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Abstract  
 

The objective of this work is to maximize the performance of a neural network 

that deals with multi-label classification, therefore it can associate several class labels to 

a sample. To achieve this, the network topology and therefore the structure has been 

modified: inserting / removing and exchanging the order of the various levels, modifying 

the value of the parameters linked to them (e.g. The number of hidden levels or the 

number of filters). This work proposes a new topology called LSTM_GRU composed by 

a Long Short-Term Memory and Gated Recurrent Units trained with variants of the Adam 

optimization approach. The proposed neural network topology is also combined with 

Incorporating Multiple Clustering Centers (IMCC), which further boosts classification 

performance. 

Multiple experiments on twelve data sets representing a wide variety of multilabel 

tasks demonstrate the robustness of the ensemble proposed, which is shown to 

overperform the state-of-the-art. 
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Introduction  

Multilabel learning deals with the common problem of associating a sample with 

multiple labels and has been successfully applied in various domains [1] such as tag 

recommendation [2], bioinformatics [3-6], information retrieval [7, 8], speech recognition 

[9, 10], and user reviews and negative comment classification [11, 12], to list a few.            

A dependable and robust method for enhancing the performance of multilabel models is 

to generate ensembles of classifiers [13, 14], with bagging one of the most popular 

method for producing ensembles that perform well across several multilabel classification 

benchmarks [15, 16]. 

In this paper, is proposed a new topology named LSTM_GRU for multilabel 

classification that combines in a sequential way Long Short-Term Memory (LSTM), 

dropout layer with a probability of 0.4%, Gated Recurrent Units (GRU) [17], another 

dropout layer with probability of 0.4%, a fully connected layer and a final sigmoid. A 

GRU can be conceptualized as a simplified Bidirectional Long Short-Term Memory 

(LSTM), both of which model hidden temporal states with some gating mechanisms and 

suffer from intermediate activations that are a function of low-level features.  

To ensure diversity in ensembles, LSTM and GRU networks are trained on different 

variants of Adam [18] optimization. Adam is best known for realizing low minima of the 

training loss. Ensembles of networks are built by applying different optimization 

approaches that boost the performance of the original Adam methods. Because Adam 

variants are unstable, they can augment diversity among classifiers. An additional 

improvement of performance is obtained by combining the proposed ensemble of LSTM 

and GRU with IMCC [7]. 

This thesis analyzes and discusses the results, based on 10 performance indicators, of the 

various topologies proposed. 

The effectiveness of the proposed ensemble is demonstrated by comparing its 

performance with several baseline approaches across twelve multilabel benchmarks.  

The first section introduces artificial neural networks and illustrates the main types 

of neural networks and their characteristics. 

The second explains the various levels used in the creation of the topologies which 

are instead described in the third chapter and the Adam optimization approach. 
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The third chapter illustrates the new topology created which has the best 

performance: LSTM_GRU. 

Finally, in the fourth section, are illustrated the twelve datasets used for the tests 

and  the experimental results of the various proposed ensembles are compared. 
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1.  Artificial neural networks 
 

1.1 Neural network 

Artificial Neural Networks are inspired by the principle of information processing 

in biological systems and are made up of mathematical representations of connected 

processing units called artificial neurons [34]. Like the synapses in a brain, each 

connection between neurons transmits signals whose strength can be amplified or 

attenuated by a weight that is continuously adjusted during the learning process. 

For the neural network a neuron can be represented in the following way:  

 

Figure 1.1.1 artificial neuron 

 

Each input xi has an associated weight wi. The sum of all weighted inputs, xi wi, 

is then passed through a nonlinear activation function f, to transform the preactivation 

level of the neuron to an output yj. For simplicity, the bias terms have been omitted. The 

output yj then serves as input to a node in the next layer. Several activation functions are 

available, which differ with respect to how they map a pre-activation level to an output 

value. The most commonly activation functions used are the rectifier function (where 

neurons that use it are called rectified linear unit (ReLU)), the hyperbolic tangent 

function, the sigmoid function and the softmax function. The latter is commonly used in 

the output layer as it can compute the probability of multiclass labels. 
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Typically, neurons are organized in networks with several layers. An input layer 

usually receives the data input and an output layer produces the final result. In between, 

there are zero or more hidden layers responsible for learning a non-linear mapping 

between inputs and outputs. The number of layers and neurons, among other property 

choices, such as the learning rate or the activation function (the function responsible for 

"signaling" to other neurons), cannot be learned by the learning algorithm. They are the 

hyperparameters of a model and must be set manually. 

The three characteristic elements of each network are: 

• the structure of the nodes, 

• the network topology, 

• the learning algorithm used to find the weights of the network.  

