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ABSTRACT 
 
This study utilized a multi-omics approach, incorporating gene expression, 
methylation, copy number variation, and mutation data, to analyze the 
survival of patients with Breast Carcinoma and Gynecologic Cancers 
(Ovarian Serous Cystadenocarcinoma, Uterine Corpus Endometrial 
Carcinoma, Cervical Squamous Cell Carcinoma and Endocervical 
Adenocarcinoma, and Uterine Carcinosarcoma). The goal was to identify 
pathways and specific genes within those pathways that were significantly 
associated with patient survival. The MOSClip R package, a topological 
pathway analysis tool, was utilized to identify significant pathways, modules, 
and genes in survival analysis. This tool was chosen for its unique ability to 
perform survival analysis using multi-omics data while accounting for 
interactions among genes. Then, Cytoscape was used to visualize the 
topology of significant genes within each module. Through this analysis, 33 
genes were identified as being common among different types of cancers. 
Afterwards, a comprehensive literature review was conducted to compare 
our findings with those of other studies. Then, heatmaps were created for 
each cancer type to illustrate the effect of significant genes on patient 
survival. Subsequently, Kaplan-Meier plots were compared among different 
types of cancers to provide valuable insights into the survival rates. Finally, 
an additional test was performed to assess the accuracy of survival 
prediction. 
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1. INTRODUCTION 

1.1 Gynecologic and Breast Cancer 
 

Cancer has been among the top causes of death in the world for many 
years, and unfortunately, the number of patients suffering from this disease 
is escalating annually (Łapińska et al., 2022). Types of cancers that can be 
formed and developed in women’s reproductive organs are known as 
gynecologic cancer, which usually occurs between the age of 35 to 70. 
Among the known gynecologic cancers, ovarian, cervical, and endometrial 
neoplasms are the most aggressive types.  
In this study, breast cancer was included in the analysis alongside 
gynecologic cancers due to the observed molecular similarities between 
these malignancies (Hoadley et al., 2018). Furthermore, referring to the 
WHO (World Health Organization) statistics, breast cancer was the cause 
of almost 700,000 deaths among women in 2020, with nearly 2.3 million 
new cases globally (Łapińska et al., 2022). So, statistical analysis has 
revealed a high mortality rate among patients diagnosed with breast and 
gynecologic cancers. 

1.2 Survival Analysis 
 
Optimal outcomes for cancer patients require the use of tailored prognostic, 
diagnostic, and therapeutic methods based on the specific type of 
malignancy (Łapińska et al., 2022). Despite significant research efforts to 
develop effective treatment techniques, cancer remains incurable. Thus, 
further efforts are necessary to improve patient survival rates. 
Survival analysis is a commonly used tool in cancer biology research to 
compare the efficacy of different therapies and obtain statistics on tumor 
progression (Liu et al., 2018). One endpoint used in survival analysis is 
progression-free survival (PFS), which assigns each patient a status of 
either zero or one. A status of one indicates an event, such as tumor 
progression or death, while censored patients are assigned a status of zero. 
In this study, a multi-omics analysis approach was employed to identify 
variables that impact patient survival. 
A multi-omics approach was chosen for the survival analysis to provide a 
more comprehensive understanding of patient survival compared to a single 
omic approach (Martini et al., 2019). By incorporating multiple molecular 
features into survival predictions, their accuracy can be improved. 
Furthermore, advances in technology and sequencing methods have made 
various omics data readily available on public databases such as The 
Cancer Genome Atlas (TCGA). Moreover, cancer is not solely the result of 
defects in gene expression but can also arise from abnormal changes in 
methylation sites, copy number variation, or mutation. Therefore, multi-
dimensional analysis is necessary to enhance our understanding of cancer 
biology and compare the efficacy of different treatments.  
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The Cancer Genome Atlas (TCGA) database was established to provide 
researchers with molecular information on various types of cancer (Liu et 
al., 2018). Between 2006 and 2015, TCGA characterized the molecular 
features of 11,160 patients spanning a total of 33 different types of cancer. 
The availability of high-quality molecular data on the TCGA database has 
facilitated a significant amount of research, leading to advances in our 
understanding of cancer biology. The necessary omics data were obtained 
from TCGA using the curatedTCGAData R package. 
The curatedTCGAData package, implemented in R, provides users with 
access to multi-omics molecular data from the TCGA database (Ramos et 
al., 2020). This package streamlines access to TCGA data by presenting 
complex information in the MultiAssayExperiment data structure. This data 
structure facilitates integrative analysis by researchers, who can easily 
navigate complex classes and data formats. 
The MultiAssayExperiment data structure, implemented in R, provides 
bioinformaticians and data scientists with a practical means of representing 
complex data such as multi-omics reports (Ramos et al., 2017). This data 
structure simplifies the representation, visualization, and statistical analysis 
of genomics and transcriptomics data. 

1.3 Ovarian Serous Cystadenocarcinoma 
 
Among females, ovarian cancer is a prevalent malignancy within the 
reproductive system, comprising 2.5% of all such cases (Tong et al., 2023). 
The prognosis of ovarian cancer is not very promising, as the chances of 
surviving for 5 years are only 47.6%. This is largely due to the fact that many 
cases are diagnosed at a late stage.  
Statistically, ovarian cancer ranks as the eleventh most prevalent neoplasm 
in the female population, and it is ranked as the fifth highest cause of 
mortality among women (Stewart et al., 2019). It is also the deadliest 
gynecologic cancer.  
Annually, within the United States of America, over 22,000 new cases of 
ovarian cancer are diagnosed, and 14,000 deaths are attributed to this 
disease (Stewart et al., 2019). Subsequent to the whites, the highest 
occurrence of ovarian cancer per ethnicity is observed among Hispanic, 
Asian/Pacific Islander, African American, and American Indian/Alaska 
Native populations, with respective rates of 9.8, 9.0, 8.5, and 7.9 per 
100,000 individuals. 
Upon diagnosing the cancer condition, approximately 70% of ovarian 
cancer patients have advanced cancer (Shi et al., 2021). This is because 
ovarian cancer often does not present with clear and noticeable signs in its 
early stages. The unfavorable prognosis associated with ovarian cancer can 
largely be attributed to the lack of efficient techniques for the prompt 
detection, diagnosis, and the absence of reliable predictive markers. 
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Serous ovarian cystadenocarcinomas make up two-thirds of all malignant 
epithelial ovarian tumors (Mallick et al., 2018). When this cancer spreads, it 
commonly metastasizes to areas such as the bladder, lungs, liver, lymph 
nodes, peritoneum, and intestinal surfaces. On the other hand, metastasis 
from ovarian cancer to the cervix, vagina or vulva is very infrequent. 
However, in some cases of ovarian malignancy and cancers of the gall 
bladder, lung, breast, stomach, and pancreas, tumor emboli can spread 
through the bloodstream and lead to cervical metastasis. When cervical 
metastasis occurs in the previously referenced cancerous conditions, it is 
an indication that the neoplasm has progressed to a late stage and has 
spread to multiple organs, which suggests an unfavorable prognosis. 
Surprisingly, evidence indicates that many ovarian cancers actually 
originate in the fallopian tube rather than the ovaries (Stewart et al., 2019). 

1.4 Uterine Corpus Endometrial Carcinoma 
 
In high- and middle-income countries, the most frequently occurring 
gynecological malignancy is endometrial cancer (Koskas et al., 2021). 
Despite the fact that the overall prognosis is fairly positive, there is a 
tendency for high-grade endometrial cancers to recur. Preventing 
recurrence is crucial because the prognosis for endometrial cancer that has 
returned is very poor. The use of molecular factors to determine prognosis 
and treatment has been on the rise since The Cancer Genome Atlas defined 
four molecular subgroups of endometrial cancers. The conventional 
therapeutic approach involves a hysterectomy and the removal of both 
fallopian tubes and ovaries (bilateral salpingo-oophorectomy). The 
identification of patients with positive lymph nodes who require additional 
treatment, such as radiotherapy and chemotherapy, is made possible 
through lymphadenectomy and more frequently, sentinel node biopsy. For 
Stage I-II patients with high-risk factors and Stage III patients, adjuvant 
therapy is utilized.  
Non-endometrioid cancers and those in the copy-number high molecular 
group characterized by a TP53 mutation are particularly treated with 
chemotherapy (Koskas et al., 2021). The optimal outcome for advanced 
disease is achieved through a combination of surgery to remove all visible 
disease and chemotherapy, incorporating or excluding the utilization of 
radiotherapy. Only patients exhibiting favorable performance status and an 
extended disease-free period are recommended for surgery for recurrent 
illness. 
Globally, endometrial cancer is ranked as the sixth most prevalent 
neoplastic disease (Koskas et al., 2021). In 2018, approximately a total of 
382,000 novel instances of this neoplastic condition were identified.  
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The prevalence of endometrial cancer is greater among high-income 
nations, 11.1 per 100,000 females, in comparison to countries with limited 
resources countries, 3.3 per 100,000 females (Koskas et al., 2021). The 
elevated occurrence of endometrial cancer among high-income nations 
may be attributed to the widespread presence of obesity and sedentary 
lifestyles, in addition to an aging demographic. Elevated concentrations of 
estrogen are postulated to be the principal factor contributing to the 
augmented risk of endometrial cancer among postmenopausal females who 
are obese. Participation in regular physical exercise and the prolonged 
administration of continuous combined estrogen-progestin therapy may 
reduce the likelihood of developing endometrial cancer. Furthermore, 
obesity is linked to a younger age of diagnosis of the endometrioid-type 
endometrial cancers. Endometrial cancer is most common in North America 
and Europe, where it represents the most commonly diagnosed neoplastic 
disease of the female reproductive system, and it is ranked as the fifth most 
prevalent neoplastic disease among females after breast, lung, colorectal, 
and non-basal skin cancer. 

1.5 Cervical Squamous Cell Carcinoma and 
Endocervical Adenocarcinoma 
 
In 2018, uterine cervical cancer was the fourth most prevalent cancer 
among women, with over 560,000 new diagnoses and more than 310,000 
fatalities globally (Dejima et al., 2020). Cervical cancer is unique in that it 
disproportionately affects younger women, despite cancer-related fatalities 
is more frequently observed among the geriatric population. Among women 
aged 20 to 39, cervical cancer ranks as the second highest cause of death 
due to cancer. Squamous cell carcinoma accounts for approximately 70% 
of cervical cancer cases. In excess of 95% of such cases can be attributed 
to an infection with the human papillomavirus (HPV).  
It has been found that nearly all cases of cervical cancer can be attributed 
to infection with high-risk strains of the human papillomavirus (Cohen et al., 
2019). Successful measures for prevention encompass programs for HPV 
screening and vaccination.  
The two most common subtypes of cervical cancer are squamous cell 
carcinoma, accounting for approximately 70% of cases as mentioned 
before, and adenocarcinoma, accounting for around 25% of cases (Cohen 
et al., 2019).  
Due to considerable geographical and worldwide differences in cervical 
cancer results, global gynecological oncology organizations have published 
guidelines for managing the disease based on evidence (Cohen et al., 
2019). The objective of these guidelines is to improve patient care, even 
with advancements in prevention, screening, diagnosis, and treatment over 
the past ten years.  
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A cervical biopsy specimen is subjected to histopathological analysis in 
order to confirm the diagnosis of cervical cancer (Cohen et al., 2019). A 
pelvic examination, cervical cytology, and visual inspection of the cervix and 
vaginal mucosa are required for women displaying symptoms indicative of 
cervical cancer. An examination utilizing a speculum should be conducted 
to visually assess the cervix and vaginal mucosa. In instances of 
microinvasive illness or when the malignancy is situated in the endocervical 
canal, the cervix may seem unremarkable. Through the lymphatic vessels, 
lymph nodes located in the pelvic, para-aortic, mediastinal, supraclavicular, 
and inguinal areas can be metastasized to by cervical cancer. In the later 
stages of cervical cancer, it may be possible to detect swollen and hardened 
lymph nodes in the inguinal and supraclavicular areas through physical 
examination. In cases where malignancy is thought to be present based on 
clinical examination or cervical cytology results but has not been verified 
through the examination of cervical biopsy tissue samples using 
histopathological techniques, a cone biopsy must be performed to obtain a 
more definitive diagnosis. 

