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Introduction

The first questions that should be answered when meeting a new subject to study are:
is it really interesting? Why and how could it benefit the community? Regarding this
thesis, we will deal with the so called interacting particle systems (IPSs). Without any
doubt, the interest of such a research field lies in the application of the huge theory
of stochastic processes to real life models, such as the macroscopic description of ferro-
magnetic materials or the voting attitude of a large group of people during an election.
Moreover, the modelling component itself witnesses the great contribution that could
give to the community. As sake of example we recall that epidemiology, which through
all 2020 has unfortunately acquired notoriety all over the word, is all about the study
of the spread of a disease; that is, an IPS where the particles set is composed by people
and the set of interactions is given by their contacts. As often happens when it comes
to mathematical issues, the field of interacting particle systems started to be studied for
a specific topic such as statistical mechanics, and soon after it spread to other fields of
research. From a mathematical point of view, interacting particle systems represents a
natural departure from the established theory of Markov processes. A typical interacting
particle system consists of finitely or infinitely many particles which, in absence of inter-
action, would evolve according to independent finite or countable state Markov chains.
If we add some type of interaction, the evolution of an individual particle is no longer
Markovian, while the system as a whole still is, though a very complex one. A peculiarity
of interacting particle system is the state space, given by a metric space X = W V , where
V is a finite or countable set of locations (called sites), and W is a compact metric space
which will play the role of the phase space of the component located at each site. The
whole process is defined by {⌘t(v), t � 0, v 2 V }, where ⌘t(·) 2 W V represents the phase
of a general vertex at a fixed time t � 0, while ⌘ 2 W V constitutes a state of the system,
given by the datum of the phases of all vertices. Another di↵erence between a classical
Markov chain and an IPS is the mechanism of the flipping rates from one state ⌘ to
another. It is described by a set of nonnegative functions c(x, ⌘) that are strictly related
to both interaction between agents x 2 V and the transition probabilities on V . The
interaction among sites comes from the dependence of c(x, ⌘) on ⌘ 2 X.
A relevant example of IPS is the so called voter model. In the previous notations, it
consists in considering W as a finite set of opinions, and as V a finite or countable met-
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ric space; in the work of Holley and Liggett [15] was treated the case W = {0, 1} and
V = Zd, maybe the most relevant one, since it shows directly the connection between the
model and the random walks on the lattice Zd. We will mainly consider the case where
there are only two phases: 0 and 1. The voter interpretation which gives this process
its name views V as a collection of individuals, each one taking two possible positions,
denoted by 0 and 1, on a political issue. The process evolves as follows: starting from
any distribution of opinions on the sites, a randomly chosen site waits for an exponential
time of parameter one and then possibly changes his opinion adopting the one of a (still
randomly chosen) neighbour site.
The main problems which have been treated involve the long-time behaviour of the sys-
tem. We first want to derive limit theorems, and for this purpose we need to describe
the class of invariant measures for the process, since these are the possible asymptotic
distribution. We know that the voter model is not ergodic, since there are two trivial
invariant measures given by the pointmasses at ⌘ ⌘ 0 and ⌘ ⌘ 1. We emphasize that
the latter states of the system represent the situations in which every site has the same
opinion, they will be referred to as consensus states; it is clear that consensus states are
absorbing for the process, since once the system reaches the agreement it gets trapped
and remains in that state forever. If we take into account the case of Holley and Liggett
on the d-dimensional lattice, it can be proved that: if d  2, then there are no ex-
tremal invariant measures except from the two trivial ones, and therefore the system
reach consensus states almost surely. On the contrary, if d � 3, there exist a continuum
of extremal invariant measures; it implies that, as time goes by, coexistence of di↵erent
opinions occurs almost surely. This dichotomy is closely related to the fact that a simple
random walk on Zd is recurrent if d  2 and transient if d � 3.
In this thesis, we will study the voter model with two opinions on finite graphs G, i.e.
the case in which the set of sites V coincides with the vertex set of G. If we suppose that
the Markov chain on V is irreducible, then it follows that, by finiteness of the graph,
consensus states are reached almost surely. It is equivalent to say that all the stationary
distributions are trivial, concentrated on the absorbing sets. With these hypothesis, it
is relevant to look for the consensus time: the hitting time to reach one of the consensus
states. We will not address this problem, but in this regard we want to cite the remark-
able work of Cox [5] on the d-dimensional tourus.
From another point of view, it may be interesting to study the evolution of the process,
still on finite graphs, conditioned to never reach consensus states. For this purpose we
will restrict the state space, eliminating all the absorbing -consensus- states. Thus, in
order to study the long-time behaviour of the conditioned process, we can no longer
use the invariant measures of the original process, we must instead compute the quasi-
stationary distributions (QSDs). The latter tool will play a fundamental role because
it is the analog of the invariant measures for the conditioned process: they are eigen-
functions corresponding to eigenvalues with a modulus that is strictly less than one. A
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su�cient condition for the existence and uniqueness of the QSDs is that the correspond-
ing stochastic process must be irreducible and aperiodic before reaching the absorbing
states. In that case, we know that the absorbing time, i.e. the hitting time of the ab-
sorbing states for the process, starting from the QSD is exponentially distributed with
a parameter that strongly depends on the QSD itself. Moreover, it can be proved that
QSDs for Markov chains {X(t), t � 0} conditioned on absorbing states has the same
limit behaviour of the invariant measures related to the non-conditioned chain, namely
that they are limit distributions for the conditioned process as t ! 1. In this work,
therefore, we will deal with the voter model on finite graphs, studying its limit behaviour
when the process is conditioned to never reach the consensus states.
From the recent article of Ben-Ari, Panzo, Speegle and VandenBerg [2], we know that
several result has been obtained for the voter model on complete bipartite graphs. Fol-
lowing their paper we will discuss about the stated results, trying to generalize them on
several aspects. For a matter of clarity, we recall that a complete bipartite graph Kn,m

