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Chapter 1

Introduction

1.1 Extended Abstract

In the last decade the electric grid has been undergoing a deep renovation
process toward the a so-called smart grid featuring larger hosting capability,
widespread penetration of renewable energy sources, higher quality of the
service and reliability. In particular, the modernization of the low voltage
and medium voltage power distribution network consists in the deployment
of a large amount of information and communication technologies (ICT),
in the form of dispersed measurement, monitoring, and actuation devices.
From the environmental point of view, in particular, it is talked about green
technology, that is, smart tech capable to exploit sustainable source of energy.

Among the many different aspects of this transition, we focus on the con-
trol of the microgenerators inside a smart microgrid ([1], [2]). A microgrid
is a portion of the low-voltage power distribution network that is managed
autonomously from the rest of the network, in order to achieve better qual-
ity of the service, improve efficiency, and pursue specific economic interests.
Together with the loads connected to the microgrid (both residential and in-
dustrial customers), we also have microgeneration devices (solar panels, com-
bined heat-and-power plants, micro wind turbines, etc.). These devices are
connected to the microgrid via electronic interfaces (inverters), whose main
task is to enable the injection of the produced power into the microgrid. One
example in this sense is the coordinated control of the power inverters of the
microgeneration devices connected to the low voltage grid. When properly
controlled, these devices can provide valuable ancillary services like reactive
power compensation, voltage support, automatic generation control, optimal
power flow computation, etc. ([3], [4]). In this work we consider the prob-
lem of optimal reactive power compensation (RPC). Loads belonging to the
microgrid may require a sinusoidal current which is not in phase with volt-
age. A convenient description for this, consists in saying that they demand
reactive power together with active power, associated with out-of-phase and

7



8 CHAPTER 1. INTRODUCTION

in-phase components of the current, respectively. Reactive power is not a
"real" physical power, meaning that there is no energy conversion involved
nor fuel costs to produce it. Like active power flows, reactive power flows
contribute to power losses on the lines, cause voltage drop, and may lead to
grid instability. It is therefore preferable to minimize reactive power flows
by producing it as close as possible to the users that need it.

For example, the reactive power compensation strategy proposed in [5]
consists in an iterative tuning of the amount of reactive power injected by
the microgenerators, with the objective of minimizing power distribution
losses across the grid. The proposed procedure requires that microgenerators
perform voltage phasor measurements at their own point of connection to
the grid. These measurements are then shared with other microgenerators
via a communication channel, and processed in a distributed way. Based on
the result of this processing, each microgenerators then updates the amount
of reactive power injected into the grid, actuating the system. Because of
the inherent communication part, this strategy belongs to the wide class of
networked control systems [7].

One of the main bottleneck in the actuaction of this kind of control strate-
gies in the low voltage power distribution network is the need for accurate
voltage phasor measurements across the grid. Specifically, to achieve the aim
of control is necessary to handle with the voltage phasor at every node1 of
the grid, namely the state of the grid.

Phasor measurement units (PMU) can provide these measurements, but
their cost is generally unacceptable for large scale deployment. In particular,
time synchronization between different PMUs is a major technological issue,
and it is generally tackled via a GPS module that can provide timestamping
of the data.

The first contribution of this thesis consists in evaluating the effects of
PMU measurement errors for measurement-driven control strategies, adopt-
ing the reactive power control proposed in [5] as a prototype. Then we
present two distributed estimation algorithms capable of improving the qual-
ity of the voltage measurements via exchange of data with other PMUs and
via distributed processing of the raw data.

We assume that the power distribution grid is divided into a number of
areas. The PMUs beloning to each area transmit their voltage measurements
to an area monitor. Area monitors can communicate and they are instructed
to process the collected measurement in a distributed way.

Similar algorithms have already been proposed in the literature, espe-
cially for medium voltage and high voltage power grids, see [6], [7], [8], [9]
[10]. The two solutions proposed, however, exhibit some notable original
features which make them particularly suited for the scenario of low voltage

1A Node can represent either an household appliance in a domestic microgrid or an
entire house demand in a urban grid.
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power distribution grids:

• they only require measurements that can be performed by the devices
at their point of connection, instead of power flow and current mea-
surements on the power lines, which are generally not available in low
voltage grids;

• the computational effort is very limited and remains constant if the
grid grows in size;

• they are completely leader-less (no grid supervisor is present).

In order to present the two proposed distributed algorithms, we first in-
troduce a model for the power grid, which includes a convenient modelling
of the measurement errors in which time sync error are explicitly considered.
Based on this model, we detail the least-square problem that has to be solved
in order to find the maximum-likelyhood estimation of the grid state. For the
solution of such optimization problem, we propose two different approaches.
The first approach is a distributed implementation of the Alternating Direc-
tion Method of Multipliers ([11]). This contribution is of particular interest
per se: we show how ADMM can be implemented in a scalable way [12],
in which every agent is only required to store a portion of the entire state
of the systems. The second approach is a distributed Jacobi-like algorithm.
The algorithm is completely leader-less, and each monitor has to solve an
extremely simple optimization problem, for which a closed form solution is
provided.

Finally, it is studied the behaviour of these two estimation algorithm
together with the reactive power compensation one. In the last example it is
shown how are the estimation algorithm performances in the reactive power
compensation for a grid constrained: we added upper and lower bounds to
the reactive power that each compensator can exchange with the remaining
network ([13]) These box constraints complicate the initial problem, but
draw the model closer to the real microgrid. We will show that, using the
estimate state, it leads to an optimal behaviour.
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1.2 State of the Art

Since Power Networks State Estimation represents the starting point to im-
plement a desirable network control, it has been fully treated in literature.
Firstly it has been analyzed through centralized techniques. Afterwards re-
searchers focused on distributed solution since the increasing in network size,
the always more relevant computational effort, the networks topology pri-
vacy and the robustness to failures become strictly urgent.

The main aim of the estimation is to adequately filter the raw measure-
ments with the purpose to achieve a better knowledge of a desire quantity,
namely the state. This is very important due to the fact that measurements
could be very noisy. Therefore, they cannot be straightly used to control the
network. Indeed, presence of outliers, measurement errors and noisy mea-
sures, corrupting the real value of the state, make absolutely unusable the
control. As a byproduct, the estimation could be efficiently used to do fault
detection and bad data detection. This is, respectively, to detect fault of the
network and to identify particularly bad measures (outliers), for instance,
due to instrumentation faults or corruption through the connection lines.

In [14] the authors firstly present the principal electric components to in-
troduce a suitable network model. Secondly, it is fully explained the central-
ized weighted least squares estimation supposing to deal with measurements
affected by gaussian noise.

In [15], [16] e [17] it is firstly developed an exact network model, secondly
an approximated one and finally the authors deal with the implementation
of a centralized static least square estimation modeling the noise as a gaus-
sian random variable. Finally it is suggested how to implement a real-time
version of the algorithm proposed and a bad data detection.

In [6] the authors proposed a multi area distributed two-level estimation.
Firstly the single area, using just inner measures, estimates its own knowl-
edge of the state. Secondly, a central unit deals with the task of coordinate
the single areas estimations via an additional set of pseudo-measurements
take by Phasor Measurement Units (PMUs). Similar method is described
both in [7] and [8].

In [18] it is proposed a technique that, after a preliminary decomposition
of the net in smaller subnetworks, place the measurement units with the aim
of optimizing their number and costs.

In [9], similar to the two-level implementation of [6], [7] and [8], the au-
thor proposes a method to deal with a distributed state estimation via only
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local measures. Thanks to the exchange of borders information between
neighboring areas and a central coordination unit it is finally reached the
wide range estimation.

In [10] a complete leader-less algorithm is proposed. Coordination and
estimation are carried out only via local exchange of information.

In [11] the authors develop a fully distributed mean square algorithm.
This leads a Wireless Sensor Network (WSN), in which the algorithm is
tested, to adaptively reach the state estimation with single-hop neighbors
exchanges of messages. The optimization problem is solved exploiting the
Alternating Direction Method of Multipliers (ADMM).

In [19] an approach able to parallelize optimal power flow is presented.
The proposed distributed scheme can be use to coordinate an heterogeneous
collection of utilities. Three mathematical decomposition coordination meth-
ods are introduced to implement the proposed distributed sheme: the Auxil-
iary Problem Principle (APP); the Predictor-Corrector Proximal Multiplier
Method (PCPM); the Alternating Direction Method (ADM).

In [12] is proposed a modification of the standard Alternating Direction
Multiplier Method formulation in order to obtain a scalable version. The
resulting algorithm is completely distributed and scalable.

In [5] the authors firstly propose an appropriate model for a low volt-
age microgrid, secondly they develop a completely distributed algorithm to
appropriately command a sub set of microgenerators to achieve an optimal
distribution losses minimization.



12 CHAPTER 1. INTRODUCTION

1.3 Short summary

This thesis is organized as follows:

• Chapter 2 presents the general model for the electric grid on wich
we have based the work. Consecutively, is presented a specific low
voltage microgrid model suitable either for the estimation topic or for
the reactive power compensation formulation.

• Chapter 3 presents the problem to deal with. Specifically it formu-
lates the estimation problem and its importance related to the reactive
power compensation. A centralized solution to the problem is devel-
oped.

• Chapter 4 introduces and develops two completely distributed and scal-
able technique to achieve the target. Specifically, firstly an ADMM
based solution is developed and proved. Secondly, a Jacobi-like algo-
rithm is proposed.

• Chapter 5 presents a full set of tests to validate the algorithms pro-
posed.

• Chapter 6 gathers the main features of the work done and gives some
ideas on what can be done in future.
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Notations

A. State variables

vi Magnitude of the voltage at the ith node.

θi Phase of the voltage at the ith node.

V Vector containing all voltages’ magnitude.

Θ Vector containing all voltages’ phase.

ii Magnitude of the current at the ith node.

φi Phase of the current at the ith node.

I Vector containing the magnitude of the current.

Φ Vector containing all currents’ phase.

xi Real of the voltage at the ith node.

yi Imaginary of the voltage at the ith node .

X Vector containing all the real parts.

Y Vector containing all the imaginary parts.

X = [X Y ]T Vector of all the state variables.

B. Measures

vmi Magnitude of the voltage at the ith node.

θmi Phase of the voltage at the ith node.

V m Vector containing all the magnitude of the voltages measured.

Θm Vector containing all the phases of the voltages measured.

si Real of the voltage at the ith node.

ri Imaginary of the voltage at the ith node.

S Vector of the real parts of the voltage.

R Vector of the imaginary parts of the voltage.

imi Magnitude of the current at the ith node.

φmi Phase of the current at the ith node.

hi Real of the current at the ith node.
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ki Imaginary of the current at the ith node.

H Vector of the real part.

K Vector of the real part.

C. Standard deviations

σv Standard deviation of the voltage magnitude error.

σθ Standard deviation of the voltage phase error.

σi Standard deviation of the current magnitude error.

σφ Standard deviation of the current phase error.

D. Functions

J(·) Objective Cost Function.

f(·) Current magnitude nonlinear function of the state.

g(·) Current phase nonlinear function of the state.

|·| Both the absolute value of a quantity or the cardinality of a set depending
on the context.