1.6 Uterine Carcinosarcoma 
 
Uterine serous carcinoma (USC) is a type of uterine cancer that is both 
uncommon and highly malignant in nature, making it a particularly 
dangerous form of the disease (Bloom et al., 2023). After undergoing 
surgery to treat uterine cancer, it is common for patients to receive 
additional treatment in the form of chemotherapy and/or radiation therapy. 
These treatments are known as adjuvant therapy and are intended to help 
prevent the cancer from returning. However, it is important to note that 
despite their use, these treatments may have limited effectiveness in 
reducing the likelihood of a high recurrence rate.  
Despite the fact that uterine serous carcinomas accounts for only 10% of all 
uterine carcinoma cases, it is responsible for nearly 40% of fatalities 
resulting from the disease (Bloom et al., 2023). This highlights the 
aggressive nature of this type of cancer and the importance of early 
detection and treatment. 
An in-depth and comprehensive understanding of the molecular intricacies 
of these malignant growths is of utmost importance for the effective 
implementation of targeted therapeutic interventions (Bloom et al., 2023). 
Such knowledge can significantly improve the likelihood of achieving 
favorable outcomes for patients suffering from these conditions. In contrast 
to the 16% of patients who are diagnosed with the more commonly 
occurring endometrioid histological subtype of uterine cancer, 
approximately 38% of individuals affected by the highly malignant uterine 
serous carcinoma are frequently identified at a progressed phase of the 
illness. This disparity in diagnosis can be attributed to the particularly 
virulent nature of uterine serous carcinoma. 
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Individuals identified with a progressed phase of the illness have a 
significantly elevated rate of recurrence, reaching up to 90% (Bloom et al., 
2023). For individuals afflicted with uterine serous carcinoma, who 
constitute a demographic with a significant need for improved clinical 
outcomes, the presently accepted course of treatment involves an initial 
surgical procedure to determine the extent of the disease, followed by 
supplementary interventions such as chemotherapy and/or radiation 
therapy. 
The PD-1 inhibitors pembrolizumab and dostarlimab have recently received 
approval for administration in patients with recurrent uterine cancer and 
microsatellite unstable tumors (Bloom et al., 2023). The combination of 
pembrolizumab with lenvatinib has been approved for the treatment of 
recurrent microsatellite stable uterine cancer. Additionally, the use of 
trastuzumab has resulted in improved survival outcomes for patients with 
advanced and recurrent uterine serous cancer exhibiting HER2 
overexpression. 

1.7 Breast Carcinoma 
 
Among women worldwide, the most detected type of malignant tumor is 
breast cancer (Smolarz et al., 2022). It poses a significant health risk and 
represents the foremost cause of mortality resulting from malignant tumors. 
Despite progress in early detection and treatment, breast cancer continues 
to be a major source of death among women. Globally, the occurrence of 
breast cancer is on the rise, with an upward trend observed in all regions. 
This increase in prevalence is alarming and underscores the importance of 
ongoing research and efforts in prevention and treatment. 
Although there have been advancements in identifying and diagnosing the 
disease, leading to a decrease in the number of deaths caused by the 
disease, it is still essential to explore innovative therapeutic approaches and 
indicators that can predict and provide insight into the likely course of the 
disease (Smolarz et al., 2022).  
The selection of therapeutic interventions is dependent on the specific 
molecular characteristics of the disease, which means that doctors and 
researchers must carefully analyze the underlying causes and mechanisms 
of the disease in order to determine the most effective course of treatment 
(Smolarz et al., 2022). This approach allows for personalized medicine that 
is tailored to the individual needs of each patient. The management of 
breast cancer involves a collaborative approach that draws on the expertise 
of multiple medical disciplines and includes both locoregional interventions 
such as surgery and radiation therapy, as well as systemic therapy. 
Systemic therapies for the management of breast cancer encompass a 
range of interventions including hormone therapy for hormone-positive 
cases, chemotherapy, anti-HER2 therapy for HER2-positive cases, and 
lately, the use of immunotherapy. 
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According to recent studies and statistics, it has been observed that triple 
negative breast cancer, a particularly aggressive form of the disease, 
accounts for approximately 15-20% of all diagnosed cases of breast cancer 
worldwide (Smolarz et al., 2022). Triple negative breast cancer presents 
significant difficulties in treatment, primarily as a result of its low 
responsiveness to conventional treatments and its tendency to aggressively 
invade surrounding tissues. These particular challenges have garnered a 
considerable amount of attention from members of the scientific community. 
In the field of breast cancer treatment, there is a growing emphasis on the 
development of personalized therapeutic approaches that aim to tailor 
treatment to the individual patient. This involves adjusting the intensity of 
treatment based on factors such as the specific biology of the cancer and 
the patient’s initial reaction to therapy.  

1.8 Aims of the work  
 
This study aimed to conduct a multi-omics survival analysis, incorporating 
gene expression, methylation, copy number variation (CNV), and mutation 
data, on Breast Carcinoma (BRCA) and Gynecologic Cancers (Ovarian 
Serous Cystadenocarcinoma (OV), Uterine Corpus Endometrial Carcinoma 
(UCEC), Cervical Squamous Cell Carcinoma and Endocervical 
Adenocarcinoma (CESC), and Uterine Carcinosarcoma (UCS)). The initial 
objective was to identify pathways significantly associated with patients’ 
survival. Subsequent analyses sought to determine which modules within 
each significant pathway and which genes within each significant module 
were significantly associated with survival. The MOSClip R package was 
used to perform these analyses. 
MOSClip is an R package that facilitates integrated multi-omic survival 
analysis through the use of multivariate models and dimensionality 
reduction of multi-omics data (Martini et al., 2019). This topological pathway 
analysis tool can identify significant pathways, modules, and genes in 
survival analysis. MOSClip was chosen for this study because it is currently 
the only available tool capable of performing survival analysis using multi-
omics data while accounting for interactions among genes. To be more 
specific, MOSClip is a versatile approach that employs omic-specific 
dimensionality reduction techniques to conduct multi-omic survival tests on 
individual pathways or modules derived from a pathway’s graph structure. 
These tests can be performed independently at the pathway or module level 
using a multivariate survival model to identify associations with patient 
survival.  
These analyses aimed to improve prognosis and treatment for specific 
cancer types by examining survival rates and relevant data, providing 
valuable insights into the nature of these diseases and how they can be 
effectively managed. 
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2. MATERIALS AND METHODS 

2.1 Retrieving Cancer Data from the TCGA Database 
using the curatedTCGAData Package 
 
Gene expression, methylation, CNV, and mutation data (version 2.0.1) for 
five types of cancers (OV, UCEC, UCS, CESC, and BRCA) were retrieved 
from the TCGA database using version 1.18.0 of the curatedTCGAData 
package (Ramos et al., 2020) on April 18th, 2023. A MultiAssayExperiment 
object was obtained for each cancer type, containing different assays 
corresponding to various omics data types. 

2.2 Focusing on Primary Tumors and Female 
Patients in TCGA Data Analysis 
 
After retrieving the data, we made the decision to focus our attention solely 
on primary tumors. This decision was made due to the fact that the TCGA 
database primarily contains molecular data for primary tumors, which have 
not yet metastasized. As a result of this, the majority of the data that was 
downloaded for each cancer type fell into this particular tumor category. 
To isolate primary tumors, we utilized the TCGAutils R package (Ramos et 
al., 2020). Following this step, our analysis focused exclusively on multi-
omics data for primary tumors, with the aim of ensuring homogeneity in our 
results. As a consequence of this focus, when interpreting our findings, we 
can be confident that any significant genes that are identified in a specific 
cancer type, such as BRCA, are specific to primary BRCA tumor cells and 
not metastasized or normal cells. 
Another modification that we made to the data was the removal of molecular 
data for male patients from the BRCA dataset. This was due to the fact that 
it was the only cancer type that was shared between males and females. As 
a result of this modification, 13 male patients were excluded from further 
analysis. From this point forward, our analysis focused solely on multi-omics 
data for five types of primary tumors in female patients. 

2.3 Modifying CNV Data for Analysis with MOSClip 
 
The CNV assay provided as a MultiAssayExperiment object for each cancer 
type was deemed unsuitable for further analysis. As indicated in Table 1, 
the CNV matrix lacked gene names corresponding to each row of the data 
frame. Additionally, the numeric values in each cell represented GISTIC2 
copy number values with a noise cutoff of 0.3 (GDC Docs, n.d.). In light of 
this, we made the decision to convert these values to -1, 0, and 1 in order 
to represent loss of copy number, no change in copy number, and gain of 
copy number, respectively. 
 



 13 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 1. Subset of Initial CNV Data Frame for BRCA. As demonstrated, 
each row of the initial CNV data frame represents a single gene, but the 
names of the genes were not indicated in this primary matrix. Additionally, 
GISTIC2 copy number values are displayed for each patient. This table 
serves as an example of the CNV matrix structure prior to subsequent 
modifications. The same structure was present for the other four cancer 
types. 
 
To address the issue of adding gene names corresponding to each row of 
the CNV data frame, we utilized the “rowData” of the MultiAssayExperiment 
object. As gene names were provided as rowData, we simply added this 
information to the existing matrix to create a properly formatted data frame 
with gene names as row names and patient codes as column names (Table 
2). 
The second modification involved converting GISTIC2 copy number values 
to -1, 0, and 1. According to the TCGA database documentation (GDC 
Docs, n.d.), all GISTIC2 copy number values between -0.3 and 0.3, 
indicating no change in copy number, were converted to 0. For values below 
 -0.3 and above 0.3, -1 and 1 were assigned to represent loss and gain of 
copy number, respectively (Table 2). 
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Additional modifications included converting gene names from Symbols and 
Ensembl to Entrez id to ensure compatibility with the MOSClip package 
(Martini et al., 2019), and formatting patient names to match the patient ids 
in the survival data frame (Table 10).  
To implement the aforementioned modifications to the initial CNV data 
frame (Table 1), we developed a function in R that produced an output 
matrix suitable for use with MOSClip (Table 2). 
 
 

 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
Table 2. Subset of Final CNV Data Frame for BRCA. As shown, the final 
matrix features gene Entrez ids as row names and patient codes as column 
names. Each cell of the data frame can have one of three values (-1, 0, or 
1), representing loss, no change, or gain of copy number, respectively. This 
matrix is a subset of the BRCA copy number variation data frame. Similar 
data frames were created for the other four cancer types. 
 
In conclusion, to complete the modification of the CNV data frame, we 
utilized the same function implemented in R to create a properly formatted 
data frame for each cancer type. This allowed us to use MOSClip to analyze 
the data and draw meaningful conclusions from our findings. By ensuring 
that the data frames for each cancer type were appropriately structured and 
formatted, we were able to conduct a thorough and accurate analysis of the 
multi-omics data. 



