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2 List of acronyms 

AAA  Authentication, Authorization and Accounting: security architecture for 

distributed systems, which enables control of access to a service or a 

resource. 

AES   Advanced Encryption Standard: block cipher standardized by the US NIST in 

2001, based on the Rijndael cipher, with key size of 128, 192, or 256 bits. 

AH   Authentication Header: a protocol of the IPsec suite, provides connectionless 

integrity and data origin authentication for IP datagrams and optionally an 

anti-replay service. 

AKA   Authentication and Key Agreement: procedures for mutual authentication of 

the mobile station and serving system and session-key distribution in UMTS 

networks. 

ARP   Address Resolution Protocol: protocol used for resolution of network layer 

addresses into link layer addresses. 

ASCII   American Standard Code for Information Interchange: a character-encoding 

scheme. 

CBC   Cipher Block Chaining: mode of operation for block ciphers that provides 

confidentiality but not message integrity. Each block of plaintext is XORed 

with the previous ciphertext block before being encrypted. 

CL-PKC   CertificateLess Public-Key Cryptography. 

CPU   Central Processing Unit. 

CTR   CounTeR mode: mode of operation for block ciphers that turns a block cipher 

into a stream cipher. It generates the next keystream block by encrypting 

successive values of a "counter". 

DES   Data Encryption Standard: block cipher standardized by the FIPS in 1977, 

based on the Feistel cipher, with key size of 56 bits. 

DH   Diffie-Hellman: non-authenticated key agreement protocol, based on the 

discrete logarithm problem. 

DHE   Diffie-Hellman Ephemeral: mode of operation for the DH key exchange. 

DoS   Denial of Service: attacks that make a machine or network resource 

unavailable to its intended users. 

DSA   Digital Signature Algorithm: FIPS standard for digital signatures, is a variant 

of the ElGamal Signature Scheme, based on the discrete logarithm problem. 

DSS   Digital Signature Standard: FIPS standard for digital signature that uses the 

DSA. 

DTLS   Datagram Transport Layer Security: datagram oriented counterpart of TLS. 

DTMF   Dual-Tone MultiFrequency: technique for telecommunication signaling over 

analog telephone lines. 

ESP   Encapsulating Security Payload: a protocol of the IPsec suite, provide 

confidentiality, data origin authentication, connectionless integrity and an 

anti-replay service for IP packets. 

FIPS   Federal Information Processing Standard. 

GPU   Graphics Processing Unit. 
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HMAC   keyed-Hash Message Authentication Code: construction for calculating a MAC 

using a cryptographic hash function and a secret key. 

HTTP   HyperText Transfer Protocol. 

HTTPS   HTTP Secure: protocol for secure communication over HTTP. 

ICMP   Internet Control Message Protocol: part of the Internet Protocol Suite, 

designed for diagnostic or control purposes. 

IETF   Internet Engineering Task Force. 

IKE   Internet Key Exchange: protocol used to set up SA. 

ISP   Internet Service Provider. 

ITU   International Telecommunication Union. 

KGC   Key Generating Centre.  

MAC   Message Authentication Code: tag used to authenticate a message and to 

provide integrity and authenticity assurances. 

MAC   Media Access Control address: unique identifier assigned to network 

interfaces. 

MD5   Message-Digest Algorithm: cryptographic hash function that produces a 128 

bits hash value, designed by Rivest in 1991. 

MIME   Multipurpose Internet Mail Extensions: protocol for sending other kinds of 

information different from text, in email such as files containing images, 

sounds, videos. 

NIC   Network Interface Card. 

NIST   National Institute of Standards and Technology. 

OS   Operating System. 

PBX   Private Branch eXchange: telephone exchange that serve an office. 

PKI   Public-Key Infrastructure: a system for the creation, storage, distribution and 

revocation of digital certificates. 

POTS   Plain Old Telephone Service. 

PSTN   Public Switched Telephone Network. 

RADIUS   Remote Authentication Dial-In User Service: networking protocol that 

provides AAA management.  

RC4   Rivest Cipher 4: stream cipher designed by Rivest in 1987, with variable key-

length usually between 40 and 128 bits.  

RFC   Request For Comments: memorandum published by the IETF describing 

methods, protocols or standards applicable to the working of the Internet. 

RSA   Rivest Shamir Adleman: algorithm for public-key cryptography, based on the 

factoring large integers problem, proposed in 1977, with variable key-length 

usually between 1024 and 4096 bits.  

RTP   Real-time Transport Protocol: transport layer protocol designed for end-to-

end real-time data transfer. 

S/MIME   Secure Multipurpose Internet Mail Extensions. 

SA   Security Associations: shared security attributes between two network 

entities to support secure communication. 

SADB   Security Association DataBase. 

SAKA   Secure Authentication and Key Agreement. 



List of acronyms - 5 

SCTP   Stream Control Transmission Protocol: a transport layer protocol. 

SDP   Session Description Protocol: format for describing streaming media 

initialization parameters. 

SHA   Secure Hash Algorithm: family of cryptographic hash functions published by 

the NIST. According to the algorithm produces a 160-512 bits hash value. 

SIP   Session Initiation Protocol. 

SPD   Security Policy Database. 

SRTP   Secure Real-time Transport Protocol: secure counterpart of RTP, provide 

encryption, message authentication, integrity and replay protection to the 

RTP stream. 

SSL   Secure Sockets Layer: predecessor of TLS originally designed in 1995 by 

Netscape Communications. 

TACACS+   Terminal Access Controller Access-Control System Plus: networking protocol 

that provides AAA management.  

TCP   Transmission Control Protocol. 

TLS   Transport Layer Security: protocols that provide communication security 

over the Internet, first defined in 1999 and last updated in 2008. 

Triple DES   variant of DES that increase the key size to 168 bits applying three times DES 

to each data block. 

UA   User Agent. 

UAC   User Agent Client. 

UAS   User Agent Server. 

UDP   User Datagram Protocol. 

UMTS   Universal Mobile Telecommunications System. 

URI   Uniform Resource Identifier. 

VAS   Value-Added Service. 

VOIP   Voice Over IP.  
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3 Introduction 

When we think of the telephonic service we probably think of the traditional analogic 

telephonic service, the Plain Old Telephone Service (POTS), but in recent years service 

providers are changing their offers to a new kind of offer, the Voice Over IP (VOIP). This is 

a digital telephonic service whereby the voice is transported over a packet switched 

network based on the IP architecture, instead of the traditional system where the voice is 

transported in analogic mode over the Public Switched Telephone Network (PSTN), a 

circuit switched network. 

VOIP systems are based mainly on two protocols: H.323 and Session Initiation Protocol 

(SIP). The former is a recommendation from the International Telecommunication Union 

(ITU), while the latter is a standard proposed from the Internet Engineering Task Force 

(IETF). I will focus on SIP, because at the moment its popularity is continuously growing 

mainly as a result of its lesser complexity and better integration with the IP stack. 

The diffusion of the VOIP technology is rapidly increasing as a result of its many benefits, 

one of which is flexibility. With an inexpensive and small equipment, such as an old PC and 

a switch, it is possible to setup a Private Branch eXchange (PBX) and use many features 

that were once difficult to have with the traditional telephone service (such as pickup 

groups, conference calls, video calls, mobility of end-points). 

A very attractive feature of VOIP is the fact that it is cost-effective: with an internet data 

contract and an Internet Service Provider (ISP) it is possible to make free calls with other 

VOIP users; this is one of the main reason as to why VOIP software like SKYPE is so 

successful. In addition service providers are changing their offers from PSTN to VOIP, 

especially on the business environment, making it possible for call centers for instance to 

simply use an internet connection instead of using several telephone lines, providing the 

same quality of the traditional phone system. Also according to the telecommunications 

company point of view the benefits are huge: for example, in the above-mentioned case of 

the call center, the use of single data stream in place of various copper cables is an 

enormous advantage.  

However, there are also several disadvantages. In this thesis, I will focus on the security 

problem, more specifically on the security problem from the signaling point of view. The 

switch from POTS to VOIP creates many security concerns, mainly related to frauds and 

confidentiality/integrity of the voice transported. The biggest problem is that it is quite 

simple for an unauthorized person to make a call or impersonate someone else, because 

SIP can work without any kind of security. This thus makes it possible to perform several 

illegal actions such as intercepting calls, trying to defraud the service provider or even 

making calls using someone else's account. For this reason, SIP is equipped with various 

security mechanisms, but they have not often been used. In addition, many of the methods 

that have been used are outdated and are no longer considered sufficiently secure. 

3.1 Outline 
In chapter 4 I will present background information about SIP and IPsec and TLS. In chapter 

5 I will describe the security in SIP. In chapter 6 I will expose my test environments and the 

scope of the test performed, and finally in chapter 7 I will I report and analyze the result of 

the measurement.  
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4 Description of underlying protocols 

4.1 Session Initiation Protocol - SIP 

SIP is an application layer signaling protocol for multimedia communication. It is a text-

based protocol that has many elements in common with the Hypertext Transfer Protocol 

(HTTP), in which there is a request/response on text-based messages. Sip is used for the 

setup and the teardown of media session for example for audio or video calls. SIP only 

addresses the signaling part of the communication, while the audio/video traffic is carried 

over other protocol such as Real-time Transport Protocol (RTP) or its secure version, the 

Secure Real-time Transport Protocol (SRTP). For handling the media parameters, such as 

protocol or codecs, the Session Description Protocol (SDP) is used, which is carried in the 

SIP message bodies. 

Every user is identified by a Uniform Resource Identifier (URI) like 

sip:username@host:port. SIP can run over various transport protocol: User Datagram 

Protocol (UDP), Transmission Control Protocol (TCP), Stream Control Transmission 

Protocol (SCTP) and Transport Layer Security (TLS). Commonly the 5060 port is used for 

the non-encrypted SIP traffic and the 5061 is used for encrypted traffic that runs over TLS. 

SIP was first proposed as a standard with a Request For Comments (RFC) by the IETF in 

1999 with RFC 2543 and was redefined in a 2.0 version in 2002 in the RFC 3261 [2]. 

SIP uses a set of text messages, mainly being: 

 REGISTER: used by UAC to inform its current IP address of contact. 

 INVITE: used to setup a media session. 

 BYE: used to teardown a media session. 

 ACK: used to confirm a message. 

 CANCEL: used to delete a pending request. 

 

Below are the definitions of the responses families: 

 1xx – Provisional: request received, processing the request. Typical message is the 

100 – Trying, that was used by the proxy in response to an INVITE when forwarding 

the INVITE to another User Agent (UA). 

 2xx – Success: request received and accepted. Typical message is the 200 – OK, that 

the User Agent Client (UAC) of destination sent back to the sender when the user 

answered the call. 

 3xx – Redirection. 

 4xx – Client error: the request cannot be accepted by the server. Typical message is 

the 401 – Unauthorized, is used when an authorization is required in order to 

complete an action, such as an INVITE. 

 5xx – Server error: the server failed to fulfill an apparently valid request. 

 6xx – Global failure. 

 

 

 

 

sip:username@host:port
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Two SIP agents can communicate directly, in a peer-to-peer mode, but usually between 

them there are one or more network elements. Typical elements are: 

 Proxy Server: an intermediary server that receives request from User Agent Client 

(UAC) and makes request on behalf of them, the typical function performed are 

routing call from various domains. 