 

 

1.2 Deep learning and CNN 

Deep learning exploits so-called “deep” neural networks (Deep neural networks) 

composed of at least two hidden levels and inspired by the functioning of the visual 

system of living organisms. A very common type of "deep" networks are convolutional 

ones (CNN). They are variants of MLP networks and are mainly used for classification 

or regression problems. One of the main reasons for their diffusion is that, unlike MLP 

networks, CNNs exploit two features to reduce their complexity: local processing and 

shared weights. In the first case the neurons are only locally connected to the neurons of 

the previous level, while in the second the weights of the connections are shared by groups 

of neurons. These peculiarities of convolutional neural networks allow to drastically 

reduce both the number of connections and that of the weights. Convolutional networks 

are also distinguished by the block construction, these in fact exploit layers of 

convolution, pooling, activation and completely connected layers. The convolution and 

pooling layers in particular perform the function of "pre-processing" the data, which is 

why CNNs use input preprocessing to a minimum. CNNs are very efficient in recognizing 

images and videos, in recommending systems, in natural language processing and are 

recently used in the field of bioinformatics. 
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1.3 Recurrent Neural Network 

Recurrent neural networks are a type of artificial neural network designed to 

recognize patterns in sequences of data, such as numerical times series data emanating 

from sensors, stock markets and government [35]. What differentiates RNNs from other 

neural networks is that they take time and sequence into account, they have a temporal 

dimension. While in feed-forward neural network (e.g., traditional ANNs and DNNs) 

every node (i.e. neuron) is connected only to nodes of the subsequent layer, in RNNs a 

node can have connections with others of his layer or even previous ones. 

This topology is particularly indicated to generate a sort of memory effect, which 

allows temporal information of the sequential pattern to be preserved through time. To be 

more precise, the decision a recurrent net reached at time step t-1 affects the decision it 

will reach one moment later at time step t. At time step t, nodes with recurrent edges 

receive input from the current data point x(t) and also from hidden node values h(t−1) in the 

network’s previous state [36]: ℎ(𝑡) =  𝑓(ℎ(𝑡−1),  𝑥(𝑡)) (1.3.1) 

Unfortunately, most of RNNs suffer from short-term memory caused by the 

vanishing gradient problem, which is also prevalent in other neural network architectures 

like CNNs. As the RNN processes more steps, it has troubles retaining information from 

previous steps. To mitigate this problem, two specialized recurrent neural networks were 

created: Long Short-Term Memory (LSTM) and Gated Recurrent Unit (GRU). LSTM’s 

and GRU’s essentially function just like RNN’s, but they’re capable of learning long-

term dependencies using mechanisms called gates. These are different tensor operations 

that can learn what information to add or remove to the hidden state [37]. 

 

 

1.4 Temporal Convolutional Neural Network 

Temporal Convolutional Neural Networks (TCNs) [26] are a class of neural 

networks that exploits a hierarchy of convolutions to perform fine-grained detection of 

events in sequence inputs. Like we’ve already seen, RNNs represent the most useful 

networks to deal with sequential samples. However, as has been demonstrated by Bai et 
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al. [38], Convolutional Neural Networks (CNNs) can equal or even outperform recurrent 

approaches. 

The most relevant characteristics of TCNs are the use of 1D convolutions over time 

that are stacked together to create a deep network. This sequence of convolutions make 

learning through time possible.  Besides, the convolutions of each layer have dilation 

factor that increases exponentially over the layers, letting the first layers look for short-

term connections in the data and deeper layer can spot longer-term dependencies based 

on the feature extracted by previous layers. This allows TCNs to have a large receptive 

field, overcoming one of the well-known limitations of most RNN architectures. 

Receptive field size can be determined as follows: 

 𝑅 =  (𝑓 − 1)(2𝐾 − 1) + 1 (1.4.1) 

where f is the filter’s size and K is the number of convolutional layers.  The dilation factors 

of the convolutions are 2(k-1) where k is the number of the layer. 

 

 

Figure 1.4.1. TCN internal structure example, d is dilatation factor 

 

 

1.5 Performance indicators 

Multi-label classification is evaluated using several performance indicators so that 

results can be compared with previous studies. Let 𝑋 be a data set that includes 𝑚 samples 𝒙𝑖 ∈ ℜ𝑑, each having an actual label 𝒚𝒊  ∈  {0, 1}𝑙, where 𝑙 is the number of labels. Letting 𝐻 and 𝐹 be the set of predicted labels, where 𝒉𝒊  ∈  {0, 1}𝑙 is the predicted label vector 

for sample 𝒙𝑖, and 𝒇𝑖 ∈ ℜ𝑙 is the confidence relevance of each prediction. The following 

performance indicators [7] can be defined for 𝐻 and 𝐹:  



8 
 

 

• Hamming loss is the fraction of misclassified labels,  

HLoss(H) =  1ml ∑ ∑ I(𝐲i(j) ≠  𝐡i(j))l
j=1  m

i=1 (1.5.1) 

where 𝐼() is the indicator function. Hamming Loss is a loss function and should be 

minimized: if the hamming loss is 0, there is no error in the predicted label vector. 

 

• One error is the fraction of instances whose most confident label is wrong. Since it is an 

error, it should be minimized:  

OneError(F) =  1𝑚 ∑ 𝐼 (𝒉𝑖 ≠  𝒚𝑖 (𝑎𝑟𝑔𝑚𝑎𝑥𝑗 𝒇𝑖) ) 𝑚
𝑖=1 (1.5.2) 

 

• Ranking Loss is average fraction of reversely ordered label pairs for each instance. It can 

be obtained from the confidence value considering the number of confidence couples 

correctly ranked (i.e., a true label is ranked before a wrong label). Ranking loss is a loss 

function, so it should be minimized. 

