbolic, meaning that its explicit form depends on the specific initial non-
sequential protocol used. It can be expressed as:

⟨Sk⟩ ≤ Ik, k ∈ N;

• The second set consists of a single element, previously defined in equation (7.8):

⟨Sθ,δ⟩ ≤ 0.

In particular, this inequality holds only if the first set is saturated, meaning:

⟨Sk⟩ = Ik, k ∈ N,

and the sequentiality conditions, defined in equation (6.1), is satisfied.

From the saturation of the two sets we managed to partially self-test the system and derive analytical
results on device-independent generation of random bits, using either the min-entropy (7.34), or the
Von Neumann entropy (7.38). Both results will be tested in the next chapter with numerical sim-
ulations. Finally we proved that each behavior can be realized in a relatively simple way, by using
1-qubit real operators and the maximally entangled state, as shown in table 7.2.
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Chapter 8

Numerical simulations

In this chapter we will describe from a more practical point of view how numerical simulations are
done. The final aim is developing a program that can simulate the number of device-independent bits
generated per round given the initial conditions of a generic protocol, that are

1. The number of Alice and Bob;

2. The number of inputs and outputs of each user;

3. The observables from which we want to extract randomness;

4. The observed probability distribution p(⃗a, b⃗|x⃗, y⃗)

Then, we could use such programs for many different applications: for example verifying numerically
the results of the previous chapter, in particular equations (7.34) and (7.38) or we could even go
beyond and check what happens if we add noise to the system. The standard way of doing so, is
slightly perturbing the shared wavefunction

ρ = (1− p) |ϕ+⟩ ⟨ϕ+|+ pI, p ∈ [0, 1]. (8.1)

p is a parameter that quantify the noise: as it increases the system loses entanglement and therefore its
quantum properties. Eventually, by increasing p we change the behavior p(⃗a, b⃗|x⃗, y⃗), and in particular
we no longer maximally violate the Bell’s inequalities on which the self-testing proof was based.
Therefore, we surely expect the number of bits generated per round rme to decrease, and this is the
most we manage to say theoretically. The easiest way to actually quantify the function rme(p) is with
numerical simulations.

8.1 Recap of the problem

For simplicity let us focus on the min entropy rme and consider directly the case with 1 Alice and 2
Bob with binary inputs and outputs, that is the scenario of the protocol we developed. We use the
sequential characterization described in (6.4), which is particularly suited for numerical simulations.
So Alice has projectors Λx1a1 , that quantify the probability of having output a1 ∈ {±1} given the choice
of the input x1 ∈ {0, 1}, and similarly Bobs have unified projectors Πy1y2b1b2

, whose expectation values are
the probability of Bob-1,Bob-2 measuring b1, b2 given the input choice y1, y2. Furthermore, without
loss of generality randomness is extracted from the outcomes of input labeled with x1 = y1 = y2 = 0.
With that said, the problem we want to solve is computing

rme = − log2(G),
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where G is the guessing probability, defined as

G ≡ max
|ψ⟩,Λ,Π,E

 ∑
a1,b1,b2

⟨ψ|Λ0
a1Π

00
b1b2Ea1b1b2 ] |ψ⟩


such that ⟨ψ|Λx1a1Π

y1y2
b1b2

|ψ⟩ = p(a1, b1, b2|x1, y1, y2);

such that Ee1e2e3 ≽ 0; Ee1e2e3Ee4e5e6 = δe1e4δe2e5δe3e6Ee1e2e3 ; E†
e1e2e3 = Ee1e2e3 ;

such that Λxa ≽ 0; Λxa1Λ
x
a2 = δa1a2Λ

x
a1 ; (Λxa)

