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Riassunto

Questo lavoro di tesi vuole essere un esempio di implementazione di una strategia di controllo

vettoriale per gli azionamenti di motori ad induzione. Allo scopo si è utilizzata una piattaforma

di controllo di nuova generazione chiamata “BoomBox”, prodotto recentemente sviluppato

dalla compagnia Imperix S.A., composta da DSP ad alta prestazione e FPGA. La periferica è

inoltre dotata di sistemi per l’acquisizione dati, è liberamente programmabile e facilmente

interfacciabile con la maggior parte dei sensori e trasduttori presenti nel mercato. Questo

strumento progettato allo scopo di facilitare i ricercatori in ambito della power electronics, e

quindi in ambienti di R&D, semplifica molto l’implementazione di una PWM e del controllo

tramite fibra ottica di switch controllabili in apertura e chiusura.

Le qualità del motore ad induzione ormai note da tempo all’industria, per via della sua ro-

bustezza, economicità, vita lunga e ottime prestazioni in termini di rendimenti elettrici, lo

rendono un motore estremamente versatile a molte applicazioni in ambito industriale dove

viene richiesto un preciso controllo della posizione dell’asse rotorico e/o della velocità di

rotazione.

Nella prima parte di questo lavoro vengono mostrate le equazioni di un motore ad induzione,

che portano ad un modello elettrico equivalente nella particolare situazione di regime si-

nusoidale, grazie al quale si possono determinare i principali parametri elettrici del motore.

Grazie a questi, le equazioni differenziali possono essere particolarizzate per il motore scelto,

e si può quindi riprodurre un modello del motore utilizzando uno strumento informatico

quale Simulink. Il capitolo 2 è dedicato a questo modello e alla sua verifica, alla modalità di

acquisizione dei parametri elettrici statorici e rotorici, al circuito elettrico equivalente e quindi

alle equazioni che descrivono potenza, coppia e flussi.

Il capitolo 3 mostra come le prestazioni di un azionamento scalare in situazioni di transitorio

siano migliorabili utilizzando della strategie di controllo vettoriale. Per prima cosa vengono

riadattate le equazioni in modo da imporre delle tensioni statoriche tali che il flusso statorico

rimanga a 1p.u. La strategia di controllo viene simulata e se ne riportano le prestazioni.

Nel paragrafo 3.2 viene invece mostrato il funzionamento dell’azionamento FOC indiretto, se
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ne descrivono le equazioni e vengono progettati gli anelli di corrente e di velocità. Si riportano

al contempo alcune problematiche implementative che hanno per esempio portato alla scelta

di un ciclo di isteresi nei parametri del regolatore di velocità. Infine si riportano le simulazioni

del controllo, con la risposta del sistema a gradini di velocità.

Il capitolo 4 è invece dedicato alla descrizione sia hardware che software dell’azionamento

sviluppato. La piattaforma di controllo viene descritta e se ne riportano i parametri per la

configurazione dei sensori utilizzati, i LPFs scelti e le motivazioni. Vengono mostrati i segnali

dell’encoder utilizzato per il calcolo della velocità rotorica e come, processandoli e utilizzando

un PLL, venga poi dedotta la velocità di rotazione dell’albero motore. Si riporta poi lo schema

elettrico dell’inverter impiegato, e le verifiche del suo corretto funzionamento. Allo stesso

modo, è stato realizzato e verificato il corretto funzionamento del sistema di frenatura, utile in

caso i flussi di potenza si dovessero invertire. Infine viene fatta una descrizione della macchina

a corrente continua utilizzata come carico meccanico da applicare all’albero motore, in modo

da testare le prestazioni dell’azionamento anche sotto carico.

Il capitolo 5 riporta i risultati della strategia implementata, step-by-step di ogni singolo blocco

implementato. Partendo dalla situazione di assenza di carico, i blocchi di trasformazione

vengono implementati per le correnti misurate e le tensioni imposte. Il modello del motore

viene verificato in un controllo a catena aperta. Vengono poi verificati i blocchi di disaccoppi-

amento degli assi e di compensazione della f.e.m. Infine si riportano le risposte del sistema a

catena chiusa a gradini di velocità o di corrente, sia in condizioni di vuoto che di carico.

Si conclude il lavoro con delle considerazioni finali, riportando ciò che è stato svolto e ciò che

è stato realmente formativo, le difficoltà incontrate e le possibilità future su ulteriori sviluppi

di questo lavoro. Viene inoltre riportato il codice scritto per l’implementazione della strategia

e i suoi flow chart per una più facile interpretazione.
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Abstract

This thesis wants to be a guide for the implementation of a vector control of an induction

motor. Will be seen the theoretical basis, leading to the creation of the first scalar controls

used in the past. Will be seen some simulations using Simulink and their performances. It will

be seen then, as a vector control can lead to higher performances even in transients and in

fast dynamics.

It will be shown how we should define the parameters of such a control system, from the

knowledge of the motor parameters to the current and speed regulators. It will analyze also

the hardware aspect; as the shaft’s speed can be derived using a rotary encoder, the remaining

part of the sensors and how to use correctly a control platform, called “BoomBox” developed

by the company Imperix. Will be also seen the overall performances of the power converter

and the braking system.

Finally, it will be analyzed the results and performance of the implemented vector control,

reporting measures taken at the workplace.

Key words: Induction motor, Power electronics, Field oriented control, Electrical drives
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Introduction

Nowadays, one of the big problem and discuss topic in our society is the energy. Since the man

discovered the electrical energy, has been very fascinated from its properties, manifestations

and potentiality. From the early onsets of awareness of its existence, the man did lots of steps

to know it and manage it better. Electrical energy has lots of advantages respect to other types

of energy. It is easily transportable, convertible and let us to reach high efficiencies in different

energy systems. For these and more reasons, electrical energy will be our future, our sureness

and our way to improve the quality life of many people.

In the last years, renewable energy has become more and more important in our energy

productions, bringing a huge improvement to the environmental impact respect to the fossil

fuels. On the other side, not programmable energy placed on the electrical grids, gives lots

of troubles in terms of frequency stability and control of the power flows. With this view, it is

highly important to know the root of the generation, being able to control it and manage it in

the best way.

Induction machines plays an important role on generation, specially for wind turbines or

micro hydro installations, and another big part in the electrical consumption in the industry

field, as induction motors. Its control is important to reach high performance for various

industrial plants.

The motion control area is a field that implement the control theory to the power electronics.

This two areas are almost always related but at the same time are increasingly discussed as

different, since each one has its separate development and its particular expert engineers.

Four years ago a versatile control platform was developed from the Industrial Electronics

Laboratory at EPFL dedicate to the power electronics applications. This system is made of

high performance DSP and FPGA and embeds also many peripherals for data conditioning

and acquisition as well as communication purposes. The goal is to help R&D engineers to

speed up their power electronic developments, in an open-software system that customers

are welcome to self-appropriate and edit up to their own needs [8].

In this view, motor drives could be easily implemented by customers; in this thesis, it will be

shown how an induction motor can be control with this platform developing and testing a

motor control library.

1





1 Induction Motor and Electrical Drives

In this chapter we will see how an induction motor works and a brief overview about the most

common tecniques used for its control.

1.1 Induction Motor

The IM ( induction motor), or asynchronous motor, is a rotating machine using alternative

current, whose speed and network frequency, at which is connected, is not in a constant ratio.

It’s normally realized collocating, in an isotropic stator, a three-phase induction winding and,

in a isotropic rotor, an induced winding (more common is to collocate one or two aluminum

cages, linked by a ring at the terminals).

The rotor and the stator are detached by an air gap. The stator winding is made of 3 equal

phase in coils and distribution, but equally spaced along the air gap, in order to have a phase

shift of 120 degrees relative to one another.

The stator winding is energized and through the interaction between the produced rotating

magnetic field and the rotor winding, the power is transferred from the electrical side to the

mechanical one.

This elements are described in the Fig. 1.1

The induction motors have many advantages, they are rugged, reliable and economical, and

its mainly applications are in the industry field for systems at variable speed service. They

don’t require period maintenance and they can be plugged directly into the grid.

No sliding contacts and permanent magnets are needed to make an induction motor work,

which makes it very simple and cheap to manufacture. However, it’s not easy like in DC motors,

to control its velocity and torque. For its non-linear behavior during saturation effect and the

oscillation of the electrical parameters influenced by the work temperature, is still difficult

and complex to control its mathematical model [1].

3



Chapter 1. Induction Motor and Electrical Drives

Figure 1.1 – Transversal section of an asynchronous machine three phases with squirrel cage.
[1: stator; 2: air gap; 3: rotor; 4: stator caves (4 per pole per phase); 5: stator windings; 6:
rotor caves; 7: longitudinal conductive rotoric bars of the cage; 8: ring of the cage; P1,P2,P3:
input terminals for the three statoric phases; F1,F2,F3: output terminals for the three statoric
phases] [1, p.194]

1.2 Electrical drive control

For many years the easiest way to control an induction machine was to regulate the frequency

and voltage supply using a scalar control, reaching good performances just in steady-state

conditions. This was called V/f ratio constant control. In the first ‘70s, with the introduction of

the spatial vectors, new control techniques have been developed, like FOC (Field-Oriented

Control) as a vector control with current-loops.

