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Abstract

Continuous and detailed energy monitoring is essentiahsue the energy efficient operation
of complex systems, for instance, buildings. Energy efficyeis becoming a relevant topic in
the last years because of the growing concerns on sustiiynabid the will of reducing the en-
ergetic costs.

The idea behind this Master’s thesis is a novel energy mongaolution that with a single sen-
sor enables the monitoring of energy consumption per eagiestlevice in an electrical group.
The proposed method enables an extremely simple energytanogisince it does not require
monitoring the overall current. All other existing methat=ed to have access to the electrical
current to estimate correctly the power consumption of ifferént devices. The current meter
has to be clamped around a wire inside the electrical cabimgits installation is a non-trivial
task. The main advantage of this novel method is that theafisinsing can be installed by any
user in any socket.

Our method monitors only the voltage signal and maps thagelvariations to the power jumps
caused by the different devices.

Keywords:

energy management systems, energy meters, energy meastyresent detection, energy sav-
ing, power load, energy power management, energy deteeinmngy disaggregation. nonintru-
sive load monitoring, voltage analysis, voltage methottage monitoring.
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Chapter 1

Introduction

This Master’s Thesis describes a novel technology beingldped which enables very detailed
insights into electricity consumption via an extremely gleninstallation of a single voltage sen-
sor.

This novel technology is designed to monitor, continuowsig non intrusively, an electrical
circuit that contains a certain number of devices which anegd on/off independently. Further-
more it checks the steps of the power level and determinesnidgy consumption of individual
appliances using only the voltage signal.

The method is based on the assumption to have access only woltage signal and to have a
known reference load in the electrical network that is uredertrol. The reference load is used to
estimate the required electrical network parameters to tm@pbserved voltage variations into
power jumps.

This Master’s Thesis is organized as follows:

* Chapter 2 is about the System Model. Some basic notiongeafled to permit the under-
standing of the the development of the following Chapters;

» Chapter 3 argues about the motivation behind works on gmeanitoring. Furthermore
it describes briefly the State of the Art in the field of Applkan_Load Monitoring and it
explains our innovative method;

» Chapter 4 discusses the design of the system. In This Ghtyetéest solution in term of
implementation of the novel technology is proposed as te$walur theoretical analysis;

» Chapter 5 reports some performed experiment to test thel mosthod. They constitute
preliminary tests about the reliability of the novel apmioa

» Chapter 6 shows the results that we have obtained in thgsasalf high frequency com-
ponents of the voltage signal;
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» Chapter 7 ends this Master’s Thesis with the conclusiomtbor method and some sug-
gestions for future works.



Chapter 2

System Model

2.1 General

The novel voltage method, as introduced in Chapter 1, pesvide energy disaggregation of the
devices running in a environment only looking at the voltage

The measured voltage signal depends on the position of ttegessensor and the existing elec-
trical network, for this reason it is useful to introduce sonotions about the electrical system
model.

The Chapter is organized as follows: Secfiod 2.2 focuseshmsi ideal model of the network
to recall some electrical definition, Section]2.3 introduaanore complex model of the network
including different electrical branch circuits and alseendables, Sectidn 2.4 recalls theory about
power consumption, Secti@n 2.5 models the Root Mean Sq&&) amplitude of the voltage
signal and also reports the conducted experiments in tHp&aiLaboratory for the estimation
of the variability of the delivered voltage signal, finallg&ion[2.6.11 models also the phase in-
formation of the voltage signal and provides some consiaers about the recorded phase of
the delivered voltage.

2.2 Basic ldeal Model

This Section introduces a basic ideal model of the eledtrietwork that represents a generic
environment.

A general equivalent electrical scheme of a single phasecemaent is illustrated in Fid. 2/.1.
By using Thevenin’s theorem the source of the deliveredagaltcan be represented as an ideal
voltage sourcey(¢) in series with an equivalent impedangg. The devices in the household,
numbered froml through/V, are connected in parallel. Each device is representedstadi
mittanceY; and it could be turned on by closing the corresponding switch The delivered
voltage is, in first approximation, a sinusoidal wave witinaet-varying peak amplitude equal to
V2Veus (k).

The frequency of the delivered voltaggis assumed to be constant, and is equal to 50 Hz in the
EU (60 Hz in U.S.), so the period of the sinusoidal wav€is: 0.02s (I" = 0.0167s in U.S). The

3
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Equivalent source |
Thevenin generatoftot(?)
O
_I_
ZO Yi Yé YN
v
Vo t)
. _
Figure 2.1: Equivalent electrical scheme of a single phase house.
Root Mean Square (RMS) at the peribds defined as:
tk+T
1
VRMS(]{:) == ? / Uz(t)dt, (21)
g
wheret,, is an arbitrary starting time.
A simple expression of the equivalent delivered voltage) observed at the periddis:
vok(t) = V2Viars(k) sin (wt + ¢(k)) | (2.2)

wherew = 27 f; is the angular frequency andk) is the phase of the sinusoidal wave.
The novel method, discussed in this Master’s Thesis, iscdbasehe assumption to look only
at fundamental frequency signatures, in this way is possibkexpress the voltage through the
phasor notation because the entire analysis is developkd &iked frequency.
This last consideration permits to define the deliveredagatphasor as a complex number in the
following way:

Vo(k) = Vaus(k)el®® . (2.3)

In Chapter 3 and 4 the entire explanation of the method asstonese the phasor notation.

2.3 Electrical Network

In this Section some notions about a generic electrical mdt\@re recalled. This Section first
recalls some of the performances that have to be guarangegeneric electrical network, then



Chapter 2. System Model 5

introduces two fundamental elements of a generic netwakdhe cables and circuit breakers,
finally it recalls the concept of Crosstalk that can afflidtetient branch circuits that constitute
the network. To recall all these notions the Section refeFd.[2.3, in which a simplified model
of a distribution network with two electrical branch cirtsiis represented.

In a network with different electrical branches, as in [Eid, 2he distribution network has to
assure certain performances as:

* It has to guarantee to all the electrical branch circuitsismum level of voltage also in
presence of a big variation of the voltage. Example of bigat@ns: in the branch circuit
(A) a short-circuit happens and this could cause a black btheovoltage for the other
branches.

* It has the task to protect the users of all the electricattnaircuits from abrupt variations.
Example of abrupt variation: in the branch circuit (A) a bogdl (with a big absorption of
current) is switched on/off.

* It has to try to avoid wide range of variation of the voltagsample of wide uncontrolled
variations: a elevated number of users are present and amhbigber of applications are
switched on/off in a random way during the day so that theati@m of the voltage is slow
and it can be dangerous.

To partially solve all these problems two different apptwcare implemented: user’s side and
network side. The first consists in the fact that all the ugéapplications) are designed taking
into account the rules relating to immunity that they needespect (different rules depending
on the class of the product) and the rules of compatibility:

» Each device has to guarantee to generate disturbances aartian levels. These limits
depend on the type of the device and the environment for wihieldevice is designed to
work. These conditions are called “compatibility”.

» Each device has to work correctly also in presence of otéeicds and other disturbances.
These limits also depends on the type of the device and teagfarred to the “immunity”.

On the network’s side, in general, it is important that thiewoek guarantees a quality of supply
voltage, the requirements depend on the countries and @m pt#rameters (see Sectionl3.5).
Network design and operations, protection strategy, ne¢agnd grounding and so forth are key
points to guarantee certain voltage quality (reported utiSe[3.5).

One of the designed measures to realize this aim is the preséminiature circuit-breakers

to isolate different electric branch circuits. They opedsas automatic electrical switches. They
are designed to detect a fault condition and to protect tiwark and the final user, by inter-
rupting the electrical flow in case of dangerous situatidiey are usually mounted in a central
electrical panel: electrical panels are easily accesgibietion boxes used to reroute and switch
electrical services (they are also called circuit brealkerats or "fuseboxes”). The circuit break-
ers are used to detect short circuits between the live anddbt&al wires, or the drawing of
more current than the wires are rated to handle to prevemhesting and fire. They have an
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impedance which must be taken into account in the desigreafybtem (see Fig. 2.3).

In addiction to circuit breakers, theire cablesconstitute another important part of a generic
electrical network.

First of all a small introduction about the electricity lirsereported, after that the general expres-
sion of the impedance of the wire cables is recalled.

Despite competition from other materials, copper remamespreferred electrical conductor in
nearly all categories of electrical wiring. Indeed, copensed to conduct electricity in high,
medium and low voltage power networks (our case), inclugioger generation, power trans-
mission, power distribution, telecommunications, elaeics circuitry, and countless other types
of electrical equipment.

Regarding the electricity line, this last one usually isiofited length and, at the fundamental
frequencyf,, can be summarized with the following distributed compdsdtransmission line
theory, referred to Fid. 2.2):

Figure 2.2: Transmission line.

» The distributed resistande of the copper cable:
Q

m

_r
R=2]

— p: electrical resistivity (also known as resistivity, sgecelectrical resistance). For
the copper wire is equal th68 - 1078 Q - m at 20 °C;

] (2.4)

— S: section of the cable (usually is equalté mm? in the considered cases).
» The distributed inductance (due to the magnetic field around the wireg)];[
» The distributed capacit¢' between the two conductor%l;

» The distributed conductancé of the dielectric material separating the two conductors
(2]
The relevant term at the fundamental frequerigys the resistance of the copper line that ex-

presses the physical resistance of the copper to the cament causes a voltage drop propor-
tional to current through the cable. Therefore the impedasfcthe wire cables is equivalent
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to:
Zi=R-1, (2.5)

wherel; is the length of the i copper wire in meters.

_|_
Y
7 y
(1)
|
L
Zn
Z, Y

oL

Figure 2.3: Network model.
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2.3.1 Crosstalk between different electrical branch circits of the electrical
network

As already introduced, an electrical network is composetiftérent branch circuits.
The mutual interference between different electrical bhadircuits of the same electrical net-
work (Fig.[2.3) is a problem known as crosstalk.

Definition 1 Crosstalk:
Crosstalk is any phenomenon by which a signal transmitteaih@ncircuit or channel of a trans-
mission system creates an undesired effect in anothericacahannel.

In ideal conditions two electrical circuits should work egendently, in reality there are different
causes of reciprocal influence: for example the common irmupeslthat they share, the inductive
coupling, the capacitive coupling.

The last two interferences are not of interest in our analyscause the inductive and capacitive
components are not relevant at the fundamental frequeney1$). The relevant term, for the de-
velopment of our method in the next Chapters, is the interfee due to the common impedance
that different electrical circuits share.

2.4 Complex power

In this Section some quantities of fundamental importamektheir meaning are recalled.
Our work is focused on the estimation of the power consumptio
The complex poweP is composed of:

» Real PoweRe P [IW]: the average rate of delivery of energy, it represents teilipower
consumed by loads to perform real work, i.e., to convertteteenergy to other forms of
energy;

* Reactive PowelfmP [V AR]: the portion of complex power that is out of phase with the
active power. It is generally associated with reactive elets (inductors and capacitors).
It is not very useful by itself. However it is useful to diggumish between different loads
with the same active power and different reactive powers.

For the estimation of the consumption in term of energy theartant term is the Real Power ,
indeed the active power is the rate at which energy is digsgpar consumed by the load. The
Real power can be computed by averaging the product of thentaseous voltage and current:

ot T
ReP:% / o(D)i(t)dt, (2.6)

127

which is valid for both sinusoidal and nonsinusoidal coiedis. In particular we suppose in
SectiorZ.P to work in the sinusoidal condition and[sal(2a6) loe written as:

ReP = VRMS[RMS COS@, (27)

wheref is the phase angle between voltage and current at the fumdalfrequencyf;.
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2.5 Voltage RMS

2.5.1 Model of the Root Mean Square of the voltage source

The voltage method is sensitive to the quality of the suppl@tage. As first step the variability
of the voltage has been investigated by measuring the \eft@gpal, without any load turned on
in our electrical branch circuit. The measurements hava pegormed in the set-up of Fig. 5.1
and the measured data is processed by calculating the RME&: val

(k+1)Ng
Vaus(k) = — > V(i (2.8)

i=kNs—1

with Ng = 1000 (five periods of the AC signah7T = 0.1s). The resulting pattern of the RMS
voltage within one hour of observation is not stable becéuseludes different contributions of
the devices from the other branch circuits (crosstalk) dsal the voltage variations. The choice
of having a single electrical branch circuit permits to avibie problems of the crosstalk of other
devices that share the same electrical branch circuit (aks@nstrument equipment is supplied
from a different branch circuit).

Since the measurements are corrupted by random variati@ysare said to be affected hypise
one of the simple modality to attenuate the noise composdnt using a moving average filter.
In our case a sliding window has been used to clear the tratkeegp into account the variations
of the delivered voltage in a short interval of time. Indeezlave interested in short intervals of
time before/after the switching on/off events, so we wardebne the variability of the voltage
in limited intervals of time.

The difference between each RMS{2.8) and the average vétie correspondent sliding(2]10)
has been calculated for each RMS valud of](2.8).

At any instant, anoving window of 2r + 1 values is used to calculate the average of the data
sequence to understand how much a certain value of the eategdiffers from the mean value
calculated around it. That difference is assumed to be tlsm@mMponent:

n(k) = Veums(k) — Versmean (k). (2.9)
where;:

* Vrus(k) is calculated as2.8;

k+r
1
VeMSmean (k) = 11 E Viems(7), (2.10)
i=k—r

in whichr is the length of the sliding window;

* n(k) is the component of noise that afflicts the measurement.
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2.5.2 Experimental data

A complete statistical description of the voltage trendasavailable in literature.

To compensate this gap the voltage behaviour has been dtudibe Laboratory of Philips
Research at the High Tech Campus. The voltage have beerdeecor order to evaluate the
nature of the noise(k) and choose a suitable threshold for the implementationec&ltporithm.
Let us see some performed experiments.

All these experiments have been performed with a resenetriglal branch circuit with the
electrical setup explained in Sectionl5.2.

In the first example the RMS voltage (2.8) has been recorde@Faninutes, the trend of the
voltage is reported in Fig. 2.4. The voltage in [fig] 2.4 appéabe very stable and it is necessary

Measured voltage VRMS
245 T T T T T T T

240 - : : b

230F : : .

Veys® V]

2251 , , :

220 : : -

215 1 1 1 1 1 1 1
200 400 600 800 1000 1200 1400

time [s]

Figure 2.4: RMS voltage recorded with no loads on. Experiment 1.

to reduce the range of y-axis, a zoom of that trend is repant&e.[2.3, to see in a clearly way
the fluctuations of the RMS voltage. In the initial trend offF2.5 one jump in the voltage
happens, this can be due or to the variation of the delivertelge or to a big load that has been
switched on in another branch circuit (crosstalk).

The more interesting part is the analysis of short intervgtisne (on which the algorithm works).
n(k) has been evaluated as[in(2.9) by using an average movingwiwith different values of

r always of small amplitude. The histograms of Figl[Z.8[2.121[2.12 show the distribution
of n(k) (2.9) for different values of in two different experiments.