† = Λxa;

such that Πy1y2b1b2
≽ 0; Πy1y2b1b2

Πy1y2b3b4
= δb1b3δb2b4Π

y1y2
b1b2

; (Πy1y2b1b2
)† = Πy1y2b1b2

,

such that Πy1y2b1b2
Πy1y3b3b4

= 0, with b1 ̸= b3;

such that [Λxa,Π
y1y2
b1b2

] = [Λxa, Ee1e2e3 ] = [Πy1y2b1b2
, Ee1e2e3 ] = 0;

such that
∑
e1e2e3

Ee1e2e3 = I,
∑
a1

Λx1a1 = I, ∀x1 ∈ {0, 1},
∑
b1b2

Πy1y2b1b2
= I, ∀y1, y2 ∈ {0, 1};

such that
∑
b2

Πx1x2b1b2
=
∑
b2

Πx1x3b1b2
, ∀x1, x2, x3 ∈ {0, 1}, b1 ∈ {±1}, x2 ̸= x3.

(8.2)

Which is equation (5.15) generalized to this particular sequential case. Notice that we have also
included the completeness relations∑

e1e2e3

Ee1e2e3 = I;∑
a1

Λx1a1 = I, ∀x1 ∈ {0, 1};∑
b1b2

Πy1y2b1b2
= I, ∀y1, y2 ∈ {0, 1};

and the sequential linear constraints, see equation (6.4)∑
b2

Πx1x2b1b2
=
∑
b2

Πx1x3b1b2
, ∀x1, x2, x3 ∈ {0, 1}, b1 ∈ {±1}, x2 ̸= x3,

because for the sake of this example, we want to keep everything as simple as possible. Indeed,
exploiting linear equations to build the reduced set and remove the redundancy, as explained in
section 4.2, is a nice optimization but has the disadvantage of making the code more complex, since
we have to deal with substitutions and extra steps. As we already discussed in chapter 5, the problem
(8.2) is solvable order by order with the NPA hierarchy, where each order n is a SDP of the form

maximize Tr[βnΓn];

subject to Tr[F TΓn] = g(p), ∀F, g ∈ F(O);

subject to Γn ≽ 0,

(8.3)

where Γn is a n-th order certificate, defined in equation (4.13). The matrix βn satisfy

Tr[βnΓn] =
∑
a1b1b2

p(a1, b1, b2|x1, y1, y2) (8.4)

and the requirements

Tr[F TΓn] = g(p), ∀F, g ∈ F(O), (8.5)

are equivalent to the constraints of (8.2), rewritten as trace of product of matrices. There are many
programs that can solve such SDP, for example SDPA.
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8.2 Converting to SDP

The difficult part of the above discussion is converting the maximization problem (8.2) of non-
commutative operators to the semi definite programming form of equation (8.3), in particular:

• First of all we need to generate the whole set Sn, as defined in (5.14);

• Then, as shown in section 4.7, we need to map the indices of Γn to the expectation values of
operators in Sn, and especially for large n the task is not easy;

• Finally we need to rewrite each constraint of equation (8.2) to their matrix form (8.5) and
similarly we need to find a matrix βn that satisfy (8.4);

• On top of this, the resulting SDP (8.3) has to be in a valid format that can be inputted to SDPA.

Luckily, such algorithm has already been created [14], and implemented in a python library called
ncpol2sdpa, that does this conversion for any generic polynomial optimization problem of operators,
and inputs the result directly to SDPA. Therefore, the only missing link is writing a program that
generates:

1. The list of operators Λxa,Π
y1y2
b1b1

, Ee1e2e3 ;

2. Their whole set of constraints, listed in equation (8.2), including the one with the observed
probability distribution;

3. The target operator to maximize ∑
a1,b1,b2

Λ0
a1Π

00
b1b2Ea1b1b2 ,

in a valid format that can be inputted to ncpol2sdpa.

