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Abstract 

 

Nonlinear time series models are growing in importance for the description of how the returns 

of financial assets evolve over time. This is fundamental to perform a good forecast, on which 

being able to build a successful strategy for investing in the markets. 

In this thesis, I studied the performances, throughout the period, 2001-2010, of 50 shares 

among the ones that were composing the Nasdaq 100, using a Markov switching model with 

time varying transition probabilities. 

Then, I used the parameters estimated to forecast the return for the period 2011-2014, and, on 

these forecasts, I built two trading strategies based on the returns alone and on the Sharpe 

Ratio. 

The results for the estimation were surprising: contrary to most literature, the model shows 

that the two regimes are defined by the volatility of the series rather than by the returns. 

In the forecast, on the other hand, the strategies performed, in any of their specification, worse 

than a strategy of Buy-and-Hold the market, as the theory suggests.  
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1. Introduction 

 

Modeling and forecasting time series of financial prices and returns has covered an important 

role in modern economic studies, and it is used by all type of agents operating in the financial 

markets (investors, investment banks, money managers and hedge funds among all). 

The main theories started with Markowitz (1959), that, borrowing from the theories of the 

games of chance, formulated its idea of evolution of prices according to the martingale 

property, which states that the prices of tomorrow are equal to the prices of today given a 

particular information set 

 

A more restrictive formulation was afterward made as 

 

with  being a constant drift term and being the error, independent and identically 

distributed as a normal with constant variance and zero mean. 

Recently, these theories have been integrated with the theories of nonlinear time series. 

In fact, although the linear models are for sure easier to calculate, they probably fail to detect 

special characteristics of the series. 

To clarify, following the definition of Lee, White and Granger (1993), a series is linear if 

exists a vector X for which 

 

with  being a vector of parameters. 

In a recent work, Gonzalez-Rivera and Lee (2008) reviewed some of the nonlinear models 

utilized to forecast the conditional mean and the conditional variance of some financial items. 

To start, Goyal and Welch (2006) studied the S&P 500 equity premium over the treasury bill 

rate, using variables taken from the overall economy (income ratio, wealth, consumption, 

inflation), interest rates (T-bills, long term yields and yields of corporate bonds) and stock 

indicators (Earnings/Price, Book-to-Market, Dividend yield), imposing a lower bound to the 

equity premium (because nobody is interested in a negative premium). Their forecasting 

results were good performance especially in periods of big crashes in the markets. 

Utilizing the same type of predictors, Campbell and Thompson (2007), built a model in which 

they totally eliminated the forecasts in which the equity premium was negative and the 
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variable which estimated parameters resulted of opposite sign with respect to the expected 

one. 

This procedure, called “shrinkage”, where you reduce the error variance, and therefore the 

mean squared error, but you increase the bias of the forecast, proven itself to be useful to 

improve the forecasted performances. 

Another class of models is the threshold autoregressive (TAR) models, first described by 

Tong (1983). 

In these models, it is assumed that the series follows different regimes, depending on the 

value of a variable called “conditioning or threshold”. 

In formula 

 

where the  and  are . 

If r (the conditioning or threshold variable) is the dependent variable itself (with some lag), 

we call the model a SETAR (self-exciting threshold autoregressive) model. 

These models have been used to study various economical indexes, but the results where not 

superior to the ones obtained with linear, simpler models. 

Terasvirta (1994) proposed a particular specification for the SETAR, in which there is a 

continuum of regimes. 

These models are called STAR (Smooth Transition Autoregressive models), and one of their 

specifications is: 

 

where  usually is in the form of a logistic or exponential function. 

For an insight into TAR, SETAR and STAR, Enders (2015). 

Another type of nonlinear specification is the one proposed by Hamilton (2001) that mixed a 

linear component with a random field component. 

In particular, a random field is “a function  such that  is a 

random variable for each .” (Gonzalez-Rivera and Lee, 2008). 

Dahl and Gonzalez-Rivera (2003), on the other hand, implemented a similar model, but which 

tries to better detect the nonlinear elements of the model and the covariance function of the 

random field. 
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In the environment of the factor models (as, for example, the APT), Bai and Ng (2007) 

formulated a model where the returns are governed by a non linear link function g such that: 

 

with  being the factors affecting every asset, and  the transposed vector of parameters for 

the asset i. 

The functional forms of the g studied are various, such as the squared principal components or 

the squared factors (for a deeper knowledge of the models, go to the original paper). 

Gonzalez-Rivera and Lee (2008) presented various Artificial Neural Network models, that are 

inspired by the functioning of the human brain, and in which the input is connected to the 

output through some hidden layers. 

Showing a model with a unique layer, the dependent variable y is calculated from the 

independent x as 

 

where  is a parameter connecting the dependent variable to the hidden unit j, and  is a 

parameter that regulates the strength with which the hidden unit j is connected to the output. 

, on the other hand, is the so called “squashing function”, that, after the input has sent a 

signal to the intermediate hidden unit, regulates their activation, which brings a new signal 

towards the output. 

Among all the authors writing about ANN models, Trippi and Turban (1992) made a review 

about their applications to investment and finance in general. 

Finally, Gonzalez-Rivera and Lee (2008) reviewed the functional coefficient model of Cai, 

Fan and Yao (2000), in which a stationary process depends on a multiplicative effect of a 

scalar variable and the relative parameters, that results in an autoregressive model where the 

coefficients are time varying. 

Anyhow, among the models presented in the paper, the ones that caught my attention and 

interest the most were the Markov-switching model and the varying cross sectional rank 

model. 

In the first, formulated by Hamilton (1989), the process is thought to follow different regimes, 

but these states are non-observable and follow a Markov chain. 

In the second one, the returns are modeled with a bimodal normal variance, where the mean is 

a function of the dependent variable lagged and of another variable built on the interaction 

between this lagged return and the lagged value of the returns of other assets belonging to the 
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same cluster, and the variance (which is the same between the two distribution) is modeled as 

a Garch model. 

Which of the two distribution is followed at a particular time t depends on a dummy variable 

constructed on the second variable defining the mean of the two different states, and it 

reminds, from a theoretical point of view, the idea of stochastic jumps described by many 

modern pricing model, but, instead of being unknown, it is known. 

The probability that this  “jump” variable takes value 1 is modeled as a particular hazard 

function. 

Taking as a reference the variables used in this last model, I built a particular Markov 

switching model with time varying transition probabilities, where the means of the normal 

distributions depends on four variables and the probabilities of switching from a regime to the 

other depend on two of the them, trying in this way to account for both the linear and 

nonlinear effect of these variables on the process. 

I applied this model to the returns of 50 shares composing the Nasdaq 100 index, in the period 

2001-2010, and then applied the estimated parameters to the period 2011-2014 for an out of 

sample forecast, on which I built two different trading strategies, and I tested how good they 

performed with respect to a buy-and hold strategy of the index. 

The thesis is structured as follows: in Chapter 2, I present the theoretical background behind 

the model I developed; Chapter 3 explains in details the model I studied; Chapter 4 presents 

and comments the results, and Chapter 5 concludes.  
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2. Theoretical background 

 

 

2.1 Markov Switching Models 

2.1.1 Markov Chains and Martingales 

As explained by Ross (2006), starting from a set of non-negative integer values  

that denotes a particular state of the process X, at time n, we call Markov chain a process for 

which the state of the process in n+1 depends only on the state in n and is independent of all 

the previous realization. In formula: 

. 

Hamilton (1994) adds that , and represents all the transition 

probabilities in an (NxN) matrix called transition matrix   

 

It is to be noticed that the state of the process in n+1 is not known, and so the process follows 

what is described as a hidden Markov chain. 

A martingale, on the other hand, is (as defined by Lamberton and Lapeyre (2008)) a 

measurable sequence of real-valued random variables M, that, having information up to time t 

(defined as filtration ),  

 

 

2.1.2 Mixture distribution 

In every time t, the dependent variable (observable)  is thought to be drawn from a Gaussian 

distribution dependent on the state (regime) in which the process is in. 

So, if there are N unobservable regimes s in the model, the density will be 

 

for j=1,2,…N and  representing a vector of the parameters including  and . 

The unconditional probabilities that the unobserved state s will be equal to j at time t, are 

defined as 

    for j=1,2,…,N 
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and these probabilities are also included in the vector . 

From here we can calculate the joint density distribution: 

 

and also the unconditional, by summing all the possible outcomes of j: 

 

This last expression is vital to describe , because the states are not observable. 

Supposing that st is i.i.d. (independent and identically distributed), the log likelihood of the 

function will be 

 

maximized with respect to  and subject to the constraints that the sum of the  must be equal 

to 1 and that every  must be bigger than or equal to 0. 

By this algorithm, it is found , that is a vector constituted by the solutions of the following 

system of equations: 

       for j=1,2,…,N 

      for j=1,2,…,N 

   for j=1,2,…,N 

 

Since we do not know whether at t we are in regime j or in another regime, Ps are always 

between 0 and 1 and every  is a weighted average of the outcomes, proportional on the 

likelihood that in t we will observe regime j. 

The same goes for ,while  is just the number of periods in which we observe regime j on 

the total number of periods. 

In order to calculate the parameters, an iterative algorithm is needed, so Hamilton (1994) uses 

the EM principle developed by Dempster, Laird, and Rubin (1997). 

Starting from an initial value chosen arbitrarily for  , one can find , and then, 

with this value, calculate , , . 
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With these estimates, different from the first ones, estimate again , and with these 

new estimates, recalculate , , . 

The EM (which stands for Expectations and Maximization) consists in repeating this 

procedure until the difference between two estimations will be less than a particular threshold 

or, even better, the difference will be null. 

 

2.1.3 Inference 

Hamilton then explains the inference for the model in a more general case with respect to the 

i.i.d. case, in which   is determined just by , so in a model where it depends on “all the 

observation available”. 

The author calls  all the observation obtained up to time t,  a vector containing the 

conditional density in every time of the series, and  a vector containing all the inferences 

about the regime at time t, made with observations collected up to the same time 

. 

For the same reason, it is defined  as a vector containing . 

Assuming that  has no information about  once you controlled for , we can state that 

the conditional joint distribution of  and  is 

 

where  is also the jth element of . 

The density of  is 

 

where  is a column vector of ones, with a number of rows equal to the one of  (and this 

quantity be called N) and  is the vector element by element multiplication. 

Consequently, the distribution of  is 

 

and so 

 

Noticing that is an element of  and  is 

an element of , 
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while, to forecast  one step forward, we take the expectations conditional on , 

 

with  representing the transition probability matrix. 

Since  is a martingale, its expectations one period forward are zero, so the second term on 

the right hand side is null. 

 

2.1.4 Smoothed Inference 

The smoothed inference regarding the probabilities (called “smooth probabilities”) for the 

regimes at a certain time t is defined as  when . 

The algorithm to calculate these smoothed probabilities, as formulated by Kim (1994), is 

 

with  being the element by element division. 

To calculate the elements of this vector, you have to iterate the formula above from t=T, 

which value is just  obtained from the normal inference, moving backwards. 

Necessary conditions in order for this algorithm to be true are:  

 the regime follows a first order Markov chain; 

  

  is independent of . 

The probability  is then calculated as: 

 

where  is the maximum likelihood full estimator and  represents all the available 

information up to time T. 

So,  is just the ratio between the times the series was in state i and the number of times the 

series was in state j after being in state i, counted on the basis of the smooth probabilities. 

To start the probabilities algorithm, there are many options described. 

For example, you can set  equal to the unconditional probabilities vector; else, you can fix 

, where  can be a vector of nonnegative constants which sum is one; it can also be 

estimated with the maximum likelihood estimation, under the characteristic conditions of the 

probabilities. 
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With this smoothed inference, it becomes . 

Finally, the maximum likelihood at this point becomes 

 

where the element inside the  parenthesis is the derivative of the vector of the densities with 

respect to , which is a vector containing all the parameters defining the densities. 

The result is an (Nxk) matrix, where k are the number of elements in . 

Analysing the model containing also explanatory variables for the observed outcome, 

 

with  i.i.d.  and a different  for each regime of the model. 

The vector of the probability density function is then 

 

 

2.1.5 Forecast of the observable variable 

For what concerns the forecast of the series, there are N different forecast of y at t+1 

conditional on the regime (with N being the number of states in the model). 

Therefore, the forecast is simply the sum of all the possible distributions of the model, 

weighted by the probability that the series will be in that precise regime. 

To show it in vector notations, calling R a (Nx1) vector with all the forecasts conditional on 

the regime, we have: 

 

The reader should note that this forecast is not linear, since  is non linear on . 

 

2.2 Markov Switching Model with Time Varying Transition Probabilities 

 

The Markov Switching Model with Time Varying Transition Probabilities is a model 

developed by Diebold, Lee and Weinbach (1994).  
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Even though praising the Hamilton model, the authors stated that the fact that the probabilities 

of switching are not changing over time is an heavy constraint; therefore, they postulated a 

model where they let the probabilities vary over time depending on some economic variable. 

Using a notation similar to the Hamilton’s one,  follows a logistic 

function defined as 

 

with  being a (kx1) vector containing economic variables affecting the state transition 

probabilities, and  being a (Nkx1) vector containing the parameters linked to the k variables 

and the N states. 

To simplify the explanations of the model, as in Diebold, Lee and Weinbach (1994), I will 

take the case where there are just two states.  

Also in this model, to perform the maximization of the likelihood function, an EM algorithm 

is performed. 

Naming  a vector containing all the parameters (that will be shortly explained), and starting 

from an arbitrarily chosen value for each of them, we find the probabilities that in  the 

series is in a certain regime, and the probabilities that at every successive time the regime will 

be in state 0 or 1 after being in state 0 or 1 (4 probabilities for every t). 

Having calculated these values, we build up the expectations of the log of the jointed 

distribution function of s and y, and we iterate the algorithm up to the convergence of the 

maximization. 

The expectations formula is 

 

In this formula, the superscript (j-1) indicates the current best guess of the parameters, and  

and  are, with , the components of the vector . 
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In particular,  contains the parameters defining the probability distribution function, while  

is the long run probability  of . The underlining is the sign of “past history of the 

variable” from period 1 till the subscript (Diebold, Lee and Weinbach (1994)). 

While in the stationary case it is straightforward to calculate  from , in the nonstationary 

case, where there is no long run probability, it becomes another parameter to be estimated. 

All the probabilities must be calculated starting first from the filtered joint state probabilities, 

from which you calculate afterwards the smoothed joint state probabilities that are in the 

expectation formula. 

In particular, the filtered state probabilities are: 

 

where the numerator changes whether we are in the second period or in any other following 

period, and it is 

 

 

 

(with the first two elements of the right hand side given by the previous iteration, while the 

third element given by the result of the previous calculus for the filtered state probabilities), 

and the denominator being 

 

Once this calculation have been made for all the T time period, it is possible to calculate the 

smoothed joint state probabilities. 

Setting , you start the algorithm for  with 

 

and then, for every other  
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Calculate this algorithm up to reach , for which 

 

Repeat this procedure for every t from t=3, obtaining all the smoothed probabilities. 

From these, it is possible to obtain straightforward the smoothed marginal state probabilities 

 

Having calculated these probabilities, one can start with the maximization step of the 

algorithm. 

 (which are contained in ) and  calculations are straightforward, since their first order 

conditions are linear in the parameters. 

 

 

 

For the s, however, this is not possible, since the first order conditions are not linear. 

(I will show just the functions of . For , just substitute the different indexations of  

with the same of , and  with ). 

 

 

So, Diebold, Lee and Weinbach suggest performing a first order Taylor approximation of the 

s  

 

With these evaluations, the first order conditions become 
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Solving this equation leads to 

 

 

2.3 Hypothesis testing 

 

For the evaluation of the parameters in a maximum likelihood estimation, various methods are 

used. 

However, in order to perform them, two conditions have to be met. 

First, the series must be stationary; second, the parameters and the true value must be both 

inside the allowable parameter space and not on a boundary (for example, if we are talking 

about a probability p, p must not be equal either to one or zero). 

With large values for T, the distribution of the parameters can be approximated by 

 

 

with  being the true parameter and  the so called information matrix. 

To estimate the second derivative of the information matrix we have: 

 

In this way, we can approximate the variance covariance matrix by 

 

Another approximation of the information matrix is the so called outer product 
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where  contains all the information of the dependent variable up to time t. 

, following the definition of Hamilton (1994), is a “vector of derivatives of the log 

conditional density of the ith observation with respect to the elements of the parameter vector 

, with this derivative evaluated at the maximum likelihood estimate ”: 

 

and so, the variance covariance matrix becomes 

 

Hamilton (1994) also underlines the fact that, if it is not the case that every element off-the 

diagonal is zero, you have to calculate every element of the matrix in order to invert it and 

calculate the standard deviation. 

The author also underlines that both matrixes obtained with the two different methods are just 

approximation of the real information matrix, and there is no clear guidance on which of the 

two is the best estimator: usually researchers use the easiest to calculate between the two. 

 

2.4 Duration models 

 

The studies concerning duration are spreading out in modern economical studies. 

As defined by Wooldridge (2010), the duration is “the time elapsed until a certain event 

occurs”. 

In particular, Wooldridge (ibidem) focuses on the social sciences studies, explaining models 

constructed to describe, for example, the length of time the state of unemployment will persist 

for a given person, or how long will it be until a former prisoner will be arrested again.  

This type of analysis is called survival analysis and is usually modeled by the hazard function, 

which, according to Wooldridge, “allows us to approximate the probability of exiting the 

initial state within a short interval, conditional on having survived up to the starting time of 

the interval” (where the initial state is, for example, being unemployed or being out of prison). 

Calling T the times in which an individual leaves the “initial state”, we define the survivor 

function, starting from a cumulative distribution function F, as , 

where t is a certain value of T. 

The hazard function, therefore, is 
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Moreover, we can find different shaped hazard functions, depending on the process they are 

describing. 

If  is constant, there is no dependency between how much the individual has spent in the 

initial state and the probability of exiting from it, and F is driven by an exponential 

distribution. 

Otherwise , we will have duration dependence, which will be positive or negative if, 

respectively, the longer one stays in the initial states increases or decreases the probability of 

exiting from it; mathematically, if  is positive, we will have positive duration 

dependence, if it is negative we will have negative duration dependence. 

One of the most common functions used to describe the distribution of F is the Weibull 

distribution, for which: 

 

 

 

with  and  parameters, both nonnegative. 

The time dependency is given by the value of , since, whether it is bigger, smaller or equal 

to one, we will have positive dependency, negative dependency or an exponential distribution 

(no time dependency). 

For further information about duration models (for example , about data censoring or 

heterogeneity in the model), go to Chapter 22 of Wooldridge (2010). 

 

2.5 The Autoregressive Conditional Hazard Model  

 

In the paper of Gonzalez-Rivera, Lee & Mishra (2008) (that will later be explained in details), 

the model used to perform the analysis is the autoregressive conditional hazard (ACH) model 

by Hamilton and Jordà (2002), that was firstly used to forecast the probability of a change in 

the Federal funds rate target by the Fed. 

The authors themselves started from the autoregressive conditional duration (ACD) model by 

Engle and Russel (1998), that “described the average interval of time between events” 

(Hamilton and Jordà, 2002). 

The equation for the ACD ( , ) is: 
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where  is the length of time between the th and the ( th change in the  Federal funds 

target rate and  its expectations given its past observations. 

Moving from this equation, Hamilton and Jordà rewrote it in order to index the variables by 

calendar time rather than by the cumulative number of events (changes in the target): 

 

 

 

where  is the most recent event occurrence as of week  and  is a 

dummy variable which is equal to one if the event has occurred during week . 

In this way,  is equal to  when the last event occurred at time , and it remains the same 

up to the next event: for example, if the event, after occurring at , occurs at time ,  

will be equal to  from  to , when it will become equal to . 

Writing the equation in general term: 

 

 

 

where  is the date of the  most recent event as of date . 

Therefore, , using Engle and Russel notation, is equal to the last  completed as of 

date . 

In this prospective, the authors use  to represent the value of the  of the ACD equation 

associated with date , and wrote the ACD functions in “calendar time” 

 

Next, the authors define the hazard rate as the conditional probability of an event 

occurrence at time  given the information as of  ( ). 

 

 

It is clear that, if  only represents the dates of the previous events, the hazard rate will 

remain unchanged until the next event. Therefore, the expected time till the next event will be: 
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and, consequently, for the ACD, . 

The authors then assume, for the viability of the likelihood algorithm, that intervals are such 

that duration cannot be smaller than 1 and so is always between 0 and 1. 

As a generalisation  

 

where is a vector of known variables at t-1. 

For calculation purposes, they set the first component of  as a constant and normalise the 

relative parameter to 1 and, in the last equation for , they normalise   to 0. 

Calling the results of this equation  (in place of ), we can see that its expected value will 

not be the expected interval between events ( ), but instead: 

 

with starting values for the recursion: 

    for t=0,-1,… 

    for j=1,…, m 

 

To start the calculation, the authors take a value for  equal to the average duration, and 

calculate  from the previous equation. 

Then, they iterate  and calculate 

 

Setting , it is noticed that this quantity cannot be negative if we want  

never to be bigger than one, but still the function must be differentiable, and so, continuous. 

To ensure that this will be the case, Hamilton and Jorda use the following sigmoidal function: 

 

and calculate that the optimal value for  is 0.1. 

So, the ACH(r,m) specification becomes 
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After calculating the hazard, and knowing that the probability of the event occurrence given 

 is 

 

the log likelihood is 

 

that as to be maximised with respect to , with .  

   

 

2.6 The Varying Cross-Sectional Rank model and the Trading Rule by 
Gonzalez-Rivera, Lee and Mishra 

 

Gonzalez-Rivera, Lee and Mishra (2008) developed a nonlinear model that creates a 

particular trading rule, which performed even better than a buy-and-hold the market strategy 

during a particular period; this rule takes into account the weekly returns of a stock, and the 

rank of this particular return among a set of many other firms’ share. 