 Registrar: a server that manages the REGISTER messages and keeps track of the 

binding of SIP URI and the socket where the UAC can be contacted. 

 Redirect server: a server that generates 3xx responses to requests it receives, 

directing the client to contact an alternate set of URIs. 

 

They are distinct logical elements but they can be co-located on the same machine. 

4.2 IP security - IPsec 

IPsec, abbreviation of IP security, is specified in the RFC 4301 [3] and is a suite of 

cryptographic services that can provide confidentiality and/or integrity/authentication. 

It is composed of three main mechanisms: ESP, AH and IKE, that I will briefly describe. 

4.2.1 Encapsulating Security Payload - ESP 

Encapsulating Security Payload (ESP), defined in RFC 4303 [4], provide confidentiality, 

data origin authentication, connectionless integrity and an anti-replay service. The data 

encrypted and authenticated are showed in Figure 1. 

The services provided depend on the configuration. For example, it can provide integrity 

and data origin authentication only, or confidentiality only without integrity. Note that the 

previous one is not a good practice, and without a strong independent integrity mechanism 

can be insecure. The anti-replay services can only be used if the integrity service is used. 

The RFC prescribes that the confidentiality-only mode may be supported, while the 

integrity only and the confidentiality plus integrity mode must be supported. 

 

 
Figure 1: ESP in transport mode.  

4.2.2 Authentication Header - AH 

Authentication Header (AH), defined in RFC 4302 [5], provides connectionless integrity 

and data origin authentication for IP datagrams and optionally an anti-replay service. As 

showed in Figure 2, it can provide authentication for some fields of the IP header, as well as 
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for next level protocol data. It provides authentication only for some IP header fields 

because this may change in transit. 

Against the integrity service provided by the ESP the main difference is that ESP does not 

cover anything of the IP header, unless this is encapsulated in another IP packets, instead of 

the AH that cover some fields. 

 
Figure 2: AH in transport mode. 

4.2.3 Operational modes 

The ESP and AH protocols can work in opposition or can be used in composition; both can 

operate in two modes: 

 Transport: in this mode the ESP header or AH header are inserted between the 

original IP header and the payload, so that they protect only the next layer 

protocols. It is typically employed between a pair of hosts to provide end-to-end 

security services. It is the operational mode represented in Figure 1 and Figure 2. 

 Tunnel: in this mode the original IP packet is encapsulated in a new IP packet and 

the IPsec protects the whole original datagram. This mode is typically employed 

between a pair of intermediate hosts, such as security gateways, in order to provide 

security services between them. They are represented in Figure 3 and Figure 4. 

 

 
Figure 3: ESP in tunnel mode. 
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Figure 4: AH in tunnel mode. 

4.2.4 Internet Key Exchange - IKE 

Both ESP and AH operate based on requirements defined by a Security Policy Database 

(SPD), and make use of Security Associations (SA). An SA is a simplex connection that 

affords security services to the traffic carried by it. In order to secure bi-directional 

communication a pair of SAs is required, one in each direction. SAs are created and 

maintained by IKE.  

Internet Key Exchange (IKE), defined in RFC 5996 [6], performs mutual authentication 

between two parties and establishes an IKE security association that includes shared secret 

information that can be used to efficiently establish ESP or AH. After a couple of reviews, it 

has reached to version 2 in 2005, named IKEv2. Figure 5 shows an IKEv2 exchange. There 

are four kinds of exchanges defined, which are as follows: 

 IKE_SA_INIT: It performs three functions in the setup of the IKE-SA.  

 Negotiates security parameters for the IKE-SA. 

 Sends nonces. 

 Exchange Diffie-Hellman (DH) values. 

This is the first exchange that establishes the IKE-SA and must be completed before 

any further exchanges can take place. 

 IKE_AUTH: It performs three required functions:  

 Transmits identities. 

 Proves knowledge of the secrets related to those identities. 

 Establishes the first, and usually the only, AH and/or ESP CHILD-SA. 

This is the second exchange and must be completed before any further exchanges 

can take place. 

 CREATE_CHILD_SA: This is simply used to create additional CHILD-SAs as needed. 

 INFORMATIONAL: This is a maintenance exchange that performs a variety of 

functions to maintain the SAs. Some of these functions include:  

 Delete SAs as needed. 

 Report error conditions. 

 Check SA liveliness. 

 Other SA housekeeping functions. 
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Figure 5: IKEv2 exchange. 

4.2.5 Standard requirements 

The RFC 4301 prescribes for every kind of machine what protocols and operational modes 

must be supported. Requirements are summarized in Table 1, Table 2 and Table 3. In these 

and in all the following tables the keywords MUST, MUST NOT, SHOULD, SHOULD NOT, 

MAY are used and should be interpreted as described in RFC 2119 [1]. 

 

Requirement Protocol 
MUST ESP 
MAY AH 

Table 1: IPsec protocol requirements. 

Requirement Services 
MUST Confidentiality and integrity 
MAY Confidentiality only 

Table 2: Services requirements for ESP. 

Type of machine Requirement Operational mode 

Host 
MUST Tunnel 
MUST Transport 

Security gateway 
MUST Tunnel 
MAY Transport 

Table 3: IPsec operational modes requirements. 

The IPsec suites is designed to be independent from the underlying cryptographic 

algorithms, so it is possible to select various cryptographic suites or modify it without 

modifying the entire IPsec protocols. 
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At the moment of writing the cryptographic algorithms for ESP and AH are defined in RFC 

4835 [7]. The Table 4 show the algorithms that must be supported for the confidentiality in 

ESP.  

Requirement Algorithm 
MUST NULL 
MUST AES128-CBC 
MUST- TripleDES-CBC 
SHOULD AES-CTR 
SHOULD NOT DES-CBC 
Table 4: Encryption algorithms for ESP. 

The Table 5 show the algorithms that must be supported for the authentication and 

integrity in ESP and in AH. Note that the NULL authentication is suitable only for ESP. 

 

Requirement Algorithm 

MUST HMAC-SHA1-96 

SHOULD+ AES-XCBC-MAC-96 

MAY NULL 

MAY HMAC-MD5-96 
Table 5: Authentication algorithms for ESP and AH. 

4.3 Transport Layer Security - TLS 

The Transport Layer Security (TLS), descendant of the Secure Sockets Layer (SSL), is a 

cryptographic protocol that aims to provide privacy and data integrity between two 

applications. It operates on the top of a reliable transport protocol, normally TCP. The 

current release of the TLS protocol are the 1.2, described in the RFC 5246 [8]. 

Two layer composes the TLS: 

 TLS Record Protocol: is the lower layer, provides confidentiality and integrity of the 

message. It encapsulates the traffics of the higher-level protocols. 

 TLS Handshake Protocol: operates above TLS Record Protocol, provides mutual 

authentication and negotiate encryption algorithms and secret key before the 

connection setup. 

4.3.1 TLS cryptographic algorithms 

TLS makes use of public-key cryptography for the authentication, symmetric key 

cryptography for the encryption of the data flow, with key generated uniquely for any 

connections, and keyed Message Authentication Code (MAC) for the integrity, they are 

summarized in Table 6. 
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Service Algorithm 

Encryption 

AES256-CBC 

AES128-CBC 

3DES-EDE-CBC 

RC4-128 

NULL 

Integrity 

HMAC-SHA256 

HMAC-SHA1 

HMAC-MD5 

NULL 

Authentication/key exchange 

RSA 

DH-DSS 

DH-RSA 

DHE-DSS 

DHE-RSA 

DH-anon 

NULL 
Table 6: TLS cipher suites. 

4.3.2 Description of TLS handshake 

The TLS handshake is composed by a set of messages exchanged by the client and the 

server. The sequence of the exchange is: 

 The client sends a ClientHello message with a list of the supported cipher suites, 

random number, the supported TLS versions and the compression methods. 

 The server sends a ServerHello message with the TLS version, a random number, 

the cipher suite and a compression method chosen from the client’s list. 

 The server may sends its own certificate, depending on the cipher suite. 

 The server may send a certificate request and a server key to the client. 

 The server sends a ServerHelloDone message. 

 The client, if requested, sends its own certificate. 

 The client sends a key depending on the cipher selected, and then begins computing 

the master secret. 

 The client sends a CertificateVerify message which is a signature of the previous 

message using the client’s certificate. 

 The client sends the ChangeCipherSpec message informing the server that 

encryption and authentication starts. 

 The client sends its Finished message, which the server decrypts and verifies. If the 

verification fails the handshake is considered failed. 

 The server sends a ChangeCipherSpec message informing the client that encryption 

and authentication starts.. 

 The server sends a Finished message, which the client decrypts and verifies, after 

that, if the verification is successful the handshake ends. 
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Figure 6: TLS handshake. 
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5 Security provisions in SIP 

As previously mentioned, SIP is a protocol that make it possible to create media-session 

between endpoint, even though it only cares about the signaling part of the session. The 

actual multimedia data flow can be transported in several ways, independent from SIP. For 

these reasons, the RFC 3261 defines a set of security mechanism for protecting only the 

signaling layer of SIP sessions, for the media layer there are many possibilities, like using 

the secure version of RTP, the SRTP. In the next session, I will expose the security 

mechanism that can be used for the signaling level, divided in those that are prescribed by 

the standard of SIP and those that have been proposed in literature. After that, I will 

present what the main vulnerabilities of SIP are and of the presented solutions, explaining 

in detail why I have focused on the signaling plain. 

5.1 Mandatory mechanisms 

The following is a list and a description of the security mechanisms that are described in 

the RFC of SIP. 

5.1.1 Application layer security approach 

5.1.1.1 HTTP digest authentication 

The first, and more basic, mechanism supported from SIP is derived from the HTTP 

Authentication, described in RFC 2617 [9], and is a stateless challenge-based mechanism. 

The use of basic scheme is deprecated; SIP provides only the use of HTTP Digest 

authentication scheme. 

When a User Agent Server (UAS) receives a request can use the 401 - UNAUTHORIZED 

response to challenge the UAC, containing a WWW-Authenticate header, that indicates the 

authentication scheme and the parameters of at least one challenge, like the realm and the 

nonce. An example, taken from the RFC, is the following: 

WWW-Authenticate: Digest 

realm="biloxi.com", 

qop="auth,auth-int", 

nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093", 

opaque="5ccc069c403ebaf9f0171e9517f40e41" 

 

The client response to the challenge resending the request including in it an authorization 

header, like: 

Authorization: Digest username="bob", 

realm="biloxi.com", 

nonce="dcd98b7102dd2f0e8b11d0f600bfb0c093", 

uri="sip:bob@biloxi.com", 

qop=auth, 

nc=00000001, 

cnonce="0a4f113b", 

response="6629fae49393a05397450978507c4ef1", 

opaque="5ccc069c403ebaf9f0171e9517f40e41" 
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The realm is a string to indicate to the client what host/service are requiring and 

processing the authentication. 

