
University of Padova

Department ofMathematics

Master Thesis in Data Science

Computational Prediction of Clinical

Phenotypes and Causal Variants in

Neurodevelopmental Disorders: An

Analysis of Genetic Variants Data

Supervisor Master Candidate
Professor Emanuela Leonardi Can Abdullah Camuz
University of Padova

Academic Year
2023-2024

ii

Tomy mother and father, for their endless love.

Dum vita est spes est.

iv

Abstract

Advancements in genomic sequencing technologies and bioinformatics tools have allowed the
understanding of the genetic variations in organisms and their potential effects on phenotypes
(traits). This study presents an approach, employing machine learning models for the auto-
mated prediction of patient phenotypes and the identification of genetic variants, with a spe-
cific focus on causative, likely causative and contributing variants in neurodevelopmental dis-
orders. It also observes the connection between patient phenotypes and variants, categorizing
individuals based on neurodevelopmental manifestations such as intellectual disability, autism,
epilepsy, microcephaly, macrocephaly, hypotonia, and ataxia. The study utilized genetic vari-
ant data from867patients, building upon&combining the previousworks in the field. Unlike
manual variant filtering and classification, as commonly used in the field for similar purposes,
the aim was to contribute to the development of an automated tool. This tool streamlines
the variant classification process and enhances disease classification accuracy with a systematic
and data-driven approach to variant interpretation. To validate the approach, the results were
shared and compared with those of previous groups that participated in the CAGI Challenge
(Critical Assessment of Genome Interpretation) in the years 2018 and 2021, addressing the
same task. This analysis provides insights into the performance of the tool in comparison to
manual approaches.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

Listing of acronyms xii

1 Introduction 1
1.1 Introductory Overview . 1

1.1.1 BioComputing UP Group and CAGI Challenge Workflow 1
1.1.2 Neurodevelopmental Disorders and Gene Panel 2

1.2 Thesis Outline . 3

2 Literature Review and RelatedWork 5
2.1 CAGI5Workflow and Findings . 5

2.1.1 Variant Filtering And Classification 6
2.1.2 Phenotype Classification and Assignment 10

2.2 CAGI6Workflow and Findings . 13
2.2.1 Variant Filtering And Classification 13
2.2.2 Phenotype Classification and Assignment 15

3 Background Information 18
3.1 Neurodevelopmental Disorders (NDDs) 18
3.2 Genetic Mutations and Variations . 20
3.3 Omics Data & Databases . 23
3.4 Workflow and File Types in Variant Calling 24
3.5 Annotation . 25

4 Data Acquisition & Retrieving 26
4.1 RawData Acquisition: Sequencing . 26
4.2 Introduction to Data at Hand . 27

5 Methodology AndWorkflow 35
5.1 Initial Data Analysis . 35
5.2 Data Preparation & Cleaning . 37

vii

5.2.1 Handling Missing Values . 37
5.2.2 Gene Filtering . 39
5.2.3 Encoding . 40

5.3 Feature Engineering & Extracting Features 41
5.3.1 Allele Frequencies In The Population 41
5.3.2 Information Related To Cohort And Quality 43
5.3.3 Genetic Associations With Diseases 43
5.3.4 Special Cohort Frequency of the Variants 44
5.3.5 Dropping Columns . 44

5.4 Creating Data Structures . 46
5.4.1 Variant Classification . 46
5.4.2 Phenotype Classification . 47

6 Experiments & Results 50
6.1 Variant Classification . 50

6.1.1 Random Forests . 51
6.1.2 Logistic Regression . 60
6.1.3 Support Vector Machines . 65
6.1.4 Neural Network . 71
6.1.5 K-Means for Unsupervised Learning 76
6.1.6 GaussianMixture Models for Unsupervised Learning 85

6.2 Phenotype Classification . 91
6.2.1 Predicted Variant Labels . 93
6.2.2 True Variant Labels . 96
6.2.3 Test Data Results . 98

7 Conclusion 100

References 104

Acknowledgments 107

viii

Listing of figures

1.1 CAGI Challenge Workflow . 2

2.1 Variant Filtering Steps Used by BioComputing UP 7
2.2 Variant LabelingWorkflow (ConductedManually) 8
2.3 Predicted variants distribution among submissions of CAGI5 9
2.4 Proportional amount of variants, correctly classified by the groups of CAGI5 9
2.5 Proportional number of patients with the phenotype, correctly predicted by

the groups of CAGI5 . 12
2.6 The number of patients with the phenotypes (True Labels of CAGI5). 12
2.7 Predicted variants distribution among groups of CAGI6 14
2.8 Proportional amount of variants, correctly classified by the groups of CAGI6 15
2.9 Proportional number of patients with the phenotype, correctly predicted by

the groups of CAGI6 . 17

3.1 Chromosome representation of some structural variants 22
3.2 Different regions of DNA in the transcription site 23

4.1 Some of the columns of annotated file . 30
4.2 Patients with labels and with diseases . 33
4.3 Variant type and variant amount distribution 34

5.1 Variance values of the dataset columns . 37
5.2 Amount of missing values within the features 38
5.3 Encoding procedures based on data types 40

6.1 ROCCurves and AUCValues of the Final Random Forest Model 60
6.2 ROCCurves and AUCValues of the Final Logistic RegressionModel 66
6.3 ROCCurves and AUCValues of the Final SVMModel 71
6.4 Normalized ConfusionMatrix For Improved Neural Network 75
6.5 ROCCurves and AUCValues of the Improved Neural NetworkModel . . . 75
6.6 Scree Plot for Cumulative Explained Variance During PCA Process 77
6.7 3D Scatter Plot of 4 Clusters With 3 Components 79
6.8 Distribution of Variant Types Among the Clusters 79
6.9 3D Scatter Plot of 2 Clusters With 3 Components 81
6.10 Distribution of Variant Types Among 2 Clusters 82
6.11 ARI Score Variation withMajority Class Sample Size in 2-Cluster Scenario . . 84

ix

6.12 ARI Score Variation withMajority Class Sample Size in 4-Cluster Scenario . . 84
6.13 Distribution of Variants with Feature Selection (4 clusters) 87
6.14 Distribution of Variants with Feature Selection (2 clusters) 88
6.15 3D Visualization of 4 Clusters with t-SNE 90
6.16 Comparison of Test Accuracies of The Two Approaches 99

x

Listing of tables

6.1 Classification Report for Basic Random Forest 54
6.2 Classification Report for Random Forest After Grid Search 56
6.3 Classification Report for Random Forest with Selected Features and Under-

sampling . 59
6.4 Classification Report for Basic Logistic Regression 63
6.5 Classification Report for Logistic Regression After Grid Search 64
6.6 Classification Report for Logistic Regression with Selected Features and Un-

dersampling . 66
6.7 Classification Report for Basic SVM . 68
6.8 Classification Report for SVMAfter Grid Search 69
6.9 Classification Report for SVMwith Selected Features and Undersampling . . 71
6.10 Classification Report for Initial Neural Network 73
6.11 Classification Report for Improved Neural Network 74
6.12 Clustering Results with 4 Clusters . 80
6.13 Clustering Result With 2 Clusters . 81
6.14 Initial GMMClustering Results with 4 Clusters 86
6.15 Percentages of Cluster Content with Feature Selection (4 Clusters) 87
6.16 Percentages of Cluster Content with Feature Selection (4 Clusters) 88
6.17 Class Counts With Feature Selection . 88
6.18 Cluster Percentages With Feature Selection 88
6.19 NN Structures and Performance Metrics with Predicted Labels 94
6.20 NNStructures and PerformanceMetrics with Predicted Labels andResampling 95
6.21 NN Structures and Performance Metrics with True Labels 96
6.22 NN Structures and Performance Metrics with True Labels and Resampling . 97
6.23 Test Accuracies with Predicted and True Labels 99

xi

Listing of acronyms

CAGI Critical Assessment of Genome Interpretation

NDD Neurodevelopmental Disorder

ID Intellectual Disability

ASD Autism SpectrumDisorder

SNV Single Nucleotide Variant

SNP Single Nucleotide Polymorphism

VCF Variant Call Format

ROC Receiver Operating Characteristic

AUC Area Under the Curve

NGS Next-Generation Sequencing

DNA Deoxyribonucleic Acid

RNA Ribonucleic Acid

PCA Principal Component Analysis

DC Disease Causing

LP Likely Pathogenic

CF Contributing Factor

MCC Matthew Correlation Coefficient

SID Submission Identity

UTR Untranslated Region

xii

1
Introduction

1.1 Introductory Overview

1.1.1 BioComputing UP Group and CAGI ChallengeWorkflow

Being the laboratory in which this thesis project and a curricular internship were conducted,
BioComputing UP is a research laboratory and is part of the Department of Biomedical Sci-
ences of the University of Padua. The focus of the research is using bioinformatics tools and
computational methods to solve biological issues in the fields of structural and functional bi-
ology, large-scale and genome-wide analyses, genetic diseases, and cancer studies. The group
regularly participates in international competitions like the Critical Assessment of Techniques
for Protein Structure Prediction (CASP), the Critical Assessment of Genome Interpretation
(CAGI), and the Critical Assessment of Function Annotation experiment (CAFA).
CAGI is an initiative and a consortiumthat organizes conferences,workshops and challenges

with amain focus on evaluating and improvingmethods for predicting the phenotypic impacts
of genetic variations and assessing the state-of-the-art computational methods for interpreting
genomic information. Each year, the CAGI experiment involves a series of challenges where
participants are provided with sets of genetic variants, and their task is to predict the pheno-
typic outcomes or functional consequences associated with these variants. The results provide
valuable insights into the strengths and limitations of existing computational methods, con-
tributing to the development of more accurate and reliable tools for genomic interpretation.

1

These challenges cover a range of topics, including the interpretation of single nucleotide vari-
ants (SNVs), insertions/deletions, and other types of genomic variations, which are explained
in the following chapters. CAGI experiment participants are provided genetic variants and
make predictions about resulting phenotypes. Independent assessors evaluate the predictions
against experimentally characterized phenotypes. The challenges conclude with conferences
and publications in a special journal issue. There have been six editions of CAGI experiments,
held between 2010-2022, and the seventh round is planned to take place over the Summer of
2024. Participation is open to researchers, scientists, and teams from around theworldwho are
working on developing computational methods for biological data. The evaluations provided
by CAGI promote cooperation and improvement by comparing the effectiveness of different
tools and methods.

Figure 1.1: CAGI Challenge Workflow

In this thesis, amachine learning approach for theCAGIChallengewas introduced by using
the patient data that had been previously obtained by a clinical laboratory for the same purpose.
The raw data of CAGI5 (2018) and CAGI6 (2021), from the challenge named “Intellectual
Disability Panel” was employed to make useful interpretations and discover the relationships
between genetic variants and Neurodevelopmental Disorders.

1.1.2 Neurodevelopmental Disorders and Gene Panel

As mentioned, NDDs exhibit clinical diversity, but it has been discovered that they share a
significant genetic component, with numerous common disease genes identified, particularly
in complex conditions such as ID and ASD [1]. In this study, a gene panel of 74 genes was
used, each known to be associated with these NDDs of interest. This selection was based on
the hypothesis that shared functional pathways contribute to the comorbidity observed among
diverse NDDs [2]. The design of the 74-gene panel involved an innovative in silico approach,
based on disease networks and mining data from public resources to establish a scoring system
for disease-gene associations.
Despite significant advancements in genomics, it is still difficult to understand the effects

of genetic variants associated with NDDs. One of the challenges is that NDDs are genetically

2

heterogeneous diseases, meaning that they can be caused by variations in different genes. In
otherwords, thedisease doesnothave a single, specific genetic cause, but rathermultiple genetic
factors can contribute to its development. Also, the complex interactions between hereditary
factors and the wide range of symptoms associated with these disorders make understanding
and diagnosis very difficult, especially when depending only on clinical findings.
To bridge this gap, this study introduces an approach that benefits the power of machine

learning models. Unlike traditional methods relying on manual interpretation and variant
filtering, these models are designed to predict patient phenotypes and identify the causative
(pathogenic), likely causative (likely pathogenic), and contributing genetic variants in NDDs.
The relationship between genetic variations and the diverse phenotypic expressions was ob-
served.
The primary objective of this study is to develop a systematic and data-driven methodology

to provide a more accurate and efficient means of classifying variants, facilitating the tradition-
ally manual process. Secondly, the study focuses on categorizing individuals based on traits
such as ID, ASD, Epilepsy, Microcephaly, Macrocephaly, Hypotonia, and Ataxia specifically,
which are the diseases that have proven to share some common variants and cellular pathways
[3]. The approach utilizes genetic variant data from a cohort of 867 patients, building upon
and analyzing insights frompreviousworks ofCAGI5 andCAGI6 in the field. The source and
the means of obtaining the data are explained in the following chapters.
To validate the effectiveness of themethods, the results are compared with those of previous

groups participating in the CAGI Challenge. This comparative analysis provides insight into
the accuracy and efficiency of the automated tool by comparing its performance to traditional
procedures.

1.2 Thesis Outline

This thesis report consists of 7 chapters and the structure is as follows:

• Chapter 1 gives a brief introduction to the project, the challenges of the study, the ob-
jectives, and the outline of the general structure of the thesis.

• Chapter 2 provides an insight into the previous work and research, reviews the relevant
literature on CAGI Challenge and variant classification, and shares the results.

• Chapter 3 describes the concepts by giving some background information on biology
and genetics, discusses the diseases of interest, data types used in this field, and ways of
obtaining the data from biological databases.

3

• Chapter 4 explains the dataset and gives information about the sources and how the data
was obtained.

• Chapter 5 includes the methodology, how data was transformed and prepared, what
assumptions were made, and introduces the workflow.

• Chapter 6 reports the various experiments carried out, details the steps taken with speci-
fications, and finally reports and discusses the results obtained from all the experiments
and compares them.

• Chapter 7 summarizes the outcome, concludes the findings of the project, and provides
suggestions for future research direction.

4

2
Literature Review and RelatedWork

In this chapter, a detailed description of the work and methodology for the previous CAGI
challenges is given. The research outcomes and findings of the Biocomputing UP Laboratory
have been shared, which was in the position of “Assessor” for the groups that participated in
the challenge. At the end of each section, the evaluation metrics and comparisons are given.

2.1 CAGI5Workflow and Findings

The CAGI-5 Intellectual Disability challenge asked to use computational methods to predict
patient clinical phenotypes and the causal variant(s) based on an analysis of their gene panel
sequence data in 2018. The Padua Genetics of Neurodevelopmental Disorders Lab at the De-
partment of Woman and Child Health, the University of Padua (Padua NDD lab) has been
using a gene panel to diagnose different NDD subtypes for the past couple of years [3]. Sub-
sequently, they released a dataset of 150 pediatric patients, obtained from hospitals in Padua
and other cities in Italy, for predictors to analyze. The study involved 4 groups submitting a
total of 13 predictions for the challenge. Group 2 submitted 6 predictions, and groups 2 and 3
submitted three predictions each. After conducting its own experiments (ground truth), Bio-
Computing UP Lab merged the results of variant analysis and the clinical traits to assess the
findings of each predictor.
Firstly, phenotypes were derived from clinical notes, and candidate variants were validated

through segregation analysis. A genetic approach called segregation analysis is used to exam-

5

ine how particular traits or variants are inherited within families. It helps researchers to distin-
guish whether a trait follows an autosomal dominant, autosomal recessive, X-linked, or other
inheritance pattern. Once the segregation of candidate variants within families is verified, re-
searchers can identify variants that are likely causative for a particular trait or disorder. This
is essential for establishing a genetic basis for NDDs. For CAGI, that was a necessary step to
verify the absence of variants in the parents according to the de novo paradigm, discovering
whether the variants were inherited from affected parents or not.
Thede novo paradigm refers to the origin or occurrence of a genetic variant in an individual

that is not present in their parents. De novo variants occur spontaneously in the germ cells (egg
or sperm) or during early embryonic development. Investigating de novo variants is crucial
since they can be associatedwith the development of genetic disorders. These variants can have
a significant impact on an individual’s health, especially in cases where the variant is pathogenic
and contributes to the manifestation of a disorder.
The task reflects the complexity of the challenge, as clinical notes might be subjective and

only a subset of genes had been screened instead of the whole human genome [2]. Further-
more, in contrast to other CAGI Challenges, patients may manifest more than one of these
phenotypes, in different combinations. Overall, both studies highlight the realistic aspects of
predicting clinical phenotypes and causative variants in NDDs using computational methods.

2.1.1 Variant Filtering And Classification

Themethodology for variant filtering and classification involved several steps. Firstly, a pipeline
was used to create a database of genetic variants identified in the cohort and annotate them
with features provided by ANNOVAR, an annotation application that will be explained in
the following chapters. The information retrieved with the annotation was allelic frequency in
control cohorts, variant interpretation from InterVar automated, ClinVar report, pathogenic-
ity predictions, and conservation scores. The detected variants were then ranked based on their
frequency in public databases and the in-house database, and single nucleotide variants (SNVs)
that were foundmore than twice in the cohort or with an allele frequency higher than expected
for the disorder were excluded.
For the classificationprocess, InterVarwasused for the clinical assessmentwhich is a bioinfor-

matics tool interpretation of genetic variants. Following this, a manual review was conducted,
and variants were categorized into five groups (pathogenic, likely pathogenic, uncertain signif-
icance, likely benign, benign) through a comprehensive evaluation of various evidence lines.

6

Figure 2.1: Variant Filtering Steps Used by BioComputing UP

This assessment included considerations such as conservation, allele frequency in population
databases, variant effect inferences, mode of inheritance, computational X-inactivation pat-
terns, and disease segregation.
To evaluate the putative clinical impact of the variants, the following criteria were applied:

• allele frequency <0.002% in the Gnomad database, or <0.45% for variants in autosomal-
recessive genes, as indicated by [4],

• absence of the variant in other samples (in-house database),

• stop gain, frameshift, and splicing variants were a priori considered to be most likely
pathogenic,

• for missense mutations, amino acid conservation, and consensus of pathogenicity pre-
dictions were evaluated,

• inheritance mode,

• phenotypic consistency with the clinical signs associated with mutations in the same
gene [2].

It is important to note, that for a diagnostic purpose, the thresholds used by the Padua
NDD lab to filter candidate variants, have been calculated based on the assumption that the
patient phenotype follows a Mendelian transmission [2]. The criteria used to classify the vari-
ants were reported for both causative and likely pathogenic variants, and all causative and likely
pathogenic variants were submitted to the LOVD database.
Then, the predictors have been assessed for their ability to detect variants in patients. Among

the submissions, Group 2 demonstrated the best performance, accurately predicting the high-
est number of variants associated with diverse patient phenotypes (37 out of 56). Also, it ex-
celled in predicting causative (16 out of 25), putative causative (12 out of 18), and contributing
factor (9 out of 13) variants, outperforming other groups in each category. The second-highest

7

Figure 2.2: Variant Labeling Workflow (Conducted Manually)

performance was observed in Submission 3 of Group 4, correctly predicting 29 variants (11
causative, 9 putative causative, and 9 contributing factor variants).
Only a small amount of variants were accurately predicted by all groups. Specifically, 28%

of causative and 15% of contributing variants were correctly identified by at least three groups,
while 17% of putative variants were well predicted by the same criteria. Notably, Group 2 not
only predicted the most variants but also achieved the highest fraction of correctly predicted
variants, calculated as the number of well-predicted variants divided by all predicted variants
across all patients and phenotypes. At least one group accurately predicted 16 of 18 putative
mutations,with7 variants consistently identifiedby themajority of the groups. Among these, 3
inherited variantswere suspected to contribute to the disease in conjunctionwith other genetic

8

or environmental factors.
Additionally, at least one group successfully predicted all 13 variants classified as contribut-

ing factors, with 7 variants consistently identified by the majority of the groups. Notably, this
variant class was found to be particularly relevant for ASD susceptibility. In Figure 3.2, “Ex-
perimental” refers to the variants that were identified by the BioComputing UP Group.

Figure 2.3: Predicted variants distribution among submissions of CAGI5

Figure 2.4: Proportional amount of variants, correctly classified by the groups of CAGI5

9

2.1.2 Phenotype Classification and Assignment

After collecting the submissions of different groups, the prediction assessment was focused on
evaluating and considering their performances on each phenotype. This approach has been
successfully used for the analysis of multilabel classifier performance since it focuses on a set
of two-class prediction problems [5]. It has also simplified the assessment procedure, allowing
to compare performances on each single phenotype, instead of evaluating the whole predicted
class matrix (150 × 7, one prediction for each patient and phenotype). Predicted disease classes
for each participant were evaluated against the clinical phenotype given in the BioComputing
UP Lab answer key. The assessment was performed using various performance metrics such
as sensitivity, specificity, AUC (Area Under the Curve), MCC (Matthew Correlation Coeffi-
cient), ACC (Accuracy), and F1 measures to evaluate predictions for each phenotype.

Besides having the highest number of predictions, Group 2 was the most accurate in pre-
dicting the correct combination of phenotypic traits in patients for whom pathogenic variants
were identified. Group 1 was the other best-performing group, accurately predicting the over-
all phenotype of 11 patients that other groups did not predict correctly. However, there were
discrepancies between the accuracy of predicting causal variants and phenotypic traits. For in-
stance, Group 1’s method was less accurate in predicting causal or putative variants indicated
by the NDDs Genetic Laboratory of the University of Padua.

Moreover, the assessment of variant predictions revealed that Group 2 outperformed other
groups in predictingwell‐associated variants to patient phenotypes. The study also emphasized
certain variants that were reconsidered by theNDDsGenetic Laboratory for Sanger validation
and segregation analysis, given that they were identified as potentially pathogenic by themajor-
ity of the groups.

For the ID phenotype, Submission 4 from Group 2 attained the highest AUC value (0.78),
closely followed by submissions 2, 6, and 3 from the same group, as well as submission 3 from
Group3. Submission3.3 demonstrated the highest overall performance considering allmetrics,
accurately predicting 146 out of 150 patients for ID. Among patients with ASD, the second
most prevalent phenotype, all Group 4 submissions and submission 2.3 achieved higher AUC
values than other groups, although these values (average 0.56) andROC curves remained close
to random. Notably, submissions 4.3 and 1.1 demonstrated the best performance based on
other metrics, with submission 1.1 equaling accuracy (ACC), Matthew Correlation Coeffi-
cient (MCC), and F1 score. Both submissions accurately identified the patient phenotype in
nearly 100% of cases. Despite the rather good AUC, ACC, and F1 values reached by some

10

groups for the ID phenotype, and also for ASD, the MCC values remain quite low. Since
MCC is not influenced by unbalanced categories, it shows amore realistic picture of prediction
performance. As most of the patients have ID and ASD phenotypes, the confusion matrix is
completely biased towards true positive values due to the highly imbalanced classes. This causes
the ROC curve and consequent AUC not to reflect correctly the real predictor performance.
The presence or absence of the Epilepsy phenotype was poorly predicted by most groups,

with an average MCC value of 0.05. This phenotype was particularly difficult, as roughly half
of the patients had the disease. The best performances were achieved by Group 4 and submis-
sion 1.1, predicting adequately more than 60% of patients.
Information about the presence or absence ofMicrocephaly andMacrocephalywas available

for about half (81) of the patients. Microcephalywas reported in 18 patients andMacrocephaly
in 12 patients. Predictions forMicrocephaly performedmodestly, the best AUCbeing reached
by submission 4.3, which correctly predicted 42 patients. Group 1 also predicted most of the
patients with the phenotype (15 correct). In addition, most group 2 submissions obtained the
best MCC and ACC values compared to other groups, predicting correctly 66 patients. How-
ever, the best MCC values are again poor compared to other measures, denoting the effect of
unbalanced categories in the predictions. Group 2 predictions were biased to identify patients
without the phenotype (63 of 63 patients) and just three patients with the disease. On the con-
trary, submission 4.3 was biased to predict patients with the disease (17 of 18 patients) and 25
patients without the phenotype.
The hypotonia phenotype was positively or negatively noted in 68 patients by the Padua

NDD lab. AUC values reached by different groups are poor, averaging around 0.5. Indeed,
performance measures such as MCC and ACC are lower than in other phenotypes. Submis-
sion 4.3 obtained the best AUC, MCC, and ACC values compared with other groups, cor-
rectly predicting 44 patients (6 of 28with the phenotype and 38 of 40without the phenotype).
Submissions 2.1 and 2.3 predicted most of the patients with the phenotype (17 and 16, respec-
tively).
The ataxia phenotypewas noted positively and negatively in 54 patients and only 11 patients

had the disease. Submissions 4.1, 4.3, 2.1, 2.2, and 2.5 predicted well most of the patients
but were biased to detect patients without the phenotype. Submissions 2.3 and 2.4 correctly
predicted the presence of the disease in 7 and 8 patients, respectively. Consequently, the best
AUC andMCC values were obtained by submission 2.4.
The overall submission ranking of this challenge was made considering the average AUC

rankings for each phenotype. The best average ranked was submission 4.3, followed by other

11

submissions of the same group.