 

• Coverage is the average number of steps needed to move down the ranked label list of an 

instance so as to cover all its relevant labels. Coverage should be minimized. 

 

• Average precision is the average fraction of relevant labels ranked higher than a 

particular label. It should be maximized. 

For the problem of ATC classification, another set of indicators is usually adopted [19]: 

 

• Aiming is the ratio of correctly predicted labels over the practically predicted labels:  Aiming(H) =  1𝑚 ∑ ‖𝒉𝑖 ∩ 𝒚𝑖‖‖𝒉𝑖‖  𝑚
𝑖=1 (1.5.3) 

 

• Recall, it is the rate of the correctly predicted labels over the actual labels: Recall(H) =  1𝑚 ∑ ‖𝒉𝑖 ∩ 𝐲𝑖‖‖𝐲𝑖‖  𝑚
𝑖=1 (1.5.4) 
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• Accuracy, it is the average ratio of correctly predicted labels over the total labels:  Accuracy (H) =  1𝑚 ∑ ‖𝒉𝑖 ∩ 𝐲𝑖‖‖𝒉 ∪ 𝐲𝑖‖  𝑚
𝑖=1 (1.5.5) 

 

• Absolute true, it is the ratio of the perfectly correct prediction events over the total 

prediction events: AbsTrue(H) =  1𝑚 ∑ 𝐼(𝒉𝑖 == 𝐲𝑖) 𝑚
𝑖=1 (1.5.6) 

 

• Absolute false, it is the ratio of the completely wrong predictions over the total prediction 

events:  

AbsFalse(H) =  1𝑚 ∑ ‖𝒉𝑖 ∪ 𝐲𝑖‖ − ‖𝒉𝑖 ∩ 𝐲𝑖‖𝑙  𝑚
𝑖=1 (1.5.7) 

 

These last five indicators are inside the range in [0-1] and should be maximized, 

except for Absolute false. 

 

 

1.6 Related Works 

An early application of deep learning to the problem of multilabel classification 

was the work by Zhang et al., [20], which applied a simple feed forward network to the 

functional genomics problem in computational biology. Within the last few years, there 

has been a growing body of work applying deep learning to a host of multilabel problems 

in which GRUs have formed the core in several systems. In [21], for example, the authors 

analyzed sentiment in tweets by taking the topics extracted by a C-GRU (Context-aware 

Gated Recurrent Units). In [22], a new computational method called NCBRPred was 

proposed to predict the nucleic acid binding residues based on the multilabel sequence 

labeling model, which used the bidirectional Gated Recurrent Units (BiGRUs) to capture 

the global interactions among the residues. In [23], the authors proposed a system 

composed of an Inception model and GRU to identify nine classes of arrhythmias.  
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In [7] a powerful data augmentation approach was proposed for multilabel training that 

incorporated multiple cluster centers, an approach the authors call IMCC.  
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2. Layers and optimization approach 
This section explains the different levels used to create the various topologies and the 

Adam optimization approach. 

 

2.1 Long Short-Term Memory (LSTM) 

An LSTM layer learns long-term dependencies between time steps in time series 

and sequence data. The layer performs additive interactions, which can help improve 

gradient flow over long sequences during training. 

This diagram illustrates the flow of a time series X with C features (channels) of 

length S through an LSTM layer. In the diagram 2.1.1, ht and ct denote the output (also 

known as the hidden state) and the cell state at time step t, respectively. 

 

Figure 2.1.1 LSTM layer architecture [24] 

 

The first LSTM block uses the initial state of the network and the first time step of the 

sequence to compute the first output and the updated cell state. At time step t, the block 

uses the current state of the network (ct−1, ht−1) and the next time step of the sequence to 

compute the output and the updated cell state ct. 
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The state of the layer consists of the hidden state (also known as the output state) and 

the cell state. The hidden state at time step t contains the output of the LSTM layer for 

this time step. The cell state contains information learned from the previous time steps. 

At each time step, the layer adds information to or removes information from the cell 

state. The layer controls these updates using gates. 

The basic components of a LSTM are an input gate, forget gate cell candidate and 

output gate: the first determines level of cell state update, the second determines level of 

cell state reset (forget), the third adds information to cell state and the fourth controls 

level of cell state added to hidden state. Let 𝑥𝑡 be the input sequence and initialize ℎ0 =0. Then it’s define the input gate 𝑖𝑡 , the forget gate 𝑓𝑡 , the cell candidate 𝑔𝑡 and the 

output gate 𝑜𝑡 as: 𝑖𝑡 = 𝜎𝑔(𝑊𝑖𝑥𝑡 + 𝑅𝑖ℎ𝑡−1 + 𝑏𝑖) (2.1.1) 𝑓𝑡 = 𝜎𝑔(𝑊𝑓𝑥𝑡 + 𝑅𝑓ℎ𝑡−1 + 𝑏𝑓) (2.1.2) 𝑔𝑡 = 𝜎𝑐(𝑊𝑔𝑥𝑡 + 𝑅𝑔ℎ𝑡−1 + 𝑏𝑔) (2.1.3) 𝑜𝑡 = 𝜎𝑔(𝑊𝑜𝑥𝑡 + 𝑅𝑜ℎ𝑡−1 + 𝑏𝑜) (2.1.4) 