8.3 Concrete implementation

Let’s see how each step can be concretely implemented in python. As we said the first step is defining
the list of projectors

Λxa; Πy1y2b1b1
; Ee1e2e3 ,

which is done by using HermitianOperator objects of the sympy library:

1 from sympy.physics.quantum import HermitianOperator

2

3 # map with Alice’s projectors

4 alice_projectors = {}

5

6 # Loop over all possible inputs 0,1

7 for x in [0,1]:

8 # Loop over all possible outputs -1,+1

9 for a in [-1,1]:

10 # For each input and output create an Hermitian operator named L_x_a

11 projector_name = "L_{}_{}"

12 # and store it in the map.

13 alice_projectors [(x,a)]= HermitianOperator(projector_name.format(x,a))

14

15 print(alice_projectors)

Listing 8.1: Creating Alice’s projectors

Which prints the following

{(0, -1): L_0_-1, (0, 1): L_0_1, (1, -1): L_1_-1, (1, 1): L_1_1},
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so basically we have built a dictionary that maps

(x, a) → Λxa.

In a similar way we define Bob and Eve projectors

1 # map with Bob1 and Bob2 projectors

2 bob_projectors = {}

3 ... # derivation skipped since is the same as Alice

4

5 # map with Eve’s projectors

6 eve_projectors = {}

7 ...

in such a way that bob projectors is a dictionary that maps

(y1, y2, b1, b2) → Πy1y2b1b2
,

and analogously eve projectors maps

(e1, e2, e3) → Ee1,e2,e3 .

At this point we pass to step 2), which consists in generating the constraints of equation (8.2), for
instance

Λxa1Λ
x
a2 = 0, for a1 ̸= a2,

can be implemented as:

1 # map with Alice’s projectors

2 alice_projectors = []

3 # ... previous code snippet to fill alice_projectors ...

4

5 # list with constraints

6 constraints = {}

7 # loop over all Alice’s inputs

8 for x1 in [0,1]:

9 # Loop over all the possible different outputs a1 = 1,-1 and a2 != a1

10 for a1 in [-1,1]:

11 for a2 in {-1,1}. difference ({a1}):

12 # fetch the two projectors

13 op1 = alice_projectors [(x1 ,a1)]

14 op2 = alice_projectors [(x1 ,a2)]

15 # insert the constraint op1*op2 = 0 in the list

16 constraints.append(op1*op2)

17

18 print(constraints)

Listing 8.2: Orthogonality Alice constraints

The code prints

[ L_0_-1 * L_0_1 , L_0_1 * L_0_-1 , L_1_-1 * L_1_1 , L_1_1 * L_1_-1 ]

which is the expected result. Notice that we are implicitly assuming that each constraint is zero

constraints[j] = 0, with 0 <= j < len(constraints)

because it is the format required by ncpol2sdpa. So for example, the completeness relations

I =
∑
a1

Λx1a1

have to be implemented in the form

I −
∑
a1

Λx1a1 = 0,

as shown in the following code snippet:
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1 # list with constraints

2 constraints = []

3 # loop over all alice projectors

4 for x in [0,1]:

5 # constraint 1 - sum_of_projectors = 0

6 expr = 1

7 for a in [-1,1]:

8 expr -= alice_projectors [(x,a)]

9 constraints.append(expr)

Listing 8.3: Alice projectors completeness relation

All other constraints are derived in a similar way, and we are not showing their implementation. The
last and final step is generating the objective we want to maximize∑

a1,b1,b2

Λ0
a1Π

00
b1b2Ea1b1b2 ,

which is done quite easily

1 # objective to maximize

2 objective = 0

3 # loop over all possible outcomes of alice bob -1 and bob -2

4 for a1 in [-1,1]:

5 for b1 in [-1,1]:

6 for b2 in [-1,1]:

7 # fetch the projectors

8 alice_p = alice_projectors [(0,a1)]

9 eve_p = eve_projectors [(a1 ,b1 ,b2)]

10 bob_p = bob_projectors [(0,0,b1 ,b2)]