All the histograms are normalized by applying the followinde: the normalized count is the
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Figure 2.5: RMS voltage recorded with no loads on. Experiment 1.

count in the class divided by the number of observationsdithe class width (as class width is
used the valué.001).
We found through a series of experiments that their are &ftliby noisen (k) that can really
express as:

n(k) € N(0,0%) . (2.11)

Indeed the noise is composed of different contributions but the importastteis that, by eval-
uating a big number of realizations of the noise, is possibkpprox it as a Gaussian function.
This can be explained by the Central limit theorem. We capss@ that the noise can be approx
indeed as a sum of independent, random variables and faetssn it tends towards the normal
distribution with a probability density function:

fn) = — exp(—M). (2.12)

o2 202

The analysis has been performed by varying the radiasthe sliding window to understand
how the variance changes (so also the standard deviatioodrsidering different intervals of
time (relation between time and variations of the voltagd)e standard deviation is important
because it gives the range for a normal distribution: thezaky the amplitude of a Gaussian
function can be an infinite value but in the reality nearlywalues lie within 3 times the standard
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Figure 2.6: Histogram of the noise (k) with » = 2. Experiment 1.

deviations of the 2.10 following the 3 sigma rule.
In mathematical notation, this fact can be expressed azAsll

P[-30 < n(k) < +30] ~ 0.9973 (2.13)
wheren(k) has a normal distribution.

Definition 2 (Relative percentage of the outsiders)Define the sef as:

I ={n(k) :n(k) < =30 Vn(k) > 30}, (2.14)
the setV as:
N = {n(k) stored in the file} (2.15)
The percentage of the outsiders is defined as:
: 1]
outsiders = —- - 100, (2.16)
V]

in which|I| and|N| are the cardinality of the sefs 2]14 and 2.15.

The data has been collected in different days at differentshand in Table 511 the discussed
parameters of some performed experiments are reported.ddtiaecollected of Table 3.1 is
obtained with an average window with a radius: 5.
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Table 2.1: Data of voltage measurements.

Day of observation] Minutes of monitoringl 30 | Outsiders| Start time
01/12/2011 24.87| 0.093 1.05% 14:00
01/12/2011 19.35| 0.086 1.05% 14:30
06/12/2011 17.48| 0.077| 1.11% 15:00
06/12/2011 41.27| 0.081| 1.07% 16:00
09/05/2012 24.82|1 0.084| 0.75% 08:45
09/05/2012 27.86| 0.07| 0.94% 09:15
09/05/2012 34.07| 0.071| 0.92% 13:00
14/05/2012 22:75| 0.061| 0.79% 19:00
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Figure 2.7: Histogram of the noise(k) with » = 5. Experiment 1.
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Figure 2.8: Histogram of the noise (k) with » = 100. Experiment 1.
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Figure 2.9: RMS voltage recorded with no loads on. Experiment 2.
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Figure 2.10: RMS voltage recorded with no loads on. Experiment 2.
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Figure 2.11: Histogram of the noise (k) with » = 2. Experiment 2.
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2.6 \oltage Phase

2.6.1 \oltage Phase Model

Given the general expression of the voltage at the périod
v((n+ kN)T) = vp(nT) = V2Vrars(k) sin (w(n + kN)T + 6(k)), (2.17)

withn =1...N, N = 200.
The data can be processed in the following way to derive tlhs@bf the voltage signal:

Mz

1
N vp(nT) - sin(2mn foT)

n=1

= V2 Viws - sin(2n(n + EN) foT + 6(k)) sin(2nn foT)
= /2 - Vaws (sin (27(n + kN)) sin (¢(k)) + cos (21(n + EN)) cos (¢(k))) - sin(2rn foT),
(2.18)

= Vi(k) = V2 - Vs - cos(p(k)) - sin(2rn.foT). (2.19)

Vo(k) :%Z n(T —T/4)) - sin(2rn foT)

= V2-Vaus (sin (gﬁ(n + k;N)) sin (¢(k)) + cos (gw(n + kN)) cos (¢(l<;))) sin(2mnfoT),

(2.20)
= Vo(k) = V2 - Vaws - sin(¢(k)) sin(2zn foT). (2.21)
The voltage phase is defined as:
o(k) = ¢(k — 1) + arctan(*? /y, ). (2.22)
The difference in phase, between two consecutive perieas)ly:
Ag¢(k) = arctan("2 /y,), (2.23)

Theoretically the difference of phase between two consexperiods (Eq_2.23) is equal to zero
when no device is on. In the reality, as already introdudad,itypothesis is not verified.

As the variability of the RMS voltage has been analysed irti&e2.5, the analysis of the phase
of the voltage signal is evaluated in this Section. The plo&ige voltage signal is calculated by
applying [2.22) on five periods of the voltage wavé;(= 1000).
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2.6.2 Experimental data

For example in the experiments reported in Sedfioh 2.5 thespondent trends ak¢ (k) are
reported in Figl 213 arld 2.116.

Despite no load is on, the difference in phase of the voltagestorm is not equal to zero. The
used method to recover the information about the phase iswcwtrate but it shows that the
phase is not constant and equal to zero. The voltage phdselated as in[(2.22), is reported in
Fig.[214.2.17. These last figures show that a drift is preisetne phase and the amplitude of
the drift changes over time and it seems not predictable. nidie reason for the drift in phase

x107° Ag(K oK
4 ‘ ‘ 20
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I
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Figure 2.13: A¢(k) during the experiment 1. Figure 2.14: ¢(k) during the experiment 1.

Figure 2.15: Estimated Phase in the experiment 1
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Figure 2.16: A¢(k) during the experiment 2. Figure 2.17: ¢(k) during the experiment 2.

Figure 2.18: Estimated Phase in the experiment 2.
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seems to be the variations of the fundamental frequency.
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Chapter 3

Energy Disaggregation

3.1 General

The present Chapter is organized in the following way: ®a¢8.2 introduces the motivations

and some of the possible applications that are behind theesitin energy monitoring, Section

[3.3 reviews the State of the Art in the field of Appliance Loadrioring, Sectiofl 3]4 describes

the difference between techniques that are focused onlyotiage signatures and techniques
that uses also the current information, Secfion 3.5 inttedihe parameters of Voltage quality,
finally Sectiorf 3.6 explains our novel method.

3.2 Motivation and Applications

Saving energy and using energy more efficiently is becomgeasingly relevant because of
economic and environmental reasons.

Consumers are highly aware of environmental problems amdtheir everyday activities are
contributing to them, with a high portion already reseanghihe better strategy to reduce the
emissions CQ@. Furthermore they are more concerned about their energsuogption and the
energy efficiency of their household appliances becaudeeoivtll to reduce their energetic bill
since the energy prices are increasing again after the 2@fi#benical crisis.

Recently many large consumer electronics companies, &itips$ Intel and Belkin , have ad-
dressed this new user awareness by integrating sustaipabipart of their management agenda.
Energy management seems really a fundamental step in clypago-systems and companies
can play an important role by building an efficient interfée#ween users and energy market.
Preliminary studies [2] forecast that energy consumptimuria be reduced by up to 10 to 6

by the application of energy management, through the depoy of Smart Grid [3] and home
automation network [4].

For Smart Homes it is essential to know the consumption aftedity of the appliances in a
household. To obtain this data Smart Meters must be indtadlall households.

Various types and models of smart meters are available,xarame of Smart Meter is depicted
in Fig.[3.1, but all of them have the same basic functionalitying a communications network,

21
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Figure 3.1: Example of Smart Meter.

smart meter sends electricity consumption data to theyufiThey can give customers control by
providing accurate, real-time information on energy congtion, show how much that energy
costs and the carbon dioxide it equates to but they can atsoder information about gas and
water consumption.

Indeed smart meters enables different applications byap-digital communications between
the utility and the customer, one of these is energy momigpriExample of possible applications
of energy monitoring (our field of interest) are:

a transparent bill for the customers;

an eco-feedback with also some suggestion about specsteeffective measures to im-
prove the energy efficiency as appliance upgrades;

detection of malfunctioning equipment or inefficient sejt(old and inefficient devices
can be replaced by newer ones that consume less energy);

detection of malfunctions in the power grid;

smart charging of plug-in electric vehicles;

remote meter reading, and remote customer (dis)conmegtio
integration of distributed generation resources;

new types of pricing procedure, for instance, taking irdocaunt the type of usage.

Utilities throughout Europe are now starting to roll out stmaetering as part of a European
mandate to have smart meters installed i/86f European households by 2020 (forecast plan
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Smart Metering Hotspots: - Lo
METERS INSTALLED, CONFIRMED PLANS AND FORECAST 2020

IMPLEMENTED
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Figure 3.2: European Smart Metering Hotspots: Meters Installed, Comdid Plans& 2020
Forecast.

is represented in Fig._3.2). On the basis of ambitious plansanced by utilities and regulators

in France, Spain, the U.K. and a gradual rollout in other paem member states, GTM Research
forecasts an additional 100 million smart meters will beated between now and the end of

2016.
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3.3 State of the Art

In this Section the main aim is the definition Appliance Load Monitoring problem and the
distinction between different existing approaches in tielsl of interest.

Our system is, indeed, an Appliance Load Monitoring Syste&vith the term Appliance Load
Monitoring (ALM) System is indicated a system that has tovpie the individual consumption
of the appliances existing in a generic environment.

As illustrated in Fig[ 3.3 there are a lot of devices (appl&s) as vacuum cleaners, lamps, hair
dryers, mixers, electric whisks, washing machines, withgreneric environment, that are con-
nected in parallel through the wire cables of the environmém ALM System, as just intro-
duced, has the aim of providing the user with the consumpifaihe individual devices. For
example an ALM System applied in the context of [Fig] 3.3 haottinuously monitor the con-
sumption of the washing machine, mixer, hair dryer, lamp\aa@ium cleaner. The main point

Figure 3.3: Simplified model of an environment within different devices

of the State of the Art is the identification of the applianiggature to provide the energy moni-
toring of the individual appliances.

A Signature can be defined as a measurable parameter of the load thairfivesation about
its nature or its operating states.

Fig.[3.4 reports a modified version of a picture that iniji@ppeared in [5] to organize the dif-
ferent possible approaches to ALM, the distinction is magleding the existing differences in
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term of appliance signatures.

The signatures, as represented in Eigl 3.4, are mainlyeatiMigdtween intrusive or non intrusive.
The first type of signature requires some form of physicalectecal intrusion in each electrical
device, it is a form of direct sensing that needs a more caxtedware but a simpler software
than the non-intrusive approach. This approach is als@ gxpensive because of the require-
ment of, at least, one sensor per device. The systems badbd aype of signature are called
Intrusive Appliance Load Monitoring (IALM). Referred to @wronment of Fig[3.B, an IALM
System implies, at least, 5 sensors (one sensor inside m@wsented device).

One example of intrusive methods is based on Physicallydive Signature. It is a technique,
requiring a brief physical intrusion, called tag. Variousvites can be constructed which are
attached to an appliance during a single initial intrusiod then generate a signal whenever it
operates. For example, a device can be designed which gem@a@ertain current harmonic,
or which injects a radio frequency signal on the power lineemgver the appliance consumes
power.

The non-intrusive methods do not require any modificatiothefelectrical devices. This type
of system are indicated with the term Non Intrusive Applehoad Monitoring and in literature
both NILM and NALM terms are used to call this kind of approadimese systems gather data
by passively monitoring the normal operation of the totado

In Fig.[3.3, to create a NILM System, a single sensor unit basset added in parallel to the
devices. The sigle sensor unit is located at a central meamnt point and monitors the total
consumption of the appliances in the environment.

The main distinction between Non Intrusive and Intrusigmatures is really important because
in the first case only a single point of measurement is redurel the signatures are referred to
the total load measured in this point, in the second casetafdive signatures a lot of point of
measurements (at least the same number of the existinged¢wae required and the signatures
are extracted features of the individual device.

The first NILM (Non Intrusive Load Monitoring) system was @dped by George Hart at the
MIT during 1980s, he patented the system in 1989 and wrot@erpa] with the main principles
of NILM in 1992 (starting point of NILM technology).

In the case of NILM System the signatures assume an imparteahing because they are the
features that different methods use to enable the deteatidifferent loads by looking only at
the total load.

Usually NILM methods have available the total current anttage, so, the raw current and
voltage waveforms are transformed into a feature vectgnéure vector), a more compact and
meaningful representation that may include real powectreapower, and harmonics.

Indeed NILM systems look at particular signature of theltmiad and then they perforiBnergy
Disaggregation

Energy Disaggregation allows to take a whole building (aggte) energy signal, and separate it
into appliance specific data (monitoring of energy consuwnpaf individual appliances).

There are different methods within the non-intrusive apphy some of them look at the steady
state signatures that means they look at the appliancecttatge that is continuously present
in the load as it operates, other at the features during ileétbme of state transition (transient
signatures).
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The transient-based algorithms consider the electriaalstent of the device as signature [6, 7,
8,9, 10].

The term electrical transient refers to the momentary epegdeding the steady state, it happens
during a sudden change of the state of the device. Indeed avtiewice is turned on or off, char-
acteristic oscillations in term of voltage and current sigmay occur, they depend on the inner
structure and the operation mode of the device so they p&mibvide energy disaggregation.
The problem of this type of approach is that, in a lot of caesglectrical transient exists only
when a device is switched on, and does not occur when is sdtofi.

On the other side, the steady state approach focuses onalysiarof the steady state condition.
With the term steady state is indicated the equilibrium ol of a device in term of voltage
and current that occurs after the end of the transient. Fipe of signatures enables the esti-
mation of power consumption by looking at the differencensstn steady-state properties of
operating states. An important distinction between temsand steady-state signatures is that
the second are additive while the first are not.

The steady-state approach includes methods using differgnatures (Fig._314), the majority
of these methods consider the complex admittance ([5, 1,113,214, 15]). As signature, the
admittance is preferred to power and current because it ttage-indipendent property of a
linear device and, also, an additive property when appéiarace connected in parallel. We also
focus on this type of approach (Sectlon]3.6) because it seebesmore stable and much easier
to detect than momentary indications of the transient, léstause the processing requirements
are far less demanding.

There are a lot of relevant publications on energy disagdi@g. Two interesting papers about
the State of the Art of NILM are [16] and [17] that present thestimportant works on this field

in the last years.
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Figure 3.4: Signature Taxonomy. Classification of energy disaggregatigorithms.
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3.4 \oltage based techniques and Current based techniques

State of the art most of centralized NILM methods for disaggting the consumed electrical
energy involve both a current meter, which measures thedioteent, and a voltage meter, which
measures the mains voltage.

Indeed most of NILM methods reported in Section 3.3 havelavks both current and voltage
signals and they use as signature the admittance of steaidy-$hey divide the overall current
by the overall voltage and they obtain the complex admittarithe system. After that the power
can be expressed as:

P(k) =V ) Yalk), (3.1)

whereY,, (k),n = 1...N are the admittance of the N appliances ON at the period Kland=
230V is the nominal value of the voltage in the EU.