For simplicity, as in the paper, I will call this set market. 

Being M the number of firms in the market, i the index for a particular firm and y its weekly 

return, the ranking of the firm i at time t is 

 

where the one represents the indicator function. 

 is defined as the varying cross sectional rank (VCR) of firm i within the market, and its 

value is always between 0 (excluded) and 1 (included). 

Therefore, the rank of a particular share is dependent both on its returns and on the returns of 

all the other shares in the market. 

For example, if a firm experiences an increase in its returns, but is outperformed by its peers, 

we will see its ranking diminish; at the same time, if the firm has decreasing returns, but its 

peers are performing worse, it will see an increase in its ranking. 

The authors, then define the jump in the ranking  as 

 



 23 

So, J is a dummy variable that takes the value one when the ranking of the share experience 

an upward or downward movement of a median of the market. 

The authors specified also that the value of 0.5 is chosen arbitrarily, in order to make the 

jumps not so frequent but also to prevent the possibility that in some period the probability of 

the occurrence of a jump would be 0 (if the threshold is settled at 0.7 and , it is 

impossible that a jump will happen next period). 

The joint distribution of the jumps and the returns is given by 

 

with  being all the information available (filtration) up to time t-1. 

After controlling for any linear dependency of ARMA type between the rankings, in the paper 

it is detected also whether there is any temporal relationship that requires some ARMA-

GARCH modeling; in both cases, it is found that there is no evident dependency among the 

data, although, for what concerns the linear dependency, some of the shares have tendency to 

remain among the upper or the lower ranks broadly speaking. 

Calling  and  respectively the vector of parameters needed to estimate the first and the 

second function (and at the same time dropping the indexation for every firm), the 

optimization of the model is calculated via log-likelihood 

 

Since there is no loss of efficiency, the estimation of the two elements in the right hand side 

of the last expression (which we will call  and ) can be made separately. 

Regarding the first log likelihood, it can be easily seen that J is a Bernoulli variable, and so, 

for its distribution and log factorization, 

 

The probability of a jump next period is treated according to the ACH model by Hamilton and 

Jorda (2002), as 

 

In particular,  has the same notations and characteristics as  in Hamilton and Jorda, 

while  is 
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The second log likelihood, on the other hand, is treated as if there are two different 

distributions, and the one that is followed at a particular t depend on the occurrence of a jump 

 

So, the distributions are treated just as normal, without taking into account any skewness or 

kurtosis (which presences were not checked by the authors). 

The authors tested whether there is statistical difference about the distributions, so if the two 

means and the variances are different one from the other. 

It resulted that, while the means where statistically different, the null hypothesis of no 

difference between the variances was not rejected. 

So, to calculate them, the authors specify 

 

 

The variance is therefore treated as being one regardless the state, and follows a GARCH 

(1,1) process  

The part described until this very point is the one concerning the estimation in sample of the 

model, so the ones in which the log likelihoods are optimized with respect to the parameters. 

Afterwards, Gonzalez-Rivera, Lee and Mishra start explaining the out-of-sample evaluation 

of the model, where they built their trading strategies, based on the one step ahead forecast of 

the shares’ returns, calculated as 

 

On the basis of these estimations, the rankings are calculated, and then the investment 

decisions are taken according to different evaluations criteria and investment preferences. 

In details, in every period are chosen the K best performing shares (with K chosen arbitrarily, 

in the paper K is equal to 5) according to the forecast and the trading strategy chosen. 

Three different trading rules are compared: the VCR mixture trading rule, which is the one 

explained up to now, the VCR trading rule, where the means of the two different states are 

taken as being the same, and the Buy-and-Hold the Market trading rule. 

The trading strategies analyzed are six. 

The first ones is based just on the returns, and it is called ‘mean trading returns’: 
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where R is the last period of the in-sample period,  and  is the yield of the 

portfolio (which composition can change every week according to the selection of the K best 

performing shares), calculated as 

 

The second one is based on the Sharpe Ratio (to have a better knowledge of the Sharpe Ratio, 

Berk and DeMarzo (2011) and Elton and ot. (2014)) 

 

The third is similar to the second, and consists of a modified Sharp Ratio, where the excess 

return is not weighted by the volatility, but by the VaR (to see in details The VaR, Hull (2012) 

and Resti and Sironi(2007)) 

 

where  is the tail coverage probability. 

The last three models are VaR based, so they evaluate the allocation of capital to optimize the 

losses in case of unlikely events. 

For the calculation of the VaR, while for the Buy-and-Hold and in the VCR trading rule, the 

calculation is straightforward ( ), for the VCR 

mixture, since it is composed by a mixture of normal distributions, a more complex 

calculation method is needed, and so the authors implement the analytical Monte Carlo 

method of Wang (2001). 

So, the three defining equations are 
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where MRC is the minimum required capital as set by Basel (see Resti and Sironi (2007)), 

while  is “the difference between the nominal and empirical lower tail 

probability” (Gonzalez-Rivera, Mishra and Lee (2008)). 

The best trading rule will be the one that minimize the values of the three equations (while for 

the formers the best trading rule was the one that maximized them). 

In detail,  looks for the portfolio that minimizes the capital to put aside, the second detects 

which one has the  “predicted tail coverage ability”, while the last one (“tick function”) gives 

the best quantile forecast. 

To test whether this trading rule is really better performing  with respect to the others (and it 

is not just a matter of case) the authors performed the “reality check” by White (2000) as 

modified by Hansen (2005). 

This check, starting from a benchmark, detects the differences between this benchmark and 

“the values of evaluation produced by the other trading rules” (Gonzalez-Rivera, Lee, Mishra, 

2008). 

If the null hypothesis is rejected, it means that one trading rule is producing a better value 

than the benchmark (to see the complete explanations of the tests, go to the original papers). 

The results are strongly in favor of the VCR mixture trading rule, which outperforms the other 

two trading rule in five of the six trading strategies (being at most as efficient as the Buy-and-

Hold), with a p-value that is equal to one in the White test and over 0.9 in the Hansen test. On 

the other hand, in the  trading strategies, the results are not in complete favor of the VCR 

mixture over the Buy-and-Hold, but still the null hypothesis of the benchmark not being 

outperformed is not rejected. 

Finally, the authors provided an analysis of the effective returns of the portfolio: while the 

Buy-and-Hold strategy does not require particular transaction costs, the VCR mixture trading 

rule constructed portfolio has a composition that can potentially change on a weekly basis, 

with a high turnover degree. 

So, supposing a 100% turnover degree (which may not be far from the real percentage) and 

the cases where the transaction costs are 0.1% and 0.2%, they calculate the net return as 

 

It resulted that the VCR mixture trading rule is concretely outperformed just with c = 0.2% 

and in periods of bull market. 



 27 

But, since these transaction costs, on a compounded calculation, are 10.95% per year, 

Gonzalez-Rivera, Mishra and Lee stated that this level of costs are “exorbitant by any industry 

standard”, and so that they shouldn’t be a deterrent to exploit the trading rule. 
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3. Description of the model developed 

 

 

 

The model I developed to describe the returns of the 50 shares in the in-sample period and to 

build a trading rule in the out-of-sample period via a static forecast, is a Markov switching 

model with time-varying transition probabilities similar to the one of Diebold, Lee and 

Weinbach (1994). 

On the other hand, I used (to construct the mean of the log-likelihood function) independent 

variable that were similar, or even identical, to the ones used by Gonzalez-Rivera, Mishra and 

Lee (2008). 

I performed the study on a dataset of 50 shares included in the Nasdaq100 index, which is a 

weighted index of the 100 biggest non financial firms quoted on the Nasdaq market; the 

weights in the index are based on the capitalization on the market and on some other rules 

accounting for the influences of the major components.  

The shares chosen are the ones that had remained the most in the index in the period 2001-

2010 and that were already listed as January 1
st
, 2001. 

The equation characterizing the model is 

 

where the indicators j and i stand for, respectively, the firm considered and the state i in which 

the shares is at time t. 

All the data are taken on a weekly basis. 

The model has two different regime, which, according to the literature, can be thought of as a 

bull and a bear period for each share. 

 is the return that the share experienced between week t-1 and week t; taking the data from 

Yahoo Finance, every week value of the share is calculated as the average of the closing 

prices of the days of the week, and then the return is calculated as the log of the ratio between 

this average and the average of the previous week. 

On the value of  obtained in this way are calculated the values of , that are the ranking of 

the shares among the market, and are obtained in the same way in which Gonzalez-Rivera, 

Mishra and Lee calculate them, and equally for , a binary variable which is 1 if between t-1 

and t the value of z increased or decreased by 0.5 or more. 

, on the other hand, is the distance at t from the last , so if , then =1, and, if we 

don’t experience a jump in the ranking at t, =2, and so on until the next jump. 
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Since their values are bigger than the realizations of the dependent variable, to perform the 

optimization, I scaled both  and , dividing the first one by 10 and the second by 1000. 

Lastly,  is the log weekly return between week  t-1 and t (calculated as ) of the 

Nasdaq composite index (.IXIC). 

Including this last variable makes the model resemble a little bit the APT (Arbitrage Pricing 

Theory) model of Ross (1976). 

Anyway, the APT includes in the regression all market indices (called “factors”) which are 

common to all the shares, so the realizations of the explanatory variables of the regressions 

are the same. 

On the contrary, in this model the values of the independent variables are different for every 

share. 

Moreover, since none of the other three variable affects the return of the market index, it was 

no necessary to net the return of the index from the influences given by the other regressors 

(to have a deeper knowledge of the APT model, Elton and ot. (2014)). 

The probabilities are calculated, as in Diebold, Lee and Weinbach (1994), with a logit model, 

with two independent variables, which are  and . 

So, these two variables have both a linear and a nonlinear effect on the calculation of the 

yields. 

In a paper where he analyses the conditions necessary to develop a well specified Markov 

switching model with time varying transition probabilities, Filardo (1998) explains also that 

there are no misspecification connected to including the variables both in the regression and 

in the switching part. 

The computational part is made through the usage of the software Matlab, using the script of 

Perlin (2010) as modified by Ding (2012) to include the time varying transition probabilities. 

The function used to estimate the model is MS_Regress_Fit_tvtp. 

This function, however, has a drawback: in the Estimation part of the EM algorithm, the 

smoothed transition probabilities are not calculated, and so all the model is based on the 

filtered transition probabilities; the smoothed transition probabilities are calculated just at the 

end, to plot the probabilities throughout the in-sample period. 

This is because the script is not following precisely the model of Diebold, Lee and Weinbach, 

but the one in Perez-Quiros and Timmermann (2000), which, on their own, took it from Gray 

(1996), and these models stop the estimation part at the filtered probabilities. 
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Even though in Perez-Quiros and Timmermann the study is made on firms (so it could be the 

case that this model is more suited to study shares’ returns), a further study could be 

performed to see how the results change including the smoothed transition probabilities.   

The estimated parameters are then tested using the script getvarMatrix_MS_Regress_tvtp, 

which leaves you the choice to select whether the variance-covariance matrix will be 

calculated with the Hessian matrix, or the Outer product matrix. 

I always selected the Hessian matrix, which is the default method in the script. 

In case the script couldn’t find a proper optimal solution (so in the cases in which the standard 

deviations were either null or infinite), I deleted the variables in question from the model of 

the particular asset, by either substituting them with a constant or not including it at all. 

Anyway, the cases were a few, and I could compute more than 90% of the shares with the 

complete equation. 

After finding the best estimates for all the parameters, I calculated the forecast, on which 

values I based the trading strategies. 

The strategies were made on a weekly basis, thinking as to made the decision about the 

investment during the weekend, buying them at the opening on Monday morning and selling 

them at the closing of Friday. 

The forecast performed is static, using the parameters estimated in the in-sample period and 

changing each time the independent variable realization observed at the relative time. 

In this way, there were no computational drawbacks about z and Ndq, since the values in the 

model were calculated with a lag. 

There was no much difference also regarding D, since, even though the values are taken at the 

same time of the return realization, you already know with one week in advance its value: if 

you calculate that the previous week a jump in the ranking has happened, you know that next 

week D will be equal to one; otherwise, its value will be the previous value plus one. 

On the opposite, for J, since its realization is registered at the same time of y, you don’t know 

at t-1 which value will it take at t. 

So, in the out-of sample period, I used a proxy for it, which was the inverse of the average 

duration registered in the in-sample period, calculated as the number of jumps observed 

divided by the number of weeks in the in-sample period; therefore, it worked as a constant 

throughout the forecast period. 

This study was performed with the apposite script of the Ding package, 

MS_Regress_For_tvtp. 
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The script gives as output the forecasted mean and standard deviation for the following 

period. 

As in Gonzalez-Rivera, Mishra and Lee (2008), I constructed the portfolio to invest in 

choosing the best five performing assets according to the one period forecast and based on 

two criteria: the highest returns and the highest Sharpe ratio. 

Since in the out-of sample period (2011-2014) the risk free interest rates were almost zero, to 

compute the Sharpe ratio I used an approximation and calculate it just as the ratio between the 

yield and the standard deviation. 

Also the portfolio returns are calculated in the same way as in Gonzalez-Rivera, Mishra and 

Lee (2008) as the arithmetical average of the yields realized by the assets chosen. 

The difference is essentially the percentage of assets chosen on the total dataset analyzed. 

In fact, the study I performed is just on 50 shares, and so my method chooses the best 10%, 

against a choice of almost the best percentile performed by the other authors (5 over almost 

500). 

 

Since we have two different regimes, so two different distributions, I would expect the 

variances of every state to have a small value compared to the returns themselves. 

Looking at the literature, for the ranking and the Nasdaq, I would also expect values of the 

same order of the returns (0.1), and for the first one at most one of the two values negative (in 

the “bull” state it must be positive, since the returns are positive, and the ranking is always a 

positive number). 

On the other hand, I would expect negative or very low values for the parameters related to 

the duration, since the longer one share is stuck in the same ranking, or doesn’t change it 

much, the more I will expect a contrary movement. 

For what concerns the jumps, I would expect a positive value for the “bull” state, and a 

negative value for the “bear” state: this is because the jumps used are at the same time frame 

of the yields, and so a jump in the ranking would mean that the asset has decreased of a 

median its position if it was among the best, or that it has increased if it was among the worst. 

I do not know what to expect from the coefficients related to the variables that affect the 

probabilities, because there are, logically, contradicting signs related to the effect of an 

increasing in the variables on the probability of a switch from a regime to the other. 

In the next chapter, I will present the result of the study I performed. 
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4. Results 

 

 

I performed the study on a time frame of 521 weeks, so calculated on 520 returns (on the first 

week, I calculated just the average of the adjusted closing prices, which served as the 

denominator of the logarithm for the first return). 

As already underlined, to get a consistent outcome, I scaled the variables to make them 

consistent with the yields. So I divided the values of the ranking and of the duration, 

respectively, for 10 and for 1000. 

Therefore, the real effect of the variables on the mean or on the probabilities is obtained by 

dividing the parameters for the same amount. 

In the Appendix II, I will present the full results, with the values of the parameters for each of 

the shares in the study. 

Here, I will show the mean and the median value for each parameter. 

I tried to keep all the variables in the study for every asset in the sample, but unfortunately, it 

was not possible for each asset, because sometimes the optimization could not find an 

optimum value for one particular parameter. 

In these cases, I tried first to substitute the relative variable with a constant (that, for the 

variables affecting the mean, works as an intercept), and, when even this solution was not 

viable, I totally cancelled the variable from the estimation. 

For, this reason, in the resuming table here below, I showed also how many times the variable 

was used for the estimation, and in the parenthesis how many times it was substituted with a 

constant. 
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Table 1 

 
Average Value 

Median 
Value 

Presence (as a 
constant) 

Number of significant 
parameters 

with both states 
significant 

State 0 Distrib 0,001142026 0,00081111 50 50 50 

State 1 Distrib 0,003893714 0,0031752   50   

z State 0 0,16859253 0,141655 50 40 16 

z State 1 0,15397436 0,16074   22   

J State 0 
-0,0049177   
(-0,026625) -0,0044725 49(1) 27(1) 22(1) 

J State 1 
0,02931818  

(-0,0094198) 0,014375   26(1)   

D State 0 -0,4297 -0,302425 50 14 5 

D State 1 -2,7606 -1,75565   17   

Ndq State 0 0,02282498 0,0623475 50 12 4 

Ndq State 1 0,24849988 0,180805   19   

z Px State 0 87,39228 16,86500 50 26 12 

z Px State 1 -77 -9,9159   27   

D Px State 0 
502,329655 

(2,2975) 76,011 48(1) 19(1) 4(0) 

D Px State 1 
-121,32584 

(0,59387) -46,536   11(0)   

Table 1: Details of the parameters estimated 

 

Talking about the inference, the values calculated are at the 5% level. In the appendix, I 

formatted the cells of the inference for which the values were under the confidence level with 

green background and dark green numbers. 

The different variances were significant for each asset in the sample, showing strong results in 

favor of a double regime structure for the study of assets’ returns. 

The variable that had at least one significant parameter for almost all of the shares (46 out of 

50) was the ranking; on the other hand, it was significant for both of them in less than one 

third of the sample (16). 

The jumps variable, on the contrary, was the one with the highest amount of parameters 

significant for both states (22), a percentage really high considering that the shares for which 

it has at least one parameter significant are 31. 

The duration parameters, among the cluster, are the least significant: just one asset out of two 

is significant in at least one state, and just five are significant in both states. 

There are also not much Nasdaq-related parameters significant: 27 assets have at least one 

state parameter significant, and 4 (the least among the four variables) are significant in both 

states. 
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This is surprising to me, because many models are based on the relationship between the 

market and the specific asset (in the CAPM in particular, but also the APT that may use, 

among the indicators, the market yield netted from the effects of the other indicators). 

To recap, the variable with the highest number of assets that had at least one parameter 

significant is the ranking, while the one with the highest number of both parameters 

significant is the jump. 

Talking about the probabilities-related variables, the quantity of significant variables is quite 

similar to the number of the independent variables significant, just a little bit lower. 

However, just in three cases for the ranking and no one for the duration, if both parameters are 

significant for the linear part, are also both significant for the probabilities; such a thing 

questions the model for what concerns the account for both linear and nonlinear effects of the 

variables on the model. 

Moreover, just respectively 37  and 10 times, when a particular parameter is significant in one 

state for the mean, it is also significant for the probabilities in the same state (37 out of 100 

and 10 out of 96, because it is calculated for each of the two regimes of every one of the 50 

shares for the ranking, while for the duration two assets are not included since in the 

probability part is either calculated as a constant or totally excluded). 

To test whether the fact that the variables with the highest significance are the first one among 

the independent variables (and so MATLAB maybe tries with the first, and then fixes it to 

calculate the second, and so on), I tried on some of the shares to recalculate the model 

changing the order of them, but the results do not vary, so I can say that the variables that are 

more significant in general are truly the first two. 

It is also interesting to see that the assets for which both the ranking and the jumps have the 

two parameters significant are 12, so more than one fifth of the sample. 

On the other hand, none of the fifty assets had all the parameters relative to the logistic 

function significant, and just in some cases we find that three out of four are. 

The script that I used to calculate the model also plotted the yield of the asset, the standard 

deviation and the smoothing probabilities (so the probabilities that at t we will be in state 0 or 

in state 1). 

I will not show all the results, but just the most significant ones. 
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Fig. 1: Plot for ORCL (Oracle) 

 

This is the plot coming from the script for the share of Oracle, which, among the fifty, is the 

asset with the highest number of significant parameters (12 out of 14). 

The returns fluctuate around the zero, with some peak that do not reach the positive or 

negative threshold of 0.2. 

The standard deviation also fluctuates, around a value of 0.025, never falling under 0.02 and 

never reaching 0.035. 

The smoothed states probability are never flat, and have the most noisiest plot in 

correspondence of the highest values for the standard deviation. 

There are two possible explanation for this phenomenon. The first is that, when the variability 

is high, there are higher chances that the process will switch regime, with respect to moments 

when the standard deviation is low, and so it is expected that the series will remain stable in 

the same regime. 
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On the other hand, it seems that the probability of being in state 1 reaches its maximum in the 

exact moment in which the volatility is higher, and so this could be a sign that, instead of 

being driven by the different values in the return, the regimes are driven by the volatility of 

the asset. 

This would make all the assumptions made on the parameters meaningless. 

To see whether this is the case, I will present other assets’ plots and compare them. 

 

 

Fig.2 Plot for GILD (Gilead Science) 

 

The plot over here shows the three characteristic elements for Gilead Science, which was 

computationally the most “challenging”, and for which, to reach a complete optimization, I 

had to net from the variables the duration present in the logistic function, and so I have just 

one variable affecting the probability of switching. 

The plots shows a totally different picture with respect to the one of Oracle. 

Here, the yields are also fluctuating around the zero, but we can divide a first period, in which 

the returns are moving a lot, from a second period, in which they are much more stable. 
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This is shown also by the standard deviation, where at first the series takes a value of 

approximately 0.05, while in the second part it is stable around 0.03. 

On the smoothed state probabilities, this is surprisingly reflected by a stable scheme, with 

high probability of being in state 2 (the one called in the tables state 1) in the first period, and 

high probability of being in state 1 (state 0) in the second period. 

In particular, looking at the values for the parameters, also the variance for state 1 is more 

than three times the variance for state 0. 

So, for this asset, it seems that the two states are defined by the volatility rather than by the 

value of the returns, and so if we are in state 1, we are facing periods of high volatility for the 

asset. 

Looking at the inference of the other parameters, there are just three out of ten significant, but 

both the parameters related to the ranking are significant (one of the two even at the 1% 

level), which could indicate that the model is not specified in a wrong manner. 