is an heterogeneous graph whose vertex set can be partitioned in two disjoint groups,
a “large” group L of size n and a “small” one S of size m, where each vertex of L is
connected to all of the vertices of S and vice versa, and there are no connections between
vertices in the same group. Our aim is to investigate what happens when consensus is
conditioned to never occur, as we know that in finite graphs it happens almost surely.
More specifically, we will study the quasi-stationary distributions for the voter model
with two opinions on Kn,m and its limit behaviour under the QSDs when m is fixed and
n ! 1. The reasons why we are interested in such a limit are: to find out if the lack
of consensus is due to a minority number of dissenters, or if the opinions are relatively
balanced, and, taking n � m, to find out how the distributions of opinions in L di↵ers
from S. There are three main tools used to achieve the desired results. The first, funda-
mental one is the well-known duality (we will consider a discrete-time version) between
the voter model and the coalescing random walk. The latter consists in a system of
coupled random walks (RWs) which evolves independently through the vertices of the
bipartite graph, and once at least two of them meet in the same vertex they start to move
as a single one. The primary application will concern the rewriting of the distribution of
the hitting time for consensus states as the distribution of the hitting time for which all
the RWs coalesced into one. This leads to the next argument: the spectral radius of the
sub-stochastic transition matrix. Initially we will deal with the discrete time voter model
on complete bipartite graphs, thus the transition function conditioned on non-absorption
will be a sub-stochastic matrix. Using the Gelfand’s Formula, we can write the spectral
radius of such matrix as a limit concerning the distribution of the hitting time for con-
sensus; this fact will be crucial since the latter limit coincides with the eigenvalue of the
(unique) QSD for the process. In other words, we are able to determine the eigenvalue
of the QSD just computing the spectral radius of the sub-stochastic transition matrix of
the process. As a last claim, we will also prove that the whole duality approach, used to
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compute the spectral radius, can be restricted to a two-dimensional chain composed by
two coalescing random walks only.
Following the results in [2], we wondered if it was possible to extend them to more gen-
eral contexts. We tried to answer to the following questions: given the result on the
bipartite case, what happens if we consider the complete k-partite graphs, k � 2? Do
the same conclusions hold? Moreover, in the bipartite setting, what should we expect
if we suppose that both sizes of the sets diverges as the size of the former one goes to
infinity? Is there a threshold on the size of the second set such that we observe a phase
transition in the dynamic of the asymptotic system? During this thesis we will gradually
deal with such questions, and we will try to exhaustively answer them in the last chapter.
Another interesting approach to generalize the problem is given by Fernley and Ortgiese
in [12]. They discuss the consensus time for the voter model, without any conditioning,
on subcritical inhomogeneous random graphs. The main di↵erence between the latter
setting and ours relays on the randomness of the graph itself: there will be an edge
between any couple of vertices only with a certain probability distribution.
This thesis is organized as follows. In Chapter 1 we recall all the preliminary results,
regarding continuous-time Markov chains and stationary measures, that we need in order
to treat the subsequent topics. Then, in Chapter 2 we introduce the concept of quasi-
stationary distributions in the more general context of Markov processes, highlighting
the general properties from both spectral and asymptotic point of view. In particular, in
Section 2.3 we discuss the case where the state space is finite and we state the Perron-
Frobenious Theorem, an essential tool which provides us conditions for existence and
uniqueness of QSDs. At the end of the chapter we provide an example for QSDs in
birth-death processes, where we briefly show cases in which: QSDs are unique, do not
exist, and there are an uncountable infinity. In Chapter 3 we entirely change argument,
treating the interacting particle systems. To do so, we first introduce IPSs in their gen-
erality and then we focus on the special case of the voter model. Besides describing
the latter model, the crucial aspects of this chapter regards the connection between in-
variant measure for the process and the absorbing states, and the duality of the voter
model with the coalescing random walk. Our main reference for this chapter is [16].
Through Chapter 4 we study the voter model with two opinions in complete bipartite
graphs Kn,m. Since those are finite graphs, we know that consensus states are reached
almost surely by the process. The aim of this chapter is to investigate the asymptotic
behaviour of the quasi-stationary distributions for the process conditioned to never reach
consensus states, as n ! 1 and m fixed. The leading result shows that the unique QSD
on Kn,m converges in distribution to a probability measure, as n tends to infinity; we
will show with an example that it is not obvious in general. Moreover, it holds that the
distribution of opinions under the unique QSD for the voter model (with two opinions)
on Kn,m as n ! 1 converges weakly to the following: all vertices of S, the “small”
set of size m, have opinion C ⇠ Bern(1/2), while all but D ⇠ Sib(�m) vertices in L,
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the “large” set of size n ! 1, have opinion C. Where, with Bern(1/2) we indicate the
Bernoulli distribution of parameter 1

2 , and with Sib(�m) we mean the Sibuya distribution,
a discrete probability distribution with parameter �m which depends on the size m of S.
Finally, in Chapter 5 we will discuss two possible generalizations of the results given by
Ben-Ari et al. in [2]. In the first generalization we will consider the Voter model evolving
in complete k-partite graphs, with k � 2. Our goal is to provide the limit behaviour
of the QSD for the conditional process as the size of one of the k sets goes to infinity,
while the other k � 1 sizes remain fixed. We will find that for the k-partite graphs hold
a result that is completely similar to the bipartite case: the dissenters are all located
in the set whose size goes to infinity, and are distributed with a Sibuya distribution
with parameter � 2 (0, 1) which depends on the fixed sizes of the remaining k � 1 sets,
while all vertices in the latter share the same opinion -there is no space for dissenters in
the small sets-, which can be 0 or 1 according to a Bernoulli distribution of parameter
1/2. As our second generalization, we will still consider the bipartite case, but this time
we will suppose that both sizes of the sets diverges as the size of the first one goes to
infinity. We will show that the limit in distribution for the QSD does not converge to a
probability measure, leading to the same result that holds for complete graphs.
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Chapter 1

Preliminaries

1.1 Continuous time Markov chains

We begin the first of this preliminary sections with an introduction to Markov chains in
continuous time. Most of the results, definitions and proofs were taken from [19] and [3].
As first we recall some basics of discrete time Markov chains. Let us consider a stochastic
process, that is a collection of random variables {Xj : j 2 J} defined on a common
probability space (⌦,F ,P); we will always consider the index set J as a discrete or
continuous set of time points as J ⇢ Z+ or J ⇢ R+. Let S be a finite or countable set,
the state space of the process.

Definition 1.1. A sequence (Xn)n2N of S-valued random variables is a Markov chain if
for each n 2 N�1 and x0,x1,. . . xn+1 2 S

P (Xn+1 = xn+1 |Xn = xn, . . . X1 = x1, X0 = x0) = P (Xn+1 = xn+1 |Xn = xn). (1.1)

We will refer to this equation as Markov property. If the right-hand side of (1.1) does
not depend on n, we say that the chain is time- homogeneous. In this case is well defined
the matrix P given by

P := (p(x, y))x,y2S, where p(x, y) = P (Xn+1 = y |Xn = x), 8x, y 2 S,

and it is called the transition matrix of the (discrete time) Markov chain (Xn)n. Note
that since all the entries are probabilities, and since {Xn = x}, x 2 S is a partition of ⌦,
it follows that P is a stochastic matrix, in particular

p(x, y) � 0 8x, y 2 S and
X

z2S

p(x, z) = 1, 8x 2 S.