11 # sum their product to the objective

12 objective += alice_p*bob_p*eve_p

Listing 8.4: Objective to maximize

Finally we pass everything to the ncpol2sdpa library:

1 import ncpol2sdpa as ncp

2

3 # list with all projectors of all users

4 op = [* eve_projectors.values (), *alice_projectors.values (), *bob_projectors.values ()]

5 # level of the NPA hierarchy

6 npa_level = 2

7 # SDP solver

8 solver = ’sdpa’

9

10 # perform relaxation and solve

11 sdp = ncp.SdpRelaxation(op , normalized=True)

12 sdp.get_relaxation(level = npa_level ,

13 momentequalities = constraints ,

14 objective = -objective)

15 sdp.solve(solver)

16

17 # print the result (guessing probability G)

18 print(-sdp.dual)

Listing 8.5: Calling ncpol2sdpa

8.4 Intermediate orders

As explained in section 4.7 the running time needed to find a valid certificate at second order of the
NPA hierarchy could be too big. In such cases it is convenient considering an intermediate level, such
as

1 +AB +AE +BE.

Concretely, it is done by storing the extra monomials we want to add in a list
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1 extra_monomials = []

2 # loop over all alice and bob projectors

3 for a_op in alice_projectors.values ():

4 for b_op in bob_projectors.values ():

5 # store the monomials of the form A*B

6 extra_monomials.append(a_op*b_op)

7

8 # ... To the same for AE + BE ...

Listing 8.6: generating AB monomials

that is passed to ncpol2sdpa as parameter when performing the relaxation

1

2 # ... previous code snippets ...

3

4 # notice that this time the level is 1

5 sdp.get_relaxation(level = 1,

6 momentequalities = constraints ,

7 objective = -objective

8 # extra monomials are added here

9 extramonomials = extra_monomials)

10

11 # ... solve and print the result ...

Listing 8.7: Calling ncpol2sdpa

8.5 A possible optimization

The example we made is simple and outputs the correct result, however it is not optimized. Indeed,
apart from using reduced sets, ncpol2sdpa allows us to further reduce the number of variables with
substitutions: a substitution is a special constraint of the form

product of operators = product of operators,

so for example
Λxa1Λ

x
a2 = Λxa1δa1a2 , ∀a1, a2 ∈ {−1, 1}, x ∈ {0, 1},

ΛxaΠ
y
b = ΠybΛ

x
a

are substitutions, while
I = Λx1 + Λx−1, ∀x ∈ {0,+1}

are not. So the idea is that, at the n-th order of the NPA hierarchy, we apply each substitution to
all elements of Sn. This will result in a new set S̃n with fewer elements (for example all variables
that contains Λxa1Λ

x
a2 = 0 are removed), hence the corresponding matrix Γn is smaller in size and in

particular finding a valid certificate is easier. Concretely, substitutions are inserted in a map, as we
show in the following code snippet where we implement Alice’s idempotence relations:

1 # map with substitutions

2 subs = {}

3 # insert the idempotence relations for Alice

4 for x1 in [0,1]:

5 for a1 in [-1,1]:

6 alice_op = alice_projectors [(x1,a1)]

7 subs[alice_op*alice_op] = alice_op

8 print(subs)

Listing 8.8: Alice idempotence as substitution

which prints

{ L_0_-1 **2: L_0_-1 , L_0_1 **2: L_0_1 ,

L_1_-1 **2: L_1_-1 , L_1_1 **2: L_1_1 }.
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All other substitutions are implemented in a similar way and we are not showing the implementation.
Finally, the map is passed as parameter when performing the relaxation

1 import ncpol2sdpa as ncp

2

3 # ... as previous code snippet

4

5 # perform relaxation and solve

6 sdp = ncp.SdpRelaxation(op , normalized=True)

7 sdp.get_relaxation(level = npa_level ,

8 substitutions = subs ,

9 # constriants no longer contains substitutions

10 momentequalities = constraints ,

11 objective = -objective)

12 sdp.solve(solver)

13

14 # print the result (guessing probability G)

15 print(-sdp.dual)

Listing 8.9: Passing substitutions to ncpol2sdpa

and the library performs the optimization internally.