·T Transpose of a vector or matrix.

·̄ Complex conjugate of a complex quantity.

·∗ Both complex conjugate and transpose.

E. Matrixes and Vectors

In Identity matrix ∈ Rnxn.

1 Vector whose element are all equal to one.

1i Canonical vector whose elements are all equal to zero except for that in
position i.



Chapter 2

Grid Modeling

In this chapter we introduce in a general way an electric grid, starting from
the principal components. Atfer have described a commonly adopted model
of an electric grid ([14]) we present the specific model on which we will focus
in this thesis ([5]).

2.1 Grid Components

An electric grid consists of a series of electric components such as trans-
mission lines, loads, generators, transformers and capacitors. It is usually
assumed the power system to operate in the steady state under balance con-
ditions. This implies that all bus loads and branch flows will be three phase
and balanced, all transmission lines are fully transposed and all other series
or shut devices are symmetrical in the three phases [14]. These assumptions
allow the use of the single phase positive sequence equivalent circuit for mod-
eling the entire system. The following component models are commonly used
in representing the network.

2.1.1 Transmission Lines

Transmission lines are usually represented by a two-port π-model character-
ized by a series impedance of R + jX and a total line charging susceptance
of j2B corresponding to the equivalent circuit of figure 2.1

2.2 Component Modeling and Assumptions

Power system is assumed to operate in the steady state under balanced
conditions. This implies that all bus loads and branch power flows will
be three phase and balanced, all transmission lines are fully transposed,
and all other series or shunt devices are symmetrical in the three phases.
These assumptions allow the use of single phase positive sequence equivalent
circuit for modeling the entire power system. The solution that will be
obtained by using such a network model, will also be the positive sequence
component of the system state during balanced steady state operation. As
in the case of the power flow, all network data as well as the network
variables, are expressed in the per unit system. The following component
models will thus be used in representing the entire network.

2.2.1 Transmission Lines

Transmission lines are represented by a two-port 7r-model whose parameters
correspond to the positive sequence equivalent circuit of transmission lines.
A transmission line with a positive sequence series impedance of .R+ĵ f and
total line charging susceptance of j23, will be modelled by the equivalent
circuit shown in Figure 2.1.

Figure 2.1. Equivaient circuit for a transmission tine

2.2.2 Shunt Capacitors or Reactors

Shunt capacitors or reactors which may be used for voltage and/or reactive
power control, are represented by their per phase susceptance at the corre-
sponding bus. The sign of the susceptance value will determine the type of
the shunt element. It will be positive or negative corresponding to a shunt
capacitor or reactor respectively.

2.2.3 Tap Changing and Phase Shifting Transformers

Transformers with off-nominal but in-phasc taps, can be modeled as series
impedances in scries with ideal transformers as shown in Figure 2.2. The

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Figure 2.1: Equivalent circuit for a transmission line
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16 CHAPTER 2. GRID MODELING

2.1.2 Shunt Capacitors or Reactors

Shunt devices are represented by their susceptance at the corresponding bus
whose sign determines the type of shunt element. They can be used for volt-
age and/or reactive power control.

Consider an admittance Y = jB characterized the susceptance B

B =

{
ωL
− 1
ωC

the sign of B determines the type of shunt element so a positive value cor-
responds to a capacitor, alternatively a negative one to a reactor.

2.1.3 Transformers

Transformers can be modeled, as shown in figure 2.2, as series impedance
in series with an ideal transformers, where a represents the tap ratio which
can be a real value if the transformer is an in phase device or complex if is a
phase shifting device; m and k are the buses connected to the transformer.two transformer terminal buses m and /c are commonly designated as the

impedance side and the tap side bus respectively.

Figure 2.2. Equivatent circuit for an off-nominat tap transformer

The nodal equations of the two port circuit of Figure 2.2 can be derived
by first expressing the current flows ̂^ and î  at each end of the series
branch R + jJf. Denoting the admittance of this branch ^ — m by y, the
terminal current injections will be given by:

(2.1)

Substituting for ̂rn and

the final form will be obtained as follows:

(2.2)

where a is the in phase tap ratio. Figure 2.3 shows the corresponding two
port equivalent circuit for the above set of nodal equations.

Figure 2.3. Equivatent circuit of an in-phase tap changer

For a phase shifting transformer where the off-nominal tap value a, is
complex, the equations will slightly change as:

Copyright 2004 by Marcel Dekker, Inc. All Rights Reserved.

Figure 2.2: Equivalent circuit for a transformers

It is easy to see that the nodal equations of the two-port circuit, for the
more general case of a complex value of a, are

[
ik
im

]
=

[
y
|a|2 −y

ā

−y
a y

] [
vk
vm

]

where ā is the complex conjugate of a and y represents the admittance of
the l −m branch.

2.1.4 Loads and Generators

Loads and Generators are modeled respectively as negative or positive com-
plex power injection and therefore have no effect on the network model.
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2.2 Network Model

Modelling each component as above, we can build the general network model
of the system, that is the admittance matrix Y describing the Kirchhoff’s
current law at each bus:

I =

 i1...
iN

 =

Y11 · · · Y1N
...

...
YN1 · · · YNN


 v1

...
vN

 = Y V

where ik is the current injection and vk is voltage phasor, both at bus k;
Ykm is the (m, k) entry of the Y matrix representing the total admittance
between nodes m and k.

2.3 Smart Grid Model

For our specific problem, the model built is a bit different from the general
one, and almost similar to the one described in [5].

2.3.1 Mathematical Preliminaries

Let G = (V, E , σ, τ) be a directed graph, where V is the set of nodes (|V| = n),
E is the set of edges (|E| = r) and σ, τ : E → V are two functions such that
the edge e ∈ E goes from node σ(e) to node τ(e).
Two edges e, e′ are said to be consecutive if

{σ(e), τ(e)} ∩ {σ(e′), τ(e′)}

is not empty. A path is a sequence of consecutive edges. It is possible to
describe the graph through its incidence matrix A ∈ Rr×n defined as follows:

Aei =


-1 if i = σ(e);
1 if i = τ(e);
0 otherwise.

A graph is connected if exists a path connecting every pair of nodes. If this
is the case the vector 1 is the only one owning to the null space ker(A).

2.3.2 Model

Let us firstly define a smart grid (or microgrid depending on its dimensions)
as a portion of the power distribution network, described above, that is
connected to the power transmission network in one point, the PCC (point
of common coupling), and hosts a number of loads and power generators.
We consider the grid as a directed graph G = (V, E) whose edges E represent
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Figure 1. Schematic representation of the microgrid model. In the lower panel a circuit representation is given, where black

diamonds are microgenerators, white diamonds are loads, and the left-most element of the circuit represents the PCC. The

middle panel illustrates the adopted graph representation for the same microgrid. Circled nodes represent compensators (i.e.

microgenerators and the PCC). The upper panel shows how the compensators can be divided into overlapping clusters in order

to implement the control algorithm proposed in Section IV. Each cluster is provided with a supervisor with some computational

capability.

number y = |y|ej∠y whose absolute value |y| corresponds to the signal root-mean-square value, and

whose phase ∠y corresponds to the phase of the signal with respect to an arbitrary global reference.

In this notation, the steady state of a microgrid is described by the following system variables (see

Figure 1, lower panel):

• u ∈ Cn, where uv is the grid voltage at node v;

• ι ∈ Cn, where ιv is the current injected by node v;

April 15, 2012 DRAFT

Figure 2.3: Lower Panel: Electric point of view for the grid. Black diamonds rep-
resent loads, while white diamonds represent microgenerators.
Upper panel: graph interpretation of the grid. Circled nodes correspond
to microgenerators.

the power lines and nodes V both the loads and generators. Figure 2.3 shows
the correspondence between the electric and graph formulation for the grid.

We limit our study to the steady state behavior of the system, as mention
above. This let us represent all the signal via a complex number y = |y|ej∠y,
since they are sinusoidal wave of the same frequency. The absolute value
|y| represents the signal root mean square and the argument ∠y represents
its phase with respect to an arbitrary global reference (usually that of the
PCC).
The notation introduced above let us define the steady state of the system
as:

• v = V ejΘ ∈ Cn, where viejθi is the complex voltage of the ith node;

• i = IejΦ ∈ Cn, where iiejφi is the complex current of the ith node;

• ξ ∈ Cr, where ξe is the current flowing in the edge e.

It is useful to highlight the electric component specifically considered in our
model clarifying the differences existing between our model and that of sec-
tion 2.1.

Power lines are commonly described via the π-model characterized by,
see figure 2.4,
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• ze = re + jxe = 1
ge+jbe

: line impedance;

• yshe : shunt admittance.

We neglect the shunt devices and consider only the line impedance ze.

Network elements: power lines

The most commonly adopted model for power lines is the π-model.

Power lines are described by their series
impedance

ze = re + jxe =
1

ge + jbe
, re , xe > 0

while we neglect shunt admittances.

σ(e) τ(e)ze

y sh
e y sh

e

Power line equation

ξe =
uσ(e) − uτ(e)

ze

Figure 2.4: Equivalent circuit for a power lines

It is easy to see that the power line is described by the equation

ξe =
vσ(e) − vτ(e)

ze

For every edge e of the graph, we define by ze the impedance of the corre-
sponding power line. We assume the following.

Assumption 1. All power lines in the microgrid have the same induc-
tance/resistance ratio, i.e.

ze = ejθZ

for any e in ξ and for a fixed θ.
Z is a diagonal real-valued matrix, whose elements are Zee = |ze|.

This assumption is satisfied when the grid is relatively homogeneous, and
is reasonable in most practical cases (see for examples the IEEE standard
testbeds ([20]). The following physical constraints are satisfied by v, i, and
ξ

AT ξ + i = 0 (2.1)
Av + Zξ = 0 (2.2)

where A is the incidence matrix introduced above; Z = diag{ze; e ∈ E}
represents the diagonal matrix of line impedances.
Equation (2.1) corresponds to Kirchhoff’s current law (KCL) at the nodes,
while equation (2.2) describes the voltage drop on the edges of the graph.
From (2.1) and (2.2) we can olso obtain

i = ATZ−1Av = Lv (2.3)

where L represents the weighted Laplacian matrix of the graph, the nodal
admittance matrix in power system analysis.
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The PCC (point of common coupling) is modeled as a constant voltage
generator

vPCC = VNe
jθ0 = V0 (2.4)

where VN is the nominal voltage and θ0 is an arbitrary fixed angle. In the
power system analysis terminology, node 0 is then a slack bus with fixed
voltage magnitude and angle.

Differently from PCC, Loads are considered to require a given amount of
active and reactive power for example depending on the voltage amplitude vi.
Examples of this are constant impedance loads and constant power loads. To
describe in a unique way all different loads considered it is useful to exploit
the exponential model in which each node (except the PCC) is modeled via
a law relating the voltage vi and current ii. Specifically

viīi = si

∣∣∣ vi
VN

∣∣∣ηi (2.5)

where si is the nominal complex power and ηi is a characteristic parameter.
More specifically si is the value of the complex power that the node would
inject into the grid if the voltage at its point of connection is equal to VN .
The quantities

pv := <(sv) and qv := =(sv) (2.6)

are denoted as active and reactive power, respectively. The complex power
sv corresponding to grid loads are such that {pv < 0}, meaning that posi-
tive active power is supplied to the device; on the other hand, are such that
{pv ≥ 0}, as positive active power is injected into the grid. The parameter
ηi identify the device typology: for example constant power, constant cur-
rent and constant impedance loads are described respectively by ηi = 0, 1, 2.
See that generators fit this model for a parameter ηi = 0.