Therefore, the use of induction machines in industrial applications is becoming more prac-

tical, thanks to both improved field-oriented control techniques and improvements in the

control strategies, power semiconductors, and digital signal processors. The field-oriented

control method takes into consideration both successive steady-states and real mathematical

equations that describe the motor itself. It reaches better dynamic performance for torque

variations in a wide speed range than V/f control, but it requires more computational power,

that can be overcome using DSP.

The drawback of FOC is that the rotor speed of the motor must be measured through a speed

sensor, e.g. an incremental encoder, in order to know the rotor position and be able to calculate

other variables, as the rotor flux, otherwise not calculable. Due to the cost of these sensors

recent trend is towards the use of sensorless algorithms in FOC. The term sensorless refers

to the absence of a speed sensor on the motor shaft, but the motor currents and the voltages

must still be measured.

This work is mainly focused on imposing a rotor flux vector in order to decoupling the d and q

axes and to control the behavior of the IM in terms of torque or speed. The typical structure of

the FOC is reported in Fig. 1.2 [2].
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1.2. Electrical drive control

Figure 1.2 – Principle Scheme of an electrical drive for induction motors. [2]

From the three phases electrical grid, a rectifier is used to reach a continue voltage, which

supplies a Voltage Source Inverter, which finally allows to have the right voltages or currents

shapes for the induction motor supply. The Inverter is controlled by the torque control of the

drive.

In the Field Oriented Control (or vector control) we will see that using the IM equations we

can obtain a decoupling between the electromagnetic torque and the rotor flux, simplifying

its dynamic control and bringing back the model to similar DC motor behavior. To reach

this simplification, the drive has to work in a reference frame coupled with spatial vector of

the rotor flux. This means that in some way the rotor flux has to be measured, estimated or

imposed. Using an incremental encoder for the shaft’s speed and meters for the currents of

the stator phases, the position of the rotor flux can be imposed by a motor model structure.

The reference torque usually comes from an external speed-loop which elaborates a speed

error between one speed reference and the measured speed on the shaft or on the load.

Between the rectifier and the inverter there are always a capacitors bank and an electrical

braking system (chopper), composed by a switch, a diode and a resistor (the last one is present

just in case the load could become a generator).
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2 Induction Motor Modeling

In this chapter it will see how an induction motor can be modeled in a stationary frame, using

Simulink, and how we can validate as a good model, having the same behavior of the real

motor. At first we will see some differential equation that describe the dynamic behavior of

IMs, electrical as mechanical ones. After that we will reach the equivalent scheme of one

phase, defining the specification of the real machine. At the end there will be a comparation

between the Simulink model and the datasheet value of the IM.

2.1 Dynamic behaviour and space vectors

To analise the dinamic behaviour of the IM we can start from the stator differential equations

of the three phases a, b, c:

usa = Rs isa + dΨsa

d t
(2.1a)

usb = Rs isb +
dΨsb

d t
(2.1b)

usc = Rs isc + dΨsc

d t
(2.1c)

and for the rotor, since we have a squirrel cage, the three phases are always short circuited,

through the rotoric equivalent resistors:

0 = Rr ir a + dΨr a

d t
(2.2a)

0 = Rr ir b +
dΨr b

d t
(2.2b)

0 = Rr ir c + dΨr c

d t
(2.2c)
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Chapter 2. Induction Motor Modeling

With Rs and Rr rescpectivly the statoric and rotoric resistances andΨ the fluxes. Since every

flux is given by all the six currents, we can write assuming a linear magnetic circuit, e.g.

withΨsa :

Ψsa =Ψst at +Ψr ot (2.3)

with

Ψst at = Lsaisa +LM s isb +LM s isc (2.4)

Ψr ot = LMr cos(θme )ir a +LMr cos(θme + 2π

3
)ir b +LMr cos(θme + 4π

3
)ir c (2.5)

Defining θme the rotor angular electrical position expressed in radiants θme = pθm , with p the

number of pair of poles and θm the rotor angular position expressed in mechanical radiants.

Since now we will use space vectors to represent a three phase system, mentioning here a

generic one:

g = 2

3

[
ga + gbe j 2

3 + gc e j 4
3

]
(2.6)

So the (2.1) and (2.2) become two complex equation and they are still dependent on time:

us
s = Rs is

s +
dΨs

s

d t
(2.7)

0 = Rr ir
r +

dΨr
r

d t
(2.8)

The subscripts indicate the reference frame of the space vectors and the bold variables repre-

sent complex space vectors. All these vectors are referred to stator and rotor fixed reference.

In the same way, the (2.4) become, for the three phases, guessing Lsa = Lsb = Lsc = Lsσ , the

next equation:

Ψs
stat = Ls is

s with Ls = Lsσ+|LM s | (2.9)
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2.2. Stator and rotor equations in d k qk reference frame

Figure 2.1 – Common reference system [3]

and the (2.5):

Ψs
rot =

3

2
LMr ir

re jθme = LM is
r with LM = 3

2
LMr and is

r = ir
re jθme (2.10)

So the total stator flux is given by the transformation of (2.3):

Ψs
s = Ls is

s +LM is
r (2.11)

And in the same way we have obtained the stator flux, the rotor flux depending from the

currents is given by:

Ψr
r = Lr ir

r +LM ir
s (2.12)

With the same method of synchronous stator inductance Ls , we have defined the synchronous

rotor inductance Lr

2.2 Stator and rotor equations in d k qk reference frame

Introducing a generic reference frame k, not fixed but generally rotating in respect to the fixed

one, we can ease the mathematical model of the IM. The common reference system is shown

in Fig. 2.1.

Multiplying both sides of both statoric equations ( (2.7) and (2.11)) by e− jθk we obtain:

uk
s = Rs ik

s +
dΨk

s

d t
+ jωkΨ

k
s (2.13)
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Chapter 2. Induction Motor Modeling

Ψk
s = Ls ik

s +LM ik
r (2.14)

At the same way we can obtain the rotoric equation in the common reference frame multiplying

the (2.8) and (2.12) before by e jθme , to express it respect to the statoric frame, and later by

e− jθk :

0 = Rr ik
r +

dΨk
r

d t
+ j (ωk −ωme )Ψk

r (2.15)

Ψk
r = Lr ik

r +LM ik
s (2.16)

2.3 Stator and rotor equations in d s q s stationary reference frame

One of the first option is to choose the common reference system in order to keep all the

equation in accordance with the stator. We will use this reference to implement the IM

equations in Simulink.

Imposing θk = 0, the k axis overlap the stator axis. Consequently we force that:

dθk

d t
=ωk = 0 (2.17)

So (2.13) and (2.15) become:

us
s = Rs is

s +
dΨs

s

d t
(2.18)

0 = Rr is
r +

dΨs
r

d t
− jωmeΨ

s
r (2.19)

And (2.14) and (2.16):

Ψs
s = Ls is

s +LM is
r (2.20)
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2.4. Power and electromagnetic torque

Ψs
r = Lr is

r +LM is
s (2.21)

Writing the last two equations expliciting the currents we obtain:

is
s =− Lr

L2
M −LsLr

Ψs
s +

LM

L2
M −LsLr

Ψs
r (2.22)

is
r =

LM

L2
M −LsLr

Ψs
s −

Ls

L2
M −LsLr

Ψs
r (2.23)

2.4 Power and electromagnetic torque

Remeber that (2.18) and (2.19) are complex so they are totally 4 equations. Multiplying (2.18)

by isd and isq , and (2.19) by ir d and ir q , adding all the 4 equations we obtain the total power:

Pe = P J +Pµ+Pm (2.24)

with Pe - input active power, P J - joule losses, Pµ - stored magnetic power and Pm mechanical

power trasferred (iron and mechanical losses are neglected). We remember that we have to

moltiplying by 3
2 when we pass from the synchronous to the stationary reference frame. In

this model the iron and mechanical losses are neglected.

Pe = 3

2

(
usd isd +Usq isq

)
(2.25a)

P J = 3

2

[
Rs(i 2

sd + i 2
sq )+Rr (i 2

r d + i 2
r q )

]
(2.25b)

Pµ = 3

2

(
isd

dΨsd

d t
+ isq

dΨsq

d t
+ ir d

dΨr d

d t
+ ir q

dΨr q

d t

)
(2.25c)

Pm = 3

2
ωme (Ψr q ir d −Ψr d ir q ) =ωmTe (2.25d)

with Te the electromagnetic torque.

Input reactive power:

Qe = 3

2

(
usq isd −usd isq

)
(2.26)

And input apparent power:

S = Pe + jQe (2.27)
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Chapter 2. Induction Motor Modeling

Figure 2.2 – Space vector equivalent circuit in an arbitrary reference frame

Figure 2.3 – Space vector equivalent circuit in a stationary reference frame (ωk = 0)

So we can isolate the Te :

Te = 3

2
p

(
Ψr q ir d −Ψr d ir q

)
= 3

2
pIm

(
Ψrir

∗
)
=−3

2
p

LM

Lr
Im

(
Ψris

∗
)

=−3

2
pIm

(
Ψsis

∗
)
= 3

2
p

(
Ψsd isq −Ψsq isd

) (2.28)

2.5 Equivalent electric circuit

Every equation in the previous sections can be represent with an equivalent electric circuit. We

remember that this electrical schemes report the spatial vectors and characterize the dynamic

Figure 2.4 – Sinusoidal steady state monophase electrical circuit [1]
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2.6. Specification of the motor

Table 2.1 – Nominal Values of the IM (ABB MT90L24F165-4 MK119961-S IP55 IEC34 CI F) [5]

nominal values

Voltage UN 400 V
Current IN 3.5 A

rpm n 1420 rpm
Number of pair of poles p 2

Power PN 1500 W
Power factor cos(ϕN ) 0.79

Torque TN 10 Nm
Inertia moment J 0.0043 Kgm2

Weight m 16 Kg
Efficiency η 80.3 %

behavior of the model.