 

 

Fig. 3 Plot for SPLS (Staples) 
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Over here, it is shown the plot for Staples, which is the asset with less parameters significant, 

which are just the two variances. 

As can be seen both by the returns and by the standard deviations plot, there is a long time 

frame of “calm” period, broken two times by moments of high volatility. 

Looking at the smoothed state probabilities plot, as in the one of Gilead Science, the values 

are quite flat, and the two states are much more defined by the volatility rather than by the 

returns. 

To have another proof of the fact that the regime are volatility-driven, I will also plot the 

results for a well known company, Apple. 

 

 

Fig. 4 Plot for AAPL 

 

For this asset, the returns are less stable, and the variance fluctuates a lot. 

What can be seen is that, even for Apple, the moments in which, the value for the probability 

that the process is in state 1 (state 2 in the figure) is close to one or is equal to one are the ones 

in which the volatility is high. 
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This is valid both for moments when the returns are high (as in the point close to the peak 

around t=130) and moments when the returns are strongly negative (as in the point close to 

the lowest value of the series, with t ~405). 

I can conclude that, contrary to what the literature postulates, the two states of the Markov 

Switching are not in the sense of “bull” and “bear” period, but in the sense of “volatile” and 

“calm” periods. 

Having enlightened this, it is also easier to analyze all the parameters. 

All the variance parameters are significant because, in fact, they are the ones defining the 

regimes. 

Moreover, states 1, so the one for period with high volatility, as a mean value in the sample 

which is three times bigger than the mean value for state 0. 

The average parameters for both the ranking and the market are, on average, not so different 

one from the other. 

Obviously, there are no cases for which the ranking related parameters are both negative, and 

rarely one of them is. 

Even though in many cases the difference between the parameters is proportionally big, on the 

average this is not shown because in some cases the highest parameter is the one related to the 

volatility regime, and in other is the state 0 related one. 

The Nasdaq related parameters, on the other hand, are often either close values or the 

parameter related to state 0 is negative, showing that, in times of low volatility, there is a 

negative correlation between the market and the assets. Just in few cases (as for Oracle), the 

correlation is negative in times of high volatility, while positive in the other regime. 

The average values for the jump parameters are also quite low. 

Therefore, a lot of times the parameters are significant for both states is due to the fact the 

jump dummy is itself an indicator of volatility. 

Most of the shares have at least one of the duration-related parameters negative, especially the 

state 1 parameters. 

This is a sign that, the longest one share does not make a big shift among the ranking, the 

highest will be the negative impact on its return in case the asset is in a high volatility period: 

therefore, if the stock does not move with respect to the cluster, but it is facing high volatility 

period in the market, we will expect lower returns. 

Looking at the values of the parameters affecting the probabilities, we see that the means and 

the average are both negative for state 1 and positive for state 0. 
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The meaning of these results is that the highest values of both the ranking and the duration, 

the highest the probability, if we are in state 0, that the regime the next period will still be 

state 0; on the opposite, the highest they are, if we are in state 1, the highest the regime will 

switch to state 0 the next period. 

Anyhow, looking carefully at the results for each share, we can see that some results are going 

on the opposite direction of the average results.  

To test more carefully these results, I performed the calculation of mean just on the 

parameters which are significant at the 5% level. Obviously, I did not report the standard 

deviation values, since they are all significant. 

These are the results: 

Table 2 Average Value 

z State 0 0,19065615 

z State 1 0,323389091 

J State 0 -0,007730862 

J State 1 0,045805103 

D State 0 -0,6990 

D State 1 -5,2908 

Ndq State 0 0,116981667 

Ndq State 1 0,483390526 

z Px State 0 68,61058 

z Px State 1 -150 

D Px State 0 266,6004737 

D Px State 1 -324,1048182 

Table 2: Average value of the significant parameters 

 

Looking at the independent variables, we can see that the spread between values is wider. 

The ranking parameters are both bigger, but the increase in the high volatility state is larger; 

therefore, an increase in the ranking always has a positive effect on the mean, but in period of 

high volatility this effect is bigger. 

For the Nasdaq parameters, the increase in the spread is caused both by a smaller average 

parameter for state 0 and a bigger for state 1 (which is almost doubled), but both are positive, 

and so in any case an increase in the market yields cause, on average, an increase in the 

asset’s returns. 

Also for the average jumps variable the reasons for the increase in the spread are the same, 

but in this case the state 0 is a negative value; so, when a jump in the ranking occurs, there 

will be an expected reduction in the returns if we are in a low volatility period, and an 

increase if we are in a high volatility moment. 



 41 

On the other hand, the duration parameters are both smaller, but the bigger decrease is 

registered by the already lower value for the high volatility regime, which is almost doubled: 

therefore, a longer period without jumps in the ranking will in any case, on average, effect in 

a negative way the returns, but in moments of high volatility, the expected decrease will be 

higher. 

Turning to the probabilities related parameters, their values, on average, decreased. This 

means that, looking just at the significant parameters, on average, the persistency effect of the 

variables in the state 0 is lowered, and the switching effect for state 1 is widened: an increase 

in the ranking or in the duration will lead to an higher probability of remaining in state 0 or 

switching to state 0 (depending on which state we are right now), but, with respect to the total 

model average effect, the average effect of the significant parameters makes less likely to 

remain in state 0 and more likely to switch from state 1 to state 0. 

Nonetheless, we still find, even in the “restricted” group of parameters, some that have a 

contrary effect with respect to the most of them. 

This could either mean that there is no general rule for describing the class of assets, or that 

there are some mistakes nested in the model. 

But in my opinion, the first case is more likely: just thinking about the CAPM model, some 

assets have a positive and some other a negative beta, depending on how the stock reacts to a 

movement of the market; so, it is not surprising to see some negative parameters for the 

Nasdaq variable. 

Also, if a share sees brief period of high volatility alternated by brief period of low volatility, 

both parameters in the logistic function related to the duration should be negative, and that is 

also what happens in the Apple case. 

Looking at the possible improvement of the model, the standard deviations are calculated just 

as parameters, as it happens in a normal likelihood. 

In most part of the recent literature, it is proven that the calculation of the volatility for the 

shares return is best performed with a GARCH (1,1) model, as in Gonzalez-Rivera, Mishra 

and Lee (2008) (for a study on various Garch models and their predicting ability, Franses and 

Van Dijk (1996)). 

So, implementing a model where the variance follows a GARCH (1,1) could be a good further 

test to implement a variation of the model. 

4.1 Results for the strategies based on the forecast 
 

After finding the parameters for each asset, I performed the forecast for the returns. 
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These forecasts are static, so the parameters are the optimal one from the model, and the 

variables takes not the estimated value, but the value they effectively assumed in the relative 

period. 

There were no problems for any variable except for the jump. In fact, the jumps are calculated 

in the model at the same lag of the dependent variable, but in the forecast period, you do not 

know in advance the value of J. 

To solve this problem, I used a constant throughout all the out of sample period, which is the 

inverse of the average duration between two jumps, or the probability that a jump will occur. 

The forecast are always one step ahead both for the returns and for the standard deviation. 

Starting from this forecast, I used two different strategies to select on which shares to invest. 

Among all the shares studies, I selected the best 5 with the highest value according to these 

evaluations. 

The first strategy selects the assets just on the base of the forecasted return: the five assets 

with the highest forecasted returns are chosen to form the portfolio for the next week. 

The second is based on the ratio forecasted mean over forecasted standard deviations of the 

asset, so a Sharpe Ratio with zero risk free yields (an assumption which is not far from the 

truth in the years on which the forecasts are performed). 

Anyhow, the calculation of the standard deviations is made just asset by asset, and the 

correlations between assets are not accounted for in the calculation of the standard deviations, 

so the “Sharpe Ratio” strategy selects the five assets that per se have the best ratio. 

To compare the results of these strategies, I compared them with a Buy and Hold strategy 

performed on the Nasdaq 100 index, to which all the stocks have belonged for long periods in 

the time frame analyzed (2001-2014). 

To show how the series evolved through time, I calculated week per week the returns of the 

three strategies, and showed them in Appendix III, together with the value of the capital 

invested. 

The strategies I performed are based on a full week holding of the assets; therefore the returns 

are calculated as if I bought the assets on the market opening on Monday morning and sold 

them at the close of Friday. 

On the other hand, since for the Buy and Hold strategy the index (and so, in reality, a passive 

managed portfolio mimicking the returns of the Nasdaq 100) is kept throughout the whole 

period, the returns are calculated as the closing on Friday over the opening of Monday for the 

first week (January 3
rd

-January 7
th

, 2011), and then as the closing price of Friday over the 

closing price of Friday of the previous week: so, in the calculation of the returns, there is a 
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little difference caused by the difference in the strategies themselves. Anyhow, numerically, 

they are all calculated in the logarithmic form. 

To be consistent with the in sample period, the values of the independent variables used to 

perform the forecast (ranking, jumps, duration, the Nasdaq Composite index returns), are all 

computed on the logarithm of the weekly average of the closing price over the same average 

of the previous week for each asset. 

Therefore, there is a difference between the calculation of the effectively realized returns and 

the variables that are used to select the asset on which to invest. 

All in all, these strategies are based on variables calculated on general trends more than on 

oscillation of the prices, and then try to invest based on these general-trend following 

statistics, but are subject to price oscillation due to the rule of investing-disinvesting in 

particular moment of the week. 

This is a drawback of the strategy as it is here calculated. 

Obviously, a more accurate study on the results could lead to form prediction on the expected 

returns (maybe on the level of the single asset), and therefore allow creating more complex 

strategies, with cap to disinvest when the asset is thought to have reached its weekly peak and 

floors to disinvest if the loss is becoming too heavy. 

The portfolios built on the forecast from the Markov switching are equally weighted, so every 

asset is worth 0.2 of the whole portfolio. Therefore, the weekly returns (as in Gonzalez-

Rivera, Mishra and Lee (2008)) are just the arithmetic averages of the weekly returns of the 

single assets. 

This is not so unrealistic, given the elevated number of possibilities given by all the financial 

instruments present in the markets. On the other hand, these types of possibilities usually 

come with a cost, which are not accounted for here. 

In the calculation of the value of the portfolio, and so the capital invested, the numbers are 

relative to an initial investment, as of January 3
rd

 2011, of 1 million of dollars, and the data in 

Annex III and in the schematic tables, are all expressed in million of dollars. 

Here below, I am showing some schematic results of the three strategies 
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Table 3 

 
Nasdaq Best Returns Best Sharpe 

Total Return 79.52% 20.12% 22.69% 

Annualized Return 15.75% 4.69% 5.25% 

Avg Weekly Return 0.31% 0.12% 0.13% 

Highest Invest. Value 1.8396 1.2426 1.2618 

Lowest Invest. Value 0.8984 0.9242 0.8338 

Highest Weekly Ret 7.40% 7.94% 7.10% 

Lowest Weekly Ret -7.40% -10.03% -9.86% 

Avg Win 1.75% 1.90% 1.68% 

Avg Loss -1.64% -2.13% -2.31% 

Returns >5% 6 6 6 

Returns <-5% 3 7 8 

Weeks with Inv<Init. Inv 18 36 104 

Weeks with Ret<0 89 92 81 

Value Strategy>Value Nasdaq   40 18 

Return Strategy>Return Nasdaq   93 97 

Weeks where every Ret>0   26 27 

Weeks where every Ret<0   23 21 

Value<1 but >Nasdaq Value   6 2 

Returns<0 but >Nasdaq Ret   24 24 

Table 3: Results of the investment period 

 

Applying the strategies, not all the assets in the study were invested in. 

In particular, Cintas, Intel, Microsoft and Staples were never selected by anyone of the 

strategies; looking at each strategy, on the other hand, the Return based strategy never invests 

in Cisco, Expeditors, Gilead Science, Oracle, Paychex and Dentsply, while the Sharpe based 

strategy never picks Adobe nor Biogen. 

Therefore, of the all cluster of assets, the first strategy selects at least one time just 40 stocks, 

while the second strategy 44. 

The overall return of the Nasdaq 100 is between the three and the four time bigger than the 

return of the other two strategies, which slightly differ in favor of the Sharpe strategy. 

Once annualized, the difference is even more evident between the first column and the other 

two. 

The difference between the Returns and the Sharpe strategy is given by the final value itself 

rather than by the history of the two strategies, as can be easily spotted by the difference in the 

average returns. 
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The two values are almost identical (they differ of 0.01%), while, even in this category, they 

are dominated by the buy-and-hold the market, which has an average returns almost three 

times bigger. 

Just looking at the highest and lowest investment value, it seems that the Return strategy is 

the safest one, having a higher minimum point and a lower maximum point. But paying 

attention to the highest and lowest weekly returns, is easy to notice that the other two 

strategies neither have such good (7,94%) nor bad (-10,03%) results.  

Therefore, the fact that the value of the investment in the Return strategy is not as volatile as 

the other two is probably given just by the particular sequence of positive and negative 

results. 

The Nasdaq 100 is perfectly symmetric with respect to the 0 for the higher and lower returns 

(+/- 7.40%), and it is performing better than the Sharpe strategy in both categories. 

To sum up, the highest returns are not so different among the three strategies, while the lowest 

are, with the Nasdaq that has a gap of more than 2% with the best of the two strategies (the 

Sharpe), which, in any case, is not that far from the worst one. 

Looking at the average returns in case these are positive or negative, it is noticeable that the 

main difference is made by the average loss. 

Between the two strategies based on the Markov switching, the Return strategy outperforms 

the Sharpe in both categories, and in the wins is even more efficient than the Nasdaq. 

But on the loss side, the Nasdaq has a value which is almost 0.5% and 0.7% higher 

respectively than the Return and the Sharpe strategies. 

This is likely due to the higher diversification of the total index with respect to the portfolio 

constructed by the two strategies.   

A sign of the low diversification of the portfolio is also given by the number of weeks in 

which the returns of the assets in the portfolio are all either negative or positive. 

As you can see, almost one fourth of the times there is no compensation of the results. And 

even if this is eventually what we would like to happen on the positive side (26 and 27 times), 

since what we are looking for is an higher return, on the other hand when 23 and 21 times it 

happens on the negative side, we are just losing money. 

In Appendix III, I wrote with character red the worst value both for the capital and the returns, 

while the best are colored in green. 

Every strategy reaches its peak value on the same date, November 28
th

, 2014, while the worst 

are all in the second half of 2011, with the Buy-and-Hold being the first one (August 19
th

) and 
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the Sharpe being the last one (December 16
th

, anyhow just three weeks from the Return 

strategy). 

On the return side, instead, all the strategies have their worst week on August 8
th

, 2011, while 

the best results are all different, with the Nasdaq and the Return strategy that registered their 

best week respectively in October and September of the same year, while to see the Sharpe 

strategy one we have to go to August 2014; the fact that the best results happens late in the 

sample may be one of the main reasons why the Sharpe strategy, at the end, has a better return 

than the Return strategy. 

To control for the weights of the “rare” event, I counted for the weeks in which the returns are 

very high and the weeks in which the returns are very low. This is because sometimes the 

overall results are just determined by really positive or really negative trade, which undermine 

a good strategy or bust the results of a negative one. 

I took as a threshold a level of positive and negative 5%, which is really high for a weekly 

return on the market. 

The results showed that the big positive events happened an equal number of times for all the 

three investments, while the negative ones for the Buy-and-Hold are less than a half with 

respect to the ones of the other strategies. 

Even this result is likely to be given by the higher degree of diversification, but if a negative 

event thought to be rare happens two times more in one strategy with respect to another, it is a 

clear signal that the first one is not really efficient. 

Analyzing the negative returns, all three strategy had a high number of weeks in which they 

lost money, but at the same time, all of them were positive more than half of the weeks in the 

sample. 

In this category, the best one is the Sharpe strategy, which had more or less ten weeks 

negative less (and so ten positive more) than the other two strategies. 

This is probably the main reason for which the Sharpe strategy, in the end, is performing 

better than the Return strategy, also because, looking at the number of weeks in which the 

capital is below the initial investment, the results for the Sharpe strategy are dramatic. 

In fact, if the investor had randomly chosen a week in which to withdraw the investment, 

there would have been 50% of probability that he would have lost some money, since 104 

weeks over 209 the level of the investment is below the threshold of 1 million. 

Also in this category, the Buy-and-Hold strategy is the best performing one, with just 18 

weeks under the level of the initial investment. The Return strategy, with its 36 weeks, has 
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two times the number of losing weeks with respect to the Buy-and-Hold, but ranks well above 

the Sharpe strategy (almost one third its quantity). 

I performed also some statistics on the comparison of the two strategy based on the one period 

ahead forecast of the Markov switching with time varying transition probabilities with the 

But-and-Hold strategy, keeping this last one as the benchmark. 

First, I compared the weeks in which the value of the investment of the two strategies was 

bigger than the value of the investment in the Nasdaq 100. 

Of the whole period of 209 weeks, the Return strategy capital was higher than the Buy-and-

Hold strategy result just 40 times, which is anyway better than the Sharpe strategy one, that 

had a higher value just 18 weeks. 

Looking carefully at the values, we can see that the value of the capital invested in the 

strategies is higher than the capital invested in the Nasdaq just in the first year, more precisely 

in the first 40 weeks of the out of sample period: therefore, the time frame in which the 

forecast performs better is the one just following the end of the in sample period. 

Especially for the Return strategy (that, at the beginning, performs better in each one of the 

first forty periods), this should not be a random outcome. 

As stated by Granger and Terasvirta (1993), even if the model is a good fit in the in-sample 

period, it will produce a good forecast (in the book it is compared with normal linear model, 

so it would be a better predictor than a forecast based on a linear model) only if the nonlinear 

characteristics of the series are still present in the forecasted period, reducing in this way the 

forecast errors. 

Therefore, if the nonlinear elements are differently characterized or shaped, the model won’t 

be anymore a good predictor for the series. 

In this sense, to improve the results of the forecast (and therefore of the investment) it would 

be useful to test an out of sample period of just one year after an in sample period of 10 years 

(in my case, to perform the 2012 forecast with the in sample period 2002-2011, forecast for 

the year 2013 with the in sample 2003-2012, and so on). 

The two strategies outperform the Buy-and-Hold strategy (in terms of returns) 93 and 97 

times, so not far from half of the weeks their performance are better than the index ones. 

Of these quantities, more or less just one fourth of the times (24 for both) the strategies are 

performing better when they are negative (so they are losing money, but they are losing less 

than the Buy-and Hold strategy); the rest of the times, they are either gaining while the 

Nasdaq has a negative return, or their results are better with respect to the Buy-and Hold 

strategy when this is positive. 
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Finally, I tested how many times, with a negative overall return on the investment, the capital 

of the two strategies was worth more than the capital invested in the Nasdaq: the results were 

that the Return strategy was higher in 6 weeks (over the 40 weeks in which it was worth more 

in general), while the Sharpe strategy was higher just in 2 cases (over 18). 

 

 

Fig.5 Returns of the three strategies 
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Fig.6 The Value of the strategies over the forecast period 

 

Over here, I showed the plots for the weekly returns of the strategies and the value of the 

invested capital, printed out respectively with Matlab and Excel. 

The first one is very confused, and it is not useful to understand how the returns evolve 

exactly over time, but allows spotting clearly the outliers in the returns for each strategy. 

The second one, on the other hand, permits to grasp clearly the various trends for each one of 

the strategies. 

After the first year, when the capital invested with the Return strategy is slightly higher than 

the other two, follows a second year, in which the capital kept invested on the Nasdaq 100 is 

worth more than the other two, but still close to them, with the Return strategy still giving 

higher return than the Sharpe strategy. 

The turning point happens around the starting of the third year, when the Nasdaq invested 

capital starts a positive trend, while the other two strategies still fluctuates around the initial 

value of one million. 

They start a positive trend just at the half of the last year, with the Nasdaq that keeps on 

growing with a steeper line. 

The Returns and the Sharpe capitals start to grow at the same rate just at the end of the fourth 

year, especially the Sharpe invested capital, that, after having had a lower value almost 

throughout all the period, at the end is worth more than the Return invested capital. 
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For all the results showed until this point, in the strategies I did not take into account the 

commission costs due to brokers for buying and selling share on the market. 

Even without them, the results for the Buy-and-Hold strategy are better than the ones for the 

other strategy. 

Anyhow, for completeness, I calculated the results taking into account the transaction costs. 

Their calculation was made as in Gonzalez-Rivera, Mishra and Lee (2008), taking a 

commission of 0.1%. 

The commissions are calculated on the returns of the overall portfolio rather than on the return 

of the single asset since, computationally, there is no difference between the two calculation 

methods. 

The results are shown in Table 3 of Annex III. 

They are dramatic: the strategies, after registering some good performances at the beginning 

of the investment period, fall below the threshold of the initial investment, and are unable to 

recover, ending with a loss of approximately 20% each. 

Besides the suggestion of the calculation of an out of sample of 1 year after a ten year in 

sample period, another way to optimize the investment would be to apply, after having 

selected the five assets in which invest, a study following the Markowitz approach, and so the 

covariance between the elements composing the portfolio other than their singular variances 

and expected returns, and select in this way the weight of each asset in the portfolio. 

This is valid especially for the Sharpe strategy, because selecting the portfolio with the 

highest returns with Markowitz approach just makes you invest all your capital in the asset 

with the highest expected return, or maybe investing more than you have in that asset by 

assuming a short position in some other assets. 

To perform a similar analysis, I computed a last test and tried to invest just in the asset that 

had the best one step ahead forecast of the whole sample for both the strategies. 

In this way, I tried to test the effect of the assets that were on the best ten percentiles but were 

not the best on the overall results. Investing just in the best expected asset, which represents 

the best 2% of the sample, makes this ratio closer to the one used by Gonzalez-Rivera, Mishra 

and Lee (2008) (that selected 5 out of 500 assets, so 1%), but on the other hand makes the 

investment more vulnerable to volatility, since there is no diversification at all. 