Finally, dealing with a low voltage power distribution network, trans-
formers, both tap changers and phase shifters, are neglected.

The three equations (2.4), (2.5) and (2.3) individuate a system of non
linear equation to be solved to determine the steady state of the grid starting
from the knowledge of the grid topology (identify by L) and the power de-
mand required by the nodes. This topic is extensively covered in literature
known as Power Flow Analysis. To our purpose is completely indifferent
how the grid is solved and we will assume on the following to exploit some
algorithm that performs it.
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2.4 Testing setup: IEEE test Feeders

Here are presented the specific tests setup used through this thesis. All
algorithm presented in the following has been tested on either one or both the
IEEE37 or IEEE123 [20] Radial Distribution Test Feeder. More specifically
the graphs describing the mentioned test feeder are presented in figure 2.5.

 

 The Institute of Electrical and Electronics Engineers,  Inc. 

IEEE 37 Node Test Feeder 

 
 
 
 
 

(a) 37 nodes test feeder graph

 

 The Institute of Electrical and Electronics Engineers,  Inc. 

IEEE 123 Node Test Feeder 

 
 (b) 123 nodes test feeder graph

Figure 2.5: Test Feeders graphs
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Chapter 3

State Estimation and Reactive
Power Compensation

This chapter is divided in two parts, both of crucial importance dor this
thesis. In the first part we introduce and develop the estimation problem for
an electric power grid. In the second one, we provide a formulation for the
reactive power compensation problem.

3.1 Model and Estimation Problem Formulation

3.1.1 Model

Consider a graph G = (V, E) representing the grid, as described in chapter
2, where V is the set of n nodes and E is the set of r edges.
It is assumed that every node can measure its current and voltage divided
into magnitude and phase, i.e.,

vmi = vi + evi ; evi ∼ N (0, σ2
v);

θmi = θi + eθi ; eθi ∼ N (0, σ2
θ);

imi = ii + eii ; eii ∼ N (0, σ2
i );

φmi = φi + eφi ; eφi ∼ N (0, σ2
φ);

where evi , eθi , eii and eφi represent the error introduced by the measure
itself1. All the measurements are assumed to be independent from each
other. Collecting all the measurements in vectors one can write

V m := V + eV ;
Θm := Θ + eΘ;
Im := I + eI ;
Φm := Φ + eΦ

1In a real set up every node of the grid is equipped by a PMU(Phasor Measurement
Unit).

23
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where, we recall, (see notations page 13)

V m =

v
m
1
...
vmN

 ;V =

 v1
...
vN

 ; eV =

ev1...
evN

 ;

and where Θm, Θ, eΘ, Im, I, eI , Φm, Φ and eΦ are defined similarly.
Now let us define the noise vector e = [eV eΘ eI eΦ]T . Then the correlation
matrix R for the noise is

R = E[eeT ] =


σ2
vIn

σ2
θIn

σ2
i In

σ2
φIn


We define the state of the grid as the voltage magnitude and phase at

every node. Then, it is well known that
V m = V + eV ;
Θm = Θ + eΘ;
Im = f(V,Θ) + eI ;
Φm = g(V,Θ) + eΦ

(3.1)

where, generally, f(·) and g(·) represent non linear current’s dependance on
the state.

Assumption 2. Measurements are taken all at the same time instant. There-
fore there is no synchronization noise.

In this thesis it is not considered, but it is not very difficult to include
also the synchronization noise in this model. (see [21])

3.1.2 Estimation Problem Formulation

In general, we can say that the state estimation problem in an electric grid is
reduced as a Weighted Least Squares Problem (see [14],[17]). Following this
way, we can define this cost function depending on the measurements

J(V,Θ) =
[
V m Θm Im Φm

]
R−1


V m

Θm

Im

Φm

 (3.2)

that is, explicitly,

J(V,Θ) =

n∑
i=1

{ 1

σ2
v

(vmi − vi)2 +
1

σ2
θ

(θmi − θi)2 +
1

σ2
i

(imi − f(V,Θ))2 +

+
1

σ2
φ

(φmi − g(V,Θ))2
}
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Eventually, if measurements of other nature are available, i.e. power (real
and reactive) injected, power flow exc..., they can be added to expression in
(3.2).
As a matter of fact, we want to underline that a novelty of this work stays
just in discarding them and using only current and voltage measures.

In order to estimate the state, we have to find the value (V̂ , Θ̂) of (V,Θ)
that minimizes the objective cost function, that is, to find the solution for
the optimization problem

min
V,Θ

J(V,Θ) (3.3)

The nonlinear dependance of I and Φ on V and Θ drives the above
optimization problem into the nonlinear unconditioned class of problems.
To solve it we can find a lot of techniques in the literature. For instance, all
methods based on the augmented Lagrangian technique.
However, this kind of algorithm may suffer of one of these disadvantages:

• the algorithm does non converge;

• the algorithm converge to a local but not global minima;

• the algorithm converge to the global minima but it requires a very long
running time to achieve the convergence.

In this thesis, in order to deal with the optimization problem in (3.3), we
pursue an approach based on a suitable linearized model of the electric grid.
Interestingly we will see how the linear model leads to a convenient closed
form solution.

3.1.3 Model Linearization

In the previous chapter we exploited the relation between complex value
current and voltage of the grid

i = Lu (3.4)

where L = ATZ−1A represents the admittance matrix of the grid; being A
and Z, respectively, the incidence and inductance matrix of the grid (see
chapter 2).

The basic idea to obtain a linear model is based on expressing the quanti-
ties of interest as function either of the real or imaginary part of the voltage,
instead of the actual representation, based on magnitude and phase. Split-
ting relation (3.4) into real and imaginary part we can obtain, for a single
node, (see page 13)

h+ jk = [<(L) + j=(L)] ∗ (s+ jr) = [<(L)s−=(L)r] + j[=(L)s+ <(L)r]
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that can be rewritten in a matrix form as[
h
k

]
=

[
<(L) −=(L)
=(L) <(L)

] [
s
r

]
Collecting all nodes values, the whole measures model becomes (see notations
page 13) 

S
R
H
K

 =


In 0
0 In
<(L) −=(L)
=(L) <(L)

[XY
]

+


eS
eR
eH
eK


Z = H · X + e (3.5)

where eS , eR, eH and eK denotes the noises of the measures with re-
spect to the real and imaginary parts; Z denotes the measures vector and H
denotes the model matrix and e the noises vector.

Note that (3.5) represents a suitable linear model for the measures with
respect to the new state variables, that are the real and imaginary part
of the nodes voltage.

To manage correctly this new representation, it is necessary to express
the noise in a suitable form, starting from the knowledge of the standard de-
viation of magnitude and phase measures. The noise expressed in this new
form is, in fact, textbfno more uncorrelated because, in general, part of the
magnitude and phase noise will be reprojected into both real and imaginary
part.

In order to understand this fact consider two generic vectors

x = ρejψ = ρ(cosψ + j sinψ);

x̃ = ρ̃ejψ̃ = (ρ+ δρ)ej(ψ+δψ) = (ρ+ δρ)(cos(ψ + δψ) + j sin(ψ + δψ))

where, clearly, δρ and δψ represent a sort of error affecting the exact values
ρ and ψ. It is possible to rewrite x̃, exploiting some trigonometric relations,
as

x̃ = ρ(cosψ + j sinψ) cos δψ + δρ(cosψ + j sinψ) cos δψ −
−ρ(sinψ − j cosψ) sin δψ − δρ(sinψ − j cosψ) sin δψ

To simplify the expression above we assume δψ small enough and, using
the McLaurin expansion for the sine and cosine functions, we get

x̃ ' ρ(cosψ + j sinψ)
(

1− δψ2

2

)
+ δρ(cosψ + j sinψ)

(
1− δψ2

2

)
−

−ρ(sinψ − j cosψ)δψ − δρ(sinψ − j cosψ)δψ
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Finally, taking a first order approximation, we get

x̃ ' ρ(cosψ + j sinψ) + δρ(cosψ + j sinψ)− ρ(sinψ − j cosψ)δψ

' x+ (δρ cosψ − ρ sinψ δψ) + j(δρ sinψ + ρ cosψ δψ)

that can be rewritten in a matrix form as

x̃ ' x+

[
cosψ − sinψ
sinψ cosψ

] [
δρ
ρ δψ

]
(3.6)

Equation (3.6) highlights the approximation exploited to project the error
measured in phase and magnitude into real and imaginary component.

Managing our error variables in a similar way, we can obtain (see [21])
the new noise correlation matrix:

R =


σ2
<(V )In σ<(V )=(V )In σ<(V )<(I)In σ<(V )=(I)In

σ=(V )<(V )In σ2
=(V )In σ=(V )<(I)In σ=(V )=(I)In

σ<(I)<(V )In σ<(I)=(V )In σ2
<(I)In σ<(I)=(I)In

σ=(I)<(V )In σ=(I)=(V )In σ=(I)<(I)In σ2
=(I)In


where for all i ∈ {1...n}, the diagonal block are equal to

σ2
<(V ) = σ2

v cos2 θ + σ2
θ(v

m
i )2 sin2 θ;

σ2
=(V ) = σ2

v sin2 θ + σ2
θ(v

m
i )2 cos2 θ;

σ2
<(I) = σ2

i cos2 φ+ σ2
φ(imi )2 sin2 φ;

σ2
=(I) = σ2

i cos2 φ+ σ2
φ(imi )2 cos2 φ;

representing the autocorrelation between quantities. The cross correlation
between the real and imaginary part of the voltage is

σ<(V )=(V ) =
(
σ2
v − σ2

θ(v
m
i )2

)
sin θ cos θ = σ=(V )<(V ).

Similarly the correlation between real and imaginary part of the current is

σ<(I)=(I) =
(
σ2
i − σ2

φ(imi )2
)

sinφ cosφ = σ=(I)<(I).

3.1.4 Closed Form Solution

Consider the linear model in (3.5), i.e,

Z = HX + e

It is possible to rewrite the objective cost function J(V,Θ) as

J(X) =
[
Z −HX

]T
R−1

[
Z −HX

]
(3.7)
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This cost function, being a linear function of the decision variable X, reduces
to the classical linear weighted least squares problem. It is well known that,
if the matrix (HTR−1H) is not singular, then the optimal solution X̂ can be
obtain in a closed form as

X̂ = (HTR−1H)−1HTR−1Z (3.8)

Dealing with Gaussian additive noise this solution coincides with the maxi-
mum likelihood estimation.