 

where 𝑊𝑖, 𝑅𝑖, 𝑏𝑖, 𝑊𝑓 , 𝑅𝑓 , 𝑏𝑓 , 𝑊𝑔, 𝑅𝑔, 𝑏𝑔, 𝑊𝑜 , 𝑅𝑜 , 𝑏𝑜 are matrices and vectors and 𝑜𝑔 denotes 

the gate activation function, σc denotes the state activation function. LSTM 

layer function, by default, uses the sigmoid function given by 𝜎(𝑥) = (1 +  𝑒−𝑥)−1 to 

compute the gate activation function. 

Then it’s define: c𝑡 =  𝑓𝑡 ʘ 𝑐𝑡−1 +  𝑖𝑡ʘ 𝑔𝑡 (2.1.5) 

 

to be the cell state, where ʘ is the Hadamard (component-wise) product.  

Then the output vector is: 

 ℎ𝑡 = 𝑜𝑡 ʘ 𝜎𝑐(𝑐𝑡 ) (2.1.6) 

 

The LSTM layer function, by default, uses the hyperbolic tangent function (tanh) 

to compute the state activation function. 
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2.2 Gated Recurrent Unit (GRU) 

GRUs are a gating mechanism in recurrent neural networks, created by Cho et al. 

[17]. They are used to increase the length of term dependencies from the input and handle 

the gradient vanishing problem. This problem is encountered when training deep neural 

networks with gradient-based learning methods (backpropagation). The problem is that 

in some cases, the gradient will be vanishingly small, effectively preventing the weight 

from changing its value. Also, this may completely stop the neural network from further 

training. Non-linear activation functions such as sigmoid function have gradients in the 

range (0,1], and backpropagation computes gradients by the chain rule. This has the effect 

of multiplying n of these small numbers to compute gradients of the early layers in an n-

layer network, meaning that the gradient decreases exponentially with n while the early 

layers train very slowly. 

GRU can be considered as a simple Long-Short Term Memory (LSTM) variant. 

Differently from LSTM, GRU has a gate that lets the network decide which part of the 

old information is relevant to understand the new information [25]. GRU has also fewer 

parameters and generally has a better performance on smaller data sets. 

A GRU layer learns dependencies between time steps in time series and sequence data. 

The basic components of a GRU layer are a reset gate and an update gate: the first 

determines how much old information to forget, the second determines what information 

should forget and what information should pass to the output. Let 𝑥𝑡 be the input sequence 

and initialize ℎ0 = 0. Then it’s define the update gate vector 𝑧𝑡 and the reset gate vector 𝑟𝑡 as: 𝑧𝑡 = 𝜎(𝑊𝑧𝑥𝑡 + 𝑈𝑧ℎ𝑡−1 + 𝑏𝑧) (2.2.1) 𝑟𝑡 = 𝜎(𝑊𝑟𝑥𝑡 + 𝑈𝑟ℎ𝑡−1 + 𝑏𝑟) (2.2.2) 

 

where 𝑊𝑧 , 𝑈𝑧 , 𝑏𝑧 , 𝑊𝑟 , 𝑈𝑟 𝑏𝑟 are matrices and vectors and 𝜎 is the sigmoid function. Then 

it’s define: ℎ̂𝑡 = 𝜙(𝑊ℎ𝑥𝑡 + 𝑈ℎ(𝑟𝑡 ʘ ℎ𝑡−1) + 𝑏ℎ) (2.2.3) 

 

to be the candidate activation vector, where 𝜙 is the tanh activation and ʘ is the 

Hadamard (component-wise) product. Notice that the term 𝑟𝑡 determines the amount of 

past information that is relevant for the candidate activation vector. Then 
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 ℎ𝑡 = (1 − 𝑧𝑡) ʘ ℎ𝑡−1 + 𝑧𝑡 ʘ ℎ̂𝑡 (2.2.4) 

 

is the output vector. The update gate vector 𝑧𝑡 measures the amount of old and new 
information to keep. 

 

 

 

2.3 Dropout  

A dropout layer randomly sets input elements to zero with a given probability. At 

each training stage, individual nodes are either dropped out of the net with probability (1-

p) or kept with probability p, so that a reduced network is left; incoming and outgoing 

edges to a dropped-out node are also removed. It is an approach to regularization in neural 

networks which helps reducing interdependent learning amongst the neurons.  

 
 

Figure 2.3.1 Effect of dropout layer [27] 
 
 

Dropout forces a neural network to learn more robust features that are useful in 

conjunction with many different random subsets of the other neurons. 

It roughly doubles the number of iterations required to converge. However, training time 

for each epoch is less. 
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2.4 Convolutional  

Convolutional layers are the major building blocks used in convolutional neural 

networks. A convolution is the simple application of a filter to an input that results in an 

activation. Repeated application of the same filter to an input results in a map of 

activations called a feature map, indicating the locations and strength of a detected feature 

in an input, such as an image. It modifies input features by executing simple mathematical 

operations with other local features. This may help the model generalize better by 

consenting features to achieve a higher special independence.  