Figure 2.5: Proportional number of patients with the phenotype, correctly predicted by the groups of CAGI5

Figure 2.6: The number of patients with the phenotypes (True Labels of CAGI5).

12

2.2 CAGI6Workflow and Findings

Being the same challenge as CAGI5 and BioComputing UP Lab the assessor once again, the
purpose of the CAGI6 ID challenge was a critical assessment of computational methods in
predicting patient clinical phenotypes and causal variants based on gene panel sequence data
inNDDs [6]. While CAGI5 involved 150 patients and 13 submissions from 4 groups, CAGI6
expanded its scope to 415 patients with NDDs, involving 8 research teams and 30 models. Be-
fore starting CAGI6, the predictors were able to access the 74-gene panel data and clinical de-
scriptions of the CAGI5 cohort (N = 150), to train their prediction methods and find the best
strategies. The gene panel consisted of 74 genes again and genetic data was based on the se-
quence data of patients in VCF format. Once again, after conducting its own experiments
(ground truth), BioComputing UP Lab merged the results of variant analysis and the clinical
traits to assess the findings of each predictor. The evaluation process used for submissions in-
cluded performance metrics such as sensitivity, specificity, MCC, accuracy, and F1 score. The
study compared the results among different predictors using z-scores at the phenotypic level on
the ROC curves’ AUC values. Using a similar approach for variant analysis and filtering, the
results of the CAGI6 made significant improvements, compared to CAGI5. The assessment
showed that some submissions were more successful than CAGI5 for the majority of patients,
with varying performance across different clinical traits. Here, the experimental methods will
not be explained again, as it has been described in detail for CAGI5, but the outcomes and new
findings will be discussed.

2.2.1 Variant Filtering And Classification

For the category of causal variants, which is the most interesting clinical class, the best result
was achieved with 54 out of 60 by Group SID8.1 (SID: Submission ID) and 8.6, followed by
four additional groups (6, 4, 3, 7). The SID8, SID3, and SID7 correctly predicted the highest
number of putative and contributing factors. Contributing Factor variations have been found
in genes linked to ASD, even though they did not fully meet the primary classification criteria
for pathogenic variations. A significant improvement is evidentwhen comparing the outcomes
to the CAGI5 challenge, with coverage of causal variant predictions increasing from 64 to 90%
when examining the corresponding best model. There has also been a significant improvement
for putative and contributory factors, which went from 66–79% and 69–76%, respectively.
It was found that a tiny percentage of the causative variants (3 out of 60) were predicted

13

by all groups, but the majority of variants were predicted by at least two groups. Regarding
the putative variants, one was missed by all the groups. Furthermore, whereas 3 groups have
predicted the putative variants, the majority of the causative variants have been predicted by
at least 4 groups. Overall, it can be observed that contributing factor variants were sparsely
predicted, where 36% of themwere predicted only by one group (29 variants) or not predicted
at all (8 variants). In this case, no putative or contributory mutation was anticipated by all
groups with complete agreement.

Group SID8.6, which had an 82% recall rate, was the most effective model for capturing a
variety of mutations, according to the data provided in the research. However, its accuracy of
58% was significantly lower, pointing out a high percentage of false positives in the findings.
However, submission 6.2 outperformed all other models in terms of accurate prediction, with
an accuracy of 72.4%. On the other hand, it showed a reduced recall of 35%. This result showed
how well SID6 performed in predicting causal variants, but it had limitations in detecting pu-
tative and contributing variants. In Figure 3.2, “Experimental” refers to the variants that were
identified by the BioComputing UP Group.

Figure 2.7: Predicted variants distribution among groups of CAGI6

14

Figure 2.8: Proportional amount of variants, correctly classified by the groups of CAGI6

2.2.2 Phenotype Classification and Assignment

For the evaluation of phenotype predictions, the focus was on following an approach of a two-
class prediction problem and this assessment approach has been proven successful among dif-
ferent domains [5]. It offered the advantage of simplifying the assessment process by enabling a
comparison of the performance of different methods for each phenotype. This was in contrast
to evaluating them based on the entire predicted class matrix (415 x 7), which consisted of one
prediction for eachpatient andphenotype. The assessmentwas done separately for eachpheno-
type column, with the submitted probability values in binary classes. A threshold probability
value that maximized MCC was determined for that particular phenotype. Subsequently, all
probability values for each phenotype were compared with their corresponding threshold and
assigned a binary value considering the threshold. Regarding the results, all groups correctly
predicted the ID in 338 (49.4%) out of 352 patients; while 7 groups accurately predicted the
90.8% of patients with ID. A small number of patients (N = 45) showedmicrocephaly as a phe-
notype. Eight groups correctly identified the presence of this trait in 55% of individuals and
at least 7 groups correctly identified the microcephaly in 93.3% of the patients. There was a
noticeable general discrepancy between theMCC value and the AUC results when evaluating
the performance of the phenotypic predictions. In particular, some relatively highAUCvalues
led to lower MCC, and vice versa. Generally, the MCC offers a more accurate representation
of prediction performance and is immune to the impacts of imbalanced categories. The confu-
sionmatrix was entirely skewed towards true positive values because of the severely imbalanced

15

classes, which made sense given that the majority of patients exhibit the ID and ASD charac-
teristics. Thus, a bootstrapping technique was used to lessen this effect, given that ROC and
AUC do not accurately reflect the true predictor performance [6].
Among phenotypes, ID was the easiest to match for Groups SID8.6 and SID8.1, followed

by SID2.4 and SID5.3. We notice that SID8.6 accurately predicted the phenotype for 255 out
of 352 patients, displaying a positive correlation with the available clinical data and achieving
an F1-score of 0.85.
The secondmost prevalent trait in the cohort was ASD, reported by clinicians in 202 out of

415 pediatric patients. The highest AUC values for this phenotype were attained by Groups
SID1.5 (AUC0.59) and SID1.2 (AUC0.58). Additionally, SID5.4 ranked thirdwith anAUC
of 0.55. However, it is worth noting that the AUC values for ASD remain relatively low, ap-
proaching random performance.
Contrary to the previous CAGI5 [3], some differences were noticed in the phenotype pre-

dictions. The prediction of the Epilepsy phenotype inCAGI6 exhibited superior performance,
as evidenced by a mean MCC value of 0.09, nearly twice the previous value. Group SID1 at-
tained the highest results, achieving an AUC of 0.58, anMCC of 0.12, and an F1 score of 0.38
for SID4. These performances, when considering all submissions and groups, stood out as the
best performances.
Formicrocephaly andmacrocephaly, any improvementwas not observed, but it is important

to specify that the CAGI5 dataset included a small number of patients with microcephaly (18)
and with macrocephaly (12). It was difficult to train with a small number of examples. How-
ever, certain submissions demonstrated accurate prediction of the patient phenotypes, such as
Group SID6.5 formicrocephaly achieving an AUCof 0.64 and a recall of 0.67, and SID1.5 for
macrocephaly achieving an AUC of 0.65 and a recall of 0.3.
71 patients out of 415were reportedwith hypotonia, while 254 out of 415 patientswere neg-

ative. Compared to CAGI5, a significant improvement for this phenotype was not observed.
The maximum AUC across all submissions was 0.54, achieved by Group SID1.1, achieving a
recall of 0.5 and an F1 score of 0.35.
The presence of the ataxia phenotype was observed in a group of 30 patients, while 285

patients resulted negative. Group SID5.3, has the highest-performing model with an AUC of
0.66, and an F1 score of 0.23. This result was consistent with the previous assessment.

16

Figure 2.9: Proportional number of patients with the phenotype, correctly predicted by the groups of CAGI6

17

3
Background Information

In this chapter, the concepts that constitute the basis for the project and that are frequently
used in the rest of the study are defined and some information related to genetics is given.

3.1 Neurodevelopmental Disorders (NDDs)

As mentioned, this study aims to predict the disease phenotypes of the patients from genetic
variants. For this sake, the target neurodevelopmental diseases and some symptoms are ex-
plained. NDDs include a diverse group of conditions characterized by impairments in the
growth and development of the nervous system. These disorders typically manifest early in
development, influencing cognitive, motor, social, and emotional functions. They tend to be
genetically diverse and heterogeneous, meaning that there are various genetic factors influenc-
ing their manifestation, making relevant studies difficult.
ID is a condition that affects a person’s day-to-day functioning and is characterized by limits

in intellectual functioning and adaptive behaviors. There is a large range in the severity of intel-
lectual disability, fromminor to profound. Individuals diagnosedwith IDmay face difficulties
with learning, solving problems, communicating, and interacting with others. Children with
ID, for instance, may struggle to remember things, speak incoherently, or comprehend social
norms. With an estimated prevalence of 1-3% globally, ID is the most prevalent NDD in the
population.

18

ASD is defined by anomalies in a range of characteristics, including communication, social
interaction, and repetitive activities. Individuals diagnosed with ASD may experience issues
with eye contact, nonverbal cues, and communication. Sensitivities to light or sound stimuli
can be present inmany people. On the other hand, some people could not react at all to specific
sensory stimuli. Symptoms usually appear in early childhood, frequently before the age of
three. ADHD and rage disorders are examples of co-occurring disorders in people with ASD.
In the case of Epilepsy, patients have recurrent, unpredictable seizures resulting from abnor-

mal electrical activity in the brain, leading to temporary disruptions in normal brain function.
The manifestation of seizures can vary greatly, from brief awareness lapses to complete uncon-
sciousness. Although the exact origin of many cases is still unknown, potential causes include
infections, brain traumas, and genetic factors. A thorough evaluation is required to diagnose
epilepsy, consisting of a neurological examination, a full medical history, brain imaging, and
EEG.
Macrocephaly refers to an enlarged head size or circumference beyond what is considered

typical for a given age, sex, and ethnic background (using a common 2 standard deviations
threshold). The reasons may be genetic conditions, metabolic disorders or certain syndromes,
but generally, are not always apparent. Patients with macrocephaly may have developmental
problems, ID or other neurological symptoms.
Microcephaly, on the other hand, is defined by a reduced head size (2 standard deviations

or the 3rd percentile) compared to the norm, indicating inadequate brain development. It
may result from genetic factors, prenatal exposure to certain substances, or infections during
pregnancy. Similar to Macrocephaly, patients may exhibit some neurological symptoms such
as poor motor function, poor speech, abnormal facial features, seizures, and dwarfism.
Hypotonia is a medical condition characterized by reduced muscle tone or tension in the

muscles, leading to decreased resistance to passive movement. This lack of muscle tone can
affect variousmuscle groups in the body. Individuals with hypotoniamay have symptoms such
as speech difficulties, poor reflexes, and challenges with balance and posture. The reasons may
depend on neurological disorders, and genetic and metabolic conditions. Physical therapy is
often employed to improve muscle strength and coordination.
Ataxia is characterized by a lack of coordination and voluntary muscle control, leading to

unsteady movements and difficulty in maintaining balance. The cerebellum, a region of the
brain responsible for coordinating movements, is often affected. Individuals with ataxia may
struggle with tasks that require finemotor skills, such as writing, buttoning a shirt, or handling
objects along with speech and swallowing difficulty.

19

3.2 GeneticMutations and Variations

As the purpose of this study is to classify the genetic variants thatmay causeNDDs, it is impor-
tant to know about the concept of genetic variations and mutations. Here, these two notions
are discussed and different types of genetic variations that are encountered in this study are
explained.
Geneticmutations and variations are fundamental concepts in genetics that refer to changes

in the DNA sequence. They are often confused; while both terms involve alterations in the
genetic code, they have distinct characteristics. In spite of their similarities, they differ in terms
of frequency, effect, and clinical significance.
Mutations are abnormal changes that occur in the DNA sequence, either in a single nu-

cleotide or involving larger segments of the genetic material. They can happen spontaneously
during DNA replication or in response to external factors such as exposure to radiation or
chemicals. They are usually rare occurrences, and their frequency is low in a population. They
may have varying effects on the organism. Some mutations are neutral, while others can be
harmful or beneficial. The majority is harmful, leading to genetic disorders or diseases. Rarely,
mutations may provide a survival advantage, contributing to evolution.
Genetic variations refer to the naturally occurring differences in DNA sequences between

individuals of the same species. Similar tomutations, theymaymanifest in various forms, such
as single nucleotide polymorphisms (SNPs), insertions, deletions, and other structural changes
that contribute to the genetic diversity within a population. Many genetic variations are neu-
tral and do not have a significant impact on an individual’s health, instead, they cause normal
genetic variation within a population. Some variations, however, may have advantages or dis-
advantages to certain traits.
Variants are key factors in personalized medicine and understanding individual responses

to drugs and treatments. In most of the studies for understanding the effects of variants, de
novo (not inherited fromparents) variants are focused on since they are believed to be clinically
significant or effective [7], [8]. De novo mutations are shown to be a major cause of severe
early-onset genetic disorders such as intellectual disability, autism spectrumdisorder, and other
developmental diseases [9], [10]. Some of the variant types are described below.

• Single Nucleotide Variations (SNVs)
Being the most common variations, SNVs or SNPs refer to a single point (nucleotide)
change in the DNA or RNA sequence. This change can arise from a substitution of a
nucleotide with a different one by the insertion or deletion of nucleotides in the DNA

20

sequence of a gene. Depending on their location along the gene, these variants can have
various effects.

– Exonic and Intronic Variants
Exons are coding regions of genes that contain the information for protein syn-
thesis, while introns are non-coding regions that intervene between exons in the
gene sequence. Variations in exons can lead to changes in the protein-coding se-
quence, potentially affecting the function of the protein. Exonic variants are of-
ten implicated in genetic disorders and diseases. While introns do not code for
proteins, intronic variants can impact gene expression, splicing, and other regula-
tory elements and should not be ignored. Some intronic variants are associated
with diseases through their influence on gene regulation. Variants occurring in
exonic regions can be classified as follows:

* Missense variants result in the substitution of one amino acid in a protein for
another. This can alter the structure and function of the protein, potentially
leading to changes in its normal activity or function.

* Nonsense variants cause a premature stop codon, resulting in a shortened
and often nonfunctional protein during synthesis.

* Synonymous (Silent) variants are observed when a nucleotide is altered but
it does not change the corresponding amino acid, thus the protein. This is
because some different codes of DNA can be translated to the same amino
acid.

* Frameshift Variants can be defined as any alteration in the sequence that
causes a shift in the transcription process. They can result from insertions
or deletions that disrupt the reading frame, altering the entire amino acid se-
quence downstream. They also involve repeat expansions, an increase in the
number of repetitive DNA sequences leading to frameshifts.

Variants occurring in intronic regions can be classified as follows:

* Splicing Variants
Splicing is a process where introns are removed and the remaining exons (cod-
ing regions) are joined together to form the mature mRNA. Variations in
splicing allow the synthesis of different protein variants and contribute to
proteomic diversity by inclusion/exclusion of specific exons, influencing the
structure and function of the resulting proteins. Incorrect splicing is associ-
ated with various genetic disorders.

* UTR3 and UTR5 (Untranslated Region) Variants
Untranslated regions 3 and 5 are situated at both ends of the non-coding re-
gion of the mRNA molecule. Since they have regulatory effects on the tran-
scription process, variants that occur here can influencemRNA stability, and

21

translation andmay impact protein production and contribute to disease sus-
ceptibility.

* Upstream Variants
Upstream inmolecular biology describes the orientation that is toward the 5’
end of a DNA or RNAmolecule. The phosphate group of the nucleotide is
connected at its 5’ end. On the other hand, ”downstream” describes the path
that leads toward the nucleotide’s 3’ end. The relative locations of genetic
elements are denoted by these phrases. Variations that occur in the regulatory
regions located upstream of a gene play a crucial role in transcription, may
impact the binding of regulatory elements and affect gene function to cause
a disease.

• Structural Variations
They are observedwhen the structure of the chromosomes orDNAsegments is changed.
Unlike SNVs and small indels, structural variations impact larger portions of the genome.
They can include insertions and deletions in the macro scale as well.

– Duplication: involves the duplication of a segment of DNA, altering the number
of copies of a particular gene or genomic region.

– Inversion: reverses the orientation of a segment of DNAwithin a chromosome.

– Translocation: involves the transfer of a segment ofDNA fromone chromosome
to another.

Figure 3.1: Chromosome representation of some structural variants

This thesis study included miscellaneous kinds of variants that are intronic and exonic, in
addition, to variants in the non-coding but regulatory regions such as UTR3 andUTR5, splic-
ing, and upstream variants. Even though the vast majority of the variants were SNVs, the other

22

types were kept to analyze, especially the ones causing frameshifts, considering the possibility
of being associated with a disease. The detailed description and visualization of the data and
variant types are given in the following sections.

Figure 3.2: Different regions of DNA in the transcription site

3.3 Omics Data & Databases

The concept of Omics emerged to describe the comprehensive, systematic study of various
components or processes within a biological system; it is a collective term used to describe
high-throughput approaches and disciplines such as genomics, transcriptomics, proteomics,
metabolomics, and others. The aim is to analyze and understand the relationships between
these components.
Omics data refers to the large-scale datasets. For instance, genomic data encompasses in-

formation about an organism’s complete set of genes, while transcriptomic data involves the
study of all RNA transcripts. Proteomic and metabolomic data cover the entire complement
of proteins and metabolites, respectively. These datasets provide a comprehensive view of bio-
logical systems, aiding in the identification of patterns, relationships, and key elements. Omics
databases play an important role in organizing, storing, and providing accessibility to large-
scale biological data generated through various omics technologies such as Next-Generation
Sequencing and Mass Spectrometry. These databases facilitate data sharing, analysis, and in-
terpretation, contributing significantly to advancements in biomedical research. Here are the
examples of some omics databases that are frequently used:

• Genomic Databases: NCBI GenBank, Ensembl, and Genome Browser.

• Proteomic Databases: UniProt, MobiDB, and PeptideAtlas.

• Transcriptomic Databases: GEO (Gene Expression Omnibus) and ArrayExpress.

23

• Metabolomic Databases: HMDB (HumanMetabolome Database) andMETLIN.

These databases serve as valuable resources for researchers to retrieve, analyze, and interpret
omics data, fostering advancements in various biological and medical fields. For this study
and the previous CAGI challenges, some omics databases were used to retrieve information
tomake inferences on variants and phenotypes and tomanipulate the data. UCSCGenomic’s
Liftover Tool was used to change chromosome positions from an older version of the human
genome database into the new one. ANNOVAR databases were used to annotate the genetic
variants based on their chromosomal locations. The information was retrieved from CLIN-
VAR, Gnomad and GATK Broad Institute. HPO, OMIM and Orphanet were employed to
discover gene–disease associations for the genes selected for the study.

3.4 Workflow and File Types in Variant Calling

Since the field of omics encompasses various disciplines each focusing on different molecu-
lar aspects, there are various processes and each process yields and/or requires a different data
type. Clinicians and bioinformaticians benefit from standardized processes consisting of cer-
tain methods and specific file types to make analyses and inferences on diseases, genetic condi-
tions or biological pathways.
Generally, the workflow starts with sequencing, a high-throughput laboratory technique

used to determine the genetic code of the organism, which yields FASTQ files. A FASTQ file
contains a list of short DNA sequences (reads) generated by the sequencing machine, along
with corresponding quality scores that indicate confidence in each base call. After obtaining
this raw sequence data SAM or BAM files are used for preprocessing. This involves the align-
ment process, which is mapping the reads of sequencing to a reference genome in order to
determine where each read belongs in the genome. SAM file is a text-based file format that
stores sequence alignment information. They can be large and are often compressed into a
more efficient format called BAM. BAMfiles are the compressed and binary-encoded versions
of SAMfiles, making them faster to read andwrite. After this step the variants of the organism
must be retrieved, this process is calledVariant Calling and specialized algorithms are used for
this purpose. The results of variant calling are often stored in a VCF (Variant Call Format)
file. This file contains information about various types of variants, including single nucleotide
polymorphisms (SNPs), insertions, deletions, and structural variants. VCF files are essential
for annotating and interpreting genetic variants. This process involves accessing the available

24

databases containing the variant lists of that organism and bringing the information of found
variants. Annotations can include information about the location of variants in genes, their
potential impact on protein function, and known associations with diseases. For this study,
ANNOVAR was used for annotation, a description of the algorithm and more information
about this process can be found in the following section.

3.5 Annotation

In the case of genetic variants, annotation involves adding information or metadata to the vari-
ants, providing context and interpretation for researchers and clinicians. It has a crucial role in
prioritizing variants for further investigation in functional studies or disease association studies,
facilitating the identification of disease-causing mutations. With annotation, necessary infor-
mation is retrieved such as the position of the variant, region attributes, functional impacts,
population frequencies, conservation scores, disease-causing prediction scores, etc. After ob-
taining the variants in VCF file format, specialized software or tools are used to perform anno-
tation. The most comprehensive and popular annotation software areANNOVAR (ANNO-
tate VARiation) andVEP (Variant Effect Predictor).
In this thesis, ANNOVARwas employeddue to its ease ofuse and extensive genomicdatabases.

It is an efficient software tool to utilize updated information from diverse genomes (including
human genomes hg18, hg19, and hg38, as well as mouse, worm, fly, yeast, etc.). To perform
the annotation, the program is required to have a list of variants with chromosome, start posi-
tion, end position, reference nucleotide and observed nucleotides, which are naturally present
in VCF files. ANNOVAR can perform the following annotations:

• Gene-based annotation: identifywhether variants cause protein-coding changes and the
amino acids that are affected.

• Region-based annotation: identify variants in specific genomic regions, for instance,
conserved regions, binding sites, duplication regions, etc.

• Filter-based annotation: identify variants that are documented in specific databases, for
instance, checking the presence of a variant in dbSNP, filtering with gnomAD allele fre-
quency, GERP or CADD scores.

The following sections on data and methodology discuss the databases used to acquire the
information aswell as other parameters of theANNOVARannotation performed in this study.

25

4
Data Acquisition & Retrieving

This section explains the process of generating raw sequencing data in the previousCAGI stud-
ies by Padua NDD Lab, which serves as the foundation for this study. Secondly, It gives an
introduction to the data used in this study and the methodology employed to obtain it.