The installation of the current meter is not a trivial taséuially the process to install the current
probe requires to dismantling the breaker box and clamp rthieeparound the main power feed
conductors, for this reason building codes typically reggithat the current probes have to be
installed by a licensed electrician.

The technical intervention is required to install a currdatmp: a current clamp is an electrical
device having two jaws which open to allow clamping arounctkgetrical conductor. This al-
lows properties of the electric current in the conductoréareasured, without having to make
physical contact with it, or to disconnect it for insertidmaugh the probe.

At the state of the Art there are some approaches that useatabnalysis of the voltage signal
to avoid the use of the current clamp. In particular [18],][a8alyse a different way to detect
different devices through the electrical voltage noise.

These works are based on the possibility to recognize, whigviae is turned on, different type
of voltage noise at different frequencies.

Indeed, in [18], Patel et al. have proposed an innovativeiwéye field on NILM. The approach
presented in [18] uses only a single plug-in sensor to déteatlectrical noise created by abrupt
switching of electrical devices, the system needs to perfiie FFT of the voltage noise to use
it as signature. The main problem of this type of approactalss Patel has underlined in his
recent work [19], is that is based on the analysis of the teat$i0oise that is not easy to detect
unambiguously and the computational complexity is expenslhe transient events do not oc-
cur always and the signature seem to depend on the houseinimidg.w

The last work of Patel [19] proposes a different approactabytvay based on the voltage anal-
ysis.

The approach takes into account that there are mainly tiase of devices in the household:

1. Purely resistive loads, such as a lamp or an electric stbaé don not create detectable
amounts of electrical noise;

2. Inductive loads as motors that create voltage noise sgnols to the AC power of 50 Hz
(Europe);
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3. Solid state switching devices, such as MOSFETSs found mpzier power supplies, that
emit noise synchronous to an internal oscillator;

The last article [19] proposes a new solution to automdyickdtecting and classifying the use of
electronic devices that emit noise synchronous to an iat@scillator (third category) by using

a system called ElectriSense. This system senses theoateginetic interference (EMI) created
by switched-mode power supply (SMPS) oscillators.

SMPSs are electronic power supplies that incorporate &lsing regulator to convert electrical
power efficiently, these power supplies continuously gategnigh frequency electromagnetic in-
terference (EMI) during operation. [19] shows that EMI sifgnare stable and predictable based
on the device’s switching frequency characteristics, sy ttan be considered as a signature that
can be sensed and identified throughout a typical home ddewige operation.

The relevant part of [19] consists in the discovery thatéhggnatures are largely specific to a
device’s circuit design and maintain consistent propgmieross homes. Moreover, they use the
continuous noissignature so they can identify devices that don not genératsients such as
those with ” soft switches” and transient suppressors. Wighwork they have found a comple-
mentary approach to the previous [18], it is supposed to béenmmmpetition because they are
regarding different type of loads (inductive loads [18]idgtate switching devices [19]).

This system represents an innovation point in NILM’s field lhlets several questions open
that | will analyse in the Chaptét 6 of this Master's Thesisdded we have also performed an
investigation about high frequency signatures of the gatéChapter 6) that seems to confirm
the perplexities that, for instance [17], has already egdos

3.5 \oltage Regulation

3.5.1 Voltage quality

Sectior 3.4 argues about methods that consider availabj¢tanvoltage information. Also our
method enables energy disaggregation by using only thaeg®kignal.

For this reason, before to provide a detailed descriptioausfmethod, some parameters that
characterize the quality of the voltage signal are repartdtis Section. Voltage quality (VQ)
parameters are listed and defined in the European standas®Ed0, which is applicable in all
EU member states for low and medium voltage networks (i.¢o®d kV).

Usually the important parameter of VG are the following:

1. Supply voltage variations;
2. Rapid voltage changes;
Flicker severity;

Supply voltage unbalance;

a b~

Harmonic voltages;
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6. Interharmonic voltages;
7. Main signalling voltage on the supply voltage,
8. Supply voltage dips;
9. Supply voltage swells;
10. Transient overvoltages;

11. Frequency variation limits.

The first seven disturbances are mainly caused by the ckasiict of the customers’ appliance.
\oltage quality disturbances can be grouped in two typesifdition made in the textbook [25]):

* \oltage variationsi.e. small deviations from the nominal or desired valué ttaur con-
tinuously over time. Voltage variations are mainly due tadgattern, changes of load or
nonlinear loads. Supply voltage variations, voltage flattns leading to flicker, voltage
unbalance, harmonic and interharmonic voltages are athples of voltage variations.

* \Voltage eventd.e. sudden and significant deviations from normal or @elsivave shapes.
Rapid voltage changes, supply voltage dips, swells angdigahover voltages are among
the most important voltage events, apart from interrugtithiat are the best-known exam-
ple of a voltage event. Opposite to voltage variations tltatio continuously over time,
voltage events only happen every once in a while. They hatse identified through con-
tinuous monitoring. Monitoring of events takes place byhgs "trigger” that starts when
voltage exceeds a given threshold. For instance, voltggeate identified when the volt-
age (RMS value) goes below the "dip threshold” that is culyeset at -10% of nominal
or declared voltage level.

The distinction between voltage variations and voltag@®sis very relevant from the regulatory
viewpoint:

 \oltage variations are the "physiology” of the network &tioning, in fact they are part of
the normal functioning of the network. Since electrical ipguents are designed to work
optimally at the nominal value and with an ideal sine wavdtage variations have to be
kept as small as possible. For instance, keeping voltagaitoag close to nominal value
with power factor close to unity is strictly related to hayiless electricity losses. Voltage
variations outside predefined limits may lead to severelprob for customers;

 \oltage events represent the "pathology” of the networicfioning and are of large con-
cern for end-use equipment. \Voltage events are to be tredathdstochastic approaches
because they are considered as undesired accidents.

In particular we are interested in the impact of the Voltaggations on the execution of the
algorithm because these are continuously present in tierieaind their presence can influence
the sensitivity of the method.

A deep explanation of these parameters can be found in [2d]tlee paper [21] provides an
interesting overview of the regulation of Voltage quality.
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3.5.2 Voltage frequency

The fundamental frequency, or utility frequency, is thegtrency at which alternating current
(AC) is transmitted from a power plant to the end user.

The fundamental frequency in EuropesisHz, in the North America and in some area of Japan
is 60 Hz. There are several reasons to keep the frequency stathio anake this happens it
is necessary a perfect balance between produced and cah&lectric power. The frequency
grows up if the consumed electric power is less than thatymed because the power supply
works faster when the consumption of power is lower [22].

The synchronous time is the measured time when the networksvai the fundamental fre-
guency. 50 oscillations of the current AC correspond to 1syathronous time. If the frequency
is lower thanb0 Hz the 50 oscillations take more time. One second of syndustime always
correspond to 50 oscillations and so it can be longer or shortfunction of the variation of the
fundamental frequency. Usually the drift of the synchrabione is monitored by evaluating the
difference between itself and the universal time. Each dfithe synchronous time is balanced,
if the duration of the drift is longer than 20 s it is changed thndamental frequency of the
network as following:

* 49.99 Hz if the synchronous time is bigger than the univensee;
* 50.01 Hz if the synchronous time is smaller than the unaldise.

The previous considerations are reported because whenefdirst time we have tried to look at
the phase component of the supplied voltage a drift in thegoghame out as explained in Section

2.5.

3.5.3 Today’s voltage quality limits and values in Europe

This subsection assesses the progress made in Europe artiéalpr in Italy and in the Nether-
lands with regard to voltage quality regulation. The algeaded EN 56160 gives the main
definitions and characteristics of the supply voltage atciltomer’s terminals in public low
and medium voltage networks. It is the main technical norntlie voltage quality in Europe
while, there are other norms and reports as reported in IEBD@1This last example includes
limits for voltage disturbances, immunity and emissiontifor electrical equipment (user’s side
explained in Section 2.3).

The voltage quality is defined in EN 61000-2-2 (VDE 0839 pa#) 2n public low voltage sys-
tems. The valid compatibility levels for industrial system@re given in EN 61000-2-4 (VDE
0839 parts 2-4).

In Italy the energy regulator or authority only set in placeimum quality standards. There is
(currently) no regulation for voltage quality but the auiboundertake steps to establish such
a system in future. To this end the regulator’s strategy ir$d get a better understanding of
existing voltage quantity levels and to collect reliableéadawith this aim, at the beginning of
2006, the authority launched a voltage quality measuremaidn by the installation of voltage
guality meters at strategic locations.
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In Italy, Norway, Portugal and Czech Republic there areag@tquality monitoring systems at
both transmission and distribution level and Hungary onlthie distribution system. Spain and
Sweden are at a proposal stage for continuously monitoyisiggs for voltage quality.

Even if these monitoring systems are different from eacleoth many respects, a common
point is that at least short and long interruptions, voltaggnitude, voltage dips and harmonic
distortion of the voltage waveform are monitored. The nunamel location of voltage recorders
is quite different from one country to another.

The availability, in coming years, of voltage quality datalwoth transmission and distribution
grids will not only allow a deeper knowledge of actual voltaguality levels, but is also likely
to enable regulators to define action plans to improve veltaglity and to set standards in the
interest of consumer protection.

To understand better the actual limits in term of qualitytage in the different European coun-
tries [23] is suggested.

3.6 Novel method at 50 Hz

The reasons behind our work are, on one side, the increasiagest in energy consumption
(Sectior:3.R), on the other, the will of providing the useighwenergy disaggregation in the eas-
iest way.

In our research project, we have developed a novel techntihag enables insight the electricity
consumption on an appliance level via an extremely sim@tallation. The energy monitoring
is achieved by a single point of measurement of the voltagwany electrical branch circuit of
an environment.

The novel method presented in this Master’s Thesis is ini@jdecause it is based only on the
evaluation of the voltage signal at 50 Hz.

This method mainly differs from [19] because [19] works oghifrequency components of
the voltage signal, and these are used only to identify th&cking on/off of the devices. Our
method permits to measure the energy consumption of thereliff individuals appliances and it
does not require high sampling rates like [19].

Ideally the voltage signal should be constant, the idea iofgugoltage-signal to provide energy
monitoring seems counter-intuitive. Instead of this, tiedage signal changes in function of
the total load on in the network. When a new device is switglin a drop in term of voltage
happens; the steps depend on the electrical equivalenbrieand on the power of the appliance
that is turned on.

So the novel method is based on the idea that when a load ishémgton this leads a voltage
drop that allows, knowing the relation between the deligareltage and the impedance of the
network, to determine which appliance is switching on anaidifly the appliance’s real power.
The method works with the assumption that it is possible tionege the ratio between the deliv-
ered voltage and the impedance of the network, for this me@oload of known impedance is
used as additional information. Indeed, when a step in térvoltage is recognized, by turning
on/off the reference load it is possible to establish thielietween change in admittance (known
parameter) and change in voltage (measured parameter).
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Table 3.1 reports a summary about different approachesifimddersion of a table in [19]).
The last column is referred to our method, advantages arithtions are not reported because
there will be discussed in Chapter 7.

3.7 Detail Description of Voltage Disaggregation Method

Our method requires the following elements:
» avoltage probe, to measure the mains voltage at regularititarvals;
* buffer memory, to store a few values of the measured vajtage
* ameans to send the measurement result to the buffer memory;

* signal process unit, to perform energy disaggregation;

a switchable device of known impedance with mainly regesbiehaviour;

* a controller for switching on/off that switch load, eittarregular intervals, or when asked
for by the processing unit.

The following explanation of the method assumes to use tlasgrhnotation for the voltage
signal.

A basic ideal model of the system, is depicted in Eigl 3.5.his model it is assumed that the
losses in the network between different appliances aragielg, so that all the appliances have
the same mains voltage. Devices numberéadrough/NV are connected in parallel. Each device
is represented by its admittankg, n = 1... N and may be switched on or off.

Figure 3.5: The basic electrical network model.

Notation:
* Vy: delivered voltage;
* 7. internal impedance of the network;

* Yi,i =1,.., N: admittance of the unknown devices;
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Extractable Real/Reactive | Apparent Power Harmonics Startup [Vac| Transient voltage | Continuous voltage| Our method
features Power from | ac| of |Tac| of |Tac] noise signature noise signature
Sensing smart meters Current Current Current \oltmeter High-sampling Medium \oltmeter
hardware capable of clamps or clamps clamps rate rate sampling
medium-rate inductive or or voltmeter voltmeter
sampling sensors ammeters ammeters
Disaggregation Device Large load Large load Large load Large load Individual devices| Individual devices | Large load
level category category category startup detection | with mechanical switcheg utilizing SMPS category
Installation Breaker Breaker Breaker Breaker Plug-in Plug-in Plug-in Plug-in
or meter with voltmeter or meter or meter anywhere anywhere anywhere anywhere
inline ammeter inline ammeter in line, in line,
with voltmeter | or affixed outside or affixed outside or affixed outside
Ease of Very Current clamps: Difficult Difficult Very Very Very Very
physical installation Difficult Difficult Easy Easy Easy Easy
excluding Inductive sensors:
calibration Easy
Ease of Very Difficult Difficult Easy Very Easy Very Very
calibration Easy Difficult Easy Easy
Cost Very high Low Medium Medium Very low Very high High Low
Advantages Automatic Simple, Discriminates Discriminates Simplicity Nearly Stable signatures
categorization enables central among devices among devices and cost every device among homes
of certain loads, database of with similar with similar has observable and devices
loads, works signatures, current current draw signature, independent| independent of
well for reduce per-home draw and startup of load load
appliances calibration characteristics characteristics
Limitations land V Few devices Limited to Limited to Few devices Requires Requires
must be with diverse large inductive loads with affect VAC per-home medium
sampled power loads that diverse, long line, calibration, sampling
synchronously draws distort AC line, duration startup susceptible requires rate
loads must be characteristics like to line fast
synchronous to 60 HZ motors and variations sampling (50 - 500 kHz)
some CFLs (1-100 MHz)

Table 3.1: Summary of the different technologies
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* Yier: known admittance of the switchable reference device (mesistive device under our
control).

The voltagé) is equals to:
Vo
V= 3.2
whereY is the sum of the admittances of the active devices. Assuthaighe network param-
etersVy and 7, are stable, a change in the observed voltégean be attributed to a change in

the total admittance. Frori(3.2) it follows that the chang®i! is directly proportional to the

change in total admittance:
1 A
A= | ==—AY. 3.3
)7 =
In order to determine the coefficient of proportionality thiethod switches the known ad-
mittance on or off and measures the corresponding changeénse voltagé AV —1) ef. on OF
(AV Y ef. off- ThenZ,/Vj is estimated as
Vo Yiet Yret

— = or — . 3.4
2 (Avfl)ref. on (Avfl)ref. off ( )

The admittancé, of the load switching on and generating the change in totalit@nceAY
can be then estimated as

(AVThy
(Avil)ref.
with (AV 1)y, the variation in inverse voltage due to the new load.