In an arbitrary reference frame we have Fig. 2.2.

In the stationary reference frame we obtain Fig. 2.3.

To define the parameters in our real motor, we will use the sinusoidal steady state monophase

electrical circuit, which let us to represent the vectorial generator in Figs. 2.2 and 2.3 as a

variable resistance function of the slip s, reported in Fig. 2.4.

The slip is defined as:

s =
(
s = ωn −ωme

ωs

)
(2.29)

We can notice that for s = 0 we will not have rotor currents and the power is not trasferred;

this condition is equivalent to the No Load operation (this condition can only reached if

mechanical losses are zero).

With s = 1 (locked rotor) the circuit represent the Short Circuit operation of the motor.

If the slip is between 0 and 1, the electrical power represented by:

P̄m = 3Rr
(1− s)

s
Īr (2.30)

is the mechanical useful power to the motor shaft plus the mechanical losses.

2.6 Specification of the motor

The parameters of the circuit shown in Fig. 2.4 can be defined doing the following tests on the

machine:

• No Load Test;

• Short Circuit Test;
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Chapter 2. Induction Motor Modeling

Table 2.2 – Measured values of No Load and Short Circuit tests

No Load Short Circuit Multimeter

U0 = 400.3 V USC = 83.4 V Rohm = 9.3Ω
I0 = 1.88 A ISC = 3.48 A Rc = 0.12Ω
P0 = 250 W PSC = 360 W

Q0 = 1260 VAR QSC = 340 VAR
S0 = 1290 VA SSC = 500 VA

cos(ϕ0) = 0.79 cos(ϕSC ) = 0.72

• Measure resistance Rs of one phase with a multimeter.

The nominal values of the ABB motor are reported in the Table 2.1. For the first two tests, a

power quality analyzer helped us to calculate the power factor and to measure the power, the

voltage and the currents. The No Load test is carried out without applying any load to the

motor shaft at the nominal voltage and frequency value (50H z).

For the Short Circuit test we applied the nominal current when the rotor was locked.

Both derived measurements are reported in the Table 2.2, where we also reported the multi-

meter measurment for the statoric resistance (Rc is the estimated cable resistance).

So step by step we can derive every electrical parameters of the IM:

Rs = Rohm −Rc

2
' 4.6Ω (2.31)

R0 =
( U0p

3
−Rs I0

)2 1

( P0
3 −Rs I 2

0 )
= 738Ω (2.32)

Rr =
PSC

3 −Rs I 2
SC

I 2
SC

= 5.3Ω (2.33)

Xs +Xr = (Rs +Rr ) tanϕSC = 9.54Ω Xs = Xr = 4.77Ω (2.34)

XM =
(Q0

3
−Xs I 2

0

) 1

(I0 sinϕ0)2 = 118.8Ω (2.35)
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2.6. Specification of the motor

Figure 2.5 – Equivalent monophase electrical circuit of the IM

Obtaining the equivalent monophase electrical circuit of the IM, Fig. 2.5.
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Chapter 2. Induction Motor Modeling

2.7 Simulink model and results

The equations 2.18, 2.19, 2.22, 2.23 and 2.28 represented in Fig. 2.7 are not enough to run the

model. We have to add the mechanical torque balance:

J
dωme

d t
= Te −TL (2.36)

with TL the external load torque.The structural diagram is shown in Fig. 2.6.

We will show now how this model can be validated, representing the IM on the real plant,

comparing the Simulink model behavior with the datasheet values in Tab. 2.1. We will use an

open-loop system simulation. First, we start the simulation applying a zero external torque,

to simulate the No Load operation, and after 0.2 seconds we will apply the nominal torque

TL = 10N m. In this case we used an ideal three-phase electrical grid as a power supply, with

230V phase to neutral at the nominal frequency of 50H z.

Neglecting the first part of the Fig. 2.8 we can notice that:

• The currents increase with the torque: nominal torque, nominal value (3.5
p

2 ' 5A);

• The rotor passes from the No Load speed
(

2π f 60
p

)
to the nominal one;

• The Te follows the reference torque (Load) in a converget way.

In the same figure are also reported the stator and rotor fluxes, as the electrical and mechanical

power derived from 2.25a and 2.25d. We can notice that in steady state condition, at the

nominal torque, the electrical power is equal to 1500W , and the mechanical one is lightly

lower, due to the stator and rotor losses (the iron and mechanical losses have been neglected).

The model just seen, reflects the characteristics of the ideal motor and its datasheet. It should

therefore be considered as good and defined validated.
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2.7. Simulink model and results

Figure 2.6 – Structural diagram of the IM in terms of spacial vectors

Figure 2.7 – Simulink blocks represent the differential equation of the IM
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Chapter 2. Induction Motor Modeling

Figure 2.8 – Simulation results
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2.8. Verification of the Steady-State condition

2.8 Verification of the Steady-State condition

2.8.1 No Load

As we can see from the Fig. 2.8 the rotor speed at No Load condition is approximately 1500

rpm, so as should be, the slip s is zero. Considering the circuit of Fig. 2.5 we can also calculate

Ī0 with s = 0:

Ī0 = 1.87 6 −1.38A (2.37)

The results in the simulation reflects this numbers, as we can see in Fig.2.9 (Note that 1.87
p

2 '
2.7A and ∆t = 0.0044s is approximately 1.38 radiants).

2.8.2 Rated Load

As we can see from the Fig. 2.8 the rotor speed at Rated Load condition is approximately 1420

rpm, so as should be, the slip s = 4
75 . Considering the circuit of Fig. 2.5 we can also calculate Ī1

with s = 4
75 :

Ī1 = 3.0386 −0.6746A (2.38)

The results in the simulation reflects this numbers, as we can see in Fig.2.10 (Note that

3.038
p

2 ' 4.3A and ∆t = 0.0022s is approximately 0.67 radiants).

In both load conditions it has been verified that the equivalent monophase electrical circuit

actually represents the IM in sinusoidal steady state.
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Figure 2.9 – Simulation representing stator voltage and current phase shift of a phase in No
Load condition
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Figure 2.10 – Simulation representing stator voltage and current phase shift of a phase in Rated
Load condition

20



3 Induction Motor Control

The IM is one of the most in use motor for variable speed applications. It can reach high perfor-

mance in terms of speed reference and response (or in terms of torque reference) through the

supply of a frequency converter and control circuits, sometimes really complex. This chapter

first explain the simplest control techniques and then more and more complicated ones in

order to obtain higher performances. The first two strategies impose the stator voltage; the

third one impose the stator currents. All these techniques want to maintain the rotor flux close

to the nominal value, in order not to exceed the saturation of the motor.

3.1 Imposing the stator flux through the stator voltage

3.1.1 Stator and Rotor equations in d r qr rotary reference frame at synchronous
speed

Before starting with the control techniques is useful to change the stationary reference frame

to a synchronous one, in order to see the stator frequency role. Imposing:

θk =
∫ t

0
ωs d t (3.1)

dθk

d t
=ωs = fsωn (3.2)

d(θk −θ)

d t
=ωn( fs −n) =ωn fr (3.3)

with fs , fr the relative stator and rotor frequency, and n = ωme
ωn

. So the 2.13 and 2.15 become:

ur
s = Rs ir

s +
dΨr

s

d t
+ jωn fsΨ

r
s (3.4)
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Chapter 3. Induction Motor Control

0 = Rr ir
r +

dΨr
r

d t
+ jωn frΨ

r
r (3.5)

And the 2.14 and 2.16:

Ψr
s = Ls ir

s +LM ir
r (3.6)

Ψr
r = Lr ir

r +LM ir
s (3.7)

We will now change all the parameters of the motor from absolute values in per unit values so it

will be easier to evaluate the dynamic behavior of the motor and the treatment becomes more

reading. So introducing us = ur
s

Un
, is = ir

s
In

, ir = ir
r

In
, Ψs = Ψr

sωn

Un
, Ψr = Ψr

rωn

Un
, rs = Rs In

Un
, rr = Rr In

Un
,

xs = Ls Inωn
Un

, xr = Lr Inωn
Un

, xM = LM Inωn
Un

we obtain the IM equations in p.u.:

us = rs is + 1

ωn

dΨs

d t
+ j fsΨs (3.8)

0 = rr ir + 1

ωn

dΨr

d t
+ j frΨr (3.9)

Ψs = xs is +xM ir (3.10)

Ψr = xr ir +xM is (3.11)

And from the last ones, defining σ= 1− x2
M

xs xr

is = 1

σxs
Ψs − 1−σ

σxM
Ψr (3.12)

ir = 1

σxr
Ψr − 1−σ

σxM
Ψs (3.13)

Introducing the stator and rotor time constants:

T
′
s =

σxs

ωnrs
(3.14)
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3.1. Imposing the stator flux through the stator voltage

Figure 3.1 – Modified structural diagram of the IM with stator voltage imposition

T
′
r =

σxr

ωnrr
(3.15)

and 1−σ
σxM

= xM
σxs xr

finally we obtain the modified structural diagram (Fig. 3.1) and its equations:

dΨs

d t
=ωn

[
us −

( 1

ωnT
′
s
+ j fs

)
Ψs + 1

ωnT
′
s

xM

xr
Ψr

]
(3.16)

dΨr

d t
=ωn

[
−

( 1

ωnT
′
r
+ j fr

)
Ψr + 1

ωnT
′
r

xM

xs
Ψs

]
(3.17)

This structure is really complex, with feedbacks and multiplication blocks making the system

strongly non-linear. In addition we have three variable inputs and one output, so the control

system is not defined, having more combination giving the same result [4]. It will see how

inputs can be controlled to have a defined control system in the next sections.