4.1 RawData Acquisition: Sequencing

Next-Generation Sequencing (NGS) technologies have revolutionized the field of genomics,
allowing rapid and cost-effective analysis of DNA and RNA. Sequencing, at its core, is the
process of determining the exact order of nucleotides within a given DNA or RNAmolecule.
NGS techniques employ high-throughput methods that allow for the simultaneous sequenc-
ing of numerous fragments, generatingmassive amounts of data in a single run. Some keyNGS
platforms include Illumina, Ion Torrent, and PacBio, each with its unique strengths. For in-
stance, Ion Torrent, which was used during this research, relies on semiconductor sequencing,
measuring changes in pH as nucleotides are added. These diverse technologies offer researchers
insights into genomic structures, variations, and gene expressions, contributing significantly to
clinical diagnostics.
First, clinical data of patients from Italian public hospitals with a diagnosis of NDD were

collected. To construct an efficient and cost-effective gene panel, the study selected candidate
genes associated with ID or ASD by integrating data from various public databases, including
AutismKB, SFARI,OMIM, and PubMed. Then ameta-analysis studywasmade including an-

26

notation for clinical phenotype, gene function, subcellular localization, and interactions. Uti-
lizing a dedicated SQL database and STRING 9.0, a disease protein–protein interaction (PPI)
network was established. This network is derived from 66 high-confidence genes shared by
ASD and ID lists. After an enrichment analysis and gene prioritization, the result consisted of
a gene panel of 74 genes including known causative genes, top-ranked genes by prioritization,
and genesmeetingPPInetworkparameters, providing a comprehensive set for subsequent anal-
yses.
Blood samples were treated with theWizard genomic DNA Promega Kit (Promega Corpo-

ration) to extract nucleic acids. Using Thermo Fisher Scientific’s Ion AmpliSeqTMDesigner,
multiplex PCR-based (polymerase chain reaction) primer panels were created to amplify all 74
of the targeted genes’ exons and surrounding areas (10 bp). Thermo Fisher Scientific’s Ion
One Touch 2 and Ion One Touch ES Systems were used for template preparation and enrich-
ment, respectively. Thermo Fisher Scientific’s Ion Torrent Suite Software v5.02 was used to
read and align to the human genome reference (hg19/GRCh37) and to call variants. Variant
calling process yielded VCF files, having information on sequence data in the headers. Finally,
called variants were annotated with the ANNOVAR software, and these annotated VCF files
constituted the basis for this study.

4.2 Introduction toData atHand

At the beginning of the project, VCF files used in the course of the CAGI5 and CAGI6 chal-
lenges, as well as their annotated files, were gathered as training datasets. The dataset included
867 VCF-formatted patient files with accompanying annotation files. Out of these, 415 pa-
tients were added by CAGI6 after 150 files were used in CAGI5. For a variety of reasons, in-
cluding the lack of useful variation types, hardness to analyze, belonging to patients of the same
family (e.g., siblings), or because of additional technical and clinical factors related to the pa-
tients, the remaining 302 fileswere decided not to be used in the predictions by the group. Also,
the patient clinical files, which contained anonymous information about patient records were
collected. They contained gender, age, physical symptoms, and cohort frequency information
as well as many other data, and clinical diagnosis of 7 phenotypes that are the interests of this
study. Those constituted the labels (target feature) for phenotype prediction purposes. As for
the secondpurpose, whichwas the examination andfiltration of these variants in order to build
a powerful tool for the classification of variants, the selected variants by CAGI5 and CAGI6
merged and the different classes of variants were used as labels in supervised learning.

27

At first, up-to-dateness and compatibility of the data were investigated since the latest data
that was collected belonged to 4 years ago. The annotations of 867 patients were based on
“hg37” (human genome build 37 [GRCh37]), which is a specific version of the human genome
reference assembly.
Genome assemblies serve as a comprehensive sequence of the human DNA, capturing the

typical genetic representations of the complete sequence of an organism. Different human
genome assemblies are created by making additional builds or updates over time as technol-
ogy improves and more data becomes available. This has contributed to their refinement and
improved their accuracy. Up to now, 4 versions of the new human reference genome hg38
(GRCh38) have been published in gnomAD, v4.0.0 being the latest one, published inNovem-
ber 2023.
In the context of ANNOVAR annotation, the genome build is crucial for accurately an-

notating genetic variants. ANNOVAR uses a reference genome to compare and annotate the
variations found in individual genomes or sequencing data. When annotating variants with
ANNOVAR, it is essential to specify the reference genome build as a parameter to ensure accu-
rate mapping and interpretation of the genomic coordinates of these variants. This parameter
was the hg37 genome in the case of previous works related toCAGI. Therefore it was necessary
to perform annotation with new versions of the databases. Here, a mapping problem arose
since the chromosome positions of the variants in the VCF files belonged to the former version
of the human reference genome. Since the chromosome positions of the variants in different
databases vary due to the addition or discovery of new variants, it was necessary to convert the
old chromosome positions into new ones to be able to use new databases in the annotation.
A liftover, in the context of genomic data, refers to the process of converting coordinates

or positions of genetic elements (such as variants or features) from one reference genome as-
sembly to another. This is necessary when working with data from different genome builds
or versions. For this study, The Picard Liftover tool was used, published by Broad Institute
GATK (Genome Analysis Toolkit), which is a collection of command-line tools for working
with high-throughput sequencing data. The Liftover tool is specifically designed to convert
the coordinates of genomic intervals between different genome assemblies. It utilizes chain
files that define the correspondence between the two genome builds. Picard convertedmost of
the variants’ (97%) chromosome positions, but it failed the ones that did not exist in the chain
files. Those variants were new variants that were not listed in the database. The reason was the
genetic diversity among individuals, having unique variants that are not published. Picard dis-
carded those variants and separated them by making new files. After this liftover process, The

28

UCSC (University of California, Santa Cruz) LiftOver tool was used to verify the results of
Picard. It offered a web-based tool allowing users to select the source and target genome builds,
and the tool performed the conversion. In the end, the VCF files with updated chromosome
positions were obtained, having the same data for the remaining columns. The variant files
(VCFs) were then made input for the annotation process. ANNOVAR was used in a Linux
environment, having the following parameters as databases:

protocols=”gnomad312_genome, clinvar_20221231, dbnsfp42a, avsnp150, refGene”

In ANNOVAR, a protocol refers to a set of rules or guidelines for the annotation and inter-
pretation of genetic variants. ANNOVAR provides various annotation protocols that help
users analyze and interpret genetic variants in the context of their potential impact on genes
and biological functions. These protocols define howANNOVAR extracts information from
genomic databases, functional prediction algorithms, and other relevant sources to provide
comprehensive annotations for each variant. With the protocols indicated above, the follow-
ing data sources and operations were employed:

• GnomAD v3.1.2 Genome (gnomad312_genome): This protocol refers to data from
the Genome Aggregation Database (gnomAD version 3.1.2.), providing information
on genetic variants across diverse populations and bringing information about allele fre-
quencies among different populations.

• ClinVar (clinvar_20221231): ClinVar is a widely used clinical genetics database. This
protocol annotates variants using ClinVar data available until December 31, 2022, pro-
viding information on the clinical significance of variants based on curated interpreta-
tions by experts.

• dbNSFP (dbnsfp42a): The Database for Nonsynonymous SNPs’ Functional Predic-
tions (dbNSFP) provides functional predictions for nonsynonymous SNVs.

• avsnp150: This protocol is related to the Annotated dbSNP database (avsnp), version
150. It provides information about variations listed in the dbSNP database.

• refGene: This protocol is related to the RefGene annotation, which provides informa-
tion about the genomic context of variants, such as their location within different gene
regions (exonic, intronic, etc.).

This annotation process generated 867 text-based files each corresponding to a patient VCF
file, with 170 columns of information from different databases mentioned above. Since the

29

variants rejected to be converted by the Picard tool did not exist in the VCF files, the total
number of the variants was less than the actual number of variants in the original VCF files.
Also, when the annotation output files were analyzed, it was noticed that there were a lot of
unknown values represented with dots (.) in the columns, especially for the prediction scores
of pathogenicity, as seen on the visual in Figure 4.1

Figure 4.1: Some of the columns of annotated file

The reason for the unknown values where the annotation information for a particular vari-
ant is not available or cannot be determined. When ANNOVAR processes VCF files and an-
notates variants, it may encounter instances where specific annotations cannot be retrieved or
calculated for various reasons. These reasons could include:

• Lack of Information: Thevariant possiblymay lackneeded information for some anno-
tations. For instance, ANNOVARmay assign an ”unknown” value, if the database used
for annotation does not contain information for a particular variant. Most of the avail-
able computational tools for variant pathogenicity predictionsworkonly for genetic vari-
ants in the coding part of the genes that cause an amino acid substitution or introduce a
stop codon. For this reason, intronic variants can not be annotatedwith a pathogenicity
score by these methods.

• Uncertain Predictions: Some annotations depend on predictive algorithms or external
databases, and if the confidence or evidence for a particular annotation is low or uncer-
tain, ANNOVARmay use ”unknown” to indicate this case.

• Database Limitations: If a specific annotation relies on external databases or resources
that are not available or updated, ANNOVARmay not be able to provide a value.

It’s important to carefully interpret “unknown” values and consider them in the broader
context of variant annotation. In such cases, additional validation or exploration may be nec-
essary to understand the significance of these variants.

30

In 867 annotation files, there were 15.813.245 unknown values in total. Due to this high
uncertainty and also the portion of the variants that were rejected by the Pickard liftover tool,
a decisionwasmade to change the parameters and repeat the annotation using the old chromo-
some positions, in alignment with the previous version of the databases. This way, by eliminat-
ing data of rejected variants, the high number of unknown values resulting from discrepancies
among versions and position mismatches would have been avoided.
To perform the annotation again, the following parameters were used:

protocols=”gnomad211_genome, gnomad211_exome, clinvar_20221231, dbnsfp42a, avsnp150,
refGene”

Here, gnomAD version 2.1.1 datasets for annotating variants found in the genome and ex-
ome were used. The reason for using both genome and exome protocols was to ensure val-
idation and gain insights into variant impact across diverse genomic contexts by comparing
annotations. This approach helped to identify similarities and discrepancies in annotations,
that might reveal insights. However, it also produced some extra columns providing the vari-
ant frequency in different populations, which will constitute features for later tasks such as
supervised learning. Therefore it was needed to compare these two annotations with genome
and exome which produced 18 columns each (36 columns in total), and only keep the signifi-
cant ones, which are exampled in section 5.3.5, for the later tasks. At the end of the annotation
of 867 files, there were 17.853.670 unknown values in total. Notably, that value was decreased
compared to the previous annotation because of the reasons explained above, the possible po-
sitionmismatches and version discrepancies. Also, the rejected variants by the Picard tool were
able to be used this way, meaning more data available to conduct the study. There were 170
columns containing different types of information about the variants, which is 18 columns
more than the output of the previous annotation. These columns were the annotations of the
exonic regions, since “gnomad211_exome” was added to the protocols. Obtained annotated
files included the following information about the variants, the total number is given in paren-
theses:

• Information related to chromosome position and nucleotide change: Chr, Start, End,
Ref, Alt, (5).

• gnomAD allele frequencies of genome and exome: gAF, gAF_popmax, gAF_male,
gAF_female, gAF_raw, gAF_afr, gAF_sas, gAF_amr, gAF_eas, gAF_nfe, gAF_fin,
gAF_asj, gAF_oth, gnon_topmed_AF_popmax, gnon_neuro_AF_popmax,

31

gnon_cancer_AF_popmax, gcontrols_AF_popmax, eAF, eAF_popmax, eAF_male,
eAF_female, eAF_raw, eAF_afr, eAF_sas, eAF_amr, eAF_eas, eAF_nfe, eAF_fin,
eAF_asj, eAF_oth, enon_topmed_AF_popmax, enon_neuro_AF_popmax,
enon_cancer_AF_popmax, econtrols_AF_popmax, (36).

• Clinical implications and significance: CLNALLELEID, CLNDN, CLNDISDB,
CLNREVSTAT, CLNSIG, (5).

• Gene type, genetic functionvariant id and type: avsnp150, Func.refGene,Gene.refGene,
GeneDetail.refGene, ExonicFunc.refGene, AAChange.refGene, (6).

• Tools related to conversation, pathogenicity, protein function impact and variant im-
pact: SIFT, SIFT4G,Polyphen2_HDIV,Polyphen2_HVAR,LRT,MutationTaster,Mu-
tationAssessor, FATHMM, PROVEAN, VEST4,MetaSVM,MetaLR,MetaRNN,M-
CAP, REVEL, MutPred, MVP, MPC, PrimateAI, DEOGEN2, BayesDel, ClinPred,
LIST-S2, Aloft_Confidence, CADD_raw, DANN, fathmm-MKL, Eigen, Eigen-PC,
GenoCanyon, integrated_fitCons, LINSIGHT,GERP_NR,GERP_RS,phyloP30way,
pphastCons30way, SiPhy_29way, (103). (Each predictor tool produced more than one
column, all of them are not given here.)

• Reading quality, protein domains, expression: Interpro_domain, GTEx, and other 13
columns related to identity, (15).

To improve traceability, the files were arranged according to patient codes supplied by Bio-
Computing UP. Then they were categorized into training and test datasets. Recently anno-
tated data fromCAGI5 andCAGI6VCF files made up the training dataset which added up to
565 files. The remaining 302 files, on the other hand, were identified as the test dataset. Files
in the test set with variants that did not fit certain requirements, such as those having a read
(DP) value of 0 that indicates a sequencing error, went through the appropriate modifications
to guarantee data integrity and made ready for the next processes.
In the end, there were annotated VCF files for 867 patients, each containing 170 columns

of information about variants. Each row in the files represented a variant and each file had a
different number of variants, which is rational due to genetic diversity among individuals. Of
course, a significant part of these variants were shared, sincemany of these genetic variants were
neutral and widespread in a wide population. This phenomenon is explained by neutral drift,
where certain variants have no important impact on individuals and, as a result, can become
widespread within a population. Neutral drift represents a random fluctuation of allele fre-
quencies across generations [11]. While not all patients within the cohort received a definitive
diagnosis for every disease, the outline of disease distribution among individuals is provided

32

below. This data is illustrated through a bar graph representation in Figure 4.2. It’s important
to note that lacking labels for the patient phenotypes contributes to the complexity of the task,
especially when performing supervised learning.

• ID: 497 patients, diagnosed out of 511 with available data.

• ASD: 301 patients, diagnosed out of 487 with available data.

• Epilepsy: 139 patients, diagnosed out of 487 with available data.

• Microcephaly: 63 patients, diagnosed out of 421 with available data.

• Macrocephaly: 59 patients, diagnosed out of 421 with available data.

• Hypotonia: 99 patients, diagnosed out of 393 with available data.

• Ataxia: 41 patients, diagnosed out of 369 with available data.

Figure 4.2: Patients with labels and with diseases

As for the variants, BioComputing UP provided the selected variants, including DC, LP,
and CF labels. In the patient files, there were 6.523 unique variants among 240.474, since the
variants tend to be common in the population, as explained before. Below, the distribution
of the number of variants per patient and the classes are illustrated. As observed, there is a
significant imbalance in both the distribution of phenotype classes and variant classes. This
imbalance made the categorization more complex, which led to the implementation of several

33

(a) Variant types of unique variants

(b) Variant amounts of patients

Figure 4.3: Variant type and variant amount distribution

experiments using various techniques. Supervised machine learning was given priority due to
the presence of labeled data, but unsupervised techniques were also employed. The experi-
ments will be thoroughly discussed in the following chapter, which will also share an analysis
of the approaches taken to deal with the complexities caused by the unbalanced data.

34

5
Methodology AndWorkflow

This chapter covers the initial approaches used to prepare the data, exploratory analyses to un-
derstand the dataset, and the experiments that were carried out for a successful classification of
variants and phenotypes.

5.1 Initial Data Analysis

In the early stages of this study, an examination of the dataset was conducted, such as variance
analysis and exploration ofmissing values, to have insights into the completeness and quality of
the data, guiding subsequent steps in data preprocessing. Python 3was used in theGoogleCo-
lab environment, because of its ease of accessing Google Drive files and GPU support, which
is important for high throughput processes and parallel calculations, especially on tensor oper-
ations and machine learning models.
Initial data analysis (IDA) is a crucial step in the data exploration process, including pre-

liminary tasks to understand the characteristics and structure of the dataset before applying
other modeling techniques. The main goals are identifying potential issues and to be able to
create a proper data pipeline [12]. Some common components of initial data analysis include:
calculating descriptive statistics, data visualization, data cleaning, correlation analysis, variance
analysis, identifying data types, etc. Details of the work regarding these points are explained in
the following sections.

35

• Identifying Data Types: Most variables (columns) consisted of numeric values repre-
sented as float data types, while a minority (44) were string values containing informa-
tion about the variants. Proper handling (either elimination or encoding) of the string
values was crucial to facilitate the use of classification models, as these models typically
cannot process string values directly.

• CalculatingDescriptive Statistics: The data coming from the annotation files comprised
170 columns, each containing a different kind of value as explained previously. Some
statistical values are calculated for each column, such as minimum, maximum, variance,
andmean to understand tendencies and variability (for the numeric variables). Formost
of the numeric variables (119), theminimum value was 0 and themaximumwas 1. This
made sense since in an annotation, most of the columns are related to different predictor
scores, coverage or frequency. These values are naturally between the interval of [0, 1].
Remaining numeric values (9), had a minimum value of 0 and theoretically could have
all positive numbers. These variables belonged to chromosome positions, number of
reads, quality score, and other countable values.

• Variance Analysis: The variance of numerical columns was calculated to understand
the distribution and variability putting light on the significance of individual attributes.
The variance values were low, the maximum being 0.27. This indicated that the feature
values are relatively close to each other, and there is not much diversity. Also, the pres-
ence of redundant information can explain the low variance of features, which led to
an importance analysis and feature selection. In addition, considering that the values
were in the interval of [0, 1], it is expected to have low variance values. Of course, the
biggest variance value belonged to the features that were not in the constrained range of
[0, 1], but they were scaled to have a consistent machine learning model. It’s important
to highlight that the presence of repeated unknown values throughout the dataset can
reduce the significance of the variance within a feature.

• Correlation Analysis: A heatmapwas generated to see the correlations between each fea-
ture, aiming to understand the underlying relationships and determine the minimum
number of features necessary to explain the target variable. Although the visualization
was poor due to the high number of features, it was noticed that 19 features, originating
from various prediction tools, exhibit a substantial correlation level (above 76%). This
observationwas reasonable, considering that all predictors in the annotation process uti-
lize similar parameters and rely on publicly available databases to predict the pathogenic-
ity or impact of the variants.

• Missing values analysis: It is crucial to explore and handle properly the missing values in
the data commonly denoted asNaN (Not aNumber) before proceeding to experiments.
An analysis was made throughout the data files and it was noticed that the missing data
was represented with a dot (“.”) or set of dots (“.;.;.;.;.”). These missing values indicated

36

Figure 5.1: Variance values of the dataset columns

that the annotation process could not retrieve the values from public databases related
to those variants, this occurred especially for de novo variants, intronic variants whose
effects were difficult to predict, and variants that did not exist in the databases. There
were 232.327missing values in the dataframe of unique variants (6.523). An illustration
can be seen in Figure 5.2. For ease of visualization, the columns without missing values
were not shown.

5.2 Data Preparation & Cleaning

5.2.1 HandlingMissing Values

There are several methods to handle missing values such as removing, imputation, forward fill,
estimation, etc. For this case, removing the samples with missing values would not work since
almost each row had at least one missing value. imputation techniques were chosen for this

37

Figure 5.2: Amount of missing values within the features

task to preserve the Sample Size, improve Statistical Power, and enhance robustness. Imputa-
tion techniques include filling in missing values with a suitable replacement. Common meth-
ods are using mean, median, or mode for numerical data, using the most frequent category for
categorical data, or using another value to represent missing values. For the data at hand, the
experiments with the mean and median of the columns were made. A random forest model
was built to monitor the prediction accuracy and other scores in order to determine the best
approach. Mean caused a lot of bias towards the class of “None” which are the variants not
belonging to any category (disease-causing, likely pathogenic, contributing). This is because
of the abundance of these categories, which has been shown before in Figure 4.3a. The model
failed to predict likely pathogenic cases. Also, undersampling methods were employed by ran-
domly selecting some examples from the “None” class to reduce the amount. The model was
rerun to compare the results. With the median, there was less bias towards the “None” class,
yet, the prediction for likely pathogenic variants was not satisfactory when accuracy, precision,
and F1 scorewere checked. Next, a constant value of “-0.1”was used for the replacementwhich
was outside the range that the missing values normally had. This approach was chosen based
on several beneficial factors, as outlined below:

• Identifiability: As it stands out when a constant value outside the range is assigned to

38

missing data, it allows to account for missing values explicitly.

• Preserving information: While imputing with a constant may not accurately represent
the true values of themissing data, it helps in preserving the fact that data ismissing. This
is important for themodels to understand the patternswhen the nature of the biological
data is considered.

• Minimization of bias: The presence of missing data could give some clues about the
variants, especially if the reason is related to a specific condition or attribute. Assigning
a constant value outside the normal range can help prevent biases in analyses. The con-
stant serves as a marker, indicating that these values are different from observed values.

• Compatibility: Having a constant value might work better for some models in terms
of preventing the imputed values from influencing the model in the wrong direction.
Also, it allows testing the impact of the imputation choice on study results by comparing
analyses with different imputation strategies.

When the initial Random ForestModel was run again with imputedmissing values with a con-
stant value of “-0.1”, the accuracy compared to mean and median imputation did not change
significantly. However, the F1 Score average was increased by 6%, even higher when the under-
sampled data was used (8%). This was a desired development since the F1 Score is a harmonic
mean of precision and recall. The reason for having limited improvement in accuracy was that
the classes comprised a small number of examples, which led to a higher increase in precision
and recall with small changes but less increase in accuracy. Therefore this method was selected
for handling missing values.

5.2.2 Gene Filtering

During the analysis, the gene filtering step involved filtering out variants that did not corre-
spond to the genes listed in our selected gene panel. This process ensured that only variants
directly associated with the genes of interest were retained for further investigation. The vari-
ants that were obtained after variant calling naturally included examples of genes that were
found to be located outside of the predefined gene list. By systematically eliminating these
non-conforming variants, the dataset was refined, so that the focus was on the genetic varia-
tions of the scope. The number of unique variants, as mentioned, was dropped to 6.253 after
this elimination, allowing further investigations and pre-processing of the data.

39

5.2.3 Encoding

Asmentioned, someof the important columnshad stringdata types storingnucleotide changes,
genetic function and location information. These columns needed to be converted into nu-
meric values to be able to perform a proper classification. This process of converting categorical
data into a numerical format is called Encoding and it is used for machine learning algorithms.
Since machine learning models typically work with mathematical operations, converting cate-
gorical variables into numerical representations was essential for thesemodels to learn from the
data effectively.
There are twomain encoding types which include Label Encoding andOne-Hot Encoding.

Label encoding assigns a unique numerical label to each category. It is suitable for ordinal data
where the order matters but is not suitable for nominal data as it may introduce unintended
ordinal relationships. One-Hot Encoding, on the other hand, creates binary columns (binary
vectors) for each category, representing the presence or absence of that category. Thus, it adds
new columns to the data as much as the number of categories. It is suitable for nominal data
and avoids introducing ordinal relationships.

Figure 5.3: Encoding procedures based on data types

For a successful encoding that represents the nature of the data, the columns were treated
differently. The columns with values that did not have an ordinal relationship were encoded
withOne-Hot Encoding, while the otherswere applied Label Encoding. The columns that rep-
resented gene names and chromosomes were one-hot encoded. This caused the dataframe to

40

have additional columns (74 for genes, 21 for chromosomes) increasing dimensionality. Nev-
ertheless, this is a common and appropriate approach when dealing with categorical variables
without order, as it allows the model to treat each category independently. The other categor-
ical columns, containing information about clinical annotation, gene region and variant type
were label encoded due to the importance of the order in the nature of these attributes. For
instance, the clinical annotation could have the following values: ’Benign’, ’Benign/Likely be-
nign’, ’Likely benign’, ’Uncertain significance’, ’Conflicting interpretations of pathogenicity’,
’Likely pathogenic’, ’Pathogenic/Likely pathogenic’, ’Pathogenic’. In this case, the variants an-
notated as benign in ClinVar had a lower possibility of being predicted as pathogenic, and the
variants that were reported as Pathogenic were more likely to be related to the diseases of inter-
est. Thus, an encoding was made considering this hierarchy, where benign cases were labeled
with “0”, uncertain cases were labeled with “0.5”, and pathogenic cases were labeled with “1”.
As for gene region, the variants in exonic regions were assigned “1”, since they have themost

impact on the resulting protein. The variants in the splicing region were assigned “0.75”, be-
cause of their regulatory effects. UTR5, UTR3 and Upstream region categories were assigned
“0.5” since they also may have some effects on proteins. Finally, variants in intronic regions
were labeled with “0.25” as they rarely have impacts on pathogenicity.
The treatment of the variant type column followed a similar approach, assigning higher val-

ues for more critical variants and lower values to the ones with less potential impact. Non-
frameshift variants were assigned a value of “0.5”, frameshift, stopgain and startloss variants
were labeled with “1”. And synonymous SNVs were assigned a small value of “0.1” since they
normally do not have any impact on the resulting protein but the possibility of being combined
with other variations throughout the DNAmolecule.
Of course, as it can be noticed, it was made sure that all the encoded values fall within the [0,
1] interval, aiming for consistency and maintaining a standardized scale across the dataset.