The response string is calculated as follows: 

response = <"> < KD ( H(A1), unq(nonce-value) 

":" nc-value 

":" unq(cnonce-value) 

":" unq(qop-value) 

":" H(A2) 

) <"> 

Where: 

 A1 = unq(username-value) ":" unq(realm-value) ":" passwd 

 A2 = Method ":" digest-uri-value 

And: 

 KD(secret, data) = the string obtained by applying the digest algorithm to the data 

"data" with secret "secret" 

 H(data) = the string obtained by applying the checksum algorithm to the data data" 

 unq(X) = the value of the quoted-string X without the surrounding quotes 

When using MD5 as digest they became: 

 KD(secret, data) = H(concat(secret, ":", data)) 

 H(data) = MD5(data) 

 

The call-flow of an unauthorized REGISTER request is shown in Figure 7, instead Figure 8 

show the call-flow when using digest authorization. 

 

 
Figure 7: unauthenticated call-flow for a REGISTER request. 

 
Figure 8: authenticated call-flow for a REGISTER request. 
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It is possible to see that HTTP digest authentication introduce a high overhead, requiring 

the retransmission of some messages. For example, this means doubling the number of 

messages required for the management of a REGISTER. 

For the RFC proxy servers, redirect servers, registrars, and UAs must implement Digest 

Authorization. 

5.1.1.2 Secure Multipurpose Internet Mail Extensions - S/MIME 

For the correct working SIP needs that some field of any message, like the Request-URI or 

the Route header, to be visible to the intermediate nodes, and also these intermediates 

nodes should be able to modify the message, like inserting a Via header. This is related to 

the routing and accounting features. However it is possible to encapsulate the original SIP 

packet into a Multipurpose Internet Mail Extensions (MIME) body that will be secured with 

Secure MIME (S/MIME, defined in version 3.2 in RFC 5751 [10]). Thus, the original packet 

is protected and authenticated end-to-end, but this does not provide any security 

advantage to the network layer, because it does not have access to the S/MIME body. Thus, 

this mechanism must be used in combination with some other security services. 

S/MIME provides confidentiality through encryption and provide authentication, message 

integrity, and non-repudiation with proof of origin by using digital signatures. 

The standard specify the use of the algorithms reported in Table 7 for the digital signature 

of the message and those reported in Table 9 for encryption. In Table 8 is reported the key-

length requirements for the public-key operations. We can see that it makes use of secure 

and well-known algorithms. 

 

Requirement Algorithm 

MUST RSA with SHA256 

SHOULD+ DSA with SHA256 

SHOULD+ RSASSA-PSS with SHA256 

SHOULD- RSA with SHA1 

SHOULD- DSA with SHA1 

SHOULD- RSA with MD5 
Table 7: Digital signature algorithms for S/MIME. 

Key-length Algorithm 

MUST 1024 ≤ 𝑙 ≤ 2048 

MAY 𝑙 < 1024 

MAY 𝑙 > 2048 
Table 8: Key-length requirement for public-key operation in S/MIME, in bits. 

Requirement Algorithm 

MUST AES128-CBC 

SHOULD+ AES192-CBC 

SHOULD- 3DES 
Table 9: Encryption algorithms for S/MIME. 
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The main advantage is that encapsulating the payload S/MIME can provide confidentiality 

and digital signature end-to-end between host, that other methods cannot provide. 

However, the advantages can also be a disadvantage, because encapsulating the original 

packets in the actual one means overhead, doubling up the dimension of the message. This 

overhead can be negligible if seen from the clients side, but it would double the bandwidth 

usage on the proxy side. However, the main disadvantage is related to the usage of digital 

signature, which requires a large-scale Public-Key Infrastructure (PKI) that permits clients 

to verify the original message, also when the original sender is part of another domain. 

Again, for RFC UAs could support the signing and encrypting of MIME bodies, and 

transference of credentials with S/MIME. 

It is noteworthy that, quoting the RFC, “future security extensions may upgrade the 

normative strength associated with S/MIME as S/MIME implementations appear”. This has 

been written in 2002, and until now very few SIP software that support S/MIME have been 

released.  

5.1.2 Lower layer security approach 

Encrypting end-to-end a message is not a good solution, because it cannot be routed to 

destination, like mentioned above. For this reason, a SIP message cannot be encrypted end-

to-end, but it must be encrypted on a hop-by-hop basis. This implies that there must be a 

chain of trust between the sender and the receiver. For this motivation, the SIP RFC 

encourage using security mechanism at lower level. More precisely the RFC 3261 

encourage using security mechanism at network or transporting layer, like IPsec and TLS. 

It suggests the use of IPsec when there are pre-shared keying relationship or when an 

association between the hosts can be setup, instead TLS is suggested when there are no 

pre-existing trust associations. 

The RFC does not specify any profile to be used in IPSEC, instead for the TLS set the 

requirements listed in Table 10, where the first is the minimum requirement and the 

second is for compatibility; in addition to these, any other TLS cipher suite can be used.  

 

Requirement Algorithm 

MUST TLS_RSA_WITH_AES_128_CBC_SHA 

SHOULD TLS_RSA_WITH_3DES_EDE_CBC_SHA 

MAY Any other 
Table 10: Cipher suites requirements for TLS in SIP. 

For the RFC the requirements are that proxy servers, redirect servers, and registrars must 

implement TLS, and must support both mutual and one-way authentication, in addition it is 

strongly recommended that UAs are capable initiating TLS. 

Proxy servers, redirect servers, registrars, and UAs could also implement IPsec or other 

lower-layer security protocols.  
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5.1.3 SIPS URI 

Both IPsec and TLS must be used in a hop-by-hop basis, so a host has the certainty of the 

method used only in the first hop, but does not have any assurance of the complete path. 

For allowing the host to have control, an equivalent of the HTTPS URI scheme has to be 

introduced, named SIPS URI scheme. 

When used as the Request-URI, each hop over which the request is forwarded, until the 

request reaches the SIP entity responsible for the domain portion of the Request-URI, must 

be secured with TLS. Once it reaches the domain in question it is handled in accordance 

with local security and routing policy. It is however possible to use TLS for any last hop to a 

UAS. 

All SIP elements that support TLS must also support the SIPS URI scheme. 

5.2 Proposed mechanisms 

Beyond the mechanism discussed there are many other methods proposed but not 

standardized yet, or not incorporated into the standard of SIP yet. These mechanisms can 

have some advantages, but at the moment they are not used. In the following section, I will 

present three different approaches to the problem, to give an idea of what the futures 

developments could be.  

5.2.1 Datagram Transport Layer Security - DTLS 

The RFC 6347 [11] defines the Datagram Transport Layer Security (DTLS) 1.2 standard. It 

is a derivation of TLS protocol, which does not require reliable transport level, so it can run 

over datagram transport protocols like UDP. The reason as to why TLS cannot operate over 

an unreliable transport layer is because TLS does not allow independent decryption of 

individual records because if a record was lost the decryption of the next record will fail; 

moreover, the handshake layer is designed assuming that the handshake messages are 

delivered reliably, and breaks if those messages are lost. The changes introduced in DTLS 

from TLS are mainly for solve these problems. 

The advantages of DTLS is that operating over UDP the transmission requires much less 

overhead, and therefore has a lower performance impact. Furthermore, it is suitable for 

real-time traffics, like other unreliable transport protocols, and it is also proposed to 

transport media streams, so if adopted for the media path it can also be easily used for the 

signaling level. Instead, the main disadvantages of DTLS is that it is more suitable than TLS 

to DoS attacks. The RFC describes a mechanism for protecting the system from this kind of 

attacks, but leaves to the implementers the choice to implement. 

5.2.2 HTTP digest authentication with Authentication and Key Agreement 

In 2002, Niemi, Arkko and Torvinen, with the RFC 3310 [12] proposed the use of the 

Authentication and Key Agreement (AKA) protocols within the HTTP Digest authentication. 

The AKA is a challenge-response based mechanism that uses symmetric cryptography, that 

performs user authentication and session-key distribution in Universal Mobile 

Telecommunications System (UMTS) networks. It is typically run in a UMTS IM Services 

Identity Module (ISIM), which resides on a smart card like device that also provides tamper 

resistant storage of shared secrets. 
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The RFC maps the AKA parameters onto HTTP Digest authentication, enabling the usage of 

AKA as a one-time password generation mechanism for Digest authentication. Moreover, 

because the SIP Authentication closely follows the HTTP Authentication, Digest AKA is 

directly applicable to SIP. 

If a password is chosen by a user, or must be memorized and typed by a user, it must be 

“simple”, like 8-10 printable characters maximum and usually this is not truly random, 

making simple the offline password guessing described in 5.4.2. If the cryptographic secret 

is stored safely in a memory, it can be more complex and more random. This implies that 

the HTTP digest with AKA could require more trials to guess the correct password, and 

therefore makes the dictionary attacks ineffective. 

Moreover, this scheme introduce a mechanism whereby a server may allow each nonce 

value to be used only once by sending a next-nonce directive in the Authentication-Info 

header field of every response and tracking the request using a SQN sequence number, 

protecting the system from replay-attacks. This also protects the client, as he is able to 

detect an old request that has been resent from an attacker. 

Furthermore, the AKA is able to generate additional session-keys for integrity and 

confidentiality protection that can be used for some other security mechanism, for example 

for securing the media stream. 

The main disadvantage of this scheme is that it requires every host on which the AKA must 

be performed to have a SIM. This is a strong requirement, but now the diffusion of 

smartphone that can run VOIP services is in a phase of strong growth and customers are 

also getting used to the idea of internet keys. Thus the diffusion of a method like this should 

not be seen as a problem but rather an opportunity to increase the number of mobile 

subscribers, perhaps selling traditional-mobile integrated phone services. 

A note is that, like the original HTTP digest authentication, it relies on a MD5 digest. This 

solution should be replaced by other stronger digest algorithm like a SHA2 digest, because 

as we will see later, the differences in performance are not dramatically high but it could 

greatly improve the security for two reasons: one is that the digest algorithm is more 

robust, and the second one is that they produces longer digest.  

5.2.3 Certificateless public-key cryptography 

In [13] Wang and Zhang proposed a new mechanism named Secure Authentication and Key 

Agreement (SAKA), based on CertificateLess Public-Key Cryptography (CL-PKC) that was 

originally proposed by Al-Riyami and Paterson in [14] . CL-PKC is an intermediate solution 

between ID based PKC and traditional PKC, which otherwise ID-PKC does not suffer from 

the key escrow problem. The operation of a CL-PKC is based on the idea that, using a 

different construction of the public/private key, the key of an entity can be verified without 

a certificate. For the key generation, CL-PKC makes use of a Key Generating Centre (KGC) 

that computes from the identifiers IDA of the entity A a partial private-key DA. A combines 

DA whit some secrets to generate the private-key SA, and combining it to public parameters 

provided by the KGC, compute the public-key PA. This way the private-key is available to A 

only, and the public-key is not computable by any other entity. To verify a signature it is 

only needed the knowing of PA and IDA only.  
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5.2.3.1 Details of cerfiticateless public-key cryptography 

Al-Riyami and Paterson in [14] explain in detail the operation of a certificateless public-key 

system, that I summarized in the following. 