3.1.5 HTR−1H structure

This matrix does not assume a suitable form to be studied with some al-
gebraic method. Anyway, a deep empirical analysis shows not only its in-
vertibility but moreover its definite positivity as well. This assure the appli-
cability of the algorithm proposed in most of the practical situations. (see
[21])

3.2 Reactive Power Compensation

As explained in the Introduction, reactive power compensation is one of the
key-problems in which are involved the electric grids. Now we want to present
a control strategy similar to the one in [5]. Nevertheless, differently from [5],
we will not suppose to have perfect measurements, but instead we want to
deal with our noise measurements. Of course we cannot use them directly
in the algorithm, because raw data are usually subject to these problems:

• they are too inaccurate;

• they can collect outliers.

This leads to the use of filter data able to let the control algorithm efficiently
work.
To this point of view, the estimation represents the filtering of the measure-
ments to achieve a better knowledge of the real state of the grid. It is the
first necessary step to deal with a good control strategy.

Let us introduce the optimal reactive power flow problem, exploiting
what done in [5], to better understand it.

3.2.1 Problem Formulation

The metric, for the optimality of reactive power flows, is considered to be
the active power losses on the power lines. The total active power losses on
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the edges are then equal to

J ,
∑
e∈E
|ξe|2<(ze) = ūT<(L)u

It is assumed to be possible to command only a subset C ⊂ V of the nodes
of the grid, named compensators. A part of them is assumed to be equipped
with some sort of intelligence, as shown in figure 3.1 (uupper panel). In ad-
dition to this, we can work only on the amount of reactive power injected,
as the decision on the amount of active power follows imperative economic
criteria.

The problem of optimal reactive power injection at the compensators can
be expressed as a quadratic, linearly constrained problem, in the form

min
q

J(q), where J(q) =
1

2
qTRe(X)q (3.9)

subject to 1T q = 0

qv = Im(sv), v ∈ V \ C,
Im(sv), v ∈ V \ C being the nominal amount of reactive power injected by
the nodes that cannot be commanded.
The challenging part to solving the problem is that each node has only local
information.

To appropriately drive the microgenerators, the algorithm provided in [5]
implements a distributed optimal reactive power compensation. Specifically
the microgenerators are assumed to be organized into overlapping groups,
namely clusters, each of which coordinated by a cluster header equipped with
some intelligence unit (see figure 3.1).

3.2.2 Dual decomposition

In order to derive a control strategy to solve the ORPF problem, we apply the
tool of dual decomposition to (3.9). While problem (3.9) might not be convex
in general, we rely on the result presented in [22], which shows that zero
duality gap holds for the ORPF problems, under some conditions that are
commonly verified in practice. Based on this result, we use an approximate
explicit solution of the nonlinear equations to derive a dual ascent algorithm
that can be implemented by the agents. In order to present the approximate
solution, we need the following technical lemma.

Lemma 3. Let L be the complex valued Laplacian L := ATZ−1A. There
exists a unique symmetric matrix X ∈ Cn×n such that{

XL = I − 11T0
X10 = 0

(3.10)
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Figure 1. Schematic representation of the microgrid model. In the lower panel a circuit representation is given, where black

diamonds are microgenerators, white diamonds are loads, and the left-most element of the circuit represents the PCC. The

middle panel illustrates the adopted graph representation for the same microgrid. Circled nodes represent compensators (i.e.

microgenerators and the PCC). The upper panel shows how the compensators can be divided into overlapping clusters in order

to implement the control algorithm proposed in Section IV. Each cluster is provided with a supervisor with some computational

capability.

number y = |y|ej∠y whose absolute value |y| corresponds to the signal root-mean-square value, and

whose phase ∠y corresponds to the phase of the signal with respect to an arbitrary global reference.

In this notation, the steady state of a microgrid is described by the following system variables (see

Figure 1, lower panel):

• u ∈ Cn, where uv is the grid voltage at node v;

• ι ∈ Cn, where ιv is the current injected by node v;

April 15, 2012 DRAFT

Figure 3.1: Different schematic view of the grid. upper panel: division of mi-
crogenerators into overlapping clusters to implement the distributed
algorithm. middle panel: graph representation. Circled nodes rep-
resent microgenerators. lower panel: circuit representation. Black
diamonds are microgenerators and white are loads.

where, we recall, [10]v = 1 for v = 0, and 0 otherwise and I is the identity
matrix.

This matrix X depends only on the topology of the microgrid power lines
and on their impedance.
The effective impedance, Zeffuv, of the power lines for every pair of nodes (u,
v) can be represented by the following:

|Z|effuv = (1u − 1v)TX(1u − 1v) (3.11)

3.2.3 Distributed algorithm

The algorithm proposed in [5] is based only on a local knowledge, therefore
any central controller is not needed. The algorithm can be distributed across
the agents of the microgrid, that consist in decomposing the optimization
problem into smaller issues.
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All the compensators are divided into ` possibly overlapping sets C1, . . . , C`,
with

⋃`
i=1 Ci = C and the nodes of the same set, called cluster, are able to

communicate to each other, and they are therefore capable of coordinating
their actions and sharing their measurements.
The proposed optimization algorithm consists of the following repeated steps:

1. a set Ci(t) is chosen at a certain discrete time t = 0, 1, 2, . . . where
i(t) ∈ {1, . . . , `};

2. the agents in Ci(t), by coordinating their actions and communicating,
determine the new feasible state that minimizes J(q), solving the op-
timization subproblem in which all the nodes that are not in Ci(t) keep
their states constant;

3. the agents in Ci(t) actuate the system by updating their state (the
injected reactive power).

Partitioning q as

q =

[
qC
qV\C

]
where qC ∈ Rm are the controllable components and qV\C ∈ Rm−n are not
controllable. According to this partition of q, it is possible also the partition
of the matrix

<(X) =

[
M N
N Q

]
(3.12)

Introduced also the matrices m×m

Ω :=
1

2m

∑
h,k∈C

(1h − 1k)(1h − 1k)T = I − 1

m
11T ,

Ωi :=
1

2|Ci|
∑
h,k∈Ci

(1h − 1k)(1h − 1k)T =

= diag(1Ci)−
1

|Ci|
1Ci1

T
Ci

When the cluster Ci is fired its nodes perform th optimization:

qopt,iC := arg min
q′C∈qC+Si

J(q′C , qV\C) = qC − (ΩiMΩi)
#∇J, (3.13)

where
∇J = MqC +NqV\C = [Re(X)q]C ∈ Rm (3.14)

is the gradient of J(qC , qV\C) with respect to the decision variables qC .
This is computed via a distributed way:
if h /∈ Ci then

[
q
opt,i
C

]
h

= qh, if instead h ∈ Ci then:[
qopt,iC

]
h

= qh −
∑
k∈Ci

[
(ΩiMΩi)

#
]
hk

[∇J ]k (3.15)
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The Hessian matrix can be computed a priori thanks only to local knowl-
edge of the mutual effective impedances between pairs compensators.
Defining Reff

hk = <(Zeff
hk) through some computation is obteined that:

ΩiMΩi = −1

2
ΩiR

effΩi. (3.16)

Assume that nodes in Ci can measure the grid voltage at their point of
connection. Each agent k ∈ Ci compute

ν
(i)
k :=

1

|Ci|
∑
v∈Ci
|uv||uk| sin(∠uk − ∠uv − θ) (3.17)

After some computations is it possible to write the estimate gradient as:

[∇J ]k = − cos θ(Im(1TkXs̄)) (3.18)

The iterative algorithm proposed, based on all the above considerations,
works as follows: when the cluster Ci is activated the state of all the system
becomes qh(t + 1) = qh for all h /∈ Ci, while the node h ∈ Ci will inject the
new reactive power

qh(t+ 1) = qh − cos θ
∑
k∈Ci

[
(ΩiR

effΩi)
#
]
hk
ν

(i)
k (t), (3.19)

As we know the algorithm can be implemented by the agents of the microgrid
in a distributed way. In a preliminary, offline phase, each cluster computes
(ΩiR

effΩi)
# then, at every iteration of the algorithm:

• a cluster Ci is randomly chosen;

• every agent h not belonging to the cluster Ci holds its injected reactive
power constant;

• every agent h belonging to the cluster Ci senses the grid voltage at
its point of connection, computes ν(i)

h , and then updates its injected
reactive power according to 3.19.

3.2.4 Estimation and RPC

In order to underline the importance of State Estimation, we want to analyze
how the control algorithm is performing using filtered data (instead of raw
data). To this purpose, in chapter 5 we will present a lot of tests, using both
raw data and estimated data with the same algorithm. We will consider also
a slightly different algorithm, proposed in [13], in which are considered upper
and lower bounds for the reactive power that each node can share with the
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others. Thanks to those test, we will be able to show that the performances
of the algorithm using the estimated state are comparable to those obtained
using the grid real state (with no noise), while raw measurements cause an
algorithm behaviour totally undesirable.
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Chapter 4

Distributed Estimation
Algorithms

We now propose two completely distributed and scalable algorithms in
order to solve the estimation problem presented in the previous chapter. The
first one is the ADMM Estimator, for which we will prove the convergence
to the optimal value, while the second is the Jacobi-approximate Estimator,
a faster distributed algorithm, very useful if there is the concrete possibility
to employ better resources in some grid measurements.

Before describing the distributed algorithms, however, it is important
to investigate on why it is preferable to implement this kind of algorithms
respect to the centralized ones. There are a lot of advantages, not only from
the economical point of view, in managing whatever problem, if it is possible,
in a distributed way:

• we can avoid the huge computational effort, growing with the grid size,
of a centralized algorithm. Distributed algorithm are much "lighter"
from the computational point of view.

• we do not need to employ a central intelligence with which supervise the
entire grid, as for a distributed algorithm is sufficient a local knowledge.

• from the robustness point of view, imagine that an error occurs during
the running of the centralized algorithm. Then the entire procedure
fails and no information will be computed. In a distributed algorithm
different procedures are computed separately (often in an asynchronous
way), so the robustness is improved a lot.

4.1 Multi Area Decomposition

Let us introduce a decomposition for the grid suitable for the algorithms
that are going to be presented.

35
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Let us divide the grid into m non overlapping subset. Each subset rep-
resents a microgrid. Adjacent areas are supposed to be connected through
tie lines, called border lines, as shown in figure 4.1.

Figure 4.1: Grid divided into non overlapping areas

For each area a ∈ [1, ...,m] we have:

Xa internal state;

Za internal measures;

La internal inductance matrix (describing the internal topology);

Let Ωa ⊂ [1, ...,m] be the subset of adjacent areas of a.
Then, for each b ∈ Ωa we have:

Zab measures of the nodes of area b that direct communicate with some
node of area a;

Lab inductance matrix between area a and b ∈ Ωa (describes the communi-
cation topology).

Figure 4.2 well explain the quantities introduced.

Figure 4.2: Information relating two adjacent areas
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4.2 Alternating Direction Multiplier Method

The first solution we propose is based on the Alternating Direction Multiplier
Method (ADMM). This is an optimization technique based on the iterative
solution of an augmented Lagrangian problem.

It is well known from the literature that the the classical ADMM, be-
cause of its structure, can be implemented in a distributed way. However,
the flow of informations through different areas do not concern only local
informations, but global informations. This is a crucial point, that does not
make the algorithm scalable.