5.3 Feature Engineering & Extracting Features

5.3.1 Allele Frequencies In The Population

To have more explanatory data at hand for the task, some features (columns) were added to
dataframe since additional relevant features can enhance the predictive power ofmachine learn-
ingmodels. They providemore information to the algorithm, helping to identify complex pat-
terns and relationships within the data, and facilitating the decision-making process. Also, fea-

41

ture engineering can help balance the dataset, especially when dealing with imbalanced classes.
Creating new features that highlight important aspects of minority classes can lead to better
model performance.

As mentioned before in Section 4.2, there were 36 columns related to genome and exome
allele frequencies obtained from the gnomAD database. This amount was more than needed
to explain the relationships, therefore it was necessary to decide the most useful frequencies
to discard others. With the suggestion of the supervisor, two allele frequency values were de-
cided to be used: “AF” and “non_neuro_AF_popmax”. “AF” stands for allele frequency in
the entire population, obtained from the gnomADdatabase. It is ameasure of how common a
specific version of a gene is within a group of individuals. Allele frequency is often expressed as
a proportion or percentage, indicating the fraction of alleles in a population that carry a partic-
ular genetic variant. For example, if a certain variant of a gene is present in 10 out of 100 alleles
in a population, the allele frequency would be 0.1 or 10%. This value is used to understand
the genetic diversity within populations, identify common or rare variants, and investigate the
potential association of specific alleles with traits or diseases.

“non_neuro_AF_popmax” on the contrary, refers to the allele frequency of variants in
the non-neuro (non-neuropsychiatric) subset of the population. This subset excludes individ-
uals with conditions such as ASD, ID, and other NDDs. GnomAD provides allele frequency
information for various subsets, including non-neuro populations. Analyzing allele frequen-
cies in different subpopulations helps researchers and clinicians understand the distribution
of genetic variants in specific contexts. In the case of working on NDDs, understanding the
allele frequencies in the non-neuro subset provides valuable insights into the genetic outline. It
allows for more targeted investigations into variants associated with neurodevelopmental con-
ditions by distinguishing them from variations present in the entire population.

To utilize these two frequency values, a decision had to be made between the frequency in
the genome and the frequency in the exome. Upon consultation with the supervisor, it was
determined to compare both values and retain the higher one, discarding the other. Prioritizing
a higher frequency was considered more significant in this context, given that the focus of the
investigation is on smaller frequencies. Therefore the higher value should have been compared
with the threshold. In the end, two new columns were added to the dataframe to store these
values: “higher_AF” and “higher_nonneuro”.

42

5.3.2 Information Related To Cohort AndQuality

In the last 13 columns of the annotated files, there was a comma-separated special set of infor-
mation regarding variant quality and cohort statistics. The three of them were decided to be
useful: “GQ”, “DP” and “AF”.
In the context of variant data, these statistics represent the following properties:

• GQ stands for genotype quality, it is ameasure of confidence in the assignment of a geno-
type to a particular individual. Higher GQ values generally indicate higher confidence
in the accuracy of the called genotype.

• DP represents sequencing depth, which is the number of times a particular nucleotide
has been sequenced at a specific position in the genome. It provides information about
the coverage and how well a region has been sampled. More DP value indicates a more
reliable read.

• AF, as in the previous case, represents allele frequency, however, it belongs to the cohort
rather than the entire population. In this context, it reflects the presence of the allele
within the cohort. To avoid any potential confusion, the extracted column has been
designated as ”AF2.”

These parameters were used to assess the quality of sequencing, and the prevalence of spe-
cific alleles in the cohort. Of course, rare variants were important for the research since they
might have a greater possibility of being disease-causing. Also, a GQ threshold of 10 and a DP
threshold of 10 were used to filter the unreliable variants in order to proceed with themeaning-
ful ones. Then, these values of GQ and DP were scaled using “MinMaxScaler” of scikit-learn
library, to have a consistent dataframe, since all the other columns contain scaled data.

5.3.3 Genetic AssociationsWithDiseases

In order to provide insights and increase the accuracy of machine learning models, a gene as-
sociation matrix was constructed. This matrix involved mapping the gene panel with the dis-
eases of interest. To accomplish this task, three public databases were utilized: HPO, SysNDD,
and MONDO. Each of these databases contains annotations about diseases, providing stan-
dardized and integrated information on clinical features, symptoms, gene associations, and in-
heritance patterns. The decision to incorporate data from multiple databases was made to en-
sure the integrity of different databases since they employ different curationmethods, informa-
tion sources, and inclusion criteria. This approach of cross-checking across multiple databases

43

strengthened the evidence of relationships between genes and diseases and also ensured the re-
liability of gene-disease mappings.
Following data collection from the databases, a gene was considered associated if any evi-

dence was present in at least one database. Then, this information was utilized to construct a
matrix comprising 74 genes and 7 diseases. The matrix consisted of binary values, indicating
thepresence or absence of association. Byusing thismatrix, 7 columnswere added todataframe
depending on the gene information of that variant.

5.3.4 Special Cohort Frequency of the Variants

At this step, variant frequency in the cohort was calculated manually by counting the number
of recurrences of that variant in the entire patient files. Then this number was divided by 867,
whichwas the total number of patients sequenced. This value has been added to the dataframe
as a newcolumnnamed“ills”, representing thenumber of patients having the variant (infected).
Themain difference between this value from other frequencies is that this value was unaffected
by the genders and inheritance patterns. When considering X chromosome variants, there can
be gender-specific implications due to the differences in the number of X chromosomes be-
tween males and females. For females, since there are two X chromosomes, variants on the X
chromosome follow the same principles as autosomal variants (not belonging to gender chro-
mosomes). The allele frequency is calculated based on the number of occurrences of a specific
allele divided by the total number of X chromosomes in the female population. For males, the
only X chromosome is inherited from themother. Therefore, allele frequencies for X chromo-
some variants inmales are influenced by thematernal population. For this reason, in studies in-
volving X chromosome variants, genders and inheritance patterns must be taken into account,
since specific calculations may be applied to obtain allele frequencies.
This way, “ills” values satisfied the need to have an independent frequency value that belongs

to the cohort. This frequency value has become the fourth column related to frequencies along-
side “AF”, “AF2”, and “non_neuro”.

5.3.5 Dropping Columns

The steps and processes explained above created some columns that either were unnecessary or
made the other columns redundant/unnecessary. For this reason, each of them had to be as-
sessed and the ones that would not be useful for the purposes of the study had to be eliminated
before proceeding to further applications. First of all, the annotation process retrieved some

44

columns that were not able to be used since they did not have informative aspects. As men-
tioned previously in section 4.2, there were 103 columns generated by the tools related to the
conversation, pathogenicity, protein function impact, and variant impact. These tools did not
generate only one score but 3 – 6 columns containing different predictions, their confidence,
and how they compare to other variants, enhancing versatility, interpretability, and compari-
son capabilities of the tool’s outputs, responding to various needs. Different columns represent
different aspects or details of the predicted impact. For example, a tool might provide a contin-
uous score indicating the likelihood of a variant being deleterious. Still, researchers might be
interested in amore straightforward prediction or a converted rank score for easier comparison
across tools. Sometimes, there are cases when the same tool uses different models. PolyPhen-2
for instance, has separatemodels forHumDiv (HDIV) andHumVar (HVAR), eachwith its set
of scores and predictions. This allows for a more nuanced assessment of the impacts. To have
an idea of different columns and their contents generated in this study, an example is given on
the SIFT algorithm and its extended version, SIFT4G:

• SIFT_score: Original SIFT score, which is a normalized probability that a substitution
is tolerated.

• SIFT_converted_rankscore: A phred-scaled converted rank score for the SIFT score, of-
ten used for ranking.

• SIFT_pred: Classification based on the SIFT score (”D” for damaging, ”T” for toler-
ated).

• SIFT4G_score: Similar to the SIFT score using the SIFT4G algorithm.

• SIFT4G_converted_rankscore: Phred-scaled converted rank score for the SIFT4G score.

• SIFT4G_pred: Similar to SIFT, classification is based on the SIFT4G score.

Depending on the purpose of the study, different levels of detail can be selected for analysis
or applications. For this study, rank scores (or converted rank scores when provided) provided
by the tools were chosen to be kept since they have the probability values of being deleterious.
This approach also satisfied that the columns had the same scale, which was [0, 1]. Among 103
columns of 27 predictor tools, 38 columns were kept in the dataframe. Different models for
the same tool were considered to a different scores and were kept. The others were removed
due to their redundancy. In the end, 65 columns were eliminated at this step. After the se-
lection of the gnomAD allele frequencies to be used among 36 columns, the other frequency

45

information has become redundant. As explained in Section 5.3.1, “AF” (entire population al-
lele frequency) and “non_neuro_AF_popmax” (allele frequency of variants in the non-neuro
subset of the population) were calculated by comparing their genome and exome values, and
contained in other columns. Therefore the original 36 columns needed to be removed to en-
sure the minimum number of features explaining the target variable. Following the extraction
of GQ, DP, and AF2 columns, a parallel process was applied to address the 13 columns associ-
ated with identity, as mentioned in Section 4.2. These columns included a range of statistics
and quality-related data for the variants. Given that only these three values compressed in these
columnswere considered essential for filtration and analysis, new columnswere created to store
this information. Then, the original 13 columns were removed to retain only the relevant fea-
tures. Another column elimination was carried out for the encoded features. As explained
in Section 5.2.3, the columns associated with gene names and chromosomes were one-hot en-
coded. While this process added new columns to the dataframe, it also allowed for the removal
of the redundant original columns containing string values. This operation resulted in the elim-
ination of 2 columns. In the final step of feature extraction and data preparation, unnecessary
columns such as patient ID, variant number, start and end positions, and nucleotide changes
were eliminated. As a result of this process, 115 new columns were added to the initial features,
while 123 columns were dropped, resulting in a net reduction of 8 columns. Therefore the
number of columns was reduced from 170 to 162.

5.4 Creating Data Structures

After obtaining the necessary features and data preprocessing, different data structures were
created containing data in suitable forms for different purposes. Since there were two classifica-
tion tasks, the data at handmust be in the proper form, alignedwith labels, and contained in the
most efficient way that machine learning models could use. Different structures are explained
in this section, with the reasons of selection.

5.4.1 Variant Classification

For variant classificationpurposes, the labels provided forCAGI5andCAGI6wereused. These
labels were in the shared clinical files of patients and needed to be extracted and formatted as
mentioned in 4.2. They were collected and cleaned of unnecessary information, categorized,
and brought together to be aligned with the training data. Then, a Python dataframe was cre-

46

ated, by following the previously explained procedures. The steps are not described here as
they have been already detailed in the previous sections (i.e. Sections 4 and 5). There were 170
columns and 6.523 unique variants from 867 patient files. All columns had the same scale of
[0, 1] and the columns containing string values were encoded. The labels data wasmergedwith
this dataframe by using ”merge” function from the pandas library.

5.4.2 Phenotype Classification

For phenotype classification, a different data structure was needed since the dataframe for vari-
ants had the variant labels and degraded to unique variants. This classification required phe-
notype labels, therefore patient IDs, and patient-wise representation of the information. Since
each patient had a different number of variants and each variant had numerous columns of in-
formation, the structure had three dimensions. To construct a comprehensive data structure,
a set of steps were followed. The initial step involved establishing correspondences between
patient names and file names, important for linking variant information to the correct indi-
viduals. The patient correspondences were systematically read from a file containing VCF file
names and patient codes provided. Then, a loop iterated through each patient, accessing their
files containing variant information. A nested dictionary, named ‘patient_data_structure‘, was
used to contain this information. A new nested dictionary was created for each patient, allow-
ing the representation of patients with different numbers of variants. Each line in the files
was parsed, identifying column names from the header and associating them with their re-
spective values. This information was encapsulated in a second-level dictionary named ‘vari-
ant_info_dict‘. Each patient’s data structure was constructed in such a way that the patient’s
name served as the primary key, while each variant had a unique secondary key (”variant1,”
”variant2,” etc.). The attributes of each variant, such as predictive scores, genetic information
and location were systematically stored in the innermost dictionary. This three-dimensional
structure with patients, variants, and variant information provided a coherent representation
of the dataset and constituted a basis for phenotype analysis.
For the same purpose, the same feature engineering and data cleaning procedures were ap-

plied. Each patient and their associated variants stored in the patient_data_structure were
looped and for each variant, GQ,DP andAFwere extracted after parsing relative columns. GQ
and DP values were scaled between 0 and 1 using minimum and maximum values. Then, the
dictionary was updated with the extracted values by adding them to the innermost dictionary,
representing the variant information. Patients and variants in the patient_data_structure were

47

looped again to retrieve the values of genome and exome allele frequencies from the variant
information for each variant. Genome and exome values of Population allele frequency and
Non-neurological allele frequencywere compared and themaximum values were stored in two
new spaces of the variant_info_dict: ”higher_AF” and ”higher_nonneuro”. A filtering process
was performed, specifically focusing on variants associated with certain genes. 74 desired genes
of the gene panel were defined and each variant was checked if they belonged to these genes, by
comparing with the value of ”Gene.refGene” key. After this step, only the variants with the
desired genes remained in the dictionary.
5 of the variant information features asmentioned in section 5.2.3were encodedwithproper

technique. Gene names and chromosomes were one-hot encoded, while clinical annotation,
gene region, and variant type were label encoded due to the importance of the order in the
nature of these attributes. Missing values were treated in the same way as in 5.2.1, a constant
value of ”-0.1” was chosen for replacement. This decision was motivated by the need for ex-
plicit identifiability, as it helps in preserving the acknowledgment that data is missing. This
was a crucial consideration for understanding patterns in the biological data although imput-
ingwith a constantmay not precisely reflect true values. Moreover, selecting a constant outside
the normal range helpedminimize biases in the direction of the dominant class. To enhance the
interpretability and accuracy ofmachine learningmodels, a gene associationmatrixwas created
by mapping a gene panel to diseases of interest. HPO, SysNDD, andMONDOdatabases pro-
vided standardized details about diseases, including gene association. This matrix was merged
with the variant_info_dict to have the features in the corresponding positions. The decision to
integrate data frommultiple sources aimed at ensuring integrity and guaranteed the reliability
of gene-disease mappings.
The ”ills” values calculated in 5.3.4, were added to the variant_info_dict dictionary, repre-

senting the count of patients with a specific variant in the cohort. This frequency value re-
mained independent of gender and inheritance patterns. It became the fourth feature about
frequencies, together with ”AF,” ”AF2,” and ”non_neuro”.
After the feature extraction anddatamanipulationprocess, redundant featureswere removed

to have the minimum required features. The remaining features of predictor tools after choos-
ing the ones to be used were discarded as exemplified in section 5.3.5. The frequency values
belonging to the genome and exome were eliminated after preserving 4 features related to fre-
quency. Additionally, unnecessary features generated during the annotation process, along
with those considered irrelevant to the training process, were removed from the dictionary to
construct better models.

48

The conversion of patient data from a dictionary to a 3-dimensional tensor was needed and
it was a crucial step in the preparation of data for machine learning models, particularly those
based on neural networks. In the machine learning area, tensors are the preferred format for
data input due to their compatibility with neural network architectures and efficient handling
of multidimensional data. Since the data structure at hand was also three-dimensional, this
transformation ensured a consistent input shape across all samples, addressing information on
the variants among patients.
In Python, both PyTorch and TensorFlow are prominent deep learning frameworks that

provide tensor functionalities for efficient computations, forming the basis of neural network
implementations. PyTorch tensors and TensorFlow tensors share similarities, with their data
structures, model parameters, and outputs in neural networks. Both frameworks support op-
erations like element-wise addition, multiplication, and linear algebra operations. Tensors in
both frameworks represent multidimensional arrays, however, there are notable differences be-
tween PyTorch and TensorFlow tensors, each with its advantages.
PyTorch and TensorFlow, have key differences in their approach to graph computation,

ecosystem, and syntax. TensorFlow uses a static graph, predetermined before execution, en-
abling efficient implementation but offering less flexibility during development. In contrast,
PyTorch utilizes a dynamic graph, allowing real-time adjustments to the model architecture.
While TensorFlow has a broader ecosystem, PyTorch has gained popularity in research due to
its intuitive design. PyTorch tensors offer a more ”Pythonic” interface, resembling standard
Python syntax. This simplicity helps in readability and ease of use, contributing to faster de-
velopment and experimentation cycles. PyTorch’s dynamic computational graph and more
intuitive design have gained popularity among researchers and practitioners, especially in fields
requiring frequent model adjustments and experimentation.
In this study, Pytorch Tensors were employed due to the previously mentioned advantages.

By adopting tensors for phenotype classification, the data became more efficient in batch pro-
cessing, leveraging parallel computation. This conversion of the data optimizedmemory usage,
especially in Neural Network experiments. Also, it supported fundamental tensor operations
crucial for machine learning. As a result, conversion to a 3D tensor was a foundational data
manipulation step, aligning the data with the requirements of machine learning models and
enabling the application of advanced techniques to have insights frompatient and variant infor-
mation. With this procedure, two data structures were obtained for two purposes of this study:
variant classification and phenotype assignment. Different experiments with these structures
and their assessments are explained in the following chapter.

49

6
Experiments & Results

This chapter introduces the complexities of the models and techniques used for variant classifi-
cation and phenotypic assignment. In addition to explaining the experimental design, it offers
a detailed analysis of the outcomes obtained from these experiments.

6.1 Variant Classification

The constructed dataframe, as explained in section 5.4.1, was used for variant classification pur-
poses, as the input for machine learning models and tools. This task aimed the classification
of 6523 variants into 4 classes: Disease-causing (DC), Likely pathogenic (LP), Contributing
factor (CF), and Neutral (None). Both supervised learning and unsupervised learning models
were applied for classification and detection. This approach was followed to find the mod-
els simulating the real-world scenarios in the most realistic way. In clinical cases of the real
world, harmful variants are very rare to encounter and they are not numerous in a single indi-
vidual. Most of the time, the variants of an individual are neutral, not causing any significant
life-changing effects or disturbances. Hence, the task was detecting a few potentially damaging
variants in a pile of neutral variants. Because of this natural aspect of the variants, the database
at hand was highly unbalanced, having 96% of the variants neutral, not disease-causing or con-
tributing. Some methods such as undersampling and feature selection were applied to over-
come the drawbacks of this imbalance. Also, different machine learning models, each with
distinct strengths and weaknesses, were employed to identify the most effective model and

50

methods for accurate classification. In this section, different models are introduced with in-
formation on their working principles and applications.

6.1.1 Random Forests

Random Forest is an ensemble machine learning technique that benefits the strength of multi-
ple decision trees to enhance predictive performance. It is considered as an ensemble method,
since it brings the information from different sources together to make a decision, in this case,
different decision trees. Each decision tree in the forest is trained independently on a random
subset of the original training data, a process known as bootstrapping. This helps introduce
diversity among the trees, as they are exposed to different subsets of examples, which, in turn,
reduces the risk of overfitting to the peculiarities of any single subset. Random Forest’s key fea-
ture is the use of feature randomization, at each decision tree node, instead of considering all
features for potential splits, a random subset is chosen. This introduces diversity among trees,
making each tree a unique learner. The ensemble model aggregates individual tree outcomes
during the prediction phase. For classification, it employs majority voting, selecting the class
with the most votes across all trees. In regression, it averages tree predictions. This approach
enhances the model’s robustness and accuracy by mitigating the impact of outliers or noise in
the data, contributing to improved generalization and overall performance.
Random Forests are known for their ability to handle high-dimensional datasets, capturing

complex relationships between features and the target variable. Additionally, they provide a
natural mechanism for assessing feature importance by analyzing the impact of each feature’s
contribution to the overall predictive performance. These advantages made Random Forest
a suitable model for variant classification since the data is unbalanced and high-dimensional.
Random Forests were the models that were used the most for CAGI5 and CAGI6 challenges,
among the predictor groups [2], [6].

Basic Random Forest

For starters, a basic random forest model was run with default parameters by using Random-
ForestClassifier,which resides in the ensemblemodule of scikit-learn library inPython3. Scikit-
learn library is a popularmachine learning library for performing variousmodels easily and effi-
ciently. RandomForestClassifier is a class provided by the scikit-learn and enables the creation,
training, and evaluation of Random Forest models. This class has default parameters initially
defined to train models to facilitate the training process, which can be adjusted to handle dif-

51

ferent scenarios. Firstly, the model was run with the following default hyperparameters:

RandomForestClassifier(n_estimators=100, max_depth=None, min_samples_split=2,
min_samples_leaf=1, random_state=None)[source]

The explanations of these values and their effects on the model are given below:

• n_estimators: The number of decision trees in the forest.

• max_depth: The maximum depth of a tree. If None, then nodes are expanded until all
leaves are pure or until all leaves contain less than min_samples_split samples.

• min_samples_split: Theminimumnumberof samples required to split an internal node.

• min_samples_leaf: The minimum number of samples required to be at a leaf node. A
split point at any depthwill only be considered if it leaves at leastmin_samples_leaf train-
ing samples in each of the left and right branches. Thismay have the effect of smoothing
the model, especially in regression.

• max_features: The number of features to consider when looking for the best split.

• random_state: Controls both the randomness of the bootstrapping of the samples used
when building trees and the sampling of the features to consider when looking for the
best split at each node.

The dataframewas given as input to themodelwith the default hyperparameter values. First,
feature columns and labels were separated, then the data was split into training and testing sets.
According to this, 20% of the data (1.305 examples) was separated to be the test set. The pro-
cess of splitting a dataset into training and test sets is a fundamental practice in machine learn-
ing, crucial for model evaluation and generalization assessment. The training set is utilized
to teach the model by exposing it to patterns and relationships within the data, allowing it to
adjust its parameters accordingly. On the other hand, the test set remains unseen during the
model training phase, serving as an independent benchmark for evaluating the model’s perfor-
mance in unfamiliar instances. This practice aims to ensure that the model can generalize well
to new, real-world data, preventing overfitting where the model may memorize peculiarities of
the training data rather than learning underlying patterns. By systematically dividing the data
in this manner, researchers can confidently assess the model’s predictive capabilities and make
informed decisions about its implementation in diverse scenarios.

52

Next, the random forest classifier was initialized and trained on the training set. Predictions
were generated for both the training and testing sets, and accuracy metrics were computed to
evaluate the model’s performance. Additionally, a detailed classification report, providing pre-
cision, recall, and F1-score for each class, was printed for the test set. The feature importances
determined by the Random Forest model were revealed to have an idea of the feature impor-
tances individually. Also, ROC curves were drawn and the areas under these curves were cal-
culated (AUC). The following paragraphs explain the performance metrics used in this study,
as they are repeatedly mentioned, offering crucial insights into how the model was assessed:

• Accuracy: Accuracy is a measure of howmany predictions the model gets correct out of
the total predictions. It is calculated as the ratio of correctly predicted instances to the
total instances. While it provides an overall sense of model performance, it might not be
suitable for imbalanced datasets where one class dominates.

• Precision: Precision is the proportion of true positive predictions out of the instances
predicted as positive. It focuses on the accuracy of positive predictions and is calculated
as the ratio of true positives to the sum of true positives and false positives. High preci-
sion indicates a low false positive rate.

• Recall (Sensitivity or True Positive Rate): Recall measures the ability of the model to
capture all positive instances. It is calculated as the ratio of true positives to the sum of
true positives and false negatives. A high recall value indicates that the model effectively
identifies most of the actual positive instances.