3.1.2 Imposing the stator flux through the stator voltage modulus

This is one of the simplest strategy, characterized with a constant stator flux in steady state

conditions. The control circuit is simple but the performances, specially in transient state, are

low. In steady state the fluxes are constant so 3.16 and 3.17 become:

us =
1+ j fsωnT

′
s

ωnT
′
s

Ψs − 1

ωnT
′
s

xM

xr
Ψr (3.18)

Ψr = 1

1+ j frωnT
′
r

xM

xs
Ψs (3.19)
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Figure 3.2 – Steady state characteristic for modulus of stator voltage us forΨs = 1 [4]

In order to eliminate the rotor flux, introducing Ts = T
′
s
σ , Tr = T

′
r
σ we can obtain the stator

voltage modulus:

us = Ψs

ωnTs

√
(1− fsωnTs frωnT

′
r )2 + ( fsωnTs + frωnTr )2

1+ ( frωnT
′
r )2

(3.20)

For the values in par. 2.6 we can reach the characteristic in steady state of the stator voltage

modulus for Ψs = 1, represented in Fig. 3.2. It is a function of fs and fr , where fs and fr

depending on their sign, represent the 4 operation quadrants of the asynchronous machine.

Figure 3.3 – Structural diagram of the IM with stator flux imposition through the modulus
stator voltage
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3.1. Imposing the stator flux through the stator voltage

The structural diagram is modified in Fig. 3.3 (note that us becomes purely real, in dq rotating

reference frame). Using fr as a nuisance input we can verify the transient phenomena and

how the fluxes change.

So we will pass from No Load condition to the Rated Load condition and backwards, before

keeping n = 1 constant and then with n = 0. At the rated load, fr n = ± 4
75 , and for fr = 0

represents the no load operation (is = 1
xs

= 0.925).

The Figs. 3.4 and 3.5 show the transient phenomena when the motor is rotating at the no

load nominal speed (n = 1). We have reached to maintain the stator and rotor fluxes at the

nominal value (1 p.u.) during the torque perturbation.

(a) (b)

(c) (d)

Figure 3.4 – Transient phenomena for a rotoric frequency variation from fr = 0 to fr n = 4
75 and

backwards (n = 1).
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Figure 3.5 – Spatial vectorΨs and is during a rotor frequency variation from fr = 0 to fr n = 4
75

and backwards (n = 1).

The Figs. 3.6 and 3.7 shows the transient phenomena when the motor shaft is blocked (n = 0).

In this case the transient phenomena of the fluxes are more clear and evident than before. For

fr = 0 the fluxes are purely real as the stator voltage. Both is,Ψs describe arcs in the transient

time from fr = 0 to fr n , and they come back almost as two straight lines.

As it has been showed the transient phenomena depend hardly on the operating point, and this

speed regulation is not used when it needs high dynamic performances. However, the control

circuit is quite simple and easy to implement (Fig. 3.8). The induction motor is supplied with

an inverter (2b), composed by IGBTs, and controlled by a modulator (3) with three voltage

references ucm1,ucm2,ucm3 generated from the block 4 according to these relations:

ucm1 = usc cosθs (3.21a)

ucm2 = usc cosθs − 2π

3
(3.21b)

ucm3 = usc cosθs − 4π

3
(3.21c)

The block 5 generate the position of the reference frame integrating ωs derived from a close-

loop of n, measured by an encoder (8). The rotor frequency control set ( fr c ) can be obtained

by a regulator PI (Rn), which control the rotational speed of the shaft n on the reference nc .

The block 6 generate the absolute value usc to apply at the stator voltage according to 3.20.
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3.1. Imposing the stator flux through the stator voltage

(a) (b)

(c) (d)

Figure 3.6 – Transient phenomena for a rotoric frequency variation from fr = 0 to fr n = 4
75 and

backwards (n = 0).

Figure 3.7 – Spatial vectorΨs and is during a rotor frequency variation from fr = 0 to fr n = 4
75

and backwards (n = 0).
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Figure 3.8 – Control circuit scheme to impose the stator flux through the modulus stator
voltage [4]
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3.1. Imposing the stator flux through the stator voltage

3.1.3 Imposing the stator flux through the stator voltage components

To get am improvement of the dynamic behavior of the previous control, we are going to

impose both the components of the stator voltage usd and usq . The rotational reference frame

will be synchronous with the spacial vector of the stator flux, soΨs =Ψsd =Ψs . Using 3.18

and 3.19, at the same way than before, we obtain:

usd = 1+ ( frωnT
′
r )2/σ

1+ ( frωnT
′
r )2

Ψs

ωnTs
(3.22)

usq =
[

fs +
fr (Tr −T

′
r )/Ts

1+ ( frωnT
′
r )2

]
Ψs (3.23)

The Characteristic in steady state is represented in Fig. 3.9; the usd componenet is not depen-

dent from fs , while usq is proportional to fs .

Figure 3.9 – Steady state characteristic for components of stator voltage usd ,usq forΨs = 1 [4]

The structural diagram is modified in Fig. 3.10 .Using fr as a nuisance input we can verify the

transient phenomena and how the fluxes change.

So we will pass from No Load condition to the Rated Load condition and backwards, before

keeping n = 1 constant and then with n = 0. At the rated load, fr n = ± 4
75 , and for fr = 0
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represents the no load operation (is = 1
xs

= 0.925).

Figure 3.10 – Structural diagram of the IM with stator flux imposition through the components
stator voltages

The Figs. 3.11 and 3.12 show the transient phenomena when the motor is rotating at the no

load nominal speed (n = 1). We have reached to maintain the stator and rotor fluxes at the

nominal value (1 p.u.) during the torque perturbation.

The Figs. 3.13 and 3.14 show the transient phenomena when the motor shaft is blocked (n = 0).

In this case the transient phenomena of the fluxes are more clear and evident than before.

As it has been showed the transient phenomena depend hardly on the operating point, the

dynamic behavior is improved than before, but this speed regulation is still not used when it

needs high dynamic performances. However, the control circuit is quite simple and easy to

implement (Fig. 3.15). As before, the induction motor is supply with an inverter but the three

voltage references ucm1,ucm2,ucm3 for the modulator are in this case:

ucm1 = uscd cosθs −uscq sinθs (3.24a)

ucm2 =
(
− 1

2
uscd +

p
3

2
uscq

)
cosθs +

(p3

2
uscd + 1

2
uscq

)
sinθs (3.24b)

ucm3 =
(
− 1

2
uscd −

p
3

2
uscq

)
cosθs +

(
−
p

3

2
uscd + 1

2
uscq

)
sinθs (3.24c)

The block 6 generate the values uscd and uscq to apply at the stator voltage according to 3.22

and 3.23.

30



3.1. Imposing the stator flux through the stator voltage

(a) (b)

(c) (d)

Figure 3.11 – Transient phenomena for a rotoric frequency variation from fr = 0 to fr n = 4
75

and backwards (n = 1).

Figure 3.12 – Spatial vectorΨs and is during a rotor frequency variation from fr = 0 to fr n = 4
75

and backwards (n = 1).
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(a) (b)

(c) (d)

Figure 3.13 – Transient phenomena for a rotoric frequency variation from fr = 0 to fr n = 4
75

and backwards (n = 0).

Figure 3.14 – Spatial vectorΨs and is during a rotor frequency variation from fr = 0 to fr n = 4
75

and backwards (n = 0).
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Figure 3.15 – Control circuit scheme to impose the stator flux through the components stator
voltage [4]
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3.2 Imposing the rotor flux through the components of the stator

currents (FOC - Field Oriented Control)

Field Oriented control is an high performance technique to control AC motors, decoupling

the torque and rotor flux control, as for the DC machine drives.The performance is evaluated

with the rising time and overshoots of the control system for a given speed reference step.

Vector control for the stator currents is implemented to control the torque (always depending

to stator and rotor currents, or currents and fluxes). For this control an synchronous reference

frame with the spatial vector of the rotor flux is choosen, in the way that the rotor flux is

overlapped to the d axis. In this way Ψrd =Ψr as it’s shown in Fig. 3.16. An independent

control for the torque and the rotor flux is reached.