Next, the random variable X0 is called initial state and its probability distribution, say
⌫, given by ⌫(x) = P (X0 = x), is the initial distribution of the chain. From Bayes’s
sequential rule and in view of the time-homogeneous Markov property, it follows that

P (X0 = x0, . . . Xk = xk) = ⌫(x0)p(x0, x1) · · · p(xk�1, xk), 8k � 0, x0, x1, . . . xk+1 2 S.

In other words the initial distribution and the transition matrix determine the law of the
process. Moreover, defining ⌫n as the vector representing the distribution of the chain

11
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at time n, it’s straightforward verify that

⌫T
n = ⌫T

0 Pn,

where with ⌫T
n we indicate the transpose of the column vector ⌫n, and with P the

transition matrix defined above.
Now that we got all the main results of a discrete-time Markov chain, we are able to
define its continuous-time analog. Let’s consider a stochastic process {X(t), t � 0} with
state space S finite or countable. Given that the process is in a state i 2 S, the holding
time in that state will be exponentially distributed with parameter �(i). The sequence
of states visited will follow a discrete time Markov chain. Recall finally that holding
times are independent random variables. These are our hypothesis. Consequently, the
building blocks to construct the desired process {Xt}t�0 are: a discrete time Markov
chain {Xn, n � 0} on the state space S with transition matrixP = (p(i, j))i,j2S, assuming
p(i, i) = 0 for all i 2 S; a sequence {En, n � 0} of i.i.d. exponentially distributed random
variables with rate 1 and independent of {Xn}; and finally a sequence of holding times
parameters {�(i) > 0, i 2 S}. Given these ingredients, it can be seen that the resulting
process is a continuous time Markov chain, in the following sense

Definition 1.2. The S-valued process {Xt}t�0 is called a continuous-time Markov chain

if for all i, j, i1, . . . , ik 2 S and all s1, . . . , sk � 0 with sl  s for all l 2 [1, k]

P (X(t+ s) = j |X(s) = i, X(s1) = i1, . . . , X(sk) = ik) = P (X(t+ s) = j |X(s) = i),
(1.2)

whenever both sides are well-defined.

Note that equation (1.1) is the analogous of (1.2). This continuous-time Markov
chain is called homogeneous if the right-hand side of (1.2) is independent of s. In that
case we can define

P (t) := {pt(i, j)}i,j2S,

where
pt(i, j) := P (X(t+ s) = j |X(s) = i), 8s � 0.

The family {P (t)}t�0 is called the transition semi-group of the continuous-time homoge-
neous Markov chain.
In other words, the construction criterion mentioned above concerning the definition of
our new process is all about setting X(t) = Xn for Tn  t < Tn+1, where {Tn+1�Tn}n�1

is a sequence of conditionally independent and exponentially distributed random vari-
ables given {Xn}, i.e. Tn+1�Tn = En\�(Xn). Note that this kind of construction defines
{Xt} only up to time T1 := limn!1 Tn. If T1 < 1, we say an explosion occurs, because
an infinite number of transitions have taken place in finite time. When

Pi(T1 = 1) := P (T1 = 1 |X(0) = i) = 1 8i 2 S

we say that the process is regular.
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Notation. Keep in mind the di↵erence between the similar expressions pt(i, j) and p(i, j):
the first one is the general term of the semi-group, while the second one is the general
term of the transition matrix of the discrete-time Markov chain {Xn}n.

{P (t)}t�0 is a semi-group thanks to the two following properties:

1. The Chapman-Kolmogorov equation

pt+s(i, j) =
X

k2S

pt(i, k)ps(k, j),

that is, in compact form,
P (t+ s) = P (t)P (s). (1.3)

2. Also, if we plug t = 0 in the definition of {P (t)}t�0, we get

P (0) = I,

where I is the identity matrix.

The distribution at time t of X(t) is the vector µ(t) = {µt(i)}i2S, where µt(i) =
P (X(t) = i). As before, it is obtained from the initial distribution by the formula

µ(t)T = µ(0)TP (t).

At this point we can introduce the second main component - the first one was the
transition semi-group - of a continuous time Markov chain: the infinitesimal generator.
First of all, let us assume an additional hypothesis: suppose that the semi-group is a
continuous function w.r.t. time at the origin, that is

lim
h!0

P (h) = P (0) = I,

where the convergence therein is pointwise and for each entry. This implies the continuity
at any time t � 0, i.e.

lim
h!0

pt+h(i, j) = pt(i, j),

for all states i, j 2 S. We can now enunciate the following

Proposition 1.1. Let {P (t)}t�0 be a continuous transition semi-group on the countable

state space S. For any state i there exists

q(i) := lim
h#0

1� ph(i, i)

h
2 [0,1], (1.4)

and for any pair i, j of di↵erent states, there exists

q(i, j) := lim
h#0

ph(i, i)

h
2 [0,1). (1.5)
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If for all states i 2 S, q(i) < 1, we say that the semi-group {P (t)} is stable; if for
all states i 2 S, q(i) =

P
i 6=j q(i, j), it is called conservative. Unless otherwise specified,

we will always assume that our semi-group {P (t)} is both stable and conservative.
For each state i 2 S, we set

q(i, i) := �q(i).

Definition 1.3. The numbers q(i, j) are called the local characteristics of the semi-group
{P (t)}t�0. The matrix

A := {q(i, j)}i,j2S

is called the infinitesimal generator of the semi-group.

With our notation, it can be proved (see [19], chapter 5) that

q(i, j) =

(
��(i), if i = j

�(i) p(i, j), if i 6= j
(1.6)

where �(i), i 2 S, are the holding time parameters, and p(i, j) are the components of
the transition matrix P of the discrete-time Markov chain used to construct {X(t)}t�0.
Furthermore, for any i,

X

j

q(i, j) = ��(i) +
X

j 6=i

�(i) p(i, j) = ��(i) + �(i) = 0

so that row sums are always equal 0.
Note that �(i), i 2 S, and P determine A and vice versa. Given A, we obtain �(i) by
denying the main diagonal entries and, for i 6= j,

p(i, j) = �
q(i, j)

q(i, i)
.