• F1Score: TheF1 score is theharmonicmeanofprecision and recall. It provides a balance
between precision and recall, particularly useful when there is an uneven class distribu-
tion.

• ROCAUC(ReceiverOperatingCharacteristicAreaUnder theCurve): ROCAUC is a
metric used to evaluate the performance of binary classificationmodels. TheROCcurve
is a graphical representation of the trade-off between the true positive rate (sensitivity)
and the false positive rate. TheAUCrepresents the area under this curve. AhigherAUC
value indicates a bettermodel for distinguishing between positive and negative instances.

The model reached an accuracy value of 97.32%, however, despite this high accuracy value,
precision, recall, and F1-scores needed attention, particularly for the minority classes, since the
dataset was highly unbalanced. For CF, the model achieved a precision of 88%, indicating that
when it predicts CF, it is correct 88% of the time. Similarly, forDC class, the precisionwas 85%,
indicating a high precision. However, for LP, the precision was way lower at 33%, suggesting
that the model is less accurate when predicting LP class.

53

The recall for the None class was unrealistically high at 100%, indicating that the model
effectively identified instances of this class. However, for CF, DC, and LP, the recall values
were way lower, 7% for LP, suggesting that the model was weak for predicting instances from
these classes. Also, F1-scores of theminority classes were notably low, compared to exceptional
accuracy value, with an instance of 11% for LP, indicating challenges in achieving a balance
between precision and recall for these classes. This overfitting was expected since the nature
of the data was known. Having a highly unbalanced dataset, supported by the outcome of the
initialmodelwith lowF1 scores pointed out the need for improvement of the results by refining
the predictions. In addition to improving scores, since a very high accuracy value indicated
overfitting, it was necessary to find a balance among the scores, to better generalize the model
for different scenarios. For this reason, for future experiments, the F1-score and accuracy values
were focused on for improvement.

Classification Report Precision Recall F1-Score Support
CF 0.88 0.41 0.56 17
DC 0.85 0.58 0.69 19
LP 0.33 0.07 0.11 15
None 0.98 1.00 0.99 1254
Macro Avg 0.76 0.51 0.59 1305
Weighted Avg 0.97 0.97 0.97 1305
Overall Accuracy 0.97

Table 6.1: Classification Report for Basic Random Forest

Grid SearchHyperparameter Tuning

After trying a basic model, a Grid Search approach was followed to adjust the hyperparame-
ters of the Random Forest model to find the best parameters for optimizing the model. Grid
Search is a systematic hyperparameter optimization technique widely employed in machine
learning to tune the performance of models. It involves creating a predefined grid of hyper-
parameter values, where each combination represents a unique configuration for the model.
The grid search algorithm then systematically evaluates the model’s performance using cross-
validation for each hyperparameter combination, enabling the identification of the set of values
that yield the optimal performance. By exhaustively searching the hyperparameter space, grid
search helps discover the optimal configuration for a given machine learning algorithm, en-
suring that the model is tuned to achieve the best possible results. Despite its computational

54

cost due to the exploration of multiple combinations, grid search provides a transparent and
methodical approach for selecting hyperparameters, contributing to the reproducibility and ro-
bustness of the model. For the parameters n_estimators, max_depth, min_samples_split, and
min_samples_leaf, a grid of values was defined and the model was run with all possible com-
binations. random_state parameter remained the same for comparability since it influences
the randomness and reproducibility of the model. By keeping the random_state constant, it
was ensured that the random processes within the model were consistent across multiple runs.
This was important for comparability, as it allowed to make a fair comparison between differ-
ent models or experimental conditions. Without fixing the random_state, variations in the
random processes could lead to differences in results, making it challenging to interpret the
results or adjust the parameters.
The parameter grid used to configure the model is given below:

• n_estimators: [10, 25, 50, 100],

• max_depth: [10, 15, 20, 25, 30, 35, 40, 45, 50],

• min_samples_split: [2, 5, 10],

• min_samples_leaf: [1, 2, 4],

• max_features: [’auto’, ’sqrt’, ’log2’]

After running themodel with all combinations, the grid search, the best combination of the
parameters was obtained as follows:

Best Parameters: {'max_depth': 30, 'max_features': 'auto',
'min_samples_leaf': 1, 'min_samples_split': 2, 'n_estimators': 10}

The resulting classification report when these parameters were used can be seen in Table 6.2.
Building upon the results of the Grid Search, the optimized Random Forest model, incorpo-
rating the identified optimal hyperparameters, was used for further experiments regardingRan-
dom Forests.
After theGrid Search, Itwas observed that the improvement in theprecision and recall scores

caused an increase of 4% in the F1 score, making the macro average 63%. The metrics of the
LP class were significantly increased while maintaining similar scores for other classes with a
precision of 40%, recall of 13%, and F1 score of 20%. The overall accuracy climbed up to 98%

55

which pointed out overfitting once again, meaning that there was a huge impact of the ’None’
class, which was highly unbalanced. In the following section, it was attempted to overcome
this issue with feature selection methods. As a result, the Grid Search approach did not only
help to increase the performance of the model but also provided the optimal hyperparameters
for the later experiments.

Classification Report Precision Recall F1-Score Support
CF 0.62 0.47 0.53 17
DC 0.88 0.74 0.80 19
LP 0.40 0.13 0.20 15
None 0.98 1.00 0.99 1254
Macro Avg 0.72 0.58 0.63 1305
Weighted Avg 0.97 0.98 0.97 1305
Overall Accuracy 0.98

Table 6.2: Classification Report for Random Forest After Grid Search

Feature SelectionMethods

Feature selection is a crucial step in the machine learning pipeline that involves choosing a
subset of relevant features or variables from the original set of features. The goal is to increase
model performance, reduce computational complexity, and improve interpretability by exclud-
ing irrelevant or redundant features. Feature selection is particularly beneficial when dealing
with high-dimensional data where not all features contribute equally to the predictive power
of the model, such as in the case of variant classification. High-dimensional data indicates that
overfitting and increased processing demands might result from the exponential expansion in
large feature spaces. Furthermore, performance considerations highlight the influence of irrele-
vant features, which can create noise or prevent themodel from identifying significant patterns.
The predicted accuracy of the model can be improved by carefully selecting only the most per-
tinent features.
Since there were 170 columns of data in the dataframe, a selection process was needed to

achieve higher performance. Some statistical and built-in methods were integrated with Ran-
dom Forest and later machine learning models to identify and retain the most informative at-
tributes from the dataset. The methods are described as follows:

56

1. SelectKBest with ANOVA F-statistic:

• The ANOVA F-statistic, accessible through the f_classif scoring function, is an
essential toolwhendealingwith classification tasks. It evaluateswhether themeans
of different groups in our data are significantly different. In the case of feature
selection, f_classif computes an F-statistic for each feature, assessing howmuch its
mean varies across different classes. A higher F-statistic indicates that the feature
is more discriminative and is thus prioritized in the feature selection process.

• The SelectKBest method focuses on retaining the top k features based on their
scores. In conjunctionwith theANOVAF-statistic (‘f_classif‘), this approach eval-
uates the significance of differences in means among different classes for each fea-
ture. By selecting the most discriminative features through their F-statistic scores,
the most relevant attributes are aimed to be retrieved. The choice of k enables to
adjustment of the dataset dimension manually.

2. SelectKBest with Mutual Information:

• Mutual information is a powerfulmetric for capturingboth linear andnon-linear
relationships between variables. When coupled with the SelectKBest method, it
identifies the top k features based on their mutual information scores with the
target variable. This approach is particularly beneficial when dealingwith complex
and non-linear dependencies, providing a perspective on feature relevance. The
selection of the optimal k allows us to strike a balance between informativeness
and model complexity.

3. Random Forest Feature Importances:

• rf_classifier.feature_importances_ is an attribute provided by scikit-learn’sRan-
domForestClassifier class. It represents the feature importances assigned to each
feature in the dataset after the model during the training phase. The Random
Forest algorithm, composed of an ensemble of decision trees, assesses the contri-
bution of each feature by evaluatingmetrics such as Gini impurity or information
gain in each decision tree. The resulting feature importances are then aggregated
and normalized for meaningful comparison, revealing the varying degrees of influ-
ence each feature holds. This information enables prioritizing themost influential
features of the Random Forest model.

57

These methods were employed and the Random Forest model was run with the same opti-
mal parameters for each method. For SelectKBest method with f_classif, the threshold was set
to 65 features due to its performance, after many trials. 110 features also yielded similar results,
however, the focus was reducing the number of features with a tolerable sacrifice on accuracy.
With the most important 65 features selected by this method, the same accuracy and F1 score
average were obtained despite the different precision and recall values. The predictions were
more accurate on the LP class but less accuracy was obtained for the other classes. Although
this method did not improve the results, it gave an idea of the feature importances.
Themutual informationmethod, on theotherhand, produced a similar result to the f_classif

method, but with increasing accuracy and F1 score. 60 features were chosen after many tri-
als and the model was trained. An accuracy level of 98% and an F1 score of 66% was reached.
This indicated that themutual informationmethodwas better for selecting important features,
however, it was more tended to cause overfitting by being affected by the dominant class.
The random forest feature importance method gave the best result in terms of F1 score but

had the lowest accuracy. Only the top 80 important features were selected andwhen themodel
was run, more balanced predictions were made. This method caused a decrease in the scores of
the ’None’ class while increasing the other class metrics. Overall accuracy was 76%, which was
a sign of avoiding overfitting, and 69% of the F1 scorewas obtained, indicating amore balanced
prediction among the classes.

Undersampling

Imbalanced data refers to a situation in a dataset where the distribution of classes is not approx-
imately equal when some classes significantly outnumber the others. In this case, the dataset
with genetic variants had a very limited number of causative variants or contributing factors,
allowing the dominance of the ’None’ class.
Imbalanced datasets pose significant challenges to machine learning models, such as biased

model training, poor generalization, and potentially misleading evaluation metrics. When
models are trained on such datasets, they may exhibit bias towards the majority class, dimin-
ishing their ability to effectively predict instances from the minority class. Additionally, the
consequences extend topoor generalization,wheremodels struggle toperformwell onnewand
unseen data, particularly for the underrepresented minority class. Traditional evaluation met-
rics like accuracy becomemisleading in such scenarios, as amodel could achieve a high accuracy
score by simply favoring the majority class while failing to adequately identify instances from
the minority class. As a solution, employing alternative metrics and data balancing techniques

58

becomes crucial for ensuring fair and effective model assessment on imbalanced datasets.
Undersampling is a technique used to address the issue of imbalanced datasets. It involves

reducing the number of instances in the over-represented class to make the class distribution
more balanced. This is typically done by randomly removing instances from the majority class
until the class distribution is more equal. While undersampling can help balance the dataset, it
comes with the risk of losing valuable information from the majority class.
At this step, a random undersampling method was integrated into the model with the se-

lected features by different methods. SelectKBest, mutual information, and random forest
feature importance methods were employed for the experiment. Different random state pa-
rameters were used for choosing different samples to perform cross-validation to find the most
representative random sample for the majority class: ’None’. Also, the number of samples
drawn from the majority class was experimented by gradually increasing to see the effect of
the imbalance. The experiment with the best result was the random forest feature importance
method, selecting the top 100 features, a random forest with 13 estimators, and 50max_depth
value. There were 200 samples drawn from themajority class, and the rest of the random forest
parameters were the same. The accuracy was increased to 84% and the F1 score had an average
value of 80%, the best of all experimentswith the random forest. This improvementwas a result
of creating a more balanced prediction, diminishing the dominance of the majority class. The
predictions of the other classes had higher precision and recall scores, notably the ’LP’ class,
with a precision of 73%. The classification report is seen in Table 6.3.

Classification Report Precision Recall F1-Score Support
CF 0.70 0.95 0.81 20
DC 0.93 0.82 0.87 17
LP 0.73 0.50 0.59 16
None 0.92 0.92 0.92 39
Macro Avg 0.82 0.80 0.80 92
Weighted Avg 0.84 0.84 0.83 92
Overall Accuracy 0.84

Table 6.3: Classification Report for Random Forest with Selected Features and Undersampling

This approach yielded better results and overcame overfitting. The ROC graph can be seen
in Figure 6.1. However, itmust be noted thatwhile preventingmodel bias towards themajority
class, undersampling comeswithdrawbacks. Themajor concern is the potential loss of valuable
information from the majority class, impacting the model’s ability to generalize effectively. In
real-world scenarios of genetic variants, the causative diseases are very rare, both among the

59

Figure 6.1: ROC Curves and AUC Values of the Final Random Forest Model

variants of an individual and among the population. Therefore the undersampled data does
not point out a realistic representation. Additionally, the reduction in dataset size may lead to
decreaseddiversity and increased susceptibility tonoise andoutliers, compromising themodel’s
robustness.

6.1.2 Logistic Regression

Logistic Regression is a widely employed statistical method and a fundamental tool inmachine
learning for binary and multiclass classification tasks. Despite its name, logistic regression is
used for classification, not regression. It is designed to predict the probability that an instance
belongs to a particular category. The core idea is modeling the relationship between the input
features and the outcome using the logistic function, also known as the sigmoid function. The
logistic function transforms a linear combination of input features into a range between 0 and
1, producing a probability value. Mathematically, it is expressed as:

P (Y = 1) =
1

1 + e−(b0+b1X1+...+bnXn)

60

where P (Y = 1) is the probability of the positive class, e is the base of the natural logarithm,
and b0, b1, . . . , bn are the coefficients learned during the training phase.

Training a Logistic Regression model involves finding the optimal values for these coeffi-
cients. This is typically done using optimization algorithms like gradient descent, which itera-
tively adjusts the coefficients to maximize the likelihood of observing the actual class labels in
the training data. Regularization techniques may also be applied to prevent overfitting. Once
trained, the model can make predictions on new data by estimating the probability of belong-
ing to the positive class.
The interpretability of Logistic Regression is one of its strengths. The coefficients associ-

ated with each feature provide insights into the impact of those features on the classification
outcome. In the context of variant classification for genetic data, Logistic Regression offers a
transparent and interpretable approach, making it an essential tool for understanding the in-
fluence of different genetic features on the likelihood of specific variant classes.

Basic Logistic Regression

InPython, the logistic regression classifier is available in variousmachine learning libraries, with
scikit-learn being one of the most popular ones. In scikit-learn, the logistic regression classifier
is implemented as a class called LogisticRegressionwithin the linear_modelmodule. Similar to
the Random Forest classifier, this class has default parameters initially defined to train models
to facilitate the training process, which can be adjusted to handle different scenarios. Firstly,
the model was run with the following default hyperparameters:

LogisticRegression(penalty=’l2’, C=1.0, solver=’lbfgs’, max_iter=100)[source]

Here are the explanations of these values and their effect on the model:

• penalty: Specifies the norm of the penalty (regularization). L1 and L2 stand for regres-
sion penalty terms, if this parameter is None, no term will be added.

• C: Inverse of regularization strength. Like in support vector machines, smaller values
specify stronger regularization.

• solver: Algorithm to use in the optimization problem.

• max_iter: Maximum number of iterations taken for the solvers to converge.

61

Here, there is a need to explain regularization, to understand the effects on logistic regression
and further utilized methods in this study. Regularization is a technique used in machine
learning to prevent overfitting and improve the generalization performance of models. It in-
volves adding a penalty term to the cost function, which discourages the model from learning
overly complex patterns that may not generalize well to new, unseen data.
In logistic regression, two common types of regularization are L1 regularization (Lasso) and

L2 regularization (Ridge).

1. L1 Regularization (Lasso):
L1 regularization adds the sum of the absolute values of the coefficients to the cost func-
tion. It is expressed as the following penalty term: λ

∑
n

i=1 |wi|, where wi are the co-
efficients, and λ is the regularization strength. L1 regularization tends to yield sparse
weight vectors. It encourages some of the coefficients to become exactly zero, effectively
performing feature selection. This property makes L1 regularization useful when deal-
ing with datasets with a large number of features, as it can automatically select a subset
of the most important features.

2. L2 Regularization (Ridge):
L2 regularization adds the sum of the squared values of the coefficients to the cost func-
tion. It is expressed as the following penalty term: λ

∑
n

i=1 w
2
i
, where wi are the coef-

ficients, and λ is the regularization strength. L2 regularization penalizes large weights
but doesn’t force them to be exactly zero. It tends to distribute the penalty across all
features, leading to a more even reduction of the impact of less influential features. L2
regularization is effective when all features are potentially relevant to the prediction task.

The regularization strength (λ) is a hyperparameter that controls the amount of regulariza-
tion applied. A higher λ increases the regularization strength, which, in turn, tends to result in
simpler models with smaller coefficients.
In the context of logistic regression, applying L1 or L2 regularization helps prevent overfit-

ting, control the model complexity, and improve its generalization to new data. Scikit-learn’s
logistic regression implementation allows you to set the regularization type and strength using
the ’penalty’ and ’C’ parameters, as explained above.
The Logistic Regression model was given the dataframe and was run with the default hy-

perparameter values. Similarly, the dataset was separated into training and validation sets, allo-
cating 20% for testing. Predictions were generated for both the training and testing sets, and
accuracymetrics were computed to evaluate the model’s performance. Additionally, a detailed
classification report was printed for the test set. Throughout the experiments, ROC curves
and AUC values were used for evaluation as well.

62

The model reached an accuracy value of 97.01%, and an F1 score of 59%. The result was
very similar to the initial random forest model, with slightly better results on the LP class preci-
sion and recall. Yet, the model needed to be properly reconstructed to prevent overfitting and
the impact of the majority class. The majority class had 99% recall and F1 score values. The
classification report of the first model is given in Table 6.4.

Classification Report Precision Recall F1-Score Support
CF 0.64 0.53 0.58 17
DC 0.62 0.53 0.57 19
LP 0.67 0.13 0.22 15
None 0.98 0.99 0.99 1254
Macro Avg 0.73 0.55 0.59 1305
Weighted Avg 0.97 0.97 0.97 1305
Overall Accuracy 0.97

Table 6.4: Classification Report for Basic Logistic Regression

Grid SearchHyperparameter Tuning

A Grid Search approach was followed to find the optimum hyperparameters of the basic Lo-
gistic Regression model. Among the parameters described for the model, the following grid of
values was introduced:

• penalty: [’l1’, ’l2’],

• C: [0.1, 0.7, 1, 5, 10],

• solver: [’liblinear’, ’newton-cg’, ’lbfgs’, ’sag’, ’saga’],

• max_iter: [100, 200, 300]

The model was run with all possible combinations, similarly, the random_state parameter
remained the same for comparability since it influences the randomness and reproducibility.
After running themodel with all combinations, the best combination of the parameters was

obtained as follows:

Best Parameters: {'C': 0.7, 'penalty': 'l1', 'max_iter': 100, 'solver':
'saga'}

63

The resulting classification report when these parameters were used can be seen in Table 6.5.
Building upon the results of the Grid Search, identified optimal hyperparameters were used
for further experiments with Logistic Regression.
The optimum input values resulted in a 2% increase in the average F1 score and improved

the precision and recall scores of the minority classes. However, this result was still an exam-
ple of overfitting, considering the unrealistic accuracy value of 97% and the ’None’ class scores.
This Grid Search pointed out that the hyperparameter adjustment did not cause adequate im-
provement and the model needed further refinements.

Classification Report Precision Recall F1-Score Support
CF 0.80 0.47 0.59 17
DC 0.82 0.47 0.60 19
LP 0.67 0.13 0.22 15
None 0.98 1.00 0.99 1254
Macro Avg 0.82 0.52 0.60 1305
Weighted Avg 0.97 0.97 0.97 1305
Overall Accuracy 0.97

Table 6.5: Classification Report for Logistic Regression After Grid Search

Feature SelectionMethods

For the LogisticRegressionmodel, with the optimumhyperparameters obtainedwith theGrid
Search, some feature selectionmethodswere employed to eliminate the redundant columns for
abetter analysis of the variants. SelectKBest, SelectPercentile andMutual informationmethods
were used to evaluate the feature importance.

SelectPercentile is a feature selection method, a class within the sklearn.feature_selection
module of scikit-learn library. This method is used to select the top features based on univari-
ate statistical tests. SelectPercentile is a class that takes a scoring function as an argument and
selects a specified percentage of features based on their scores. The scoring function assesses
the statistical significance of each feature independently. In this study, the F-statistic was used
to assess the significance, as in SelectKBest method. The top percentage of features was deter-
mined by the percentile parameter, that was selected. Some experiments were made with the
percentile value in order to perform an effective selection process.
The results were not satisfactory in terms of accuracy, F1 score, and preventing overfitting

when these methods were used for the model. SelectPercentile method yielded the same F1

64

score and accuracy score by using 30% of the features (51). This, of course, gave an idea of the
feature significance. The results were not notably different when the other selection methods
were used, SelectKBest method produced an F1 score of 61%, and an accuracy of 98%, by se-
lecting 125 features. Andmutual informationmethod had the lower F1 scoremacro average of
56% by choosing 100 features. One common aspect of the threemethods was that the scores of
the ’LP’ class dropped as more features were eliminated. Therefore it could be concluded that
the ’LP’ class was themost sensitive and harder to predict because of the nature of the problem
and the smaller amount of examples.

Undersampling

Experiments with undersamplingwere conducted, together with the selected features by differ-
ent methods to achieve a better generalization and a high F1 score. Different amounts of ran-
dom samples were selected gradually at every trial with the same and different random states,
performing a cross-validation, to choose themost representative subset of the ’None’ class (ma-
jority class). During the experiments, the amount of the selected features was also adjusted by
monitoring outcomes at every trial. This approach helped to obtain more tailored and target-
oriented results and in fact, allowed the discovery of the best Logistic Regressionmodel for the
problem.
The integrationof feature selectionmethods andundersampling outperformed theprevious

Logistic Regressionmodels and yielded the best results in terms of generalization, better scores,
and preventing overfitting. With a random sample of 400 examples of the ’None’ class, Selec-
tKBest method provided an F1 score of 81% and 81% of overall accuracy. SelectPercentile and
Mutual information methods followed this with 88% and 86% of accuracy, respectively. Selec-
tKBest method was the best with the other performance metrics as well, besides F1 score and
accuracy. A detailed classification report can be seen in Table 6.6. In addition, ROC Curves
and AUC values of this model were shared in Figure 6.2.

6.1.3 Support VectorMachines

SVM constitutes a sophisticatedmachine learning algorithmwith versatile applications, also in
bioinformatics and research studies. The fundamental principle of SVM is the identification of
an optimal hyperplane within the feature space that effectively separates different classes. This
hyperplane is strategically positioned to maximize the distance between instances of different
classes. The data points contributing to the definition of this hyperplane are known as support

65

Classification Report Precision Recall F1-Score Support
CF 0.72 0.90 0.80 20
DC 0.91 0.71 0.80 14
LP 0.73 0.67 0.70 12
None 0.96 0.95 0.96 86
Macro Avg 0.83 0.81 0.81 132
Weighted Avg 0.90 0.89 0.89 132
Overall Accuracy 0.89

Table 6.6: Classification Report for Logistic Regression with Selected Features and Undersampling

Figure 6.2: ROC Curves and AUC Values of the Final Logistic Regression Model

vectors. SVM aims to find the hyperplane that not only classifies the data accurately but also
maximizes the margin, providing robust generalization to unseen instances. To achieve this,
SVM employs a mathematical optimization approach that considers the support vectors and
their associated weights. The algorithm seeks to find the weights that minimize the classifica-
tion error while simultaneously maximizing the margin.

One of the reasons for employing SVMis its ability to handle non-linear relationshipswithin
the data. This is accomplished through the use of kernel functions, which transform the origi-
nal feature space into a higher-dimensional space, allowing SVM to find linear decision bound-
aries in the transformed space. SVM is particularly adept at handling high-dimensional data,

66

suited for variant classification scenarios where genetic features may be numerous and diverse.
In variant classification tasks, SVM’s emphasis on maximizing the margin ensures a general-

izedmodel, even in the presence of noisy or overlapping data. Given that the dataset hadmany
unknown values and noise, SVMwas expected to have a reasonable performance.