In our method the estimated changes in admittakte(@.23) are available and it is possible to
estimate the total complex power at the perioals:

Vi, = AY = Vi (3.5)

N
P(k) = Viys(k) Y _AY, (3.6)
n=1
whereVgz)s is the actual value of the voltage (non the reference vojtagedAY,n = 1,.... N
are the estimated change in term of complex admittancethetperiodk.
The actual value of the voltage signal is the value that spwads to the load turned on, in the
case of the switching on of the device tg,,s value is the RMS value after the switching, in the
case of the switching off of the device thg,,s value is the RMS value before the switching.
We can also provide Power Disaggregation because we caggdesgte the total power con-
sumption into different contributes. By checking the segtep it is possible to estimate the
change in term of power due to the turning on of a dewic@vith admittancey,) as:

P = Vius(k) Y. (3.7)

The energy consumed by the generic appliancean be finally estimate as:

switchof f

Em= Y.  Pun (3.8)

k=switch on
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In Fig[3.6 a simplified electrical network, with only one $stiable unknown devicE;,, is rep-
resented. In the following part the step in term of measudthge are reported to understand
better the voltage method. As an initial hypothesis is agglthat the voltage probe senses the

I tot

—_—

O

7 0 K( Yref

1) (@)

O

Figure 3.6: A basic electrical network model.

voltage across the reference load because the importamfplae novel method is the estimation
of the existing equivalent electrical network. This estiima takes place by turning on/off the
reference load so it makes sense to put the voltage sensarahgb with the reference load. In
view of a real application for energy monitoring, we envisédevice that includes the reference
load and the voltage probe in a single unit. This unit coulglaeed in any electrical socket.
The steps of the voltage method are composed of measureafehésvoltage in three different
situations:

« V(: measured voltage when both switch (1) and switch (2) are tfp&t corresponds to
the situation no load is on
VO = v (3.9)

« V(: measured voltage when switch (1) is closed and switch (@pé that corresponds
to the situation in which a new unknown device is turned on
VO =V = ZoTot = Vo — Zo(VVY5) (3.10)

Vo

= V0h=_—--__
(14 ZoYy)

(3.11)

« V) measured voltage when both switch (1) and switch (2) aseddhat corresponds to
the situation both reference load and unknown device on

V=V = Zo(VIY) = Zo(V* Ve
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Vo
(1+ZO (K(‘Fyref)).

= V= (3.12)
When the measurements regarding the three different ¢consgliare available, the algorithm can
estimate the network parameters by evaluating:

peVo_ Ve (3.13)

Zo (v~ vm)

After the estimation of the ratig% that models the existing equivalent electrical networks it
possible to estimate the unknown load as:

Vo 1 1

The method monitors the voltage signal, maps voltage ctmamgadmittance changes, from
the change in admittance derives the changes in term of pameiso it estimates the energy
consumption of the different devices of the environment.
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Chapter 4

System Design

4.1 General

Chaptef # defines the design of the system by keeping intaiatdifferent types of losses: on
one side the losses given by cable, on the other the losses pywthe noise that afflicts all the
measurements.

This Chapter has as aim the research of the optimal posifitheovoltage sensor, reference
load and unknown devices and also the research of the best @alhe reference device and the
range of possible appliances that the method can corresfilpate. After the determination of
all these requirements the Chapter includes a possibleemmgaitation of the different steps of
the method.

Chapter % is organized as follows: Sectlon] 4.2 discussegjptienal position of the voltage
sensor by also keeping into account the possible losseshairdrifluence in the execution of
the algorithm, Section 4.3 develops our method in a geneaiwark, Section 4.4 reports an
analysis about the influence of the crosstalk in our systasnti®[4.5 evaluates theoretically
how the voltage noise introduces, in first approximatiomprein the estimation, Sectidn 4.6
defines the range of detectable appliances and also inchates suggestions for the design of
the reference device, Section}4.7 focuses on the monitphiage (how the voltage is monitored)
and the initialization phase (estimation of the equivaletivork) of the algorithm, Sectidn 4.8
argues about the detection of jumps in term of RMS value armd@information, Sectidn 4.9
explains the overall solution implemented in our DEMO arelbssible implementation of our
technology in a practical environment, finally Secti@hreports the proposed final solution that
includes a voltage sensor for every electrical branch ttiocftan household (MIMO system).

4.2 Sensor Position

In the present Section the goal is finding the best positiothi® voltage sensor, that is also the
reference’s position, in a practical context.

In the following analysis | introduce the possible losseshaf cables, that exist in a generic
environment, are taken into account and argued. It is napesstake into account these losses,

39
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as shown in Fid._4]1, and estimate how they affect the pedoom of this NALM approach. The

<N> v (1) (2)

Figure 4.1: Network model with cable losses. Configuration 1: the refeedoad is placed after
the unknown load(s).

mathematical expression of a generic impedance of a coppés has been already discussed in
Sectior Z.B.
We have analysed two different configurations:

 Configuration 1: Reference load is placed after the unknoad(s) (Fig[4.1);
 Configuration 2: Reference load is placed before the unkroad(s) (Figl4R).

We start with the theoretical analysis of Configuration 1this first analysis a wire cable, placed
between reference and unknown device, has been consideted@mesented with an impedance
7, 2.8) (see Fid.411).

The voltagel’© of 3.9) andV' (M of (B.10) does not depend d¢f.

The wire impedancé; affects the measured volta§@g® of (3.12) because the copper line and
the reference load in series creates a voltage divider.yimpthe Ohm’s Law it is found that:

Ve _ ZrefoZl e (4.1)
in which: y
v = (1+ZO(XO/X+Y))’ (4.2)
wherey = .
Finally V® can be expressed as:
Zret Vo

V@ —

Zret + 21 ' (1 + ZO(K( + Y)) (4'3)
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It is interesting to consider how the equivalent estimatevork is conditioned by the change
of V®:

<E> _ o Mt (4.4)
Zo) (w5 = )
Focusing on the denominator:
1 1 71 (1+ ZyY, Z, 7y 7Y
I _1( + Zo x)+ ref + 1 %0 . (4.5)
V(Q) V(l) Zref ‘/O Zref ‘/0

The copper line impedance, instead of being irrelevant |eadts to a significant change in the
ratio concerning the estimated network:

—

R
% (%(1 + ZoYs) + Z@LZI 1+211Yref> “
SinceZL 2 1 — 1, this permits to write:

Vo 1 V.

(7‘;) = SaU 4.7)

(1 + a1+ ZOYX)> Zo
The denominator results relevant and it changes the estthaaimittance in the following way:

- Yy
Vi = 4.8
T+ 201+ ZoYy) (*.8)

The analysis proceeds with Configuration 2: the referenae i® placed, and therefore the volt-
meter, before the unknown load as shown in Eigl 4.2. The medswltage changes as follows:

VO =, (4.9)
v
m—__ 9 _ 4.10
v (14 ZyY) ( )
whereY = 2,
Ve = Yo (4.11)

1+ Zy(Yet +Y))

This type of network enables to correctly estimate the ré%i(nnd determines the following

estimation of the unknown load:
Vo, — "X )X_ 4.12
x (1 21)X> ( )

Looking for the relative error:
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Z
+ +
ZO Yref Y;<
1740 V;((i)

<N> v (1) (2)

Figure 4.2: Network model with cable losses. Configuration 2: the refegeload is placed
before the unknown load(s).

e 7, does not appear in the estimated admittance of Configurati@ee [(4.12)). This is
definitely a positive point of this configuration that makesiore desirable than Configu-
ration 1 (see(418)). In particular because usudlys a small number, for example in the
performed experiments we have found an estimated valug efjuals to 0.5, easily it
could be comparable with the impedance of the wire cablesfiist one has also a limited
length (for instance a wire cable of twenty meters).

Usually Z, and Z;, in real context, could be comparable and so they lead to agvro
estimation in Configuration 1 (s€e_(4.8));

» 7Z1Yy: this error term is present in both the settings.
This suggests that, with cables of the same length, bettiarpgances will be obtained in
the estimation of loads with the largest impedance.
However, the error can be limited by using cables of limitedgth (below fifty meters
they don'’t give relevant problem) because usually the tadahittance multiplied by the
impedance of the cables is a small number that can be coadidezlevant for the perfor-
mances.

Comparing the estimated admittance4.8) with (#.12):
Yy Yy

4.13
(L 20+zyy) 0FA%R @19

the admittance of Configuration 1 is underestimated congptrehe resultant admittance of
Configuration 2.

Definition 3 (Absolute Error) The absolute error is the magnitude of the difference batwee
the exact value and the approximation. Given some valard its approximation,,,,.., the

absolute error is
€ = |U — Uapprox|. (4.14)
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Definition 4 (Relative Error) If v # 0 the relative error is

lv—wv
77 — approx| —
[l

U — Vapprox
. .

(4.15)

The relative error of Configuration 1 (calculated by using Bef. [4) is definitely bigger that
the relative error of Configuration 2 (the comparison is reggbin [4.16)). Furthermore, in real
cases of interest, Configuration 1 could underestimateoteif 7, assumes values comparable
with Z,, this could lead to a completely wrong estimation of the epyle.

After this analysis we propose as solution for the system dig to locate a single device in-
cluding reference load and measuring instruments as closesgossible to the voltage source
to sense all the appliances placed after the sense unit.

The relative error of the two configuration is composed as\:

Z1
(Z—O(l + ZOYL)> ZlyL

m = > = 1. (4.16)
' (1%%(1+20YL)> (1+Z1YL) ?
4.3 Voltage Disaggregation in a Generic Network
Itot
© ZC ZA _|—, =+
Z1 Z2
ZO Yref Y;< YEOt
1740)

<:EE:> Vi (@) (1)

Figure 4.3: Model of the network within circuit breakers. Focus on a $ngjectrical branch
circuit.

In the following part the different steps of the algorithne aeported as in Sectidn 2.2, in
this case they keep into account the presence of the cinmakbrs, of more than one appliance
active in the electrical branch circuit, and of cables betwdifferent appliances.

The steps are developed by assuming to work on the optiméibcmation of Sectiol 4]2 with
the reference load as close as possible to the voltage source
The following analysis considers:



44 Energy Disaggregation

only a reserved electrical branch circuit;

the Configuration 2 (best configuration for the executiothefmethod);

* the presence of the miniature circuit breakers;

more than one device active in the electrical branch dircui
* wire cables between different devices.

(3:9),(3.10)[(3.12), in the explained context, changéafollowing way:

-
VO = 0 : 4.17
1+ (Zo+ Zoc+ Za+ Z1)YO) #17)

Y,
yO — "t 4.18
1+ ZyYior ( )

Yiot IS the total admittance that the instrument detects ongtd (it includes also the impedances
of the cables between different appliances).

v
v = 0 4.19
L+ (Zo+Ze+ Za+ Z) YD’ (4.19)

where: vy
(1) _ tot + X 4 20
L+ Zo(Yiot + Yy) (4.20)

and finally

@ Vo (4.21)

T 1+ (Zo+ Zo+ Za+ Z1) Y + YO

The ratio concerning the estimation of the network is cdlyetdetermined in this way and the
estimation of the admittance of the new load switched on eaexipressed as:

V=YW —yO = (4.22)
Yy
— . 4.23
1+ 2V + YO+ ZsVer) (4.23)
So the relative error is:
_ Z5(2Yiot + Yy + ZoYiot(Yiot + Yx)) (4.24)

(14 Zy(Yiot + Yx)) (1 + Z2Yior) '

(4.24) shows that the relative error depends on the inteiections lines in a decreasing ways
in the sense that the line closer to the reference is the @iatfects the most the estimation.
The line more distant from the reference is the one influgnttie less. The relative error always
depends on the value of the unknown load and on the equinadiemittance in a way proportional
to the length of the line.

Summarizing:
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* Yor. performances of the voltage method depend on the avaitedtveork. Indeed when
one appliance is switched on if the equivalent admittanckthe impedance of the cable
are high their product can not be neglected in the analyss usually does not happen.
This term implies that measurements of the same admittanemidifferent contexts (with
different active applications and different distance)lddeads to different results;

» Z5: the first cable is the more relevant in the error. Lowering talue, thereby reducing
the length of the cable between reference and unknown laadlitces the error and the
influence of the other active appliances in the process oti¢hermination of the appli-
ance. As it is explained in the following example, a cabldwgtite usual length does not
influence the performances.

Let us to impose a relative error, estimated adin (4.24} tlean 0.04. We want to compute
the maximum length of the cable that allows to achieve thifopmance in terms of prediction
accuracy of the unknown load.

The maximum length corresponds to the maximum value thainipedanceZ, of (2.8) can
assume to guarantee a certain value of the relative ér2)4The relation between length of
the cable and impedance of the cable is reporteldin (2.5).

In the graph in Figl_4l4.ax is the maximum length of the cable that yield a relative eless
than 0.04. This parameter, as it can seeif_in (4.24), is fomctf Y5 and of Yy, for this reason
the graphs are reported for different valuesf and the value of,.« IS elaborated in function
of different values of? (x-axis values). The values ét,; and P are calculated by multiplying
the correspondents admittances per a fixed value of vol28fe Y as fixed value to only have
an idea of the possible performances).

4.4 Influence of the Crosstalk on the System Design

In Sectior 2.311 the Crosstalk Problem has been recalleglisecin a practical implementation
of the voltage method, it can afflict the performances and soappropriate to assess its influ-
ence.

In our case study the transmitted signal is the voltage dnopthe crosstalk problem happens
when a voltage drop in a electric circuit interferes with warking of the voltage algorithm in
another branch circuit. The entity of the undesired re@afrinfluence between electric branch
circuits depends on the presence of the circuit breakeeg tdgchnical description is reported in
[24]).

All the circuit breakers are included in the same electrieddinet. There is a main circuit break-
ers and a lot of others breakers within this circuit breaker &nclosure.

The following analysis estimates the factor of attenuabetween different branch circuits in
term of measured voltage drops and also the correspondentation in term of estimated ad-
mittances.

Notation:

* Vy: delivered voltage;
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Required length of the cable.

300 T T T T T
P =55W
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E
% 150 -
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Figure 4.4: Theoretical example of possible performances with diffeag@pliances and cables
of different lengths.
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« Zy = Zy+ Z;: equivalent common impedance of the network;

Z; = 0.9 mQ is the internal resistance per pole of the main common citeiaker (as
specified in [5]);

Y': admittance of the unknown load;

* 7 4. impedance of the circuit breaker of the branch circuit A,

» Zg: impedance of the circuit breaker of the branch circuit B;

* 74 =Zp=Tm inthe considered network (as specified in [5]).

As already explained, circuits, designed to operate inclégetly, influence each other because
of the common impedance of the network that they share.

Ideally if an appliance is turned on in one electrical bracictuit it should not affect the adjacent
circuits.

A basic model for the analysis of the crosstalk (of Eigl 2n8)udes a voltage sensor in the branch
circuit B, placed after the switching of this circuit. In shivay the voltage probe can sense the
crosstalk due to a load in the branch circuit A by the commapeidance (series of the network
impedance and the impedance of the main switch).