Observe now that in view of the definition of the infinitesimal generator and the expres-
sions (1.4) and (1.5), one can write

A = lim
h#0

P (h)� P (0)

h
,

which, together with the following definition

P 0(t) := {
d

dt
pt(i, j)}i,j2S,

leads us to
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Proposition 1.2. For all i, j 2 S we have p(i, j)(t) di↵erentiable and the derivative is

continuos. At t = 0, the derivative is

P 0(0) = A. (1.7)

Also the backward di↵erential equation holds:

P 0(t) = AP (t), (1.8)

i.e.
d

dt
pt(i, j) =

X

k

q(i, k)pt(k, j).

Remark 1. Another, maybe less intuitive, way to get (1.8) is from the alternative ex-
pression of the transition semi-group given by

pt(i, j) = �ije
��(i)t +

Z t

0

�(i)e��(i)s
X

k 6=i

p(i, k) pt�s(k, j)ds, i, j 2 S (1.9)

with the same notation as above and, as usual, �ij = 1 if i = j and 0 otherwise.
If we consider the integral in (1.9), we see that the integrand is not only bounded on
finite intervals, but it is also continuous, and hence the integral is a continuously di↵er-
entiable function of t. This shows that pt(i, j) is absolutely continuous and continuously
di↵erentiable. Di↵erentiating (1.9), after some calculations, one arrive at the desired
result.

Remark 2. We can interpret (1.7) in terms of flow rates of probability. In fact, using
(1.6), we have

� �(i) = p00(i, i) = lim
t#0

pt(i, i)� p0(i, i)

t
= lim

t#0

pt(i, i)� 1

t
,

therefore
1� pt(i, i) = �(i) t+ o(t).

Since 1� pt(i, i) is almost (modulo the term o(t)) a linear function of t, we have

�(i) t ⇡ probability the system leaves i before t,

and hence we can interpret

�(i) ⇡ flow rate for the probability the system leaves i before t.

The same conclusion holds for i 6= j and �(i)p(i, j) instead of �(i).
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Remark 3. Note that just as {Xn},{En} carry the same information as {Xt}t�0, we have
that {P (t)}t�0 carries the same analytic information as P,{�(i), i 2 S}. In fact, given
{P (t)}t�0, we have A = P 0(0); while, given P,{�(i), i 2 S}, we compute A and then
solve the backward di↵erential equation to get P (t).

Finally, there is a companion equation to the (1.8), called forward di↵erential equa-
tion, which is obtained by conditioning on the last jump before time t. For regular
processes such a last jump exists, but if explosions are possible the last jump may fail
to exist. The forward equation is obtained formally by using the Chapman-Kolmogorov
equation (1.3) with t > 0, s > 0, di↵erentiating with respect to s to get

P 0(t+ s) = P (t)P 0(s);

setting s = 0 yields finally
P 0(t) = P (t)A. (1.10)

When the state space S is finite, both the backward and forward equations have the
formal solution

P (t) = eAt, (1.11)

with the usual notation for the matrix exponential function given by

eAt =
1X

n=0

tnAn

n!
.

Now that we have the basics of Markov chains in continuous times, we can deal with
one of the main concepts related to Markov chains: stationary measures.

1.2 Stationary measures

In this section we are going to approach stationary distributions, invariant measures
and their main properties. As we will see, the main reason why these quantities are so
important is that they control the long run behavior of the chain.
From now on we will use the notations of the previous section, and in particular we
will always refer to {X(t)}t�0 as the continuous-time homogeneous Markov chain. Let
B ⇢ S, we denote with

TB = inf{t > 0 : Xt 2 B} (1.12)

the hitting time of B of the Markov chain {X(t)}t�0, where we put inf ; = 1. Abusing
a bit the notation, we set Tj = T{j}. Let us now list a series of useful definitions:

1. For i, j 2 S, we say that j is accessible from i if Pi(Tj < 1) > 0.
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2. States i and j communicate if i is accessible from j and vice versa.

3. A Markov chain is irreducible if for any i, j 2 S we have that i is accessible from j.

4. The period di of a state i 2 S is, by definition,

di = gcd{n � 1 : p(n)(i, i) > 0}

with the convention di = +1 if there is no n � 1 with p(n)(i, i) > 0. If di = 1
we say that the state i is aperiodic. Note that here we use the notation p(n)(i, j),
i, j 2 S, n 2 N, denoting the probability in the embedded chain {Xn} to pass from
i to j in n steps.

5. A state i 2 S is called recurrent if the chain returns to i with probability 1 in
a finite number of steps, i.e. if Pi(Ti < 1) = 1. In the contrary case, where
Pi(Ti = 1) < 1, the state i is called transient; in that case there is a positive
probability of never returning on state i. A chain is called recurrent (transient) if
all its states are recurrent (transient).

6. A recurrent state i 2 S is called positive recurrent if Ei[Ti] < 1, otherwise is called
null recurrent.

7. A regular homogeneous Markov chain is called ergodic if it is irreducible and posi-
tive recurrent.

Given the state space S finite or countable and the semi-group P (t) of {X(t)}t�0, a
measure ⇡ = {⇡(i), i 2 S} on S is called invariant if for any t > 0

⇡TP (t) = ⇡T . (1.13)

If this measure is a probability distribution, then it is called a stationary distribution.

Remark 4. Note that since S is discrete, the term measure just denotes a family of non-
negative numbers indexed by S. Moreover, for the same reason, the semi-group P (t) is
an (at most infinite) matrix, thus the expression in (1.13) says that ⇡ is a left eigenvector
of eigenvalue 1 and can be rewritten as

X

i2S

⇡(i)Pi(X(t) = j) = ⇡(j), 8j 2 S,

or, better yet
P⇡(X(t) = j) = ⇡(j).

The latter notation will be crucial later.

We are now going to present the main results regarding stationary distributions.
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Proposition 1.3. If the initial distribution of the Markov chain {X(t)} is ⇡, i.e.

P (X(0) = j) = ⇡(j), j 2 S,

and ⇡ is a stationary distribution, then {X(t)}t�0 is a stationary process. Thus for any

k � 0 and s > 0, 0 < t1 < · · · < tk

(X(ti), 1  i  k)
d
= (X(ti + s), 1  i  k).

In particular, for any t � 0, j 2 S,

P (X(t) = j) = ⇡(j)

is independent of t.