8.6 Adapting to Von Neumann entropy

The procedure we just showed can be easily adapted to simulating the number of bits generated per
round with the Von Neumann entropy rvn. Indeed, as described in section 5.3, we have to solve the
following optimization problem

cm +

m−1∑
i=1

inf

 wi
ti ln 2

∑
a,b1,b2

⟨ψ|Λ0
aΠ

00
b1b2(Zab1b2 + Z†

ab1b2
+ (1− ti)Z

†
ab1b2

Zab1b2) + tiZab1b2Z
†
ab1b2

|ψ⟩


such that ⟨ψ|ΛxaΠ

y1y2
b1b2

|ψ⟩ = p(a, b1, b2|x, y1, y2);

such that Λxa ≽ 0; Λxa1Λ
x
a2 = δa1a2Λ

x
a1 ; (Λxa)

† = Λxa;

such that Πy1y2b1b2
≽ 0; Πy1y2b1b2

Πy1y2b3b4
= δb1b3δb2b4Π

y1y2
b1b2

; (Πy1y2b1b2
)† = Πy1y2b1b2

,

such that Πy1y2b1b2
Πy1y3b3b4

= 0, with b1 ̸= b3;

such that [Λxa,Π
y1y2
b1b2

] = [Λxa, Zcb] = [Πy1y2b1b2
, Zac] = [Λxa, Z

†
cb] = [Πy1y2b1b2

, Z†
ac] = 0

such that
∑
a1

Λx1a1 = I, ∀x1 ∈ {0, 1},
∑
b1b2

Πy1y2b1b2
= I, ∀y1, y2 ∈ {0, 1};

such that
∑
b2

Πx1x2b1b2
=
∑
b2

Πx1x3b1b2
, ∀x1, x2, x3 ∈ {0, 1}, b1 ∈ {±1}, x2 ̸= x3.

where cm =

m−1∑
i=1

wi
ti ln 2

;

where m ∈ N and ti, wi are the nodes and weight of a m-point Gauss-Radau rule with tm = 1,
(8.6)

which is basically equation (5.17), with the swap approximation (5.19) and without the bounded
condition (5.18), adapted to our particular case with 1 Alice and 2 Bobs with two binary inputs and
outputs. As before we are considering also the completeness and sequential linear equations, in order
to keep the code as simple as possible. We have the following similarities with the min-entropy case,
see equation (8.2):

• The number of Alice and Bobs projectors and their constraints are the same in both cases;

• In both cases the only constraint between Alice/Bobs and Eve operators is that they commute.

Therefore, we can reuse the code previously developed and change only the objective function and
Eve’s operators, which are now non-hermitian. Concretely, the latter can be implemented as follows
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1 from sympy.physics.quantum import HermitianOperator , Operator

2 from sympy.physics.quantum.dagger import Dagger

3 alice_projectors = {}

4 bob_projectors = {}

5

6 # ... alice and bob projectors maps are filled as before ...

7

8 # maps to store Eve’s operators and their dagger

9 eve_operators = {}

10 eve_operators_dagger = {}

11 for i in [-1,1]:

12 for j in [-1,1]:

13 for k in [-1,1]:

14 projector_name = "Z_{}_{}_{}"

15 new_op = Operator(projector_name.format(i,j,k))

16 eve_operators [(i,j,k)]= new_op

17 eve_operators_dagger [(i,j,k)] = Dagger(new_op)

Listing 8.10: Operators for the Von Neumann case

So eve projectors maps
(a1, b1, b2) → Za1b1b2 ,

and similarly eve projectors dagger maps

(a1, b1, b2) → Z†
a1b1b2

.