The novelty of our solution is based on [12] and on [21]. We will show how
to implement a local and scalable ADMM algorithm to solve the estimation
problem, and moreover we will show a complete proof about its convergence
to the solution of the equation (3.8).

Let us firstly introduce the classical ADMM procedure. Afterwards we
will present the scalable solution proposed.

4.2.1 ADMM classical

Considering the system 3.5, let us introduce a new notation, more suitable
for the ADMM algorithm that we are going to show, imposing

m =

m
(1)

...
m(N)

 ≡ Z; A =

A11 · · · A1N
...

...
AN1 · · · ANN

 ≡ H;

X =

x1
...
xN

 ≡ X; R =

R1

. . .
RN

 ≡ R.
It is possible to define the quadratic function, based on these new matri-

ces, more specifically on each row or block of rows,

fi(X) =
( N∑
j=1

Aijxj −m(i)
)T
R−1
i

( N∑
j=1

Aijxj −m(i)
)

Collecting all function fi, ∀i = 1 . . . N , is easy to get

F (X) =

N∑
i=1

fi(X) =
(
AX −m

)T
R−1

(
AX −m

)
(4.1)

whose optimal solution, X̂, is the well known

X̂ =
(
ATR−1A

)−1
ATR−1m
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Let us define X(i), i ∈ [1, . . . , N ], as the ith copy of the vector X, owning
to area i. Thanks to this it is possible to rewrite the minimization problem
referred to equation in (4.1) as

minimize
X(1)···X(N)

N∑
i=1

fi
(
X(i)

)
s.t. X(i) = X(j) ∀j ∈ Ni ∪ {i}

where Ni represents the subset of indices of areas adjacent to area i, but
excluding area i itself.

It is then possible to solve the minimization problem through the aug-
mented Lagrangian technique, introducing some redundant bonds that allow
us to manage the solution with the ADMM algorithm, as

minimize
X(1)···X(N)

N∑
i=1

fi
(
X(i)

)
s.t. X(i) = zij ; X

(i) = zji ∀j ∈ Ni ∪ {i}

The correspondent Lagrangian function is

L =
N∑
i=1

fi
(
X(i)

)
+

N∑
i=1

∑
j∈Ni∪{i}

λTij
(
X(i) − zij

)
+ µTij

(
X(i) − zji

)
+

+
c

2

N∑
i=1

∑
j∈Ni∪{i}

||X(i) − zij ||2 + ||X(i) − zji||2

This function can be solved through ADMM algorithm, which consists
of three main updating steps:

1. {
λij(t) = λij(t− 1) + c

(
X(i)(t)− zij(t)

)
µij(t) = µij(t− 1) + c

(
X(i)(t)− zji(t)

) (4.2)

2.
X(i)(t+ 1) = arg min

X(i)

L(X, z(t), λ(t), µ(t)) (4.3)

3.
zij(t+ 1) = arg min

zij
L(X(t+ 1), z, λ(t), µ(t)) (4.4)

With some manipulations of the updating step (proof is reported in the
appendix A) it is possible to rewrite the algorithm in a simpler way consisting
of only two updating step:

1.
λij(t) = λij(t− 1) +

c

2

(
X(i)(t)−X(j)(t)

)
(4.5)
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2.
X(i)(t+ 1) = arg min

X(i)

L(X,λ(t)) (4.6)

In this algorithm every area estimates the entire grid state, therefore the
flow of informations between areas is global and not local.

We are interested, instead, in a kind of algorithm in which every area is
able to compute its inner state X(i) in a distributed and local fashion, i.e.
only from the knowledge of its adjacent areas state.

4.2.2 ADMM scalable with Projector matrices

The first formulation we propose is the one in [21]. Let us start from the
usual state of the art formulation of ADMM minimization problem

minimize
X(1)···X(N)

N∑
i=1

fi
(
X(i)

)
s.t. X(i) = zij ; X

(i) = zji ∀i = 1 . . . N, ∀j ∈ Ni

(4.7)
We remind that X(1), . . . , X(N) are local copies of X

X =

x1
...
xN


where xi represents the inner state of area i.

To force the exchange of only local information between adjacent areas we
introduce the projector matrix Pi of dimension (

∑N
i=1 ni ×

∑N
i=1 ni), where

ni represents the dimension of the state of each area i.

Pi =


On1

. . .
Ini

. . .
OnN


which is a diagonal matrix with the ith block equal to an identity matrix
of dimension ni and zeros elsewhere. By multiplying Pi ·X, we are able to
extract the only component xi from the vector X. Indeed,

PiX =


0
...
xi
...
0


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Similarly it is possible to define the joint projector

Pij =

{
Pi i = j

Pi + Pj i 6= j

Note that, using the projector matrices, it is possible to rewrite the initial
problem as

minimize
X(1)···X(N)

N∑
i=1

fi
(
X(i)

)
(4.8)

s.t. PijX
(i) = Pijzij ; PijX

(i) = Pijzji ∀i = 1 . . . N, ∀j ∈ Ni

where the P matrices forces to involve only local information between adja-
cent areas.

From the previous proofs it is known that:

• λij(t) = λij(t− 1) + c
2

(
X(i)(t)−X(j)(t)

)
;

• zij(t) = X(i)(t)+X(j)(t)
2 ;

• λij(t) = µij(t) = −λji(t) = −µji(t) ∀t;

In addition, it is known that zij = zji, and so it is possible to rewrite the
Lagrangian as

L(X, z, λ) =
N∑
i=1

fi
(
X(i)

)
+

N∑
i=1

∑
j∈Ni∪{i}

[
2λTijPij

(
X(i)−zij

)
+c(X(i)−zij)TPij(X(i)−zij)

]
By eliminating the constant terms and using the previous equations, we get

X(i)(t+1) = arg min
X(i)

{
fi(X

(i))+
∑

j∈Ni∪{i}
X(i)TPij

(
2λij(t)+cX

(i)−2czij(t)
)}

Finally, through the first order optimality condition, we can obtain the op-
timal updating step in a closed form solution

X(i)(t+ 1) =
(
A(i)TR−1

i A(i) + cMi

)−1[
A(i)TR−1

i m(i) + U (i)(t)− Λ(i)(t)
]

where

Mi =
∑

j∈Ni∪{i}
Pij

Λ(i)(t) = Miλij(t)

U (i)(t) = cMizij(t)

Note that
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• if Pi = I ∀i = 1 . . . N, the algorithm turn to be equal to classical
implementation (4.7);

• This particular formulation of ADMM is completey local. Indeed, in
Mi, Ui, Λi is considered only local information, (terms depending on
j ∈ Ni), so the remaining parts of the vector could be neglected in the
computation. This makes the algorithm fully scalable and local;

4.2.3 ADMM scalable and compact

By inspecting the Pi matrices, it is easy to note that each one of them is a
sparse matrix. Indeed the larger part of its components is equal to 0 due
to the non-communication between non-adjacent areas. Now we want to
re-write this scalable algorithm in a more compact way, considering only the
components really involved in the minimization each time. Given

X(i) =

x
(i)
1
...
x

(i)
N


as a local copy of X owning to area i, the quadratic function we have to
minimize is

fi(X
(i)) =

( ∑
j∈Ni∪{i}

Aijx
(i)
j −m(i)

)T
R−1
i

( ∑
j∈Ni∪{i}

Aijx
(i)
j −m(i)

)
hence we can write

fi(X
(i)) = fi(x

(i)
j ) ∀j ∈ Ni ∪ {i}

We define the vector Y (i), that collects in a compact way all the states
useful for area i, that are x(i)

i and all the x(i)
j ∀j ∈ Ni

Y (i) =

 x
(i)
i{

x
(i)
j

}
j∈Ni


To be precise, this notation does not respect the sorting of the vector com-
ponents, because i = 1 . . . N . Formally we should write

Y (i) =


x

(i)
j1
...

x
(i)
j|Ni|+1

 i ∈ {j1, . . . , j|Ni|+1}

but the previous notation is much simpler and clear, so we will use that one,
generalizing for every i = 1 . . . N .
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Now it is possible to rewrite the initial problem as

minimize
Y (1)···Y (N)

N∑
i=1

fi
(
Y (i)

)
(4.9)

s.t. x
(i)
j = x

(j)
j ; x

(i)
i = x

(j)
i ∀i = 1, . . . , N, ∀j ∈ Ni

Applying the ADMM procedure to this problem and exploiting the first order
optimality conditions, one can obtain the closed form solution, which is equal
to

Y (i)(t+ 1) =
[(
Ã(i)TR−1

i Ã(i) + cM̃i

)]−1[
Ã(i)TR−1

i m(i) + Ũ (i)(t)− Λ̃(i)(t)
]

where

• Ã is obtained due to "compacting" the matrix A(i), considering only
non-zero columns, that are Aij columns with j ∈ Ni.
(ex. A(i) = [Ai1 0 Ai3 Ai4 0 · · · 0] =⇒ Ã(i) = [Ai1 Ai3 Ai4]);

• M̃i is obtained due to "compacting" the term Mi =
∑

j∈Ni
Pij into a

matrix of dimension |Ni + 1| × |Ni + 1|, with |Ni| + 1 in the position
corresponding to index i and 1 in the position corresponding to indexes
j, j ∈ Ni;

The other terms involved in the minimization are

Ũ (i)(t) =

 u
(i)
i (t){

u
(i)
j (t)

}
j∈Ni

 =

 c
2

∑
j∈Ni

(
x

(i)
i (t) + x

(j)
i (t)

){
c
2

(
x

(i)
j (t) + x

(j)
j (t)

)}
j∈Ni



Λ̃(i)(t) =

 λ
(i)
i (t){

λ
(i)
j (t)

}
j∈Ni

 =

λ(i)
i (t− 1) + c

2

∑
j∈Ni

(
x

(i)
i (t)− x(j)

i (t)
){

λ
(i)
j (t− 1) + c

2

(
x

(i)
j (t)− x(j)

j (t)
)}

j∈Ni



In order to show explicitly the distributed and asynchronous properties
of this algorithm, we provide the explicit ADMM procedure for this formu-
lation.