To perform a convolution, it is often necessary to use Stride and Padding operations 

to optimize the output. 

The first is when a filter is slid on the input volume, instead of moving in unit steps 

(of 1 neuron) a larger step (or Stride) can be used. This operation reduces the size of the 

feature maps in the output volume and consequently the number of connections. 

Padding is a further possibility (to adjust the size of the feature maps) is to add a 

border (zero values) to the input volume. The Padding parameter denotes the thickness 

(in pixels) of the border. Padding is useful for filtering the side bits of the image, as 

without it is not possible to filter these pixels. Without padding, all edge pixels are 

analyzed by a very small number of filters, as the filters cannot exit the matrix, thus 

leading to a shrinking (size reduction) of the output and a loss of information. 

 

 

2.5 Batch-normalization 

Batch-normalization is a technique for training very deep neural networks that 

standardizes the inputs to a layer for each mini-batch. This has the effect of stabilizing 

the learning process and dramatically reducing the number of training epochs required to 

train deep networks. 

 

 

2.6 Pooling 

Pooling is an important layer that executes the down-sampling on the feature maps 

coming from the previous layer and produces new feature maps with a condensed 
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resolution. This layer drastically reduces the spatial dimension of input. It serves two 

main purposes. The first is to reduce the number of parameters or weights, thus lessening 

the computational cost. The second is to control the overfitting of the network. An ideal 

pooling method is expected to extract only useful information and discard irrelevant 

details. There are a lot of methods for the implementation of pooling operation in Neural 

Networks (e.g. Average Pooling, Max Pooling, GlobalMAx Pooling). 

 

2.7 Fully connected layer 

Fully Connected layers in a neural network are those layers where all the inputs 

from one layer are connected to every activation unit of the next layer. In most popular 

machine learning models, the last few layers are fully connected layers which compiles 

the data extracted by previous layers to form the final output. It is the second most time-

consuming layer after Convolution Layer. 

The fully connected layer is composed by l neurons (l is the number of output labels 

of a given problem) fully connected with the previous layer. 

 

2.8 Sigmoid Layer 

A sigmoid function is used as activation of this final layer in order to report the 

activations to the range [0…1] which can be interpreted as the final probabilities (i.e. 

confidence relevance) of each label. Therefore, the output of the model is a multi-label 

classification vector: the output of each neuron of the fully connected layer provides a 

score (ranging from 0 to 1) for a single label. 

 

2.9 Adam optimizer 

Adam is an optimizer introduced in [18] which that computes adaptive learning 

rates for each parameter combining the ideas of momentum and adaptive gradient. Its 

update rule is based on the value of the gradient at the current step, and on the exponential 

moving averages of the gradient and its square. To be more precise, Adam defines the 

moving averages mt (the first moment) and ut (the second moment) as:   𝑚𝑡 = 𝜌1𝑚𝑡−1 + (1 − 𝜌1)𝑔𝑡 (2.9.1) 
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𝑢𝑡 = 𝜌2𝑢𝑡−1 + (1 − 𝜌2)𝑔𝑡 2 (2.9.2) 

where 𝑔𝑡 is the gradient at time t, the square on 𝑔𝑡 stands for the component-wise square, 𝜌1 and 𝜌2 are hyperparameters representing the exponential decay rate for the first 

moment and the second moment estimates (usually set to 0.9 and 0.999, respectively) and 

the moments are initialized to 0: 𝑚𝑜 = 𝑢0 = 0. In order to take into account the fact that 

the value of moving averages will be very small due to their initialization to zero 

(especially in the first steps), the authors of Adam define a bias-corrected version of the 

moving averages: 𝑚̂𝑡 =  𝑚𝑡(1 − 𝜌1𝑡) (2.9.3) 

𝑢̂𝑡 =  𝑢𝑡(1 − 𝜌2𝑡) (2.9.4) 

The final update for each 𝜃𝑡 parameter of the network is: 𝜃𝑡 = 𝜃𝑡−1  − 𝜆 𝑚̂𝑡√𝑢̂𝑡 + 𝜖 (2.9.5) 

where 𝜆 is the learning rate, 𝜖 is a very small positive number to prevent any division by 

zero (usually set to 10−8) and all the operations are meant to be component-wise. Notice 

that, while 𝑔𝑡 might have positive or negative components, 𝑔𝑡2 has only positive 

components. Hence, if the gradient changes sign often, the value of 𝑚̂𝑡 might be much 

lower than √𝑢̂𝑡. This means that in this case the step size is very small. 
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3. Model architecture of LSTM_GRU 
 

The focus of this study is on the topology of neural networks to improve the 

performances. A lot of different structures created with the combination of the layers 

presented in the section above are tested in “Image” and “mAn” dataset. Then given the 

computational times only for LSTM_GRU, exhaustive tests have been launched. 