The results are represented in Table 4 of Annex III. 

The capital invested with the Return-based strategy performs well over almost the first two 

years, than fall under the initial investment level in the last quarter of 2012, fluctuates around 
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that level for some weeks, and then starts falling down again, concluding the period having 

lost more than one third of the amount invested. 

On the other hand, the Sharpe-based strategy works better, also performing well in the first 

two years ( in June 2012 it also doubled the invested capital), than has a turning point at the 

end of the second year, where it lose a consistent amount, but manages to recover and ends 

the period with an overall return of 71,60%, which is anyhow lower than the return from the 

Buy-and-Hold strategy (and the spread gets wider if we consider the commissions). 

In detail, the turning point for both strategy is the week of October 19
th

, 2012: here, both 

strategies indicate, according to their valuations, that the best asset in that week would have 

been Apollo Education Group (APOL). Unfortunately, the stock in that week lost more than 

30%, leading the Return capital under the initial investment level, and the Sharpe capital to 

lose almost 70% of the initial value. 

This is a clear example of why, in the financial markets, nobody should ever “put all the eggs 

in one basket”: diversifying, if, on one hand, you reduce a possible gain (none of the previous 

portfolio doubled the initial capital), on the other you reduce the chances of high losses, which 

are likely to happen sooner or later. 

To clearly show how the strategies that pick just one asset work, I’ll show a picture down here 

of how the capital invested evolved throughout the investment period. 

Fig.7 Value of the Investment in one asset per week 

 

 

 



 52 

5. Conclusions 

 

I performed a study on the 50 shares that in the period 2001-2010 were included the most in 

the Nasdaq 100 index, being already listed at the date of January 1
st
, 2001, and never being 

delisted in the period considered. 

Considering the in sample period 2001-2010, I applied the Markov switching model with time 

varying transition probabilities, and used as variable for the estimation of the returns and for 

the calculation of the probability of switching, some index based on the returns of the specific 

asset compared with the returns of the other shares, and other variables based on this one. 

On the contrary of what most of the literature suggests, the two regimes of the model are 

driven by the volatility of the period, and so I found that every asset follows a regime for the 

low volatility period and another one for the high volatility period, rather than by the level of 

the returns, so a “bear” and a “bull” period. 

I was able to perform the model in its complete formulation for most of the shares in the 

sample, and just in three of them I had to exclude a variable or substitute it with a constant. 

In every asset, both the variances were significant, and for most of the assets each variable 

was significant at the 5% level for at least one of the two regimes. In particular, for some 

assets the model worked very well, with just a couple of parameters not significant, while in 

other assets just the variances are significant. 

Then, for each stock, I performed a static forecast based on the parameters estimated by the 

model in the in sample period and on the values of the independent variables realized in the 

out of sample period. On these results, I built two trading strategies, that selected the best five 

assets on the basis of the one step ahead forecast of the returns itself and of the Sharpe ratio, 

and compared the results with a Buy and Hold strategy of the Nasdaq 100 itself. 

The strategies performed worse than the index without accounting for the commissions, and 

once you include them in the calculation, both the strategies were losing money. 

After that, I also tried to see how the strategies worked selecting just the best performing asset 

according to the forecasts (always without accounting for the commissions). While the Return 

alone strategy lost more than one third of the initial investment, the Sharpe ratio strategy 

gained almost as much as the Buy-and-Hold strategy (gap that, anyhow, would have been 

much bigger accounting for the commissions).  

Based on these results, some further specification on the parameters or on the variables could 

maybe be helpful to improve the estimation. Furthermore, specifying some other criteria for 
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the strategies, as cap, floor, or even other type of strategies (for example, VAR based 

strategies) might improve the performances of the investment on the market. 
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Appendix 

 

Shares analised 

Source of the data: [Yahoo finance] 

 

Shares analyzed (Symbols) 

Apple (AAPL) 

Adobe(ADBE) 

Applied Materials (AMAT) 

Amgen (AMGN) 

Amazon (AMZN) 

Apollo Group (APOL) 

Bed Bath & Beyond(BBBY) 

Biogen(BIIB) 

Check Point Software Technologies (CHKP) 

CH Robinson Worldwide (CHRW) 

Costco (COST) 

Cisco (CSCO) 

Cintas (CTAS) 

Citrix (CTXS) 

Dish Network (DISH) 

Electronic Arts (EA) 

EBay (EBAY) 

Electronic Scripts (ESRX) 

Expeditors (EXPD) 

Fastenal (FAST) 

Fiserv (FISV) 

Flextronics (FLEX) 

Gilead Science (GILD) 

Garmin (GRMN) 

Hologic (HOLX) 

IAC Interactive (IAC) 

Intel (INTC) 
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Intuit (INTU) 

Juniper (JNPR) 

Kla-Tencor (KLAC) 

Linear Technology (LLTC) 

Lam Research (LRCX) 

Microchip Technology (MCHP) 

Monster Beverage (MNST) 

Microsoft (MSFT) 

Nvidia (NVDA) 

Oracle (ORCL) 

Paychex (PAYX) 

Paccar (PCAR) 

Patterson (PDCO) 

Qualcomm (QCOM) 

Starbucks (SBUX) 

Staples (SPLS) 

Stericycle (SRCL) 

Symantec (SYMC) 

Teva Pharmaceutical Industries Limited (TEVA) 

Verisign (VRSN) 

Xilinx (XLNX) 

Dentsplay (XRAY) 

Yahoo (YHOO) 
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Appendix II 

 

 

 

 
AAPL ADBE AMAT AMGN 

 
value SD p-value value SD p-value value SD p-value value SD p-value 

State 0 Distrib 0.0010529 0.00014703 2.85E-12 0.0011538 0,000098962 0.00E+00 0.00096862 0.00017638 6.32E-08 0.00030998 0,000045869 3.87E-12 

State 1 Distrib 0.0024645 0.00032165 9.44E-14 0.0055214 0.00062896 0.00E+00 0.0029625 0.00042561 1.06E-11 0.0017901 0.00021614 1.11E-15 

Indep 1 State 0 0.34307 0.049708 1.55E-11 0.13453 0.043629 0.0021577 0.041615 0.072842 0.56804 0.12036 0.040913 0.0034121 

Indep 1 State 1 0.30262 0.20868 0.14764 0.07201 0.13011 0.58021 0.40794 0.21947 0.063643 0.20396 0.079977 0.011057 

Indep 2 State 0 -0.051021 0.0077388 1,09E-10 0.0055755 0.0047274 0.23879 -0.022241 0.0067592 0.00107 0.017915 0.0051436 0.0005389 

Indep 2 State 1 0.051987 0.0090582 1.64E-08 -0.03068 0.013698 0.025539 0.063025 0.01274 1.03E-06 -0.011685 0.0079176 0.14062 

Indep 3 State 0 0.081913 0.42693 0.84792 -0.7486 0.39228 0.056914 0.29097 0.32535 0.37158 -0.21606 0.10201 0.034666 

Indep 3 State 1 -4.4057 1.08160 5.38E-05 0.4359 1.3976 0.75525 -3.6273 1.2248 0.0032052 -1.6904 0.75635 0.025856 

Indep 4 State 0 -0.15136 0.093991 0.10794 0.1193 0.10334 0.24883 -0.095261 0.09824 0.33267 -0.1037 0.067078 0.12275 

Indep 4 State 1 0.41788 0.1751 0.017378 0.10413 0.13712 0.44796 0.67625 0.26024 0.0096348 0.41208 0.11924 0.00059451 

Px 1 State 0 16.731 4.3762 0.00014814 470.8 178.4 0.0085703 8.5726 5.7278 0.1351 -8.3409 6.16430 0.17663 

Px 1 State 1 16.2990 6.1226 0.0080129 -14.413 20.394 0.48006 23.102 5.6336 0.0187 -3.2442 6.7503 0.63101 

Px 2 State 0 -7.7876 29.716 0.79338 -194.05 101.19 0.055712 13.29 29.505 0.43399 75.321 23.473 0.0014176 

Px 2 State 1 -180.6 46.87 0.00013166 -835.46 500.31 0.095565 -21.832 29.645 0.46181 10.819 31.516 0.73154 

 

 

 
AMZN APOL BBBY BIIB 

 
value SD p-value value SD p-value value SD p-value value SD p-value 

State 0 Distrib 0.0018292 0.00022017 8.88E-16 0.00081846 0,000072887 0.00E+00 0.00068989 0,000070781 0.00E+00 0.00067497 0,000057547 0.00E+00 

State 1 Distrib 0.0053782 0.00088668 2.58E-09 0.0032758 0.00044365 6.40E-13 0.0044371 0.00079452 3.83E-08 0.0057853 0.00060964 0.00E+00 

Indep 1 State 0 0.38611 0.069678 4.84E-08 0.25273 0.032846 7.53E-14 0.11438 0.034343 0.00093065 0.15528 0.034982 1.11E-05 

Indep 1 State 1 0.82755 0.28018 0.0032867 -0.6072 0.3173 0.056227 0.52011 0.22434 0.020826 0.14554 0.11471 0.20512 

Indep 2 State 0 -0.064877 0.0075085 0.00E+00 -0.034538 0.0051547 5.57E-11 -0.018833 0.0051917 0.00031526 -0.0049548 0.0039195 0.20676 

Indep 2 State 1 0.072655 0.012053 3.21E-10 0.047745 0.010998 1.71E-05 0.078645 0.021438 0.0002699 -0.011045 0.012105 0.36197 

Indep 3 State 0 -2.3934 1.5581 0.12514 -0.32681 0.27559 0.23624 -0.26699 0.15443 0.084444 -0.45078 0.24863 0.070419 

Indep 3 State 1 -5.4069 1.6388 0.0010375 -1.0988 1.68960 0.51577 -3.9698 1.71210 0.020809 -0.50866 0.90914 0.57607 

Indep 4 State 0 0.18253 0.11122 0.10139 -0.10988 0.059745 0.066476 -0.037338 0.060925 0.54025 0.093304 0.079321 0.24004 

Indep 4 State 1 0.20452 0.22887 0.37194 0.015072 0.13351 0.91016 0.08417 0.18359 0.6468 0.17453 0.14004 0.21324 

Px 1 State 0 20.839 7.85850 0.0082595 17.508 3,71020 3.0733E-06 26.003 6,26360 0,000038795 117.47 31.559 0.00021957 

Px 1 State 1 47.835 22.479 0.033822 84.866 43.569 0.051983 4.4066 4.7412 0.35311 -239.35 77.053 0.0020007 

Px 2 State 0 -120.71 153.63 0.43239 56.044 27.458 0.041759 46.681 20.454 0.022889 -100.49 53.183 0.059395 

Px 2 State 1 -488.61 213.61 0.022589 -789.98 366.49 0.031595 -94.202 45.403 0.03851 270.16 112.14 0.016347 
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CHKP CHRW COST CSCO 

 
value SD p-value value SD p-value value SD p-value value SD p-value 

State 0 Distrib 0.00072978 0,000062189 0.00E+00 0.00030983 0,000078948 9.90E-05 0.00032206 0,0000292 0.00E+00 0.00074774 0,000062251 0.00E+00 

State 1 Distrib 0.0055913 0.00064607 0.00E+00 0.0012758 0.00012748 0.00E+00 0.0013975 0.00012466 0.00E+00 0.0042817 0.00045673 0.00E+00 

Indep 1 State 0 0.12827 0.040057 0.0014498 0.16978 0.091385 0.063774 0.13645 0.028141 1.66E-06 0.075255 0.038288 0.049904 

Indep 1 State 1 0.20589 0.13404 0.12516 0.24152 0.050291 2.0686E-06 0.074802 0.059773 0.21136 0.064353 0.12173 0.59728 

Indep 2 State 0 -0.0044725 0.0043814 0.30784 0.020681 0.0049095 2.99E-05 0.0023436 0.0037867 0.53627 0.0014355 0.0043439 0.74118 

Indep 2 State 1 -0.0088439 0.011711 0.4505 -0.026502 0.0069313 0.00014802 -0.003151 0.0057008 0.58069 0.013201 0.012419 0.28831 

Indep 3 State 0 -0.40378 0.33161 0.22392 -0.18641 0.2759 0.49957 -0.35383 0.14547 0.015348 -0.26292 0.19843 0.18576 

Indep 3 State 1 -2.7087 1.71890 0.11568 -1.0147 0.39686 0.010858 -0.63522 0.57308 0.2682 -1.8209 1.11340 0.10258 

Indep 4 State 0 0.18601 0.075551 0.014145 0.11902 0.11369 0.29566 0.064708 0.066757 0.33285 0.23785 0.081822 0.0038109 

Indep 4 State 1 0.15279 0.14857 0.30424 0.10945 0.079667 0.17012 0.013122 0.059356 0.82513 0.202 0.1252 0.10729 

Px 1 State 0 -6.9812 12.416 0.57418 -15.463 14.609 0.29034 -62.487 78.468 0.42621 324.27 134.54 0.016302 

Px 1 State 1 -33.236 27.233 0.22287 -19.101 7.5671 0.011901 -59.591 34.272 0.082682 -115.71 52.611 0.028312 

Px 2 State 0 2079.1 888.06 0.01961 107.12 67.282 0.11201 6252.4 6797.5 0.35811 -133.46 84.054 0.11296 

Px 2 State 1 -717.64 308.06 0.020222 2.9206 26.189 0.91125 -389.93 290.85 0.18064 -114.48 125.16 0.36079 

 

 

 

 
CTAS CTXS DISH EA 

 
value SD p-value value SD p-value value SD p-value value SD p-value 

State 0 Distrib 0.00050922 0,000047164 0.00E+00 0.00057339 0,000089943 4.13E-10 0.0040644 0.00046276 0.00E+00 0.0011003 0,000088313 0.00E+00 

State 1 Distrib 0.0029365 0.0005103 1.51E-08 0.0040835 0.00042598 0.00E+00 0.00071286 0,000075714 0.00E+00 0.0022163 0.00047264 3.54E-06 

Indep 1 State 0 0.06204 0.032116 0.05395 0.02471 0.078088 0.7518 0.39237 0.14812 0.0083256 0.11311 0.034759 0.001214 

Indep 1 State 1 0.16615 0.14235 0.2437 0.51214 0.10215 7.4145E-07 0.22282 0.065181 0.00068056 -0.33871 0.37187 0.36282 

Indep 2 State 0 0.002492 0.0048625 0.60852 0.031338 0.0060419 3.10E-07 -0.026625 0.010378 0.010585 -0.0078519 0.0051889 0.13085 

Indep 2 State 1 -0.017848 0.018828 0.34361 -0.049876 0.012005 3.83E-05 -0.0094198 0.0042163 0.025911 0.04288 0.015427 0.0056479 

Indep 3 State 0 -0.13882 0.09093 0.12746 1.0308 0.44999 0.022387 0.6451 1.2344 0.60148 -0.20198 0.224 0.36764 

Indep 3 State 1 -0.65239 0.75961 0.39083 -4.1591 1.1314 0.00026213 0.013685 0.26936 0.9595 -2.5596 1.32140 0.053304 

Indep 4 State 0 0.09388 0.057078 0.10064 -0.04014 0.12055 0.73929 0.17064 0.11892 0.15193 -0.12515 0.058648 0.033323 

Indep 4 State 1 0.22781 0.12628 0.071837 0.2731 0.12884 0.034518 0.14033 0.11333 0.21621 1.5786 0.34436 5.7508E-06 

Px 1 State 0 16.9040 7.8712 0.03222 -4.02580 4.76190 0.39828 10.69500 13.24500 0.41978 22.81200 5.18700 0,000013342 

Px 1 State 1 -7.6474 8.439 0.36527 -12.108 4.1531 0.0037106 -78.263 36.0010 0.030178 26.777 18.1090 0.13986 

Px 2 State 0 103.88 43.668 0.017736 76.701 29.071 0.0085876 815.32 370.17 0.028079 17.484 27.017 0.51783 

Px 2 State 1 -62.461 31.276 0.046353 37.39 30.217 0.21652 -182.24 163.56 0.26571 37.9740 60.653 0.53155 
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EBAY ESRX EXPD FAST 

 
value SD p-value value SD p-value value SD p-value value SD p-value 

State 0 Distrib 0.0019319 0.00017527 0.00E+00 0.00096236 0,000081862 0.00E+00 0.00074715 0,000073594 0.00E+00 0.000752 0,000086872 0.00E+00 

State 1 Distrib 0.0012207 0.00015882 7.95E-14 0.0043213 0.00097616 1.17E-05 0.0030785 0.00041952 8.71E-13 0.0033348 0.0005124 1.84E-10 

Indep 1 State 0 0.31523 0.099872 0.0016929 0.13431 0.036634 0.00027223 0.1669 0.038606 1.85E-05 0.24437 0.036588 6.37E-11 

Indep 1 State 1 0.2908 0.064695 8.6394E-06 0.46762 0.39283 0.23446 -0.062433 0.10927 0.56801 -0.96403 0.35854 0.0074087 

Indep 2 State 0 0.025278 0.0068661 0.00025678 -0.010935 0.0042763 0.010843 -0.004944 0.0043509 0.25637 -0.046359 0.0065865 6.38E-12 

Indep 2 State 1 -0.05111 0.0080129 4.05E-10 0.049673 0.025865 0.055363 0.029164 0.011695 0.012961 0.049559 0.013394 0.00023921 

Indep 3 State 0 -1.7927 0.45396 0.000089623 0.3316 0.38548 0.39008 -0.26571 0.21778 0.22299 -0.36861 0.24248 0.12909 

Indep 3 State 1 -1.2051 1.40760 0.39236 -13.1850 6.83220 0.054185 -1.5654 1.64440 0.34159 1.5019 1.12700 0.18323 

Indep 4 State 0 -0.16063 0.093229 0.085517 -0.050318 0.058406 0.38936 0.060155 0.069872 0.38968 -0.081968 0.059367 0.16798 

Indep 4 State 1 0.56819 0.10335 0.00061189 0.93555 0.37739 0.0135 0.10147 0.11789 0.38981 0.46821 0.21043 0.026523 

Px 1 State 0 -72.88400 42.80800 0.089259 13.72600 4.47960 0.0023003 15.55300 13.62500 0.2542 16.47600 4.86570 0.00076409 

Px 1 State 1 -102.98 53.2340 0.053603 18.972 19.2640 0.32518 -53.689 26.2250 0.041153 46.706 26.9920 0.084184 

Px 2 State 0 612.2 303.49 0.044201 142.4 61.919 0.021869 491.02 385.38 0.20321 23,158 25.323 0.36088 

Px 2 State 1 1880.4 995.89 0.059572 236.99 234.44 0.31256 -43,8860 120.5 0.71586 -202.82 150.97 0.17974 

 

 

 

 

 
FISV FLEX GILD GRMN 

 
value SD p-value value SD p-value value SD p-value value SD p-value 

State 0 Distrib 0.00096363 0,000076907 0.00E+00 0.010506 0.0012479 4.44E-16 0.00083841 0,000076909 0.00E+00 0.00078778 0.00011324 1.09E-11 

State 1 Distrib 0.00024337 0,000087018 0.005358 0.0016186 0.00012087 0.00E+00 0.0028623 0.00033217 0.00E+00 0.0031757 0.00031182 0.00E+00 

Indep 1 State 0 0.10366 0.03726 0.0056027 0.14686 0.19968 0.4624 0.096788 0.036068 0.0075239 0.39724 0.11744 0.00077376 

Indep 1 State 1 0.20022 0.099554 0.044834 0.15617 0.052518 0.0030836 0.1965 0.093707 0.036494 0.40349 0.072178 3.717E-09 

Indep 2 State 0 -0.0056388 0.0048336 0.24393 -0.0064224 0.017987 0.7212 -0.0014662 0.0036544 0.68844 0.040299 0.0040319 0.00E+00 

Indep 2 State 1 0.10453 0.014113 5.46E-13 -0.001735 0.0051304 0.73537 -0.008388 0.0097396 0.38952 -0.052947 0.0094867 3.90E-08 

Indep 3 State 0 -0.4363 0.14278 0.0023643 -3.2479 1.3422 0.015876 -0.42808 0.33481 0.20163 -0.81893 0.38973 0.036112 

Indep 3 State 1 0.10888 0.17487 0.53381 -0.68308 0.51464 0.18501 -0.28898 0.71346 0.68562 -3.9630 1.22560 0.0013024 

Indep 4 State 0 0.26917 0.063819 0,000029246 0.38503 0.2154 0.074459 0.1619 0.066543 0.015321 0.078553 0.081654 0.3365 

Indep 4 State 1 -0.58722 0.090387 1.9702E-10 0.14653 0.11061 0.18585 -0.075648 0.11245 0.50143 0.25536 0.1264 0.043886 

Px 1 State 0 17.38200 5.83870 0.0030507 177.9 114.77 0.12178 2474.8 155090 0.98727 -46.52 35.49800 0.19062 

Px 1 State 1 14.089 9.0742 0.12114 -179.85 104.59 0.086137 -256.68 103.55 0.013511 -18.824 8,1133 0.020733 

Px 2 State 0 10.575 11.305 0.35003 296.11 329.8 0.36969 NaN NaN NaN 249.46 158.17 0.11537 

Px 2 State 1 -32.74 17.504 0.061994 -342.39 281 0.2236 NaN NaN NaN 201.98 70.723 0.0044669 
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HOLX IAC INTC INTU 

 
value SD p-value value SD p-value value SD p-value value SD p-value 

State 0 Distrib 0.0009232 0.00019327 2.34E-06 0.00086692 0.00010177 2.22E-16 0.00067379 0,000067338 0.00E+00 0.0007799 0,000079252 0.00E+00 

State 1 Distrib 0.0056716 0.00086506 1.37E-10 0.0048498 0.00090747 1.38E-07 0.0027816 0.00027287 0.00E+00 0.0047171 0.0010802 1.53E-05 