Basic SVM

An SVM model was run with default parameters by using the SVC (Support Vector Classifi-
cation) class, which resides in the SVM module of the scikit-learn library in Python 3. This
class has default parameters initially defined to train models to facilitate the training process,
which can be adjusted to handle different scenarios. The default hyperparameters on which
the model was run are as follows:

svm.SVC(C=1.0, kernel=’rbf’, degree=3, gamma=’scale’)[source]

The explanations of these values and their effects on the model are given below:

• C: Regularization parameter. The strength of the regularization is inversely propor-
tional to C. The penalty is a squared l2 penalty.

• kernel: Specifies the kernel function to transform the input data. Some functions can
handle linearly separable data, while others handle non-linear data.

• degree: Degree of the polynomial kernel function. Higher degrees can capture more
complex relationships but may lead to overfitting.

• gamma: Kernel function coefficient, influences the shape of the decision boundary. A
smaller gamma value results in a more generalized decision boundary, while a larger
gamma can lead to a more complex decision boundary.

The dataframewas given as input to the SVMmodelwith the default hyperparameter values,
after being separated into training and validation sets in the same way as the other models. Pre-
dictions were generated for both the training and testing sets, and performancemetrics such as
accuracy, precision, recall, and F1 score were computed to evaluate the performance. Detailed
classification reports were visualized at the end of each experiment. ROC curves and AUC
values were calculated for evaluation as well.
The basic model reached an accuracy value of 96%, and an F1 score of 37%. The result

was not satisfactory since themodel exhibited deficiencies in accurately distinguishing between

67

classes. The accuracy metrics showed a notable discrepancy, with a high overall accuracy mask-
ing the model’s struggle to correctly identify instances from the minority class. This contra-
diction pointed out the model’s inability to generalize to new, unseen data and also issues
with overfitting or underfitting. The misclassification of instances, especially in the ’LP’ class,
pointed to a lack of sensitivity to important patterns. The majority class, on the other hand,
had an unrealistic recall value of 100%. The resulting classification report is given in Table 6.7.

Classification Report Precision Recall F1-Score Support
CF 1.00 0.18 0.30 17
DC 0.67 0.11 0.18 19
LP 0.00 0.00 0.00 15
None 0.96 1.00 0.98 1254
Macro Avg 0.66 0.32 0.37 1305
Weighted Avg 0.95 0.96 0.95 1305
Overall Accuracy 0.96

Table 6.7: Classification Report for Basic SVM

Grid SearchHyperparameter Tuning

AGrid Search approachwas followed tofind the optimumhyperparameters of the SVMmodel.
Among the parameters described for the model, the following grid of values was introduced:

• C: [0.1, 0.25, 0.5, 0.75, 1, 2, 3],

• kernel: [’linear’, ’rbf’, ’poly’],

• degree: [2, 3, 4, 5],

• gamma: [’scale’, ’auto’]

The model was run with all possible combinations by using the same random_state param-
eter for comparability and reproducibility purposes. After running the model with all combi-
nations, the optimal combination of the parameters was obtained as follows:

Best Parameters: {'C': 2, 'kernel': 'poly', 'degree': 4,'gamma': 'scale'}

The resulting classification report when these parameters were used can be seen in Table 6.8.

68

Identified optimal hyperparameters with this Grid Search were used for further experiments
regarding SVMs.
The optimal hyperparameters resulted in a significant improvement in the model’s metrics,

compared to the initial state of the default setting. The accuracy was 97% and the F1 score
had an average of 63%, including other metric improvements of minority classes. Despite the
obvious overfitting issue and the strong impact of the majority class, this experiment helped
to show that SVM is significantly influenced by hyperparameter adjustments, emphasizing the
impacts of these parameter choices on the performance and behavior of the model.

Classification Report Precision Recall F1-Score Support
CF 0.50 0.59 0.54 17
DC 0.80 0.42 0.55 19
LP 0.62 0.33 0.43 15
None 0.98 0.99 0.99 1254
Macro Avg 0.73 0.58 0.63 1305
Weighted Avg 0.97 0.97 0.97 1305
Overall Accuracy 0.97

Table 6.8: Classification Report for SVM After Grid Search

Feature SelectionMethods

For the SVM model with the optimum hyperparameters, SelectKBest, SelectPercentile, and
Mutual informationmethods were used to select the most relative features, also, PCAmethod
was used for dimensionality reduction to investigate the effects of the dimensionality on SVM.

Principal Component Analysis (PCA) is a powerful dimensionality reduction technique
employed to extract essential information from high-dimensional datasets while minimizing
information loss. The process begins with the standardization of features to ensure a uniform
distribution in scale. PCA then computes the covariance matrix, revealing how features co-
vary. By finding the eigenvectors and eigenvalues of this matrix, PCA identifies the principal
components—the directions capturing themaximum variance in the data. These components
are ordered based on their associated eigenvalues, with higher eigenvalues signifying greater
variance. Through projection, PCA transforms the original data into a lower-dimensional sub-
space defined by the selected principal components. This reduction in dimensionality facili-
tates a more precise representation of the dataset while retaining the most significant sources
of variation. Practical applications of PCA include noise reduction, visualization, feature selec-

69

tion, identifying dominant patterns, and improving the efficiency of machine learning models
in various fields, including genetics and machine learning.
At the end of the experiments with different numbers of selected features using different meth-
ods, the feature selectionmethods were not effective in terms of improving the results of classi-
fication. SelectKBestmethodwas used for selecting 85 features, which led to the same accuracy
and F1 score level without the feature selection. It was observed that with the SVMmodel, se-
lected features differed from those selected with Logistic Regression and Random Forest mod-
els, meaning that the model considers prediction score values more than the other twomodels.
SelectPercentile method produced its best result with a percentile value of 95, having an aver-
age F1 score of 63%, and 96% of accuracy. Mutual information, on the other hand, achieved
the best results with 100 features, having a 67% F1 score and 97% accuracy. PCA method,
however, did not exhibit an efficient integration with the SVMmodel, since the performance
metrics were affected badly. Different number of components were used, and in the best sce-
nario, the F1 score and precision values were dropped and overfitting was still present. This
suggested that the original features in their raw form provide more discriminative information
for the task at hand compared to the reduced set of principal components. The original fea-
tures contain relevant and informative patterns that directly contribute to the SVM’s ability to
distinguish between different classes. Moreover, Training the SVMwithout PCA was compu-
tationally more efficient, as the PCA process took significantly more time. Thus, PCA gave an
idea about dimensionality and was later used for the unsupervised learning algorithms.

Undersampling

A similar random undersampling method was used with cross-validation to find the most rep-
resentative subset of the majority class. Different amounts of samples were drawn from the
dataset and the SVMmodelswith the best hyperparameters and feature selectionmethodswere
integrated.

The SVM model with a subset of the ’None’ class which had 400 examples and with the
sameminority classes had the best performance, over the other amounts thatwere tried. The 85
features chosen with the SelectKBest method achieved the highest F1 score, 72%, and avoided
overfitting by having a more balanced prediction among the classes. The overall accuracy was
84%, and the best-predicted class was ’None’ as it was for the othermethods. The classification
report is given in Table 6.9 and the ROC curves can be seen in Figure 6.3.

70

Classification Report Precision Recall F1-Score Support
CF 0.75 0.90 0.82 20
DC 1.00 0.43 0.60 14
LP 0.60 0.50 0.55 12
None 0.87 0.93 0.90 86
Macro Avg 0.80 0.69 0.72 132
Weighted Avg 0.84 0.83 0.82 132
Overall Accuracy 0.84

Table 6.9: Classification Report for SVM with Selected Features and Undersampling

Figure 6.3: ROC Curves and AUC Values of the Final SVM Model

6.1.4 Neural Network

Neural Network (NN) is a computational model inspired by the structure and function of
the human brain. It is a powerful and versatile machine learning technique used for various
tasks, including classification, regression, and pattern recognition. The basic building block
of a neural network is the artificial neuron, perceptron. Neurons are organized into layers,
including an input layer, one or more hidden layers, and an output layer. Each connection
between neurons has an associated weight, representing the strength of the connection. The
weighted sum of its inputs determines the output of a neuron passed through an activation
function. The training process of a neural network involves adjusting the weights to minimize

71

the difference between the predicted output and the actual target values. This is typically done
using optimization algorithms like gradient descent. During training, the network learns to
recognize and capture the underlying patterns in the input data, allowing it to make accurate
predictions on new, unseen data.
Deep neural networks, or deep learning models, are characterized by the presence of multi-

ple hidden layers. These deep architectures enable the network to automatically learn hierar-
chical representations of features, making them highly effective. Neural networks have shown
success in various domains of biology, including genomic sequence analysis, protein structure
prediction, disease diagnosis and prediction, and biological image analysis. Their ability to au-
tomatically learn complex features fromdata has contributed to their widespread adoption and
continues to drive advancements in artificial intelligence and machine learning.

Model Building and Customization

In this phase, different neural networks with different architectures were constructed to find
the most suitable attributes and hyperparameters. Experiments were conducted to see the ef-
fects of layers, number of nodes, activation functions, epoch numbers and batch sizes tomodel
accuracy and other performance metrics. The target variable was initially encoded using Labe-
lEncoder, followed by one-hot encoding to prepare it for multiclass classification. Then the
data was split into training and testing sets, as in the previous procedures. The network natu-
rally included an input layer of 170 neurons as the number of features and an output layer of
4 neurons, given that the number of output neurons is the number of classes. Of course, the
number of neurons in the input layer changed as different feature selectionmethods were used
to drop some features for later experiments. A single hidden layer was employed with vary-
ing neuron counts to capture the relationships within the dataset. The evaluation of results
involved considering previously used performance metrics, in addition to test loss and test ac-
curacy. Additionally, graphical representations illustrating the evolution of loss and accuracy
over epochs were generated to understand the model’s behavior.
In a neural network model, the test loss is a metric that measures how well the model per-

forms on the test set. It quantifies the difference between the predicted values and the actual tar-
get values. Lower test loss values indicate better performance, as they suggest that the model’s
predictions are closer to the true values. On the other hand, test accuracy represents the pro-
portion of correctly classified instances in the test set, as used before.
In the conducted experiments, the neural networkwith one hidden layer encountered limita-

tions in effectively capturing the underlying patterns. The model’s performance was observed

72

to need improvements. An accuracy value of 95% was reached, however F1 score and other
metrics were below 50%, pointing out the inconsistent prediction and the dominance of the
majority class. To address this issue, the number of hidden layers was increased by introducing
additional hidden layers. Themodel’s capacity to comprehend and represent complex relation-
ships within the dataset was augmented.
After different experiments, the final neural network architecture comprised an input layer,

two hidden layers with 64 and 12 neurons, and an output layer with 4 neurons representing
different classes. The ReLU activation function was applied to the hidden layers, while the
output layer used softmax. Themodel was compiled with the Adam optimizer and categorical
cross-entropy loss, and training was performed on the training set. Evaluation of the test set
yielded metrics such as loss and accuracy. After the generation of predictions, a classification
report and a confusionmatrix provided detailed insights into themodel’s performance for each
class, together with visualization. The resulting classification report can be seen in Table 6.10.
The model had an accuracy score of 97.08% and a test loss of 10.58%. Overfitting seemed a
present issue due to unrealistic predictions of the ’None’ class, but an average F1 score of 64%
and better precision and recall metrics outperformed the former initial methods.

Classification Report Precision Recall F1-Score Support
CF 0.65 0.69 0.63 17
DC 0.58 0.58 0.58 19
LP 0.44 0.27 0.33 15
None 0.98 0.99 0.99 1254
Macro Avg 0.66 0.62 0.64 1305
Weighted Avg 0.97 0.97 0.97 1305
Overall Accuracy 0.97

Table 6.10: Classification Report for Initial Neural Network

Feature SelectionMethods and Undersampling

Feature selection methods were employed to drop redundant features and increase the effi-
ciency of the model, together with random undersampling. In addressing class imbalance
within thedataset, a strategic undersampling approachwas implemented. Specifically, instances
from the ”None” class were resampled, with 400 instances selected based on experimentation.
The same amount of instances from other classes remained for a more balanced dataset. After
selecting the most representative subset, SelectKBest and mutual information methods were

73

integrated into NN after encoding the target variable and splitting the data into training and
testing sets with a ratio of 80% training and 20% testing.
Feature selection was applied using the SelectKBest method with the f_classif criterion, re-

taining the top 65 features. The neural network architecture was constructed with two hidden
layers. Since the number of selected features was 65, the input layer consisted of 65 nodes.
Then, hidden layers had 64 and 12 neurons respectively, using the ReLU activation function.
For the output layer, 4 nodes were used representing variant classes, and a softmax activation
function was introduced. Then, the neural network was trained using the selected features
from the training set. The model was compiled with the Adam optimizer and sparse categori-
cal cross-entropy loss function. The training process involved 25 epochswith a batch size of 32,
and the model’s performance was assessed on the test set. Predictions were generated for the
test set, and the results were summarized using a classification report and a confusion matrix.
The SelectKBest method achieved 86.36% overall accuracy and test loss was 39.77%. The aver-
age F1 score was 78%, which was better than the results obtained by the mutual information
method.
The mutual information method produced similar results to the SelectKBest method, with

better performance metrics than the initial model, however, it was significantly outperformed
by the SelectKBest method. The integrated model, when mutual information was used, had
82% accuracy. The F1 score was 64% and all the other performance scores were lower than the
ones with SelectKBest, minimum 4%.
In the end, the model with a subset of 400 examples from the majority class and employ-

ing 65 features selected through the SelectKBest method, demonstrated better performance
compared to other experimental setups. The classification report is given in Table 6.11 and the
confusion matrix can be seen in Figure 6.4. Also, ROC curves and AUC values for each class
are given in Figure 6.5.

Classification Report Precision Recall F1-Score Support
CF 0.72 0.90 0.80 20
DC 0.85 0.79 0.81 14
LP 0.67 0.50 0.57 12
None 0.93 0.92 0.92 86
Macro Avg 0.79 0.78 0.78 132
Weighted Avg 0.86 0.86 0.86 132
Overall Accuracy 0.86

Table 6.11: Classification Report for Improved Neural Network

74

Figure 6.4: Normalized Confusion Matrix For Improved Neural Network

Figure 6.5: ROC Curves and AUC Values of the Improved Neural Network Model

75

6.1.5 K-Means for Unsupervised Learning

In the course of the thesis research, after the implementation and evaluation of various super-
vised learning algorithms, the scope was extended to unsupervised learning methods. This de-
cision was motivated by the need to uncover underlying patterns, structures, or relationships
within the data that might not be evident through the labeled outcomes alone. Unsupervised
learning techniques, do not rely on predefined target labels during training. This allowed for a
more comprehensive analysis of the dataset, facilitating the identification of data characteristics
or clusters that may contribute valuable insights to the overall understanding of the problem.

Furthermore, the incorporation of unsupervised learning methods aimed to address the
practical aspects of variant classification in real-life scenarios. In genetic variant data obtained
frompatient examinations, where labels for harmful variantsmight not be readily available, the
ability to detect and characterize potential variants autonomously becomes crucial. By explor-
ing unsupervised learning methodologies, the research sought to simulate the real-life scenario
of variant analysis, where the absence of labeled data requires the algorithm to discern patterns
and make informed decisions based only on the genetic variant data at hand. This approach
aimed to simulate the challenges and complexities associated with variant classification in clini-
cal genetics, contributing to a more robust and applicable framework for real-world scenarios.

K-means is an unsupervised clustering algorithm designed to separate a dataset into distinct
groups, or clusters, based on patterns or similarities among data points. Themethod begins by
randomly selecting cluster centroids, representing the center of each cluster. Subsequently, it
assigns each data point to the cluster whose centroid is closest, usually determined by the Eu-
clidean distance. After this assignment, the algorithm recalculates the centroids by computing
the mean values of all points within each cluster. This process iterates until a convergence cri-
terion is met, commonly defined by minimal changes in centroid positions or the stabilization
of assignments. K-means aims to minimize the sum of squared distances between data points
and cluster centroids to form strict clusters. The chosen value ’K’ determines the number of
clusters. In the context of variant classification, K-means can be applied to genetic data, allow-
ing researchers to uncover patterns or groupingswithin the vast genomic landscape. It provides
insights into potential functional implications or shared characteristics among genetic variants.
In Python, the scikit-learn library’s ‘KMeans‘ class, residing in the ‘sklearn.cluster‘ module, is
used to implement the K-means algorithm.

Integrated with the K-means algorithm, PCA was applied to the feature set to address the
challenge of high dimensionality in genetic variant classification. The initial step involved the

76

extraction of features and the target column from the dataframe. To ensure uniformity in the
dataset, the features were scaled using the StandardScaler, thereby standardizing their values.
PCA transformed the scaled features into a new set of orthogonal variables (principal compo-
nents). The objective was to reduce computational complexity, and potentially improve the
performance of the K-means model.
A critical consideration in this process was determining the appropriate number of principal

components to retain. To find a balance between retainingmeaningful information and reduc-
ing dimensionality, a criterion of retaining 95% of the explained variance was integrated. This
percentage was chosen after conducting experiments with different values, aiming to preserve
a substantial portion of the original information while achieving a significant dimensionality
reduction.
The computed explained variance ratio for each principal component and the cumulative

explained variance were crucial outputs of the PCA. These metrics provided valuable insights
into the contribution of each principal component to the overall variance in the dataset. A
scree plot was used to visualize the cumulative explained variance, which is given in Figure 6.6.

Figure 6.6: Scree Plot for Cumulative Explained Variance During PCA Process

By examining the cumulative explained variance, it was possible to understand the cumu-
lative amount of information retained as the number of principal components increased. Ac-
cording to the graph, fewer components should have been used to have a more effective result.
Especially, the elbow point of the graph was considered where 25 components were present.
Finally, the transformed features resulting from PCA, represented as principal components,

77

were stored in a new dataframe. This enriched dataset, combining the reduced-dimensional
features and the target column, served as a foundation for the subsequent K-means algorithm
implementation. Initially, 4 clusters were introduced to the algorithm since there were 4 vari-
ant classes. The number of clusters (num_clusters) was a critical parameter in the KMeans
algorithm and different numbers of clusters were tried through experimentation later. The al-
gorithm assigned each variant to a specific cluster, creating a clustering structure that revealed
relationships among the variants.
Integration of the cluster labels into the PCA-transformed features DataFrame facilitated

the association of each genetic variant with its respective cluster. This linkage provided valu-
able information for downstream analysis, enabling the examination of distinct characteristics
associated with each identified cluster.
To depict the clustering results visually, two types of plots were generated. The first was a

2D scatter plot, depicting the samples in the plane defined by the first two principal compo-
nents. This plot allowed for a visual inspection of the separation between clusters, aiding in
the assessment of the algorithm’s efficacy. The second was a 3D scatter plot, providing a more
comprehensive visualization by incorporating the third principal component. The colorized
clusters in both plots enhanced interpretability, allowing for the identification of potential pat-
terns and relationships within the genetic variant dataset. The 3D plot is given in Figure 6.7
In conclusion, this unsupervised learning approach, employing PCA and KMeans cluster-

ing, provided insights into the genetic variant dataset. In the absence of traditional supervised
learning evaluation metrics such as accuracy or loss, the assessment of clustering results relies
on alternativemetrics used for unsupervised learning. Upon initial evaluation of the clustering
outcomes, it became evident that the desired objective of separating genetic variants into dis-
tinct clusters based on similarities in their features was not fully achieved. Instead, the cluster-
ing exhibited suboptimal performance, as evidenced by the presence of multiple variant types
within individual clusters. Despite this initial setback, the clustering results provide valuable
insights and serve as a foundational framework for future experiments to refine the clustering
approach. The table of the counts of variant classes within each cluster offers a summary of
the distribution of variant types across the identified clusters. While the clustering outcomes
may not meet the desired objectives in their current state, they represent a starting point for
the exploration of the relationships. This exploration enriches the overall understanding of
the genetic variant landscape, complementing the insights from supervised learning methods
in variant classification. A graph representing the results, showing the distribution of variant
types among the clusters can be seen in Figure 6.8.

78

Figure 6.7: 3D Scatter Plot of 4 Clusters With 3 Components

Figure 6.8: Distribution of Variant Types Among the Clusters

Table 6.12 has the counts providing the resulting distribution of genetic variant types across
the identified clusters. Cluster 0 exhibits a diverse composition of variant classes, with a rel-

79

atively higher representation of variants classified as ”None” compared to the other clusters,
suggesting a lack of clear separation between variant types within this cluster. On the contrary,
Cluster 1 demonstrates an imbalance in class representation, with a predominant presence of
variants classified as ”None,” indicating a potential classification within the cluster. Cluster 2
displays a more balanced distribution of variant classes, with lower overall counts compared to
Clusters 0 and 1. Cluster 3 exhibits a similar pattern toCluster 1, with a slightlymore balanced
distribution of variant classes. Overall, the results suggest the need for further refinement and
optimization of the clustering approach to achieve better separation of variant types within
distinct clusters.

Table 6.12: Clustering Results with 4 Clusters

Cluster CF DC LP None
0 82 32 55 397
1 3 14 3 2515
2 10 26 11 586
3 3 14 6 2766

K-Means with 2 Clusters

The K-means algorithm was initially applied with four clusters to classify variants; however,
suboptimal results were observed. As a response, a decision was made to explore an alterna-
tive approach by reducing the number of clusters to two. This adjustment aimed to classify
variants into two broad categories: None and Causal. The transition from four to two clus-
ters was motivated by the inadequacies observed in the four-cluster model, which inefficiently
represented the underlying data distribution. By simplifying the clustering process into two
distinct groups, a clearer separation among variants was sought to be achieved. This was an
experimental approach employed to explore the effects of different clustering configurations.
The experiment startedby transforming the variant classes into abinary classification scheme,

determining neutral and causal variants. According to this, the ’None’ class remained the same,
and other classes weremerged into one class named ’Causal’. This encoding strategy simplified
the subsequent analysis by categorizing variants into two broad groups based on their potential
impact. Following this, PCA was employed to reduce the dimensionality of the feature space
while preserving the variance information within the dataset. This time, 27 principal compo-
nents were used since it was discovered to be more efficient in terms of explained variance in
the previous model. The next step involved applying K-means clustering to the transformed

80

features. This clustering algorithm separated the variants into two distinct clusters based on
their shared characteristics. Visualization of the clustering results in both two-dimensional and
three-dimensional PCA spaces provided a comprehensive understanding of the spatial distribu-
tion of variant clusters and highlighted any patterns or separations. The 3D plot of the clusters
is given in Figure 6.9. After computing the cluster and class counts, the results were used to

Figure 6.9: 3D Scatter Plot of 2 Clusters With 3 Components

create a table, which is given in Table 6.13. Following this, a stacked bar chart is generated to
visually depict the distribution of classes across clusters, which can be seen in Figure 6.10. Over-
all, this visualization offers valuable insights into the clustering results and the distribution of
variant classes within the identified clusters.

Table 6.13: Clustering Result With 2 Clusters

Cluster Class 0 Class 1
0 882 213
1 5382 46

The comparison between the clustering results obtained with two clusters and four clusters
revealed patterns in the distribution of variant classes within the identified clusters. In the case
of the 2-cluster solution, the count of samples from each class was aggregated into two clus-

81

Figure 6.10: Distribution of Variant Types Among 2 Clusters

ters, denoted as ’0’ and ’1.’ Cluster ’0’ primarily comprised instances categorized as ’None,’
with a substantial count of 882 and the vast majority of the ’Causal’ variants, while Cluster ’1’
contained a dominant representation of the ’None’ class, totaling 5382 samples. This simpli-
fied separation captured a broader differentiation among variants, despite some overlap within
each cluster. Conversely, the 4-cluster solution outlined a more detailed separation of variant
classes across distinct clusters. Cluster ’0’ had a heterogeneous distribution, including amix of
variants from different classes, including ’CF,’ ’DC,’ ’LP,’ and ’None.’ Clusters ’1,’ ’2,’ and ’3,’
on the other hand, demonstrated more focused allocations, each dominantly containing sam-
ples from specific classes. For instance, cluster ’1’ mostly comprised variants labeled as ’None,’
while cluster ’2’ mostly contained variants classified as ’CF.’ Cluster ’3’ had a balanced distribu-
tion across multiple classes, reflecting a diverse composition of variant types. Overall, this com-
parison emphasizes the trade-off between simplicity and detailedness in clustering solutions,
with the choice between two clusters and four clusters offering different levels of resolution in
capturing the underlying structure of variant classes within the dataset.