Training is performed using the different variants of Adam optimizer. It is used a 

high learning rate of 0.01 and specify gradient decay and squared gradient decay factors 

of 0.5 and 0.999, respectively. Moreover, the gradients is clipped with a threshold of 1 

using L2 norm gradient clipping. The minibatch size has been fixed to 30, while the 

number of epochs is set to 150. 

The base schema of the model is provided in Figure 3.1. The network is composed by a 

first LSTM layer with N hidden units (set to 125), followed by a dropout layer that 

randomly sets input elements to zero with probability of 0.4. Then there is a GRU layer 

with N hidden units (set to 100) and then another dropout layer with probability of 0.4. 

At the end there is a fully connected layer that is followed by a sigmoid Layer. 

 

 

 

 

Figure 3.1. Schema of LSTM_GRU 

 

The loss function is the binary cross entropy loss between the outputs (predicted labels) 

and the target or actual labels. The binary cross entropy loss calculates the loss of a set of 𝑚 observations by computing the following average: CELoss =  - 1𝑚 ∑ ∑ 𝐲𝑖(𝑗)  ∙ log( 𝐡𝑖(𝑗)) + (1 − 𝐲𝑖(𝑗))  ∙ log(1 −  𝐡𝑖(𝑗))𝑙𝑗=1  𝑚𝑖=1 ,  

where 𝒚𝒊  ∈  {0, 1}𝑙 and 𝒉𝒊  ∈  {0, 1}𝑙 are the actual and predicted label vectors of each 

sample (𝑖 ∈ 1 … 𝑚), respectively. 

LSTM input Dropout(0.4) Dropout(0.4)  
Fully 

connected Layer Sigmoid Layer GRU 
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In the figures 3.2 and 3.3 we can see the trend of the loss function as the number 

of iterations increases over time, the first one is for “Image” dataset the second one for 

“mAn”. 

 

Figure 3.2 Loss function for “mAn” dataset 

 

 

 

Figure 3.3 Loss function for “Image” dataset 
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4.  Experimental results 
In this section created ensembles and experimental result are presented. 

 

4.1 Datasets 

Evaluation of the proposed approach requires data sets with binary multilabel 

categorization. The following twelve data sets were selected because they represent a 

wide range of applications (such as image, music, biology, and drug classification) and 

because they are often used when comparing multilabel classification systems (note: the 

names of the data sets are those typically used in the literature and not necessarily those 

in the original papers): 

1. Cal500 [28]: this is a collection of human-generated annotations that describe 

popular Western music tracks produced by 500 unique artists. Cal500 includes 

502 instances represented by 68 numeric features and 174 distinct labels. 

2. Scene [29]: this is a collection of 2407 color images (divided into training and 

testing images) of different scenes grouped into six base categories beach (369), 

sunset (364), fall foliage (360), field (327), mountain (223), and urban (210), with 

sixty-three images belonging to two categories and only one to three categories. 

Taking into account the joint categories, the total number of labels is fifteen. Each 

image in this data set went through a four-step preprocessing procedure. In step 

1, an image was converted to the CIE Luv space since this space is perceptually 

uniform (i.e., close to Euclidean distances). In step 2, the image was divided into 

49 blocks with a 7×7 grid. In step 3, the mean and variance of each band were 

computed. The mean is equivalent to a low-resolution image, whereas the 

variance corresponds to computationally inexpensive texture features. Finally, in 

step 4, the image was transformed into a 294-dimensional feature vector 

(49×3×2). 

3. Image [30]: this is a collection of 2,000 natural scene images grouped into five 

base categories desert (340), mountains (268), sea (341), sunset (216), and trees 

(378) that intended to produce a much larger set of images than scene that belong 

to two categories (442) and three categories (15). Taking into account the joint 
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categories, the total number of labels is 20. The images in this data set went 

through the same preprocessing procedure as in [29]. 

4. Yeast [2]: this is a biologic data set for classifying 2417 micro-array expression 

data and phylogenetic profiles (represented by 103 features) into 14 functional 

classes. A gene can belong to more than one class. 

5. Arts [7]: this data set was built using 5000 art images, each described by 462 

numeric features where each image can belong to some 26 classes. 

6. Liu [29]: this is a data set of drugs collected to predict drug side effects. It includes 

832 compounds represented by 2892 features and 1385 labels.   

7. ATC [31]: this is a collection of 3883 ATC coded pharmaceuticals with each 

sample represented by 42 features and 14 classes.  

8. ATC_f: this is a variant of the ATC collection where the same patterns are 

represented by an 806-dimensional descriptor (i.e., all the three descriptors are 

tested as in [3]).  

9. mAn [6]: this is a data set of proteins represented by 20 features and 20 labels.  

10. Bibtex, Enron, Health: these are three highly sparse datasets used in [7]  

 

  

 

A summary of all the data sets, including the number of patterns, features, labels, and 

the average number of class labels per pattern (LCard), is reported in Table 4.1.1. A 5-

fold cross-validation testing protocol with results averaged is used for data set 6, and a 

10-fold protocol for data sets 7-9. Data sets 1-5 are in the MATLAB IMCC toolkit [7] 

available at https://github.com/keauneuh/Incorporating-Multiple-Cluster-Centers-for-

Multi-Label-Learning/tree/master/IMCCdata (accessed 9/9/21). All other data sets can be 

obtained from the authors in the references provided above.  