 15 

2.4 Modifying Gene Expression Data for Analysis 
with MOSClip 
 
The gene expression assay was modified in a manner similar to the CNV 
assay. As shown in Table 3, the raw gene expression data for BRCA 
consisted of a data frame with gene symbols as row names and patient IDs 
as column names. To avoid repetition, only the data frame for BRCA gene 
expression is shown here; however, the structure and modifications were 
identical for all five cancer types. The modifications aimed to create an 
interpretable gene expression matrix for further analysis. 
First, the patient names were standardized to match the patient IDs in the 
survival matrix (Table 10). Second, the gene names were converted from 
Symbols to Entrez IDs to ensure compatibility with the MOSClip package 
(Martini et al., 2019). As shown in the final gene expression data frame 
(Table 4), the table now consists of Entrez IDs as row names and 
appropriate patient IDs as column names. 
In order to mitigate the issue of data sparsity, the TPM gene expression 
values were subjected to a filtering process as described by Martini et al. 
(2019). Only those genes that exhibited a TPM value of at least 100 among 
all patients were retained for further analysis. Conversely, any genes that 
did not meet this threshold, i.e., had TPM values less than 100 among all 
patients, were subsequently discarded as outlined in Table 4. This approach 
ensures that the data used in subsequent analyses is of high quality and 
reduces the potential impact of data sparsity on the results. 
In order to ensure accurate analysis, several steps were taken to normalize 
the gene expression data. The gene expression values were normalized 
using “between lane normalization” with the “upper quartile” method. This 
approach normalized the gene expression values between samples, while 
TPM values were already normalized within patients (thanks to TPM). By 
performing between lane normalization, a normalized data set was created 
that accounted for variation both within and between samples. The 
normalized gene expression values were then converted to a logarithmic 
scale to facilitate further analysis and visualization (Table 4). 
To complete the modifications to the gene expression matrix, an R function 
was implemented to perform all necessary changes. This function takes an 
initial MultiAssayExperiment object and the assay name (gene expression) 
as input and produces a final data frame ready for use with MOSClip (Martini 
et al., 2019) for further analysis (Table 4). 
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Table 3. Subset of Initial gene expression Data Frame for BRCA. As 
shown, each row corresponds to a gene symbol and each column 
represents a patient code. Each cell of the data frame contains a TPM 
(transcripts per million) gene expression value. This table illustrates the 
structure of the gene expression data frame prior to any modifications. The 
same structure was present for the other four cancer types. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
Table 4. Subset of Final Gene Expression Data Frame for BRCA. The 
final gene expression data frame consists of an Entrez gene ID for each row 
and a patient code for each column. The gene expression values are TPM 
counts normalized using “between lane normalization” with the “upper 
quartile” method and then converted to a logarithmic scale. 
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2.5 Modifying Methylation Data for Analysis with 
MOSClip 
 
Similar to previous omics, the methylation data (Table 5) required 
modification. To achieve this, a function was implemented in R to perform 
the necessary modifications. This function takes as input a 
MultiAssayExperiment object downloaded using CuratedTCGAData 
(Ramos et al., 2020) and produces an appropriate matrix for further 
analysis. For the methylation assay, “Probe-level methylation β-values from 
Infinium HumanMethylation 450K BeadChip” was used. However, this 
assay only had methylation data for 10 patients in OV. Therefore, for OV, 
“Probe-level methylation β-values from Illumina HumanMethylation 27K 
BeadChip” was used instead, providing methylation data for 575 patients. 
The initial methylation data frame (Table 5) contained the names of the 
Illumina probes as row names and the patient IDs as column names. Each 
probe corresponded to a CpG island. However, there were two 
considerations that needed to be addressed. First, multiple CpG islands 
could be associated with a single gene. Since our project aimed to compare 
methylation levels among different genes rather than different CpG islands, 
we collapsed multiple CpG islands corresponding to a single gene, 
calculated the average methylation value for these sites, and assigned it to 
the related gene. Second, two different genes could share a CpG island due 
to their proximity on the chromosome. In such cases, we considered the 
methylation value for both genes (Table 6). 

 
 

 

 

 
 
 
 

 
 
 

Table 5. Subset of Initial Methylation Data Frame for BRCA. As 
illustrated, each row corresponds to an Illumina probe that can bind to a 
CpG island, providing information about that CpG island. In contrast, the 
columns represent patient names, similar to previous data frames for other 
types of omics. Each cell in the table displays the methylation beta value of 
a specific CpG island in a particular patient. These values range from 0 to 
1, indicating the level of methylation at that site. 
 
 
 



 18 

The function that was implemented made a number of significant 
modifications to the initial matrix with the ultimate goal of producing an 
appropriate data frame. One decision that had to be made involved 
choosing between two options: removing probes that had NA values for 
some patients or imputing the NA values with the median methylation value 
for that specific patient. Since removing probes that had NA values could 
potentially result in the loss of a considerable amount of valuable 
information, we ultimately decided to use the median beta value of all 
probes in each patient to impute NA values. This approach allowed us to 
retain all information without introducing strong biases, as we used the 
median value to replace NAs. 
In the subsequent step of the process, the rowData of the methylation assay 
was utilized in order to determine which specific gene each individual CpG 
island corresponded to. Following the completion of this step, the names of 
the genes were added to the initial data frame with the ultimate goal of being 
used in place of the probe names. At the same time, CpG islands that 
corresponded to more than one gene were identified through careful 
analysis. Once these CpG islands were identified, new rows representing 
the second gene associated with that particular CpG island were added to 
the matrix in order to ensure that all relevant information was accurately 
represented. 
Furthermore, by determining the names of the genes corresponding to each 
individual CpG island, we were able to assign the mean beta value of 
different CpG islands that were associated with a single gene to that specific 
gene. This process involved calculating the mean beta value of all CpG 
islands associated with a single gene and assigning that value to the gene 
in question. As a result of this process, instead of having multiple 
methylation beta values for different CpG islands corresponding to a single 
gene, we were able to represent each gene with a single methylation value. 
This approach allowed us to more accurately represent the methylation 
levels of each gene and facilitated further analysis. 
In the final step of the process, several important modifications were made 
to the data. First, the gene symbols were converted to gene Entrez IDs. This 
involved replacing the gene symbols with their corresponding Entrez IDs, 
which are unique identifiers assigned to each gene by the National Center 
for Biotechnology Information (NCBI). This conversion ensured that the data 
was accurately represented using a standardized nomenclature. Second, 
the patient IDs were modified to match the patient codes in the survival data 
frame (Table 10). This modification ensured consistency between the two 
data frames and facilitated further analysis by allowing for easy comparison 
and integration of data from both sources. 
In conclusion, the R function that was implemented successfully modified 
the initial data frame to produce the final matrix, as shown in Table 6. 
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Table 6. Subset of Final Methylation Data Frame for BRCA. As 
demonstrated, the final methylation data frame for BRCA, analogous to 
other cancer types investigated in this study, comprises Entrez gene IDs as 
row names and corrected patient IDs as column names. Furthermore, each 
element of this matrix represents the degree of methylation for a specific 
gene in a particular patient. 

2.6 Modifying Mutation Data for Analysis with 
MOSClip 
 
The mutation data frame required significant modifications. Initially, we had 
a MultiAssayExperiment containing various types of assays. Two of these 
assays, namely “Hugo_Symbol” and “Variant_Classification,” were utilized 
in our study. The former, “Hugo_Symbol,” was a matrix with patient IDs as 
column names and chromosome positions as row names (Table 7). This 
assay contained gene symbols wherever a mutation occurred at a specific 
position on a patient’s chromosome and NA values to indicate the absence 
of a mutation. Conversely, the latter assay, “Variant_Classification,” 
comprised the type of mutation in each matrix cell where a mutation was 
present and an NA value for each cell without a mutation (Table 8). The row 
and column names of both assays were identical. 
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As previously stated, the “Variant_Classification” assay contained the types 
of mutations for each position in each patient. To elaborate, if a mutation 
occurred at a specific position on a patient’s chromosome, the type of 
mutation would be indicated within this matrix. Consequently, for each non-
NA cell, the value could represent mutations in regulatory regions, 
nonsense, missense, silent, splice site, frameshift, or indel mutations 
(National Cancer Institute, n.d.).  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 7. Subset of the “Hugo_Symbol” Mutation Assay for BRCA. As 
illustrated, each row represents a specific position on the chromosome 
where a mutation is present, and each column corresponds to an individual 
patient. As previously stated, each cell of this data frame may contain either 
an NA value or a gene symbol. The presence of a gene name in a cell 
indicates that a mutation occurred at that specific position on the patient’s 
chromosome, while an NA value signifies the absence of a mutation.  
 
Our analysis revealed that a mutation at a given position could only occur 
in a single patient. Although different patients may have mutations in the 
same gene, there were no instances of mutations occurring at the same 
position among different patients in our data. This is logical, as mutations 
are rare events and the likelihood of multiple patients having mutations at 
the exact same position on their chromosomes is exceedingly low. 
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It should be noted that the preceding table (Table 7), as well as the 
subsequent table (Table 8), depict only a subset of the BRCA mutation data. 
However, the same structure is present for all five cancer types investigated 
in this study. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 8. Subset of the “Variant_Classification” Mutation Assay for 
BRCA. As depicted, in this subset of the matrix from the 
“Variant_Classification” assay of BRCA, the row and column names are 
identical to those in the “Hugo_Symbol” assay. The only distinction between 
these assays lies in the values of each cell. While each cell of the 
“Hugo_Symbol” assay represents the gene name if a mutation is present at 
that specific position on the patient’s chromosome, the 
“Variant_Classification” assay employs the type of mutation to indicate the 
presence of a mutation. In both assays, the absence of a mutation is 
denoted by an NA value. 
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Similar to the approach used for other omics data, another R function was 
created to prepare the data for further analysis. The first modification 
performed by this function involved utilizing the data contained within the 
“Variant_Classification” assay to identify and remove silent mutations. The 
rationale behind this decision was to improve the overall quality and 
accuracy of our data, which ultimately led to more reliable results. This is 
because silent mutations do not alter the final proteins encoded by a given 
gene. Thus, by leveraging the information contained within the 
“Variant_Classification” assay, we were able to accurately identify and 
exclude silent mutations from our subsequent analyses.  
The subsequent modification performed by the R function involved utilizing 
the information contained within the “Hugo_Symbol” assay to accurately 
determine the gene symbol corresponding to each specific position on a 
patient’s chromosome.  
Subsequently, the R function performed an additional modification to the 
data frame by eliminating rows representing chromosomal positions where 
no mutations were present among the entire patient population. Following 
this step, the data structure was further modified by converting the use of 
gene symbols and NA values to represent the presence or absence of a 
mutation, respectively, to a binary representation using 1 and 0. In this new 
representation, if a mutation was present at a specific position on a patient’s 
chromosome, the corresponding cell in the data frame would contain a value 
of 1. Conversely, if no mutation was present at that position, the cell would 
contain a value of 0. 
Furthermore, it should be noted that the specific position of a mutation on a 
patient’s chromosome was not required for our analyses. Instead, our focus 
was solely on determining whether or not a given gene was mutated in a 
particular patient. Consequently, the subsequent modification performed by 
our implemented R function involved collapsing multiple positions within a 
single gene to produce a binary representation indicating the presence or 
absence of a mutation. In this representation, if a mutation was present 
within a given gene in a specific patient, the corresponding cell in the data 
frame would contain a value of 1. Conversely, if no mutations were present 
within that gene in the corresponding patient, the cell would contain a value 
of 0. 
The final two modifications performed by the R function were analogous to 
those applied to the previous omics data. Specifically, we needed to convert 
the gene symbols to their corresponding Entrez IDs and modify the patient 
IDs to ensure that they were consistent with the structure of patient names 
used in both the mutation and survival data frames (Table 10).  
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Table 9. Subset of Final Mutation Data Frame for BRCA. As depicted in 
this table, each row of the final data frame represents a single gene, 
identified by its Entrez ID, while each column corresponds to an individual 
patient. Thus, for each gene, the value in the corresponding cell would be 1 
if a mutation was present in that patient or 0 if no mutation was present. It 
should be noted that this table represents only a subset of the mutation 
matrix for BRCA and that data frames with an identical structure were 
created for the other cancer types investigated in this study. 

2.7 Modifying Survival Data for Analysis with 
MOSClip 
 
For the purposes of our survival analysis, it was deemed necessary to utilize 
survival data in order to accurately assess the outcomes of patients with 
different cancer types. To this end, we elected to use progression-free 
survival (PFS) events as our primary measure of survival outcomes (Liu et 
al., 2018). More specifically, the occurrence of an event in this context could 
indicate a number of different outcomes, including recurrence of the cancer, 
the development of a new primary tumor, distant metastasis, progression of 
the tumor, or death. Conversely, the absence of an event would represent 
a censored patient who had discontinued follow-up for any number of 
reasons. In such cases, no further information is available about the 
patient’s status or condition. 
It is important to note that censored patients, who have discontinued follow-
up, may be either alive or deceased. In such cases, no further information 
is available about their status or condition. As a result, it is not possible to 
determine with certainty whether or not these patients have experienced an 
event such as recurrence, the development of a new primary tumor, distant 
metastasis, progression of the tumor, or death. In light of this uncertainty, 
we utilized the survival data provided by Liu et al., 2018 to extract 
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progression-free survival (PFS) information for the five cancer types of 
interest in our study.  
Furthermore, in order to facilitate our survival analyses, we utilized our 
implemented R function to create a survival data frame for each cancer type 
under investigation. This data frame consisted of a matrix representing the 
status of each individual patient and the number of days that had elapsed 
from the start of follow-up until either the occurrence of an event or the last 
follow-up for censored patients. In cases where an event occurred, the 
status of the corresponding patient would be represented by a value of 1. 
Conversely, if a patient was censored and discontinued follow-up, their 
status would be represented by a value of 0. Additionally, the data frame 
also indicated the number of days that had elapsed from the start of follow-
up until either the occurrence of an event or the last follow-up for censored 
patients (Table 10).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 10. Subset of Final Survival Data Frame for BRCA. As depicted, 
each row corresponds to an individual patient and contains two types of 
information: status and days. The status column indicates whether or not an 
event occurred, with values of 1 and 0 representing the presence or 
absence of an event, respectively. The days column, on the other hand, 
represents the number of days that elapsed from the start of follow-up until 
either the occurrence of an event or the last follow-up for censored patients.  
 