In the following, 𝔾1 denotes an additive group of prime order 𝑞 and 𝔾2 a multiplicative 

group of the same order. We let 𝑃 denote a generator of 𝔾1. A pairing is a map 𝑒 ∶  𝔾1 ×

 𝔾1 →  𝔾2 with the following properties:  

 The map 𝑒 is bilinear: given 𝑄, 𝑊, 𝑍 ∈  𝔾1, we have 𝑒(𝑄, 𝑊 + 𝑍) = 𝑒(𝑄, 𝑊) ∙ 𝑒(𝑄, 𝑍) 

and 𝑒(𝑄 + 𝑊, 𝑍) = 𝑒(𝑄, 𝑍) ∙ 𝑒(𝑊, 𝑍) 

 The map 𝑒 is non-degenerate: 𝑒(𝑃, 𝑃) ≠ 1𝔾2
 

 The map 𝑒 is efficiently computable. 

The Bi-linear Diffie-Hellman Problem in 〈𝔾1, 𝔾2, 𝑒〉 is as follows: Given 〈𝑃, 𝑎𝑃, 𝑏𝑃, 𝑐𝑃〉 with 

uniformly random choices of 𝑎, 𝑏, 𝑐 ∈ ℤ𝑞
∗  , compute 𝑒(𝑄, 𝑍)𝑎𝑏𝑐 ∈ 𝔾2. 

Description of the scheme: 

 Setup: 

Choose an arbitrary generator 𝑃 ∈ 𝔾1. Select a master-key 𝑠 uniformly at random from 

ℤ𝑞
∗  and set 𝑃0 = 𝑠𝑃. Choose cryptographic hash functions: 

𝐻1: {0,1}∗  →  𝔾1
∗ , 𝐻2: 𝔾2  →  {0,1}𝑛 , 𝐻3: {0,1}𝑛 × {0,1}𝑛  →  ℤ𝑞

∗  and 𝐻4: {0,1}𝑛  →  {0,1}𝑛 .  

Where 𝑛 will be the bit-length of plaintexts.  

The system parameters are params= 〈𝔾1, 𝔾2, 𝑒, 𝑛, 𝑃, 𝑃0, 𝐻1, 𝐻2, 𝐻3, 𝐻4〉, the master-key is 

𝑠 ∈ ℤ𝑞
∗  and message space is ℳ = {0,1}𝑛 , the ciphertext space is 𝒞 = 𝔾1 × {0,1}𝑛 . 

 Partial-Private-Key-Extract:  

This algorithm takes as input an identifier 𝐼𝐷𝐴 ∈ {0,1}∗ and carries out the following 

steps to construct the partial private-key for entity 𝐴 with identifier 𝐼𝐷𝐴: 

 Compute 𝑄𝐴 =  𝐻1(𝐼𝐷𝐴) ∈  𝔾1
∗ . 

 Output the partial private-key 𝐷𝐴 = 𝑠𝑄𝐴 ∈  𝔾1
∗ . 

 Set-Secret-Value: 

This algorithm takes as inputs params and an entity 𝐴's identifier 𝐼𝐷𝐴 as inputs. It 

selects 𝑥𝐴  ∈ ℤ𝑞
∗  at random and outputs 𝑥𝐴 as 𝐴's secret value. 

 Set-Private-Key:  

This algorithm takes as inputs params, an entity 𝐴's partial private-key 𝐷𝐴 and 𝐴's 

secret value 𝑥𝐴 ∈ ℤ𝑞
∗ . It transforms partial private-key 𝐷𝐴 to private-key 𝑆𝐴 by computing 

𝑆𝐴 = 𝑥𝐴𝐷𝐴 = 𝑥𝐴𝑠𝑄𝐴 ∈ 𝔾1
∗ . 

 Set-Public-Key:  

This algorithm takes params and entity 𝐴's secret value 𝑥𝐴 ∈ ℤ𝑞
∗  as inputs and 

constructs 𝐴's public-key as 𝑃𝐴 = 〈𝑋𝐴, 𝑌𝐴〉 where 𝑋𝐴 = 𝑥𝐴𝑃 and 𝑌𝐴 = 𝑥𝐴𝑃0 =  𝑥𝐴𝑠𝑃. 

 Encrypt 

To encrypt 𝑀 ∈ ℳ for entity 𝐴 with identifier 𝐼𝐷𝐴 ∈ {0,1}∗ and public-key 𝑃𝐴 =  〈𝑋𝐴, 𝑌𝐴〉, 

perform the following steps: 

 Check that 𝑋𝐴, 𝑌𝐴𝜖 𝔾1
∗  and that the equality 𝑒(𝑋𝐴, 𝑃0) = 𝑒(𝑌𝐴, 𝑃) holds. If not abort 

encryption. 

 Compute 𝑄𝐴 = 𝐻1(𝐼𝐷𝐴) 𝜖 𝔾1
∗ . 

 Choose a random 𝜎 𝜖 {0,1}𝑛. 

 Set  𝑟 = 𝐻3(𝜎, 𝑀).  
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 Compute and output: 𝐶 = 〈𝑟𝑃, 𝜎 ⨁ 𝐻2(𝑒(𝑄𝐴, 𝑌𝐴)𝑟) , 𝑀⨁𝐻4(𝜎)〉. 

 Decrypt 

Suppose the ciphertext 𝐶 = 〈𝑈, 𝑉, 𝑊〉  ∈ 𝒞. To decrypt this ciphertext using the private-

key 𝑆𝐴: 

 Compute 𝜎′ = 𝑉 ⨁ 𝐻2(𝑒(𝑆𝐴, 𝑈)). 

 Compute 𝑀′ = 𝑊 ⨁ 𝐻4(𝜎′). 

 Set 𝑟′ = 𝐻3(𝜎′, 𝑀′) and test if 𝑈 = 𝑟′𝑃. If not and reject C. 

 Output 𝑀′ as the decryption of 𝐶. 

5.2.3.2 Application of cerfiticateless public-key cryptography to SIP 

Going back to the application on SIP, in [13] the authors prove the security of the scheme, 

that result provably secure in the CK security model and provides mutual authentication, 

perfect forward secrecy and key confirm. The scheme proposed makes use of the challenge 

response handshake of the digest authentication, so it can operate on systems that follows 

the RFC 2617 directive. The handshake for a request like an INVITE is represented in 

Figure 9. 

 
Figure 9: SAKA. 

As showed, the handshake allows mutual authentication and it provides a key agreement 

using a Bilinear Diffie-Hellman procedure. If the request is like a REGISTER, that does not 

require the agreement of a session-key, then the computes and the exchange of the keying 

materials 𝑇𝐴 and 𝑇𝐵 can be omitted. Note that the nonce is defined like function of the realm 

and time, and can be used only once, therefore further protecting from replay attacks. 

The authors have suggested that every SIP domain has its own KGC, this way they strictly 

bind the generation of a partial private-key only to known peers. They also assume that the 

distribution of these key in an intra-domain scenario take places in a secure manner. 
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This mechanism has the advantages of taking the benefits of public-key cryptography, 

without the drawback of a large-scale public-key infrastructure. Additionally, it does not 

need a pre-shared key associations between client and server, or between host in peer-to-

peer mode. Instead, the disadvantage is that it requires a completely new infrastructure: 

every SIP domain needs its own KGC, and software or hardware must implement this new 

scheme, so it could be difficult for a large-scale adoption in the near future. 

5.3 Implemented mechanisms 

The commonly used security mechanism used for securing the signaling level of SIP is the 

HTTP digest authentication. It can be used in a standalone version or used in combination 

with some Authentication Authorization and Accounting (AAA) protocols; such as Remote 

Authentication Dial-In User Service (RADIUS) or Terminal Access Controller Access-

Control System Plus (TACACS+). If used in combination with AAA service, the benefits are 

that the shared secret are stored in another machine rather than SIP proxy, usually not 

accessible from internet but only from the local domain. This mechanism is often the one 

used by the service providers. 

For the transport and network layer solutions, both TLS and IPsec is widely supported. 

In addition, also the network elements commonly supports both IPsec and TLS. For 

example the Acme Packet’s Net-Net 4500, a service provider class SIP router, supports up 

to 200000 IPsec tunnels or up to 200000 TLS session with hardware acceleration [15]. 

5.4 Threats and known vulnerabilities 

The SIP protocol is exposed to huge number of attacks; the more common threats are 

registration hijacking, tampering messages and Denial of Service (DoS). 

The media traffic is affected by some particular security problems not covered by this 

thesis, but several security issues that affect the media streams are related to the SIP 

signaling. For example, if the SIP INVITE message, that carries the RTP socket in which the 

client is listening in the SDP payload, is not authenticated an attacker could intercept the 

INVITE and modify the RTP socket putting a new socket over he is listening. So the called 

host sends his media traffics directly to the attackers, that can rely the flow to the original 

sender, making a man in the middle attacks. 

5.4.1 Main attacks 

 Impersonating someone else: an attacker can try to use the identity of another client 

or can try to operate like a server, identifying itself like the wanted entity, and 

without a strong authentication mechanism a user cannot notice it. 

 Registration hijacking: an enemy can try to use valid credential of another use for 

making calls and putting it in the account of another user or may even try to receive 

the calls that are directed to another user. Moreover, it is possible to de-register a 

valid user from a server, leaving it without the service. 

 Closing session: an adversary can forge request like CANCEL or BYE and cancel the 

processing of the REQUEST of a legitimate user or tear down a valid session 

successfully established. Even in this case the user cannot use the service.  
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 DoS: an opponent can try to render a network machine unavailable to its user. 

Usually this is made overloading a server with request. SIP is very sensitive to this 

kind of attacks because of its nature it is normally exposed to internet and there are 

some particular elements of SIP that can be used against SIP itself. For example if an 

attacker is able to spoof some field of a request, like the VIA or Record-Route, it can 

redirect the valid traffic generated by normal UAs to a particular machine. Or it can 

also try to change the registration of a huge amount of user in a registrar server, 

pointing all to the target’s address. All the messages directed to the user will be 

redirected to target, amplifying the attacks. 

 Eavesdrop: an attacker can try to eavesdrop the media flow between the endpoints, 

this can give him access to confidential information, that could be something that 

the user said or other kinds of media that the user has exchanged, for instance, text, 

image or maybe Dual-Tone MultiFrequency (DTMF) that could carry personal 

information, like the credit card number. 

 Call redirection: an opponent can try to redirect a legitimate call to a different URI 

from the intended one, this way he can try impersonate someone or can simply 

route a call to a Value-Added Service (VAS), and make a fraud. 

 

In Table 11, taken from [16], Butcher et al. have summarized the various potential attacks 

to a VOIP system, it is possible to see that they are related to different levels and have 

different purposes. For example, an ICMP flood has the only scope of disturbing the normal 

service behavior, leaving some users without service, creating a kind of DoS attack. Instead, 

a registration hijacking can have many objectives, attacking also the confidentiality and the 

integrity of the messages. Table 12 shows the possible security mechanisms that can be 

used to protect from various attacks.   

Many of the problems reported are common in all IT scenarios, such as the MAC spoofing 

that is an attack related to the Ethernet protocol suite, and it affects VOIP only because SIP 

operates above it. The reason as to why I focused on the security of the signaling plane of 

the SIP protocol, is because as shown in Table 12, securing the signaling plane of SIP makes 

it possible to protect the system from a wide spread of attacks. Furthermore, I consider 

that many other mechanism, such as OS protection, physical access control or the firewall 

configuration are just good practice in security. 