 

 

 

 

https://github.com/keauneuh/Incorporating-Multiple-Cluster-Centers-for-Multi-Label-Learning/tree/master/IMCCdata
https://github.com/keauneuh/Incorporating-Multiple-Cluster-Centers-for-Multi-Label-Learning/tree/master/IMCCdata
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Name #patterns #features #labels LCard 

CAL500 502 68 174 26.044 

Image 2000 294 5 1.236 

Scene 2407 294 5 1.074 

Yeast 2417 103 14 4.24 

Arts 5000 462 26 1.636 

ATC 3883 42 14 1.265 

ATC_f 3883 700 14 1.265 

Liu 832 2892 1385 71.160 

mAn 3916 20 20 1.650 

bibtex 7395 1836 159 2.402 

enron 1702 1001 53 3.378 

health 5000 612 32 1.662 

 

Table 4.1.1. Summary of the twelve data sets tested in this work. 

 

4.2 Ensemble description 

 Ensembles combine the output of multiple models to improve the system 

performance and to counter overfitting. A feasible method to improve predictions and 

generalization of the ensemble is to increase the diversity of the classifiers. Our ensemble 

architecture is based on the fusion with the average rule of several models trained on the 

same problem.  

Optimizers play a fundamental rule in finding a minimum of the loss function: 

different optimization strategies can converge to different local minima and thus they can 

achieve different optima. Several optimizers suitable for ensemble creation are evaluated: 

Adam optimizer [18], diffGrad [33] and eleven novel variants of this approach (DGrad, 
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Cos#1, Exp, Sto, CLRW, EpochCos#1, EpochDecay, Sqrt, Hyp, CyclicExp and 

LRClipping).  

Experiments’ role is to test the performance of new topologies.  

Incorporating Multiple Clustering Center (IMCC) represents one of the most advanced 

strategies for Multi-label classification and can be used to compare our results to the state-

of-the-art. 

IMMC [7] is a two-step process: 1) the generation of virtual examples for augmenting the 

training set and 2) multilabel training. As step 1, augmentation, is what gives IMCC its 

main performance advantage. Augmentation is performed via clustering using k-means 

[32] and the calculation of clustering centers. 

Ensembles architecture is based on the fusion with the average rule of several models 

trained on the same problem. Here’s a description of ensembles created and trained: 

• StoGRU is an ensemble composed of 40 GRU_A (GRU with N hidden units (the 

number N of hidden units is set to 50 in our experiments), followed by a max 

pooling layer, a fully connected layer and sigmoid), combined by average rule; 

• StoGRU_B as StoGRU but based on GRU_B (as GRU_A but with a 

convolutional level applied immediately before the network itself and followed 

by batch-normalization layer); 

• StoTCN is an ensemble of 40 TCN_A (TCN with N hidden units (the number N 

of hidden units is set to 50 in our experiments), followed by a fully connected 

layer, a max pooling layer and sigmoid), combined by average rule; 

• StoTCN_B as StoTCN but based on TCN_B (as TCN_A but with a convolutional 

level applied immediately before the network itself); 

• StoGRU_TCN is an ensemble of 40 GRU_TCN (sequential combination of 

GRU_A, without the pooling layer, and TCN_A) each coupled with the stocastic 

approach; 

• LSTM_GRU is an ensemble composed of 40 LSTM_GRU (the new topology 

presented in section 3) 

• ENNbase is the fusion by average rule of StoGRU and StoTCN. 

• ENN is the fusion by average rule of StoGRU, StoTCN, StoGRU_B, StoTCN_B 

and StoGRU_TCN; 

• ENNnew: is the fusion by average rule of ENN and LSTM_GRU; 
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• LeaveOO_Sparse:  extract one dataset from the total of n and use the others (n-1) 

to select methods that classify the given dataset. In this case I consider only the 

scattered datasets; 

• LeaveOO_NonSparse: extract one dataset from the total of n and use the others 

(n-1) to select methods that classify the given dataset, considering only non-

scattered datasets; 

• LeaveOO: extract one dataset from the total of n and use the others (n-1) to select 

methods that classify the given dataset, considering all datasets; 

 

I also report different fusions between ENNnew/ENN and IMCC: 

• ENN+IMCC is the sum rule between ENN and IMCC; before fusion the scores of 

ENN were normalized since it has a different range of values compared to IMCC. 

Normalization was performed as ENN=(ENN-0.5)×2 with the classification 

threshold set to zero; 

• ENN+3×IMCC is the same as the previous fusion but the scores of IMCC are 

weighted by a factor of three.  

• ENNnew+IMCC is the sum rule between ENNnew and IMCC; before fusion the 

scores of ENN were normalized since it has a different range of values compared 

to IMCC. 