First of all we can write the minimization problem adding to the con-
straints some redundant variables that allow as to manage the solution with
the ADMM algorithm:

minimize
Y (1)···Y (N)

N∑
i=1

fi
(
Y (i)

)
(4.10)

s.t. x
(i)
i = z

(i,j)
i ; x

(i)
j = z

(i,j)
j

x
(i)
i = z

(j,i)
i ; x

(i)
j = z

(j,i)
j ∀i = 1, . . . , N, ∀j ∈ Ni
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This formulation leads to a Lagrangian function equal to

L =

N∑
i=1

{
fi
(
Y (i)

)
+

∑
j∈Ni∪{i}

[
λ

(i,j)
i

(
x

(i)
i − z

(i,j)
i

)
+ λ

(i,j)
j

(
x

(i)
j − z

(i,j)
j

)]
+

+
∑

j∈Ni∪{i}

[
µ

(i,j)
i

(
x

(i)
i − z

(j,i)
i

)
+ µ

(i,j)
j

(
x

(i)
j − z

(j,i)
j

)]
+

+
c

2

∑
j∈Ni∪{i}

[
||x(i)

i − z
(i,j)
i ||2 + ||x(i)

j − z
(i,j)
j ||2 + ||x(i)

i − z
(j,i)
i ||2 + ||x(i)

j − z
(j,i)
j ||2

]}

The ADMM updating steps are:

1. 
λ

(i,j)
i (t) = λ

(i,j)
i (t− 1) + c

(
x

(i)
i (t)− z(i,j)

i (t)
)

λ
(i,j)
j (t) = λ

(i,j)
j (t− 1) + c

(
x

(i)
j (t)− z(i,j)

j (t)
)

µ
(i,j)
i (t) = µ

(i,j)
i (t− 1) + c

(
x

(i)
i (t)− z(j,i)

i (t)
)

µ
(i,j)
j (t) = µ

(i,j)
j (t− 1) + c

(
x

(i)
j (t)− z(j,i)

j (t)
) (4.11)

2.
Y (i)(t+ 1) = argmin

Y (i)

L(Y (i), z(t), λ(t), µ(t)) (4.12)

3.
z(t+ 1) = argmin

z
L(Y (i)(t+ 1), z, λ(t), µ(t)) (4.13)

where, in the last two steps, for λ, µ and z we mean respectively all the
variables λ(∗,∗)

∗ , µ(∗,∗)
∗ and z(∗,∗)

∗ involved in the lagrangian term.
We suppose that node i has in memory:

Y (i)(t) =

 x
(i)
i (t){

x
(i)
j (t)

}
j∈Ni

 ; Z(i)(t) :=

 z
(i,j)
i (t){

z
(i,j)
j (t)

}
j∈Ni


Λ(i)(t) =

 λ
(i,j)
i (t){

λ
(i,j)
j (t)

}
j∈Ni

 ; M(i)(t) :=

 µ
(i,j)
i (t){

µ
(i,j)
j (t)

}
j∈Ni


Before doing step (4.11), it is clear that we need a sharing, and hence a

communication between neighbour nodes, because of the usage of the terms
z

(j,i)
i and z(j,i)

j , that are in the memory of the node j but not in the i’s one.
Thanks to this, by inspecting the lagrangian function it is easy to note

that the minimization step in (4.12) can be done asynchronously by the
algorithm, because the terms involved in the minimization belong all to the
area i.
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Finally, before doing step (4.13), asynchronously as before, we need a
sharing between neighbour areas again. Indeed, considering for example the
minimization in which are involved the terms z(i,j)

j , we have

z
(i,j)
j (t+ 1) = argmin

z
(i,j)
j

L(Y (t+ 1), z
(i,j)
j , λ(t), µ(t))

Discarding terms that are not depending on z(i,j)
j , the minimization becomes

z
(i,j)
j (t+ 1) = argmin

z
(i,j)
j

{
λ

(i,j)
j (t)

(
x

(i)
j (t+ 1)− z(i,j)

j (t+ 1)
)

+
c

2
||x(i)

j (t+ 1)− z(i,j)
j (t+ 1)||2 +

+µ
(j,i)
j (t)

(
x

(j)
j (t+ 1)− z(i,j)

j (t+ 1)
)

+
c

2
||x(j)

j (t+ 1)− z(i,j)
j (t+ 1)||2

}
exploiting the first order optimality condition, we obtain

z
(i,j)
j (t+ 1) =

x
(i)
j (t+ 1) + x

(j)
j (t+ 1)

2
−
λ

(i,j)
j (t) + µ

(j,i)
j (t)

2c

From this it is clear that we need to know the terms
{
x

(j)
j (t + 1)

}
j∈Ni

and{
µ

(j,i)
j (t)

}
j∈Ni

. With a similar process it is easy to demonstrate that in the

computation of the variables z(j,i)
j it is necessary to know the terms x(j)

j (t+1)

and λ(j,i)
j (t). Therefore we need a sharing of these terms, because they are

not in the memory of the node i.
We have shown a fundamental property: this algorithm works completely

in ad asynchronous way, hence the minimization steps are completely sepa-
rable in a distributed way.

4.2.4 Convergence of ADMM scalable

In this subsection we will show that the ADMM scalable converges to the
optimal solution for the problem 4.1. The proof exploits the work done in
[23], which treats problems in the form

minimize
x,z

F (x) +G(z) (4.14)

subject to Ax+Bz = c

with variables x ∈ Rn and z ∈ Rm, where A ∈ Rp×n, B ∈ Rp×m and
c ∈ Rp.

We know that, from [23], under these assumptions the algorithm con-
verges to the optimal value for (4.14), that is:

p∗ = inf
{
F (x) +G(z) | Ax+Bz = c

}
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After formulating the augmented Lagrangian

Lρ(x, z, λ) = F (x) +G(z) + λT (Ax+Bz − c) + (ρ/2)||Ax+Bz − c||22

we can write the ADMM iterations, that are

λk := λk−1 + ρ(Axk +Bzk − c)
xk+1 := argmin

x
Lρ(x, zk, λk)

zk+1 := argmin
z

Lρ(xk+1, z, λk)

where ρ > 0.

Therefore, in order to prove the convergence in our particular case of
study, it is sufficient to show that our problem is rewritable in in the form
(4.14).

Proof. First of all it is easy to note that in our particular case of study F
and G are closed, proper and convex (in fact, quadratic). In particular we
have G(z) ≡ 0 and

F (x) =
N∑
i=1

fi(x) =
(
Ax−m

)T
R−1

(
Ax−m

)
(4.15)

We start from the compact formulation of ADMM

minimize
Y (1)···Y (N)

N∑
i=1

fi
(
Y (i)

)
(4.16)

s.t. x
(i)
j = x

(j)
j ; x

(i)
i = x

(j)
i ∀i = 1, . . . , N, ∀j ∈ Ni

where, we remind,

Y (i) =

 x
(i)
i{

x
(i)
j

}
j∈Ni


Let us consider the constraints in (4.10). There are, for each node i:

• |Ni| constraints for x(i)
i = z

(i,j)
i (one for each j ∈ Ni);

• |Ni| constraints for x(i)
i = z

(j,i)
i (one for each j ∈ Ni);

• |Ni| constraints for x(i)
j = z

(i,j)
j (one for each j ∈ Ni);

• |Ni| constraints for x(i)
j = z

(j,i)
j (one for each j ∈ Ni).
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Let us define

Z̄(i) =



{
z

(i,j)
i

}
j∈Ni{

z
(j,i)
i

}
j∈Ni{

z
(i,j)
j

}
j∈Ni{

z
(j,i)
j

}
j∈Ni


Z̄(i) has dimension 4|Ni| × 1. Let us define moreover

A(i) =



1 0
...

. . .
1 0

1 0
...

. . .
1 0

0 1
...

. . .
0 1

0 1
...

. . .
0 1



; B(i) = −I4|Ni|

Each block of A(i) has dimension |Ni| × |Ni|+ 1. Using these new variables
it is possible to write in a compact way all the 4|Ni| constraints of (4.10):

A(i)Y (i) +B(i)Z̄(i) = 0 (4.17)

By collecting all A(i), B(i), Y (i) and Z̄(i) we can define

A =

A
(1)

...
A(N)

 ; B =

B
(1)

...
B(N)



x =

Y
(1)

...
Y (N)

 ; z =



{
z

(1,j)
1

}
j∈N1{

z
(j,1)
1

}
j∈N1

...{
z

(N,j)
N

}
j∈NN{

z
(j,N)
N

}
j∈NN


(4.18)

and obtain directly the formulation Ax+Bz = c as in 4.14, with c = 0.
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4.3 Jacobi approximate algorithm

Before seeing the reactive power compensation algorithms with the ADMM
estimation, we want to present briefly a new approximate Jacobi-like algo-
rithm, distributed and faster than ADMM. This algorithm, differently from
ADMM, does not converge to the optimal solution, but it can have a high
practical relevance if we are able to make some measurements more accurate
than the others.

For a deeper mathematical analysis of the Jacobi algorithm we remind
to [21].

Consider a linear model of the grid similar of that introduced in sub-
section 3.1.3. Suppose the grid divided into m areas according with section
4.1. It is possible to suitably sort the state vector, composed of the real and
imaginary part of the voltage nodes, as

X =


X1

X2
...

Xm

 =
[
X1 Y1 | X2 Y2 | · · · | Xm Ym

]T

This lets to highlight the single area state. Accordingly, the inductance
matrix L becomes

L =


L11 L12 · · · L1m

L21 L22 · · · L2m
...

Lm1 Lm2 Lmm


where Lij represents the part of L concerning area i and j; it identifies the
communication edges as well as the admittance line values.
Similarly, we have that the measures Z and noise e can be expressed as

Z =


Z1

Z2
...
Zm

 =



S1

R1

H1

K1

−−
...
−−
Sm
Rm
Hm

Km



; e =


e1

e2
...
em

 =



eS1

eR1

eH1

eK1

−−
...
−−
eSm

eRm

eHm

eKm


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It follows a correlation matrix R, for the noise vector e, equal to

R = E[eeT ] =


R1

R2

. . .
Rm


Ri has a structure similar to that seen in section 3.1.3 but it concernes only
measurements taken from the same area.

Accordingly to the state sorting, the matrix of model (3.5) will be char-
acterized by a similar structure. Specifically

H =

H1
...
Hm


Thanks to this sorting it is then possible to outline a specific linear model

for every area i ∈ [1, . . . ,m] of the form

Zi = HiX + ei = HiiXi +
∑
j 6=i
HijXj + ei;

Note that the matrix model is equal to

Hi =
[
Hi1 · · · Hii · · · Him

]

=


0 0
0 0

<(Li1) −=(Li1)
=(Li1) <(Li1)

· · ·
Ini 0
0 Ini

<(Lii) −=(Lii)
=(Lii) <(Lii)

· · ·
0 0
0 0

<(Lim) −=(Lim)
=(Lim) <(Lim)


whose block Hii is relative to the inner state and blocks Hij to other areas
state.

Distributed Solution

In section 3.1.4 it has been shown that the optimal global solution to the
centralized problem is equal to

X̂ =
(
HTR−1H

)−1
HTR−1Z

Exploiting the Jacobi procedure, the closed form solution, in a Jacobi
point of view, can be rewritten as

X̂i(t+ 1) =
(
HTiiR−1

ii Hii
)−1
HTiiR−1

ii

(
Zi −

∑
j 6=i
HijX̂j(t)

)
(4.19)
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The iterative step described by equation (4.19) shows how the single area
state estimation depends on its inner measures and its border nodes estima-
tion.

This let us handling only with local informations and to implement a
completely distributed algorithm:

1. each area i receive the border estimated state form adjacent areas
j ∈ Ωi;

2. estimates its inner state using equation 4.19;

3. sends to area j the estimated value of node i ∈ Ωj .