In conclusion, the PFS survival data for each patient was extracted from the 
survival data provided by Liu et al. (2018) for the five selected cancer types. 
The input for our implemented function is the Excel file created by Liu et al. 
(2018) and the specific cancer type for which we wish to extract survival 
data. The output is a cleaned survival data frame for each cancer type, with 
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NA values removed and patient IDs modified by replacing “-” signs with “.” 
signs. 

2.8 Patient Selection and Pathway Retrieval from 
Reactome Database 
 
The subsequent modification involved selecting only those patients for 
whom all omics data were available. This ensured that further analyses and 
comparisons were more accurate by including only patients with available 
expression, CNV, methylation, mutation, and survival data. 
Subsequently, Homo Sapiens pathways were retrieved from the Reactome 
database. Gene modifiers were then converted to Entrez IDs for further 
analysis. Specifically, the downloaded Reactome pathways contained 2439 
entries and were retrieved on April 18, 2023. 

2.9 MOSClip Survival Analysis 
 
After acquiring and modifying the multi-omics data for five cancer types, 
the subsequent step involved utilizing the MOSClip package to conduct 
survival tests on pathways and modules (Martini et al., 2019). 

2.9.1 MOSClip Pathway Analysis 
 
To execute MOSClip’s multi-omics survival pathway test, it was necessary 
to specify the modified multi-omics matrix, the dimensionality reduction 
strategy for each omic type, the survival data for each cancer type, and the 
Reactome pathways for pathway analysis. Given that Reactome pathways 
can comprise numerous pathways with few nodes (genes), we filtered the 
downloaded pathways from the Reactome database based on pathway size 
to expedite and enhance analysis accuracy. Consequently, only Reactome 
pathways with a minimum of ten nodes were used, while those with fewer 
than ten nodes were discarded. Specifically, for filtering Reactome 
pathways for each cancer type, only genes with available expression data 
were utilized. Thus, the filtered Reactome for each cancer type comprised 
pathways with at least ten genes with available expression data for that 
specific cancer type. 
As previously stated, MOSClip conducts survival tests on dimensionality-
reduced data (Martini et al., 2019). A detailed explanation of how MOSClip 
performs its analysis can be found in Figure 1. Consequently, it was 
necessary to select a dimensionality reduction strategy for each omic type. 
In accordance with Martini et al., 2019, we opted for the “summarize With 
Pca” method for gene expression, the “summarize In Cluster” method for 
methylation data, and the “summarize To Binary Events” method for both 
mutation and CNV data.  
In the “Summarize with PCA” method, gene expression data for a specific 
pathway topology is modeled using a directed acyclic graph (DAG) and a 
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graphical model with a normal distribution and a concentration matrix 
(Martini et al., 2019). The maximum likelihood estimate of the covariance 
matrix is obtained using the Iterative Proportional Scaling (IPS) algorithm. 
Principal component analysis is then performed using the spectral 
decomposition of the IPS-estimated covariance matrix. For small sample 
sizes, a shrinkage approach is used to estimate the sample covariance 
matrix. The number of principal components to be selected is estimated 
using a cross-validation approach. When dimension reduction is performed 
on modules of the graph, a sparse PCA is implemented.  
Hierarchical cluster analysis, “summarize In Cluster”, was used to identify 
the optimal number of clusters using the NbClust R package (Martini et al., 
2019). The Silhouette index was used by default, but other validity 
measures can be selected. Patients were then classified into groups based 
on the optimal number of clusters. The numerical matrix was summarized 
with a vector reporting the assigned cluster for each patient.  
In the “summarize To Binary Events” method, the binary matrix was 
summarized with a sample binary vector (Martini et al., 2019). A value of 1 
was assigned if at least one gene in the pathway or module is mutated, 
amplified, or deleted, and 0 otherwise. This strategy is used for both 
pathway and module analyses. 
The remaining MOSClip survival test settings were retained as default. With 
the requisite data for various omics, survival data, and dimensionality 
reduction strategy in place, the final variable to be determined for MOSClip’s 
survival pathway test was the genes to be analyzed. Consequently, only 
genes with available expression data were input into the MOSClip survival 
test function. 
The MOSClip survival pathway test yielded a matrix with pathway names as 
row names and p-values as column names. Each row of the output matrix 
corresponded to a single pathway input into the MOSClip function as a 
filtered Reactome pathway file, while each column indicated the statistical 
significance of each individual omic. Specifically, for each pathway, an 
overall p-value denoted the general significance level of that specific 
pathway, while the remaining columns indicated the p-value of each 
dimensionality-reduced omic. A significant overall p-value for a single 
pathway denoted a significant association between that pathway and patient 
survival for that specific cancer. Additionally, the p-value of each omic 
enabled the determination of which omic types were significantly associated 
with patient survival. To illustrate the structure of the aforementioned matrix, 
a subset of the data frame corresponding to running the survival pathway 
test on BRCA is presented below (Table 11). 
 
 
 
 
 
 
 
 
 



 27 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. MOSClip Analysis Process. This figure illustrates the process 
by which MOSClip performs its analysis. It was reproduced from the 
MOSClip paper (Martini et al., 2019).  
 
As illustrated in Figure 1, part (A) illustrates the survival pathway analysis. 
By utilizing the graph topology G and matrices for gene expression, 
methylation, copy number, and mutations, matrix W is generated through 
the application of dimension reduction. This matrix consists of reduced omic 
vectors with patient classes derived from PCA, hierarchical clustering, and 
binary/vote counting techniques. Subsequently, a multivariate Cox 
proportional hazard model is employed with matrix W serving as covariates. 
The resulting P-value for the full model is then provided. Then, part (B) 
demonstrates the survival module analysis. Following the moralization and, 
if required, triangularization of the graph, modules (or maximal cliques) are 
determined. The analysis outlined in panel (A) is then applied to each 
individual module. Finally, part (C) shows an overview of MOSClip graphical 
tools. The MOSClip package offers a range of tools including 
module/pathway ranking, heatmaps, radial plots, graph visualizations, omic 
combination summaries, and Kaplan-Meier curves with log-rank tests. 
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Table 11. Subset of MOSClip Multi-Omics Survival Pathway Test 
Output for BRCA. As illustrated, the MOSClip package’s survival pathway 
test reveals the association between each pathway and omic and patient 
survival. In the given data, each row represents a pathway. The first column 
indicates the overall p-value for each pathway. Subsequent columns show 
the p-values for each omic type, indicating the significance of correlation 
between alteration in different omics and patient survival. These include p-
values for alteration in CNV, principal component 1-3 of expression, 
different methylation clusters (e.g., met2K2, met3K2, met3K3), mutation, 
and resampling score. This matrix was generated using the survival test on 
BRCA, while data frames for other cancer types exhibit a similar structure. 
 
Due to considerable gene redundancy within pathways and modules, the 
independence of obtained P-values is compromised (Martini et al., 2019). 
To address this issue, enhance pathway and module selection reliability, 
and effectively control false positives, and False Discovery Rate (FDR) 
calculation a resampling strategy was implemented. Specifically, another 
MOSClip function was utilized to execute this resampling approach to 
augment analysis significance. A subset of the previous matrix, filtered to 
include only pathways with an overall p-value of 0.05 or less, was input into 
the MOSClip resampling function. After ten permutation cycles, only 
pathways significant in eight or more permutations were selected. 
Consequently, another matrix with the same format and structure as the 
previous one (Table 11) was generated, containing only pathways with an 
overall p-value of 0.05 or less and a resampling score of at least 8. 
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2.9.2 MOSClip Module Analysis 
 
The MOSClip survival module test closely resembled the survival pathway 
test in many ways. A module can be defined as a connected component of 
the pathway graph chosen automatically by specific algorithms. Specifically, 
the survival module test utilized multi-omics data, survival data, 
dimensionality reduction techniques for each omic type (employing the 
same strategies as those used for pathway analysis), and Reactome 
pathways. However, despite these similarities, there were three crucial 
steps that differentiated the survival module test from the survival pathway 
test. 
The first crucial step that differentiated the survival module test from the 
survival pathway test involved the selection of pathways for analysis. 
Instead of conducting survival analysis on entire Reactome pathways with 
at least 10 genes with available expression data, we took a more targeted 
approach. Specifically, we performed survival analysis only on pathways 
that were significantly associated with patient survival based on the output 
of the survival pathway test. As a result, the survival module test was 
executed solely on pathways that had been selected as significantly 
associated with patient survival in the previous step. 
The second crucial step that differentiated the survival module test from the 
survival pathway test involved the selection of dimensionality reduction 
techniques. As recommended by Martini et al. (2019), we employed the 
“summarize With Pca” strategy without covariance matrix shrinkage and 
using the “topological” PCA method. This approach contrasted with the 
methodology utilized for the survival pathway test, where we employed the 
sparse PCA method with covariance matrix shrinkage as suggested by 
Martini et al. (2019). 
Finally, after executing the resampling step and selecting modules with an 
overall p-value of 0.05 or less and a resampling score of at least 8, we 
applied the Holm method to correct p-values to augment test significance. 
For all cancers except UCS, a significant p-value cut-off of 0.1 was chosen 
after correction, while for the UCS group, a cut-off value of 0.15 was 
selected. 
It is important to note that all other factors and steps involved in the 
execution of the survival module test were identical to those utilized in the 
survival pathway test. In other words, apart from the aforementioned 
differences, the methodology employed in the survival module test mirrored 
that of the survival pathway test. Furthermore, it is worth mentioning that a 
subset of the final matrix generated after performing the survival module test 
on BRCA is presented in Table 12 for reference. 
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Table 12. Subset of MOSClip Multi-Omics Survival Module Test Output 
for BRCA. Each row of the data frame represents a module denoted by the 
pathway name and module number. The first two columns indicate the 
pathway name and module number, while the next column displays the 
overall p-value for each module. Subsequent columns show the p-values 
for each omic type, indicating the significance of correlation between 
alteration in different omics and patient survival. These include p-values for 
alteration in CNV, principal component 1-3 of expression, different 
methylation clusters (e.g., met2K2, met3K2, met3K3), mutation, and 
resampling score. 
 
In summary, we began with a data frame for each omic type of each cancer, 
in addition to information regarding the survival of each patient with a 
specific cancer. Utilizing the MOSClip survival pathway test, we identified 
pathways significantly associated with patient survival for a specific cancer. 
Subsequently, another MOSClip function was employed to conduct a 
survival module test on the significant pathways selected in the previous 
step. This enabled us to determine which modules of a pathway were 
significantly associated with patient survival for a specific cancer. From this 
point forward, we endeavored to analyze and visualize these outputs in a 
practical manner. 

2.10 Constructing an Optimal Data Frame for 
Network Analysis using Cytoscape  
 
After identifying significant pathways and modules using MOSClip, we 
expanded our analysis to examine the genes within each significant module. 
Specifically, we aimed to identify genes significantly associated with patient 
survival in each type of cancer. To achieve this, we developed a function in 
R that takes the output of the “module survival test” and Reactome database 
pathways for Homo sapiens as input and generates a data frame that can 
be visualized in Cytoscape to display the significant genes and their 
interactions. 
The function we implemented performs several steps to generate a data 
frame suitable for visualization in Cytoscape. First, it creates a “graphNEL” 
object for each significant pathway of a specific cancer type to represent the 
pathway’s topology. This “graphNEL” object is then converted to an “igraph” 
object to improve the representation of edges between different genes. 
Next, genes significantly associated with patient survival are selected based 
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on the MOSClip survival test output and extracted from the “igraph” object. 
The gene IDs are then converted from Entrez to symbol and the type of 
multi-omics associated with patient survival is added to the data frame. 
Finally, to eliminate modules that are too dense we decided to define a cut-
off threshold. So, we filter modules based on the average ratio of edges to 
nodes in cases where the number of edges per node is excessively high. 
While this results in some loss of information, it enables practical 
visualization in Cytoscape. 
Thus, to determine an unbiased cut-off for the threshold of the average 
number of edges per node, we performed several analyses. We 
implemented a function in R to visualize the average number of edges per 
node in each “subgraph” generated based on the pathway topology and 
significant genes. As shown in Figure 2 for BRCA cancer, most modules 
have fewer than 40 edges per node on average, with only a small portion 
having more than 40 edges per node on average. Based on the thorough 
and comprehensive analysis that has been conducted, it would be 
reasonable and logical to conclude that an appropriate cut-off point for 
BRCA cancer would be to remove any module that have an average of more 
than 40 edges per node, as this would provide the most accurate and 
reliable results. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

         Modules 
 
Figure 2. Distribution of Average Edges per Node in BRCA Modules.  
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As illustrated in the figure, the majority of the modules have fewer than 40 
edges per node on average. Based on this observation, we decided to 
exclude all modules with an average of more than 40 edges per node.  
To further examine the distribution of the ratio of edges to nodes, we 
analyzed the box plot of the average ratio (Figure 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Box Plot of Average Edges per Node in BRCA Modules. As 
demonstrated in the previous figure, this plot confirms that the majority of 
modules have fewer than 40 edges per node on average. Thus, based on 
our analysis of the BRCA group, 40 is the optimal cut-off.  
 