Figure 3.16 – FOC reference frame [2]

From the eq. 3.9 and 3.11 rearranging we can get:

dΨr

d t
=−

( 1

Tr
+ j frωn

)
Ψr + xM

Tr

(
isd + j isq

)
(3.25)

and decomposed in Real and Imaginary:

dΨr

d t
=−Ψr

Tr
+ xM

Tr
isd (3.26)

0 =− frωnΨr + xM

Tr
isq (3.27)

The first equation shows thatΨr = f (isd ) and the second one that fr = f (isq ,Ψr). Also notice

that:

Te = xM

xr
Im

(
Ψ∗

r is

)
= xM

xr
Ψrisq (3.28)

So if the rotor flux is constant, the torque is direct proportional to the isq , normally happens
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to maintain the stator flux to the nominal one, in case of nominal charge in steady state. The

last two equations represent the IM model with currents imposition, and they are represented

in Fig. 3.17.

Figure 3.17 – FOC Induction motor model

Instead of rebuilding the space vector of the rotor flux to coincide with the direct axis of the

reference frame to be adopted for the vectorial control of the currents, we impose precise

conditions of the power supply such that the space vector of the rotor flux is going to be located

on the direct axis of the reference system adopted. This is called Indirect FOC. Considering the

imaginary part of 3.25 andΨr =Ψrd + jΨrq, we obtain:

dΨrq

d t
+Ψrq

Tr
= xM

Tr
isq − frωnΨrd (3.29)

in case the RHS of the equal is zero, the rotor flux becomes purely real, and this happens when:

fr = fs −n = xM

ωnTr

isq

Ψrd
(3.30)

In the indirect FOC, as we impose where the space vector is going to be located, we can

reversely know the stator frequency fs , so the equation 3.31 will be a part of the motor model:

fs = xM

ωnTr

isq

Ψrd
+n (3.31)

The resulting control circuit scheme for the Indirect FOC is represented in Fig.3.18
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Figure 3.18 – Control circuit scheme FOC
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3.2.1 Current loops

From the eqs. 3.8, 3.10 and 3.11, rearranging we can obtain the stator voltages in function of

the stator currents components, the rotor fluxes and the rotational speed of the flux vector

(considerignΨrd =Ψr).

usd = rs isd + 1

ωn

xM

xr

dΨr

d t
+ σxs

ωn

disd

d t
− fsσxs isq (3.32)

usq = rs isq + σxs

ωn

disq

d t
+ fs

xM

xr
Ψr + fsσxs isd (3.33)

So we can define:

u
′
sd = rs isd + σxs

ωn

disd

d t
+ xM

ωn xr

dΨr

d t
(3.34)

u
′
sq = rs isq + σxs

ωn

disq

d t
(3.35)

which together 3.26 and written in the s domain, express the transfer functions between the

currents and voltages of the control.

Yq = Isq

U
′
sq

= 1

rs

1

1+ sTsσ
(3.36)

Yd = Isd

U
′
sd

= 1+ sTr

rs(1+ s(Ts +Tr )+ s2σTsTr )
(3.37)

Replacing the real values we can obtain Fig. 3.19

This model present a coupling between the two axes and a stator electromotive force in q

axis due to the rotor flux. It’s necessary to do a decoupling of the axes and compensate the

electromotive force. The scheme of the control appears as in Fig. 3.20
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Figure 3.19 – Bode diagrams of Yd (blue) and Yq (red)

Figure 3.20 – FOC currents control scheme with decoupling and compensation

Thanks to this decoupling, the control scheme becomes really simple and easy to design as it’s

shown in Fig. 3.21, where Gc is the transfer function of the inverter, commonly taken as:

Gc = 1

1+ sTcm/2
(3.38)

with Tcm the commutation period, in our case Tcm = 1
20kH z
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Figure 3.21 – FOC currents control scheme with decoupling and compensation

3.2.2 Design of the current regulators

A common criteria for the regulator design is to choose the breakpoint in order to remove the

first pole of the motor tranfer function. Since now, we will pass through the absolute values of

the motor in order to easly implement later the code and the control.

A first estimation for the kp and ki paramenters of the digital regulator (example with Ri q ) can

be made following the next formulas [3]:

Ri q = 1+ sTn

Ti
Continuos regulator

Calculation for a digital regulator PI:

Tn =σTs in order to remove the pole of Yq

Ti = 2
1

Rs
TD

( 1

Rs
gain of the motor transfer function

)
(3.39a)

TD = k
Tcm

2
+ Tcm

6
+Tcm (3.39b)

Where TD the total delay, is composed in order by a terms corresponding the sampling delay

moltiplied by a factor depending on the type of regulator (for PI k = 0.5), the converter delay

and a delay for the adquisition of the measurment and for the retention of the algorithm. We

obtain:

Ki = Tcm

2

1

Ti
' 1; Kp = Tn − Tcm

4

Ti
' 200
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CALCULATION FOR THE Q AXIS:

As we said, we impose that the zero of the tranfer function of the regulator is exatcly the pole

of the tranfer function of the motor:

Ri q = Kpi q
1+ sτi q

sτi q
; τi q = Tsσ

Imposing a phase margin of 80◦, we can get the crossover frequency:

ar g
[
G Hq ( jω)

]
=−1.745 (100◦)

w = 2

Tcm
tan(1.745− π

2
) ' 7050

r ad

s

With G Hq ( jω) = Ri qGc Yq , the openloop tranfer function of the q axis. Imposing the absolute

value at 1 for this frequency, we can get the Kpi q :

Kpi q = Rsτi qω

√
1+ ω2T 2

s

4
' 210, and Ki i q = TcmKpi q

2τi q
' 0.8

CALCULATION FOR THE D AXIS:

Using the same method for the q axis, and imposing the zero of the regulator to the first pole

of the Yd , we obtain:

Kpi d ' 258, and Ki i d ' 0.6

In the real plant, we started from this values, and increasing step by step the Ki while decreas-

ing the Kp we setted up the values which give us a better response of the system in terms of

rising time and overshoots (cf. Cap 5). Adjusting ”by hand” we obtained the values in Tab. 3.1

Table 3.1 – Current Regulators Parameters

Kp Ki

Ri d 125 2.0

Ri q 110 2.2

In this way the openloop transfer functions (G Hd and G Hq ) becomes:
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Figure 3.22 – Bode diagram of G Hd (blue) and G Hq (red) open-loop transfer functions

3.2.3 Design of the speed regulator

For the q axis, the closed-loop transfer function would be:

Wq = G Hq

1+G Hq

It’s a common to aproximate it as:

W ∗
q = 1(

1+ s
νA

)
(1+ s Tcm

2 )

With νA the crossover frequency of G Hq . The next bode diagram shows that for frequencies

lower than the converter frequency, the approximation can be considered good.

So the speed loop can be represented as in Fig. 3.24.

Considering an inertial load, and Rω the speed regulator with the transfer function:

Rω = Kpω
(1+ sτω)

sτω

Using the symmetrical optimum method, we can design the speed regulator in order to have:

1

τω
= νA

10
' 405

r ad

s
and νAω =

1
τω

+νA

2
' 2230

r ad

s
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Figure 3.23 – Bode diagram of Wq (red) and W ∗
q (blue)

Figure 3.24 – Speed-Loop scheme

Imposing now, the absolute value to 1:∣∣∣G Hω( jνAω)
∣∣∣= 1

we obtain:

Kpω ' 0.25, and Kiω ' 0.05

As before, in the real plant, we started to check out the best behavior for the speed control and

its parameters. As it’s well known, the IM has a non-linear behavior respect to the speed. To

get good performances we had to adjust the parameters of the PI regulator for different speeds,

implementing an algorithm of hysteresis in order to not change the parameters with the same

threshold. A simple scheme representing what it has been implemented in the algorithm is

reported in Fig. 3.25, as well as the implemented values.

Instead choosing the crossover frequency of the open loop transfer function as the arithmetic
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Figure 3.25 – Hysteresis speed regulator parameters

mean, we could decrease it choosing the geometrical mean as:

νAω =
√

1

τω
νA ' 1280

r ad

s

The results in Chapter 5 are not accorded with this frequency. It’d be interesting comparing

the drive behavior depending on the νAω.
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3.2.4 Simulation results

Before implementing FOC in the real plant, we simulated the scheme in Fig.3.18 using

Simulink. First of all, we simulate a speed reference step. In this case, we can see that

the rotor accelerate, in function of i∗sq (limitated by the anti-windup integral, setted to 25A

in order to not exceed the sensor limit and to not stress too much the windings of the motor)

reaching the desired speed reference with damped oscillations. We also checked that the rotor

flux remains purely real, and we can see the presence of the FluxWeakening intervention. This

simulations was made in No Load conditions, and are represented in Fig.3.26.

(a) (b)

Figure 3.26 – Transient phenomena during a speed reference variation in No Load condition

In the same way, we did the same simulation in Rated Load conditions. The difference from

before is the value of i∗sq , resulting nonzero in steady state. The results are shown in Fig.3.27.

(a) (b)

Figure 3.27 – Transient phenomena during a speed reference variation in Rated Load condition
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In the next two figures, we show how the control works for one type of speed reference, with

no load (Fig.3.28(a)) and under load (Fig.3.28(a)).