Indep 1 State 0 0.25844 0.058173 1.09E-05 0.20868 0.042751 1.38E-06 0.10256 0.037431 0.0063638 0.10738 0.028218 0.00015905 

Indep 1 State 1 0.27066 0.12419 0.029761 -0.06809 0.28118 0.79955 -0.054375 0.084517 0.52028 0.086739 0.21119 0.68146 

Indep 2 State 0 -0.022859 0.012385 0.065523 -0.0184 0.0059871 0.0020933 -0.0025436 0.0044916 0.57144 -0.004595 0.0049806 0.35666 

Indep 2 State 1 0.018676 0.01173 0.11195 0.036972 0.015905 0.019714 0.023563 0.011897 0.048173 0.030054 0.028583 0.29355 

Indep 3 State 0 -1.4219 0.60589 0.019323 -1.0699 0.48604 0.027945 -0.26664 0.16413 0.10489 0.0079345 0.087048 0.92741 

Indep 3 State 1 -2.0985 1.37370 0.12723 -2.6729 1.60270 0.10072 0.045063 0.2988 0.88018 -0.95593 0.95977 0.31973 

Indep 4 State 0 0.071225 0.1564 0.64901 0.06454 0.066287 0.33025 0.097055 0.098998 0.32737 -0.044888 0.06877 0.51423 

Indep 4 State 1 0.38106 0.18606 0.041074 0.16521 0.21092 0.42364 0.27712 0.091881 0.0026902 0.031612 0.22996 0.89071 

Px 1 State 0 21.06700 6.28850 0.00086857 42.49500 8.73210 1.521E-07 87.84600 44.63100 0.049581 44.94600 16.20900 0.005761 

Px 1 State 1 4.4349 6.3961 0.48839 22.855 8.7057 0.0089192 -91.883 36.1810 0.011398 -8.7588 8.7093 0.31505 

Px 2 State 0 25.17 37.74 0.50511 0.41503 20.682 0.984 38.913 51.369 0.4491 -21.49 24.017 0.37133 

Px 2 State 1 -405.88 277.33 0.14395 -986.2 475.34 0.038517 -6.8360 45.158 0.87974 24.4030 36.021 0.49843 

 

 

 

 

 
JNPR KLAC LLTC LRCX 

 
value SD p-value value SD p-value value SD p-value value SD p-value 

State 0 Distrib 0.0018508 0.00014579 0.00E+00 0.00058068 0.00010568 0.00E+00 0.00084311 0,000088971 0.00E+00 0.001923 0.00018862 0.00E+00 

State 1 Distrib 0.019247 0.0025226 1.18E-13 0.0027412 0.00026175 2.02E-11 0.0035012 0.00065632 1.45E-07 0.0035011 0.00037787 0.00E+00 

Indep 1 State 0 0.17071 0.054681 0.0019004 0.16318 0.090001 0.070412 0.0056965 0.048408 0.90637 0.34498 0.061025 2.64E-08 

Indep 1 State 1 0.21383 0.33046 0.51787 0.19643 0.069909 0.0051488 0.38639 0.19454 0.047555 0.13119 0.23905 0.58339 

Indep 2 State 0 -0.0050044 0.0049401 0.31154 0.039881 0.0059603 5.90E-11 -0.017647 0.0065586 0.0073661 -0.069896 0.0073338 0.00E+00 

Indep 2 State 1 0.0015269 0.027174 0.95521 -0.027475 0.0091821 0.0029047 0.07633 0.019679 0.00011887 0.061916 0.0083647 5.65E-13 

Indep 3 State 0 -0.62251 0.62979 0.32341 -0.9889 0.50524 0.050865 0.081808 0.13043 0.53081 -1.8595 1.3237 0.1607 

Indep 3 State 1 -4.3683 4.66910 0.34994 -2.5834 0.86197 0.0028593 -2.2114 1.37280 0.10784 -2.6410 1.14920 0.021962 

Indep 4 State 0 0.085482 0.10835 0.4305 -0.34794 0.12973 0.0075572 -0.039074 0.084948 0.64573 0.2462 0.1032 0.017419 

Indep 4 State 1 0.094107 0.30877 0.76066 0.47402 0.10348 5.842E-07 0.80111 0.22096 0.00031746 0.35121 0.15866 0.027307 

Px 1 State 0 -51.74100 52.67700 0.32646 -21.62700 14.49500 0.1363 7.06790 4.61500 0.12627 83.65400 26.17700 0.0014821 

Px 1 State 1 9.446 10.3350 0.36118 -13.406 5.3833 0.013082 9.8469 4.4619 0.02777 60.575 29.46 0.04028 

Px 2 State 0 6309.5 4845 0.19342 290.04 137.17 0.034969 70.208 32.826 0.032931 -1221.5 417.65 0.0036028 

Px 2 State 1 -1982.3 777.5 0.01108 -49.1860 31.386 0.11771 -14.7230 76.362 0.84719 -401.62 205.26 0.050937 
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MCHP MNST MSFT NVDA 

 
value SD p-value value SD p-value value SD p-value value SD p-value 

State 0 Distrib 0.00068115 0,000061811 0.00E+00 0.0015861 0.00016818 0.00E+00 0.00036119 0,000032512 0.00E+00 0.0024137 0.0002432 0.00E+00 

State 1 Distrib 0.003401 0.00032247 0.00E+00 0.0063989 0.0011153 1.66E-08 0.0018574 0.00020119 0.00E+00 0.0063087 0.00073677 2.22E-16 

Indep 1 State 0 0.16555 0.041865 8.77E-05 0.12252 0.049048 0.012807 0.074204 0.029237 0.011449 0.54508 0.065126 6.66E-16 

Indep 1 State 1 0.036081 0.078083 0.64422 1,3321 0.34346 0.00011899 0.012204 0.063783 0.84834 -0.83582 0.57377 0.14582 

Indep 2 State 0 -0.00012958 0.012394 0.99166 -0.021734 0.005897 0.00025278 0.0060165 0.0040959 0.14247 -0.087452 0.0084521 0.00E+00 

Indep 2 State 1 0.022708 0.0087434 0.0096739 0.10348 0.023782 1.64E-01 -0.014528 0.0094619 0.12531 0.11185 0.013046 2.22E-16 

Indep 3 State 0 -0.25143 0.15049 0.095379 1.3213 0.62968 0.03637 -0.090913 0.12839 0.47922 -0.504 0.92712 0.58695 

Indep 3 State 1 -1.3329 0.6892 0.053684 -19.9820 6.83790 0.0036315 -0.082721 0.17037 0.62751 -7.5177 2.37 0.0016056 

Indep 4 State 0 -0.068446 0.088126 0.43771 0.21693 0.082992 0.0092206 0.16258 0.066136 0.014296 0.015399 0.11136 0.89007 

Indep 4 State 1 -0.068445 0.12439 0.5824 0.39054 0.36081 0.27959 0.11835 0.07624 0.12121 0.75517 0.21527 0.0004919 

Px 1 State 0 263.46 157.29 0.094567 21.78 4.51540 1.8713E-06 -6.39670 11.43600 0.57618 21.90900 4.87860 8.7987E-06 

Px 1 State 1 -133.3 61.0460 0.029452 5.0835 3.8804 0.19078 -115.48 55.5440 0.038119 94.441 54.1720 0.081881 

Px 2 State 0 -92.006 75.481 0.22344 23.897 49.564 0.62991 2.29750 0.62845 0.00028321 15.094 54.484 0.78186 

Px 2 State 1 -75.52 101.23 0.45599 30.1110 94.265 0.74954 0.59387 0.75113 0.42953 -1206.9 624.04 0.053673 

 

 

 

 

 
ORCL PAYX PCAR PDCO 

 
value SD p-value value SD p-value value SD p-value value SD p-value 

State 0 Distrib 0.00053973 0,000047674 0.00E+00 0.00058084 0,000004704 0.00E+00 0.00034808 0,000058089 3.94E-09 0.0005347 0,000048037 0.00E+00 

State 1 Distrib 0.0011028 0.0002121 2.91E-07 0.0021022 0.00028416 5.80E-14 0.0022142 0.00022623 0.00E+00 0.0019058 0.00033058 1.42E-08 

Indep 1 State 0 0.076879 0.03591 0.032761 0.11511 0.032985 0.00052581 0.22727 0.045984 1.05E-06 0.16753 0.028673 9.21E-09 

Indep 1 State 1 0.62651 0.18609 0.00081868 0.11863 0.097386 0.22375 0.16176 0.075893 0.033541 -0.42706 0.2488 0.086683 

Indep 2 State 0 -0.0080164 0.0036748 0.029613 0.0063851 0.0050015 0.20232 0.036909 0.0054157 2.69E-12 -0.015502 0.0042642 0.00030613 

Indep 2 State 1 0.054694 0.011224 1.4755E-06 -0.0033313 0.012523 0.79034 -0.025054 0.0083822 0.002936 0.033474 0.010716 0.0018879 

Indep 3 State 0 -0.98716 0.26123 0.00017638 -0.22326 0.14101 0.11398 -0.41835 0.19703 0.034216 -0.27804 0.21942 0.20568 

Indep 3 State 1 -7.3836 2.08250 0.00042811 -1.4589 0.53079 0.0061994 -0.66213 0.67646 0.32814 -1.5879 0.69203 0.022169 

Indep 4 State 0 0.10623 0.049178 0.03124 0.15197 0.067242 0.024243 -0.12291 0.073711 0.096031 0.056166 0.053207 0.29166 

Indep 4 State 1 -0.18876 0.22515 0.40223 -0.077278 0.094869 0.4157 0.27105 0.10011 0.0070116 0.33932 0.16857 0.044658 

Px 1 State 0 31.45200 13.21800 0.017702 61.03100 26.43400 0.021357 -6.10010 6.67520 0.36123 22.25 4.82730 5.1263E-06 

Px 1 State 1 12.494 5.7279 0.029622 -108.08 54.0000 0.045879 -11.073 6.2616 0.077595 26.232 12.9670 0.043611 

Px 2 State 0 128.42 56.567 0.023611 81.508 42.672 0.056686 115.95 38.287 0.0025836 13.977 21.479 0.51552 

Px 2 State 1 -213.07 118.94 0.073813 28.0830 54.583 0.60712 -14.4770 34.62 0.676 -155.37 97.107 0.11022 
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QCOM SBUX SPLS SRCL 

 
value SD p-value value SD p-value value SD p-value value SD p-value 

State 0 Distrib 0.00093918 0,000069343 0.00E+00 0.00080376 0,000007708 0.00E+00 0.00087781 0,000067022 0.00E+00 0.0002454 0,000049099 8.00E-07 

State 1 Distrib 0.0058138 0.00077936 3.81E-13 0.0031747 0.00050516 7.11E-10 0.0063673 0.0012956 1.21E-06 0.0012603 0.00011791 0.00E+00 

Indep 1 State 0 0.15513 0.033513 4.68E-06 0.14901 0.034503 1.89E-05 0.047049 0.036487 0.19783 0.19688 0.066875 0.0033897 

Indep 1 State 1 0.097922 0.17457 0.57508 0.18883 0.11827 0.11099 0.048535 0.21326 0.82006 0.15972 0.049696 0.0013932 

Indep 2 State 0 -0.00060604 0.0040831 0.88206 -0.0025603 0.0043897 0.55999 0.00448 0.0036781 0.22379 0.032727 0.0040025 2.44E-15 

Indep 2 State 1 -0.0036677 0.016071 0.81957 0.014686 0.013402 0.27369 0.014375 0.022543 0.52396 -0.015762 0.0058877 0.007669 

Indep 3 State 0 -0.48421 0.17355 0.005469 -0.37549 0.20068 0.061906 -0.021871 0.24066 0.92762 -0.47682 0.27139 0.07954 

Indep 3 State 1 -3.6531 2.82920 0.19722 -1.5781 1.35670 0.24529 -2.8192 3.94100 0.47473 -0.82693 0.60172 0.16997 

Indep 4 State 0 0.073103 0.072691 0.31505 -0.041919 0.071626 0.55864 0.021708 0.06205 0.72659 -0.071949 0.095718 0.4526 

Indep 4 State 1 0.12108 0.15897 0.44661 0.22888 0.11929 0.055573 0.07526 0.21553 0.72709 -0.070474 0.07789 0.36601 

Px 1 State 0 35.13 43.81 0.42299 128.8 86.26200 0.13601 -30.45700 24.32300 0.21107 -6.61540 4.90640 0.17816 

Px 1 State 1 -179.1 87.6080 0.041435 -99.894 47.2980 0.035176 -5.1026 8.3026 0.53911 -32.069 9.5987 0.0008966 

Px 2 State 0 869.91 657.2 0.18622 183.99 232.44 0.42899 3635.4 2090.9 0.0827 68.904 27.726 0.01327 

Px 2 State 1 -42.0970 130.52 0.74719 56.9420 119.4 0.63363 -391.29 230.15 0.089714 158.26 85.369 0.064355 

 

 

 

 

 
SYMC TEVA VRSN XLNX 

 
value SD p-value value SD p-value value SD p-value value SD p-value 

State 0 Distrib 0.0010275 0,000094151 0.00E+00 0.00043402 0,000004987 0.00E+00 0.0013191 0.00011556 0.00E+00 0.00093615 0.00015752 5.22E-09 

State 1 Distrib 0.0056817 0.0011121 4.61E-07 0.001043 0,000090421 0.00E+00 0.012935 0.0015961 4.00E-15 0.0028847 0.00029816 0.00E+00 

Indep 1 State 0 0.13216 0.040524 0.0011835 0.049795 0.067837 0.46327 0.1687 0.042437 8.05E-05 0.20415 0.087048 0.019397 

Indep 1 State 1 0.74907 0.34597 0.030847 0.12849 0.045634 0.005059 -0.035333 0.21257 0.86805 0.29218 0.087173 0.0008632 

Indep 2 State 0 -0.015501 0.0052829 0.0034954 0.027954 0.0037282 2.93E-14 -0.0013883 0.0045538 0.76059 0.046552 0.0052343 0,00E+00 

Indep 2 State 1 0.077132 0.030673 0.012224 -0.020772 0.0052575 8.90E-05 0.0048576 0.018905 0.79732 -0.071027 0.011308 7.26E-06 

Indep 3 State 0 0.13818 0.27105 0.61042 -0.21587 0.27852 0.43866 -0.41106 0.31997 0.19949 -0.89056 0.26766 0.00094117 

Indep 3 State 1 -13.2610 6.25590 0.034518 -0.2429 0.75399 0.74747 -2.3834 3.55930 0.50341 -1.8989 0.98436 0.054277 

Indep 4 State 0 0.07945 0.073815 0.28229 -0.060968 0.065411 0.35174 0.007719 0.066587 0.90776 -0.14225 0.11127 0.20167 

Indep 4 State 1 0.33183 0.24289 0.17249 0.10206 0.078489 0.1941 0.092956 0.22247 0.67625 0.53636 0.14474 0.00023398 

Px 1 State 0 15.17500 6.19580 0.014656 -199.66 132.95 0.1338 258.46 117.71 0.028572 -25.93700 9.12190 0.0046449 

Px 1 State 1 2.0658 6.4945 0.75056 -95.036 28.2460 0.00082476 -296.63 124.7 0.017739 -15.939 7.8530 0.042913 

Px 2 State 0 193.91 78.496 0.013828 1011.8 663.01 0.12763 46.217 137.83 0.73752 128.48 40.252 0.0015011 

Px 2 State 1 -70.7920 114.16 0.53548 1264.7 362.34 0.00052453 33.569 127.87 0.79302 195.76 111.5 0.079752 
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XRAY YHOO 

 
value SD p-value value SD p-value 

State 0 Distrib 0.00044054 0.000037174 0.00E+00 0.0012472 0.00016431 1.55E-13 

State 1 Distrib 0.001777 0.00034195 2.95E-07 0.0074817 0.0011758 4.44E-10 

Indep 1 State 0 0.12291 0.028038 1.42E-05 0.092655 0.051232 0.071116 

Indep 1 State 1 0.022353 0.14496 0.87751 0.14994 0.15846 0.34449 

Indep 2 State 0 -0.017584 0.0036408 1.82E-06 0.006741 0.0053253 0.20615 

Indep 2 State 1 0.026044 0.015129 0.085775 0.0033091 0.015634 0.83246 

Indep 3 State 0 -0.17667 0.10995 0.10871 -0.070879 0.41296 0.86379 

Indep 3 State 1 -0.78711 1.2943 0.54337 -2.4046 2.18830 0.27235 

Indep 4 State 0 0.13803 0.047608 0.0039022 -0.038807 0.11045 0.72548 

Indep 4 State 1 0.10629 0.12813 0.40718 0.18708 0.17527 0.28631 

Px 1 State 0 16.8260 6.68690 0.012171 3.05940 9.70370 0.75268 

Px 1 State 1 5.1349 6.2707 0.41325 -34.853 23.0070 0.13043 

Px 2 State 0 139.15 56.492 0.014102 1144.2 466.53 0.014517 

Px 2 State 1 -116.34 75.925 0.12606 -337.77 192.82 0.080433 
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Table 1: Total Value 

 
Nasdaq Value Mean Value Sharpe Value 

Starting Value 1 1 1 

07/01/11 1,0168 1,0462 1,0462 

14/01/11 1,0375 1,1039 1,1054 

21/01/11 1,0126 1,0829 1,081 

28/01/11 1,0136 1,0699 1,0592 

04/02/11 1,0434 1,1074 1,0879 

11/02/11 1,0615 1,1159 1,1092 

18/02/11 1,0674 1,1311 1,1106 

25/02/11 1,0466 1,1395 1,077 

04/03/11 1,0527 1,1383 1,0641 

11/03/11 1,0252 1,0966 1,0311 

18/03/11 0,98977 1,0547 0,98886 

25/03/11 1,0314 1,0968 1,0362 

01/04/11 1,0431 1,1143 1,0528 

08/04/11 1,0334 1,0895 1,0208 

15/04/11 1,0273 1,0991 1,0298 

21/04/11 1,0579 1,1327 1,059 

29/04/11 1,0697 1,1576 1,0682 

06/05/11 1,0604 1,1356 1,0479 

13/05/11 1,0586 1,1435 1,0503 

20/05/11 1,0462 1,1419 1,0511 

27/05/11 1,0394 1,1422 1,0604 

03/06/11 1,0197 1,0979 1,0193 

10/06/11 0,98751 1,0464 0,97149 

17/06/11 0,97492 1,0462 0,96625 

24/06/11 0,98557 1,0764 0,98716 

01/07/11 1,0477 1,1349 1,0454 

08/07/11 1,0673 1,1376 1,0521 

15/07/11 1,0452 1,1139 1,0266 

22/07/11 1,077 1,158 1,0668 

29/07/11 1,0471 1,1121 1,0403 

05/08/11 0,96963 1,0006 0,93775 

12/08/11 0,96417 1,049 0,9634 

19/08/11 0,89843 0,98513 0,90468 

26/08/11 0,95138 0,98787 0,91751 

02/09/11 0,95396 0,97401 0,91205 

09/09/11 0,95212 0,99931 0,95253 

16/09/11 1,0128 1,0786 0,98557 

23/09/11 0,96827 1,0239 0,93751 
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Appendix III 

 

 

 
Nasdaq Value Mean Value Sharpe Value 

30/09/11 0,93811 0,9676 0,89179 

07/10/11 0,96559 0,98986 0,90947 

14/10/11 1,037 1,0146 0,92981 

21/10/11 1,0212 0,99259 0,93298 

28/10/11 1,0494 1,0172 0,93799 

04/11/11 1,0295 1,0104 0,92445 

11/11/11 1,0293 1,0175 0,93341 

18/11/11 0,9838 0,96445 0,88129 

25/11/11 0,93775 0,92423 0,83682 

02/12/11 1,0014 0,97605 0,88374 

09/12/11 1,0087 0,9669 0,88039 

16/12/11 0,97301 0,93557 0,83377 

23/12/11 0,99425 0,95832 0,84444 

30/12/11 0,99001 0,9568 0,84635 

06/01/12 1,0235 0,96161 0,87111 

13/01/12 1,0303 0,96143 0,87421 

20/01/12 1,0582 0,994 0,88157 

27/01/12 1,0689 1,0089 0,89628 

03/02/12 1,0978 1,037 0,92485 

10/02/12 1,1056 1,0532 0,93758 

17/02/12 1,1215 1,0612 0,94442 

24/02/12 1,1302 1,0769 0,95834 

02/03/12 1,1463 1,0902 0,97763 

09/03/12 1,1485 1,107 0,98426 

16/03/12 1,1768 1,1252 1,001 

23/03/12 1,1836 1,1217 0,99788 

30/03/12 1,1952 1,1313 0,98392 

05/04/12 1,1983 1,1226 0,97285 

13/04/12 1,1704 1,1176 0,98017 

20/04/12 1,1604 1,0877 0,95396 

27/04/12 1,1884 1,0777 0,97267 

04/05/12 1,1427 1,0653 0,95464 

11/05/12 1,1332 1,0792 0,97072 

18/05/12 1,072 1,0166 0,9144 

25/05/12 1,0928 1,0511 0,95408 

01/06/12 1,0629 1,0047 0,91196 

08/06/12 1,1054 1,0469 0,95031 

15/06/12 1,1106 1,0339 0,95362 

22/06/12 1,1167 1,0471 0,9565 

29/06/12 1,1297 1,0713 0,9777 
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Nasdaq Value Mean Value Sharpe Value 