After determining the optimal cut-off for the average number of edges per 
node in BRCA cancer modules, we expanded our analysis to include four 
other types of cancer. Our goal was to assess whether a cut-off of 40 would 
also be suitable for these additional cancer types. To do this, we examined 
plots of the average number of edges per node for each type of cancer 
(Figure 4, Figure 5, Figure 6, Figure 7). These plots suggested that a cut-
off of 40 would indeed be an excellent choice for our analysis. Furthermore, 
using this cut-off value would not result in any loss of information for the 
other types of cancer we examined. Only a few BRCA modules would be 
excluded from visualization in Cytoscape. 
In conclusion, as is often the case in data analysis and visualization, we 
were faced with a trade-off between the amount of information we could 
represent and the practicality and usefulness of the resulting visualization. 
After careful consideration and analysis of the data, we ultimately made the 
decision to sacrifice some of the BRCA modules in order to create a more 
effective and informative Cytoscape visualization. 
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Figure 4. Distribution of Average Edges per Node in CESC Modules. 
As shown in the figure, all three CESC cancer modules have fewer than 40 
edges per node on average. Therefore, setting the cut-off to 40 would not 
affect the inclusion of CESC modules of significant genes. 
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Figure 5. Distribution of Average Edges per Node in OV Modules. As 
shown in the figure, a cut-off threshold of 40 would not affect the inclusion 
of OV modules. The range of the average number of edges per node in OV 
cancer is acceptable and no changes are required. 
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Figure 6. Distribution of Average Edges per Node in UCEC Modules. 
As demonstrated in the figure, all UCEC group modules have fewer than 40 
edges per node on average. Therefore, setting the cut-off to 40 would not 
exclude any UCEC modules. 
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Figure 7. Distribution of Average Edges per Node in UCS Modules. As 
shown in the figure, the final type of cancer we examined, UCS, would not 
be affected by a cut-off threshold of 40 for module size. This is consistent 
with our findings for the previous three cancer types (CESC, OV, and 
UCEC). 
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In conclusion, the R function we implemented generates a data frame 
suitable for visualization in Cytoscape by performing the necessary 
modifications and filtering, as previously described in detail. With this data 
frame (Table 13), we can now visualize the genes significantly associated 
with patient survival in different types of cancer using Cytoscape. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 13. BRCA Data Frame Subset for Cytoscape Visualization. Since 
the data frames for all types of cancer have the same general structure, we 
have only illustrated a subset of the BRCA matrix. As shown in the table, 
the columns represent the source node, target node, cancer type, name of 
the pathway, module number, and the type of omics significant for that pair 
of genes, respectively. 
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2.11 Generation of Survival Heatmap Matrix 
 
First, we extracted all significant genes within significant modules for each 
cancer type. For each cancer, we created a list of genes significantly 
associated with patient survival. We then used the cleaned version of multi-
omics data downloaded from “curatedTCGAData” and extracted the 
significant genes identified in the first step from each omics data frame. For 
example, in the expression data frame, each row corresponds to a single 
gene and each column to a patient (Table 4). We selected only rows 
containing genes significantly associated with patient survival and added 
the “exp” tag to the end of each gene name using a dot as a separator (Table 
14). This procedure was repeated for different omics and cancer types, 
resulting in four data frames for each cancer type, one for each omics type. 
These data frames have row names consisting of gene names plus dot plus 
omics type and column names representing patients. A subset of different 
omics data frames for BRCA is shown in Table 14, Table 15, Table 16, and 
Table 17. Since the structure for other cancer types is identical, we have 
only illustrated BRCA here. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 14. BRCA Expression Data Frame Subset. As shown in the table, 
each column represents a patient and each row represents a gene and its 
associated omics type, in this case, “expression”. The cells of this data 
frame contain the TPM (transcripts per million) gene expression values. 
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Table 15. BRCA CNV Data Frame Subset. As demonstrated in the table, 
each column represents a patient and each row represents a gene and its 
associated omics type, in this case, copy number variation. Each cell of this 
data frame can have one of three values: -1, 0, or 1, indicating loss, no 
change, or gain of copy number, respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 16. BRCA Methylation Data Frame Subset. As shown in the table, 
each column represents a patient and each row represents a gene and its 
associated omics type, in this case, methylation. Each cell of this matrix 
displays the methylation level for a specific gene and patient. 
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Table 17. BRCA Mutation Data Frame Subset. As depicted, each column 
represents an individual patient, while each row represents a specific gene 
and the corresponding omic type, which in this case is mutation. The value 
of each cell within this data frame is determined by the presence or absence 
of a mutation in the patient; a value of one indicates the presence of a 
mutation, while a value of zero indicates its absence. 
 
After identifying the genes that were significantly associated with patient 
survival across various cancers, it was determined that multi-omics 
information would be utilized to ascertain whether a particular gene played 
a role in an individual patient’s survival outcome. 
To be more precise, a Cox Proportional Hazards model was employed in 
conjunction with a penalized function in R to shrink the coefficients towards 
zero and determine which genes had non-zero coefficients for each patient. 
Additionally, a function was implemented in R for the expression and 
methylation data frames of five cancer types. The optimal lambda value for 
shrinking the coefficients using the penalized function was determined by 
comparing various lambda values and selecting the one that yielded the 
most favorable coefficients. Subsequently, with the optimal lambda value 
established, non-zero coefficient values were calculated for significant 
genes. 
Afterward, the sign of each gene’s coefficient was analyzed to determine its 
potential impact on patient survival. The median gene expression and 
methylation values were calculated for each gene across all patients. For 
gene expression, a positive coefficient sign indicated that over-expression 
of the gene was correlated with poorer survival outcomes, while a negative 
sign indicated the opposite. In cases where the coefficient was positive, 
genes with expression and methylation values exceeding the calculated 
median were assigned the absolute value of their coefficient, while those 
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with values at or below the median were assigned a value of zero. The 
inverse approach was applied to genes with negative coefficient values. 
The implemented function takes as input the survival data frame for each 
patient, a matrix with gene names as row names and patient names as 
column names containing expression or methylation values for each cell, 
and the chosen lambda value. The output is a new matrix containing only 
genes whose coefficients were non-zero after shrinking.  
The following table (Table 18) displays a subset of the final expression data 
frames for BRCA cancer generated by the aforementioned function. The 
data frames for methylation and other cancer types share the same 
structure, but only the expression data frame is shown here for brevity. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 18. Subset of BRCA Expression Data Frame After Use of 
Penalized Function. As depicted in the illustration, the output of the 
aforementioned function would resemble this table for all five cancer types. 
Specifically, each cell displays the coefficient of the corresponding gene for 
a particular patient. The lambda value utilized for the penalized function for 
BRCA was 3.4. 
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Subsequently, it was necessary to implement an additional function to 
handle copy number variation (CNV) data. Unlike gene expression and 
methylation data frames, which contained measured values for gene 
expression and methylation respectively, CNV data frames did not contain 
measured values for the copy number of each gene. As previously 
mentioned, CNV data frames could only contain values of -1, 0, or 1 to 
represent loss, no change, or gain of copy number. As such, the function 
implemented for gene expression and methylation could not be applied to 
CNV data.  
A new function was implemented in R that takes as input a CNV matrix and 
a survival data frame for patients with available CNV information, as well as 
a lambda value to determine the strength of coefficient shrinking using the 
penalized function of the penalized package. The function shrinks all 
coefficients towards zero and retains only those genes whose coefficients 
were non-zero after shrinking.  
Two scenarios could arise: a negative coefficient sign for a gene or a 
positive coefficient sign. In the first scenario, for each patient, CNV values 
of -1 were converted to the absolute value of the corresponding gene 
coefficient, while 0 and 1 values were converted to 0. In the second 
scenario, CNV values of +1 were converted to the absolute value of the 
coefficient, while -1 and 0 values were converted to 0. 
In addition to the aforementioned steps, it is important to note that prior to 
running the function designed to handle copy number variation (CNV) data, 
the procedure that was previously described for determining the optimal 
value for lambda in the gene expression and methylation function was also 
applied in this instance. As a result of this process, the output generated by 
the CNV function would take the form of another matrix, with gene names 
and the corresponding type of omic data included as row names, and 
individual patients represented by the column names (as shown in Table 
19). 
Afterwards, given that the mutation matrix contained only 0 and 1 values to 
represent the absence or presence of a mutation, respectively, it was 
determined that another function should be implemented in R to handle this 
final omic data type.  
The implemented function operates similarly to the one designed for CNV 
data, but with a unique distinction due to the fact that mutation values cannot 
be negative. In cases where a coefficient had a negative sign, all values of 
1 were converted to 0 since mutation values could not be negative. 
Conversely, in cases where a coefficient had a positive sign, values of 0 
remained unchanged while values of 1 were converted to the absolute value 
of the coefficient. The final output of this function shared the same structure 
as the CNV data frame depicted in Table 19. 
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In summary, five data frames were generated for our five cancer types, 
representing whether an alteration in a gene’s omic data could negatively 
impact a patient’s survival outcome for a specific cancer. Specifically, a 
value of 0 for a gene indicated that it did not adversely affect patient survival, 
while a value greater than zero indicated that it could worsen the patient’s 
survival outcome. It was determined that the coefficients of a gene from its 
Cox Proportional Hazards model would be used to indicate its negative 
effect on patient survival. This approach enabled comparison of the 
negative impact of each gene on patient survival across different cancers. 
Since a single lambda value was used for each cancer type to generate 
these coefficients, it can be inferred that the larger the coefficient, the 
greater the gene’s impact. These data frames were subsequently used to 
create heatmaps for each cancer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 19. Subset of BRCA CNV Data Frame After Use of Penalized 
Function. As depicted in the illustration, each row represents a single gene 
and its corresponding omic type, which in this case is copy number 
variation. Each column represents an individual patient. The values within 
each cell of this data frame represent the coefficient of each gene for a 
particular patient. The lambda value utilized to generate this matrix was 3.4. 
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3. RESULTS and DISCUSSION 

3.1 Preliminary Analysis of MultiAssayExperiment 
Data 
 
The clinical dataset for breast carcinoma (BRCA) encompasses information 
on 1,098 patients diagnosed between 1988 and 2013, ranging in age from 
26 to 90 years old. Of these patients, survival data (days to death) was 
available for only 151 individuals. The data indicates that the lifespan of 
patients with BRCA varied between about 3.86 and 248.46 months. Notably, 
BRCA is the only cancer type in this study that includes both male and 
female patients. However, of the total patient population, only 13 were male, 
while the remainder were either female or their gender was not specified. 
Consequently, male patients were excluded from further analysis to ensure 
a more homogeneous sample. 
The clinical dataset for cervical squamous cell carcinoma and endocervical 
adenocarcinoma (CESC) encompasses information on 307 patients 
diagnosed between 1994 and 2013, ranging in age from 20 to 88 years old. 
Of these patients, survival data (days to death) was available for 72 
individuals. The data indicates that the lifespan of patients with CESC varied 
between 0.46 and 136.2 months. 
The clinical dataset for ovarian serous cystadenocarcinoma (OV) 
encompasses information on 588 patients diagnosed between 1992 and 
2013, ranging in age from 26 to 89 years old. Of these patients, survival 
data (days to death) was available for 343 individuals. The data indicates 
that the lifespan of patients with OV varied between 0.26 and 154.13 
months. 
The clinical dataset for uterine corpus endometrial carcinoma (UCEC) 
encompasses information on 547 patients diagnosed between 1995 and 
2013. However, age data was not available for this cancer type. Of these 
patients, survival data (days to death) was available for 91 individuals. The 
data indicates that the lifespan of patients with UCEC varied between 1.66 
and 114.1 months. 
The clinical dataset for uterine carcinosarcoma (UCS) encompasses 
information on 57 patients diagnosed between 2002 and 2012, ranging in 
age from 51 to 90 years old. Of these patients, survival data (days to death) 
was available for 35 individuals. The data indicates that the lifespan of 
patients with UCS varied between 0.26 and 103.83 months. 
Table 20 presents a comprehensive overview of the clinical data for the five 
cancer types under investigation in this study. This table provides a detailed 
summary of the key information and statistics for each cancer type, 
including the number of patients, their age range, diagnosis dates, and 
survival data. By examining this table, readers can gain a better 
understanding of the clinical characteristics of these cancer types and the 
patient populations affected by them. 
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 Patients Diagnosing_period Age Patients_with_survival_data Days_of_survival 

BRAC 1098 1988-2013 26-90 151 116-7454 
CESC 307 1994-2013 20-88 72 14-4086 

OV 588 1992-2013 26-89 343 8-4624 
UCEC 547 1995-2013 NA 91 50-3423 
UCS 57 2002-2013 51-90 35 8-3115 

 
Table 20. Overview of Clinical Data for Five Cancer Types.  
 