The idea that make this algorithm "competitive" in estimation scenario
is to measure with a more accurate instrument the border nodes of each area.
In this way we reduce the error in border measurements. As they are crucial
for a correct estimation, we will show a big set of simulation showing that
this algorithm performs a very good estimation and therefore has a good
behaviour applied to the reactive power compensation algorithm.
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Chapter 5

Testing results

In this chapter we are going to validate the algorithms previously described,
applying them to the reactive power compensation algorithms proposed in
[5] and in [13]. In order to do this, we presents a lot of simulations run over
the IEEE37 Test Feeder [20], whose graph is shown in figure 5.1

Figure 5.1: IEEE37 test feeder

For testing our algorithms, this grid has been divided according to the
multi area decomposition presented in figure 4.1. In particular, we divided

51
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the graph into 4 non-overlapping areas as in figure 5.2, with one compensator
(in red) for each area.

Figure 5.2: multi area decomposition of IEEE37

All tests that are going to be presented have been executed using MATLAB©
R2011b on aWin7 based computer with core i5 quad-core processor clocking
at 2.27GHz and 4GB of RAM.

5.1 Noise sizing

Let us assumed to measure both voltage and current at every node1, divided
into amplitude and phase. Such measurements are generated by calculating
a solution of the power flow problem (the complex voltage and current at
every node) and then corrupting it with a Gaussian additive noise. Hence
every node is characterized by a collection of values equal to:

vm = v + ev; ev ∼ N (0, σ2
V );

θm = θ + eθ; eθ ∼ N (0, σ2
Θ);

im = i+ ei; ei ∼ N (0, σ2
I );

φm = φ+ eφ; eφ ∼ N (0, σ2
Φ);

1In a real implementation every node is equipped with a PMU, which takes the mea-
surements.
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More specifically, as default standard deviation values, it is assumed that:

• σV = 10−2PCCV oltageAmplitue[V olt]: it means to let the measures to
have a standard deviation equal to 1% the PCC voltage amplitude. To
better understand it for a PCC voltage amplitude of 4.16KV it means
to have a measurement error of ' 10V on average;

• σI = 10−2imax[Ampere]: as seen for the voltage measures, it means
to let the current amplitude measurement being equal to 1% of the
maximum current on average;

• σθ = σφ = 10−2[rad]: for a 50Hz signal it means to measure a phase
with an almost maximum error of ' 100µs.

These values are chosen as standard values, it is just a convention. How-
ever, simulations have been executed for several values, greater and smaller
than the standard ones, to highlight the algorithms performances in different
situations.

It should be underlined that using smaller values of standard deviations
implies better or equal but absolutely not worse performances of the algo-
rithms. Similarly, using greater values of standard deviations implies worse
or equal but absolutely not better performances.

In order to a better comprehension and to make the reader able to match
immediately the performances, tests will be grouped according to the stan-
dard deviation values, considering both algorithms in the same analysis.

5.2 Performances of the algorithms

5.2.1 About Centralized Estimation

The centralized estimation is the starting point of our study. It represents the
optimal global solution to the estimation problem, that is the solution to the
equation 3.8. This estimator assumes the presence of a central unit over the
entire network, which is able to collect and process all nodes measurements.

In this thesis we are not going to analyze the behaviour of the central
estimation (for centralized simulations see [21]), we will just consider it as the
optimal solution Xopt, and we will use it in order to test the performances
of the different distributed estimations. In fact, the variable introduced
to understand immediately the estimation performance is ||Xopt −Xestim||,
where Xestim means the entire state obtained by collecting the distributed
solutions. This variable is our choice to express the distance between our
distributed solution and the optimal one. Formally, we have:

||Xopt −Xestim|| =

√√√√ n∑
i=1

(xopti − xestimi )2
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where xopti and xestimi are the single components respectively of Xopt and of
Xestim and n is the number of agents composing the state involved in the
estimation.

5.2.2 Tests setup

As mentioned above, we will consider both algorithms in the same moment,
in order to better understand the comparison of their performances. For
the ADMM estimation we will consider three times same algorithm, each
time with a different (increasing) number of iterations, to observe how the
solution can change simply reducing the number of ADMM iterations. Tests
proposed will consider:

• ADMM estimation with 10 iterations;

• ADMM estimation with 100 iterations;

• ADMM estimation with 1000 iterations;

• Jacobi-like algorithm with 2 iterations;

The last choice is imposed, because in every simulation we noted that the
state computed using the Jacobi algorithm, after the second iteration, re-
mains constant whatever is the number of iterations. This behaviour is
probably due to Matlab approximation. Executing the simulation, indeed,
a warning inform us that results can be inaccurate because of the structure
of the error matrix R.

The following tests are made up in this way: we will first present the
behaviour only of the estimation algorithm, analyzing the distance between
the optimal solution. Then we will apply the 4 different configurations to the
reactive power compensation algorithm, in order to see if the compensation
is acceptable or not.

To be precise, we have to highlight a convention applied in RPC al-
gorithm. In order to better plotting the results of the compensation with
ADMM and JACOBI, we supposed to compute the initial losses after having
estimated the state. If you want to know the initial losses before estimating,
you can consider the value related to noisy measurements. As the measure-
ments trend is sometimes completely undesirable, we will zoom the most
significant part of the graphics. Therefore in some cases it will not be pos-
sible to see the measurements trend, or part of it.

5.2.3 Performances for default values of noise standard de-
viations

Let us compare our algorithms for default values of standard deviations (see
section 5.1). Considering only the ADMM algorithm, in figure 5.3 we can
find the performances for each number of iterations.
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Figure 5.3: Distance from the optimal value - ADMM estimation

From the proof proposed in chapter 4, we know that the error plotted in
this figure converges to 0 for T →∞. However, for T = 1000 iterations, we
can note that the error is already very close to 0.

In order to compare the ADMM algorithm with the Jacobi-like one, we
have to make a slightly different comparison. Remembering the structure of
the Jacobi algorithm, indeed, we supposed a standard deviation ten times
smaller in the border nodes. Therefore, the optimal centralized solution is
obviously different from the ADMM one. Hence, in order to compare in a
correct way the 2 algorithms, we decided to plot a distance from the real
state of the network. In particular, we choose:

log10(||X −Xestim||)

where X means the real state of the network (the state with no noise).
As you can notice from the figure 5.4, Jacobi-like algorithm with just

two iterations estimates the state better than the 100 iterations ADMM,
but worse than 1000 iterations algorithm.

Let us then apply these estimation techniques to the reactive power com-
pensation algorithm explained in section 3.2. Results are plotted in figure
5.5.
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Figure 5.4: Distance from the real state - ADMM and JACOBI algorithms
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Figure 5.5: Reactive power compensation - ADMM and JACOBI algorithms
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Losses before Losses after Losses reduction respect
optimization [kW] optimization [kW] to no-noise init. losses

(optimal = 58.903) (optimal = 16.68 %)

Real State 70.692 58.903 16.68 %

ADMM 10 iter. 70.649 59.695 15.56 %

ADMM 100 iter. 70.676 59.027 16.50 %

ADMM 1000 iter. 70.670 58.907 16.67 %

JACOBI (2 iter.) 69.788 58.993 16.55 %

Noisy Measures 2420.718 83.840 -18.60 %

Table 5.1: Losses before and after optimization for different data set.

As you can notice from the table, Every data set presents an accept-
able behaviour, except for the noisy measurements. As we expected look-
ing estimation performances in figure 5.4, JACOBI algorithm is better than
ADMM100 but worse than ADMM1000, which is pretty equivalent to the
no-noise data set.

Let us now introduce a unique variable σ := σV = σI = σθ = σφ.
Now we are going to analyze the performances of the algorithms for different
values of σ, from 10−4 to 10−1.

All the following tests are compared to the theoretical minimum value
for the reactive power losses, that is 58.903 [kW].

Computational effort

It is important to deepen a bit more about the computational effort belonging
to these algorithms. Considering a real electric grid, indeed, it is reasonable
to suppose network state to have a dynamic evolution. Because of this, if we
want to apply directly these algorithms to a dynamic-state, it is necessary
to complete the estimation process very fast, before that the state changes
due to the dynamic evolution. Considering our algorithms, we have:

• tADMM10 ' 9 ms;

• tADMM100 ' 28 ms;

• tADMM1000 ' 230 ms;

• tJACOBI2 ' 5 ms;

From these values we can immediately note the fastness of the Jacobi
algorithm. However, we do not have to forget that for using this algorithms
we need a more precise measuring instruments, capable of reducing the error
of one order of magnitude.
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5.2.4 Performances for σ = 10−4
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Figure 5.6: Reactive power compensation for σ = 10−4

Losses before Losses after Losses reduction respect
optimization [kW] optimization [kW] to no-noise init. losses

Real State 70.692 58.903 16.68 %

ADMM 10 iter. 70.649 58.903 16.68 %

ADMM 100 iter. 70.789 58.903 16.68 %

ADMM 1000 iter. 70.670 58.903 16.68 %

JACOBI (2 iter.) 70.676 58.903 16.68 %

Noisy Measures 70.867 58.906 16.67 %

Table 5.2: Losses before and after optimization for different data set.

As you can notice, for σ = 10−4 it is not necessary any algorithm, be-
cause raw data provide a performance pretty similar to the real state. The
theoretical minimum is however reached by any algorithm.
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5.2.5 Performances for σ = 10−3
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Figure 5.7: Reactive power compensation for σ = 10−3

Losses before Losses after Losses reduction respect
optimization [kW] optimization [kW] to no-noise init. losses

Real State 70.692 58.903 16.68 %

ADMM 10 iter. 71.046 58.912 16.66 %

ADMM 100 iter. 70.756 58.904 16.67 %

ADMM 1000 iter. 70.703 58.903 16.68 %

JACOBI (2 iter.) 70.660 58.903 16.68 %

Noisy Measures 70.867 59.174 16.29 %

Table 5.3: Losses before and after optimization for different data set.

For σ = 10−3 all data sets up to ADMM10 are well performing, only
noisy measurements deviate a bit from the optimal value.
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5.2.6 Performances for σ = 5 · 10−3
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Figure 5.8: Reactive power compensation for σ = 5 · 10−3

Losses before Losses after Losses reduction respect
optimization [kW] optimization [kW] to no-noise init. losses

Real State 70.692 58.903 16.68 %

ADMM 10 iter. 73.466 59.166 16.30 %

ADMM 100 iter. 71.537 58.937 16.63 %

ADMM 1000 iter. 70.743 58.905 16.67 %

JACOBI (2 iter.) 72.201 58.920 16.65 %

Noisy Measures 713.206 64.854 8.26 %

Table 5.4: Losses before and after optimization for different data set.

As you can notice, already with σ = 5 · 10−3 the use of raw data is not
desirable, while both ADMM and JACOBI algorithm can provide a reactive
power compensation in a successful way, of course proportionally with the
number of ADMM iterations.
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5.2.7 Performances for σ = 3 · 10−2
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Figure 5.9: Reactive power compensation for σ = 3 · 10−2

Losses before Losses after Losses reduction respect
optimization [kW] optimization [kW] to no-noise init. losses

Real State 70.692 58.903 16.68 %

ADMM 10 iter. 73.466 68.728 2.78 %

ADMM 100 iter. 70.789 59.050 16.47 %

ADMM 1000 iter. 70.810 58.926 16.64 %

JACOBI (2 iter.) 66.902 59.016 16.52 %

Noisy Measures 19820.694 290.399 -310.79 %

Table 5.5: Losses before and after optimization for different data set.