We are ready to introduce a concept that we will carry with us throughout the paper

Definition 1.4. Let {X(t)} a Markov chain with an irreducible embedded (discrete-
time) Markov chain {Xn}. A probability distribution {L = Li, i 2 S} on S is called a
limit distribution for the process {X(t)} if for all i, j 2 S

lim
t!1

P (X(t) = j |X(0) = i) = lim
t!1

pt(i, j) = Lj.

And its main interest is due to the following:

Proposition 1.4. A limit distribution is a stationary distribution.

Proof. We have, for any s > 0

⇡(j) = lim
t!1

pt+s(i, j) = lim
t!1

X

k2S

pt(i, k)ps(k, j).

A priori we cannnot interchange limit and sum because the dominated convergence does
not apply when S are infinite space since {pkj(s), k 2 S} is not a probability distribution
in k. If S = {0, 1, 2, . . . }, we proceed as follows:

⇡(j) � lim
t!1

MX

k=0

pt(i, k)ps(k, j)

=
MX

k=0

lim
t!1

pt(i, k)ps(k, j)

=
MX

k=0

⇡(k)ps(k, j).
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Since for all M > 0 and j 2 S,

⇡(j) �
MX

k=0

⇡(k)ps(k, j),

we let M ! 1 to conclude

⇡(j) �
1X

k=0

⇡(k)ps(k, j), (1.14)

If for some j0 we had the strict inequality, then summing (1.14) over j 2 S yields
X

j2S

⇡(j) >
X

j2S

X

k2S

⇡(k)ps(k, j)

=
X

k

⇡(k)
X

j

ps(k, j) =
X

k

⇡(k)1 = 1,

a contradiction. Hence the strict inequality in (1.14) can happen for no j0, thus ⇡ is a
stationary distribution.

Thus, as long as the limit distribution exists, we have existence of stationary distri-
bution. Let us now study in a more general framework the existence and uniqueness of
stationary distributions. We propose the following

Theorem 1.5. Let {X(t)} a continuous-time Markov chain such that {Xn}, the embed-

ded chain, is irreducible and recurrent. Then {X(t)} has an invariant measure ⇡ which

is unique up to multiplicative factors and can be found as the unique (up to multiplicative

factors) solution to the equation

⇡TA = 0. (1.15)

Also, ⇡ satisfies

0 < ⇡(j) < 1, 8j 2 S.

Moreover, a stationary distribution exists for {X(t)} i↵

X

i2S

⇡(i) < 1,

in which case

{
⇡(i)P
i2S ⇡(i)

, i 2 S}

is the stationary distribution.

Furthermore, let us recall two main results regarding ergodic chains and stationary
distributions: the first one is about the limiting behavior of homogeneous continuous-
time Markov chains
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Theorem 1.6. Let {X(t)}t�0 be a regular, ergodic Markov chain with state space S and

transition semi-group {P (t)}t�0. Then, for all i, j 2 S,

lim
t!1

pt(i, j) = ⇡(j),

where ⇡ is the (unique) stationary distribution.

Note that the only di↵erence between this theorem and Proposition 1.4 is the unique-
ness of the stationary distribution, given from the ergodicity assumption. The second
result is a generalization of the LLN to Markov chains: the Ergodic Theorem

Theorem 1.7. Let {X(t)}t�0 be ergodic and let ⇡ be its stationary distribution. Then

lim
t"1

Z t

0

f(X(s)) ds =
X

i2S

f(i)⇡(i), Pµ � a.s. (1.16)

for all initial distributions µ an all f : S ! R such that
P

i2S |f(i)|⇡(i) < 1.

At this point we have enough knowledge to begin developing the core of this paper.
First of all, we are interested in a particular type of state space: those that have at least
one absorbing state. We need some other definitions:

1. A set of states C ⇢ S is closed if for any i 2 C we have Pi(TCc = 1) = 1. So, if
the chain starts in C, it never escapes outside C.

2. If {j} is closed, we call the state j absorbing.

Speaking in terms of our Markov chain {X(t)}, this means that, taking j as absorbing
state, we have that if X(s) = j for some s, then X(t) = j for any t � s. Since all the
properties concerning the states are peculiar to the subordinate chain {Xn} of {X(t)},
one can state these two equivalent criteria:

• C is closed i↵
for all i 2 C, j 2 Cc : p(i, j) = 0.

• j 2 S is absorbing i↵
p(j, j) = 0,

where we recall that p(i, j) are the elements of the transition matrix P.
So far, we only listed most of the basic property concerning Markov chains in continuous
time and stationary distributions. Excluding the mathematical beauty that surrounds
them, without any kind of interpretation they are just meaningless tools. We want to
give them a proper environment, but before that let us develop a last instrument that
bridges the gap between the behavior of a Markov chain, its stationary distribution and
the absorbing states. We are talking about the quasi-stationary distributions.



Chapter 2

Quasi-stationary distributions

In this chapter we are going to introduce the quasi-stationary distributions (QSDs) for
Markov processes, giving some intuition and reporting the main properties. We refer
largely to the work of Collet, Mart́ınez and San Mart́ın [4], for a general introduction to
the theme; while Méléard and Villemonais [17], for a precise treatment of QSDs focused
on models derived from population dynamics. We will adopt a general approach and,
in order to give an idea of what we are going to cover next, we will make a continuous
connection between the general theory and its application to population dynamics.
Considering the scenario explained in the previous chapter, let us introduce the basic
idea of QSDs. Suppose to interpret the absorbing states as states to be avoided, just
because they would make our chain trivial after the first meeting. Therefore we should
study the process conditioned by the non-achievement of the absorbing states. In our
discrete-space-continuous-time context, this is equivalent to “delete” from the (at most
infinite) matrix of the transition semi-group {pt(i, j)}i,j2S and of the infinitesimal gener-
ator A the rows and columns corresponding to the absorbing states. If now we consider
the new semi-group and generator, adopting the theory discussed in section 1.2, we will
find a kind of stationary measure for the process restricted to non absorbing states, with
the di↵erence that the eigenvalue corresponding to the left eigenvector is strictly less
than 1. Such new left eigenvector is the QSD for the conditioned process and, using a
powerful result of linear algebra (Perron-Frobenius Theorem) we will show existence and
uniqueness of the QSD related to Markov processes.
Before starting to be more formal, we need to make a premise about the notation that we
will use during the following sections. Until now we have always supposed to work with a
(discrete or continuous-time) Markov chain in a discrete state space, instead, throughout
all this chapter we will use a more general setting, assuming S to be a generic metric
space. Thus we are going to talk about Markov processes, no more chains, although all
results that we are going to show obviously hold also for the sub-case of discrete spaces.