It is relevant to assess the voltage drop in two differentegions:

» CASE A: aheavy load is switched on in branch circuit B, thelqgrmeasures the following

voltage:
1

14+ (20 + Zp)Y

Vi V. (4.25)

» CASE B: the same load is switched on in branch circuit A, teasuring instrument placed

in branch circuit B records the following voltage:

B 14+ 2,4
1+ (Zo + Za)Y

Vi) . (4.26)

Ideally the measuring instrument, placed in branch cilBughould sense the open circuit volt-
age of the network, since there are no active devices in hraincuit B, instead of this it records
a voltage drop because of the presence of a load in branahtd4.28).

If we look at the entity of the voltage drop in the two diffeteases:

« CASEA .
AV = (Zo + Z Y ; 4.27
= (% A>1+(&y+Z@Y (4.27)
- CASEB .
AV = Zy 0 (4.28)

L+ (Zy +2Za)Y



48 Energy Disaggregation

The attenuation factor that afflicts the recognized volége is:

M. (4.29)

Zy
In the simplified model of Sectidn 2.2, represents the equivalent impedance of the entire net-
work before the voltage sensor, in that case it assumes saia#ts that can be of the order of
0.5€2. Inthe case reported in this Sectigpis the impedance of the equivalent electrical network
before the circuit breakers. We do not know exactly its véleeause we have not tested but we
can suppose that it corresponds to a really small value withrder of magnitude less tham.
SinceZ, <« Z; the resultant attenuation facteris equal ta8.78 in the considered network (this
assumption has been tested and validated).
From (4.29) we do the following considerations:

Ay =

» The voltage method can not be implemented if the referendetlze unknown loads are
not placed in the same electrical branch circuit. Indeedteing point of the algorithm is
the detection of the voltage drops and voltage drops duevicekein other branch circuits
could be not recognized if their real power is not enough high

» Even if the voltage jumps of appliances placed in a diffeedactrical branch circuit are
detected they can be roughly quantified. Indeed the powdreoflévice that is switched
on, as already explained, is underestimated and this leadwoong estimation of the
application used by the users.

Regarding the last consideration the correspondent gsttha@mittance in the case of the con-
figuration of [4.26) is:

/

-~ Z, Y
y=—>=22 . . (4.30)
ZO + ZB 1 + ZAY
Sinceﬁ ~ 1 the attenuation in term of estimated admittance is:
Zy + 7
any v 20T LB (4.31)
Zy
The correspondent relative error in the estimation of tieated appliances is:
Zp
crosstalk — S 7 5 - 4.32
Nerosstalk 70+ 75 ( )

The attenuation in term of voltage jumps_(4.29) is the saméhe@fattenuation that afflicts the
estimation of the appliancds (4131) because of the same whthe circuit breakers admittances.
After these considerations it appears clear that it is resacgd0 keep into account the possible
interferences due to the presence of other devices in tlee bthnch circuits.

It is very important to carefully choose the threshold fag #vent detector of the voltage algo-
rithm to try to limit the false positive in the detection arstconsideration conducts us to study
also the variability of the measured RMS voltage of our testiab in Chaptel]3.

As conclusion of the analysis of the crosstalk it is suggest¢o put at least one voltage sensor
for each electrical branch circuit to identify in which electrical branch circuit a device is
switched on/off and to correctly estimate the power consuntppn of the devices.
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4.5 Effects of the voltage noise on the estimation of the appl
ances

In Sectior 2.6 the noise that afflicts the signal during shuetrvals of time has been evaluated.
After the estimation of the noise statistical it is possituleanalyse the impact of noise on the
estimation of the appliances.

Indeed in the real execution of the algorithm we need to tat@account the error propagation
due to the noise that affects all the measurements. The gatipa of uncertainty is the effect of
variables’ errors on the uncertainty of a function basedhamt When the variables are the val-
ues of experimental measurements they have uncertainties \Wwropagate to the combination
of variables in the function.

The theoretical analysis takes place by assuming to lookeaideal case (without considering
possible interferences and losses and with an ideal refedead) represented in Flg. 2.1.

In following analysis we suppose to switch on/off only on&ide at a time (first unknown de-
vice and then reference device) because we want to undénkneffect of the voltage noise in
the simpler case. The analysis refers to the following gata

« V) is the measured voltage with an existing total admittan®e

Vo

AU
1+ ZY®)

(4.33)

« V) is the measured voltage when the unknown load is switchedhdriree total admit-
tance is equal t& (@ + Yy;

Ve
@ = 0 4.34
v (1+Zy (Y +Y©)) (4.34)

« V) is the measured voltage when the reference load is switchgdriknown load is
disconnected) and the total admittance is equal® + Y
@ Vo

T (1t Zo (Yer + YO)) (4.35)

The estimated network of the formi{ila3.13 becomes:
1% Y,
22— (4.36)
Zo (v — 7o)
and the unknown admittance is calculated in the following:wa

o YVref 1 1
5 (7 7)) 30

The estimated admittande (4137) is an indirect measure @8dah it is affected by the error of
the direct measurements, these last ones are affectedtnotsen (k) :
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* VO (ko) = Vil smean (ko) + 10(ko),
« VOO(ky) = Vz%smean(kl) +n1(k1),
« VO(ky) = Vlg?\Z[Smean<k2> + na(k2);
s {n;} € N(0,0?) (from Sectiol 2b).

(4.37) includes in itself the measurements of the voltagectfd by error and for this reason
the estimation ofYy is affected by the noise of the voltage as it is reported infattlewing

expression:
. Y, 1 1
Y, = ref I (4.38)
(; _ ;) v o po
Vv (2) v (0)

Because of the presence of noise in the measurements itSibj@o® evaluate the noisy estima-
tion of Y; as:

2

. Yy
= Y;< = Y;( + ZO mni >
by considering only the first order in the noise. To this asiglyt is used that;,i = 0, 1,2
are supposed to be independent, Gaussian random with tleevsairancer? because we have

proved in the previous Sectign 2.5 that it can be a good assum@ he partial derivatives are:

(4.39)

Y, Vit (1)(1 1)
— ), (4.40)
Ve (- ) \(ve)? ) AV Vo)
OYx Yiet -1
_ , 4.41
A (e —— <(V(1>>2> (4.41)
aY, Vit (1)(1 1)
— ). (4.42)
0 2 2 2 1
WO~ (o~ o)’ \ o) \Ve v

So (4.39) can be written as A
= Yy = Yi+ny, (4.43)

whereny is a Gaussian variable with variance:

5 LN 2
Y,
2 X 2
Oy = g ( N ’(z)) Oy (444)

<‘H

1\'/ 1 2 1\'/ 1 1\?
(7o) (7o -vw) +(7m) (7m-7w) ] @
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By replacing voltagd’ i = 0, 1, 2 with the definitions[(4.33)[(4.34) and (4]35) can be derived
the following expression of the variance of the relativeerr

2 2
o3 oy 1 [ O 4 9
L =) — 1 (1+ 2V Yiet — Yy)" +
Y, (Vo) Gavavy | A7) (e =%

(14 Zo (YO +Y))) Y2+ (14 2o (YO + Yier)) V2| (4.46)

(4.48) shows that the relative load estimation varianceapgrtional to the ratigv /y;, and it
also depends on the value of the admittances of referenceir@datbwn load and finally it is
conditioned from the impedance of the network.

4.6 Choice of reference load and Definition of the Range of
detectable loads

4.6.1 Optimum Case: best choice of the reference load, unknm load in
term of relative error performance

The relative load estimation variance, reported in (4.#&65inction of more than one variable.
This section is developed to show the best configuratiorhnekecution of the algorithm in term
of choice of reference and unknown load(s). To understaadgtimum working condition, it
is necessary to consider both the first and the second paeti@atives as td7 and toYy. The
optimum condition can be derived by setting to zero the fiastigl derivatives:

8("%’/ng> =0
Per (4.47)
8<0Y/Yx2> =0

0Yx

The systenm (4.47) can be written in the following way by sadvihe partial derivatives (in which
Yy = AY is the detected change in the admittance):

Yy (1 4+ ZoYrer)® (=1 4 ZoYier) + Yiet — Y = 0 (4.48)
~Yrer (14 ZoY3)* (1 = ZoYx) — Yies + Yx = 0 (4.49)

The following equation is the result of the difference beaw@4.48) and (4.49):

Y (ZaYias + 223V — 2Z0Yeet — 1) + Yiet (= 2oV — 2Z3Y;3 + 22, Yy + 1) + 2Vrer — 2Y5 = 0,
(4.50)

and it is equal to zero wherjes = Yy, as can be seen also from the symmetry betwleenl(4.48) and

(4.49).

The optimal solution occurs when the admittances assumsatme optimum value. For this

reason the optimum value is derived by solving (#.48) angikeginto account that it is assumed
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Yiet = Yy in the optimum case.
(4.48) can be factorized in the following way (by using Ruféimule):

75 (Yet =" ) 20) (Z5Yi— 1) = 0; (4.51)
and a possible solution is the following condition:
Vet =Yx ="' /2, . (4.52)

To demonstrate thaf (4.52) is the best condition it is alsm@sgary to prove that it corresponds
to a relative minimum of[{4.46). This can be infer from the laggiion of the second derivative
test.

The second derivative test discriminant is defined as:

) o) o o(e) o o) o o)
D Ve Ve OV, Y. Ve 0V, 0V, Ve

(4.53) in the condition 0f(4.52) assumes a positive valuwkthis proves that(4.52) is a relative
minimum of the variance of the relative error and this pra¥ed (4.52) corresponds to the best
configuration in term of variance of the relative error.

In the reality Z, usually assumes small values. Small value of the impedaeteork corre-
sponds, in the best configuration, to big value of the admutta (following the rule of(4.52)).

For example with a value of, equal t00.5 () the necessary admittances to obtain the best per-
formances have a real power of ab8@&000 W.

The value of the variance, that is obtained in the optimune casvery low but this case is not
useful because in practise the network doesn't allow to ese&d of such high real power.

(4.53)

4.6.2 Range of detectable loads

The analysis of the voltage of Sectionl2.5 enables to estithatthreshold for detectable voltage
jumps, and thus the range of appliances that the method ceacty estimate. The analysis of
Sectior 4.6 gives an idea of the relative error that the ntetioonmits in the estimation of loads
with different real power (performances in the range of ditigle loads that depend also on the
choice of the reference device).

In particular in this first part some considerations are reggbwith the aim to establish the
minimum voltage jump detectable with a certain accuracyt tdorresponds to a lower limit in
term of power of the detectable appliances (link betweemgés in voltage and changes in
power see Sectidn 2.4).

The analysis of voltage RMS of Sectibn 2.5 permits to eséntaé minimum jump in term
of voltage that we want to detect, and also, for differentsgae thresholds, evaluate the ratio
between false and true positive that depends on the varairbe voltage.

From considerations reported in Sectionl 2.5 it can be swgapts choose as threshold for the
voltage method a value equaliey, .

Indeed from that analysis it has been seen that the pereeotagutsiders (that will correspond
to false positive in the execution of the algorithm) is vaswlin the real experiments.

The threshold for sure can not be reduced because of:
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* increasing of the percentage of false positive;
* increasing of the variance of the relative error (accagdmthe analysis of secti¢n 4.5).

So the choice of the threshold for detecting voltage vanetias a new device:
THR = 30v. (4.54)

In this way it is possible to estimate the minimum load redpafle through the execution of the
algorithm by using the link between change in voltage anethgbhan admittance. Indeed the link
is:

AV = ZyY Vo, (4.55)

that is the difference between (4133) ahd (#.34). The minindetectable change in admittance
can find by imposing the chosen threshold in term of voltaggys, so the minimum detectable

admittance is:
THR

Ymin & m- (4.56)
For example in the case of the analysis can be the follower:
o Uy~ 0.5 ;
e V=235V,

« oy ~5.5-1072V (r =2).

So the minimum load, according with the analysis of Sedfi@e2d 4.5, is approximately equal
to P, = VY ~ 80 W.

This minimum in term of detectable real power makes sen$eigblution includes a single unit
for each branch circuit for taking into account the presevictne crosstalk between different
electrical branch circuits (Sectién 2.8.1).

The threshold should be higher in function of the implemeaiaof the event detector for the
voltage variations (Sectidn 4.8.1).

On the other side the maximum power that can be detected &nthesd is the limit in term of
power that the network allows.

4.6.3 Design of the Reference load

This section is developed with the aim of finding the valuehs preferable reference load to
estimate a given appliance of interest. This method is desigo estimate device with an high
power consumption in the range between 80 W and 2000 W.

The expression of the variance of the relative error (4.46) loe writteri 4.57 by using the as-
sumption that usuallyZ,Y )| < 1 as:

2 2
Oy oy 2 2 2
) () 2 (VE4VZ— YY), 457
(Yx) (Vo) (ZOYXYref)?( et Y~ Vi) (4.57)
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Relative load estimation variance
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Figure 4.5: Relative load estimation with differeit, and different reference load (range 10 W
-100W).

It can be reasonable to consider, as starting point of thiysisaa reference load with a real
power between 10 W and 3000 W. In Fig.]4.5 4.6 differemidsepattern of [(4.37) are re-
ported. In Fig[4.b the range of range of real power for theragfce load is from 10 W to 100
W, in Fig.[4.6 is 100-1000 W.

In Fig.[4.6 the different trends correspond to differentresl of power of the unknown compo-
nent. The figure shows that in the estimation of loads withllspmaver (such as?, = 10W)
the variance of the relative error increases a lot. Thisesgmts another motivation for which
the minimum detectable load can not have a real power lesslib@dW. From the comparison
between Fig. 415 and Fig.4.6 can be also inferred that thanae of the relative error is higher
for reference load with small real power, so the referenad khould not have a real power less
than 100 W. Figl_4]6 shows that the theoretical performasceally good by using a reference
load with a real power bigger than 300-400 W, indeed the wagaf the relative error converges
to the same small value for all the devices of interest. Thessiderations can be explained
by looking at the expressioh (4]46) and at Fig] 4.7. Eigl 4@&xs the trend of (4.46) in the
caseP, = 80 W (minimum detectable load). We can clearly see that it isimized when the
conditionY,ef =~ Y7, is verified, furthermore it;er > Y7, the relative estimation error is less than
202 /(VoZoY1)?. For the minimum detectable load the relative estimatioares 0.22, and it
decreases for higher loads.

As conclusion of this Section, it is suggested, for the im@atation of this novel technology, a
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Relative load estimation variance
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Figure 4.6: Relative load estimation with differeft, and differentP (range Fres 100 W - 1000
W).
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Relative load estimation variance
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Figure 4.7: Relative load estimation of (4.46) wifB = 801V and differentP, (range 80 W -
400 W).
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reference resistive load with a real power bigger than 3BDM, for the execution of our tests
we have chosen an Halogen Lamp with a real power of 400 W.

4.7 Monitoring and Estimation of the Network

In this Section the parameters, that are continuously ramdtby the system, are indicated and
discussed, furthermore the Section argues about the estimad the network that is the main
point of the novel method. The term “estimation of the netWoefers to the estimation of the
ratio Vi, /Z, that characterizes the equivalent electrical network.