06/07/12 1,1282 1,0298 0,95754 

13/07/12 1,1164 1,029 0,95409 

20/07/12 1,1306 1,0286 0,95374 

27/07/12 1,143 1,0663 0,9773 

03/08/12 1,1554 1,0785 0,98845 

10/08/12 1,1755 1,1043 0,99524 

17/08/12 1,2 1,1143 1,0082 

24/08/12 1,1991 1,1192 1,0125 

31/08/12 1,1966 1,1115 1,0022 

07/09/12 1,2192 1,138 1,0271 

14/09/12 1,2321 1,1523 1,04 

21/09/12 1,2349 1,1214 1,0403 

28/09/12 1,2076 1,0988 1,0199 

05/10/12 1,2131 1,1124 1,0325 

12/10/12 1,1728 1,0817 1,0257 

19/10/12 1,1547 1,0045 0,94511 

26/10/12 1,1493 0,98553 0,94706 

02/11/12 1,1451 0,99952 0,96051 

09/11/12 1,1136 0,98528 0,94433 

16/11/12 1,0919 0,94826 0,92584 

23/11/12 1,1364 0,96642 0,93227 

30/11/12 1,1527 0,99215 0,95709 

07/12/12 1,1365 0,96531 0,92397 

14/12/12 1,1312 0,97367 0,9316 

21/12/12 1,1468 0,97852 0,93242 

28/12/12 1,1214 0,9539 0,91335 

04/01/13 1,1711 0,98168 0,93676 

11/01/13 1,1813 0,97128 0,90294 

18/01/13 1,1792 0,98262 0,90686 

25/01/13 1,1764 1,0258 0,94471 

01/02/13 1,188 1,0285 0,95123 

08/02/13 1,193 1,051 0,95816 

15/02/13 1,1883 1,0357 0,93924 

22/02/13 1,1765 1,0221 0,91881 

01/03/13 1,181 1,0269 0,92856 

08/03/13 1,2049 1,0601 0,95626 

15/03/13 1,2029 1,0454 0,94814 

22/03/13 1,2035 1,0534 0,96138 

28/03/13 1,2112 1,0542 0,96725 

05/04/13 1,1908 1,038 0,9468 
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Nasdaq Value Mean Value Sharpe Value 

12/04/13 1,2267 1,0834 1,0061 

19/04/13 1,1936 1,047 0,98972 

26/04/13 1,2191 1,0516 0,98585 

03/05/13 1,263 1,0798 1,0145 

10/05/13 1,2785 1,0806 1,0168 

17/05/13 1,2989 1,0905 1,0224 

24/05/13 1,2825 1,0702 0,98874 

31/05/13 1,2786 1,0478 0,95771 

07/06/13 1,2825 1,0578 0,97105 

14/06/13 1,2621 1,0292 0,95041 

21/06/13 1,2335 0,97832 0,90226 

28/06/13 1,247 0,99832 0,9207 

05/07/13 1,2698 0,99479 0,92076 

12/07/13 1,3185 1,0149 0,93938 

19/07/13 1,3038 1,0014 0,94838 

26/07/13 1,3171 1,0026 0,96422 

02/08/13 1,3457 1,0279 0,98285 

09/08/13 1,3349 1,0102 0,97533 

16/08/13 1,3157 0,99466 0,96566 

23/08/13 1,3371 1,0016 0,96179 

30/08/13 1,3153 0,9677 0,92751 

06/09/13 1,3405 0,99328 0,94404 

13/09/13 1,3596 1,0108 0,96791 

20/09/13 1,3793 1,0111 0,9765 

27/09/13 1,3817 1,0302 0,98313 

04/10/13 1,3869 1,0486 1,0007 

11/10/13 1,3832 1,0628 1,0034 

18/10/13 1,4336 1,0974 1,0391 

25/10/13 1,4464 1,109 1,049 

01/11/13 1,4446 1,0888 1,022 

08/11/13 1,4391 1,0759 1,0124 

15/11/13 1,4627 1,0873 1,0178 

22/11/13 1,4625 1,0812 1,0201 

29/11/13 1,4903 1,0856 1,0224 

06/12/13 1,4973 1,0912 1,0288 

13/12/13 1,4768 1,0733 1,0072 

20/12/13 1,5084 1,0942 1,0229 

27/12/13 1,5266 1,0991 1,0265 

03/01/14 1,5114 1,0958 1,0189 

10/01/14 1,5226 1,1113 1,0306 
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Nasdaq Value Mean Value Sharpe Value 

17/01/14 1,5338 1,1325 1,0471 

24/01/14 1,5123 1,1147 1,0306 

31/01/14 1,504 1,0619 0,99921 

07/02/14 1,521 1,0639 1,0023 

14/02/14 1,5639 1,1183 1,0351 

21/02/14 1,5633 1,1492 1,0637 

28/02/14 1,5776 1,1587 1,0753 

07/03/14 1,5807 1,1679 1,0807 

14/03/14 1,5481 1,1441 1,0612 

21/03/14 1,5588 1,1391 1,066 

28/03/14 1,5236 1,1076 1,0584 

04/04/14 1,5099 1,1069 1,0688 

11/04/14 1,4699 1,0865 1,0457 

17/04/14 1,5068 1,1006 1,0593 

25/04/14 1,5062 1,0606 1,033 

02/05/14 1,5293 1,0746 1,0581 

09/05/14 1,5156 1,0927 1,068 

16/05/14 1,5289 1,0823 1,0507 

23/05/14 1,5669 1,0845 1,0529 

30/05/14 1,592 1,1001 1,0673 

06/06/14 1,6164 1,1092 1,079 

13/06/14 1,6083 1,113 1,0778 

20/06/14 1,6198 1,1314 1,1048 

27/06/14 1,6375 1,1345 1,1141 

03/07/14 1,6707 1,1548 1,1355 

11/07/14 1,6628 1,1333 1,1335 

18/07/14 1,6778 1,1232 1,1235 

25/07/14 1,6885 1,1099 1,1058 

01/08/14 1,6517 1,0997 1,0935 

08/08/14 1,6553 1,0997 1,0955 

15/08/14 1,6971 1,1774 1,1733 

22/08/14 1,7246 1,1618 1,1647 

29/08/14 1,7372 1,169 1,1822 

05/09/14 1,7404 1,1648 1,1692 

12/09/14 1,7315 1,1417 1,1461 

19/09/14 1,7446 1,131 1,1421 

26/09/14 1,7248 1,1148 1,1279 

03/10/14 1,7135 1,126 1,1367 

10/10/14 1,6456 1,0835 1,0996 

17/10/14 1,6219 1,0831 1,1056 
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Nasdaq Value Mean Value Sharpe Value 

24/10/14 1,7154 1,1285 1,1492 

31/10/14 1,7641 1,1582 1,1794 

07/11/14 1,765 1,1942 1,2037 

14/11/14 1,7922 1,1994 1,2135 

21/11/14 1,8033 1,2089 1,2243 

28/11/14 1,8396 1,2426 1,2618 

05/12/14 1,8285 1,2286 1,2484 

12/12/14 1,7802 1,2009 1,23 

19/12/14 1,8149 1,2095 1,241 

26/12/14 1,8285 1,2153 1,2468 

31/12/14 1,7952 1,2012 1,2269 
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Table 2:Weekly Returns 

 
Nasdaq Returns Mean Returns Sharpe Returns 

07/01/11 0.01685 0.046218 0.046218 

14/01/11 0.020318 0.055154 0.056595 

21/01/11 -0.024005 -0.019038 -0.02209 

28/01/11 0.00096498 -0.012008 -0.020179 

04/02/11 0.029377 0.035061 0.0271 

11/02/11 0.017362 0.0076915 0.019556 

18/02/11 0.0055831 0.013574 0.0013202 

25/02/11 -0.019491 0.0074742 -0.0303 

04/03/11 0.0058093 -0.0010776 -0.011961 

11/03/11 -0.026057 -0.036645 -0.030998 

18/03/11 -0.034598 -0.038218 -0.040989 

25/03/11 0.042008 0.039925 0.047846 

01/04/11 0.011401 0.015933 0.016074 

08/04/11 -0.0093223 -0.022263 -0.030439 

15/04/11 -0.0058763 0.0088152 0.0088224 

21/04/11 0.029766 0.030561 0.028343 

29/04/11 0.011202 0.022015 0.0086921 

06/05/11 -0.0087316 -0.018962 -0.018962 

13/05/11 -0.0016546 0.0069016 0.0022806 

20/05/11 -0.011757 -0.0013681 0.00079095 

27/05/11 -0.006545 0.00022631 0.00877 

03/06/11 -0.018919 -0.038746 -0.038746 

10/06/11 -0.031562 -0.046881 -0.046881 

17/06/11 -0.012746 -0.00023097 -0.0053958 

24/06/11 0.01093 0.028859 0.021634 

01/07/11 0.063068 0.054324 0.059046 

08/07/11 0.018669 0.002438 0.0063947 

15/07/11 -0.02067 -0.020849 -0.024296 

22/07/11 0.030436 0.039537 0.039158 

29/07/11 -0.027834 -0.039618 -0.024828 

05/08/11 -0.073952 -0.10028 -0.098556 

12/08/11 -0.0056347 0.048436 0.02735 

19/08/11 -0.068188 -0.060906 -0.060951 

26/08/11 0.058943 0.0027813 0.014186 

02/09/11 0.0027069 -0.014031 -0.0059578 

09/09/11 -0.0019255 0.02598 0.014453 

16/09/11 0.063752 0.079359 0.065223 

23/09/11 -0.043983 -0.050745 -0.048767 

30/09/11 -0.031148 -0.054972 -0.048773 
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Nasdaq Returns Mean Returns Sharpe Returns 

07/10/11 0.029289 0.023007 0.019832 

14/10/11 0.073997 0.024993 0.022366 

21/10/11 -0.015298 -0.021689 0.0034011 

28/10/11 0.027596 0.024746 0.0053709 

04/11/11 -0.018905 -0.006638 -0.014427 

11/11/11 -0.00022921 0.0069942 0.0096868 

18/11/11 -0.044188 -0.05211 -0.055839 

25/11/11 -0.046807 -0.041704 -0.05046 

02/12/11 0.067919 0.056069 0.056069 

09/12/11 0.0072023 -0.0093773 -0.0037855 

16/12/11 -0.035335 -0.032403 -0.052955 

23/12/11 0.021827 0.024323 0.0128 

30/12/11 -0.0042669 -0.0015885 0.0022515 

06/01/12 0.033814 0.0050237 0.029263 

13/01/12 0.0066877 -0.0001811 0.0035526 

20/01/12 0.027051 0.033875 0.0084279 

27/01/12 0.010105 0.014964 0.016679 

03/02/12 0.027011 0.027859 0.031875 

10/02/12 0.0071507 0.015636 0.013767 

17/02/12 0.01439 0.0076291 0.0073007 

24/02/12 0.0076979 0.01473 0.01473 

02/03/12 0.014248 0.012395 0.020135 

09/03/12 0.001993 0.015432 0.0067801 

16/03/12 0.024604 0.016414 0.017027 

23/03/12 0.0057964 -0.0031352 -0.0031352 

30/03/12 0.0097451 0.0085789 -0.013993 

05/04/12 0.0026206 -0.0077125 -0.011251 

13/04/12 -0.023258 -0.0044385 0.0075224 

20/04/12 -0.0085395 -0.026733 -0.026733 

27/04/12 0.024109 -0.0091772 0.019607 

04/05/12 -0.038456 -0.01151 -0.018533 

11/05/12 -0.0083519 0.012989 0.016845 

18/05/12 -0.053973 -0.058019 -0.058019 

25/05/12 0.019387 0.03394 0.043389 

01/06/12 -0.027367 -0.044149 -0.044149 

08/06/12 0.040013 0.042059 0.042059 

15/06/12 0.0046858 -0.012414 0.0034774 

22/06/12 0.0055462 0.012778 0.0030257 

29/06/12 0.011609 0.023101 0.022158 

06/07/12 -0.0013121 -0.038715 -0.020615 
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Nasdaq Returns Mean Returns Sharpe Returns 

13/07/12 -0.010513 -0.0007947 -0.0036052 

20/07/12 0.012712 -0.00036571 -0.00036571 

27/07/12 0.011012 0.036613 0.024704 

03/08/12 0.010885 0.011407 0.011407 

10/08/12 0.017396 0.023909 0.0068687 

17/08/12 0.020839 0.0091389 0.012995 

24/08/12 -0.00080959 0.0043984 0.0042607 

31/08/12 -0.0020936 -0.0069065 -0.01015 

07/09/12 0.018892 0.023859 0.024902 

14/09/12 0.010605 0.012521 0.012521 

21/09/12 0.0022425 -0.026796 0.0003171 

28/09/12 -0.022065 -0.020155 -0.019646 

05/10/12 0.0045445 0.012354 0.012354 

12/10/12 -0.033191 -0.027623 -0.0065421 

19/10/12 -0.015494 -0.071351 -0.078607 

26/10/12 -0.0046743 -0.018867 0.00206 

02/11/12 -0.0035888 0.014204 0.014204 

09/11/12 -0.027549 -0.014254 -0.016848 

16/11/12 -0.019515 -0.037566 -0.019579 

23/11/12 0.040761 0.019151 0.0069455 

30/11/12 0.014402 0.026621 0.026621 

07/12/12 -0.014042 -0.027057 -0.0346 

14/12/12 -0.0047261 0.0086652 0.0082554 

21/12/12 0.013823 0.0049839 0.00087616 

28/12/12 -0.022126 -0.02516 -0.02045 

04/01/13 0.044327 0.029116 0.025625 

11/01/13 0.0086867 -0.010596 -0.036093 

18/01/13 -0.0018283 0.011675 0.0043366 

25/01/13 -0.0023759 0.043959 0.041741 

01/02/13 0.0099007 0.0026393 0.0069018 

08/02/13 0.0041881 0.021812 0.0072785 

15/02/13 -0.0039313 -0.014529 -0.019739 

22/02/13 -0.0099565 -0.013147 -0.021756 

01/03/13 0.0038177 0.0047252 0.010615 

08/03/13 0.020304 0.03237 0.029827 

15/03/13 -0.0016776 -0.013883 -0.0084859 

22/03/13 0.00050003 0.0075995 0.013957 

28/03/13 0.0063635 0.00079012 0.0061074 

05/04/13 -0.016793 -0.015368 -0.01816 

12/04/13 0.030111 0.043727 0.059409 
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Nasdaq Returns Mean Returns Sharpe Returns 

19/04/13 -0.026974 -0.033594 -0.016282 

26/04/13 0.021381 0.0044098 -0.0039129 

03/05/13 0.035972 0.026829 0.029034 

10/05/13 0.012296 0.00071347 0.0022664 

17/05/13 0.015954 0.0091314 0.0055681 

24/05/13 -0.012605 -0.018552 -0.032954 

31/05/13 -0.0031007 -0.020908 -0.031388 

07/06/13 0.0030506 0.0094749 0.013937 

14/06/13 -0.015843 -0.026985 -0.021262 

21/06/13 -0.022647 -0.049467 -0.050662 

28/06/13 0.010941 0.020438 0.020438 

05/07/13 0.018261 -0.0035335 0,00067715 

12/07/13 0.038351 0.02022 0.02022 

19/07/13 -0.01115 -0.013336 0.0095803 

26/07/13 0.010227 0.0011954 0.0167 

02/08/13 0.021638 0.025293 0.019323 

09/08/13 -0.0079686 -0.017233 -0.0076512 

16/08/13 -0.014424 -0.01539 -0.0099122 

23/08/13 0.01625 0.0070058 -0.0040114 

30/08/13 -0.016283 -0.03387 -0.035634 

06/09/13 0.019194 0.026427 0.017814 

13/09/13 0.014228 0.017674 0.025284 

20/09/13 0.014509 0.00024012 0.0088809 

27/09/13 0.0017258 0.01894 0.0067902 

04/10/13 0.0037912 0.017844 0.017844 

11/10/13 -0.002699 0.013573 0.0027189 

18/10/13 0.036451 0.032483 0.0356 

25/10/13 0.0088904 0.010611 0.009484 

01/11/13 -0.0012035 -0.01821 -0.025754 

08/11/13 -0.0038301 -0.011846 -0.0093778 

15/11/13 0.01642 0.010592 0.0053586 

22/11/13 -0.00016365 -0.0056652 0.002258 

29/11/13 0.019046 0.0040765 0.0022573 

06/12/13 0.0047025 0.005187 0.0062292 

13/12/13 -0.013752 -0.016355 -0.020921 

20/12/13 0.021407 0.019466 0.015548 

27/12/13 0.012056 0.0044395 0.0034951 

03/01/14 -0.0099231 -0.0029658 -0.0073672 

10/01/14 0.0074186 0.014101 0.011425 

17/01/14 0.0073138 0.019115 0.016031 
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Nasdaq Returns Mean Returns Sharpe Returns 

24/01/14 -0.013956 -0.015787 -0.015787 

31/01/14 -0.0055384 -0.047318 -0.030412 

07/02/14 0.011291 0.0018929 0.0030777 

14/02/14 0.028226 0.051093 0.032692 

21/02/14 -0.00034936 0.02765 0.02765 

28/02/14 0.0091049 0.0082617 0.010913 

07/03/14 0.0019731 0.007913 0.0050419 

14/03/14 -0.020606 -0.020338 -0.018064 

21/03/14 0.0069222 -0.0043789 0.0045183 

28/03/14 -0.022585 -0.027661 -0.0070774 

04/04/14 -0.0090313 -0.00065469 0.0097698 

11/04/14 -0.026491 -0.018447 -0.021549 

17/04/14 0.02512 0.012992 0.012992 

25/04/14 -0.00040464 -0.036318 -0.024812 

02/05/14 0.015319 0.013175 0.024268 

09/05/14 -0.0089426 0.016882 0.0093836 

16/05/14 0.00882 -0.0095269 -0.016208 

23/05/14 0.024815 0.0020358 0.0020358 

30/05/14 0.016048 0.014414 0.01366 

06/06/14 0.015336 0.0082285 0.010972 

13/06/14 -0.0050224 0.0034061 -0.0010618 

20/06/14 0.0071468 0.016553 0.025008 

27/06/14 0.010932 0.0027817 0.0084308 

03/07/14 0.020231 0.017886 0.019213 

11/07/14 -0.004709 -0.018656 -0.0017394 

18/07/14 0.0090025 -0.0088678 -0.0088678 

25/07/14 0.0063959 -0.011888 -0.015754 

01/08/14 -0.021799 -0.0091767 -0.011094 

08/08/14 0.002168 -0,32098 0.0018739 

15/08/14 0.025249 0.070717 0.071004 

22/08/14 0.016229 -0.013238 -0.0073595 

29/08/14 0.0073286 0.0061497 0.015034 

05/09/14 0.0018011 -0.0035777 -0.010965 

12/09/14 -0.0050716 -0.019835 -0.019835 

19/09/14 0.0075551 -0.0093275 -0.0034737 

26/09/14 -0.011374 -0.014342 -0.012394 

03/10/14 -0.0065363 0.0099826 0.0077616 

10/10/14 -0.039622 -0.037724 -0.032605 

17/10/14 -0.014413 -0.0003204 0.0054506 

24/10/14 0.057681 0.041866 0.039388 
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Nasdaq Returns Mean Returns Sharpe Returns 

31/10/14 0.02834 0.026344 0.026286 

07/11/14 0.00055058 0.031039 0.020637 

14/11/14 0.015382 0.004373 0.0081356 

21/11/14 0.0062125 0.0079369 0.0089387 

28/11/14 0.020136 0.027845 0.030598 

05/12/14 -0.0060629 -0.011221 -0.010629 

12/12/14 -0.026389 -0.02252 -0.014735 

19/12/14 0.019456 0.0070792 0.0089754 

26/12/14 0.0075176 0.0048051 0.0046372 

31/12/14 -0.018201 -0.01157 -0.015949 
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Table 3:Weekly Returns with commissions 

 
Mean Value Sharpe Value 

07/01/11 1,0442 1,0442 

14/01/11 1,0997 1,1012 

21/01/11 1,0766 1,0747 

28/01/11 1,0615 1,0509 

04/02/11 1,0966 1,0772 

11/02/11 1,1028 1,0962 

18/02/11 1,1156 1,0954 

25/02/11 1,1217 1,06 

04/03/11 1,1183 1,0452 

11/03/11 1,075 1,0107 

18/03/11 1,0318 0,96729 

25/03/11 1,0709 1,0116 

01/04/11 1,0859 1,0259 

08/04/11 1,0595 0,99259 

15/04/11 1,0667 0,99936 

21/04/11 1,0972 1,0257 

29/04/11 1,1192 1,0326 

06/05/11 1,0957 1,0109 

13/05/11 1,1011 1,0112 

20/05/11 1,0974 1,01 

27/05/11 1,0954 1,0168 

03/06/11 1,0508 0,97538 

10/06/11 0,99942 0,9277 

17/06/11 0,99719 0,92084 

24/06/11 1,024 0,93892 

01/07/11 1,0776 0,99248 

08/07/11 1,078 0,99684 

15/07/11 1,0534 0,97063 

22/07/11 1,0929 1,0067 

29/07/11 1,0475 0,97969 

05/08/11 0,94031 0,88118 

12/08/11 0,98398 0,90351 

19/08/11 0,92208 0,84664 

26/08/11 0,9228 0,85695 

02/09/11 0,90801 0,85013 

09/09/11 0,92978 0,86072 

16/09/11 1,0017 0,91514 

23/09/11 0,94887 0,86868 
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Mean Value Sharpe Value 