Another consideration that I have made is that on the traditional phone system, the PSTN, 

there is no protection to the voice traffic, but there is only an intrinsic security for the 

signaling data, due to the physical copper line and the number associated to them. This is 

because on the PSTN network in order to make a call impersonating someone else or 

charging the call to another user, one must have access to the physical cable. This does not 

happen anymore when using VOIP and anyone, from any place in the world, with an 

internet connection can try to make free calls or even worse frauds. For this reason I think 

that the first step that has to be made, in the switch to a VOIP system, is to introduce a 

security mechanism for the signaling plane and only after that securing also the media 

traffic. 
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Instead, the decision to analyze the behavior of standardized and implemented 

mechanisms is due to the desire to give a concrete solution to the problem, with what that 

is already in commerce, so that it can be implemented today. Describing the proposed 

mechanisms, instead, I want to give an overview of what the future developments could be. 

 

Layer Attack Mechanism Confidentiality Integrity Availability 

Physical Physical attack X  x 

Data link 
ARP cache poison X X X 

MAC spoofing X X X 

Network 
Device IP spoofing X X X 

Malformed packets   X 

Transport 
TCP or UDP floods   X 

TCP or UDP replay X X  

Application 

TFTP server insertion  X  

DHCP starvation   X 

ICMP floods   X 

Buffer overflow X X X 

Operating system X X X 

Viruses and malware X X X 

Database attacks X X  

SIP 

Registration hijacking X X X 

Message modification X X  

Cancel/bye attack   X 

Malformed command   X 

Redirect X  X 

RTP 
RTP payload   X 

RTP tampering X X X 
Table 11: Potential attacks to a VOIP system. 
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Physical access 
control 

X                   

Dynamic ARP 
Inspection  

 X                  

OS protection           X X X       
Port 
authentication 

 X X X X X X X X X X   X X X X X X 

Router 
configuration 

   X      X          

Firewall 
configuration 

    X X              

Separate VOIP 
and data traffic 

 X X X X X X X X X X X   X X X X X 

Configuration 
authentication 

       X            

Signaling 
authentication 

      X       X X X X X  

Media 
encryption 

      X            X 

Table 12: Security mechanisms. 

5.4.2 Weakness of HTTP Digest Authentication 

I would like to begin this section quoting the RFC 2617, the one that defines the HTTP 

digest authentication, which says “By modern cryptographic standards digest 

authentication is weak.”  

There are two main security issues: the replay attacks and a cryptographic weakness. The 

first problem is that an eavesdropper that intercept a message can try to resend the 

message after some time to the destination. This could be a problem if the message is for 

example an INVITE because it setup an unwanted call. In order to protect the system from 

this type of attacks the server can implement some particular structures of the nonce. For 

example, some implementations may be willing to accept the server overhead of one-time 

nonces to eliminate the possibility of replay, or can use nonce-count, that is a count of the 

number of request, like retransmission, for that a client uses the same nonce. 



Security provisions in SIP - 29 

Another problem is that if an attacker eavesdrops a request that contain a challenge-

response, he knows the response, and username, nonce, realm and URI-request. Therefore, 

it can compute the response guessing the password and if the digest is equal to the one 

contained in the response he will have found the user password. 

In recent years, it has been possible to use the computational power of the GPUs for highly 

parallelized process, with an enormous advantage over running the same process on a 

traditional CPU. It is the case of trying all possible password. In December 2010, Marc 

Bevand released a tool for cracking an MD5 password, at the speed of 33.1 billion password 

per second on a 2700 $ PC with 4 ATI HD 5970 (dual GPU) [17]. If modified to be usable on 

HTTP digest authentication, the author estimated a speed of about 2 billion password per 

second, due to the fact that one check requires the computation of two hashes, one inner an 

one outer. Moreover, for Moore’s law the performance of the actual PC in these two years 

should be about doubled, and in addition the software could be optimized, so it is 

reasonable to believe that at a similar price it is possible to check about 4 or more billion 

password per second. This means that a true random 6 characters alphanumeric password 

could be exhaustive searched in about 15 seconds, that grows to 180 seconds if considering 

all the 95 printable ASCII characters. This estimation is made thinking of the silliest attacks, 

that try all possible combinations, but the actual time could be much lower if most 

sophisticated attacks are used, such as dictionary based attack. This off-line guessing of the 

password becomes not feasible if longer and more random password are used. 

I would like to point out that this esteem is based on a single high-end PC, but nothing 

prevents it to run on a cluster of PC or on a cloud based server, however there must be a 

tradeoff between the cost of the machine and the revenue of attack. 

It is noteworthy that this kind of attack requires that the enemy to eavesdrop a request 

containing the authenticate header, and that this header is removed from the message once 

it has been authorized by the server that has challenged the host. Thus, the attacker needs 

to eavesdrop the request in the first hop, the one between the user and the proxy server, 

and this could not be easy, especially if the user is directly connected to the service 

provider. 

5.4.3 IPsec and TLS 

The IPsec does not have any real flaws itself, but there are various concerns regarding the 

implementation of the standard. This is because it is a complex standard, that defines two 

protocols (ESP and AH) for protecting the data, that can work in two mode of operation 

(tunnel and transport), with many options and many degrees of freedom. This leaves the 

implementers the possibility of choice as of weather to implement or not, and this can 

introduce several security problems, if not correctly addressed. Moreover, several 

difficulties could be issued from the local policy configured in the SPD, that should be 

correctly setup from the administrator, and a wrong configuration could arise some 

security issues. 

There are also various issues concerning some contour elements: if IPsec protects a data 

stream between two networks but there are some malicious elements in the networks they 

can have direct access to unsecured traffics, or can try to corrupt the actual unprotected 

stream. This is not a problem in TLS, because TLS is tightly coupled to the application and 
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encryption/authentication is made on the source machines. Other attacks, like those 

showed from Degabriele and Paterson in [18], regards the using of encryption only mode. 

They also show that many open source IPsec implementation have some security issues, 

but this derives from a wrong implementation of the RFC. Indeed, they state that all the 

attacks presented in their paper works only because the implementers do not follow the 

RFC. 

Instead Gajek in [19] and Paulson in [20] have deep inspected TLS showing that it is well-

written protocols that realize true secure communication sessions, not finding any effective 

attacks. Although, in the time was discovered and fixed some vulnerabilities, such as the 

recently published Lucky Thirteen attack published by AlFardan and Paterson in [21], that 

apply also to DTLS. The authors demonstrate that an incorrect implementation of low-level 

details can lead to a timing attack that can be used for plaintext recovery.  This attack was 

discovered in November 2012 and when published, at the end of February 2013, almost all 

of the implementation have already addressed the problem.  
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6 Description of the experiments 

6.1 Environment 

All my measures were carried out using two PC: 

 PC #1: it is a laptop from 2008, with a dual core CPU, precisely an Intel Core 2 Duo 

T9300 that work at 2.50GHz and 4 GB of DDR2 RAM memory that work at 333 Mhz. 

This was used as SIP proxy. 

 PC #2: it is a laptop from 2009, which was used as load generator. 

The two PC were connected using a direct Ethernet cable that connects directly the two 

Ethernet NIC, without any hub, switch or router. This was a decision made for not 

introducing network delay of variables that is not under my control, like a processing delay 

of an economic switch that can be very different from a professional router. 

On the two PC Debian Linux in the release Wheezy (7.0) in the 64-bits version were 

installed with all the update released until the 1 March 2013. 

As SIP registrar server I used Kamailio, the result of the merging of SIP Express Router 

(SER) and OpenSER, at the release 4.0. The choice of Kamailio is because it is only a SIP 

router without any media functionality, rather than other software like Asterisk that also 

integrate the media proxy. In this way, I have focused on a specialized software on SIP 

signaling, rather than using a multipurpose software. 

For the setting up of IPsec, I used Racoon, an IKEv1 protocol implementation, and IPSEC-

TOOLS, an IPsec stack. The fact that Racoon is an IKEv1 protocols does not influence the 

results of the test, because the SAs was created and the key agreement phase was 

accomplished before the test began. Furthermore, the analysis of the IPsec setup phase is 

beyond the scope of this thesis. Racoon was setup to authenticate the remote host using a 

1024-bits RSA certificate. 

The details of the environment is summarized in Table 13.  

Purpose Software 

OS Debian 7.0 64-bits 

Kernel Linux 3.2.0-4-amd64 #1 SMP Debian 3.2.35-2 x86_64 GNU/Linux 

SIP router Kamailio 4.0.0 

SIP load generator SIPp v3.3-TLS 

Network Direct CAT-5 Ethernet cable 

TLS/Crypto library OpenSSL 1.0.1e 

IPsec Ipsec-tools 0.8.0 

Database MySQL  Server version: 5.5.28-1 (Debian) 

Profiling tool Sysprof 1.1.8 
Table 13: Environment specification. 

From the default Kamailio configuration file the unused modules were removed, while 

from the Route routine the processing related to other purpose were removed. The initial 

sanity check was left because it is a form of security mechanism, preventing the processing 

of malformed messages that can be dangerous or may cause performance degradation and 

DoS. The actual configuration file is reported in Appendix A. Instead, the SIPp’s scenario 
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xml and an example of the Comma-Separated Values (CSV) file used is reported in 

Appendix B. Finally, Appendix C show the configuration used for IPSEC-TOOLS. 

In order to have an idea of the performance of the two machines and an indication on the 

performance of the various algorithms, I run the OpenSSL integrated benchmark (OpenSSL 

speed) on the PC. The result is shown in Figure 10, Figure 11 and in Figure 12. This gives 

an idea of how heavy the various algorithms are. 

 

 
Figure 10: OpenSSL benchmark – digest algorithms. 
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Figure 11: OpenSSL benchmark – encryption algorithms. 

 
Figure 12: OpenSSL benchmark – RSA operations. 
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We can see that 3DES is the encryption algorithm that has the lowest throughput, while 

AES 128 the higher one. Thus, in my test I will use these two cases as lower and upper 

bound for the encryption side. 

For the digest algorithms, MD5 and SHA1 are the one that performs better, while SHA512 is 

worse. Furthermore, according to the block size, HMAC(MD5) performs slightly worse than 

plain MD5, thus I will use HMAC(MD5) and HMAC(SHA512) as bounds.  

Instead, for the RSA operations, it is possible to see just how heavy the operations with a 

4096-bits key are, so I will use 1024 and 2048-bits key, because 512-bits is considered 

unsecure. 

6.2 Measures 

All my tests are about the processing of a REGISTER request; this is because it is a kind of 

SIP message that requires the server to parse the message, verify the authorization 

credentials, register the client and confirm the registration to the client.  It is noteworthy 

that this kind of scenario does not introduce variables like routing, inter-domains policy, 

but is rather intended to measure the impact of security methods on the processing of the 

request in a more accurate way. 

I have ran three main kinds of test: 

 Code Profiling: I profiled the system while running Kamailio on the PC and loading it 

by the other PC whit 200 request per second per 10 minutes. This test shows in 

details how the security affects the performance, focusing on where the system 

spends more time and computational power. I will analyze the results of the 

profiling of code under three main aspects: Kamailio percentage, Security 

percentage and Operating frequency.  

 Power consumption: In this experiment, I have measured the power consumption of 

the laptop running Kamailio. I loaded Kamailio with a number of REGISTER per 

second and I measured the absorbed power. For measuring power consumption, I 

used a power-meter attached to the alimentation of the notebook, in order to obtain 

stable and precise results I removed the battery, turned off the Wi-Fi, and set the 

LCD backlight to the minimum. The scope of this measure is to have a metrics that 

can be a concrete parameter for making economic considerations. If you consider 

that a server runs 24 hours a day, 365 days a year, increasing the power 

consumption of some percent points can be very expensive, and if you are a service 

provider and you have hundreds of servers then this increase can be a deal-breaker. 