• ENNnew+3×IMCC is the same as the previous fusion but the scores of IMCC are 

weighted by a factor of three. 
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4.3 Results 

 

Experimental results obtained by previously described ensembles are reported in 

the following tables: 

 

Average Precision Cal500 image scene yeast arts ATC ATC_f Liu mAn bibtex enron health Average 

IMCC 0.502 0.836 0.904 0.773 0.619 0.866 0.922 0.523 0.978 
0.623 0.714 0.781 

0.753 

StoGRU 0.498 0.851 0.911 0.740 0.561 0.872 0.872 0.485 0.979 
0.403 0.680 0.739 

0.715 

StoGRU_B 
0.490 0.861 0.908 0.741 0.555 0.877 0.848 0.485 0.978 0.400 0.688 0.724 

0.712 

StoTCN 0.498 0.847 0.913 0.764 0.506 0.882 0.900 0.498 0.977 
0.406 0.669 0.710 

0.714 

StoTCN_B 
0.497 0.855 0.917 0.765 0.541 0.883 0.903 0.505 0.976 0.404 0.666 0.732 

0.720 

StoGRU_TCN 
0.491 0.852 0.916 0.752 0.592 0.890 0.913 0.510 0.977 0.354 0.674 0.764 

0.724 

LSTM_GRU 0.493 0.837 0.888 0.768 0.637 0.873 0.742 0.551 0.976 
0.596 0.714 0.784 

0.738 

ENNbase 0.502 0.855 0.922 0.756 0.552 0.888 0.916 0.497 0.979 
0.417 0.687 0.735 

0.726 

ENN 
0.499 0.859 0.924 0.762 0.582 0.893 0.916 0.505 0.979 0.424 0.689 0.749 

0.732 

ENNnew 
0.498 0.866 0.922 0.778 0.628 0.892 0.917 0.521 0.978 0.521 0.707 0.782 

0.751 

LeaveOO_Sparse 
--- --- --- --- 0.628 --- --- 0.530 --- 0.628 0.724 0.792 

---- 

LeaveOO_NonSparse 
0.501 0.854 0.918 0.781 --- 0.882 0.925 --- 0.979 --- --- --- 

--- 

LeaveOO 
0.500 0.847 0.918 0.781 0.635 0.882 0.923 0.530 0.979 0.628 0.720 0.789 

0.761 

ENN+IMCC 0.502 0.856 0.922 0.783 0.631 0.883 0.927 0.521 0.979 0.622 0.714 0.783 0.760 

ENN+3×IMCC 0.503 0.845 0.917 0.777 0.627 0.876 0.926 0.524 0.979 0.624 0.716 0.784 0.758 

ENNnew+IMCC 0.502 0.855 0.922 0.782 0.634 0.883 0.927 0.528 0.979 0.626 0.718 0.789 0.762 

ENNnew+3×IMCC 0.503 0.847 0.913 0.778 0.629 0.875 0.925 0.527 0.979 0.626 0.718 0.787 0.759 

 

Table 4.3.1 Comparisons between the ensembles using average precision 

 

Each number in these tables represents the average precision for the ensemble tested 

(reported in row) on a certain dataset (reported in column). I made bold the methods 

which reach the best performances for each dataset. 

As we can see, tests are executed for twelve different datasets. For the highly sparse 

data sets (Liu, Arts, bibtex, enron and health), I perform a dimensionality reduction by 

PCA by retaining 99% of variance. LSMT_GRU does not converge if a normalization 

step is performed for the ATC_f dataset; moreover, it works very poorly also if 
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normalization step is not performed. Instead the performance increase if the PCA 

projection is applied to that dataset, anyway, its performance is still lower than that 

obtained by other methods.   

It used to avoid overfitting when the number of features is much larger than the 

number of observations. Overfitting is a particular situation in which, because of patterns’ 

high dimensionality, the network needs to tune lots of parameters and gets too many 

degrees of freedom. This can bring the network to be extremely accurate in training (by 

memorizing all the samples) but very inaccurate in testing (because of its inability to 

generalize well dealing with real world samples). 

The performance reported in the previous table 4.3.1 permits to draw the following 

conclusions: 

⚫ LSTM_GRU works very well in sparse datasets, in non-sparse datasets the obtained 

performance is similar to that obtained by the other methods based on GRU/TCN; 

⚫ LeaveOO_Sparse permits to boost performance of ENN+3×IMCC, instead 

LeaveOO_NonSparse and LeaveOO seem to not reach interesting performance. 

⚫ ENNnew+IMCC is our suggested ensemble, it always outperforms IMCC and it is 

more robust than ENN+IMCC to sparse data (Arts, Liu, bibtex, enron and health). 

In general, the new topology LSTM_GRU tends to equalize and, in some case, to improve 

the performances of previous ensembles. But by fusing it with ENN and then with the 

sum rule with IMCC, results overperform the state-of-the-art. 
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Conclusions 
 

Multi-label learning addresses the problem that each instance is associated with 

multiple labels at the same time. 

In this paper it has been proposed to combine ensemble of the new topology 

LSTM_GRU with other models, trained with variants of Adam optimization approach. 

This approach is also combined with Incorporating Multiple Clustering Centers (IMCC) 

for superior multilabel classification. 

To validate this approach a set of twelve data sets have been used, the reported 

results show that the proposed ensemble overperforms state of the art performance. 

The merger with other deep learning topologies for feature extraction and new 

optimizations could be an interesting starting point for future experiments. 
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