As shown in the previous table, the highest number of patients is observed 
in the BRCA dataset, while the lowest number is found in the UCS dataset. 
However, when considering only patients for whom survival data is 
available, the OV dataset contains the highest number of patients among 
these five cancer types. 

3.2 Overview of Multi-Omics Data for Each Cancer 
Type 
 
As outlined in the materials and methods section, our analysis included only 
patients for whom complete multi-omics data was available. After filtering 
the patient population based on this criterion, the number of patients for 
BRCA, CESC, OV, UCEC, and UCS decreased to 458, 190, 183, 108, and 
56, respectively. Despite this reduction in patient numbers, BRCA remained 
the largest group, while CESC became the second largest group, 
surpassing UCEC. Furthermore, OV became the second smallest group 
after UCS, which remained the smallest group both before and after filtering 
(Table 21). 
Table 21 provides a detailed comparative analysis of the number of 
interpreted genes among five different cancer types. This table offers 
valuable insights into the distribution of gene expression, copy number 
variation (CNV), methylation, and mutation data across these cancer types 
and allows for a more nuanced understanding of their molecular 
characteristics. 
As shown in the table, the highest number of genes in the expression matrix 
is observed in the BRCA group, followed by OV. This indicates that these 
two cancer types exhibit a greater degree of complexity and diversity in their 
gene expression profiles. In contrast, for CNV data, the number of 
interpreted genes is consistent across all five cancer types. This suggests 
that the CNV data frame contains precisely the same genes for each cancer 
type, providing a common basis for comparison and analysis. Additionally, 
the methylation data frame contains the same genes for all cancer types 
except OV. In contrast to the other data frames, the mutation data frame 
exhibits significant variation in the number of genes among different cancer 
types. UCEC has the highest number of genes, while UCS has the lowest. 
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 Patients Expression CNV Methylation Mutation 

BRAC 458 16088 21952 17874 15377 
CESC 190 15253 21952 17874 12759 

OV 183 15890 21952 13044 7737 
UCEC 108 15005 21952 17874 16467 
UCS 56 14892 21952 17874 5445 

 
Table 21. Comparison of Genes and Patients Across Different Cancer 
Types.  
 
The table above presents the final statistics for the number of patients and 
genes included in the expression, copy number variation (CNV), 
methylation, and mutation data frames for the five cancer types under 
investigation. These statistics reflect the results of all previous data 
processing and filtering steps and were used as the basis for further 
analysis. 

3.3 Pathway Analyses 
 
After conducting pathway and module survival tests using MOSClip, we 
sought to identify pathways significantly associated with patient survival that 
were shared among different types of cancer. Since the pathways 
significantly associated with the survival of patients had been determined, it 
was not challenging to perform more analysis regarding these pathways (A 
comprehensive list of all significant pathways, modules, and all the other 
data that has been produced in this research can be accessed via the 
following GitHub link: https://github.com/Amin-Zlf/Integrated-Multi-omics-
Survival-Analysis-of-Gynecologic-and-Breast-Cancers). To this end, we 
created a Venn diagram. It illustrates the number of unique and common 
pathways among different types of cancer (Figure 8).  
Upon careful examination of our data, it became apparent that there were 
no pathways common to all five types of cancer. In light of this finding, we 
made the decision to shift our focus to those pathways that were shared 
among the greatest number of cancers. As can be seen in Figure 8, our 
analysis revealed the presence of several pathways that were shared 
among three cancers at most. Given the significance of these shared 
pathways, we determined that it would be prudent to select them for further 
analysis in order to gain a deeper understanding of their role in cancer 
survival. 
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Figure 8. Shared Pathways Among Five Cancer Types. As our analysis 
shows, there are no pathways shared among all five types of cancer. 
However, we did identify several pathways shared among specific 
combinations of cancers. For instance, 4 pathways were shared among OV-
UCEC-CESC, 3 pathways were shared among BRCA-UCEC-OV, 1 
pathway was shared among CESC-OV-BRCA, and 24 pathways were 
shared among BRCA-CESC-UCEC. 
 
As depicted in Figure 8, we elected to concentrate our analysis on those 
sections of the Venn diagram containing significant pathways shared among 
three types of cancer. The first section corresponded to the OV, CESC, and 
UCEC cancers and contained four pathways: “Signaling by NOTCH2,” 
“GRB2:SOS provides linkage to MAPK signaling for Integrins,” “Integrin 
signaling,” and “Platelet Aggregation (Plug Formation).” The second section 
selected corresponded to the BRCA, UCEC, and OV cancers and included 
the “TNFs bind their physiological receptors,” “Purine salvage,” and “TNFR2 
non-canonical NF-kB pathway” pathways. The third section chosen was 
shared among the CESC, OV, and BRCA cancers and contained only one 
pathway: “TP53 Regulates Metabolic Genes.” Finally, the last section 
selected was shared among the BRCA, CESC, and UCEC cancers and 
contained 24 pathways. The names of these 24 pathways can be found in 
Figure 9. 

 



 48 

 
 

 
 
        
 
 
 
 
 
 
 

 
Figure 9. Comparative Analysis of Pathways Shared Among Different 
Cancer Types. As our analysis shows, among the selected group of 
cancers, the BRCA-CESC-UCEC combination has the greatest number of 
shared pathways, with a total of 24. The OV-UCEC-CESC combination has 
the second highest number of shared pathways, with 4. The BRCA-UCEC-
OV and CESC-OV-BRCA combinations follow, with 3 and 1 shared 
pathways, respectively. 
 
Thus, Figure 9 displays the names of the shared pathways for each group 
of cancers. It is important to note that these pathways were identified as 
being significantly associated with patient survival based on our previous 
statistical analyses. This suggests that alterations in these pathways can 
have a significant impact on patient outcomes. 
In order to gain a more comprehensive understanding of the distribution of 
pathways among the five types of cancer, we conducted an analysis of the 
percentage of pathways for each cancer type, whether unique or shared. 
Our findings revealed that UCEC had the highest proportion of unique 
pathways among the five cancer types, at 55.5%. This was followed by 
BRCA, CESC, OV, and UCS, with 9.1%, 2.5%, 0.6%, and 0.5%, 
respectively. In addition to these unique pathways, our analysis also 
showed that 18.1% of pathways significantly associated with patient survival 
were shared between BRCA and UCEC. These results provide valuable 
insights into the distribution of significant pathways among different cancer 
types. 
Upon identifying the shared pathways among different types of cancer, we 
turned our attention to the question of whether the p-values of the same 
omics were significant for all cancers within a given group. In other words, 
we sought to determine whether a given omic was consistently associated 
with patient survival across all cancer types that included a specific 
pathway. For example, we investigated whether gene expression in a single 
pathway was significantly associated with patient survival in all cancer types 
that included that pathway. To facilitate our analysis, we created Figure 10, 
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which provides a visual representation of our findings. As can be seen in 
this figure, gene expression emerged as the only omic common to the 
shared pathways of different cancer types. This finding has important 
implications for our understanding of the role of gene expression in cancer 
survival.  
 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 10. A Comprehensive Comparative Analysis of the Significance 
of Different Omics Across Multiple Cancer Types. In the course of our 
analysis, we discovered that gene expression was the only omic that 
exhibited a significant correlation with patient survival across all cancer 
types within each group. In order to provide a more detailed and 
comprehensive representation of our findings, we organized our data into a 
table format. In this table, each row corresponds to a specific pathway, while 
each column represents a different type of omic, including Copy number 
variation (cnv), gene expression (exp), methylation (met), and mutation 
(mut). The color of each cell within the table conveys two important pieces 
of information. First and foremost, it indicates whether the omic for the 
corresponding pathway is significantly associated with survival in all cancer 
types within the group. If this is the case, the cell is colored; if not, it remains 
white. Second, if the cell is colored, its hue provides an indication of which 
group it is associated with. This color-coding system allows for easy 
visualization and interpretation of our results. 
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3.4 Network Analysis of Pathways Using Cytoscape 
 