30/09/11 0,89481 0,82457 

07/10/11 0,91361 0,83928 

14/10/11 0,93462 0,85637 

21/10/11 0,91248 0,85757 

28/10/11 0,93323 0,86046 

04/11/11 0,92517 0,84633 

11/11/11 0,92979 0,85283 

18/11/11 0,87948 0,80351 

25/11/11 0,84104 0,76135 

02/12/11 0,88652 0,80252 

09/12/11 0,87643 0,79788 

16/12/11 0,84628 0,75403 

23/12/11 0,86517 0,76217 

30/12/11 0,86207 0,76236 

06/01/12 0,86467 0,78315 

13/01/12 0,86279 0,78436 

20/01/12 0,89029 0,78941 

27/01/12 0,90183 0,80099 

03/02/12 0,92515 0,82492 

10/02/12 0,93777 0,83463 

17/02/12 0,94305 0,83905 

24/02/12 0,95505 0,84974 

02/03/12 0,96498 0,86515 

09/03/12 0,97794 0,86928 

16/03/12 0,99204 0,88234 

23/03/12 0,98694 0,87781 

30/03/12 0,99344 0,86377 

05/04/12 0,98379 0,85233 

13/04/12 0,97745 0,85704 

20/04/12 0,94937 0,83241 

27/04/12 0,93876 0,84707 

04/05/12 0,92607 0,82967 

11/05/12 0,93625 0,84199 

18/05/12 0,88006 0,79146 

25/05/12 0,90817 0,82421 

01/06/12 0,86626 0,78618 

08/06/12 0,90096 0,81767 

15/06/12 0,88797 0,81888 

22/06/12 0,89754 0,81972 

29/06/12 0,91648 0,83624 
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Mean Value Sharpe Value 

06/07/12 0,87917 0,81733 

13/07/12 0,87671 0,81275 

20/07/12 0,87464 0,81083 

27/07/12 0,90491 0,82924 

03/08/12 0,91342 0,83704 

10/08/12 0,93343 0,84111 

17/08/12 0,9401 0,85036 

24/08/12 0,94235 0,85228 

31/08/12 0,93396 0,84193 

07/09/12 0,95438 0,86121 

14/09/12 0,96442 0,87027 

21/09/12 0,93665 0,8688 

28/09/12 0,91589 0,85 

05/10/12 0,92538 0,8588 

12/10/12 0,89796 0,85146 

19/10/12 0,8321 0,78283 

26/10/12 0,81473 0,78288 

02/11/12 0,82468 0,79243 

09/11/12 0,81127 0,77749 

16/11/12 0,77917 0,76072 

23/11/12 0,79254 0,76448 

30/11/12 0,81205 0,7833 

07/12/12 0,78845 0,75463 

14/12/12 0,79371 0,75935 

21/12/12 0,79608 0,7585 

28/12/12 0,77446 0,74147 

04/01/13 0,79546 0,75899 

11/01/13 0,78544 0,73008 

18/01/13 0,79304 0,73178 

25/01/13 0,82631 0,76086 

01/02/13 0,82684 0,76459 

08/02/13 0,84322 0,76863 

15/02/13 0,82928 0,75192 

22/02/13 0,81672 0,73406 

01/03/13 0,81895 0,74038 

08/03/13 0,84382 0,76098 

15/03/13 0,83042 0,753 

22/03/13 0,83507 0,76201 

28/03/13 0,83406 0,76514 

05/04/13 0,81957 0,74971 
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Mean Value Sharpe Value 

12/04/13 0,85377 0,79275 

19/04/13 0,82338 0,77826 

26/04/13 0,82536 0,77366 

03/05/13 0,84586 0,79457 

10/05/13 0,84477 0,79478 

17/05/13 0,85079 0,79762 

24/05/13 0,83331 0,76974 

31/05/13 0,81422 0,74404 

07/06/13 0,8203 0,75292 

14/06/13 0,79653 0,73541 

21/06/13 0,75553 0,69668 

28/06/13 0,76946 0,70952 

05/07/13 0,76521 0,70815 

12/07/13 0,77915 0,72106 

19/07/13 0,7672 0,72652 

26/07/13 0,76658 0,7372 

02/08/13 0,78444 0,74997 

09/08/13 0,76935 0,74273 

16/08/13 0,75597 0,73389 

23/08/13 0,75976 0,72948 

30/08/13 0,7325 0,70202 

06/09/13 0,7504 0,71312 

13/09/13 0,76216 0,72973 

20/09/13 0,76082 0,73475 

27/09/13 0,77371 0,73827 

04/10/13 0,78596 0,74997 

11/10/13 0,79506 0,75051 

18/10/13 0,8193 0,77572 

25/10/13 0,82635 0,78153 

01/11/13 0,80965 0,75984 

08/11/13 0,79844 0,75119 

15/11/13 0,8053 0,75372 

22/11/13 0,79913 0,75391 

29/11/13 0,80079 0,7541 

06/12/13 0,80334 0,75729 

13/12/13 0,78859 0,73994 

20/12/13 0,80237 0,74996 

27/12/13 0,80433 0,75108 

03/01/14 0,80033 0,74405 

10/01/14 0,81002 0,75106 
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Mean Value Sharpe Value 

17/01/14 0,82388 0,7616 

24/01/14 0,80923 0,74805 

31/01/14 0,76932 0,72381 

07/02/14 0,76923 0,72459 

14/02/14 0,807 0,74682 

21/02/14 0,8277 0,76598 

28/02/14 0,83288 0,77281 

07/03/14 0,83781 0,77516 

14/03/14 0,81909 0,75961 

21/03/14 0,81387 0,76152 

28/03/14 0,78972 0,75461 

04/04/14 0,78763 0,76047 

11/04/14 0,77152 0,74256 

17/04/14 0,78 0,75072 

25/04/14 0,75012 0,73059 

02/05/14 0,7585 0,74686 

09/05/14 0,76979 0,75238 

16/05/14 0,76091 0,73868 

23/05/14 0,76094 0,73871 

30/05/14 0,77039 0,74732 

06/06/14 0,77519 0,75402 

13/06/14 0,77628 0,75171 

20/06/14 0,78757 0,76901 

27/06/14 0,78819 0,77396 

03/07/14 0,80071 0,78728 

11/07/14 0,78417 0,78433 

18/07/14 0,77565 0,77581 

25/07/14 0,76487 0,76204 

01/08/14 0,75633 0,75206 

08/08/14 0,75479 0,75196 

15/08/14 0,80666 0,80385 

22/08/14 0,79436 0,79633 

29/08/14 0,79766 0,80671 

05/09/14 0,79321 0,79625 

12/09/14 0,77589 0,77886 

19/09/14 0,7671 0,7746 

26/09/14 0,75457 0,76345 

03/10/14 0,76059 0,76785 

10/10/14 0,73038 0,74128 

17/10/14 0,72868 0,74384 
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Mean Value Sharpe Value 

24/10/14 0,75773 0,77165 

31/10/14 0,77618 0,79039 

07/11/14 0,79872 0,80512 

14/11/14 0,80061 0,81006 

21/11/14 0,80537 0,81568 

28/11/14 0,82618 0,839 

05/12/14 0,81526 0,82841 

12/12/14 0,79527 0,81454 

19/12/14 0,79931 0,82023 

26/12/14 0,80155 0,82239 

31/12/14 0,79067 0,80763 
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Table 4:Investment in just 1 asset 

 
Mean Value Sharpe Value 

Starting Val 1 1 

07/01/11 1,2471 1,2471 

14/01/11 1,4839 1,4839 

21/01/11 1,4154 1,4154 

28/01/11 1,3865 1,3865 

04/02/11 1,4914 1,4028 

11/02/11 1,5249 1,4343 

18/02/11 1,5025 1,4133 

25/02/11 1,4878 1,4672 

04/03/11 1,4379 1,4181 

11/03/11 1,3458 1,3806 

18/03/11 1,2571 1,3283 

25/03/11 1,3075 1,3816 

01/04/11 1,3507 1,3019 

08/04/11 1,3065 1,2593 

15/04/11 1,3224 1,2746 

21/04/11 1,3404 1,2919 

29/04/11 1,3396 1,2912 

06/05/11 1,2924 1,2457 

13/05/11 1,3196 1,2744 

20/05/11 1,3848 1,266 

27/05/11 1,4268 1,2821 

03/06/11 1,3211 1,1871 

10/06/11 1,2237 1,1171 

17/06/11 1,1683 1,0665 

24/06/11 1,1951 1,091 

01/07/11 1,2744 1,1748 

08/07/11 1,3003 1,1986 

15/07/11 1,2888 1,188 

22/07/11 1,3835 1,2753 

29/07/11 1,3314 1,2758 

05/08/11 1,248 1,1958 

12/08/11 1,3595 1,2454 

19/08/11 1,246 1,2375 

26/08/11 1,1836 1,2429 

02/09/11 1,1422 1,1994 

09/09/11 1,1575 1,1973 

16/09/11 1,2983 1,3429 
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Mean Value Sharpe Value 

23/09/11 1,2537 1,2968 

30/09/11 1,1942 1,2352 

07/10/11 1,215 1,2568 

14/10/11 1,2189 1,2827 

21/10/11 1,1647 1,2257 

28/10/11 1,3144 1,3832 

04/11/11 1,34 1,2901 

11/11/11 1,3068 1,2582 

18/11/11 1,2409 1,1948 

25/11/11 1,1424 1,0999 

02/12/11 1,2347 1,15 

09/12/11 1,2611 1,1747 

16/12/11 1,226 1,1419 

23/12/11 1,3075 1,2179 

30/12/11 1,2906 1,2236 

06/01/12 1,2613 1,2712 

13/01/12 1,1881 1,3376 

20/01/12 1,2127 1,3701 

27/01/12 1,244 1,4054 

03/02/12 1,3396 1,5134 

10/02/12 1,3165 1,6249 

17/02/12 1,366 1,7091 

24/02/12 1,3759 1,7607 

02/03/12 1,4375 1,8395 

09/03/12 1,457 1,8386 

16/03/12 1,4645 1,9394 

23/03/12 1,4566 1,9305 

30/03/12 1,5006 1,9297 

05/04/12 1,4275 1,8358 

13/04/12 1,3791 1,7734 

20/04/12 1,3987 1,7952 

27/04/12 1,551 1,9906 

04/05/12 1,5064 1,896 

11/05/12 1,4456 2,0299 

18/05/12 1,3285 1,9506 

25/05/12 1,361 1,9984 

01/06/12 1,3372 1,9634 

08/06/12 1,4364 2,0281 

15/06/12 1,4805 2,0649 

22/06/12 1,5362 2,1426 
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Mean Value Sharpe Value 

29/06/12 1,5278 2,1309 

06/07/12 1,4729 2,0808 

13/07/12 1,4789 2,0893 

20/07/12 1,4769 2,0865 

27/07/12 1,4697 2,1549 

03/08/12 1,4957 2,279 

10/08/12 1,5351 2,3392 

17/08/12 1,5742 2,3986 

24/08/12 1,5752 2,4049 

31/08/12 1,5513 2,3522 

07/09/12 1,591 2,4035 

14/09/12 1,6143 2,3478 

21/09/12 1,5929 2,3166 

28/09/12 1,5326 2,249 

05/10/12 1,5671 2,2996 

12/10/12 1,4832 2,1764 

19/10/12 0,97768 1,4347 

26/10/12 0,96943 1,4226 

02/11/12 0,97065 1,4244 

09/11/12 0,96908 1,422 

16/11/12 0,96567 1,3624 

23/11/12 0,99123 1,4301 

30/11/12 0,9838 1,5256 

07/12/12 0,95883 1,4869 

14/12/12 0,94586 1,549 

21/12/12 0,96042 1,5728 

28/12/12 0,93434 1,5691 

04/01/13 0,9347 1,6361 

11/01/13 0,95529 1,6722 

18/01/13 0,90281 1,5803 

25/01/13 0,9267 1,6221 

01/02/13 0,94504 1,6323 

08/02/13 0,9328 1,6575 

15/02/13 0,93139 1,5763 

22/02/13 0,91037 1,5407 

01/03/13 0,90375 1,5777 

08/03/13 0,91796 1,6025 

15/03/13 0,91423 1,596 

22/03/13 0,90313 1,5766 

28/03/13 0,88496 1,5 
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Mean Value Sharpe Value 

05/04/13 0,89712 1,5206 

12/04/13 1,0131 1,7172 

19/04/13 0,9751 1,6528 

26/04/13 0,89052 1,6624 

03/05/13 0,91922 1,7585 

10/05/13 0,91456 1,7496 

17/05/13 0,92185 1,7782 

24/05/13 0,89662 1,676 

31/05/13 0,8534 1,5952 

07/06/13 0,83635 1,5634 

14/06/13 0,8007 1,4967 

21/06/13 0,73462 1,3551 

28/06/13 0,72578 1,401 

05/07/13 0,7197 1,3892 

12/07/13 0,76033 1,4677 

19/07/13 0,73561 1,5004 

26/07/13 0,72308 1,4748 

02/08/13 0,78187 1,4742 

09/08/13 0,78209 1,4746 

16/08/13 0,71743 1,3527 

23/08/13 0,71269 1,3437 

30/08/13 0,69317 1,3069 

06/09/13 0,70025 1,3203 

13/09/13 0,71446 1,3804 

20/09/13 0,70816 1,3923 

27/09/13 0,7332 1,3594 

04/10/13 0,74202 1,3758 

11/10/13 0,79766 1,479 

18/10/13 0,86046 1,5354 

25/10/13 0,87058 1,5535 

01/11/13 0,86835 1,5268 

08/11/13 0,84437 1,5244 

15/11/13 0,80607 1,4553 

22/11/13 0,77728 1,4033 

29/11/13 0,76694 1,3847 

06/12/13 0,76971 1,3897 

13/12/13 0,76078 1,3735 

20/12/13 0,79077 1,4277 

27/12/13 0,80246 1,414 

03/01/14 0,80199 1,4132 
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Mean Value Sharpe Value 

10/01/14 0,81196 1,4308 

17/01/14 0,79648 1,5794 

24/01/14 0,76536 1,5177 

31/01/14 0,70028 1,3887 

07/02/14 0,69251 1,3733 

14/02/14 0,72553 1,4387 

21/02/14 0,75322 1,4936 

28/02/14 0,74311 1,4736 

07/03/14 0,7581 1,5033 

14/03/14 0,72362 1,4551 

21/03/14 0,74177 1,4916 

28/03/14 0,74713 1,5721 

04/04/14 0,73679 1,5504 

11/04/14 0,73689 1,5396 

17/04/14 0,7497 1,5485 

25/04/14 0,70159 1,5318 

02/05/14 0,7254 1,5838 

09/05/14 0,72031 1,5727 

16/05/14 0,69366 1,5145 

23/05/14 0,6884 1,503 

30/05/14 0,69964 1,5443 

06/06/14 0,71234 1,5723 

13/06/14 0,70134 1,548 

20/06/14 0,71652 1,5815 

27/06/14 0,73695 1,6266 

03/07/14 0,74661 1,6835 

11/07/14 0,75492 1,7022 

18/07/14 0,74357 1,6766 

25/07/14 0,71971 1,6891 

01/08/14 0,71453 1,7289 

08/08/14 0,70234 1,6994 

15/08/14 0,70308 1,7012 

22/08/14 0,70473 1,7052 

29/08/14 0,70963 1,717 

05/09/14 0,68912 1,6674 

12/09/14 0,69645 1,6851 

19/09/14 0,68123 1,6545 

26/09/14 0,67416 1,6374 

03/10/14 0,68076 1,6534 

10/10/14 0,64721 1,6423 
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Mean Value Sharpe Value 

17/10/14 0,6234 1,6605 

24/10/14 0,66568 1,7325 

31/10/14 0,68805 1,7908 

07/11/14 0,69636 1,8422 

14/11/14 0,69499 1,8386 

21/11/14 0,68642 1,8159 

28/11/14 0,69853 1,848 

05/12/14 0,64527 1,7071 

12/12/14 0,63262 1,6736 

19/12/14 0,65534 1,7225 

26/12/14 0,6544 1,7331 

31/12/14 0,64797 1,716 
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Appendix IV 

 

I copied here the script I wrote in Matlab to make all the calculation. Some passages, as 

calculating the average of the weekly adjusted close prices, are omitted since the calculations 

have been made in Excel.  

 

%After having downloaded and managed all the data with Excel, I put all 
%the adjusted closing price in a matrix called 'Closed', where every column 
%represents an asset. 

  
%calculation of the log returns 
YRatio=zeros(size(Closed,1),size(Closed,2)); 
for i=2:length(YRatio) 
    for j=1:size(YRatio,2) 
        YRatio(i,j)=(Closed(i,j))/(Closed(i-1,j)); 
    end 
end 
YRatio(1,:)=[]; 

  
Yields=zeros(length(YRatio),size(YRatio,2)); 
for i=1:size(Yields,1) 
    for j=1:size(Yields,2) 
        Yields(i,j)=log(YRatio(i,j)); 
    end 
end 

  
%repeat the same procedure for the return of the Nasdaq, managed as the 
%others and that I will need as a variable for the model 
NRatio=zeros(length(Nasdaq),1); 
for i=2:length(Nasdaq) 
    NRatio(i,1)=Nasdaq(i,1)/Nasdaq(i-1); 
end 

  
NRatio(1,:)=[]; 
NasdaqLog=zeros(length(NRatio),1); 
for i=1:length(NasdaqLog) 
    NasdaqLog(i,1)=log(NRatio(i,1)); 
end 

  
%calculation of the ranking 
for i=1:size(Yields,1) 
    for j=1:size(Yields,2) 
        r=Yields(i,:); 
        r=r(r<Yields(i,j)); 
        Ranking(i,j)=(size(r,2)/50) + 1/50; 

         
    end 
end 

  
%calculation of the jumps dummy variable 
mdiff=zeros(729,50); 
for i=2:size(mdiff,1) 
    for j=1:size(mdiff,2) 
        mdiff(i,j)=Ranking(i,j)-Ranking(i-1,j); 
    end 
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end 

  
mdiffA=abs(mdiff); 

  
jumps=zeros(729,50); 
for i=1:size(mdiffA,1) 
    for j=1:size(mdiffA,2) 
        if mdiffA(i,j)>=0.5 
            jumps(i,j)=1; 
        else  
            jumps(i,j)=0; 
        end 
    end 
end 

  
%reorganization of the data divided per asset. Since I used the same 
%formula for every asset of the sample, I will show the name of the various 
%matrixes as "Asset" and the corresponding column number as N 
Asset=zeros(729,10); 
Asset(:,1)=Yields(:,N); 
Asset(:,2)=Ranking(:,N); 
Asset(:,3)=mdiff(:,N); 
Asset(:,4)=mdiffA(:,N); 
Asset(:,5)=jumps(:,N); 

  
%calculation of the duration variable (divided per asset) 
for ib=2:size(Asset,1) 
    if Asset(ib-1,5)==1 
        Asset(ib,6)=1; 
    else  
        Asset(ib,6)=Asset(ib-1,6)+1; 
    end 
end 

  
%setting of the variables with the proper name and launch of the script 
insperiod=519; 

  
dep=Asset(2:insperiod+1,1); 
indep=ones(length(dep),4); 
px=ones(length(dep),2); 
indep(:,1)=Asset(1:insperiod,2)/10; 
indep(:,2)=Asset(2:insperiod+1,5); 
indep(:,3)=Asset(2:insperiod+1,6)/1000; 
indep(:,4)=NasdaqLog(1:519,1); 
px(:,1)=Asset(1:insperiod,2)/10; 
px(:,2)=Asset(2:insperiod+1,6)/1000; 
k=2; 
S=[1 1 1 1 1]; 

  
[Spec_Out]=MS_Regress_Fit_tvtp(dep,indep,px,k,S); 

  
%the results are inserted in a structured composed by elements in format 
%cells. I converted them into numeric matrixes and then convert them into 
%csv files to organizing them in tables utilizing Excel 
Tab_els=Spec_Out.param; 
filename='in_sample_params.xlsx'; 
xlswrite(filename,Tab_els,1,'C3:C16') 
Errori_standard=cell2mat(Spec_Out.Coeff_SE.S_Param); 
Errori_standard(1,3:4)=Errori_standard(2,1:2); 
Errori_standard(1,5:6)=Errori_standard(3,1:2); 
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Errori_standard(1,7:8)=Errori_standard(4,1:2); 
Errori_standard(2:4,:)=[]; 
Errori_standard=Errori_standard'; 
filename='in_sample_Sde'; 
xlswrite(filename,Errori_standard,1,'D5:D12'); 
Errori_stati=cell2mat(Spec_Out.Coeff_SE.covMat); 
Errori_stati=Errori_stati'; 
filename='in_sample_Sde_stati'; 
xlswrite(filename,Errori_stati,1,'D3:D4'); 
Errori_prob=cell2mat(Spec_Out.Coeff_SE.pa); 
Errori_prob(1,3:4)=Errori_prob(2,1:2); 
Errori_prob(2,:)=[]; 
Errori_prob=Errori_prob'; 
filename='in_sample_prob'; 
xlswrite(filename,Errori_prob,1,'D13:D16'); 
PVal_Indep=cell2mat(Spec_Out.Coeff_pValues.S_Param); 
PVal_Indep(1,3:4)=PVal_Indep(2,1:2); 
PVal_Indep(1,5:6)=PVal_Indep(3,1:2); 
PVal_Indep(1,7:8)=PVal_Indep(4,1:2); 
PVal_Indep(2:4,:)=[]; 
PVal_Indep=PVal_Indep'; 
filename='in_sample_Pindep'; 
xlswrite(filename,PVal_Indep,1,'E5:E12'); 
PVal_stati=cell2mat(Spec_Out.Coeff_pValues.covMat); 
PVal_stati=PVal_stati'; 
filename='in_sample-Pstati'; 
xlswrite(filename,PVal_stati,1,'E3:E4'); 
PVal_prob=cell2mat(Spec_Out.Coeff_pValues.pa); 
PVal_prob(1,3:4)=PVal_prob(2,1:2); 
PVal_prob(2,:)=[]; 
PVal_prob=PVal_prob'; 
filename='in_sample_Pprob'; 
xlswrite(filename,PVal_prob,1,'E13:E16'); 