2.1 Definitions and general properties

In the framework of this theory, we consider a Markov process evolving in a domain
where there is a set of forbidden -absorbing- states that constitutes a trap. The process

21
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is said to be killed when it hits the trap, and it is assumed that this happens almost
surely. We investigate the behavior of the process before being killed, more precisely we
study what happens when the process is conditioned to survive for a long time.
Assume S to be Polish, that is a metric, separable and complete space, and consider its
Borel �-algebra B(S). Let ⌦ be the set of right continuous trajectories on S, indexed on
R+. So ! = (!s : s 2 [0,1)) means that !s 2 S and limh!0+ !s+h = !s for all s � 0.
Let (⌦,F) be a measurable space where F contains all the projections prs : ⌦ ! S,
prs(!) = !s for all s � 0. We consider a process Z = (Zt : t � 0) on S such that its
trajectories belong to ⌦. We denote by F = (Ft : t � 0) a filtration of �-algebras such
that Z is adapted to F. We assume that Z = (Zt : t � 0) is a Markov process taking
values in S, i.e.

1. Px(Z0 = x) = 1 for all x 2 S;

2. For all A 2 F the function x ! Px(A) is B(S)-measurable;

3. Px(Zt+s 2 A|Ft) = PZt(A) Px-a.s. 8x 2 S and 8A 2 F ,

where (Px, x 2 S) is a family of probability measures defined in (⌦,F).
In this theory there is a set of forbidden states for the process, denoted by @S. We
assume that @S 2 B(S) and ; 6= @S 6= S, this last condition is made in order to avoid
trivial situations. Its complement S⇤ := S \ @S is called the set of allowed states.

Notation. For any probability measure µ on S⇤, we denote by Pµ (resp. Eµ) the proba-
bility (resp. expectation) associated with the process Z initially distributed with respect
to µ. For any x 2 S⇤, we set Px = P�x and Ex = E�x . More precisely:

Pµ =

Z

S⇤
Px dµ(x) for any µ 2 P(S⇤)

where P(S⇤) denotes the set of all probability measures on (S⇤,B(S⇤)).

Recall from (1.12) the definition of the Markov chain’s hitting time TB, B ⇢ S. In a
very similar way we let

T := T@S = inf{t > 0 : Zt 2 @S}

be the hitting time of @S, it is called the killing time (or extinction time in population
models), where, as in the previous section, with TB we denote the hitting time of B 2

B(S) of the Markov process Z. Regarding the population framework, the Markov process
Z represent the population size at any time (continuous or discrete) and the state space
S is a subset of N or R+. We will consider then an isolated population, namely without
immigration, so that the state 0 is the -only- trap because it describes the extinction of
the population. Indeed, if there are no more individuals, no reproduction can occur and
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the population disappears. Therefore we have @S = {0} and T = T0.
Going back to the general context, we will assume that there is sure killing at @S, i.e.

8x 2 S Px(T < 1) = 1, (2.1)

it follows that there is no explosion.

Remark 5. Note that there cannot exist stationary distributions supported on S⇤. Indeed,
condition (2.1) is equivalent to

Pµ(T < 1) = 1 8µ 2 P(S⇤),

and it clearly implies that
Px(T < 1) > 0 8x 2 S⇤.

Thus
8µ 2 P(S⇤) 9 t(µ) : 8t � t(µ) Pµ(T > t) < 1, (2.2)

therefore, if µ was a stationary distribution with support on S⇤, from (2.2) one would
have that Pµ(Zt 2 S⇤) < 1 for t � t(µ), which contradicts the stationarity because
Pµ(Z0 2 S⇤) = 1. The same observation can be done in the discrete-time-discrete-space
setting of Markov chains, using the Perron-Frobenius theorem and the fact that the
semi-group matrix restricted to non absorbing states is sub-stochastic. We will explore
this topic further below.

Since we are considering a Markov process, we need to generalize, then redefine, some
fundamental tools that we introduced in the previous chapter.

Notation. We denote by (Pt)t�0 the semi-group of the process Z killed at @S. More
precisely, for any z 2 S⇤ and f a measurable and bounded function on S⇤, one defines

Ptf(z) := Ez(f(Zt)1t<T ).

Moreover, for any finite measure µ and any bounded measurable function f , we set

µ(f) =

Z

S⇤
f(x)µ(dx),

and we also define the finite measure µPt by

µPt(f) := µ(Ptf) =

Z

S⇤
Ez(f(Zt)1t<T )µ(dz) = Eµ(f(Zt)1t<T ). (2.3)

One last note. We have made, and we will always make from now on, an abuse of
notation: at the beginning of this chapter we supposed to work in a general space
(S,B(S)), therefore if we write µ(dx) and, further on, Pµ(Zt 2 dx), we are tacitly saying
that our space is R+. Also, we should use the notation of the transition kernels, but
since the focus of this paper is not about these matters, we prefer to adopt this more
intuitive notation.
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At this point we have everything we need to define some new interesting objects. The
first natural question that arises when we talk about a process Z conditioned to not be
killed (up to time t) is what its distribution is. We can rewrite it, using our terminology,
as follows

Pµ(Zt 2 A|T > t) =
Pµ(Zt 2 A, T > t)

Pµ(T > t)
(2.3)
=

µPt(1A)

µPt(1S⇤)
, (2.4)

for any Borel subset A ⇢ S⇤, where µ is the initial distribution of Z0.
At this point we want to bring the reader’s attention to what we have discussed in section
1.2: we referred to stationary distributions, limiting distributions and how to link them.
We will see that in this “conditioned” context we can make a sort of parallelism. For
this purpose we need to study the asymptotic behaviour of the conditional probability
in (2.4), when t tends to infinity.

Definition 2.1. Let ↵ be a probability measure on S⇤. We say that ↵ is a quasi-
limiting distribution (QLD) for Z, if there exists a probability measure µ on S⇤ such
that, for any measurable set A ⇢ S⇤,

lim
t!1

Pµ(Zt 2 A|T > t) = ↵(A).

In some cases the long time behavior of the conditioned distribution can be proved
to be initial state independent. This leads to the following definition.