This discussion is referred to the simple scenario of theipeif Section 5.2.

The two important parameters to take into account, duriegntlonitoring phase, are the RMS
value of the voltage signal and its phase information.

In the implementation of our DEMO the RMS values are caledaiver 5 periods of the sinu-
soidal wave. The phase information is also calculated overgeriods of the voltage signal, as
expressed in Sectidn 2.6.1. Both (2.42),(2.23) are evediuat keep into account both the total
phase information and the change in the phase between tvgecative time intervals.

Every time in which a jump in the RMS voltage is recognized &g suppose to switch on/off
the reference load and estimate the network. This seemd#tpiate strategy because of the
variability of the network in a real context could be highedaso is better to do the update of
the estimation frequently. In the experiments executethénliab at the High Tech Campus it

Algorithm 4.1 Monitoring
Sample 10 kHz i(t), v(t);
Calculate admittance of the reference load;
Average over five periodgg s (k)
Evaluatep(k), A¢(k) with 5 periods of the voltage signal;

is necessary to remind that the network is more robust thameestic house (Sectign 2.5), this
implies that the quantitative targets for the minimum staddf the voltage is supposedly better
in our case.

For this reason in our DEMO (Sectién b.4) we do not performedbgémation of the network
every time in which a new load is recognized, we execute thimagon at the beginning of the
execution and, after a while, we repeat the estimation.

So when the algorithm starts the first step is the initialiraof the ratio' /;,, at this end, it is
necessary to switch on/off the reference load.

In our particular context, with a resistive reference loathva nominal power of 400 W (Halo-
gen lamp) and with a quite stable voltage (Secfion 2.5),rilyn (4.2 can be implemented by
supposing to switch on/off the reference load only one tibet’s see in detail the execution of
the training phase of the algoritHm %.2.

The estimation of the network takes place two times resgagtwith the switching on/off of the
reference loadr{um = 2).
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Algorithm 4.2 Initialization Phase

n <+ 0
if n < num then
Event Detection based on Variance Method by using both stard voltage;
if Event is ovethen
Estimation of the network;
n<n+1
end if
end if

In our DEMO the complex power consumption, calculated bypgigine overall current and volt-
age across the reference load, is continuously monitorddtxt when the reference load is on
and, in this case, estimate the existing network. The etbm#& executed when the power of
the reference load is identified as stable through an eveette (it corresponds to the end of
the event) that is based on both current and voltage. Thistaletector is the different from
the event detector based only on the voltage signal thatsmudsed in Section 4.8. It is part
of the previous system Coded Power developed at PhilipsaRes¢hat was based on current
and voltage. This event detector considers the overall poargsumption (calculating by using
voltage and current) and it defines as an event the time wired@wwhich the overall complex
power varies more than a threshold. To detect this variatio@ algorithm computes the complex
power and a window of. periods, it estimates the average value of the complex panethe
standard deviation as:

p(k) = 7 3" Ptk 1) (4.58)

ok) = \| 7o 3 (Palh =1 — k)’ (4.59)

=1

The events that we analyse with our method are simple to détensist in simple transition
between OFF/ON states) with this event detector based azothelex power with,* = 2.

It remains to check in a domestic environment how often iojme to execute the Initialization
phase. To evaluate how often the network changes and howahisfluence the performances
of the method is not sufficient the valuation of the variapidif the voltage but it is also required
to switch on/off the reference load in the analysed configumaand estimate the same unknown
load until when the estimation tends to diverge (the estchatalue tends to a wrong value
because the equivalent network is different from the esedja

Anyway, in a domestic environment, the best suggested mmgriation requires to update the
estimation of the network every time in which a voltage jungudetected by the event detector.
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4.8 Event detection

4.8.1 Detection voltage drop RMS

The basic idea of the event detector of our system is to lodtkeatime evolution of the voltage
RMS (2.8) calculated over 1000 samples.

This simple event detector is designed to detect when ageithange occurs and also to identify
after how long the RMS voltage returns to be stable (end olihg-term transient).

The long-term transient is different from the electricalnsient. This last type of transient con-
sists in the fact that when a device is switched on, its corgudienittance changes over time until
the device warms up completely. This term is relevant bexdesices with the same nominal
admittance might have different behave with respect todhg-term transient.

The goal of the event detector is to identify the long terrmgrant as an event, every time in
which a voltage jump is recognized the event starts and & &iten the voltage gets again sta-
bility. A possible implementation of this event detectoraported in algorithrh 413, and includes
two simple filter. The parameters of the filters could chamgeal context with different devices.
The implemented filters have the same structure of the fiftEigp[4.8, the generic filteh,, has
the following expression:

0, n<—NT
1/N, —NT <n<—=N,T
hy =140, —NoT <n < NoT (4.60)
—1/N, NoyT <n < N;T
0, n > N3T.

* Np — Ny =5
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Algorithm 4.3 Event detector voltage

AVi: output filter 1;
AV, output filter 2;
if Eventis ON and|AV;| > th; or |AV;| > ths) then
Eventis ON;
else
if Eventis ON and|AV;| < th; and|AV;| < thy) then
Event is OFF;
end if
else
if No Event and|AV;| > th) then
Eventis ON;
end if
else
No event;
end if

2N, = 10 (in the reality it is better to set this equal to 2;

Ng—N2:5;

thy = 0.2V,

th = 0.25V;

N =5.

4.8.2 Detection jump in phase

The detection of the change in the phase information is aibkyt because of the presence of
the drift that afflicts the phase information in a non consteay (Sectiorh 2.6]1). A preliminary
idea (for our DEMO) could be that every time an event in the¢age trend is recognized the
algorithm looks at the phase information to understand ithem same moment a jump in the
phase can be recognized (inductive or capacitive loads).

If also in the phase information a jump is detected we needKe into account the drift before
the jump and evaluate the jump in term of phase (see algotAin

Ideally, in a practical execution, if a PLL system (phaseé&mtlook system) is available, the
phase information is recovered correctly, and an evenct®téor the phase information is not
needed.

Indeed the event detector based on the RMS voltage recaghigg@resence of new devices and
after that the steps of our method could be applied to thagelcomplex phasor. In this way we
can correctly estimate the complex power of the unknownadsvi



Chapter 4. System Design 61

Algorithm 4.4 Event detector Phase

A¢(k) < phi(k) — meanphase before event
if Eventis ON and|A¢(k)| > thyn.se) @and Event Phase is ORRen
Event Phase is ON;
Phase evert— Ag(k) — drift;
else
if Event Phase is Olhen
¢(k) = Ap(k) + ¢(k) — drift;
end if
else
if Eventis OFRhen
Event phase is OFF;
end if
else
No event;
end if

4.9 Overall solution

In Fig.[4.9 the flowchart of the voltage method is reporteghibws the main steps as boxes of
various kinds, and it also underlines the connections witbves. This diagrammatic represen-
tation gives the step-by-step solution of the algorithm.

1. The algorithm starts by sampling the voltage, calcugtire corresponding RMS value of
2.8);

2. If it lacks the estimation of the network or the time frone tast estimation is higher than
THR, itis necessary to:
» Turn on/off the reference load farm times (in our DEMOnum = 1);

» Every time in which the reference is turned on wait until v of the long-term
transient (event calculated through the variance methpdging i,v));

« When the transient is over the algorithm estimates the tati,,;

 After num valid estimations of the network the algorithm estimateas the average
value of the2 num estimations (switching on/off two estimations every timevhich
the reference load is turned on);

3. If the algorithm recognizes a voltage jump as a new event:

* The algorithm evaluates the jump in term of admittancel uvitien the transient is
supposed to be finish;

» Estimation of the complex admittance of the unknown load:
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Algorithm 4.5 DEMO

Monitoring;
n <+ 0
if n < num then
Initialization Phase;
else
Event detection based only on the voltage;
if Event ONthen
Evaluate Real Power;
if Event ON phaséhen
Updategp(k), Estimate Reactive power;
end if
end if
if Event OFRhen
if Reference is turned Otthen
n < 0;
end if
Fix real and reactive power to the estimated value;
Evaluate jump in real and reactive power;
Update signatures;
end if
end if
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Figure 4.9: Flow diagram of the overall voltage algorithm as it is implented in our DEMO.
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whereB is the susceptance of the unknown load and it has the follpwieaning:

— B > 0 when the load is mainly capacitive ;
— B < 0 when the load is an inductor;

 After the end of the event the algorithm estimates the tasticomplex power (Sec-
tion[2.4) and it sets the complex power to that constant vahii the next event is
recognized from the event detector;

» Update the signatures by detecting which device is on,igtethd it is necessary to
compare the jump in term of complex power with the nominal @oaf the devices
that exist in our database.
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» Update the User Interface to show the detection of the devand the estimation of
energy consumption of the environment.

In the practical execution the technology should work infeedent way:

« Sample the voltage signal, calculate the correspondin® Rdue of(2.B);

If an Event is ON, evaluat&(1/V") (complex voltage) until when the event is finished;

Turn on/off the reference load to estimate the electrieavork;

With the estimation of the network evaluate the jump in tefroomplex power associated
at the previous event;

Update the signatures and GUI with the information ass$edito the estimated jump.



Chapter 5

Experiments and Results

5.1 General

Chaptet b is focused on the performed experiments to testathel technology and validate the
theoretical analysis performed in the previous Chapters.

It is divided in the following Sections: Section 5.2 expkthe experimental set-up that we have
used in our Lab at the High Tech Campus, Sedtioh 5.3 repoetgalidation of the theoretical
model of the electrical system developed in Chapter 2, &el&i4 describes the implementa-
tion of a DEMO to show the application of the voltage method@ ipractical context, Section
presents preliminary results about the Crosstalk letwdgferent electrical branch circuits,
finally Chaptefb ends with Sectign 5.6 that validates the eho€ithe variance of the relative
error.

5.2 Experimental set-up

Fig.[5.1 shows the architecture of the demonstrator thatseed to emulate an environment and
test the novel technology. In Fig. 5.2 a picture of the reglegimental set-up used for perform-
ing the experiments is reported.

In all the experiments a dedicated electrical branch diisuised as our own network, which
delivers electricity to the reference load and the unknavaus (in Fig[ 5.1l all the admittances
are connected in parallel within the same electrical braniuit).

The measuring equipment consists of a differential voltagde sensing the voltage across the
reference load and an Agilent current probe sensing thewruof the reference load to estimate
its power. The voltage sensor maps the voltage into 0-5 valtge to ensure safe input to the
AD converter, the current probe operates at 0.1 V/Amps caordigon and it is linear within a
high dynamic range from milli-Amperes to tens of Amperes.

The two instruments are connected to a 24 bits Nationalunsgnts AD converter which digi-
tizes the data at a sampling rate of 10kHz per each channghanthterfaces LabVIEW. The
AD Converter with 10 Volts range provides a granularity opagximately 0.6 V.

Labview takes the data from the AD Converter and stores them.

65
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Figure 5.1: Architecture of the demonstrator.
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The data is shared with Matlab, it is provided in batches agdples and this permits to obtain
a communication process faster compared to single bitfeans

LabVIEW runs in a PC that is powered by another branch ciragtalso the power supply
connects to the ADC. This decision is due to the will to iseldte measurements, to delete the
effects of the crosstalk due to other appliances of the saareh circuit.

Figure 5.2: Real Experimental Set-up.

" w

Figure 5.3: Measurement instruments.

Fig.[5.3 is a image of the measurement instruments. IndeedEhConverter is on the left, and
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its first two input channels are connected to the current aftdge probes. The current clamp is
on the right side, so also the voltage sensor. The curremtpcla required only for the estima-
tion of the power of the reference load (Secfiond 4.7). Theregton of the unknown devices is
realized by keeping into account only the voltage signahgied by the voltage probe.

5.3 Validation of the System Model

In this Section the results of some experiments are pred¢otealidate the theoretical model
developed in Sections 4.2 4.2. All the results are obtain#dtive experimental set-up of Section
??.

In addiction the following elements are used to carry outdkperiments (Notation refers to

Fig.[41):

* As Y a water kettle (Philips HD4649) with a nominal power of 2200iMused. It
has been chosen, in the preliminary studies, because aghisvipur mainly resistive and
because of its large nominal real power;

* As Yy a hair dryer (Philips Salon Dry Compact HP4960), is used atstiage 1, that is
characterized by a nominal power of 720 W;

* As Z; a cable, long about 20 meters, is used to emulate the caldeslas a practical
network.

To support the theoretical model of Sectlonl4.2 three difiesorts of experiments have been
performed. In each type of experiment the position of thérngground has been changed by
implementing the following configurations:

 Basic Configuration: implements Fig._316.
 Configuration 1: implements Fig._4]1.
 Configuration 2: implements Fig._4]2.

In each measurement round the steps presented above angeelkdost the instruments record
only the voltage of the network, then the hair dryer is swettlon " = Y,), followed by the
switching on of the water kettleY{ = Y + Y%), then the switching off of the same device
(Y = Y4), and finally also the hair dryer is switched off. The measwst round is executed
many times for each configuration.

5.3.1 Basic Configuration

The first basic ideal Configuration is theoretically perfiecthe sense that it should get results
not affected by error. The experiments are executed in dabatatory and the results are, also
in this case, affected by error. Th@ys voltage recorded during one experiment (that includes
several rounds) is reported in Fig. 5.4.
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The Vrys Voltage is computed over one period¥f = 200 samples{ = L = 0.02s, f, = 50

J
Hz fundamental frequency in the EU) is: ’

(k;-f—l)NS

Vaus(k) = = > V() (5.1)

S i=kN,
For instance, in Fid. 514, the first measurement round saédfts= 0 and ends at arounk =

Measured voltage V,

rms(K)
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240 : .
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230 - : ‘
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Figure 5.4: Measured/kug k) in Basic Configuration.

1000. At the beginning the recorded voltage corresponds to tikatsdbn where no load is on,
aroundk = 600 a first voltage drop happens that corresponds exactly toviftersng on of
the hair dryer, then the following large drop is the switchon of the water kettle. The round
finishes with the two jumps that correspond to the switchifiggbwater kettle and hair dryer,
finally the amplitude of the RMS voltage comes back to theinalgevel without loads on. This
type of set-up correctly estimates the admittance of thenowk load and in this way estimates
the real power of the unknown load like it can be observed n[Ei3. In Fig[5.b the values
(in term of change of the real power) that are estimated bynoethod are represented with
blue dots, with red dots the values estimated by a systenudiest both voltage and current are
reported to understand the comparison between the diffapgoroaches. In this case the term
“event” indicates every time in which the unknown load isrested (a round of execution of the
experiment). The results or our method are consistent,rtioe &kes into account the fact that
in reality each measurement is somewhat affected by umcr{25] and the estimation of the
unknown admittance is also affected by the propagationeéthor as seen in Chapter 4.

It is easier to understand the performance of the voltagggdiegation method looking at the
relative error.
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Estimated real normalized power of the unknown load
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Figure 5.5: Estimated value of the real power of the unknown load in B&sicfiguration.