To generate the objective function instead, we need first of all a library to compute Gauss-Radau
coefficients ti and wi for any given m ∈ N. There are many possibilities, we decided to use Chaospy
that does the task in a few lines of code:

1 import chaospy

2 def generate_quadrature(m):

3 t, w = chaospy.quad_gauss_radau(m, chaospy.Uniform (0,1), 1)

4 return t[0], w

5

6 m = 4

7 t, w = generate_quadrature(m)

Listing 8.11: Generating Gauss-Radau coefficients with Chaospy

the output of generate quadrature are two lists t,w of length m such that

t[i] = ti+1, w[i] = wi+1, ∀i ∈ 0, ...,m− 1.

At this point we have everything needed to generate the objective function

1 import numpy as np

2

3 # ... Define operator maps as in previous code snippets ...

4

5 m = 4

6 t, w = generate_quadrature(m)

7

8 # k integer in the range [0, m-1]

9 def generate_objective(k):

10 res = 0

11 ck = w[k]/(t[k]*np.log (2))

12 # loop over all possible outputs

13 for a1 in [-1, 1]:

14 for b1 in [-1, 1]:

15 for b2 in [-1,1]:

16 # extract the operators from the maps

17 a_p = alice_projectors [(0,a1)]

18 b_p = bob_projectors [(0, 0, b1 , b2)]

19 e_p = eve_operators [(a1 , b1 , b2)]
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20 e_p_d = eve_operators_dagger [(a1 , b1 , b2)]

21 # update the result

22 res += a_p*b_p*(e_p + e_p_d + (1-t[k])*e_p_d*e_p)

23 res += t[k]*e_p*e_p_d

24 return ck*res

Listing 8.12: Generating the objective function

and finally we perform m consecutive SDP and sum their results

1 import ncpol2sdpa as ncp

2

3 # ... previous code snippets ...

4

5 constraints = []

6 # ... find all constraints as in the min -entrop case ...

7

8 # list with all operators of all users (no need to insert eve_projectors_dagger)

9 op = [* eve_operators.values (), *alice_projectors.values (), *bob_projectors.values ()]

10

11 sdp = ncp.SdpRelaxation(op , normalized = True)

12 sdp.get_relaxation(level = 2, momentequalities = constraints)

13 res = 0.0

14 for k in range(m):

15 ck = w[k]/(t[k]*np.log (2))

16 # update the objective and solve

17 sdp.set_objective(generate_objective(k))

18 sdp.solve(’sdpa’)

19 res += (ck + sdp.dual)

20 # print the result (lower bound on r_vn)

21 print(res)

Listing 8.13: Finding lower bounds on rvn

the printed result is a lower bound on rvn. As in the min-entropy case, the running time and memory
needed to solve the problem at second order in NPA hierarchy could be too big. In such cases a
possibility is considering an intermediate level, for example

1 +AB +AZ +AZ† +BZ +BZ† + ZZ†,

or we could even consider higher order terms that appear in (8.6), such as

1 +AB +AZ +AZ† +BZ +BZ† + ZZ† +ABZ +ABZ† +ABZZ† (8.7)

8.7 Examples

In chapter 7 we quantified the device-independent rate of extraction of random bits, equations (7.34)
and (7.38), for a large family of sequential protocols. In this section we will verify some particular
cases by using the numerical tools developed and also simulate what happens if we add noise.