Definition 2.2. We say that Z has an Yaglom limit if there exists a probability
measure ↵ on S⇤ such that, for any x 2 S⇤ and any measurable set A ⇢ S⇤,

lim
t!1

Px(Zt 2 A|T > t) = ↵(A). (2.5)

When it exists, the Yaglom limit is a QLD. The reverse is not true in general and
(2.5) will actually not imply the same property for any initial distribution.
One might ask why, in population models, there is an interest in knowing such asymptotic
behaviour. There are two main reasons: the first one is related to the fact that a Markov
process with extinction which possesses a quasi-stationary distribution has a mortality
plateau; while the second one is due to the fact that, if the time scale of absorption is
substantially larger than the one of the quasi-limiting distribution, the process relaxes
to the quasi-limiting regime after a relatively short time, and then, after a much longer
period, absorption will eventually occur. Thus the quasi-limiting distribution bridges the
gap between the known behavior (extinction) and the unknown time-dependent behavior
of the process. See [17] for more details.
We have found in definition 2.1 that the analog of the limiting distribution, in the
process conditioned on non-killing, is called quasi-limiting distribution. So we shouldn’t
be surprised by the following results.
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Definition 2.3. Let ↵ be a probability measure on S⇤. We say that ↵ is a quasi-
stationary distribution (QSD) for the process killed at @S, if for all t � 0 and any
A 2 B(S⇤),

↵(A) = P↵(Zt 2 A|T > t). (2.6)

Recall that, as we saw in Remark 5, condition (2.1) ensures that a QSD cannot be
stationary.
We are going to start with the main results that connect the newly defined objects. It
is immediate to note that any QSD and any Yaglom limit is also a QLD; the following
statement generalize what has just been stated.

Proposition 2.1. Let ↵ 2 P(S⇤). The probability distribution ↵ is a QLD for the process

Z if and only if it is a QSD for Z.

Proof. “(” If ↵ is a QSD then, passing to the limit of t ! 1 on both sides of the
definition of QSDs, it is a QLD for Z starting with distribution ↵.
“)” Assume now that ↵ is a QLD for Z and for an initial probability measure µ on S⇤.
Thus, for any bounded and measurable function f on S⇤,

↵(f) =

Z

S⇤
f(x)↵(dx) =

Z

S⇤
f(x) lim

t!1
Pµ(Zt 2 dx|T > t)

=

Z

S⇤
f(x) lim

t!1

Z

S⇤
Py(Zt 2 dx|T > t)µ(dy) = lim

t!1

Z

S⇤
Ey(f(Zt)|T > t)µ(dy)

= lim
t!1

Eµ(f(Zt)|T > t) = lim
t!1

Eµ(f(Zt), T > t)

Pµ(T > t)
.

where clearly we could interchange limit and integrals, and the two integrals because
everything is finite and bounded. If we apply the latter with f(z) = Pz(T > s), 8s � 0
fixed, we have

P↵(T > s) = lim
t!1

Eµ(PZt(T > s), T > t)

Pµ(T > t)
. (2.7)

Developing the numerator inside the limit and using the Markov property, we get

Pµ(T > t+ s) = Eµ(1T>t+s) = Eµ(E(1T>t+s|Ft)) = Eµ(E(1T>t+s1T>t|Ft))

= Eµ(1T>tE(1T>t+s|Ft)) = Eµ(1T>tEZt(1T>t+s))

= Eµ(PZt(T > s), T > t).

Plugging the last equality in (2.7) one gets

P↵(T > s) = lim
t!1

Pµ(T > t+ s)

Pµ(T > t)
. (2.8)
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Let us now consider f(z) = Pz(Zs 2 A, T > s), for every s > 0 and A 2 B(S⇤). With a
calculation similar to the previous one, using again the Markov property, one obtains

P↵(Zs 2 A, T > s) = lim
t!1

Pµ(Zt+s 2 A, T > t+ s)

Pµ(T > t)

= lim
t!1

Pµ(Zt+s 2 A, T > t+ s)

Pµ(T > t+ s)

Pµ(T > t+ s)

Pµ(T > t)
.

Finally, by definition of the QLD ↵ we have that Pµ(Zt+s2A,T>t+s)
Pµ(T>t+s) = Pµ(Zt+s 2 A|T >

t+ s) converges to ↵(A) and, by (2.8), Pµ(T>t+s)
Pµ(T>t) converges to P↵(T > s), when t goes to

infinity. Thus, for any s > 0 and A 2 B(S⇤),

↵(A) = P↵(Zs 2 A).

We conclude that the probability measure ↵ is then a QSD.

Summing up we proved that, if there exists, the Yaglom limit is uniquely defined and
it is always a QLD. Moreover, by the last proposition, we showed up that any QLD is
indeed a QSD. One would like to have also the last piece of the puzzle, the one which
links QSDs to Yaglom limits, but unfortunately there are processes with an infinity -a
continuum!- of QSDs (see the Section 2.2 for the birth and death case), thus we deduce
that there exists QSDs which aren’t a Yaglom limit.
Next, one of the main facts related to QSDs is the distribution of the killing time T :

Proposition 2.2. Let us consider a Markov process Z with absorbing states @S satisfying

the sure-killing condition (2.1). Let ↵ be a quasi-stationary distribution for the process.

Then there exists a positive real number ✓(↵) depending on the QSD such that

P↵(T > t) = e�✓(↵)t. (2.9)

Proof. Using the Markov property in the same way that we used just after (2.7), for all
s > 0 we get

P↵(T > t+ s) = E↵(PZt(T > s)1T>t)

= P↵(T > t)E↵(PZt(T > s)|T > t).

By definition of QSD, we have

E↵(PZt(T > s)|T > t) =

Z

S⇤
Pz(T > s)P↵(Zt 2 dz|T > t)

=

Z

S⇤
Pz(T > s)↵(dz) = P↵(T > s).
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Hence we obtain that for all s, t > 0,

P↵(T > t+ s) = P↵(T > t)P↵(T > s). (2.10)

If we consider the function g(t) = P↵(T > t), we note that g(0) = 1, 0  g(t)  1 and,
because of (2.1), g(t) tends to 0 when t goes to infinity. It follows immediately that a
function with these characteristics and with the property (2.10) can only be a negative
exponential, i.e. there exists a strictly positive real number ✓(↵) such that

P↵(T > t) = e�✓(↵)t.

This proposition shows us that starting from a QSD, the killing time has an expo-
nential distribution with parameter ✓(↵) independent of t > 0, given by

✓(↵) = �
lnP↵(T > t)

t
.