In these experiments the relative error can be expressedasidering also the sign)

AP, , — AP,

_ =l T Al 5.2

n NS (5.2)
where:

» AP, , is the value of the real power of the device estimated usitly arrent and voltage
signals;

» AP, is the value of the real power of the device estimated usimgtbe voltage signal.
Both these values are obtained from the estimated adméttafribe load multiplied by squaring
the measurelirys voltageAP = V3,,s - AY (Sectior Z4).

In Fig.[5.6 the histogram of the relative error that we obtaynrepeating the experiments on

different days and different times is reported.
Data of the normalized histogram of Fig.15.6:

« Width of the interval: 0.016;
* Number of events: 136;
 Mean Error: -0.0041 ;

» Variance Error: 0.0016;
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Histogram of the relative error
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Figure 5.6: Normalized histogram of the relative error obtained duritig experiments per-
formed with Basic Configuration.

5.3.2 Configuration 1

The theoretical analysis of Configuration 1 (Secfiod 4.2pgias result that the voltage sensor
can not correctly estimate loads that are placed betweeedhiealent network and the instru-
ment if the impedance of the network has a value comparatitethve impedance of the wire
cable between unknown device and instrument.

To support this thesis, in the second type of experimentapieof about twenty meters is put
after the unknown load and before the voltage meter [Eig). 4.1

As we have found in the theoretical analysis, the voltagb@records a different voltage drop
(when the reference load is switched on ($e€ (4.3), and ti&is dot permit to correctly estimate
the load that is placed before the reference load (sek (4.8))

Fig.[5.8 shows the wrong estimation of the real power of thenown load that appears to be
halved.

This result is consistent with the assumption that the edent impedance of the electrical net-
work is comparable with the impedance of a cable of limitewyte. Furthermore it gives us a
limit of the algorithm in the sense that a load before therimsent can not be estimated. A cor-
rect Configuration forecasts to put the voltage sensor & @e possible to the electrical socket
if it would be estimate all the loads of the electrical bracthbuit.

Data of the normalized histogram of Fig.15.9:

» Width of the interval: 0.007;
* Number of events: 98;

e Mean Error: -0.5905 ;
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Figure 5.7: Measured/irus k) in Configuration 1.
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Figure 5.8: Estimated value of the real power of the unknown load in thefi@aration 1.

» Variance Error: 1.4e-4;

5.3.3 Configuration 2

On the contrary, the third test wants to support the thesisttie presence of a cable, placed
between the reference load and the unknown load, does noéna# the performance of the
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Figure 5.9: Normalized histogram of the relative error obtained duritig experiments per-
formed with the Configuration 1.

algorithm if the cable is not so long (sée (4.12)).
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Figure 5.10: Measuredi/gys k) in Configuration 2.

The graph of Fig. 5.12 shows that the performance in the poesef the cable does not change
so much compared with the results of Basic Configuration. [&ig).
Data on the normalized histogram of Aig. 5.12:
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Estimated real normalized power of the unknown load
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Figure 5.11: Estimated power of the real power of the unknown load in Candigon 2.
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Figure 5.12: Normalized histogram of the relative error obtained durthg experiments per-
formed with the Configuration 2.

» Width of the interval: 0.017;
* Number of events: 170;

e Mean Error: -0.0019;
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Device number Device nameg Nominal power
Device 1 Water Kettle 2200 W
Device 2 Hair dryer (stage 1 720 W
Device 3| Vacuum cleaner (stage minimum) 320w
Device 4 Microwave 1100 W
Device 5 Halogen Lamp| 400 W
Device 6 Hair dryer (stage 2 1300 W
Device 7| Vacuum cleaner (stage maximuim) 1310 W

Table 5.1: Devices considered for the experiments.

* Variance Error: 0.0023 ;

The relevant parameters are the mean and the variance oéldie/e error, indeed in Basic
Configuration and in Configuration 2 we obtain a variance efrtHative error of the same order
and also the mean. As we expected, Configuration 1 is chamexldoy a bias in the estimation
that we do not find in Configuration 2.

5.4 DEMO

The performances of the algorithm are investigated by uaiegt of devices with a quite high
real power that we could find easily in an environment. Witlerence to Table 511, we have
tested the algorithm by estimating Device 1,2,3,4,6,7 anchave built a DEMO to show the
results of the algorithm in the case of Device 1,2,3,4.

Device 5 is the Halogen Lamp that we have chosen as refereadeit has a real power of 400
W and no reactive power.

The Matlab algorithms give as results the status of eachiaap (appliance ON or OFF) and
the energy consumed by each appliance during the executibe ®EMO.

The detection of the appliance, in this simple case, is dgneoimparing the estimated power
with the database of the available devices.

The Graphical output of the DEMO, as shown in Fig. 5.13, is gosed of four parts:

* On the upper side the estimated real power is representidanblue line. This graph
depicts only the estimated power of the last 20 s of executidghe DEMO;

* On the middle there is a bar plot that visualizes a blue hlagth amplitude equal to 1,
when a device is ON;

» On the left of the lower side the total energy consumptiarefach device is represented
(total consumption from the starting point of usage of theMiB;

* On the right of the lower side there is a pie chart repreagntiow the overall energy
consumption is divided between the different devices.
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Figure 5.13: Graphical User Interface used in the demonstrator.

In Fig.[5.13 we can observe between 30 and 100 s of the uppph ghe& estimation of the
real power of the hair dryer. The estimation takes place witen the long term transient is
considered exhausted (as explained in Sedtioh 4.9), inake of the hair dryer we could set
immediately the real power because there are no relevangelaafter the switching on but in
other cases this is not verified as we have already explained.

To support this last consideration Fig. 5.14 shows the t@nthe real power in the case in
which first the Device 3 is turned on/off (between 0-10 s) aafter that, also the Device 7 is
turned on/off (15-20 s). As it can be inferred from Hig. 5.b4hese two cases of interest the
voltage does not assume immediately the final value but hasacterized from a strange trend
associated to the long term transient. Another importaatadteristic of our DEMO is that it
does not recognize simultaneous events but it can detect mbee than one device are working.
For instance, if the water kettle is turned on, after the gadton and estimation of this device,
if another device is switched on the DEMO shows the total pawasumption in the electrical
branch circuit that is equal to the sum of the two estimatetgoo
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Figure 5.14: Estimated change in term of Real Power with Device 3 and [Bexic

5.5 Validation of the Analysis of the existing Crosstalk be-
tween different electrical branch circuits

In the present Section some performed experiments areteepwrth the aim of validating the
theoretical analysis of the crosstalk (Secfion 2.3.1).
The performed experiments consist in the execution of thewiing steps:

* The reference load of our DEMO (Halogen lamp with a real mahpower of 400W) is
turned on/off one time to estimate the equivalent eledtrieawork.

» A water kettle (Device 1 with a real nominal power of 2200 \&}urned on/off for three
times in our electrical branch circuit (where the measunisgruments are placed);

* The same water kettle is turned on/off for three times intla@oelectrical branch circuit
(different electrical branch circuit from that one in whittte voltage probe is placed).
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The experiments have been carried out to demonstrate thatie¢ly the presence of the crosstalk
between different branch circuits has to be consideredeexiecution of the algorithm. Fig. 5115
reports the trend of the voltage in one experiment: afters@fere is the first drop that corre-
sponds to the switching on of the Halogen Lamp, at 10 s it isched off, between 10/40 s the
six large jumps correspond to the three times in which theregice load is switched on/off. Fi-
nally between 50/80 s the water kettle is switched on/o#ehtrmes in another electrical branch
circuit. We can clearly see the jumps due to the presenceecfpipliance in both the branch
circuits but with different amplitude.

The event detector recognizes the jumps that are due to ihehgvg on of the unknown device
in another electrical branch circuit and the algorithm pextto estimate the real power of the
appliance. In Fid. 5.16 the real power estimated with outhwoefs depicted with a blue line and
with a red line the real power, calculated by using voltagg@mrent, is reported.

The estimations of the water kettle when it is placed in thees@ranch circuit of the voltage
sensor give approximately the same results with both methdtle part of the experiments in
which the water kettle is placed in a different branch cirteads to important results:

» Only the voltage method recognizes the existing devicause of the presence of the
crosstalk.

» The estimation of the real power with the voltage methodimgletely wrong as we have
predicted in Chapter 4, the real power is attenuated by arfaetar to the predicted value.
Indeed the detected real power is about equal to 200 W.

The introduced experiment shows how the crosstalk reaffyesents an interference for the
correct execution of the algorithm. The implementation &IMO System, for the explained
reason, is suggested.
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Phret [W]
120 160 240 400 2200
120| 0.031| 0.025| 0.023| 0.024 0.03
160| 0.025| 0.017| 0.014| 0.013 0.016
[W] | 240| 0.023| 0.014| 0.008| 0.006 0.007
400 0.024| 0.013| 0.006| 0.003| 0.0024
720| 0.026| 0.014| 0.006| 0.0021| 0.0008
2200 0.03| 0.016| 0.007| 0.002| 0.0001

Table 5.2: Variance of the relative error withv /, ~ 1.4e — 4.

5.6 Validation of the estimation of the relative load estiméon
variance

Another relevant examination has been performed in Sedidrand it regards the variance of
the relative error. Different reference loads and alsaedgit unknown loads have been used, in
the following Section, to validate the model of the varian€éhe relative error (se¢ (4.46)). In
Table[5.2 a range of possible nominal valuesPf(y-axis),Pret (x-a>2<is) are presented and the

theoretical value of the variance of the relative error mmtef (‘%) is reported as calculated

with (4.48).
The value of Table5]2 are obtained by using the followingpaaters:

* 0, =0.033V,
e Vh =238V,
e Zy=0.5€;

A series of experiments has been carried out to validatentnarétical modelYy, a water kettle
(Device 1) was used and, &g, an Halogen Lamp with a nominal power in the first case of 120
W and in the second of 400 W.

One example of execution of the experiments is reportedgrf®ILT. In this example the refer-
ence load is an Halogen lamp with a real power of 400 W.

One experiment consists in a series of rounds. Every rouegdsuted in the following way:
first the reference load is turned on/off and the executiothefnetwork takes place, after that
the unknown device is turned on/off and the algorithm egisighe real power by taking into
account the estimation of the network of the current round.

In Fig.[5.17 in the upper sub-plot the trend of the measure@RMtage (V, = 1000) is reported.
For instance, the first round takes place between 0 andk = 180. At aroundk = 100 there

is the first voltage drop that corresponds to the switchingfthe reference load, the second
drop is larger because it corresponds at the switching dmeofvater kettle (larger power). In the
lower side of Fig[5.17 the estimated power (with the twoeatiéht technology) is represented.
The first time in which the reference load is turned on its pawestimated only by the method
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that uses both current and voltage signals because for treggamethod no estimation of the
network is available. The other times in which the refereloeel is switched on the algorithm
estimates its power by using the voltage drop and the prewestimation of the network, when
the algorithm recognizes that the device is the refererme itoestimates the network again and
it sets the power to zero to underlines that the estimatipeitrmed.

During the execution of the algorithm the values of the \g#te( V.7 = 0, 1,2 have been cal-
culated by averaging ovéfVikus values.V(©) is calculated by averaging oved values before
the switching on of the reference load, insté&dd, i = 1,2 are evaluated by averaging oviér
values after the switching on (and after a transient pewddhe reference/unknown load.
Fig.[5.18,[5.1P report the histograms of the relative emobath cases (keeping into account
also the sign of the relative error). The number of experiméenlimited and this explains the
inaccuracy between forecast variance and obtained vaianc

It is also necessary to remember that we have carried out @gsi with a lot of simplified
hypothesis and so the real variance of the error is obviduglyer.

In both of the cases the standard deviation of the voltagdtemdverage value df, are almost
the same of the Table5.2.

Anyway the relevant result is, as it has shown in Tdblé 5.2, vriance of the relative error
increases a lot if it is used, as reference load, a load otdunieal power. This confirms the
theoretical model extracted in Sectionl4.5. The differemesveen Figl 5.18 and Fig. 5119 is
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Figure 5.17: Example: Per = 400 W, P, = 2200 W.
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immediately evident, we have reported also the parametatscharacterize the two different
histograms:

e Case 1:Pet = 120 W, the histogram is represented in Fig. 5.18:

— Width of the interval of the histogram: 0.1;
— Number of events: 107;
— Variance of the Relative Error: 0.0843.

e Case 2P = 400 W, the histogram is represented in Hig. 5.19:

— Width of the interval of the histogram: 0.01;
— Number of events: 133;
— Variance of the Relative Error: 0.0019.

The difference between forecast and obtained value of thanee is also explained with the
inaccurate estimation of th#, in the forecast. Indeed with the same r&tig/y, but with a

smaller impedance of the network the variance of the ermneamses a lot but this is referred to
both the cases of interest.
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Figure 5.18: Histogram of the relative errorPe = 120 W, P, = 2200 W.
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Chapter 6

High Frequency Characterization

6.1 General

In [21], as already introduced in Chapter 1, the authorsa®@ new approach to identify de-
vices in a home environment based on the device’s switclheguency characteristics.

The goal of this Chapter is to verify the reliability of thigpe of approach to understand if it
could be a complementary solution to our method in the dietecif devices with a small real
power.

The Chapter is divided into the following Sections: Seciioh explains the general theory be-
hind this approach, Sectidn 6.3 explains the two tested Qaraiions and the steps that we
execute during the experiments, Secfion 6.4 focuses onxgr@ieents that we have carried out
with laptops, Section 615 reports the performed analysisvordevices with a small power con-
sumption, finally Section 616 concludes the Chapter withathedysis of other devices with a real
power higher than 20 W.

6.2 EMI

The method of [21] focuses on the electrical noise preserd power line when a device is
operational that is called electro-magnetic interfergiidél). This last one can be classified into
two types: transient and continuous.

Definition 5 EMI: Electromagnetic interference (or EMI, also called radrequency interfer-
ence or RFI when in high frequency or radio frequency) is &diEnce that affects an electrical
circuit due to either electromagnetic induction or electragnetic radiation emitted from an ex-
ternal source.

Radiated EMI may be broadly categorized into two types;avelband and broadband. Both tran-
sient and continuous noise can either be concentratedwatharrow frequency band or spread
over a wider bandwidth. As seen in Chapter 2, an electricitidution system is interconnected
in parallel at the circuit breaker panel and this permits delyi EMI propagation from a given
device throughout the electrical infrastructure.

85
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The novel approach of [21] focuses on devices that contaemmSMPS. Indeed, as explained
in [21], they generate noise that is synchronous to theirgg@aupply’s internal oscillator.

This type of appliances has a switching frequency that ismmigher than 60 Hz, typical SMPS
operate at tens to hundreds of kHz.