Protocol 1 We begin with the sequential extension of the following protocol with 1-Alice and 1-Bob
and operators

A0 = σz; B0 = σx;

A1 = − sin(ϵ)σz + cos(ϵ)σx;

B1 = cos(ϵ)σz − sin(ϵ)σx;

where ϵ ∈
(
0,
π

6

]
,

which are measured on the shared state

|ϕ+⟩ =
1√
2
(|00⟩+ |11⟩).
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It has been proposed in [15], where they proved self-testing results for state and operators, and showed
that it’s possible to generate 2 bits of randomness per round from the outcomes of A0 and B0 for any
value of ϵ. By following table (7.2), we propose the following sequential extension

Person Measurement 1 Measurement 2

Alice 1 σz cos(ϵ)σx − sin(ϵ)σz
Bob 1 w(σx, θ) − sin(ϵ)σx + cos(ϵ)σz
Bob 2 σz σx

Table 8.1: Operators for protocol 1.

where we have fixed the parameter δ = π
2 . From equation (7.34) we derive the expected number of

bits generated per round with the min entropy

rme = 3− log2
[
1 + sin(2θ)

]
, θ ∈

(
0,
π

4

)
, (8.8)

which asymptotically converges to 3 as θ → 0. Notice in particular that rme doesn’t depend on ϵ
but only on the strength of the weak measurement θ. We fixed ϵ = π

12 and ran many simulations
at intermediate NPA level 1 + AB for different values of θ and different values of the noise p, see
equation (8.1), and plotted the results in figure 8.1. We can conclude that the noiseless case fits very
well equation (8.8) and that rme decays really fast as p increases.
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Figure 8.1: Numerical simulations for protocol 1

Notice that the sequential extension is always convenient, since from equation (8.8) follows that

rme > 2, ∀θ ∈
(
0,
π

4

)
.
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The expected rate of extraction with the Von Neumann entropy can be found from equation (7.38)

rvn = 3− 1 + sin(2θ)

2
log2

[
1 + sin(2θ)

]
−1− sin(2θ)

2
log2

[
1− sin(2θ)

]
,

due to the higher running time, we ran only three noiseless simulations, with the intermediate NPA
level (8.7) and Gauss-Radau with four points m = 4. Results are plotted in figure 8.2. The lowers
bounds found are not very tight, but they’re regardless above the min-entropy curve (for θ = 0.1 and
θ = 0.4):

∆r(θ = 0.1) ≡ rvn(0.1)− rme(0.1) ≈ 0.13;

∆r(θ = 0.4) ≡ rvn(0.4)− rme(0.4) ≈ 0.19.

For θ = 0.7 instead it is slightly below the min-entropy curve:

∆r(θ = 0.7) ≡ rvn(0.7)− rme(0.7) ≈ −0.03.
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Figure 8.2: Comparison between rme and rvn for protocol 1

Protocol 2 The second protocol we consider is an extension of the CHSH. Recall that the non-
sequential version consists in 1-Alice and 1-Bob measuring the following operators

A0 =
σz + σx√

2
;

A1 =
σx − σz√

2
;

B0 = σz; B1 = σx,

measured on the shared state

|ϕ+⟩ =
1√
2
(|00⟩+ |11⟩),
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which is equation (2.7) with the two users swapped. In section 3.8 we proved self-testing results for
both state and measurements, therefore we can apply what we found in chapter 7 and the sequential
extension follows from table (7.2):

Person Measurement 1 Measurement 2

Alice 1 1√
2
(σz + σx)

1√
2
(σx − σz)

Bob 1 w(σx, θ) σz
Bob 2 σz σx

Table 8.2: Operators for protocol 2.

Where again we fixed δ = π
2 . This protocol has been already studied in [10], in the case of local

randomness extraction (i.e. random bits are generated only from outcomes of Bob-1 and Bob-2) and
it has been found rme = 2. From equations (7.34) we derive that the extraction rate is

rme = 3− log2

[
1 +

1√
2

(
sin(2θ) + cos(2θ)

)]
, with θ ∈

(
0,
π

4

)
. (8.9)

Notice that rme ≥ 2 and therefore extracting randomness globally is convenient. As in the first
protocol we simulated its expression at NPA level 1 + AB for different values of θ and noise level p.
Results are plotted in figure 8.3 and we can conclude that the noiseless case fits very well equation
(8.9).
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Figure 8.3: Numerical simulations for protocol 2
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