  
%after having saved the plots automatically printed in the script, save 
%them as jpg in order to insert them in the Word file 
figName='Asset.fig'; 
outName='Asset.jpg'; 
h=openfig(figName,'new','invisible'); 
saveas(h,outName,'jpg') 
close(h); 

  
%calculating the probability inverse of the average duration for the 
%forecast, setting the variables to perform it and its launch 
AvgJD=(sum(indep(:,2)))/(length(indep)); 
YForec=zeros(209,1); 
SigmaForec=zeros(209,1); 
SharpeForec=zeros(209,1); 
JxForec=ones(length(YForec),1); 
JxForec(:,1)=AvgJD; 

  
newIndepData=ones(209,4); 
newpxData=ones(209,2); 
newIndepData(:,1)=Asset(520:728,2)/10; 
newIndepData(:,2)=JxForec(:,1); 
newIndepData(:,3)=Asset(521:729,6)/1000; 
newIndepData(:,4)=NasdaqLog(520:728,1); 
newpxData(:,1)=Asset(520:728,2)/10; 
newpxData(:,2)=Asset(521:729,6)/1000; 

  
[meanFor,stdFor]=MS_Regress_For_tvtp(Spec_Out,newIndepData,newpxData); 
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%conversion to numeric array of the values and calculation of the ratio 
ForecM=cell2mat(meanFor); 
ForecS=cell2mat(stdFor); 
ForecSharpe=zeros(1,size(ForecM,2)); 

  
for i=1:size(ForecM,2) 
    ForecSharpe(1,i)=ForecM(1,i)/ForecS(1,i); 
end 

  
%rearranging the arrays and writing saving them in a csv file 
Forec_Eval=[ForecM;ForecS;ForecSharpe]; 
Forec_Eval=Forec_Eval'; 
filename='oos_Asset'; 
xlswrite(filename,Forec_Eval,1,'C4:E212') 

  
%after having saved all the ForecM and the ForecSharpe in two matrixes 
%called FutMean and FutSharpe, I classified them to choose the best five in 
%which invest for each strategy 
FutRank1=zeros(size(FutMean,1),size(FutMean,2)); 
for i=1:size(FutMean,1) 
    for j=1:size(FutMean,2) 
        r=FutMean(i,:); 
        r=r(r<FutMean(i,j)); 
        FutRank1(i,j)=(size(r,2)/50) + 1/50;  
    end 
end 

  
FutRank2=zeros(size(FutSharpe,1),size(FutSharpe,2)); 
for i=1:size(FutSharpe,1) 
    for j=1:size(FutSharpe,2) 
        r=FutSharpe(i,:); 
        r=r(r<FutSharpe(i,j)); 
        FutRank2(i,j)=(size(r,2)/50) + 1/50;  
    end 
end 

  
%changing the values of the matrixes making them 0/1, where 1 indicates in 
%which asset to invest (they are ordered in alphabetical order) 
for i=1:size(FutRank1,1) 
    for j=1:size(FutRank1,2) 
        if FutRank1(i,j)>0.9 
            FutRank1(i,j)=1; 
        else 
            FutRank1(i,j)=0; 
        end 
    end 
end 

  
for i=1:size(FutRank2,1) 
    for j=1:size(FutRank2,2) 
        if FutRank2(i,j)>0.9 
            FutRank2(i,j)=1; 
        else 
            FutRank2(i,j)=0; 
        end 
    end 
end 

  
%After having seen which asset had to be selected, I downloaded the data 
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%from Yahoo Finance and reorganized them in couples of weekly opening and 
%closing prices. Then imported them in Matlab with the names VarName 
%followed by the number of the column. Then calculated the returns 
%effectively happened. 
for i=1:length(FutRank1) 
    FirstMean(i,1)=log(VarName3(i,1)/VarName2(i,1)); 
end 

  
for i=1:length(FutRank1) 
    SecondMean(i,1)=log(VarName6(i,1)/VarName5(i,1)); 
end 

  
for i=1:length(FutRank1) 
    ThirdMean(i,1)=log(VarName9(i,1)/VarName8(i,1)); 
end 

  
for i=1:length(FutRank1) 
    FourthMean(i,1)=log(VarName12(i,1)/VarName11(i,1)); 
end 

  
for i=1:length(FutRank1) 
    FifthMean(i,1)=log(VarName15(i,1)/VarName14(i,1)); 
end 

  
%calculation of the return of the portfolio 
LogMeanYield=(FirstMean+SecondMean+ThirdMean+FourthMean+FifthMean)/5; 

  
%calculation of the level of capital (starting value 1) and clearing the 
%useless arrays 
LogMeanRet=zeros(length(LogMeanYield),1); 

  
LogMeanRet(1,1)=1+LogMeanYield(1,1); 
for i=2:length(LogMeanRet) 
    LogMeanRet(i,1)=(1+LogMeanYield(i,1))*LogMeanRet(i-1,1); 
end 

  
clear  VarName11 VarName12 VarName14 VarName15... 
    VarName2 VarName3 VarName5 VarName6 VarName8 VarName9 

  
%same calculation for the Sharpe strategy (after the importation of the 
%data) 
for i=1:length(FutRank1) 
    FirstSharpe(i,1)=log(VarName3(i,1)/VarName2(i,1)); 
end 

  
for i=1:length(FutRank1) 
    SecondSharpe(i,1)=log(VarName6(i,1)/VarName5(i,1)); 
end 

  
for i=1:length(FutRank1) 
    ThirdSharpe(i,1)=log(VarName9(i,1)/VarName8(i,1)); 
end 

  
for i=1:length(FutRank1) 
    FourthSharpe(i,1)=log(VarName12(i,1)/VarName11(i,1)); 
end 

  
for i=1:length(FutRank1) 
    FifthSharpe(i,1)=log(VarName15(i,1)/VarName14(i,1)); 
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end 

  
LogSharpeYield=(FirstSharpe+SecondSharpe+ThirdSharpe+FourthSharpe+... 
    FifthSharpe)/5; 

  
LogSharpeRet=zeros(length(LogSharpeYield),1); 
LogSharpeRet(1,1)=1+LogSharpeYield(1,1); 
for i=2:length(LogSharpeRet) 
    LogSharpeRet(i,1)=(1+LogSharpeYield(i,1))*LogSharpeRet(i-1,1); 
end 

  
clear VarName2 VarName3 VarName5 VarName6 VarName8 VarName9... 
    VarName11 VarName12 VarName14 VarName15 

  
%calculation of the returns for the Nasdaq 100 (which data are not on two 
%different arrays, but on the same one) after having imported them as 
%VarName15 
for i=2:length(VarName15) 
    NasdRet(i,1)=log(VarName15(i,1)/VarName15(i-1,1)); 
end 
NasdRet(1,:)=[]; 
NasdYield=NasdRet; 
NasdRet=zeros(length(NasdYield),1); 
NasdRet(1,1)=1+NasdYield(1,1); 
for i=2:length(NasdRet) 
    NasdRet(i,1)=(1+NasdYield(i,1))*NasdRet(i-1,1); 
end 

  
%Annualized returns for the three strategies 
AnRet=LogMeanRet(length(LogMeanRet),1)^(1/4); 
AnRetNas=NasdRet(length(NasdRet),1)^(1/4); 
AnRetShar=LogSharpeRet(length(LogSharpeRet),1)^(1/4); 

  
%calculation of the number of times in which the level of the capital of 

the 
%Markov-switching strategies is higher than the level for the Buy-and-Hold 
%strategy 
BestStr=LogMeanRet-NasdRet; 
for i=1:length(BestStr) 
    if BestStr(i,1)>0 
        EffectStr(i,1)=1; 
    else 
        EffectStr(i,1)=0; 
    end 
end 
BestW=sum(EffectStr); 

  
BestStr1=LogSharpeRet-NasdRet; 
for i=1:length(BestStr1) 
    if BestStr1(i,1)>0 
        EffectStr1(i,1)=1; 
    else 
        EffectStr1(i,1)=0; 
    end 
end 
BestW1=sum(EffectStr1); 

  
%converting the arrays in a csv file in order to table them and plot  
%them via Excel 
filename='SharpeRet'; 
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xlswrite(filename,LogSharpeRet,1,'C4:C212'); 
filename='SharpeYield'; 
xlswrite(filename,LogSharpeYield,1,'C4:C212'); 
filename='MeanRet'; 
xlswrite(filename,LogMeanRet,1,'C4:C212'); 
filename='MeanYield'; 
xlswrite(filename,LogMeanYield,1,'C4:C212'); 
filename='NasdRet'; 
xlswrite(filename,NasdRet,1,'C4:C212'); 
filename='NasdYield'; 
xlswrite(filename,NasdYield,1,'C4:C212'); 

  
%calculate how many times the assets in the portfolios are all either 
%positive or negative 
for i=1:length(FirstMean) 
    if FirstMean(i,1)<0 && SecondMean(i,1)<0 && ThirdMean(i,1)<0 &&... 
            FourthMean(i,1)<0 && FifthMean(i,1)<0 
        AllNegative(i,1)=1; 
    elseif FirstMean(i,1)>0 && SecondMean(i,1)>0 && ThirdMean(i,1)>0 &&... 
            FourthMean(i,1)>0 && FifthMean(i,1)>0 
        AllPositive(i,1)=1; 
    else 
        AllNegative(i,1)=0; 
        AllPositive(i,1)=0; 
    end 
end 
SumAllNegative=sum(AllNegative); 
SumAllPositive=sum(AllPositive); 

  
for i=1:length(FirstSharpe) 
    if FirstSharpe(i,1)<0 && SecondSharpe(i,1)<0 && ThirdSharpe(i,1)<0 

&&... 
            FourthSharpe(i,1)<0 && FifthSharpe(i,1)<0 
        AllNegative1(i,1)=1; 
    elseif FirstSharpe(i,1)>0 && SecondSharpe(i,1)>0 && ThirdSharpe(i,1)>0 

&&... 
            FourthSharpe(i,1)>0 && FifthSharpe(i,1)>0 
        AllPositive1(i,1)=1; 
    else 
        AllNegative1(i,1)=0; 
        AllPositive1(i,1)=0; 
    end 
end 
SumAllNegative1=sum(AllNegative1); 
SumAllPositive1=sum(AllPositive1); 

  
%calculate how many weeks the Markov switching strategies perform better 
%than the Buy and Hold 
BestYtr=LogMeanYield-NasdYield; 
for i=1:length(BestYtr) 
    if BestYtr(i,1)>0 
        EffectYtr(i,1)=1; 
    else 
        EffectYtr(i,1)=0; 
    end 
end 
BestY=sum(EffectYtr); 

         
BestYtr1=LogSharpeYield-NasdYield; 
for i=1:length(BestYtr1) 
    if BestYtr1(i,1)>0 
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        EffectYtr1(i,1)=1; 
    else 
        EffectYtr1(i,1)=0; 
    end 
end 
BestY1=sum(EffectYtr1); 

  
%calculate how many weeks the Return and the Sharpe have an higher overall 
%return even though losing money from the initial investment 
for i=1:length(EffectStr) 
    if EffectStr(i,1)==1 && LogMeanRet(i,1)<1 
        EffectNegR(i,1)=1; 
    else 
        EffectNegR(i,1)=0; 
    end 
end 
TotEffNeg=sum(EffectNegR); 

  
for i=1:length(EffectStr1) 
    if EffectStr1(i,1)==1 && LogSharpeRet(i,1)<1 
        EffectNegR1(i,1)=1; 
    else 
        EffectNegR1(i,1)=0; 
    end 
end 
TotEffNeg1=sum(EffectNegR1); 

  
%check how many weeks the strategies have negative returns but still higher 
%than the Nasdaq 
for i=1:length(EffectYtr) 
    if EffectYtr(i,1)==1 && LogMeanYield(i,1)<0 
        EffectNegY(i,1)=1; 
    else 
        EffectNegY(i,1)=0; 
    end 
end 
TotEffNeg2=sum(EffectNegY); 

  
for i=1:length(EffectYtr1) 
    if EffectYtr1(i,1)==1 && LogSharpeYield(i,1)<1 
        EffectNegY1(i,1)=1; 
    else 
        EffectNegY1(i,1)=0; 
    end 
end 
TotEffNeg3=sum(EffectNegY1); 

  
%check for particularly high and particularly low weekly returns 
NasdOver=0; 
for i=1:length(NasdYield) 
    if NasdYield(i,1)>0.05 
        NasdOver=NasdOver+1; 
    end 
end 

  
NasdUnder=0; 
for i=1:length(NasdYield) 
    if NasdYield(i,1)<-0.05 
        NasdUnder=NasdUnder+1; 
    end 
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end 

  
LogMeanOver=0; 
for i=1:length(LogMeanYield) 
    if LogMeanYield(i,1)>0.05 
        LogMeanOver=LogMeanOver+1; 
    end 
end 

  
LogMeanUnder=0; 
for i=1:length(LogMeanYield) 
    if LogMeanYield(i,1)<-0.05 
        LogMeanUnder=LogMeanUnder+1; 
    end 
end 

  
LogSharpeOver=0; 
for i=1:length(LogSharpeYield) 
    if LogSharpeYield(i,1)>0.05 
        LogSharpeOver=LogSharpeOver+1; 
    end 
end 

  
LogSharpeUnder=0; 
for i=1:length(LogSharpeYield) 
    if LogSharpeYield(i,1)<-0.05 
        LogSharpeUnder=LogSharpeUnder+1; 
    end 
end 

  
%count how many weeks the capital invested is under the initial value 
NasdRetUnder=0; 
for i=1:length(NasdRet) 
    if NasdRet(i,1)<1 
        NasdRetUnder=NasdRetUnder+1; 
    end 
end 

  
LogMRUnder=0; 
for i=1:length(LogMeanRet) 
    if LogMeanRet(i,1)<1 
        LogMRUnder=LogMRUnder+1; 
    end 
end 

  
LogSRUnder=0; 
for i=1:length(LogSharpeRet) 
    if LogSharpeRet(i,1)<1 
        LogSRUnder=LogSRUnder+1; 
    end 
end 

  
%count the number of negative weekly returns 
NasdMeanUnder=0; 
for i=1:length(NasdYield) 
    if NasdYield(i,1)<0 
        NasdMeanUnder=NasdMeanUnder+1; 
    end 
end 
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LogMYUnder=0; 
for i=1:length(LogMeanYield) 
    if LogMeanYield(i,1)<0 
        LogMYUnder=LogMYUnder+1; 
    end 
end 

  
LogSYUnder=0; 
for i=1:length(LogSharpeRet) 
    if LogSharpeYield(i,1)<0 
        LogSYUnder=LogSYUnder+1; 
    end 
end 

  
%calculate maximum and minimum value for the returns and the capital in the 
%three cases, and the average weekly returns 
MaxDownN=min(NasdYield); 
MaxDownM=min(LogMeanYield); 
MaxDownS=min(LogSharpeYield); 

  
MaxUpN=max(NasdYield); 
MaxUpM=max(LogMeanYield); 
MaxUpS=max(LogSharpeYield); 

  
MaxDownNR=min(NasdRet); 
MaxDownMR=min(LogMeanRet); 
MaxDownSR=min(LogSharpeRet); 

  
MaxUpNR=max(NasdRet); 
MaxUpMR=max(LogMeanRet); 
MaxUpSR=max(LogSharpeRet); 

  
AvgMY=mean(LogMeanYield); 
AvgNY=mean(NasdYield); 
AvgSY=mean(LogSharpeYield); 

  
%Average positive and negative weekly return for each strategy 
counting=1; 
for i=1:length(LogMeanYield) 
    if LogMeanYield(i,1)<0 
        MeanLosses(counting,1)=LogMeanYield(i,1); 
        counting=counting+1; 
    end 
end 
AvgMeanLoss=mean(MeanLosses); 

  
counting=1; 
for i=1:length(LogMeanYield) 
    if LogMeanYield(i,1)>0 
        MeanWins(counting,1)=LogMeanYield(i,1); 
        counting=counting+1; 
    end 
end 
AvgMeanWins=mean(MeanWins); 

  
counting=1; 
for i=1:length(LogSharpeYield) 
    if LogSharpeYield(i,1)<0 
        SharpeLosses(counting,1)=LogSharpeYield(i,1); 
        counting=counting+1; 
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    end 
end 
AvgSharpeLoss=mean(SharpeLosses); 

  
counting=1; 
for i=1:length(LogSharpeYield) 
    if LogSharpeYield(i,1)>0 
        SharpeWins(counting,1)=LogSharpeYield(i,1); 
        counting=counting+1; 
    end 
end 
AvgSharpeWins=mean(SharpeWins); 

  
counting=1; 
for i=1:length(NasdYield) 
    if NasdYield(i,1)<0 
        NasdLosses(counting,1)=NasdYield(i,1); 
        counting=counting+1;  
    end 
end 
AvgNasdLoss=mean(NasdLosses); 

  
counting=1; 
for i=1:length(NasdYield) 
    if NasdYield(i,1)>0 
        NasdWins(counting,1)=NasdYield(i,1); 
        counting=counting+1; 
    end 
end 
AvgNasdWins=mean(NasdWins); 

  
%plot the yield over time of the three strategies and convert the image in 
%jpg 
figure 
x=linspace(1,209,209); 
p=plot(x,LogMeanYield,x,LogSharpeYield,x,NasdYield); 
xlabel('Time'); 
ylabel('Returns') 
legend('MeanReturns','SharpeReturns','NasdaqReturns'); 
p(1).Marker='+'; 
p(2).Marker='x'; 
p(3).Marker='*'; 

  
figName='StratReturns.fig'; 
outName='StratReturns.jpg'; 
h=openfig(figName,'new','invisible'); 
saveas(h,outName,'jpg') 
close(h); 

  
%calculation of the returns and the capital level accounting for the 
%commissions in the Markov switching strategies, and conversion of the 
%arrays in a csv file to table them 
commissions=ones(209,1)*0.002; 
LogMYcomm=LogMeanYield-commissions; 
LogMRcomm=zeros(209,1); 
LogMRcomm(1,1)=1+LogMYcomm(1,1); 
for i=2:length(LogMRcomm) 
    LogMRcomm(i,1)=(1+LogMYcomm(i,1))*(LogMRcomm(i-1,1)); 
end 

  



 98 

LogSYcomm=LogSharpeYield-commissions; 
LogSRcomm=zeros(209,1); 
LogSRcomm(1,1)=1+LogSYcomm(1,1); 
for i=2:length(LogSRcomm) 
    LogSRcomm(i,1)=(1+LogSYcomm(i,1))*(LogSRcomm(i-1,1)); 
end 

  
filename='MeanRetcomm'; 
xlswrite(filename,LogMRcomm,1,'C4:C212'); 

  
filename='SharpeRetcomm'; 
xlswrite(filename,LogSRcomm,1,'C4:C212'); 

  
%calculation to find just the best asset on which invest in the case of one 
%single asset investment. Then, showing which one is with respect to the 
%five early selected 
for i=1:size(FutMean,1) 
    for j=1:size(FutMean,2) 
        r=FutMean(i,:); 
        r=r(r<FutMean(i,j)); 
        FutRank3(i,j)=(size(r,2)/50) + 1/50;  
    end 
end 

  
for i=1:size(FutRank3,1) 
    for j=1:size(FutRank3,2) 
        if FutRank3(i,j)==1 
            FutRM(i,j)=1; 
        else 
            FutRM(i,j)=0; 
        end 
    end 
end 

  
for i=1:size(FutSharpe,1) 
    for j=1:size(FutSharpe,2) 
        r=FutSharpe(i,:); 
        r=r(r<FutSharpe(i,j)); 
        FutRank4(i,j)=(size(r,2)/50) + 1/50;  
    end 
end 

  
for i=1:size(FutRank4,1) 
    for j=1:size(FutRank4,2) 
        if FutRank4(i,j)==1 
            FutRS(i,j)=1; 
        else 
            FutRS(i,j)=0; 
        end 
    end 
end 

  
for i=1:length(FutRank3) 
    for j=1:size(FutRank3,2) 
        if FutRank3(i,j)==1 && FutRM(i,j)==1 
            Fut1Best(i,j)=1; 
        elseif FutRank3(i,j)>0.9 && FutRM(i,j)==0 
            Fut1Best(i,j)=-1; 
        else 
            Fut1Best(i,j)=0; 
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        end 
    end 
end 

  
for i=1:length(FutRank4) 
    for j=1:size(FutRank4,2) 
        if FutRank4(i,j)==1 && FutRS(i,j)==1 
            Fut1BSharpe(i,j)=1; 
        elseif FutRank4(i,j)>0.9 && FutRS(i,j)==0 
            Fut1BSharpe(i,j)=-1; 
        else 
            Fut1BSharpe(i,j)=0; 
        end 
    end 
end 

  
%having found which is the chosen one for every week, import the data from 
%the Excel sheet and then calculate yields and capital level. 
MY1Asset=zeros(length(LogMeanYield),1); 
MY1Asset=log(VarName3./VarName2); 
MR1Asset=zeros(length(MY1Asset),1); 
MR1Asset(1,1)=1+MY1Asset(1,1); 
for i=2:length(MR1Asset) 
    MR1Asset(i,1)=(1+MY1Asset(i,1))*(MR1Asset(i-1)); 
end 

  
SY1Asset=zeros(length(LogSharpeYield),1); 
SY1Asset=log(VarName8./VarName7); 
SR1Asset=zeros(length(SY1Asset),1); 
SR1Asset(1,1)=1+SY1Asset(1,1); 
for i=2:length(SR1Asset) 
    SR1Asset(i,1)=(1+SY1Asset(i,1))*(SR1Asset(i-1)); 
end 

  
filename='Mean1Asset'; 
xlswrite(filename,MR1Asset,1,'C4:C212'); 

  
filename='Sharpe1Asset'; 
xlswrite(filename,SR1Asset,1,'C4:C212'); 
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