Other ExperimentsWith K-Means

For the purpose of enhancing variant classification through K-means clustering, a series of ex-
periments were designed and executed after initially trying clustering with 4 and 2 clusters.

82

Also, experiments with 3-cluster were performed, with two distinct combinations. In the first
setup, Disease-causing and Likely Pathogenic variants were merged into a single group, while
Contributing Factors were grouped separately, and the None class formed the third cluster. In
the second setup, Disease-causing variants were isolated into one group, while Contributing
Factors, alongside Likely Pathogenic variants, formed another group, and the None class con-
stituted the third. These distinct configurations were designed to increase the effectiveness of
clustering by segregating variant types in different ways.
Additionally, the experimentation process employed undersampling techniques, systemati-

cally varying the sample sizes from 200 to 1500 examples of themajority class, incrementing by
100 at each iteration. The reason behind this approachwas to assess both the impact of various
cluster numbers and the impact of a balanced dataset on the performance of the model.
Furthermore, the investigation extended to feature selection with SelectKBest, by systemat-

ically varying the number of selected features, the goal was to evaluate the influence of feature
dimensionality on clustering performance. This approach aimed to identify an optimal fea-
ture subset that could capture the inherent variance in the data, for having an efficient cluster
separation.
One of the metrics to evaluate the performance of the models was The Adjusted Rand

Index (ARI), which is a measure used to evaluate the performance of clustering algorithms,
such as K-means clustering. It assesses the similarity between two clusterings by considering
how well they agree on which points belong together in the same cluster and which points be-
long to different clusters. It measures agreement between points that are grouped together in
both the true and predicted clusters, as well as agreement between points that are separated
into different clusters. The ARI score ranges from -1 to 1, where a score close to 1 indicates
strong agreement between the true and predicted clusterings, a score around 0 indicates ran-
dom clustering and a score close to -1 indicates disagreement between the clusterings. A higher
ARI score suggests better clustering performance. In Figure 6.11 and 6.12, the graph showing
the change in ARI score as the number of samples from the majority class increases is given in
2-cluster and 4-cluster scenarios, respectively.
Despite the thoroughness of the experimental approaches, the outcomes did not align with

the initial objectives. In all configurations, the clusters were observed to blend different vari-
ant types, rather than forming distinct clusters corresponding to specific variant classes. Con-
sequently, while the experimental results of the clusters were visualized with plots and tables
for in-depth analysis, their inability to accurately differentiate variant types led to their exclu-
sion from this thesis study. This emphasized the complexities in variant classification using

83

Figure 6.11: ARI Score Variation with Majority Class Sample Size in 2‐Cluster Scenario

Figure 6.12: ARI Score Variation with Majority Class Sample Size in 4‐Cluster Scenario

clustering methods, revealing the challenges encountered in achieving research objectives in a
real-world setup.

84

6.1.6 GaussianMixtureModels for Unsupervised Learning

In light of the unsatisfactory results obtained from various experiments with K-means cluster-
ing, the GMM algorithm was experimented with in this section, since GMMs offer a more
sophisticated and probabilistic approach to clustering analysis. With the inherent limitations
of K-means clustering, leveraging the probabilistic nature of GMMs was considered helpful.
Through the experiments with GMMs, this section aims to achieve more accurate and infor-
mative clustering outcomes for variant classification.

Gaussian Mixture Model represents a powerful probabilistic framework widely employed
for clustering and density estimation tasks in machine learning and statistical analysis. Unlike
traditional clusteringmethods such asK-means, GMMemploys amore probabilistic approach
by assuming that the data points originate from a mixture of multiple Gaussian distributions,
each characterized by its ownmean and covariancematrix. Thismodel essentially hypothesizes
that the observed data points are generated from a combination of underlying subpopulations
or clusters, with each cluster resembling a Gaussian distribution in the feature space. By it-
eratively estimating the parameters of these Gaussian distributions and optimizing the model
likelihood, GMM effectively captures complex data patterns and provides a probabilistic as-
signment of data points to different clusters. Moreover, GMM allows for soft assignments,
enabling data points to belong to multiple clusters simultaneously, with varying degrees of
membership probabilities. This flexibility makes GMM particularly well-suited for uncover-
ing structures in the data, accommodating clusters of varying shapes, sizes, and densities. In
the context of variant classification, GMM emerges as a valuable tool for constructing clusters
of genetic variants with similar attributes, facilitating the identification and characterization of
distinct variant classes.

In the initial stage of the experimentation, a foundational GMM was constructed for vari-
ant classification. This basicGMMmodelwas developedwithout any additional preprocessing
steps such as feature selection or dimensionality reduction, serving as a starting point to estab-
lish a baseline understanding of the dataset’s clustering behavior. The primary objective was to
assess the clustering patterns present within the variant dataset. To accomplish this, the GMM
algorithm was instantiated with 4 clusters (k=4) and fitted to the dataset. Then, the cluster
labels assigned to each data point were obtained to count the variant types in each cluster. Vi-
sualization of this distribution using a heatmap provided valuable insights into the clustering
behavior of the GMM model and laid the groundwork for subsequent experiments. These
statistics can be seen in Table 6.14, which constitutes the first set of results.

85

Table 6.14: Initial GMM Clustering Results with 4 Clusters

Cluster CF DC LP None
0 92 57 65 880
1 2 18 3 2677
2 2 10 6 1727
3 2 1 1 980

GMMWith Feature Selection for 4 Clusters

The first experiment included performing GMMwith 4 clusters and in conjunction with fea-
ture selection. Initially, the dataset was prepared, separating the labels and the features. Various
number of features were selected within the feasible range. The experiments iterated over the
values, representing the number of features selected by the SelectKBest method.
For each iteration, SelectKBestwas applied to select the top ’k’ features basedon theirANOVA

F-value scores. Subsequently, the selected features were utilized to fit a GMM with 4 clusters
(n_components=4). The resulting cluster predictionswere then evaluatedby generating a table
of counts and a bar graph to see the distribution, similar to the K-means evaluation. Addition-
ally, a table of the percentages of each variant class within the clusters was constructed.
Furthermore, the ARI score was computed as a quantitative measure of the agreement be-

tween the true class labels and the predicted cluster assignments. By systematically varying the
number of selected features and observing the resulting cluster distributions and ARI scores,
the experiments aimed to identify the optimal feature subset and evaluate GMM for variant
classification.
The best result was achieved with 127 selected features, where the most important variant

types were contained in the same cluster. This model provided more distinct clusters and was
successful in terms of detecting the important variants, which was the ultimate purpose of the
task. However, it did not separate all the variant types into different clusters as it was intended.
Most of the variants from the minority classes DC, LP, and CF were contained in the same
cluster, with some contamination of the ’None’ class. This was one drawback of themodel but
it still constituted a great performance, considering the complexity of the real-world scenarios.
Percentages were used for describing the contents of each cluster since they gave a better idea
about the distribution. The bar graph and the percentage table are given in Figure 6.13 and
Table 6.16 respectively. The first cluster, denoted as Cluster 0, had the vast majority of the
important variants, and the rest of the clusters comprisedmostly of ’None’ variants (more than
99%). Cluster 0 had 97% of the important variants inside and those made up the 17.2% of the

86

cluster.

Figure 6.13: Distribution of Variants with Feature Selection (4 clusters)

Table 6.15: Percentages of Cluster Content with Feature Selection (4 Clusters)

Cluster CF DC LP None
0 7.6 4.8 5.4 82.2
1 0.1 0.8 0.1 99.00
2 0.0 0.4 0.4 99.2
3 0.2 0.2 0.0 99.7

GMMwith Feature Selection for 2 Clusters

The same approach was used for 2 clusters, separating the variants into Neutral and Causal
variants. The target variable was encoded categorizing DC, LP, and CF as ’Causal’ while the
rest of the variants were labeled as ’Neutral’.
SelectKBest method was applied to select the top 65 best features based on the F-value be-

tween the features and target variable, aiming to reduce the dimensionality of the data while
retaining the most relevant features for clustering.
Next, a GMM with 2 components was constructed and fitted to the selected features. Fol-

lowing the clustering, a table was used to show the counts of each class within each cluster,

87

Table 6.16: Percentages of Cluster Content with Feature Selection (4 Clusters)

Cluster CF DC LP None
0 7.6% 4.8% 5.4% 82.2%
1 0.1% 0.8% 0.1% 99.00%
2 0.0% 0.4% 0.4% 99.2%
3 0.2% 0.2% 0.0% 99.7%

providing insight into the distribution of variant classes within the identified clusters. Addi-
tionally, percentages were calculated to represent the proportion of each class within each clus-
ter, offering a more comprehensive understanding of the distribution. These tables are given
by 6.17 and 6.18.
Also, a bar graph representing the class counts within each cluster can be seen in 6.14.

Figure 6.14: Distribution of Variants with Feature Selection (2 clusters)

Table 6.17: Class Counts With Feature Selection

Cluster Neutral Causal
0 997 216
1 5267 43

Table 6.18: Cluster Percentages With Feature Selection

Cluster Neutral Causal
0 82.2% 17.8%
1 99.2% 0.8%

In the results obtainedwith 2 clusters and 65 selected features, Cluster 0 comprised 82.2% of
neutral variants and 17.8% potentially harmful variants. On the other hand, Cluster 1 predom-

88

inantly contained neutral variants, constituting 99.2% of its members, with only 0.8% being
potentially harmful. This suggested a clear separation between the two clusters, with Cluster 0
encapsulating potentially harmful variants, while Cluster 1 predominantly consists of neutral
variants.
The performance of the 2-cluster approach appeared to offer a more distinct separation be-

tween variant types compared to the 4-cluster approach. In the 2-cluster scenario, one cluster
predominantly contains variants labeled as potentially harmful, while the other cluster includes
neutral variants. This clear separation suggested a simpler and more intuitive clustering pat-
tern, which may facilitate the following analysis and interpretation. On the other hand, the
4-cluster approach results in amore heterogeneous distribution of variant types across clusters,
with each cluster containing a mix of variant classes. This complexity may pose challenges in
accurately interpreting the clusters, potentially leading to greater ambiguity in variant classi-
fication. Therefore, the 2-cluster approach may offer better performance in terms of cluster
interpretability and utility for variant classification tasks.

T-SNE Integration

In the following experiments, t-SNE (t-distributed Stochastic Neighbor Embedding) was in-
corporated with GMMs after feature selection, aiming to enhance the efficiency of variant
clustering. By employing t-SNE, a dimensionality reduction was performed to visualize high-
dimensional data in lower dimensions while preserving local structures.
t-SNE is typically used for two or three dimensions for effective visualization. It works by

first constructing a probability distribution over pairs of high-dimensional data points, repre-
senting similarities between points. This distribution is then optimized to be as similar as pos-
sible to a similar probability distribution over pairs of points in the lower-dimensional space.
The optimization process minimizes the Kullback-Leibler divergence between the two distri-
butions, effectively preserving local relationships and structure in the data. As a result, t-SNE
can effectively reveal clusters, patterns, and relationships within complex datasets, making it
particularly useful for further analysis and visualization. Subsequently, integrating t-SNE and
GMM after feature selection offers better interpretability and robustness of the classification
framework.
With t-SNE, 4 cluster and 2 cluster scenarios were performed with different amounts of fea-

tures. At each trial, SelectKBest feature selectionmethodwas applied to thedataset to retain the
most informative features. Subsequently, t-SNE was utilized for further dimensionality reduc-
tion, projecting the high-dimensional data onto a 3D spacewhile preserving relationships. The

89

reduced-dimensional data obtained from t-SNE was then used for GMM aiming to contain
variant types in different clusters. The resulting clusters were visualized in a 3D plot, allowing
for an intuitive interpretation of the cluster distribution. Additionally, a table displaying the
counts of each class within each cluster was generated to assess the composition of the clusters.
The 3D plot of the 4 cluster case is given in 6.15.

Figure 6.15: 3D Visualization of 4 Clusters with t‐SNE

Comparing the results of 4-cluster scenarios with and without t-SNE, it was observed that
the overall distributions of variant classes within clusters were similar between the two scenar-
ios. However, there were notable differences. With 65 features, the t-SNE-enhanced clustering
offered a slightly more balanced distribution of classes across clusters, with a more even spread
of variants. Conversely, the previous case showed some clusters dominated by a single class
(None), resulting in imbalanced distributions. This emphasized that the original scenario of-
fered a better clustering in terms of the purity of the clusters, as a result of losing subtle patterns
when compressing data into lower dimensions. Additionally, the stochastic nature of t-SNE
and GMM introduced variability in clustering outcomes, contributing to inconsistent results

90

across multiple runs.
The clustering results obtained using t-SNE followed by GMM with 2 clusters and 25 fea-

tures selected by the SelectKBest, revealed a distribution of variants across clusters that closely
resembled the pattern observed in the 2 cluster scenariowithout t-SNE.Despite the application
of t-SNE for dimensionality reduction, the overall clustering pattern remained largely consis-
tent, indicating that t-SNE did not introduce significant alterations to the clustering structure.
Cluster 0 exhibited a composition similar to the initial two-cluster scenario, encompassing a
mix of variants, including those categorized as DC, LP, andCF, with smaller proportions com-
pared to the None class variants. Conversely, Cluster 1 predominantly consisted of variants
classified as None, with a negligible presence of CF, DC, and LP variants (0.8%). The similar-
ity in cluster composition suggests that while t-SNE effectively reduced the dimensionality of
the feature space, it did not substantially change the clustering tendencies present in the dataset.
This observation emphasized the robustness of the clustering approach and suggests that the
underlying data structure driving the clustering pattern remained largely unchanged despite
the application of t-SNE for dimensionality reduction.
In addition to the similarities observed in the clustering results between the t-SNE 2-cluster

scenario and the original 2-cluster setup, it must be noted that the t-SNE approach required a
reduced number of features to achieve comparable clustering outcomes. Specifically, the opti-
mal number of features ranged from 10 to 30, suggesting that t-SNE effectively captured the
essential variance in the data with a more compact feature set. However, despite the advan-
tage of requiring fewer features, the utilization of t-SNE introduced a computational burden,
significantly prolonging the runtime of the code execution. That was a result of an iterative
optimization process for dimensionality reduction.
This analysis provided insights into the clustering patterns within the dataset and assessed

the effectiveness of different clustering approaches.

6.2 Phenotype Classification

For phenotype assignment, different structures were used as explained in the section 5.4.2. The
3-dimensional nature of the data allowed the usage of 3D tensors and employing Neural Net-
work based applications with PyTorch. Different experiments were conducted with different
features and specific parameters. In this section, the significant results of these experiments are
shared and supported with visuals.
In the phenotype prediction process, 7 NDDs were considered for each patient. Due to the

91

inherent heterogeneity, diversity, and complexity of NDDs, seven distinct binary predictions
were conducted for eachdisease and their outcomeswere combined to assigndiseases to individ-
uals. This approach facilitated the determination of the disease set (combination) associated
with each patient besides enhancing the interpretability and clinical relevance of the predic-
tions. By employing individual predictors, model performance was optimized, class imbalance
was addressed, and constant refinement and customization were facilitated tomeet the unique
needs of each disorder. Complexity caused by comorbidity was handled, simultaneously avoid-
ing the bias of one disease to another.
A key objective of this phase was to remove features of pathogenicity prediction scores from
the dataset. These scores, while initially informative, became redundant after the interpreta-
tion of the variant classification results. Notably, two main experiments were conducted for
phenotype prediction purposes: one leveraging the actual variant labels provided by the Bio-
computingUP Group, and another utilizing the predicted variant classes derived from the Lo-
gistic Regression model developed in this study, elaborated in section 6.1.2. The decision to
employ the Logistic Regressionmodel was influenced by the importance of incorporating vari-
ant labels into the phenotype prediction process. Using the model results, the aim was to ex-
ploit the rich information embedded within variant labels to inform the phenotype prediction
model. By integrating variant labels into the phenotype prediction process the relationship be-
tween genetic variation and phenotype expression was investigated. Disease-causing variants,
for instance, were more directly associated with NDDs and exhibited a stronger relationship
with disease manifestation. Likely pathogenic variants demonstrated characteristics of poten-
tial harmfulness to contribute to disease development. Contributing factors encompassed vari-
ants that may modulate disease risk or phenotype severity, while neutral variants lacked asso-
ciations with disease phenotypes. Notably, logistic regression emerged as the optimal choice
for predicting variant classes with reliability, at same time avoiding overfitting. with an accu-
racy of 89% and an F1 score of 81%. These two experiments were performed to better simulate
real-world scenarios and to obtain a more general model, both with real labels and predicted
labels of variants. Subsequently, various methods were used, encompassing feature selection
techniques and various neural network architectures, to enhance the accuracy and robustness
of the phenotype prediction process.

92

6.2.1 Predicted Variant Labels

In the thesis section, AutoKeras, an automated machine learning framework, was used for
structured data classification tasks. AutoKeras is an open-source Python library designed to au-
tomate the process of machine learning model selection, hyperparameter tuning, and architec-
ture search, a field known as AutomatedMachine Learning (AutoML). It offers a user-friendly
interface that reduces the complexities of traditional machine learning workflows, making it
accessible to users with varying levels of expertise. It is built on top of TensorFlow and Keras
and employs neural architecture search (NAS) techniques to systematically explore vast model
architectures and hyperparameter spaces, automatically discovering optimal configurations tai-
lored to specific datasets. By automating model training and optimization, AutoKeras acceler-
ates the research process, efficient experimentation, and informed decision-making. It is par-
ticularly powerful for structured data classification tasks, where tabular datasets are organized
into rows and columns.

In this task, AutoKeraswas employed to build a structured data classifier. TheDatawas split
into features and labels, and then further divided into training and testing sets. The training
set was composed of 565 patients and there were 302 patient files used for the test set. The
AutoKeras ‘StructuredDataClassifier‘ was initialized with key parameters such as ‘max_trials‘,
which specifies the number of different models to try during the optimization process. The
training loop was iterated over a predefined number of epochs for each trial. After each epoch,
the model’s performance was evaluated, computing both the training and testing losses and
accuracies.

The search approach was applied iteratively to develop optimized models for 7 distinct dis-
eases. Each disease required a customized approach to themodel due to variations in data char-
acteristics, disease complexities, anddiagnostic criteria. This approach reflected the recognition
that disease classification tasks were inherently heterogeneous, and a multilabel model might
not suffice to capture the relationships of each disease dataset. The results of this process are
presented in a structured table format, indicating the specific model architectures and hyper-
parameters employed for each disease. Table 6.19 demonstrates this information and provides
insights into the model structures. Additionally, it includes validation accuracies obtained for
each disease model, offering a quantitative measure of model performance. This structured
presentation enabled a comparative analysis of model performances across different diseases
and made decision-making processes easier.

AutoKeras chose the reported structures after training 15 maximum networks for each dis-

93

Table 6.19: NN Structures and Performance Metrics with Predicted Labels

Disease NNArchitecture Validation Accuracy F1 Score

ID 2 layers; 32 neurons each 96.12% 51%
ASD 3 layers; 64, 32, 32 neurons 76.96% 69%
Epilepsy 2 layers; 64, 64 neurons 72.86% 58%
Microcephaly 2 layers; 64, 64 neurons 80.12% 69%
Macrocephaly 2 layers; 64, 64 neurons 66.85% 53%
Hypotonia 2 layers; 128, 32 neurons 77.23% 51%
Ataxia 2 layers; 64, 32 neurons 75.98% 59%

easewhile running 10 epochs each time. The results from the selectednetworks showed varying
performance across different diseases. For ID, themodel achieved a high validation accuracy of
96.12% but a poor F1 score of 51%. This underlined the high imbalance for this disease dataset
and motivated the use of resampling methods. Since almost all the patients had ID conditions
in this study to detect the comorbidities with other NDDs, the predictions were highly biased
towards positive class, i.e.’1’. For Microcephaly, Macrocephaly and Ataxia, the imbalance was
towards the negative class, denoted as ’0’, due to the lack of patients with the disease in the
dataset. However, the selected model for Microcephaly showed better performance compared
to others, with a validation accuracy of 80%. Hypotonia prediction also yielded a good valida-
tion score, which can be explained by the lower level of imbalance it demonstrated. ASD and
Epilepsy were relatively harder to predict, given the complexity of these diseases besides the im-
balance. It was observed that the auto search provided relatively more complex NN structures
to address these aspects for these diseases. Overall, while these selected models showed promis-
ing results for some diseases, It pointed out that further optimization was needed to improve
the performance, especially for diseases with lower accuracy and F1 scores.

Resampling

To investigate more, after conducting AutoKeras trials for each of the seven diseases, an ad-
ditional step involving undersampling was undertaken to address class imbalance within the
dataset. Class imbalance posed a notable challenge in developing accurate predictivemodels for
patients diagnosed with various diseases. Across disease categories such as ID, Microcephaly,
Macrocephaly, Hypotonia, and Ataxia, the available data exhibited significant differences in
the distribution of positive and negative class instances. For instance, while the ID category
overwhelmingly consists of positive instances, comprising 97% of positive class, there were 11%

94

patients with positive class of Ataxia. To overcome this issue and ensure a balanced represen-
tation across classes during model training, undersampling and oversampling techniques were
applied to adjust the number of examples from the majority classes. By addressing class im-
balance through strategic resampling methods, the predictive models aimed to achieve greater
accuracy and reliability in identifying patients with specific diseases, thereby increasing diag-
nostic capabilities in clinical practice.
The resampling was performed using the ‘resample()‘ function from the scikit-learn library,

both for undersampling and oversampling. Subsequently, balanced datasets were created, re-
ferred to as ‘balanced_df‘. Following this process, the models generated by AutoKeras were
retrained on the newly balanced dataset to evaluate their performance under more equitable
conditions. The results obtained from these datasets are given in Table 6.20, in the previously
used format.

Table 6.20: NN Structures and Performance Metrics with Predicted Labels and Resampling

Disease NNArchitecture Resampling Val. Accuracy F1 Score

ID 2 layers; 32 neurons each 50 from ’1’ class 73.96% 53%
ASD 2 layers; 128, 64 neurons 250 from ’1’ class 83.02% 71%
Epilepsy 2 layers; 64, 32 neurons 150 from ’0’ class 78.72% 60%
Microcephaly 2 layers; 128, 64 neurons 70 from ’0’ class 71.47% 56%
Macrocephaly 2 layers; 128, 64 neurons 65 from ’0’ class 70.36% 59%
Hypotonia 2 layers; 32 neurons each 110 from ’0’ class 79.52% 52%
Ataxia 2 layers; 32 neurons each 75 from ’0’ class 78.89% 61%

Generally, the implementation of resampling methods notably improved the performance
metrics, leading to increased validation accuracy and F1 scores for classification. However, in
the case of ID, the reduction in bias toward themajority class resulted in a significant decline in
accuracy. This decline could be attributed to the previous occurrence of overfitting, where the
model excessively tailored itself to the trainingdata, compromising its ability to generalize toun-
seen examples. Additionally, another outcome that saw a decline in performancewas associated
withMicrocephaly, exhibiting lower metrics. This decline stemmed frommodifications in the
network structure and hyperparameters. The model’s capacity to accurately capture patterns
and generalize was compromised, particularly in instances of undersampling. This emphasized
the necessity for further refinement in the network architecture, despite AutoKeras’s selection
of the optimal hyperparameter combination. To address this need, true labels were introduced
instead of predicted ones in the following experiments.