 Load test: I flood the Kamailio to see how many request per second the system can 

handle and what is the mean response time when varying the number of requests 

per second. The scope of measuring the response time is to have another metrics 

that in processing of the REGISTER is not so important, but can be of interest in 

processing other request like INVITE, because it directly affects the call-setup time. 

The statistic is collected using SIPp with the option “-trace_stats”. 
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Every test was conducted in the following scenario: UDP without security mechanism, 

HTTP Digest Authentication over UDP, TLS, and UDP over IPsec. The first is used for have a 

benchmark of how much the security influences the normal SIP behavior. Table 14 shows 

what modules are loaded on every scenario, Table 15 and Table 16 shows what algorithms 

are used respectively in the IPsec and TLS scenario. 

 

Scenario/Modules loaded MYSQL+AUTHDB modules TLS module 

UDP without security No No 

HTTP Digest Authentication over UDP Yes No 

TLS No Yes 

UDP over IPsec No No 
Table 14: Modules loaded on each scenario. 

Purpose Algorithm 

Encryption Null AES-128  

Authentication HMAC-MD5 HMAC-SHA1 HMAC-SHA512 
Table 15: Algorithms used in the IPsec scenario. 

Purpose Algorithm 

Key-length 1024 2048  

Encryption 3DES AES-128  

Authentication HMAC-MD5 HMAC-SHA1 HMAC-SHA512 
Table 16: Algorithms and key-length used in the TLS scenario. 

6.3 Note 

 I noted that SIPp when used to generate TLS traffics could be a bottleneck: if I use a 

single instance, I cannot generate more than about 80 REGISTER per second using a 

2048-bits key, but if I use four instance of SIPp I can reach, 50 request per second on 

each instance, so 200 cumulative REGISTER per second. Using a 1024-bits key, I can 

generate up to 320 cumulative request per second using 4 process. Above this limit, 

the system is not stable anymore, and for example, the sampling period oscillate, not 

giving an accurate measure anymore. For this reason, on the TLS side, I usually 

launch multiple SIPp instance and stay under these limits. 

 When carrying out tests on IPSEC mode I used only two security associations 

between the two PC, one in each direction. I agree that this does not represent a real 

environment, because in the real word in order to allow N host to connect to a 

server, it is required to setup 2N SAs. I made this decision because in order to 

simulate this on only two PCs, I should setup many IP addresses or socket, and over 

each one I will have to run a single SIPp instance and set Kamailio for listen on each 

socket. Furthermore, once an SA pair is established, this can be left in memory, also 

if not in use, for sometime without the need of rekeying. So my choice was made 

thinking that in steady state, the Security Association DataBase (SADB) was 

populated and the client who contacts the server does not need to make the IKE 

process. Note that the RFC specifies two kinds of processes for the renewal of the 

SAs: rekeying and reauthentication. In the first case the system considers the SA to 



36 - Description of the experiments 

 

still be valid, but it needs to regenerate the session-key, while in the second one the 

parties want to verify each other, in this case the process is equal to a generation of 

a new SA. Rekeying is more frequent than reauthentication. Another notable thing is 

that rekeying and reauthentication can be done independently from the requests, so 

when the system is idle it can initiate the rekeying of a SA, also if not receive any 

request from this host. This way the host does not have to authenticate in the 

moment in which it is sends a request. This cannot be done in TLS. 

Thus, I think that the authentications of new users, mixed to rekeying and 

reauthentication of existing user have for sure an impact on the performance of the 

systems, but this is not dramatically high like the one of the TLS. I will consider this 

when analyzing data in the next section. 

 When carrying out tests on TLS mode, instead, I used the TLS multi-sockets option 

of SIPp (-t ln), this way I simulated that every host that wants to register open an 

independent TLS session with the server. 

 For more precision also if the environment is the same the code profiling and power 

consumption test was run in two different moments. Therefore, the overhead 

introduced by the profiling tools does not affect the measure. 
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7 Analysis 

In this section, I will review and comment the result of the measures.  

Note that for simplicity in the following I will omit HMAC(), so when describing the 

algorithm used I will write SHA1 for HMAC(SHA1). 

7.1 Code profiling 

7.1.1 Kamailio percentage 

In Figure 13, I report the percentage of sample that derives from the works of Kamailio. 

This value is the one that Sysprof indicates like “total” and includes all the time spent from 

the Kamailio executable and all the time spent in the external function called from it. The 

last row is a run of Kamailio without any security that is used to have a benchmark. TLS is 

used whit a 2048-bit key. 

It is possible to see that when IPsec is used, the percentage of time worked by Kamailio is 

normally a bit smaller than the no security case. This is because the management of IPsec 

was made from the OS. The percentage of sample worked by Kamailio is smaller when the 

overhead introduced by the mechanism is higher, indeed is lower when using ESP than 

when using AH. Instead, when TLS is used, all the management of the security is made by 

Kamailio itself so the percentage grows.  A different analysis is required for the HTTP 

digest authentication case, because it makes use of the MySQL server to check the 

credential, so I have reported in blue the Kamailio percentage, and in red I added the 

MySQL server percentage. 

 
Figure 13: Time percentage spent in Kamailio. 
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7.1.2 Security percentage 

In order to obtain a measure of what is the overhead required from the various solutions, I 

summed each symbols that regards the security, like the OpenSSL functions or the internal 

function of Kamailio that regards the digest authentication. In Figure 14, is reported the 

percentage of the sum of the “self-time” of security function over the total number of 

sample. The no security case is omitted because the number of security samples is 0, 

instead in the case of HTTP digest the security includes the sample of the SQL server, 

because it is used for checking the credentials of the user when the authentication header 

is received. 

Furthermore, we can see that the TLS uses a huge quantity of resource. Instead, in the IPsec 

scenario we can see that this has about a 3 % of overhead when encryption is not used, that 

grows to about 5 % when encrypting the ESP with AES. In the HTTP digest authentication 

case, instead, adding the number of sample of Kamailio’s function related to security and 

the sample related to the MySQL server, the percentage grows to about 27 %. 

 

 
Figure 14: Time percentage spent in security operations in the whole system. 
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7.1.3 Operating frequency 

Another analysis that could be carried out from the profiling of code is about the total 

number of samples. This is related to the operating frequency, because Sysprof makes use 

of hardware performance counters. Therefore, it is possible to see that when TLS is used 

the system works at higher frequency, instead when IPsec or the HTTP digest is used the 

frequency of operation is lower. This means that the system is less busy, and so a lower 

power consumption is expected. The result is showed in Figure 15. 

7.1.4 Profiling overhead 

The last analysis that I want to perform is just a check to verify that the profiling tools itself 

does not influence too much the measured value. For this reason, I have summed each 

symbol that is related to the profiling, and I have reported in Figure 16. As we see Sysprof 

introduces a small overhead, that vary between about 0,8% and 2%. This means that it is 

possible to neglect the variations to true system behavior. 

 

 
Figure 15: Total number of sample collected. 
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Figure 16: Profiling overhead. 
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Figure 17: Absorbed power for no security case, HTTP digest authentication and various TLS configuration, when 

changing the request rate. 

 
Figure 18: Absorbed power for no security case, HTTP digest authentication and various IPsec configuration, when 

changing the request rate. 
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We can see that the TLS is the most absorbing method and HTTP digest absorb a high 

quantity of power if compared to IPsec. So also for this point of view, the IPsec is the best 

performing solution. 

In Table 17, I reported the measured power consumption of the system, and in Table 18, I 

summarized the increase of absorbed power. In both tables, the values are relative to three 

different request rate, precisely at 200, 5000 and 12000 REGISTER per second. We can see 

that at 200 request per second according to the methods used the system can absorb from 

24 W of the no security case, to 34.5 W of the 2048-bits key TLS. This means an increase of 

about 30%. At this rate the HTTP digest authentication absorb about 8% more than the no 

security case; and all the IPsec configuration is between the no security case and the HTTP 

digest, whit the peak of about 4% reached by the ESP using AES and HMAC(SHA1) in 

tunnel mode and a mean of about 2%. At 5000 request per second, the TLS has no measure 

because as previously shown it cannot reach this throughput on my PC. At this rate, the 

IPsec overhead increases slightly, with a mean of about 5%, but the interesting thing is that 

the HTTP digest authentication grows exponentially, reaching about a 25%. Lastly, at 

12000 REGISTER per second, the IPsec continues to introduce a mean overhead of about 

5%. 

  200 5000 12000 

No security 24 28,5 33,5 

HTTP digest 26 35,5 ND 

AH-transport-MD5 24 29,5 34,5 

AH-transport-SHA512 24,5 31 35,5 

AH-tunnel-MD5 24,5 28,5 35 

AH-tunnel-SHA512 24,5 30 35,5 

ESP-transp-NULL-MD5 24,5 30 35 

ESP-transp-NULL-SHA512 24,5 30 35,5 

ESP-tunnel-AES-SHA1 25 30 36 

TLS 1024-bit AES128-SHA1 31 ND ND 

TLS 1024-bit 3DES-SHA1 31 ND ND 

TLS 2048-bit AES128-SHA1 34,5 ND ND 

TLS 2048-bit 3DES-SHA1 34,5 ND ND 
Table 17: Power consumption of various security methods at 200, 5000, and 12000 request per second. 
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  200 5000 12000 

HTTP digest 8,33% 24,56% ND 

AH-transport-MD5 0,00% 3,51% 2,99% 

AH-transport-SHA512 2,08% 8,77% 5,97% 

AH-tunnel-MD5 2,08% 0,00% 4,48% 

AH-tunnel-SHA512 2,08% 5,26% 5,97% 

ESP-transp-NULL-MD5 2,08% 5,26% 4,48% 

ESP-transp-NULL-SHA512 2,08% 5,26% 5,97% 

ESP-tunnel-AES-SHA1 4,17% 5,26% 7,46% 

TLS 1024-bit AES128-SHA1 29,17% ND ND 

TLS 1024-bit 3DES-SHA1 29,17% ND ND 

TLS 2048-bit AES128-SHA1 43,75% ND ND 

TLS 2048-bit 3DES-SHA1 43,75% ND ND 
Table 18: Absorbed power overhead relative to the no security case at 200, 5000, and 12000 request per second. 

The last analysis that I can perform is to estimate the number of requests per second that 

the system can handle using the same power. I take the value of 33 W, for which normally 

the system is at about 70-80 % of the maximum throughput, and compute the ratio 

between the rate of the actual method and the one that can be reached with no security. 

The results are shown in Table 19.  

It is possible to see that with the same power consumption the TLS handles about the 2% 

only of the throughput of the no security case, also the HTTP digest does not perform very 

well reaching only the 18%; instead, in mean, the IPsec can manage about the 70%.  

 

 Request per second % of no security case throughput 

No security 11000 100% 

HTTP digest 2000 18,18% 

TLS 1024-bit 280 2,55% 

TLS 2048-bit 160 1,45% 

IPsec 9000 81,82% 
Table 19: Comparison of the achievable throughput for the various methods.  