For σ = 3 · 10−2, value slightly bigger than the default, it is clear that,
in addition to raw data, even ADMM10 become useless. On the contrary,
ADMM100, ADMM1000 and JACOBI algorithms still present a good perfor-
mance.
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5.2.8 Performances for σ = 5 · 10−2
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Figure 5.10: Reactive power compensation for σ = 5 · 10−2

Losses before Losses after Losses reduction respect
optimization [kW] optimization [kW] to no-noise init. losses

Real State 70.692 58.903 16.68 %

ADMM 10 iter. 263.347 109.571 -55.00 %

ADMM 100 iter. 114.320 59.673 15.59 %

ADMM 1000 iter. 73.854 58.961 16.59 %

JACOBI (2 iter.) 74.917 59.642 15.63 %

Noisy Measures 52022.472 646.674 -814.78 %

Table 5.6: Losses before and after optimization for different data set.

Plot referred to σ = 5 · 10−2 is zoomed in the most significant region,
discarding the trends of ADMM10 and of noisy measurements. We can note
that JACOBI and ADMM100 have a pretty similar performance. The only
algorithm which assures a compensation greater than 16% is ADMM1000.
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5.2.9 Performances for σ = 10−1
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Figure 5.11: Reactive power compensation for σ = 10−1

Losses before Losses after Losses reduction respect
optimization [kW] optimization [kW] to no-noise init. losses

Real State 70.692 58.903 16.68 %

ADMM 10 iter. 263.347 290.176 -310.48 %

ADMM 100 iter. 114.320 80.818 -14.32 %

ADMM 1000 iter. 73.854 59.357 16.03 %

JACOBI (2 iter.) 74.917 63.898 9.61 %

Noisy Measures 1.7692 · 105 ∞ –

Table 5.7: Losses before and after optimization for different data set.

For σ = 5 ·10−2 we obtain very interesting results. Considering the large
magnitude of the error (ten times bigger than the standard values), it is
clear that, except for the ADMM1000, every algorithm fails in the reactive
power compensation. However, it is interesting to note the difference between
the ADMM algorithm with 100 iterations and the JACOBI one. While for
σ = 5 · 10−2 the behaviours are pretty identical, with σ = 10−1 they are
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both unusable, but the JACOBI algorithm performs much better than the
ADMM100.

Moreover, we have to underline the importance of the state estimation,
looking the trend of the ADMM1000: despite of this huge error, the reactive
power compensation is performed with a distance of only 0.65% from the
compensation with the real state, that is the minimum theoretical value for
the reactive power losses.

In this case, σ = 10−1, we want to show the correctness of the estimation
process with the logarithmic plot, as done for default values of noise standard
deviations:
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Figure 5.12: Distance from the real state - ADMM and JACOBI algorithms

This figure presents results that are consistent with the performances
obtained with the application to the reactive power compensation algorithm.

5.2.10 Jacobi algorithm on a 6-areas divided grid

In order to show the good behaviour of JACOBI algorithm for a whatever
distributed configuration of the network, we want to present some tests based
on a different grid-setup. Let us consider the IEEE37 divided in 6 areas as
in figure 5.13.
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Figure 5.13: ieee37 divided in 6 areas
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Figure 5.14: Reactive power compensation for different value of σ
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This setup presents one compensator for each area, and so 6 compen-
sators (nodes in red). Let us compare the performances of the algorithm for
different values of σ. Minimum theoretical value for losses is 58.769 [kW].
Results are shown in figure 5.14

Losses before Losses after Losses reduction respect
optimization [kW] optimization [kW] to no-noise init. losses

Real State 70.692 58.769 16.87 %

σ = 10−3 70.692 58.771 16.86 %

σ = 10−2 69.940 58.943 16.62 %

σ = 3 · 10−2 88.980 60.487 14.44 %

σ = 5 · 10−2 81.780 61.615 12.84 %

σ = 10−1 91.313 69.782 1.29 %

Table 5.8: Losses before and after optimization for different data set.

Looking at the table and comparing results with the ones obtained before
with a 4-areas configuration, we can state that performances are substantially
equivalent.

5.2.11 Performances adding saturation constraints to each
power line

Now we want to apply ADMM and JACOBI estimation strategies to a reac-
tive power compensation algorithms with saturation constraints, treated in
[13]. In this algorithm we added power saturation constraints to each power
line. In [13] it has been demonstrated that in this new configuration the
algorithm does not reach always the optimal value because it can stop in a
local minimum, different from the global one. Then it has been implemented
a multi-hop strategy in order to reach anyway the optimal value. We will
show that the problem of non-convergence is present even with the estima-
tion algorithms, and moreover that ADMM and JACOBI performances with
the multi-hop strategy are pretty equal to the no-noise state ones.

We will analyze the algorithms for default value of noise standard devia-
tions, that is σ = 10−2, in the 4-areas configuration of IEEE 37 test feeder.

Let us start highlighting the behaviour without the multi-hop strategy.
Every algorithm does not reach the theoretical minimum value o f reactive
power losses, as shown in figure 5.15. We did not consider the performance
using raw measurements because it is completely undesirable.



5.2. PERFORMANCES OF THE ALGORITHMS 67

0 5 10 15 20 25 30 35 40 45 50

1.16

1.18

1.2

1.22

1.24

1.26

1.28

x 105

Iteration number

Lo
ss

es
 [W

]

          Average optimization execution (100 RUNS), 
σV = 10−2VPCC [V];  σI = 10−2Imax [A];  σθ = σφ = 10−2 [rad]

 

 

NO noise
minimum theoretical value
ADMM 10 iterations
ADMM 100 iterations
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Figure 5.15: Behaviour with saturation constraints on power lines

Losses before Losses after Losses reduction respect
optimization [kW] optimization [kW] to no-noise init. losses

(optimal = 115.227) (optimal = 14.45 %)

Real State 134.693 127.040 5.68 %

ADMM 10 iter. 134.498 127.728 5.17 %

ADMM 100 iter. 134.391 127.460 5.37 %

ADMM 1000 iter. 134.047 127.250 5.53 %

JACOBI (2 iter.) 136.588 128.020 4.95 %

Table 5.9: Losses before and after optimization with saturation constraints



68 CHAPTER 5. TESTING RESULTS

Introducing the multi-hop strategy, instead, both algorithms improve
their performances and approach the optimal value, as shown in figure 5.16.
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Figure 5.16: Behaviour with saturation constraints and multi-hop strategy

Losses before Losses after Losses reduction respect
optimization [kW] optimization [kW] to no-noise init. losses

(optimal = 115.227) (optimal = 14.45 %)

Real State 134.693 115.227 14.45 %

ADMM 10 iter. 136.052 115.330 14.38 %

ADMM 100 iter. 136.973 115.240 14.44 %

ADMM 1000 iter. 134.565 115.229 14.45 %

JACOBI (2 iter.) 137.285 115.227 14.45 %

Table 5.10: Losses before and after optimization with multi-hop strategy
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Conclusion

6.1 Results achieved

In this thesis we deal with the problem of estimation in low voltage power
networks. This is well known to be the starting point for controlling a net-
work since raw measurements are too inaccurate to work with. Specifically,
we proposed two separate algorithms capable of solving the estimation prob-
lem in a distributed and scalable way. In particular we formally proved that
the first one, based on the ADMM, converges to the optimal centralized
solution for the estimation problem.

Focusing on advantages and disadvantages of these algorithms, we have:

ADMM JACOBI-like
algorithm algorithm

completely scalable completely scalable
and distributed and distributed

converges to the leads only to an
maximum likelihood solution approximate solution

high computational effort very low computational effort
and time to converge and time to converge

deals with the does not deal with the
synchronization noise [21] synchronization noise

requires some more accurate
measurements on the network

Table 6.1: Advantages and disadvantages of ADMM and JACOBI algorithms

In addition to this, a specific power network control algorithm has been
tested to underline the importance of estimation. Specifically, a power losses
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reduction through reactive power compensation algorithm, with and without
saturation constraints ([5],[13]) has been chosen as prototype. The simula-
tions show how using the estimated state, respect to the raw measurements,
improves much more the performances, making them comparable with those
obtained using the exact state value. The measurements, instead, leads to
an undesirable behaviour.

6.2 Possible future developments

This thesis can be an interesting starting point to analyze in a deeper way
power networks with noisy measurements. We suggest some future develop-
ments that can be inspected starting from our results:

1. Study how the dynamic behaviour of a power grid can affect these
result, and eventually find a solution to dynamically estimate the state
of the network, i.e. with extended Kalman filter.

2. In order to apply the Jacobi-like algorithm to a real netweork, it can be
interesting to focus on measuring instruments available at the moment,
understand if it is possible to buy instruments capable of measuring
the voltages with a fixed order of magnitude of the error, and which is
eventually the price of these instruments.

3. Compare the algorithms presented in this thesis with other distributed
algorithms that are rising in the literature, i.e. Newton-Raphson based
algorithms, in order to understand which algorithm is best suited for
a particular controlling problem.



Appendix A

Proof of equations 4.5 and 4.6

Lemma 4. For each time instant t, the updating step of zij in the ADMM
algorithm is

zij(t+ 1) =
1

2c

(
λij(t) + µji(t) + c

(
X(i)(t+ 1) +X(j)(t+ 1)

))
(A.1)

Proof. Starting from 4.4 we have:

zij(t+ 1) = arg min
zij

L(X(t+ 1), z, λ(t), µ(t))

= arg min
zij

{
−(λTij(t) + µTji(t))zij +

c

2

[
||X(i)(t+ 1)− zij ||2 + ||X(j)(t+ 1)− zij ||2

]}
because all the other components does not depend on zij .

Through the first order optimality condition we have

−λij(t)− µji(t)− c
(
X(i)(t+ 1)− zij

)
− c
(
X(j)(t+ 1)− zij

)
= 0

and hence

zij(t+ 1) =
1

2c

(
λij(t) + µji(t) + c

(
X(i)(t+ 1) +X(j)(t+ 1)

))

Lemma 5. In general it is true that

λij(−1) = −µji(−1) =⇒ λij(t) = −µji(t) ∀t

Proof. The proof is done by induction. The base case is trivial, due to
a simple initialization λij(−1) = −µji(−1) = 0. Then, substituting the
expression of zij(t) obtained in A.1 in 4.2 we have{
λij(t) = λij(t− 1) + c

2

(
X(i)(t)−X(j)(t)

)
− 1

2

(
λij(t− 1) + µji(t− 1)

)
µji(t) = µji(t− 1) + c

2

(
X(j)(t)−X(i)(t)

)
+ 1

2

(
λij(t− 1) + µji(t− 1)

)
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By summing these equations we obtain

λij(t) + µji(t) = λij(t− 1) + µji(t− 1) +
c

2
· 0.

Applying the inductive hypothesis, the thesis follows.

Now, by substituting this equivalence in the zij equation we obtain

zij(t) =
X(i)(t) +X(j)(t)

2

Because of this, by simply substituting this expression in equations 4.2,
4.3 and 4.4, we can discard both zij and µij terms, obtaining the new for-
mulation for the ADMM algorithm described in equations 4.5 and 4.6.
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