(a) (b)

Figure 3.28 – Example of speed reference and the tracking of the motor [(a) : No Load (b) :
Rated Load]
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4 The Plant

In this chapter the setting-up of the plant and its relatives parameters and choises (e.g. sensors,

converters, control platform, motors etc . . . ) are described in detail, reporting the datasheets

and the related reasons which led to the choice of their usage. This chapter wants to be a good

overview of the real plant and its components (cf. Figs.1.2 4.1 and 4.2).

Figure 4.1 – Workplace 1
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Figure 4.2 – Workplace 2

4.1 Control platform

Imperix SA is a Swiss company that in collaboration with LEI laboratory at EPFL has developed

a versatile control platform called BoomBox, specially for power electronics applications in

R&D environments. The BoomBox is not only a high-performance platform, but is also, from

a software point of view, an open system that customers are welcome to self-appropriate and

edit up to their own needs, while guaranteeing a safe and sound control implementation

[8]. The BoomBox relies on two key concepts in order to speed up the development for the

interfaces without any trade-off on safety : isolated fiber optic PWM outputs and versatile

analog frontends that fit in with almost any sensor. The front panel view of the BoomBox is

shown in Fig.4.3.

Figure 4.3 – Front panel view of the BoomBox. [1: Ethernet port; 2: USB type B device port; 3:
rotary and push botton; 4: LCD screen; 5: System and user LEDs; 6: SMA analog outputs; 7:
ModuLink analog inputs; 8: Digital fiber-optic PWM outputs] [9]

The first step is to configurate the right parameters for each sensor used, in such a way that

the values of the magnitudes desirate, have a logical sense within the control code. For this

purpose, it gives a schematic diagram of an any analog input of the BoomBox (Fig.4.4).
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Figure 4.4 – Block diagram of each of the analog inputs [9].

The gain values can be 1, 2, 4 or 8. A fifth-order programmable filter can be activated on

each analog input channel. The cut-off frequencies of this filter can be set individually and

independently for each input channel (from 500Hz to 40KHz). In case of faults, the user can

define two safety limits for each input channel for the input of the A/D converter: a high

and a low one. In the last block of the scheme, the user can configure a and b parameters,

corresponging to the sensitivity and the offset of the sensor. The sensitivity a of the entire

conversion chain can be determined from the parameters of the employed sensors according

to:

1

a
= sGF E

32768

10
(4.1)

where s is the sensitivy of the sensor and GF E is the gain programmed on the frontend of the

Boombox [10].

4.2 Sensors and Encoder

The implementation of a current control as FOC for Induction Motors need the measurement

of the stator currents. For KCL just two currents are required, as the third one can be calculated.

However we will use three current sensors, to be able to protect the plant immediatly if some

current values exceed the limits. As a matter of safety and check of the state of the plant, two

sensor are also used for the measurement of the DC bus Voltage. The LEM sensors was already

mounted on the converter, and being suitable for the application, in terms of admissible

currents, voltages and compatibility with the control platform, have been selected for this

use. In Fig.4.5 is reported the voltage and current sensors behavior when the shaft is blocked,

supplying the motor with 380 V in the DC bus. The currents reach 30App .
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Figure 4.5 – Currents and DC bus voltage in short-circuit operation [CH1/CH2/CH3 :
phase currents

3 CH4 : VDC
400 ]

Field oriented control of squirrel cage IM in high performance drives needs the accurate

knowledge of the rotor speed, for this reason encoders are highly implemented in electical

drives. The most common encoders are the optical ones which using a Gray disk and photodi-

odes can generate a two digital output signals (90 degree shifted) at the frequency of the shaft

multiplying the PPR (Pulses per Revolution). Concerning the compatibility of the output sig-

nals of the encoder and the input signal of the BoomBox, in the case of considering the digital

encoder, there would be the need to build an interface for the platform. The digital inputs of

the BoomBox (GPI-General Purpose Inputs), have the advantage of an optical isolation, but on

the other hand, leads to a slow behavior not suitable for high frequency signals as the digital’s

ones.

So a magnetic Sin/Cos analog incremental encoder has chosen for the high resolution of the

rotor speed for FOC implementation. A logical scheme for the detection of the rotor speed

is shown in Fig.4.6. It uses Hall effect sensors to generate two analog signals in order to im-

plement an external interpolation to obtain the rotor speed. As the current LEM sensors, the

encoder has to be configured using the ModuLink analog inputs of the BoomBox. The charac-

teristics of the sensors are reported in Tab.4.1 and all the parameters for the configuration are

reported in Tab.4.2, considering the Fig.4.4 and the eq.4.1.

Table 4.1 – Sensors and Encoder [6] [7]

Name Number of sensors Purpose Primary nominal value

LEM LA 25-NP x3 Stator currents 25 A rms
LEM LV 25-P x2 DC bus voltages 10 mA rms

Baumer ITD 49H00 x1 Rotor speed sin/cos 1 Vpp
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Figure 4.6 – Logical scheme for the detection of the rotor speed in Sin/Cos encoders [11].

Table 4.2 – Sensors and Encoder parameters for Bbox configuration [6] [7]

Ia/Ib/Ic Udc0/Udc1 ω

Specification Current phase a, b and c DC bus Rotor speed
Sensor LEM LA 25-NP LEM LV 25-P Baumer ITD 49H00
Value ± 36 A ± 700 V ±1500 rpm

Sensitivity s 100 [mV/A] 250/RI N [V/V] /
Accuracy ± 0.5% ± 1% ± 0.3°

Input impedance 100Ω 100Ω 3 KΩ
GF E 2 4 8
LPF 2.5 kHz bypass 2.5 kHz

Limits ±10∗ In 300/-25 V /
Bbox Limits ±7 6.4/-0.5 /

a 1.52786e−3 14.6e−3 ' 3.67e−5

b -0.015 -0.45/2.75 0/0.045/0.5

With RI N = 47KΩ.
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(a) (b)

Figure 4.7 – Encoder mounting [7]

After mounting the encoder on the shaft (Fig. 4.7b), the outputs signals have been checked.

As it’s shown on Fig.4.8 the first two channels are phase shifted of 90 degree. At the nominal

speed of the motor (1500 rpm) we correctly have a reference signals at 25 Hz, and have chosen

64 PPR, the Sin and Cos channels give us a maximum frequency of 1.6 KHz, as it has been

calculated from the oscilloscope. At the same time we checked that the amplitude of the Sin

Cos signals is correctly 1 Vpp (we used differencial probes with an attenuation ratio 1/100),

meanwhile the reference signals is 1 V, instead of 2.5 V declared in the datasheet.

Figure 4.8 – Sin/Cos encoder output signals [CH1 = Channel A; CH2 = Channel B; CH3 =
Channel N (reference)]

To calculate the rotor speed, we implemented a PLL (Phase Lock Loop). The system shown in

Fig. 4.9 normally needs a signal, and using the orthogonal system generation (e.g. SOGI[12]),
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it generates the second one (othogonal to the other one). In our case, we used directly the

sine and cosine signals at the imput of the PLL, and we set the Vq generated from the αβ/d q

conversion block to zero, as the feed forward ω f f . Using the symmetric optimum method for

the PI controller parameters ([13]), Kp was configured at 3000 and K I at 30.

Figure 4.9 – General structure of a single phase PLL [12]

To check how the PLL follow the signal, we supposed that at the No Load conditions, the motor

has the biggest acceleration, supposing no mechanical losses. The maximum time, in which

the machine can reach the No Load speed, from zero, it has been calculated in the following

way:

∆t = ∆ωJ

Te −TL
= (2π50−0)0.0043

10−0
' 0.135s (4.2)

We also verified that lower Kp implies lesser crossover frequency and higher phase margin of

the openloop transfer function. Hence, for lower Kp , the PLL will better attenuate the effects

of unbalance and harmonics [13], but the response will be slower. Having a low pass filter

in both sine cosine channels, we don’t mind about big oscillations, so we can fix Kp in high

values. In fig. 4.10 we can see how the PLL code follows the acceleration and deceleration of

the motor, in an almost completely immediate way. As it can be noticed from the picture, we

imposed high and low limits for saturation at the output of the PI.

We also verified the behavior for different range steps of speed, observing an acceptable

tracking, for the FOC implementation, for almost the entire admissible range of speed (Fig.

4.11).

53



Chapter 4. The Plant

Figure 4.10 – Step of acceleration/deceleration and rise time of the PLL from 0 to nominal
speed and backwards [CH1 : simulated shaft speed CH2 : PLL output]

Figure 4.11 – Different speed steps and response of the PLL [CH1 : simulated shaft speed CH2 :
PLL output]
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4.3 Inverter

A three phase inverter has been used for the IM supply, characterized by 3 IGBTs (datasheet

in [14]), a DC bus till 1.2 kV (series of 2 couple of 2 condensators in parallel) and the LEM

sensors. Using three references phase shifted of 120 degrees, the inverter produces a set of

three voltages PWM (Pulse width modulation) with maximun amplitude of VDC
2 , phase shifted

of 120 degrees. Using the same carrier for three phases (unipolar commutation), the voltages

line-to-line fluctuate from VDC , 0 and −VDC . Remember the rms value for the voltages line-

to-line, working in linear modulation, will be
p

3
2
p

2
maVDC , so it’s required to increase the DC

voltage up to 400 V to reach the nominal value for the line-to-line voltages. At the beginning of

testing, due to reasons of technical availability in the laboratory, it was not possible to exceed

400 V in the DC link, verified not be a big deal for the machine, in terms of speed and control

efficiency. The electrical scheme of the inverter is shown in Fig. 4.12, and how it really appears

in Fig. 4.13.