7.3 Load test 

7.3.1 Achievable throughput 

I will start analyzing the Figure 19, that is a graphical representation of the statistics 

collected using SIPp. I have reported the no security case as a system benchmark, to which I 

have overlapped the HTTP digest authentication and the IPsec cases. The TLS cases is not 

reported because, as previously mentioned, with SIPp I cannot reach the actual system 

limit, so I just collected a series of points in which the success rate is equal to the output 

rate. However, from the analysis of TLS made in the other test I can say that the limit that I 

have fixed are quite close to the maximum system throughput. This is because looking at 

the Figure 13 we can see that in the case of TLS with a 2048-bit key, already with 200 

requests per second the number of samples relative to Kamailio represents about 97% of 

the samples of the entire system, so we are close to the maximum of what the server can 
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handle. Furthermore, in section 7.2 the power absorbed for the system in the TLS 

configuration at the limit of 200 request per second with a 2048-bits key is 34 W and at 

320 request per second with the 1024-bits key is 34,5 W. In other cases, we can see that the 

maximum power absorbed from my PC is of 36,5 W but sometimes the retransmission and 

the failure starts under this limits.  For this reason, watching the trend reported in Figure 

17 it is possible to see that the stability limit that I have used is close to the maximum 

throughput of the system; hence, in the following I will treat the rate reached using TLS as a 

lower bound. 

Now, watching Figure 19, it is possible to see that also in this test HTTP digest 

authentication does not perform very well, with a maximum throughput of 2600 request 

per second, that means that with this methods my server can handle about 17% of the 

throughput that can be achieved if no security is used. Instead IPsec, according to the 

configuration, can reach really good result, with a throughput included in the range 12000-

13990 request per second, whit a mean value of about 85% of the no security case. The 

detailed maximum throughput are reported in Table 20.   

 

 Max throughput % of no security case 

No security 15420   

HTTP digest 2600 16,86% 

ESP-tunn-AES-SHA1 12000 77,82% 

ESP-tunn-NULL-MD5 13990 90,73% 

ESP-tunn-NULL-SHA512 12682 82,24% 

ESP-transp-NULL-SHA512 13199 85,60% 

AH-tunn-SHA512 12823 83,16% 

AH-transp-SHA512 13226 85,77% 

AH-transp-MD5 13798 89,48% 

AH-tunn-MD5 13854 89,84% 

TLS 1024-bit* 320 2,08% 

TLS 2048-bit* 200 1,30% 
Table 20: Maximum throughput achievable by the system.  

*: the values for TLS are lower bound. 
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Figure 19: Measured throughput. 

 
Figure 20: Detailed analysis of the ESP using NULL encryption and HMAC(MD5) in tunnel mode. 
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In Figure 20 is reported a detailed analysis an experiment, the one in question is on the ESP 

using no encryption and HMAC(MD5) for authentication. It is easy to see that the success 

rate (red line) grows linearly, following the imposed request rate, that is reported in the x-

axis, until it reaches its maximum and after it drops down. The reason for this fall is that 

the server cannot fulfill the request in before the retransmission timer expires, thus every 

request not processed will be retransmitted generating even more workload (green line). 

After some retransmission, the client will finally mark the request as failed (purple line). 

This is the worst situation, because the user remains without the service. 

7.3.2 Response time 

The second analysis that can be done from this load test is to evaluate the response time, 

that is the time elapsed between the moment in which the client sent a REGISTER request 

to the server and the moment in which the client get the 200 (OK) response. When 

analyzed the HTTP digest authentication scheme, it still refers at the time from the first 

request to the receiving of the OK response. Thus, the response time reported contains 

both the unauthorized response and the retransmissions. In order to have more stable 

data, without too many peaks, I filtered the result with a moving average filter of forth 

order. In Figure 21 are reported the measured values for HTTP digest and some IPsec cases 

of interest. I do not represent all the IPsec cases because with all the series the diagrams 

would be difficult to read, thus I reported the IPsec lower and upper bound and two mean 

cases. Furthermore, also in this analysis, I treated the TLS separately and reported it in 

Figure 22. 

Starting from Figure 21, as expected we can see that HTTP digest before the breaking point 

has a response time of about 1 ms, that is higher than the one of the other methods, and at 

the breaking point, the same seen before (2600 request per second), this time grows up 

vertically, due to the start of retransmission. 

The no security and the IPsec cases, instead, have a slightly different behavior, slightly 

increasing their response time before growing up vertically. Among those tested, the ESP 

with AES-CBC for encryption and SHA1 for authentication in tunnel mode is the one with 

the worse performance, and the ESP with no encryption and HMAC(MD5) for 

authentication is the one that performs better. Before the breaking point all IPsec 

configurations, behave approximately as the no security cases.  

For the TLS cases instead, we note that the key-length is the most influencing thing, 

because we have a couple of similar lines for every length of key. As expected, a longer key 

means more connection setup time, due to the certificate exchange, computation of 

session-key, etc., and this results in a greater response time. The last note is that TLS is the 

method with higher response time, with a mean of 5 ms for a 1024-bits key that grows over 

10 ms for the 2048-bits key. This is negligible for a request like the REGISTER, which is 

usually handled by the first hop server, but if you think of an INVITE this could be a 

problem, since it has to traverse many nodes each one protected using TLS as enforced by 

the SIPS scheme. This means that at every hop will be added a delay and the user can notice 

it, because it has to wait longer time before the session is successfully created. 
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Figure 21: Response time measured for HTTP digest and IPsec scenario. 

 
Figure 22: Response time measured in the TLS scenario. 
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7.4 Computational power gain over times 

In section 6.1 I have reported the results of the benchmark of OpenSSL on my PC. To have 

an idea of what the future could be, I have made the same test on another PC, a laptop of 

the 2009, with a quad core CPU, precisely an Intel Core i7 Q820 @ 1.73GHz and 4 GB of 

RAM. I reported the results in Figure 23, Figure 24 and Figure 25. It is possible to see that 

by just changing the CPU it becomes possible to achieve about four times the performance 

achievable on PC #1. I want to remark these results because this demonstrates that even 

though at the moment of writing a security mechanism may have appeared too heavy, it 

could become usable in a few years. 

 

 
Figure 23: Comparison of OpenSSL encryption performance. 
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Figure 24: Comparison of OpenSSL digest algorithms performance. 

 
Figure 25: Comparison of OpenSSL RSA operations performance. 
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7.5 IKE overhead 

As explained in section 6.3, all the IPsec result reported in this thesis do not include the 

costs of the overhead introduced by the IKE exchange. 

In order to have an idea of what is the cost of this exchange, I will briefly report the analysis 

made by Shue et al. in [22]. They analyzed the time cost of an IKEv1 exchange, using two 

x86 Dell Optiplex GX Pentium IV machines. The first had a 1,66GHz processor and a 

100Mbps network interface card, while the second had a 1,8GHz processor and a 

1000Mbps network card. Both the machines had 512MBytes of RAM and were connected 

to each other through a 100Mbps Ethernet switch. The machines ran Debian Linux with a 

2.6.8 kernel. For the IKE daemon they used Openswan, in version 2.3.1dr3 and Kernel Level 

Internet Protocol Security (KLIPS), the stack provided by Openswan for IPsec support. 

Table 21 shows the cryptographic timing measurements for the IKE protocol for the 

responder when main mode with digital signatures as the authentication method was used 

for phase one. The reported numbers are averaged over 25 trial runs. As Table 21 shows, 

the biggest contributor to the cryptographic overheads at the VPN server was the RSA 

signature generation. Out of the total 373,82 ms recorded for the IKE process for 3DES, 

including 117,59 ms for the cryptographic operations, this one operation took 

approximately 21% of the total time required for the IKE process for all key sizes and 

encryption algorithms tested. However, verification of signatures sent by the client was 

much more efficient (1,07 ms, 1,09 ms, and 1,06 ms for 3DES, AES128, and AES256 

respectively). The Diffie-Hellman computations were the second biggest overhead at the 

server, consuming a total of 35,50 ms (17,59 ms and 17,91 ms during phases one and two 

respectively) for 3DES. The overheads associated with symmetric key encryption and 

decryption operations in both phases are quite low and vary with the size of the data being 

encrypted. Finally, hashing contributed the least to the cryptographic overheads. 

 

Operation 3DES AES128 AES256 
Signature generation 78,8 79,1 78,96 
D-H computation 35,5 35,59 35,5 
Signature verification 1,07 1,09 1,06 
Encryption 0,14 0,34 0,34 
Decryption 0,35 0,11 0,11 
Total of cryptographic operations 118 117,93 117,66 

Table 21: Details of time required for the most demanding cryptographic operation of IKE, in ms. 

From this analysis, we can see that in over the overhead introduced is due to several 

messages that have to be exchanged, but is mainly made by the RSA sign operation. In [22] 

this operation take about 79 ms, but as seen in section 6.1, on PC #1 this operation take 

much less time and even less on PC #2 as reported in Table 22. Thus, the overhead 

introduced by IKE computation is much smaller on a newer machine.  
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Key-length Time required on PC #1 Time required on PC #2 
512 0,358 0,108 

1024 1,211 0,340 
2048 7,812 3,003 

4096 56,034 27,275 
Table 22: Time required for RSA sign operation, in ms. 

7.6 Comments 

As explained before, these results are representative of my pseudo-real scenario. Modifying 

the scenario it is possible that the results change, but because I tried to introduce the 

minimum number of variable that is not under direct control, the behaviors should not 

change significantly. The thing that could significantly change the result is the 

implementation: if in place of my PC is used a hardware SIP router I expect that the result 

could be different. This could derive from many factors, such as: 

 Dedicated hardware: are based on hardware used only for processing the SIP 

request. 

 Optimized software: makes uses of lightweight specialized OS, instead of heavy 

multipurpose OS. 

 Hardware acceleration: can makes use of hardware to speed-up the computation of 

the cryptographic computations, at the same time leaving the CPU free from this 

work. 

 

Moreover, the software implementation can be much or less optimized, and this can change 

the result. For reducing the risks, I used stable and well known software, with years of 

work behind. 

Moving on to review the results, I deeply analyzed three of the well-known and 

implemented methods for securing the signaling plane of SIP. I think that they could be 

ordered in some way, but each one has its benefits and their disadvantage: 

 No security: is feasible only in a well-protected, not accessible from internet, local 

domain. In every other case, a security is needed. 

 HTTP digest: is the most used, and has some advantages if used in combination with 

an AAA mechanism. From the security point of view is weak, and its performance is 

not brilliant. 

 IPsec: is the best performing scheme tested and it is secure, but it is more difficult to 

setup and may not be supported from all the machines on the net. Also it could have 

some implementation related-bug. The system administrator that decides to use 

IPsec must consider which configuration to use, because according to the network 

topology and the desired level of security, it is possible to have various security 

services and achieve different performances. The encryption is not required for the 

purpose of authenticating the SIP messages, but if the overhead and the 

performance degradation are acceptable, it allows to give less information to the 

opponent, for instance hiding the number of the client.  