For example a compact fluorescent light bulb (CFL) is a detheégenerates continuous noise,
indeed a CFL's power supply employs the same fundament&tisiwg mechanism to generate
high voltages necessary to power the lamp. The switchingragenerates a large amount of
EMI centred in frequency around the switching frequency] [2ports the experiments that they
performed in the US where the Federal Communications CosiomgFCC) sets rules (47CFR
part 15/18 Consumer Emission Limits) for any device thainemts to the power line. This limit
is 66 dB. V for frequency range between 150 kHz to 500 kHz, which is lyed0 dBm across

a 50 Ohm load. The ElectricSense, that they have implemghgesda data acquisition system
sensitive enough to capture noise from -100 dBm to -10 dBmsac frequency range of 36kHz
- 500 kHz.

Our experiments are conducted in EU where the fundamemgléncy is 50 Hz (in the US is
60 Hz).

In the mid 1980s, the European Union member states also edl@nhumber of "new ap-
proach” directives with the intention of standardizingheical requirements for products so
that they do not become a barrier to trade within the EC. Ortbede was the EMC Directive
(89/336/EC)[23] and it applies to all equipment placed annarket or taken into service. Its
scope covers all apparatus "liable to cause electromagdetiurbance or the performance of
which is liable to be affected by such disturbance”.

In [21] the authors have shown that when a device is turnetieyngee a narrowband continuous
noise signature that lasts for the duration of the deviceération. The noise centre is strongest
in intensity and then extends to lower and higher frequeneith decaying intensity, which can
loosely be modelled with a Gaussian function having its nedhe switching frequency.

To perform the following analysis we evaluate the Power 8peDensity associated to voltage
signal with the aim of evaluate the components in all the eaofgrequencies.

6.3 Experimental set-up

We have tried different devices (reported in Tdblé 6.1) ia tifferent situations:

» Configuration 1: the same of Section 2 with a baseline naigngrom the existing net-
work;

» Configuration 2: an Ideal Generator of the voltage (ELGARNER CW2501) is used to
clean the voltage from high frequency components;

The second Configuration is applied to our experiments tsscane of the unclear point of the
approach of [21] was the dependence on the electrical nkivide wanted to test the system
in an ideal context to prove if the devices really introduea/migh frequency components or if
they act on the existing components.



Chapter 6. High Frequency Characterization 87

Device number Device name
Device 1 Laptopl
Device 2 Laptop2
Device 3 Laptop3
Device 4 CFL5W
Device 5 LED 4 W
Device 6 Water Kettle
Device 7 Radio
Device 8 TV
Device 9| Coffee Machine

Table 6.1: Devices considered for the experiments.

Since the variability of the baseline noise, in Configunatlg it is suggested to average the PSD
over time to obtain a stable baseline as we have also donalgsarour experiments. Indeed the
PSD is averaged with a window size of 25 (in both Configurati@mnd Configuration 2).

At the beginning the algorithm, implemented in Matlab, canes an average of 10 averaged
PSD and stores this as baseline noise. When the amplitudeeofrequency of the estimated
PSD differs from the baseline noise more than 6 dB it mearisahmew device is turned on.
Every time two different metrics are also analysed:

* Puirr(f) = 101og Posr — 1010g Poes = 1010g Posi/ Prey;
* Pairro(f) =10 (Past — Phey)-

6.4 Laptop

In this Section | focus on the charger of the laptop that igig&d in/out. In Configuration 1 the
first case that we analyse in this Section is: Laptop 1 (in ¥peement the Laptop is plugged in
and out).

In Fig.[6.1 the frequency spectrogram is reported (it dessrhow the power of the voltage is
distributed within the frequency range and its evolutioeraume).

From Fig.[6.1 it can be noticed that when the device is pluggatie amplitude of the PSD
increases for all the frequencies, in this way the algoritameasily detect the presence of a new
device.

The algorithm stores the new averaged PSD with the deviggphlliin (averaged over 10 PSD
also in this case).

The Gaussian component is estimated by using the PDF of as@audistribution is:

_-w?
2

Ae” 202 (6.1)
where:

* A: maximum amplitude of the component;
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» u: centre frequency, of the component;

o2 variance of the component that is calculated in the follmywivay:

h/2

P

—h/2

P(fo+h)) — A)? (6.2)

In the extraction of laptop’s features a valuehofqual to 50 seems to give a good approx-
imation.

By evaluating the difference as ih (6.3) it is possible tar&octt the features of the new signal
(characterization of the device). The feature extractiam loe carry out by the individuation of
the peak of the amplitude df_(6.3) and with the estimatiorhef Gaussian fit of the component
of the device. In Figl_6]2 PSD, both without any device andlite charger plugged in, are
reported and the following conclusions can be inferred:

» The charger amplifies the Gaussian component at 60 kHz.eihse¢o amplify both the
amplitude and the variance of this component. In Eig. 6.3ifference between the two
PSD ,estimated as [n 6.3, is reported and we can distinguiShussian slope as it is
rounded in the figure (red line) by following the procedurextiraction of the Gaussian fit
explained previously.

» The charger clears the track from 80 kHz to 160 kHz by deangabe amplitude of the
PSD.

The same trial has been performed with two different laptipis different charger to evaluate if
the laptops share the same behaviour for the frequency aoenp® The same kind of the figures
already explained for the Laptop 1 are reported in [Eig[6a5661,6.9.6.10.

It is interesting to underline how the most relevant compmoreedetected around the same centre
frequency. The data about the two wider componerit of (6 3h@three laptops are reported in
Table[6.4.

Laptopl| Laptop2| Laptop3
Amplitude fist component [dB] 12.3 7.3 10
Frequency first component [kHz] 60.8 59.3 60
Amplitude second component [dB] 6 -55 -7.1
Frequency second component [kHz] 68.8 99.8 99.8

The higher component of differende (6.3) remains quite t@orisn spite of the changing of the
laptop and of the charger. The second component, in casepibh@ and 3, remarks how
the laptop seems to clear the component at higher frequdiieysame component is found in
the analysis of Laptop 1 as third components in term of alis@mplitude. In Figi . 6.11 the
Frequency Spectrogram is reported in the case in which tlviog procedure is applied:

1. Nothing is on, the baseline noise of Configuration 1 is réed;
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Figure 6.1: Frequency spectrogram of an experiment with Laptop 1 in Qardition 1.
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Figure 6.2: Comparison between the background noise observed on acpkartipower line
(Configuration 1) and the noise observed when the Laptopurined on.



Chapter 6. High Frequency Characterization

91

Extraction of the features of the Laptopl
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Figure 6.3: Feature extraction. Extraction of the first relevant comgonof difference (613) in

the case of Laptop 1 (Configuration 1).
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Figure 6.4: Feature extraction. Extraction of the second relevant congmt of differencd (6l.3)

in the case of Laptop 1 (Configuration 1).
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Figure 6.5: Frequency spectrogram of an experiment with Laptop 2 in Qardition 1.
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Figure 6.6: Comparison between the background noise observed on acpktipower line
(Configuration 1) and the noise observed when the Laptop@ et on.
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Figure 6.7: Feature extraction. Extraction of the first relevant comgonof difference (613) in

the case of Laptop 2 (Configuration 1).
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Figure 6.9: Frequency spectrogram of an experiment with Laptop 3 in Qardition 1.
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Figure 6.10: Comparison between the background noise observed on aplatipower line
(Configuration 1) and the noise observed when the Laptopud et on.
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The Laptop 1 is turned on (at arouéslin the considered experiment);
The Laptop 2 is turned on (at aroudslin the considered experiment);
The Laptop 3 is turned on (at arouhts in the considered experiment);

The Laptop 3 is turned off (at arounds in the considered experiment);

o a0 k~ w N

The Laptop 2 is turned off (at arounds in the considered experiment);
7. The Laptop 1 is turned off (at arouds in the considered experiment);

With this experiment we want to see in which way the frequecmyponents sum up. The

X 104 PSD [dB/HZ]
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-140
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Figure 6.11: Frequency spectrogram (Configuration 1).

same experiment has been performed also by changing thedjrithe plugging of the different
laptops, the relevant aspect is that the effects of the Bimigodo not sum in a linear way. Indeed
in Fig.[6.12 if, for instance, we consider the main compopietfirst Laptop add this component
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Figure 6.12: Background noise observed on a particular power line (Camégon 1) without
laptops, with Laptop 1 on, both Laptop 1 and Laptop 2 on, Lpdtd.aptop 2 and Laptop 3 on.
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to the background but then, by switching on other laptops¢ctimponent is absorbed and reduce
in term of band (as if the laptop acts as narrow band filter)e $ame experiments (only one
laptop for each experiment) have been executed with thél@eaground to show the own high
frequency components of the devices. With the ideal volsmece we expected to find no
high frequency components, instead of this the backgronnddads on) shows a component
at about110kHz. The effect of the turning on of a generic laptop (Fig.3HFig.[6.14) is to
absorb this component. The laptops have not any more effesband60kHz as it happens
in Configuration 1. These last considerations lead us to@gthat the laptops have not own
frequency components but they act on the existing compenémt=ig.[6.15 the case in which,
first is switched on Laptop 1, then Lapton 2 is switched ordoffl finally Laptop 1 is switched
off, is reported to test again, but in an ideal context, hoewabmponents sum up. In Fig. 6115
the non linearity is clear but, at least, the effect of theédap seem to be always absorption of
the existing main component of the background.



98

Energy Disaggregation

x 10" PSD [dB/Hz] 0
4 -95
-100
6
{-105
T 8 1-110
X,
g {-115
$ 10
>
o {-120
L
12
-125
14 -130
-135
16
-140

Figure 6.13: Frequency spectrogram. Laptop 1 Configuration 2.
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Figure 6.14: Frequency spectrogram. Laptop 2 Configuration 2.
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Figure 6.15: Frequency spectrogram (Configuration 2).
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Figure 6.16: Background noise observed on a particular power line (Camfigon 2) without
laptops, with Laptop 1 on, both Laptop 1 and Laptop 2 on.
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6.5 Small Power Devices

We have tried different devices, the only ones with whiclacleatures have been extracted are
small power devices.

In particular, for instance, we have tried to switch on/offi2D Lamp with a real power of 4 W.
Fig.[6.1T shows the frequency spectrograph in Configurdtidfig.[6.18 reports the same ex-
periment performed in Configuration 2. Fig. 6.19 and b.2Wshile same types of experiments
executed to find the high frequency components of a CFL Lamp Wt Also Fig.[6.1P and
Fig.[6.20 show that CFL 5W introduces new high frequency camepts, in this case a distinct
trend can be recognize, indeed after the switching on a caemat around 50 kHz arises and
then this component gradually moves toward 40 kHz. A difiecase is represented by the CFL
Lamp of 14 W, indeed, as shown in Fig. 6.21, after the switgloim of the lamp we do not clearly
recognize new high frequency components. The lamp seenmérbmluces new components at
around 50 kHz but with a small amplitude.

6.6 Other devices

The small devices (Sectidn 6.5) seem to introduce high #egy components instead of only
absorbing the existing ones as the laptops. After theds tti@ have executed the same type of
experiments with other devices to prove if device, with a eoligher than 20 W, have own high
frequency characteristics.

In this Section | report only the spectrogram related to Gumétion 2 because with the Ideal
Background it is possible to underline the presence of nawelponents.

Fig.[6.22,6.28 and 6.24 depict the spectrogram associatédtetswitching on/off of a Coffee
Machine, a TV, a Radio.

In all these cases it is possible to recognize the switchimguad off (more difficult) but the
devices do not introduce new components. These resultstbladdevices absorbing high power
could not introduce new components but only act on the exjstomponents that depends on
the electrical network (not reliable approach).
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Figure 6.17: Frequency spectrogram of an experiment with LED 4 W in Cordigan 1.
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Figure 6.18: Frequency spectrogram of an experiment with LED 4 W in Cordigan 2.

Fig.[6.17 and Fid. 6.18 show as the LED Lamp really introdunes high frequency components.
This is testified from the presence in both Configurationsss¥ nomponents between 60 and 70
kHz. In Configuration 1 the lamp is switched on at arodsdnd is switched off at arounids,

in Configuration 2 the same round is executed betvZegand4.5 s. In these time intervals we
can clearly see the new high frequency components.
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Figure 6.19: Frequency spectrogram of an experiment with CFL 5 W in Cordigon 1.
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Figure 6.20: Frequency spectrogram of an experiment with CFL 5 W in Cordigun 2.
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Figure 6.21: Frequency spectrogram of an experiment with CFL Lamp of 14 @binfiguration
2.
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Figure 6.22: Frequency spectrogram of an experiment with a Coffee MacimrConfiguration
2.
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Figure 6.23: Frequency spectrogram of an experiment with a Philips TVanftguration 2.
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Figure 6.24: Frequency spectrogram of an experiment with a Radio in Cardigpn 2.
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Chapter 7

Conclusions and Future works

7.1 Conclusions

The proposed method describes a very simple technologytoda energy disaggregation.
Initial results show that this novel approach for energy aggament provides good performance
for loads characterized by large power and a simple tramsftiom off to on state (the event
detector depends on the long-term electric transient).

A definitive positive aspect is that, with this technologyadis with also reactive components
could be monitored by using only a single voltage sensor andialy resistive load.

In the positive aspects we need to cite again the lower co$f (be voltage probes) for imple-
mentation of the novel technology.

The conclusion of our investigation about high frequencynponents of the voltage signal
(Chaptet®b) are:

« from our analysis it seems that only devices with really bp@awver (4/5 W) (Section 6]5)
introduce high frequency components. The other devicas[211] analyses, seem only to
absorb the high frequency components of the house wiring.apipliance signature could
depend, in this way, on the socket of application of the allor, if the signature consists
on the absorption of components dependent from the houssgwir

* the appliance signature are different if more that oneaie{of the same type) are switched
on and this testifies the non linearity of this type of signatu

* modern appliances are not always equipped with SMPS;

* this type of approach anyway allows only the detection efappliances not the estimation
ot their power.

7.2 Future Works

Our method has as limitation the range of possible applsnoeeed , as it is indicated in the
Chapter 3, the method can not estimate loads with a real power than about 80/100 W.

107
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The final goal of a energy management should provide energytanmg of all the devices that
are present in households, the final solution should inchise devices with small power. A
future development could be the analysis of devices withllspoaver to understand if really
the approach [21] has no sense (Chapter 6). If additiondietwill give the same results of
Chaptef b it will be necessary to find another way to detectgp@onsumption of small devices.
Otherwise the final technology could include both the vatagethod and the high frequency
method for “small* devices. The second one will need to baildatabase of the appliances
for every new environment of application to associate th@gganominal consumption when a
device is detected (this approach can not estimate the pmwsumption).

Another problem that we have indicated in Chapter 3 and 4dsrtbtability that characterizes
the phase of the voltage signal. The implementation of a Bistesn is suggested to solve that
problem and test the system about the estimation of the @amalwer (not only real power).
For a practical implementation, in a domestic environmimther studies about the stability of
the voltage and the stability of the rafig/Z, are suggested.

As future development of the voltage technology it is alsggasted to implement a MIMO
system with a sensor for each electrical branch circuit. Sifs¢em should include more than one
electrical branch circuit and the algorithm should prowite disaggregation of the energy so the
analysis of the attenuation between different electricahbh circuits, in a generic environment,
iS necessary.
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