Figure 4.12 – Electrical scheme of the inverter (Internal LEI project)

Figure 4.13 – Inverter
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We are going to present how the PWM looks like in steady state, No Load operation, with a 400

V in the DC bus and nominal speed supplying the motor at 50 Hz (Fig. 4.14). The green line

(VLLab) was measured by a differential probe with an attenuation ratio 1/200 while the purple

and blue ones with an attenuation ratio 1/100. The yellow line represents the duty cycle of the

first leg, from 0 to 1, in order to compare it with the carrier. Instead the red sinusoidal wave

represents Va_r e f −Vb_r e f in agreement with the green PWM.

Figure 4.14 – Inverter typical PWM

In addition, the following points have been verified as well:

• Two IGBTs of the same leg, always operate in an alternated way;

• the control platform implement directly a delay for the dead time of the IGBTs, imposed

at 800 ns (cf. [14]). The switch-on command from the gate, occurs exactly 800 ns later

then the switch-off command of the other IGBT;

• the gate signal, to swtich off or on, goes from 0 to 15 V;

• the frequency switching is 20 kHz (period of 50 µs);

• the three PWM are not phase shifted between them.
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4.4 Braking chopper

As a matter of safety and check of the state of the plant, a braking chopper was built and

tested. It is composed by a resistor, a controlled switch (a MOSFET in this case) and a free

wheeling diode, in the case where the inductive part of resistor bears an important role (cf.

Fig. 1.2). A braking chopper is an electrical switch that limits the DC bus voltage by switching

the braking energy to a resistor tranforming it in heat. This happens if the power flow tries

to change direction, from the machine to the grid. Due to having an uncontrrolled converter

bewteen the inverter and the grid (the rectifier), this operation would be impossible to execute,

increasingly raising the voltage of the DC bus, until the capacitors risk an explosion. So the

braking chopper will be automatically activated when the actual measured DC bus voltage

exceeds a specified level, 450 in this case (cr. Annex B).

It has been chosen a 70 Ω resistor, in order to have a nominal current of 400V
70Ω = 5.7A. The

system has been protected by fuses and tested with the code, controlling it at 200 Hz. We

can state that the protection system will be able to dissipate a substantial power and that its

operation is as expected (cf. Fig. 4.15). In the figure it is shown how the evolution and the

value of the current flowing through the resistor, are those expected (yellow line). We also see

that all the rated voltage falls across the resistor when the MOSFET is placed in ON-state (blue

line). It’s also shown the trend of the voltage at DC bus (purple line).

Figure 4.15 – Typical operation of the Braking Chopper [CH1 :
ichopper

10 CH2 :
Vchopper

100 CH3 : VDC
100 ]
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Chapter 4. The Plant

The braking chopper appears as in Fig. 4.16. We can notice the power supply for the gate

of the MOSFETs (5 VDC ), the optical fiber connected to the BoomBox, and the 70Ω resistor

composed by seven resistors in series (10Ω each one). In order to switch, it has been recycled

an half bridge converter having two MOSFET already mounted on a PCB. This is done using

only the MOSFET below, and leave the upper one always opened. It’s also needful connect the

midpoint P6 to the braking resistor (cf. Fig. 4.17).

Figure 4.16 – Braking Chopper

Figure 4.17 – PCB electrical scheme of the converter used for the braking chopper system
(Internal LEI project)
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4.5. DC Machine

4.5 DC Machine

To charge a Load on the shaft of the Induction Motor, a DC machine as a generator has been

used. As it is shown in Fig.4.18, it has been supplied with an indipendent exitation. The DC

machine is shown in Fig.4.1.

Applying a constant direct voltage to the inducer windings (U f ), we generate a constant

inducer flux φ staying down to the saturation limits of the DC machine. As it’s known the

relations between the torque/current and speed/voltage are:

T = kφIa and Ua = kφn

with k the DC machine coefficient, Ia the armature current, Ua the internal generated voltage

and T the generated torque.

Figure 4.18 – Indipendent exitation of a DC machine

Notice that the Load is not constant with the shaft’s speed. In order to have the same resistance

torque on the shaft, increasing the speed (speed reference in FOC), we have to proportional

increase the passive load (R), in order to have the same armature current. With this caution,

we are now able to change the Load and test the Induction Motor performances.
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5 Experimental results

Several experiments and tests of the system were conducted to verify the operation of the

hardware both the sofware. The hardware behavior is mostly explained in the Chapter 4, and

in this Chapter will be shown the behavior of the control code, in various operation conditions.

Starting with the No Load operation, we are going first to verify the correct operation of the

tranformation blocks (Park transformation blocks), and the motor model (cf. Fig.3.18), in an

Openloop control. The decoupling and compensation block is also verified, as the current

loops. After that, the control scheme was closed to pass to the Closedloop operation, and verify

the correct behavior of the whole FOC strategy. The performance of the system is evaluated by

using the oscilloscopes GW INSTEK GDS-2204 and YOKOGAWA DLM4058.

5.1 Open-loop

5.1.1 Park transformation blocks

To verify the correct operation of the Park transformation blocks, an Openloop control was

implemented. Imposing a variable fs_r e f and two constants values for Vsd∗ and Vsq∗ , we

verified the duty cycles given to the modulator, the measured currents in Timedomain and in

d q . First we imposed a fs_r e f = 1p.u. and Vsd∗ = 0, Vsq∗ = 1. All this experiments were done

having 200 V in the DC bus. The ducty cycle of the leg a and b are shown in the next figure, as

well as the value of Vsd∗ and Vsq∗ .
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Chapter 5. Experimental results

Figure 5.1 – Verification of Park block for the stator voltages fs_r e f = 1p.u. [CH1 : duty cycle a
CH2 : duty cycle b CH3 : Vsd∗ = 0 CH4 : Vsq∗ = 1]

In the same operation conditions, in the next figure, the measured currents are shown, in both

abc and d q reference frame, first without any LPF, and then with a LPF setted to 2.5 kHz.

(a) (b)

Figure 5.2 – Verification of Park block for the stator currents (a. without LPF b. LPF = 2.5 kHz)
fs_r e f = 1p.u. [CH1 : ia CH2 : ib CH3 : isd CH4 : isq ]

As we can notice, using a LPF for the currents sensors, the noises, probably derived from the

IGBT switching, are cutted off. This techinque is useful to avoid oscillation problems, which

could lead to instability of the control. In the next figure is shown how inverting the values of

Vsd∗ and Vsq∗ , the relatives measured currents in d q are exchanged mutually.
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5.1. Open-loop

Figure 5.3 – Verification of Park current block for inverted stator voltages Vsd∗ = 1, Vsq∗ =
0, fs_r e f = 1p.u. [CH1 : ia CH2 : ib CH3 : isd CH4 : isq ]

In the next two figures the currents measured are shown as the duty cycle of the first leg,

imposing different fs_r e f . We can notice that the frequency of the duty cycle decrease accord-

ing to the imposed stator frequency, as well as the Time-domain measured current. The d q

magnitude of the currents are instead depending on the frequency. Normally the q value

remains more or less the same, while the d value increase or decrease proportional to the

frequency, due to the fluxes variations.

Figure 5.4 – Verification of Park blocks at fs_r e f = 0.5p.u. [CH1 : duty cycle a CH2 : ia CH3 :
isd CH4 : isq ]

63



Chapter 5. Experimental results

Figure 5.5 – Verification of Park blocks at fs_r e f = 0.5p.u. [CH1 : duty cycle a CH2 : ia CH3 :
isd CH4 : isq ]

We also checked the speed response of the motor applying step of frequencies. Both the next

two cases we have imposed Vsd∗ = 0, Vsq∗ = 1 with the DC bus to the nominal value. The

results are here shown:

(a) (b)

Figure 5.6 – Speed and stator currents in transient from fs_r e f = 0p.u. to fs_r e f = 1p.u. (a)

[CH1:ωmes
ωn

CH2: fs_r e f ] (b) [CH1: ia
5 CH2: isd

5 CH3:
isq

5 ]

A detail in steady state operation of the isd and isq is shown in the next figure, where we notice

that isd ' 1.5A and isq ' 0.25A:
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5.1. Open-loop

Figure 5.7 – d q statoric currents with d q stator voltage imposition in steady state fs_r e f = 1p.u.

[ CH2: isd
5 CH3:

isq

5 ]

In the same way we show here the response imposing a step frequency from fs_r e f = 1p.u. to

fs_r e f = 0.5p.u..

(a) (b)

Figure 5.8 – Speed and stator currents in transient from fs_r e f = 1p.u. to fs_r e f = 0.5p.u. (a)

[CH1:ωmes
ωn

CH2: fs_r e f ] (b) [CH1: ia
5 CH2: isd

5 CH3:
isq

5 ]

A detail in steady state operation of the isd and isq is shown in the next figure, where we notice

that now the currents are increased to isd ' 5A and isq ' 0.75A:
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Chapter 5. Experimental results

Figure 5.9 – d q statoric currents with d q stator voltage imposition in steady state fs_r e f =
0.5p.u. [ CH2: isd

5 CH3:
isq

5 ]

5.1.2 Motor model

Before showing the behavior of the Motor model block in the Fig.3.18, it’s necessary a precisa-

tion about how to implement the trasfer function to calculate the rotor flux (cf. Fig.3.17) in C.