 TLS: is the most secure and easy to configure mechanism, also for the standard it is 

supported on all SIP UA. The disadvantage is the impact that it has on the 
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performance. In addition, it requires a large-scale PKI. As for IPsec, the performance 

are influenced by the configuration and the services used, so the implementers 

should decide what are the services desired and should consider the security cost. 
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8 Conclusions 

The problem of security in SIP is beginning to be considered important for the economic 

damage that it may cause and for the privacy problems that could arise. The scope of this 

thesis it to give an overview, denoting advantages and disadvantages, and to make a 

performance analysis of the main actual solutions for securing the signaling plane of the 

SIP. Comparing and discussing them, I want to give a way to choose between them. For 

what we have seen, taking into account that using SIP without security is really dangerous 

at the moment there are many proposed solutions but only few that are really usable, HTTP 

digest authentication, IPsec and TLS. The first, HTTP digest, is not secure if used with weak 

password and should be implemented in the right way for protecting against replay attack. 

The last two, IPsec and TLS, both are good mechanisms, but have disadvantages: IPsec 

must be manually configured for each host and can present some issues related to the 

implementation, TLS instead is secure and scalable but has a huge performance 

degradation. The hope is that in the near future unsecure method will not be used anymore 

and hopefully new security methods that can outperform those revised in this thesis will be 

adopted. 
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10 Appendix A: Kamailio configuration 

Below are the used Kamailio.cfg and tls.cfg.  

10.1 Kamailio.cfg 

#!KAMAILIO 

##!define WITH_MYSQL 

##!define WITH_AUTH 

##!define WITH_TLS 

 

####### Defined Values ######### 

# *** Value defines - IDs used later in config 

#!ifdef WITH_MYSQL 

# - database URL - used to connect to database server by modules such 

#       as: auth_db, acc, usrloc, a.s.o. 

#!ifndef DBURL 

#!define DBURL "mysql://kamailio:kamailiorw@localhost/kamailio" 

#!endif 

#!endif 

 

####### Global Parameters ######### 

debug=2 

log_stderror=no 

memdbg=5 

memlog=5 

log_facility=LOG_LOCAL0 

 

fork=yes 

children=4 

 

alias="mysip.com" 

 

listen=192.168.1.6 

#listen=172.1.6.1 

port=5060 

 

#!ifdef WITH_TLS 

enable_tls=yes 

#!endif 

 

tcp_connection_lifetime=3605 

 

####### Modules Section ######## 

mpath="/usr/local/lib64/kamailio/modules_k/:/usr/local/lib64/kamailio/

modules/" 

#!ifdef WITH_MYSQL 

loadmodule "db_mysql.so" 

#!endif 

 

loadmodule "mi_fifo.so" 

loadmodule "kex.so" 

loadmodule "corex.so" 

loadmodule "sl.so" 

loadmodule "pv.so" 

loadmodule "maxfwd.so" 

loadmodule "usrloc.so" 
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loadmodule "registrar.so" 

loadmodule "textops.so" 

loadmodule "siputils.so" 

loadmodule "xlog.so" 

loadmodule "sanity.so" 

loadmodule "ctl.so" 

loadmodule "cfg_rpc.so" 

loadmodule "mi_rpc.so" 

 

#!ifdef WITH_AUTH 

loadmodule "auth.so" 

loadmodule "auth_db.so" 

#!endif 

 

#!ifdef WITH_TLS 

loadmodule "tls.so" 

#!endif 

 

# ----------------- setting module-specific parameters ---------------

# 

# ----- mi_fifo params -----# 

modparam("mi_fifo", "fifo_name", "/tmp/kamailio_fifo") 

 

# ----- registrar params -----# 

modparam("registrar", "method_filtering", 1) 

/* uncomment the next line to disable parallel forking via location */ 

# modparam("registrar", "append_branches", 0) 

/* uncomment the next line not to allow more than 10 contacts per AOR 

*/ 

#modparam("registrar", "max_contacts", 10) 

modparam("registrar", "min_expires", 0) 

# max value for expires of registrations 

modparam("registrar", "max_expires", 1) 

# set it to 1 to enable GRUU 

modparam("registrar", "gruu_enabled", 0) 

 

# ----- auth_db params -----# 

#!ifdef WITH_AUTH 

modparam("auth_db", "db_url", DBURL) 

modparam("auth_db", "calculate_ha1", yes) 

modparam("auth_db", "password_column", "password") 

modparam("auth_db", "load_credentials", "") 

modparam("auth_db", "use_domain", 0) 

#!endif 

 

#!ifdef WITH_TLS 

# ----- tls params -----# 

modparam("tls", "config", "/usr/local/etc/kamailio/tls.cfg") 

#!endif 

 

####### Routing Logic ######## 

request_route { 

 

 # per request initial checks 

 route(REQINIT); 

 

 # authentication 
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 route(AUTH); 

 

 # handle registrations 

 route(REGISTRAR); 

} 

# Per SIP request initial checks 

route[REQINIT] { 

 if (!mf_process_maxfwd_header("10")) { 

  sl_send_reply("483","Too Many Hops"); 

  exit; 

 } 

 if(!sanity_check("1511", "7")) 

 { 

  xlog("Malformed SIP message from $si:$sp\n"); 

  exit; 

 } 

} 

# Handle SIP registrations 

route[REGISTRAR] { 

 if (is_method("REGISTER")) 

 { 

  if (!save("location")) 

   sl_reply_error(); 

  exit; 

 } 

} 

# Authentication route 

route[AUTH] { 

#!ifdef WITH_AUTH 

 if (is_method("REGISTER") || from_uri==myself) 

 { 

  # authenticate requests 

  if (!auth_check("$fd", "subscriber", "1")) { 

   auth_challenge("$fd", "0"); 

   exit; 

  } 

  # user authenticated - remove auth header 

  if(!is_method("REGISTER|PUBLISH")) 

   consume_credentials(); 

 } 

 # if caller is not local subscriber, then check if it calls 

 # a local destination, otherwise deny, not an open relay here 

 if (from_uri!=myself && uri!=myself) 

 { 

  sl_send_reply("403","Not relaying"); 

  exit; 

 } 

#!endif 

 return; 

} 

10.2 Tls.cfg 

[server:default] 

verify_certificate = no 

require_certificate = no 

method = TLSv1 

#cipher_list="DES-CBC3-SHA" 
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cipher_list="AES128-SHA" 

 

###1024 bit 

#private_key = /usr/local/etc/kamailio/server1024key.pem 

#certificate = /usr/local/etc/kamailio/server1024.pem 

 

###2048 bit 

private_key = /usr/local/etc/kamailio/server2048key.pem 

certificate = /usr/local/etc/kamailio/server2048.pem 

 

ca_list = /usr/local/etc/kamailio/calist.pem 

 

[client:default] 

verify_certificate = yes 

require_certificate = yes 

11 Appendix B: SIPp configuration 

11.1 Register.xml 

<?xml version="1.0" encoding="ISO-8859-1" ?> 

<scenario name="register_client"> 

  <send retrans="500" start_rtd="1"> 

    <![CDATA[ 

 

      REGISTER sip:mysip.com SIP/2.0 

      Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch] 

      From: sipp <sip:[field0]@mysip.com>;tag=[call_number] 

      To: sut <sip:[field0]@mysip.com> 

      Call-ID: [call_id] 

      CSeq: 4 REGISTER 

      Contact: sip:[field0]@[local_ip]:[local_port] 

      Expires: 60 

      Max-Forwards: 70 

      Subject: Performance Test 

      Content-Type: application/sdp 

      Content-Length: [len] 

    ]]> 

  </send> 

 

  <recv response="200" crlf="true" rtd="1"> 

  </recv> 

</scenario> 

11.2 Register-whith-HTTP-digest.xml 

<?xml version="1.0" encoding="ISO-8859-1" ?>  

<scenario name="register_client"> 

  <send retrans="500" start_rtd="1"> 

    <![CDATA[ 

  

      REGISTER sip:mysip.com SIP/2.0 

      Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch] 

      From: sipp <sip:[field0]@mysip.com>;tag=[call_number] 

      To: sut <sip:[field0]@mysip.com:[local_port]> 

      Call-ID: [call_id] 

      CSeq: 4 REGISTER 
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      Contact: sip:[field0]@[local_ip]:[local_port] 

      Expires: 60 

      Max-Forwards: 70 

      Subject: Performance Test 

      Content-Type: application/sdp 

      Content-Length: [len] 

    ]]> 

  </send> 

 

  <recv response="401" auth="true"> 

  </recv> 

  

  <send retrans="500"> 

    <![CDATA[ 

 

      REGISTER sip:mysip.com SIP/2.0 

      Via: SIP/2.0/[transport] [local_ip]:[local_port];branch=[branch] 

      From sipp <sip:[field0]@mysip.com>;tag=[call_number] 

      To: sut <sip:[field0]@mysip.com:[local_port]> 

      Call-ID: [call_id] 

      [field1] 

      CSeq: 4 REGISTER 

      Contact: sip:[field0]@[local_ip]:[local_port] 

      Expires: 60 

      Max-Forwards: 70 

      Subject: Performance Test 

      Content-Type: application/sdp 

      Content-Length: [len]  

    ]]> 

  </send> 

  

  <recv response="200" rtd="1"> 

  </recv> 

 

</scenario> 

11.3 User.csv 

The following are the first rows of the user.csv. 

SEQUENTIAL 

1;[authentication username=1 password=1] 

2;[authentication username=2 password=2] 

3;[authentication username=3 password=3] 

… 
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12 Appendix C: IPsec-tools configuration 

12.1 Racoon.conf 

The following is the interesting part of the Racoon configuration file. In the “sainfo” part, 

the encryption_algorithm can be either AES or NULL_ENC  according to the configuration. 

The authentication_algorithm instead can be HMAC_MD5, HMAC_SHA1 or HMAC_SHA512. 
remote anonymous { 

        exchange_mode main,aggressive; 

… 

        proposal { 

                encryption_algorithm aes; 

                hash_algorithm sha1; 

                authentication_method rsasig; 

                dh_group 2; 

        } 

… 

} 

 

sainfo anonymous { 

        pfs_group 2; 

        encryption_algorithm aes; 

        authentication_algorithm hmac_sha1; 

        compression_algorithm deflate; 

} 

12.2 Ipsec-tools.conf 

The following is the interesting part of the IPsec-tools configuration file. According to the 
desired service uncommented the corresponding lines. 
#!/usr/sbin/setket -f 

flush; 

spdflush; 

 

#######ESP 

spdadd 172.1.5.1 172.1.6.1 any -P out ipsec  

esp/tunnel/192.168.1.5-192.168.1.6/require; 

spdadd 172.1.6.1 172.1.5.1 any -P in ipsec   

esp/tunnel/192.168.1.6-192.168.1.5/require; 

 

#spdadd 172.1.5.1 172.1.6.1 any -P out ipsec  

esp/transport//require; 

#spdadd 172.1.6.1 172.1.5.1 any -P in ipsec 

esp/transport//require; 

 

#######AH 

#spdadd 172.1.5.1 172.1.6.1 any -P out ipsec  

ah/tunnel/192.168.1.5-192.168.1.6/require; 

#spdadd 172.1.6.1 172.1.5.1 any -P in ipsec   

ah/tunnel/192.168.1.6-192.168.1.5/require; 

 

#spdadd 172.1.5.1 172.1.6.1 any -P out ipsec  

ah/transport//require; 

#spdadd 172.1.6.1 172.1.5.1 any -P in ipsec   

ah/transport//require; 