Following the pathway analyses, it was determined that further 
investigations into the genes within the significant modules were necessary. 
As such, Cytoscape was utilized to visualize the topology of the genes within 
each module that exhibited a significant association with patient survival. 
Subsequently, we will commence with an interpretation of the graphs for 
each cancer type individually before proceeding to an interpretation of all 
cancers collectively. 
The first cancer visualized using Cytoscape was BRCA (Figure 11). To 
enhance the quality of the visualization, it was determined that only genes 
with 1 to 100 edges would be selected and filtered. As indicated in the 
legend of Figure 11, a single guidance legend was created for all types of 
Cytoscape graphs presented in this research. Each cancer type was 
represented by a specific color, while different omics were denoted by 
distinct node shapes. Consequently, there were five distinct cancer types 
and 11 unique cancer groups: BRCA, BRCA-UCEC, BRCA-OV, UCS, 
UCEC-UCS, OV, BRCA-UCS, UCEC, CESC, CESC-UCEC, and BRCA-
CESC. Additionally, there were 11 unique omic types: cnv-exp-met, cnv-
exp-mut, cnv-exp-met-mut, exp-met, exp-mut, cnv-met, cnv-exp, cnv, exp, 
met and exp-met-mut. To illustrate further, a light-green gene in the shape 
of a small circle signifies that an alteration in the expression of that specific 
gene is significantly associated with the survival of BRCA patients. 
In addition to the aforementioned details, it is important to note that other 
pertinent information was also available. This included, for example, the 
name of the specific pathway in which each gene performs its designated 
activity. As a result of this availability of information, it was possible to further 
classify the genes based on several distinct criteria. These criteria included 
the type of cancer with which the gene was associated, the specific pathway 
in which the gene played a role, and the type of significant omic that was 
relevant to the gene in question. 
In the subsequent pages, the graphs for each individual cancer type, as well 
as a composite graph representing all cancers collectively, are presented. 
As illustrated in Figure 11, the first graph corresponds to BRCA. As can be 
observed, there were eight pathways that exhibited a significant association 
with the survival of BRCA patients. These pathways included GPCR 
downstream signaling, Axon guidance, Amino acid and derivative 
metabolism, Signaling by FLT3 ITD and TKD mutants, Signaling by GPCR, 
Vesicle-mediated transport, Extracellular matrix organization, and 
Metabolism. Additionally, this graph provides information regarding which 
specific genes within these pathways were significantly associated with 
survival and which type or types of omic alteration could be responsible for 
the survival of BRCA patients. 
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Figure 11. Cytoscape Graph Depicting Significant Genes in BRCA. This 
graph depicts the genes, pathways, and types of omics that exhibited a 
significant association with the survival of BRCA patients. 
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Figure 12. Cytoscape Graph Depicting Significant Genes in CESC. This 
graph provides a detailed and comprehensive visual representation of the 
various genes, pathways, and types of omics that have been demonstrated 
to exhibit a significant association with the survival of CESC patients. 
Through this graphical representation, it is possible to gain a deeper 
understanding of the complex relationships between these various factors 
and their impact on patient survival. 
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As illustrated in Figure 12, there were three distinct pathways that exhibited 
a significant association with the survival of CESC patients. These pathways 
were identified through careful analysis and examination of the available 
data and were found to play a crucial role in the survival of CESC patients. 
These pathways were identified as HATs acetylate histones, Extracellular 
matrix organization, and Hemostasis. In addition to this information, the 
graph also provides a visual representation of which specific genes within 
these pathways were significantly associated with survival and which type 
or types of omic alteration could potentially be responsible for the survival 
of CESC patients. 
With regard to OV cancer, Figure 13 illustrates that there were four distinct 
pathways that exhibited a significant association with the survival of OV 
patients. These pathways were identified as TP53 Regulates Metabolic 
Genes, NGF-stimulated transcription, Activation of SMO, and Hh mutants 
abrogate ligand secretion. In addition to this information, the graph also 
provides a visual representation of which specific genes within these 
pathways were significantly associated with survival and which type or types 
of omic alteration could potentially be responsible for the survival of OV 
patients. 
As depicted in Figure 14, there were 11 distinct pathways that exhibited a 
significant association with the survival of UCEC patients. These pathways 
were identified as Termination of O-glycan biosynthesis, Membrane 
Trafficking, Cytokine Signaling in Immune system, Signaling Pathways, 
mRNA Capping, RNA Polymerase III Transcription Initiation, RHO GTPases 
Activate Formins, Interferon alpha/beta signaling, Gluconeogenesis, 
Developmental Biology, and Cellular responses to stress. In addition to this 
information, the graph also provides a visual representation of which 
specific genes within these pathways were significantly associated with 
survival and which type or types of omic alteration could potentially be 
responsible for the survival of UCEC patients. 
With regard to UCS cancer, it was determined that there were eight distinct 
pathways that exhibited a significant association with the survival of UCS 
patients. These pathways were identified as Synthesis of bile acids and bile 
salts via 27-hydroxycholesterol, Caspase-mediated cleavage of 
cytoskeletal proteins, Apoptotic cleavage of cellular proteins, GPCR ligand 
binding, Vitamin D (calciferol) metabolism, CaMK IV-mediated 
phosphorylation of CREB, RIP-mediated NFkB activation via ZBP1, and 
TICAM1,TRAF6-dependent induction of TAK1 complex. Similar to the 
previous graphs, this graph (Figure 15) also provides a visual representation 
of which specific genes within these pathways were significantly associated 
with survival and which type or types of omic alteration could potentially be 
responsible for the survival of UCS patients. 
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Figure 13. Cytoscape Graph Depicting Significant Genes in OV. This 
graph provides a detailed and comprehensive visual representation of the 
various genes, pathways, and types of omics that have been demonstrated 
to exhibit a significant association with the survival of OV patients. Through 
this graphical representation, it is possible to gain a deeper understanding 
of the complex relationships between these various factors and their impact 
on patient survival. 
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Figure 14. Cytoscape Graph Depicting Significant Genes in UCEC. This 
graph shows genes, pathways, and omics associated with UCEC patient 
survival and their complex interrelationships. 
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Figure 15. Cytoscape Graph Depicting Significant Genes in UCS. This 
graph provides a detailed and comprehensive visual representation of the 
various genes, pathways, and omics that have been demonstrated to have 
a significant association with the survival of UCEC patients. 
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For the final graph, it was determined that consolidating all previous 
information into a single visual representation would facilitate a more 
effective comparison of genes and pathways across different types of 
cancers. It is important to note that due to the vast number of multi-omics 
combinations, it was decided to display genes only based on cancer type 
and the specific pathway in which each gene plays a role, in order to 
maintain clarity and comprehensibility. 
As depicted in Figure 16, there exist notable biological similarities among 
the five types of cancers under investigation. For instance, the L1CAM gene 
was found to have a significant association with the survival of both BRCA 
and UCEC patients. Specifically, alterations in both the expression and 
methylation of L1CAM within the "Axon guidance" pathway were 
significantly associated with BRCA patient survival, while only the 
expression of L1CAM within the "Developmental Biology" pathway was 
significantly associated with UCEC patient survival.  
Additionally, the expression of the GRB2 gene within the "Developmental 
Biology" pathway was significantly associated with UCEC patient survival. 
This gene, like L1CAM, was common to both BRCA and UCEC. However, 
the expression and methylation of GRB2 within the "Signaling by FLT3 ITD 
and TKD mutants" pathway were significantly associated with BRCA patient 
survival.  
Another gene, GPX2, which plays a role within the "Metabolism" pathway, 
had its expression and methylation significantly associated with BRCA 
patient survival. Moreover, alterations in the copy number variation and 
expression of the GPX2 gene within the "TP53 Regulates Metabolic Genes" 
pathway were found to be significantly associated with the survival of OV 
patients.  
Other genes that exhibited a significant association with the survival of 
UCEC and UCS patients include MAP3K7 and CHUK. Specifically, 
alterations in the copy number variation, expression, and methylation of 
MAP3K7 and CHUK within the "Cytokine Signaling in Immune system" 
pathway were significantly associated with UCEC patient survival.  
Additionally, the expression of MAP3K7 within the "TICAM1, TRAF6-
dependent induction of TAK1 complex" pathway and CHUK within the "RIP-
mediated NFkB activation via ZBP1" pathway were significantly associated 
with UCS patient survival. These are just a few examples of the insights that 
can be gleaned from the graphs generated by Cytoscape in this research. 
To avoid repetition and facilitate a better understanding of genes shared 
among different types of cancers, Table 22 was created. 
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Figure 16. Visualization of Significant Genes and Pathways Across All 
Cancer Types. This graph illustrates the genes and pathways that have a 
significant association with the survival of BRCA, CESC, OV, UCEC, and 
UCS patients. 
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Table 22. Common Genes Across Multiple Cancer Types. This table 
provides a comprehensive and detailed visual representation of the genes 
that are shared among different types of cancers. It includes information on 
the specific cancers with which each gene is associated, the types of omics 
for which alterations have been shown to have a significant association with 
patient survival, and the pathways in which each gene plays a role. 
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3.5 Comparative Analysis of Common Cancer 
Genes: A Literature Review 
 
After identifying the common genes among various types of cancers, a 
comprehensive literature review was conducted to compare our findings 
with those of other studies. In the following section, we will focus on the 
genes that were discovered through our analysis. 
The first gene identified in our analysis was L1CAM, which has been shown 
to have a significant association between its expression and methylation 
alterations and the survival of BRCA patients. Moreover, the expression of 
this gene was found to be associated with the survival of UCEC patients. 
Previous studies have demonstrated that L1CAM expression is correlated 
with the aggressiveness and size of BRCA tumors (Moisini et al., 2021). As 
such, it has been linked to larger tumor size and earlier recurrence in BRCA 
cancer. Additionally, research has indicated that this gene may have a 
significant impact on UCEC from an immunological perspective (Fang et al., 
2022). 
The subsequent gene identified in our analysis was SLC7A11, which 
demonstrated a significant association with the survival of patients 
diagnosed with BRCA and UCEC cancers. Research has revealed that an 
increased expression of SLC7A11 correlates with improved prognosis for 
individuals diagnosed with UCEC (Fang et al., 2023). Furthermore, research 
has revealed that this gene is instrumental in regulating cell death induced 
by glucose starvation in various cancers, including breast cancer (Koppula 
et al., 2018). 
In our analysis, GRB2 and SOS1 were identified as the subsequent genes, 
exhibiting a significant association with the survival of BRCA and UCEC 
patients. Numerous studies have shown that inhibiting the interaction 
between GRB2 and SOS1 can have a significant impact on the treatment 
of breast cancer (Yu et al., 2017). 
The subsequent gene identified in our analysis was GOT1, which 
demonstrated a significant association with the survival of patients 
diagnosed with BRCA and UCEC cancers. Additional research has 
corroborated the link between this gene and the distinct metabolism of 
BRCA tumor cells (An et al., 2022). 
In this study, the genes SOS1 and YWHAE were found to be significantly 
associated with the survival of patients with BRCA and UCEC. This finding 
is supported by previous research, which has demonstrated that the SOS1 
gene plays a role in the migration of breast cancer cells (Zhu et al., 2013). 
The YWHAE gene has been identified as a key factor in the growth and 
spread of breast cancer cells, as well as their ability to resist the effects of 
chemotherapy (Yang et al., 2019). This gene plays a crucial role in 
promoting cell proliferation, facilitating metastasis, and increasing 
resistance to chemotherapy in breast cancer cells. 
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Another gene identified in this study as being associated with the survival 
of patients with breast and ovarian cancer is GPX2. Research has shown 
that the expression of this gene can serve as a prognostic marker in breast 
cancer patients, providing valuable information for predicting disease 
outcomes and guiding treatment decisions (Esworthy et al., 2022). 
In this study, the CHUK gene was also identified as being significantly 
associated with the survival of patients with UCEC and UCS. Recent 
research has shown that this gene acts as a tumor suppressor in various 
types of tumors, suggesting that it may play a crucial role in preventing the 
development and progression of cancer (Li & Hu, 2021). 
In our analysis, RXRA, CALM2, NCOA2, and NCOA1 genes were found to 
be significantly associated with the survival of patients with BRCA and UCS. 
Research has demonstrated that RXRA plays a crucial role in the prognosis 
of breast cancer (Pande et al., 2013). Furthermore, research has shown that 
the CALM2 gene is significantly associated with breast cancer tumors 
(Haddad et al., 2015). The NCOA2 gene has been also identified as playing 
a key role in the development of tumors (Cai et al., 2019). By inducing cell 
cycle arrest and apoptosis, this gene is able to suppress cell proliferation 
and inhibit the growth and spread of breast cancer cells. The latest gene, 
NCOA1 has been demonstrated to be involved in breast cancer metastasis, 
resistance to endocrine therapy, and recurrence (Qin et al., 2014).  
Furthermore, in our analysis, the PTPN6 and SRC genes were found to be 
significantly associated with the survival of patients with CESC and UCEC. 
Previous research has shown that this gene is associated with the 
metastasis of cervical cancer (Eswaran et al., 2022). Moreover, 
overexpression of PTPN6 has been associated with reduced overall survival 
in patients with cervical cancer, suggesting that this gene may play a crucial 
role in the development and progression of the disease. Additionally, 
research has demonstrated that SRC proteins play crucial roles in cell 
migration, adhesion, and proliferation in patients with UCEC (Akin & Özkan, 
2023).  
Finally, the ITGAV gene was identified as being significantly associated with 
the survival of patients with BRCA and CESC. Studies have indicated that 
the ITGAV gene has the potential to be a therapeutic target in the treatment 
of breast cancer (Cheuk et al., 2020). This presents a promising opportunity 
for the development of innovative treatment approaches. 
As demonstrated by the findings of Berger et al., 2018, it can be confirmed 
that, although there are similarities among the various types of breast and 
gynecologic cancers, they exhibit a range of significant distinctions, each 
with its own unique characteristics and behaviors. 
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3.6 Survival Heatmap 
 