95

6.2.2 True Variant Labels

In continuation of the experiments, the same procedure was applied as explained before, this
time integrating true variant labels into the structured data classification process. Using Au-
toKeras framework, the bestmodel architecturewas searched to handle the problem in the best
way. Hyperparameter tuning was also a part of the search with AutoKeras, this way offering a
user-friendly interface simplifying the machine learning workflow.
Integrating true variant labels and using them to boost the phenotype prediction process, as

opposed to using predicted ones generated by logistic regression, granted several advantages in
the context of NDDs. True labels provided direct insight into the functional consequences of
genetic variants based on established knowledge and empirical evidence, representing ground
truth information. This ensured greater accuracy and reliability in characterizing variant classes
and their associations with disease phenotypes. While logistic regression was a powerful pre-
dictor of variant classes, it exhibited some bias and inaccuracies. Relying on true labels the
risk of misclassification was reduced. Additionally, models trained on true variant labels were
more likely to generalize well to unseen data and real-world clinical scenarios. By learning from
genetic data, these models were able to find complex patterns and handle the heterogeneity
of NDDs more accurately, and to adapt effectively to diverse patient populations and genetic
landscapes. In summary, employing true labels instead of predicted ones with the logistic re-
gression model, provided better accuracy, reduced uncertainty, increased interpretability, and
improved generalization. Themodelswith the best results of the experiments are given inTable
6.21.

Table 6.21: NN Structures and Performance Metrics with True Labels

Disease NNArchitecture Validation Accuracy F1 Score

ID 2 layers; 32 neurons each 96.42% 49%
ASD 3 layers; 64, 16, 16 neurons 70.27% 56%
Epilepsy 3 layers; 128, 64, 64 neurons 81.08% 48%
Microcephaly 2 layers; 64, 32 neurons 81.25% 57%
Macrocephaly 2 layers; 64, 64 neurons 89.58% 44%
Hypotonia 2 layers; 128, 128 neurons 74.13% 56%
Ataxia 2 layers; 64, 32 neurons 76.92% 59%

Introducing true labels caused a significant improvement in the performancemetrics and in
terms ofmodel structures when theywere comparedwith themodels using predicted labels. In

96

some cases, simplermodels were chosen, with fewer layers and nodes, indicating the facilitation
of making predictions with true labels. In the case of Epilepsy andHypotonia, however, more
complex model structures were selected for prediction, due to the complex natures of these
diseases. This pointed out the biases introduced by the predicted variant labels to the model,
affecting the behavior of the phenotype classification. Regarding ID, the recurring issue of
overfitting persisted since the data was not handled to fix the class imbalance within the dataset.

Resampling

As in the previous experiments, resampling methods were used for each disease to address the
class imbalance, which posed a challenge in correctly predicting the phenotypes. The same
procedure of resampling was used, with the ‘resample()‘ function from the scikit-learn library,
both for undersampling and oversampling. The balanced data obtained in the previous resam-
pling processwas used in order to provide comparability and interpretability of the results. The
results are shared in Table 6.22 in the previously used format, demonstrating NN structures,
hyperparameters, and performance metrics.

Table 6.22: NN Structures and Performance Metrics with True Labels and Resampling

Disease NNArchitecture Resampling Val. Accuracy F1 Score

ID 2 layers; 32 neurons each 50 from ’1’ class 78.07% 42%
ASD 2 layers; 128, 64 neurons 250 from ’1’ class 82.65% 64%
Epilepsy 2 layers; 128, 32 neurons 150 from ’0’ class 84.56% 66%
Microcephaly 2 layers; 64, 32 neurons 70 from ’0’ class 89.33% 70%
Macrocephaly 2 layers; 128, 64 neurons 65 from ’0’ class 90.01% 68%
Hypotonia 2 layers; 32 neurons each 110 from ’0’ class 86.12% 59%
Ataxia 2 layers; 32 neurons each 75 from ’0’ class 78.25% 76%

In this experiment, when the true labels were integrated into the models along with resam-
pled datasets, the bestmodel behaviors were observed, in terms of validation accuracy, F1 score,
model complexity, and compilation time. As in the previous experiment with resampling, class
’1’ denoted the positive case, while class ’0’ denoted the absence of the disease, representing pa-
tientswithout the condition. The balancing quantitieswere determined by analyzing the distri-
bution of positive and negative classes within the disease datasets for phenotype, as elaborated
in Section 4.2.
ID class had a lower performance since undersampling methods truncated the dataset while

providing balance and avoiding overfitting. Models lacked the data needed to learn the natural

97

relationshipswith variant labels andphenotypes. In the end,more datawasneeded for a general
diagnosis of this disease, but a reasonable performance was achieved. In terms of F1 scores;
Hypotonia, ASD, and Epilepsy continued to have relatively poor performances, due to the
lack of real-world clinical data and complex, heterogeneous attributes of these diseases. Ataxia
producedmore stable and consistent results throughout the experiments, having close accuracy
value and F1 score.

6.2.3 Test Data Results

After conducting experimentswith both predicted and true variant labels, the optimal network
structures from each casewere selected to construct neural networks for the test data. However,
unlike previous iterations, the training sets were not resampled to integrate with the test data.
This decision aimed to simulate a more realistic scenario that is closer to real-world conditions,
allowing for an assessment of model performance without artificial adjustments.
Fundamentally, by using the full dataset without resampling, the study sought to evaluate

the models’ ability to generalize to unseen data and adapt to real-world variability. This ap-
proach is crucial as it provides insights into how well the models perform under more natural
conditions, in a new cohort of patients, where data distributionsmay not be perfectly balanced
or representative of the entire population.
Furthermore, adjustmentsweremade to the chosennetwork structures, includingfine-tuning

epoch numbers and batch sizes, to optimize performance based on the non-resampled data.
This iterative process ensured that the models were robust and effective in handling the inher-
ent complexities present in clinical datasets. In summary, by employing the full datasetwithout
resampling, making necessary adjustments to the network structures, and using the best model
structures obtained in previous experiments, the study aimed to provide amore accurate evalu-
ation of the models’ performance in a realistic setting, ultimately improving their applicability
and reliability in clinical scenarios. Test data included 302 patients and for each disease, the
models were constructed with the decided architecture, then they were run iteratively to make
final adjustments. A comparison of test accuracies obtained with this approach, for predicted
labels and true labels can be seen in the following table 6.23, moreover, a graph is shared in
Figure ?? for a better visualization of the results.
The results were consistent with the previous experiments; true labels facilitated the predic-

tion of phenotypes and led to higher accuracies except in the cases ofMacrocephaly andAtaxia.
This could be explained by significant class imbalances and the lack of real-world data points

98

Table 6.23: Test Accuracies with Predicted and True Labels

Disease Accuracy with Predicted Labels (%) Accuracy with True Labels (%)

ID 97.46 98.28
ASD 59.85 64.86
Epilepsy 66.32 72.03
Microcephaly 72.12 75.19
Macrocephaly 70.07 64.91
Hypotonia 63.67 69.77
Ataxia 71.46 70.81

for these diseases. Predicted labels produced broader example sets for the variant classification.
This approach attempted to compensate for missing patient diagnoses, constructing a more
generalized model. However, this broader generalization came with a trade-off with the accu-
racy of phenotype prediction. Practically, while predicted variant labels expanded the scope of
the model, they introduced a degree of uncertainty, impacting the precision of the predictions.
For the case of ID, the results did not reflect a realistic scenario due to the overfitting issue,
since resampling methods were not applied. Thus, the high accuracy was not reliable and an-
other dataset was needed for further training and testing. This way, phenotype prediction was
performed for both scenarios in a clinical setting. The conclusion of the study and important
remarks, together with the suggestions for future work are shared in the following chapter.

Figure 6.16: Comparison of Test Accuracies of The Two Approaches

99

7
Conclusion

This thesis aimed to employ machine learning models for predicting seven Neurodevelopmen-
tal Disorders and identify potentially causative variants associated with those. This was a chal-
lenging task, due to the heterogeneous and multi-faceted nature of these diseases. Comorbid-
ity, which is described as the simultaneous presence of multiple medical conditions, also con-
tributed to this complexity. The study also investigated the relationship between patient phe-
notypes and variants, by observing the effects of different variant types on phenotypes.
The set-up of this project was constructed by the BioComputing UP Group of Padua Uni-

versity, which was the assessor and data provider of the CAGI Challenge, to achieve the afore-
mentioned task. This thesis projectwas a part of an internship, also conducted in the laboratory
of the same group.
For the study, genetic data from867 patients was used, combining the previousworks (meta-

data) used for this purpose (CAGI). As opposed to manual variant filtering and phenotype
assignment procedure as commonly followed in clinical methodologies, the aim was to con-
tribute to the development of an automated tool that requires minimum human intervention
and achieves the highest accuracy.
Themetadatawasused to retrieve importantdata frompublic databases abouthumangenome

references, with a process called Annotation. ANNOVAR tool was for annotation, to access
and embed data into specific files that were useful for the study. Then, data cleaning and prepa-
ration were performed very carefully to avoid discrepancies, improve efficiency, and ensure
compatibility with the machine learning models. This way, the data became ready for usage

100

for all purposes and models.
The project had two phases: classifying the variants present in a specific gene panel of 74

genes related to NDDs and assigning phenotypes to patients depending on this classification.
The variant classification phase included the application of different machine learning models,
both supervised and unsupervised, trying to discover the most accountable and generalizable
model. The labels obtained from the supervised learning were used for phenotype prediction
while the experimentswithunsupervisedmodelswere conducted tounderstand the complexity
of the task and to demonstrate a real-world setting.
Among the supervised learning models; random forest, logistic regression, SVM, and Neu-

ral Networks were used, each with the same data but with a different set-up for finding the best
model that can classify the variants into 4 categories: disease-causing, likely pathogenic, con-
tributing factor, and neutral (none). Also, some statistical feature selection methods and data
resampling techniques were employed to improve the performance. Throughout the experi-
ments, feature selectionmethods such as SelectKBest, SelectKPercentile, Mutual Information,
and Feature Importance (random forest) were employed. SelectKBest method (using ANOVA
F-statistic) for feature selection seemed to be the best method to decide on the most relevant
features for the variant classification. First, models were run with optimum hyperparameters
obtained with grid search to constitute a baseline for further experiments. Then, features were
reduced by the selection methods. Finally, resampled data was integrated to improve the per-
formances.
The logistic regressionmodel provided themost reliable results in variant classification, demon-

strating a high accuracy and avoiding overfitting. For this study, F1 scores were primarily
trusted in measuring performance since the issue of overfitting was present. The reason for
overfitting was the class imbalance both in the variant and phenotype data, and the missing
data points in the retrieved data. Logistic regression had an average F1 score of 81% and 89% of
overall accuracy, using 125 features selected by SelectKBest method and 400 samples from the
majority class, i.e. ’None’. This class was the best-predicted class as It was in all the experiments,
due to its excessive presence. Logistic regression obtained an average AUCvalue of 95% among
the variant classes. It also predicted the LP class with a precision of 73%, being the highest one
among the supervised models. Random forest followed logistic regression by yielding a similar
result, with an overall accuracy of 84% and an F1 score of 80%. However, logistic regressionwas
preferred since it performed better with more data, proving to be a more generalizable model.
Random Forest gave these results by using 200 samples from themajority class only, indicating
a decrease in the performance when the number of samples increased. Also, the neural net-

101

work was the model that required the least number of features, i.e. 65 selected by SelectKBest
method, to explain the target variable, but it was not preferred because of an F1 score of 78%.
For unsupervised learning, K-Means and Gaussian Mixture Models were used to achieve

a good separation of different variant types in different clusters. Potentially causal variants
were targeted to identify, expecting to have an automatic process that facilitates manual han-
dling in clinical studies. Along with 4-cluster and 3-cluster scenarios, the 2-cluster classifica-
tion achieved the best performance, since the other scenarios required more distinction and
human intervention. In the end, K-Means classified 82.2% of the harmful variants in one clus-
ter, with contamination of the dominant ’None’ class. GMM achieved almost the same result
with only 3 more variants classified correctly in the 2-cluster scenario. This result was reason-
able and highly satisfactory considering the manual processes and curation needed for variant
interpretation in the field of molecular biology. Although this clustering did cause the loss of
43 variants in the ’None’ cluster, it helped reduce the entire variants set 81.4%, by clustering
82.2%of important variants in the same cluster. Also, these unsupervisedmodels demonstrated
better generalization compared to supervised models in certain contexts, since they did not de-
pend on labeled data and were able to discover unseen patterns. Because of this aspect, these
models can be applied to even larger datasets, which are not limited by a gene panel or NDDs,
and possibly facilitate the variant interpretation process by saving time and effort.
For the phenotype classificationphase, two approacheswere followed: using predicted labels

with the logistic regression model and using the true labels already at hand. Using predicted la-
bels showed the feasibility of a fully automated pipeline and amore realistic scenario, sacrificing
accuracy, while benefiting the true labels improved themodel performance. ASDwas the hard-
est to predict, the ASDmodel could reach an accuracy of 64% with true labels. Macrocephaly
and Hypotonia followed ASD with 64% and 69% of accuracy with true labels. Also, Epilepsy
was hard to predict with labels obtained from logistic regression. Considering the genetic com-
plexity of ASD and Epilepsy, and the difficulty of diagnosing these disorders even clinically,
justifies the poor performance of the models. In the cases of Hypotonia and Macrocephaly,
their poor performances can be explained by the insufficient number of examples available for
training. This lack was particularly notable because of the hunger of neural networks for data,
as they tend to exhibit better performance when trained on larger and more diverse datasets.
This project constituted a baseline for potential future research and continuous improve-

ment for a very intriguing field focused on finding pathogenic variants and revealing the pheno-
type contributions. Considering the acquisition of more clinical data, expanding the sequenc-
ing to the entire exome or genome of the patients, and improving the annotations for intronic

102

variants, splicing variants, and other exon-intron junction variants, a better decision-making
process can be achieved. Also, the workflow could be even more facilitated with automatic
pipeline creation and file-handling services such as Galaxy, which is an open-source platform
for creating workflows for bioinformatics research. This integration is proposed to allow less
human involvement and faster file processing.
In conclusion, this project showed some ways to facilitate variant interpretation and phe-

notype prediction in an NDD environment, automating and semi-automating the process by
employing a combination of machine learning models. The lack of patients with diseases and
natural imbalance observed in variant types, since most of the SNVs of an individual are neu-
tral, made this challenge very difficult. Especially variant class ’LP’ was the hardest to predict
since it falls between disease-causing and contributing factors. This gray area still needs human
interpretation, unless unsupervised methods are used for broader classification. The proposed
models, logistic regression for variant classification and neural networks for phenotype assign-
ment, performed significantly better than most of the predictor groups of the CAGI Chal-
lenge. For CAGI6, 8 groups submitted 29 predictions for variant and phenotype classification.
Themethodologies employed by these groups were not known in principle, since the results of
CAGI6 have not been published yet, and groups did not share much about their model spec-
ifications in CAGI5. However, it is known that most of them followed manual approaches
and some of them declared utilizing Random Forests for classification tasks. The proposed
models have surpassed all the predictor group submissions in terms of AUC values except for
ASD, Epilepsy, and Macrocephaly cases. And for those, competitive levels were reached. This
showed the power of automated models and the trustworthiness of a systematic, data-driven
approach over a manual approach.

103

References

[1] K. J. Mitchell, “The genetics of neurodevelopmental disease,” Current Opinion in
Neurobiology, vol. 21, no. 1, pp. 197–203, 2011, developmental neuroscience. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0959438810001297

[2] M. Carraro, A. M. Monzon, L. Chiricosta, F. Reggiani, M. C. Aspromonte,
M. Bellini, K. Pagel, Y. Jiang, P. Radivojac, K. Kundu, L. R. Pal, Y. Yin,
I. Limongelli, G. Andreoletti, J. Moult, S. J. Wilson, P. Katsonis, O. Lichtarge,
J. Chen, Y. Wang, Z. Hu, S. E. Brenner, C. Ferrari, A. Murgia, S. C. Tosatto,
and E. Leonardi, “Assessment of patient clinical descriptions and pathogenic variants
from gene panel sequences in the cagi-5 intellectual disability challenge,” Human
Mutation, vol. 40, no. 9, pp. 1330–1345, 2019. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/humu.23823

[3] M. C. Aspromonte, M. Bellini, A. Gasparini, M. Carraro, E. Bettella, R. Polli, F. Cesca,
S. Bigoni, S. Boni, O. Carlet, S. Negrin, I. Mammi, D. Milani, A. Peron, S. Sartori,
I. Toldo, F. Soli, L. Turolla, F. Stanzial, F. Benedicenti, C. Marino-Buslje, S. C. Tosatto,
A. Murgia, and E. Leonardi, “Characterization of intellectual disability and autism
comorbidity through gene panel sequencing,” Human Mutation, vol. 40, no. 9, pp.
1346–1363, 2019. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.
1002/humu.23822

[4] N. Whiffin, A. M. Roberts, E. Minikel, Z. Zappala, R. Walsh, A. H. O’Donnell-Luria,
K. J. Karczewski, S.M.Harrison, K. L. Thomson,H. Sage et al., “Using high-resolution
variant frequencies empowers clinical genome interpretation and enables investigation
of genetic architecture,” The American Journal of Human Genetics, vol. 104, no. 1, pp.
187–190, 2019.

[5] T. Fawcett, “An introduction to roc analysis,” Pattern recognition letters, vol. 27, no. 8,
pp. 861–874, 2006.

104

[6] M. C. Aspromonte, A. Del Conte, S. Zhu, W. Tan, Y. Shen, Y. Zhang, Q. Li,
M. H. Wang, G. Babbi, S. Bovo, P. L. Martelli, R. Casadio, A. Althagafi, S. Toonsi,
M. Kulmanov, R. Hoehndorf, P. Katsonis, A. Williams, O. Lichtarge, S. Xian,
W. Surento, V. Pejaver, S. D. Mooney, U. Sunderam, R. Srinivasan, A. Murgia,
D. Piovesan, S. C. E. Tosatto, and E. Leonardi, “Cagi6 ID-Challenge: Assessment
of phenotype and variant predictions in 415 children with Neurodevelopmental
Disorders (NDDs),” 2023. [Online]. Available: https://www.researchsquare.com/
article/rs-3209168/v1

[7] I. Thiffault, M. Cadieux-Dion, E. Farrow, R. Caylor, N. Miller, S. Soden, and
C. Saunders, “On the verge of diagnosis: Detection, reporting, and investigation
of de novo variants in novel genes identified by clinical sequencing,” Human
Mutation, vol. 39, no. 11, pp. 1505–1516, 2018. [Online]. Available: https:
//onlinelibrary.wiley.com/doi/abs/10.1002/humu.23646

[8] S. Zaidi, M. Choi, H. Wakimoto, L. Ma, J. Jiang, J. D. Overton, A. Romano-Adesman,
R. D. Bjornson, R. E. Breitbart, K. K. Brown, N. J. Carriero, Y. H. Cheung, J. Dean-
field, S. DePalma, K. A. Fakhro, J. Glessner, H. Hakonarson,M. J. Italia, J. R. Kaltman,
J. Kaski, R. Kim, J. K. Kline, T. Lee, J. Leipzig, A. Lopez, S. M. Mane, L. E. Mitchell,
J. W. Newburger, M. Parfenov, I. Pe’er, G. Porter, A. E. Roberts, R. Sachidanandam,
S. J. Sanders, H. S. Seiden, M. W. State, S. Subramanian, I. R. Tikhonova, W. Wang,
D.Warburton, P. S.White, I. A.Williams, H. Zhao, J. G. Seidman,M. Brueckner,W. K.
Chung, B. D. Gelb, E. Goldmuntz, C. E. Seidman, and R. P. Lifton, “De novo muta-
tions in histone-modifying genes in congenital heart disease - Nature,” may 12 2013.

[9] P. T. van Doormaal, N. Ticozzi, J. H. Weishaupt, K. Kenna, F. P. Diekstra, F. Verde,
P. M. Andersen, A. M. Dekker, C. Tiloca, N. Marroquin, D. J. Overste, V. Pensato,
P. Nürnberg, S. L. Pulit, R. D. Schellevis, D. Calini, J. Altmüller, L. C. Francioli,
B. Muller, B. Castellotti, S. Motameny, A. Ratti, J. Wolf, C. Gellera, A. C. Ludolph,
L. H. van den Berg, C. Kubisch, J. E. Landers, J. H. Veldink, V. Silani, and A. E.
Volk, “The role of de novo mutations in the development of amyotrophic lateral
sclerosis,”HumanMutation, vol. 38, no. 11, pp. 1534–1541, 2017. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/humu.23295

[10] J. A. Acuna-Hidalgo, Rocio Veltman and A. Hoischen, “New insights into the
generation and role of de novo mutations in health and disease,” Genome Biology,

105

vol. 17, no. 241, 2016. [Online]. Available: https://genomebiology.biomedcentral.
com/articles/10.1186/s13059-016-1110-1

[11] M.Kimura andT.Ohta, “The average number of generations until fixation of amutant
gene in a finite population,”Genetics, vol. 61, pp. 763–71, 04 1969.

[12] M. Baillie, S. le Cessie, C. O. Schmidt, L. Lusa, andM. Huebner, “Ten simple rules for
initial data analysis,” PLOS Computational Biology, vol. 18, no. 2, pp. 1–7, 02 2022.
[Online]. Available: https://doi.org/10.1371/journal.pcbi.1009819

106

Acknowledgments

I would like to express my gratitude to my colleagues at BioComputing UP Group, for pro-
vidingmewith the opportunity to conduct this internship and project, and also for helpingme
to realize my dream of being included in the scientific community. I am deeply grateful to my
supervisor, Emanuela Leonardi, for her mentorship, support, time, and encouraging feedback
throughout the entire process. She has been more than a supervisor to me, a guide in my jour-
ney of discovering my potential. Also, I sincerely appreciate Silvio Tosatto, Damiano Piovesan,
and Alexander Miguel Monzon for introducing the field of bioinformatics to me and for mo-
tivating me to pursue this path. My heartfelt thanks go to my parents, for all their love and
care, for making me who I am right now, for always believing in me and supporting me during
this journey. I cannot thank them enough for their unending endeavors to make me a better
person, for exemplifying good moral values to me, and for teaching me to be independent and
strong. At this moment, I extendmy gratitude to everyone who has contributed tomy growth.
I am grateful for each goodmemory I shared withmy colleagues and peers. Each of them holds
a unique place in my heart, and I will remember them with happiness.

107

	aba1fc40d3003f3ed43a5f4b275c4a54ed30d01bacac73e0ac64ce775c3ea213.pdf
	c4006f32afb4fda55d6b8a3307d599e49b7004d0592e99ad4de11f57656d94fa.pdf
	aba1fc40d3003f3ed43a5f4b275c4a54ed30d01bacac73e0ac64ce775c3ea213.pdf
	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Introductory Overview
	BioComputing UP Group and CAGI Challenge Workflow
	Neurodevelopmental Disorders and Gene Panel

	Thesis Outline

	Literature Review and Related Work
	CAGI5 Workflow and Findings
	Variant Filtering And Classification
	Phenotype Classification and Assignment

	CAGI6 Workflow and Findings
	Variant Filtering And Classification
	Phenotype Classification and Assignment

	Background Information
	Neurodevelopmental Disorders (NDDs)
	Genetic Mutations and Variations
	Omics Data & Databases
	Workflow and File Types in Variant Calling
	Annotation

	Data Acquisition & Retrieving
	Raw Data Acquisition: Sequencing
	Introduction to Data at Hand

	Methodology And Workflow
	Initial Data Analysis
	Data Preparation & Cleaning
	Handling Missing Values
	Gene Filtering
	Encoding

	Feature Engineering & Extracting Features
	Allele Frequencies In The Population
	Information Related To Cohort And Quality
	Genetic Associations With Diseases
	Special Cohort Frequency of the Variants
	Dropping Columns

	Creating Data Structures
	Variant Classification
	Phenotype Classification

	Experiments & Results
	Variant Classification
	Random Forests
	Logistic Regression
	Support Vector Machines
	Neural Network
	K-Means for Unsupervised Learning
	Gaussian Mixture Models for Unsupervised Learning

	Phenotype Classification
	Predicted Variant Labels
	True Variant Labels
	Test Data Results

	Conclusion
	References
	Acknowledgments