Regarding this calculation we can write it in s domain:

Ψr

xM isd
=

1
Tr

1
Tr

+ s
(5.1)

Using the Tustin’s method to pass in z domain (discrete-time) with a first-order bilinear

approximation we obtain:

Ψr

xM isd
=

Ts
Ts+2Tr

(1+ z−1)

1+ z−1( Ts−2Tr
Ts+2Tr

)
= n(1+ z−1)

1+d z−1 (5.2)

With Ts the sampling time. This last equation is easly implementable in C (cf. Appendix B -

routine FirstOrderLag), following the next blocks diagram.
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5.1. Open-loop

Figure 5.10 – First order lag block diagram

As before we imposed fs_r e f = 1p.u., Vsd∗ = 0 and Vsq∗ = 1. We verified that the angular

position estimated by the motor model (blue line) is equal to the angular position imposed by

the power supply (orange line). We also checked the fs

ωn
reported in CH 3, and the rotor flux

estimation.

Figure 5.11 – Validation motor model fs_r e f = 1p.u., Vsd∗ = 0,Vsq∗ = 1 [CH1 : θ
2 imposed CH2 :

θ
2 estimated CH3 : fs

ωn
CH4 : Ψr ]
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Chapter 5. Experimental results

5.2 Closed-loop No Load

5.2.1 Current regulators

To check the current regulators, we set i∗sd and i∗sq and we implement a step of 1 A. We are

going to check which currents the motor produces, looking at isd and isq generated from the

d q/abc convertion block for the currents (cf. Fig.3.18). We reached a rising time of 2 ms,

without any overshoot in both axes.

Figure 5.12 – Validation current regulator Ri d [CH1 : i∗sd CH2 : isd ]

Figure 5.13 – Validation current regulator Ri q [CH1 : i∗sq CH2 : isq ]
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5.2. Closed-loop No Load

5.2.2 Speed regulator

Thanks to the speed regulator now we can control the speed of the motor varying the speed

reference ωr e f . We are going to show the behavior with two steps of speed reference, from 0

to half of the nominal speed (Fig.5.14) and from 0 to the nominal speed (Fig.5.15). We also

represent in this figures the shape of i∗sq in order to explain the resulting slopes, caused by the

anti-windup mehod integral used in the speed regulator.

Figure 5.14 – Speed step from 0 to half of the nominal speed [CH1 : ωr e f CH2 : n CH3 :
i∗sq

10 ]

Figure 5.15 – Speed step from 0 to the nominal speed [CH1 : ωr e f CH2 : n CH3 :
i∗sq

10 ]
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Chapter 5. Experimental results

In Fig.5.16 is shown how the motor can follow any type of speed reference, as this one we just

invented and implemented (the values in the figure are the electrical radiants per second of

the speed reference).

Figure 5.16 – Example of speed reference and the tracking of the motor [CH1 : ωr e f CH2 : n

CH3 :
i∗sq

10 ]

5.3 Closed-loop Under Load

As for the No Load condition, we are going to show in the next figures, the behavior of the

motor Under Load, following the speed references. Due to an hardware limit in our plant

to charge the DC bus of the inverter (maximum 400 V), we couldn’t supply the motor to the

nominal voltage (400VLL_r ms) but the supplied voltages had an rms value around 240 V. In this

operative conditions, it has decided to charge the motor with an aproximatly half nominal

Load. The next results show the behavior of the control under speed steps, with a Load of

' 5N m (in case of ωr e f = ωn
2 the resistance for the passive load was R = 24.3Ω; in case of

ωr e f =ωn , R = 45.8Ω ). In this case, we can see that the i∗sq in the steady state is not zero, but

proportional to the resistance torque, and the motor needs around 1ms more (in comparison

without Load) to reach the speed reference but with half overshoot approximately.
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5.3. Closed-loop Under Load

Figure 5.17 – Speed step from 0 to half of the nominal speed under load[CH1 : ωr e f CH2 : n

CH3 :
i∗sq

10 ]

Figure 5.18 – Speed step from 0 to the nominal speed under load[CH1 : ωr e f CH2 : n CH3 :
i∗sq

10 ]

In the Fig.5.19 we applied a Load step with the rotor at the nominal speed, from 0N m to 5N m,

in order to see how the speed is perturbed. We can see that the FOC control works fine with

Load steps, keeping the speed to the reference without big overshoots.

As in Fig.5.16, we show the behavior of the control with the same speed reference, under load

(Fig.5.20).
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Chapter 5. Experimental results

Figure 5.19 – Example of Load step (5N m) [CH1 : ωr e f CH2 : n CH3 :
i∗sq

10 ]

Figure 5.20 – Example of speed reference and the tracking of the motor under load[CH1 : ωr e f

CH2 : n CH3 :
i∗sq

10 ]
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6 Conclusions and future prospects

In this thesis a vector drive of an induction motor has been realized using the control platform

developed by Imperix SA. The validity of the drive has been verified through simulations

and by numerous experimental tests on a prototype built and assembled in the laboratory of

industrial electronics (LEI) at the EPFL. Experimental results have been reported as well as

simulation tests of the control, during writing of this report.

It has been seen how, thanks to the used control platform, the realizazion of Field Oriented

vector control is not extremely difficult to implement. This allows us to easily deduce important

performance considerations of the control system and the hardware; also allow us to consider

the platform an excellent peripheral for R&D environments.

Primarily it was verified that the digital implementation of the control system was effective

and well-functioning, leading results very similar to those obtained in simulation. It was seen

that in the most strenuous condition (under load), the motor reaches the rated speed in times

of the order of a few hundred milliseconds, twice the simulation but with an excellent dynamic

tracking. From as what could be expected, the tracking motor following the references with

damped oscillations.

The parameters of the current and speed regulators were designed with mathematical analysis,

tested in simulation and then in the experimental part. For both regulators some adjustments

of the parameters were necessary, that deviate it slightly from the theoretical treatment,

acceptable thing, as the mathematical models are in fact models that simplify the reality and

they don’t consider all the involved parameters. In particular regard to the speed loop, having

used a motor of small/medium power, the non-linearity behavior as a function of speed was

easily observed.

Using the same parameters of the speed controller for high and low speeds, it was seen that, in

one or other, some problems of mechanical noise generated by the motor itself were observed.

By tuning slightly the values of the regulator we have been obtained good dynamics. However

an hysteresis loop has had to implement in order to do not oscillate between two different

pairs of values if the engine would operate next to the speed limit.
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Chapter 6. Conclusions and future prospects

The choice of a magnetic encoder Sin/Cos has proved as successful, with a very good resolution

suitable for the implementation of these types of control, and with an easy deduction of the

pulsation of the primitive signal, considering the PLL technology now consolidated in the

electrotechnical engineering field. The cost of this transducer is very competitive comparing

with the classical incremental optical encoders, having the advantage to not have components,

such as photo-transducers, delicate and easily breakable.

The increasingly implementation of sensorless drives (without using speed sensors) would

suggest such an implementation for this drive, thus testing more deeply the quality of the

BoomBox and the digital processing, evaluating algorithms for the rotor flux estimation. In

the same way, we could implement other control techniques (e.g. DTC, DFOC or V/f control),

test it and make comparisons with the Indirect FOC implemented in terms of performances

and stress to the electrical motor.

Another point that could deepen the development of the drive, it would be the energy efficiency

of the system. Having taken an inverter previously built and modeled for other applications,

we can say that this one was not the best one on the market for this type of application.

An advice to increase the system efficiency, in addition to size an inverter ad hoc for the

application, can be try to find the best sampling and switching frequency, in order to minimize

the semiconductor losses and at the same time, increase the injected currents and voltage

quality.
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A Flow chart of the Algorithm

We report a scheme of the implemented software, to better understand how it has been

written. The software consider four USER_STATEs in order to operate in different ways. The

IDLE mode is just an off operation, without active PWMs. In order to pass to the OPENLOOP

mode, we implemented a RAMPSTART mode, which starts the motor from 0 to the nominal

speed at 50H z, increasing proportionally the stator voltage. In OPENLOOP mode, we can

change the frequency and the stator voltage without steps. For each new control frequency

the user inserts, we build a ramp mode to pass to the new frequency. The CLOSEDLOOP mode

implement the Field Oriented Control. The next flow chart show the user commands to pass

from one to another USER_STATE, using TeraTerm interface. The entire code was written and

compiled using TI Code Composer Studio 6.0.1.

Figure A.1 – State diagram of the USER commands
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Appendix A. Flow chart of the Algorithm

Figure A.2 – Flow Chart of RAMPSTART & OPENLOOP mode

76



Figure A.3 – Flow Chart of CLOSEDLOOP mode
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B Code of the control system

user.c
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Appendix B. Code of the control system
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Appendix B. Code of the control system

user.h
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Appendix B. Code of the control system

cli_commands.c
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