After identifying the genes that were common among different types of 
cancers with respect to patient survival, an analysis was conducted to 
determine which specific genes could negatively impact the survival of 
individual patients and to what extent. To this end, a heatmap was created 
for each cancer type, illustrating the effect of significant genes on the 
survival of each patient. In these heatmaps, each row represents a gene 
symbol and the associated type of omic, separated by a dot. The columns 
of the heatmaps correspond to the IDs of patients with that specific cancer. 
Furthermore, each heatmap is divided into two sections, with the top section 
displaying a score for each patient and the bottom section representing the 
magnitude of the effect of each gene/omic on each patient. The score is 
calculated by summing the coefficients for each patient, with higher scores 
indicating a greater risk of death. Since the coefficients for each patient are 
calculated using the same parameters (such as lambda), it is possible to 
compare the coefficients of patients with a single type of cancer.  
Only genes that had a negative effect on patient survival were selected for 
inclusion in the heatmap, with all genes represented having a negative 
effect on at least one patient. However, the magnitude of the negative effect 
of each gene/omic may vary, and these variations are represented by 
different colors, ranging from white to red. The redder a spot on the 
heatmap, the greater the negative effect of an alteration in that omic for that 
specific gene on that specific patient. 
Moreover, In the heatmaps presented in this research, the genes are 
carefully ordered based on their relative importance in determining patient 
survival. This ordering is achieved by calculating the sum of coefficients for 
each gene/omic and arranging them in descending order. The score values 
for each cancer type are then meticulously divided into three distinct ranges, 
representing the low, medium, or high risk of death for each individual 
patient. These ranges are determined based on a thorough analysis of the 
quantiles of scores for each cancer type.  
Patients with scores falling within the first 25% of the quantile (including the 
25th percentile) are assigned to the low-risk group, which is visually 
represented by a light blue color. Patients with scores falling between the 
25th and 75th percentiles (including the 75th percentile) are classified as 
medium risk and are represented by an orange color. Patients with scores 
falling within the top 75% of the quantile are considered to be at high risk 
and are represented by a dark red color. The heatmaps for each cancer 
type, which provide a detailed and comprehensive visual representation of 
these findings, are presented below (Figure 17, Figure 18, Figure 19, Figure 
20, Figure 21). 
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Figure 17. BRCA Survival Heatmap. As depicted in the heatmaps, the 
patients are carefully separated into three distinct groups based on their 
relative risk of death. These groups are visually represented by different 
colors, with light blue indicating low risk, orange indicating medium risk, and 
dark red indicating high risk. The genes, on the other hand, are separated 
by different shades of color ranging from white to red. The intensity of the 
red color corresponds to the magnitude of the effect that a particular 
gene/omic can have on patient survival. The darker the shade of red, the 
greater the potential impact of that gene/omic on survival. 
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Figure 18. CESC Survival Heatmap. As clearly illustrated in the 
meticulously constructed heatmaps, patients are carefully divided into three 
distinct groups based on their relative risk of death. These groups are 
visually represented by different colors, with light blue indicating low risk, 
orange indicating medium risk, and dark red indicating high risk. The genes, 
on the other hand, are separated by different shades of color ranging from 
white to red. The intensity of the red color corresponds to the magnitude of 
the effect that a particular gene/omic can have on patient survival. The 
darker the shade of red, the greater the potential impact of that gene/omic 
on survival. 
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Figure 19. OV Survival Heatmap. The heatmaps provide a detailed and 
comprehensive visual representation of the patients, who are meticulously 
categorized into three groups according to their death risk. These groups 
are differentiated by distinct colors, with light blue representing low risk, 
orange representing medium risk, and dark red representing high risk. The 
genes are distinguished by varying shades from white to red. The more 
significant the impact of a gene/omic on survival, the more intense its red 
hue will be. 
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Figure 20. UCEC Survival Heatmap. As shown in the carefully crafted 
heatmaps, patients are classified into three well-defined groups based on 
their likelihood of death. These groups are visually differentiated by different 
colors, with light blue denoting low risk, orange denoting medium risk, and 
dark red denoting high risk. The genes are differentiated by shades of color 
from white to red. The greater the influence of a gene/omic on survival, the 
deeper its shade of red will be. 
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Figure 21. UCS Survival Heatmap. The heatmaps demonstrate with great 
clarity that patients are sorted into three distinct groups according to their 
risk of death. These groups are represented by different colors, with light 
blue signifying low risk, orange signifying medium risk, and dark red 
signifying high risk. The genes are separated by different shades from white 
to red. The more substantial the effect a gene/omic has on survival, the 
more vivid its red coloration will be. 
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3.7 Kaplan Meyer Plots 
 
After conducting a meticulous and comprehensive analysis of the 
heatmaps, it was determined that a comparison of Kaplan-Meier plots 
among different types of cancers would provide valuable insights.  
In order to create the Kaplan-Meier plot for each cancer type, the range of 
risk for death that had been used in the heatmap plots was utilized once 
again. Specifically, since patients had been carefully separated based on 
their sum of coefficients, which was visually represented by the "SCORE" 
label in the heatmap, this information was extracted for each individual 
patient.  
Thus, a new data frame was then created that combined the previous 
survival data with the group into which each patient had been categorized. 
As previously mentioned in the heatmap section, there were three distinct 
groups of patients. The first group consisted of patients with scores in the 
top 75% quantile of patient scores, who were classified as high risk. The 
second group was the intermediate group, consisting of patients with scores 
between 25% and 75%. The final group was the low-risk group, consisting 
of patients with scores in the first 25% of scores. 
By utilizing the grouping tags of High, Intermediate, and Low for each 
patient, it was possible to determine the group into which each patient fell 
prior to creating the Kaplan-Meier plot. Specifically, these three groups were 
passed to the Kaplan-Meier plot creation function, and a separate Kaplan-
Meier plot was generated for each cancer type. As expected, each plot 
contained three groups of patients: the Low-risk group represented by a light 
blue color, the Intermediate group represented by an orange color, and the 
High-risk group represented by a dark red color. 
The underlying rationale for this approach was that if the previous tests and 
analyses had been performed correctly, the resulting Kaplan-Meier plot for 
each cancer type should accurately represent the relative survival rates of 
the different risk groups. Specifically, the Kaplan-Meier plot should show the 
lowest survival rate for the light blue group, which was classified as low risk, 
an intermediate survival rate for the orange intermediate group, and the 
worst survival rate for the dark red group, which was classified as high risk. 
As depicted in Figure 22, Figure 23, Figure 24, Figure 25, and Figure 26, 
the separation of patients into different risk groups based on their survival 
rates was almost perfectly achieved for all types of cancer. For all five 
cancer types, the high-risk group generally exhibited the worst survival 
rates, while the low-risk group exhibited the best survival rates. 
Furthermore, the survival rates of the intermediate group were typically 
situated between those of the low and high-risk groups in most parts of the 
Kaplan-Meier plot for all cancer types, which is entirely consistent with 
expectations. 
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Figure 22. Kaplan-Meyer Plot for BRCA. As depicted in the Kaplan-Meier 
plot for BRCA, the high-risk group exhibits the lowest survival rate. This 
group is characterized by a higher likelihood of experiencing adverse 
outcomes and a shorter overall survival time. In contrast, the mid-risk group 
displays an intermediate survival rate, indicating a moderate likelihood of 
experiencing adverse outcomes and a longer overall survival time than the 
high-risk group. Finally, the low-risk group demonstrates the highest survival 
rate, indicating a lower likelihood of experiencing adverse outcomes and the 
longest overall survival time among the three groups. These findings 
highlight the importance of accurately identifying and stratifying patients into 
risk groups to inform treatment decisions and improve patient outcomes. 
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Figure 23. Kaplan-Meyer Plot for CESC. The Kaplan-Meier plot for CESC 
reveals that the high-risk group has the lowest survival rate, while the mid-
risk group has an intermediate survival rate and the low-risk group has the 
highest survival rate. These results underscore the importance of accurately 
stratifying patients into risk groups to inform treatment decisions and 
improve patient outcomes. 
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Figure 24. Kaplan-Meyer Plot for OV. According to the Kaplan-Meier plot 
for OV, the high-risk group experiences the lowest survival rate, whereas 
the mid-risk group has a moderate survival rate and the low-risk group has 
the highest survival rate. These findings emphasize the significance of 
correctly categorizing patients into risk groups to guide treatment choices 
and enhance patient outcomes. 
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Figure 25. Kaplan-Meyer Plot for UCEC. As shown in the Kaplan-Meier 
plot for UCEC, the high-risk group exhibits the poorest survival rate, while 
the mid-risk group displays a moderate survival rate and the low-risk group 
demonstrates the best survival rate. These results highlight the value of 
properly classifying patients into risk groups to inform treatment options and 
improve patient outcomes. 
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Figure 26. Kaplan-Meyer Plot for UCS. As demonstrated in the Kaplan-
Meier plot for UCS, the high-risk group has the least favorable survival rate, 
while the mid-risk group has a relatively better survival rate and the low-risk 
group has the most favorable survival rate. These findings stress the 
importance of accurately assigning patients to risk groups to guide 
treatment decisions and enhance patient outcomes. 
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3.8 Training and testing set 
 
Following the completion of in-depth analyses aimed at identifying which 
omics and specific genes could negatively impact the survival of patients 
with a particular type of cancer, it was determined that an additional test 
should be conducted. The purpose of this test was to assess the accuracy 
with which the survival prediction could be made. 
In the previous analyses, all available patient data was utilized to divide the 
patients into three distinct risk groups: High, Mid, and Low. However, we 
were interested in determining whether it would be possible to accurately 
predict the same results for patients who were not included in the training 
set. To this end, we randomly excluded 10% of our patients for each type of 
cancer and proceeded to identify the non-zero coefficients for genes based 
on the data of the remaining 90% of patients. 
The process of reducing the coefficient towards zero and identifying the 
non-zero coefficients was carried out in the same manner as previously 
described. However, in this instance, instead of utilizing the entirety of the 
data to determine the coefficients, only a subset comprising 90% of the 
patients was employed for this purpose. 
The goal of this analysis was to determine whether the 10% of patients who 
were excluded from our analysis would exhibit the same survival risk as 
when they were included in the data used to determine the coefficients. To 
this end, after identifying the coefficients based on 90% of the patients, the 
non-zero coefficients for each gene were utilized to divide this 10% of 
patients into three distinct risk groups: Low, Mid, and High. Subsequently, 
an assessment was conducted to determine how many of the patients’ 
survival risks were accurately predicted in the same manner as before. 
For patients with BRCA cancer, the survival risk was accurately predicted 
69.56522% of the time. This means that in nearly 70 percent of cases, the 
correct survival risk of patients could be determined without including them 
in the data training process. In the case of CESC cancer, the prediction 
accuracy was significantly higher, with a true prediction rate of 94.73684%. 
The next cancer type analyzed was OV, which yielded a promising accuracy 
rate of 94.44444%. The final two cancer types, UCEC and UCS, had 
accuracy rates of 81.81818% and 66.66667%, respectively. 
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4. CONCLUSION 
 
In conclusion, this study represents a significant contribution to the field of 
cancer research by successfully employing a multi-omics approach to 
analyze the survival of patients with Breast Carcinoma and various 
Gynecologic Cancers. By incorporating gene expression, methylation, copy 
number variation, and mutation data, the study was able to identify 
pathways and specific genes within those pathways that were significantly 
associated with patient survival. 
The MOSClip R package, a topological pathway analysis tool, was utilized 
to identify significant pathways, modules, and genes in survival analysis. 
This tool was chosen for its unique ability to perform survival analysis using 
multi-omics data while accounting for interactions among genes.  
Cytoscape was then used to visualize the topology of significant genes 
within each module. Through this analysis, 33 genes were identified as 
being common among different types of cancers. A comprehensive 
literature review was conducted to compare our findings with those of other 
studies. This review confirmed that, although there are similarities among 
the various types of breast and gynecologic cancers, they exhibit a range of 
significant distinctions, each with its own unique characteristics and 
behaviors.  
Afterwards, heatmaps were created for each cancer type to illustrate the 
effect of significant genes on patient survival. In these heatmaps, the genes 
are carefully ordered based on their relative importance in determining 
patient survival. The score values for each cancer type are then 
meticulously divided into three distinct ranges, representing the low, 
medium, or high risk of death for each individual patient. 
Then, Kaplan-Meier plots were compared among different types of cancers 
to provide valuable insights into the survival rates and differences among 
cancer types. The underlying rationale for this approach was that if the 
previous tests and analyses had been performed correctly, the resulting 
Kaplan-Meier plot for each cancer type should accurately represent the 
relative survival rates of the different risk groups. The Kaplan-Meier plots for 
all five cancer types demonstrated that the separation of patients based on 
their death risk was performed correctly. 
An additional test was performed to assess the accuracy of survival 
prediction, with rates of 69.56522% for BRCA, 94.73684% for CESC, 
94.44444% for OV, 81.81818% for UCEC, and 66.66667% for UCS. 
In summary, this research provides valuable insights that may inform future 
research and treatment strategies. We hope that these findings will serve 
as a foundation for further investigation into the underlying mechanisms and 
potential therapeutic targets for these cancers.  
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5. SUPPLEMENTARY 
 
In the supplementary materials section of this thesis, readers will find a 
wealth of additional information and resources to support their 
understanding of the research presented in this study. These materials are 
available via the GitHub link provided here: https://github.com/Amin-
Zlf/Integrated-Multi-omics-Survival-Analysis-of-Gynecologic-and-Breast-
Cancers. Among these materials is the R script used to perform the 
analyses described in the main text. This script provides a detailed and 
transparent overview of the methods used to generate our results and may 
be useful for those interested in replicating or building upon our findings. 
In addition to the R script, the supplementary materials also include all 
important tables and figures referenced in the main text. These materials 
are presented in high resolution and quality, ensuring that readers can 
easily access and interpret the data presented in this study. Overall, the 
supplementary materials provide a comprehensive and valuable resource 
for readers interested in delving deeper into the methods and results of this 
research. 
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