Remark 6. For discrete time, the argument in the proof of the latter proposition shows
that when starting from a QSD ↵, the killing time at @S is geometrically distributed, so
P↵(T > n) = (↵)n for all n 2 Z+, where (↵) = P↵(T > 1). Indeed, taking (↵) 2 (0, 1)
to avoid trivial situations, if we denote with ✓(↵) := � ln(↵) 2 (0,1) the exponential
rate of survival of ↵, it verifies P↵(T > t) = e�✓(↵)t for all t 2 Z+.

2.2 Existence and uniqueness

Until this moment, from (2.9) and (2.6), we get that ↵ 2 P(S⇤) is a QSD for the Markov
process Z = (Zt, t 2 R+) if and only if 9 ✓(↵) > 0 such that for every A 2 B(S⇤) and
t � 0

P↵(Zt 2 A, T > t) = ↵(A) e�✓(↵)t.

The following statement gives a necessary condition for the existence of QSDs in terms
of exponential moments of the hitting time T .

Proposition 2.3. Assume that ↵ is a QSD. Then, for any 0 < ✓ < ✓(↵),

E↵(e
✓ T ) < +1. (2.11)

In particular, there exists a z 2 S⇤
such that Ez(e✓ T ) < +1.

Proof. We just compute the exponential moments in the continuous and discrete time
setting and we show that it is finite under the above hypothesis.
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In the continuous time setting, by (2.9), the killing time T under P↵ has an exponential
distribution with parameter ✓(↵). Thus, for any ✓ < ✓(↵), the mean

E↵(e
✓ T ) =

✓(↵)

✓(↵)� ✓

is finite and well defined. Same argument in the discrete time case where, as seen in
Remark 6, T under P↵ has a geometric distribution with parameter e�✓(↵). So we deduce
that, for any ✓ < ✓(↵), the mean

E↵(e
✓ T ) =

1� e�✓(↵)

e�✓ � e�✓(↵)

is finite and well defined. Finally, since E↵(e✓ T ) =
R
S⇤ Ez(e✓ T )↵(dz), the finiteness of the

integral implies that at least for a z 2 S⇤ we have Ez(e✓ T ) < 1.

The exponential moment condition can be written in the following way.

Proposition 2.4. We have the equality

✓⇤z := sup{✓ : Ez(e
✓ T ) < +1} = lim inf

t!1
�
1

t
lnPz(T > t),

and a necessary condition for the existence of a QSD is the existence of a positive expo-

nential rate of survival:

9 z 2 S⇤ : ✓⇤z > 0.

The necessary condition for the existence of a QSD is given by the definition of ✓⇤z
with the z 2 S⇤ from Proposition 2.3. For a complete proof see Proposition 2.4 of [4].

Remark 7. Note that if ↵ is a QSD then E↵(e✓(↵)T ) = 1. Then, if ✓ > 0 satisfies the
condition

sup{Ez(e
✓T ) : z 2 S⇤

} < 1,

there can not be a QSD ↵ with ✓ = ✓(↵), because otherwise we should have

1 = E↵(e
✓(↵)T )  sup{Ez(e

✓T ) : z 2 S⇤
} < 1.

It is useful to mention that the article of Ferrari, Kesten, Mart̀ınez and Picco [13].
In Theorem 1.1, they proved that in the case of an irreducible continuous time Markov
chain with state space N such that limx!1 Px(T  t) = 0, 8t � 0, the existence of
the moment (2.11) for some x 2 N and some � > 0 is also a su�cient condition for the
existence of a quasi-stationary distribution. Here with T we mean the hitting time of the
state 0. It is actually not true in any case, as shown by the following counter-example.
Let Z be a continuous time random walk on N reflected on 1 and killed at rate 1, i.e.
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P(T > t) = e�t, 8t � 0. Thus for any � > 0 and any probability measure µ on N,
Eµ(e�T ) is finite because Eµ(e�T ) =

R +1
0 �e�te�t dt = 1

1�� . Nevertheless the conditional
distribution Px(Zt 2 ·|T > t) is the distribution of a standard continuous time random
walk reflected on 1, which converges to 0 as t tends to infinity. In particular Z has no
QLD and thus no QSD.
Another point of view relating the characterization of the QSDs is the one which involves
the spectral properties of the semi-group (Pt) and the associated infinitesimal generator
A. First of all recall that we are working in a metric space S, therefore A will no longer
be a matrix, but an operator with a certain domain D(A). The next proposition links
the existence of QSDs for the process Z and the spectral properties of the dual of A.

Proposition 2.5. Let ↵ be a probability measure on S⇤
. We assume that there exists

a set D ⇢ D(A) such that, for any measurable subset B ⇢ S⇤
, there exists a uniformly

bounded sequence (fn) in D converging pint-wisely to 1B.

Then ↵ is a quasi-stationary distribution if and only if there exists ✓(↵) > 0 such that

↵(Af) = �✓(↵)↵(f), 8f 2 D. (2.12)

Proof. “)” Let ↵ be a QSD for Z. By definition of a QSD, and recalling (2.4), we have,
for every B 2 B(S⇤),

↵(B) =
↵Pt(1B)

↵Pt(1S⇤)
. (2.13)

By (2.9), there exists ✓(↵) > 0 such that for each t > 0,

↵Pt(1S⇤) = P↵(T > t) = e�✓(↵)t.

We deduce that, for any measurable set B ⇢ S⇤, ↵Pt(1B) = e�✓(↵)t↵(B), which is equiv-
alent to ↵Pt = e�✓(↵)t↵. By Kolmogorov’s forward equation (1.10) and by assumption
on D, we have

����
@Ptf

@t
(x)

���� = |PtAf(x)|
(1)

 kAfk1 < +1, 8f 2 D, (2.14)

where in (1) we just used that |PtAf(x)| = |Ex(Af(Zt))1T>t|  kAfk1 ,and the finite-
ness of the latter comes from the fact that f 2 D ⇢ D(A). In particular, one can
di↵erentiate ↵Ptf =

R
S⇤ Ptf↵(dx) under the integral sign, which implies that

@

@t
↵Ptf =

Z

S⇤

@

@t
Ptf↵(dx) =

Z

S⇤
PtAf(x)↵(dx) = ↵Pt(Af) = e�✓(↵)t↵(Af),

on the other hand we have

@

@t
↵Ptf =

@

@t
e�✓(↵)t↵(f) = �✓(↵)e�✓(↵)t↵(f).
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Putting all together, we get the result

↵(Af) = �✓(↵)↵(f), 8f 2 D.

“(” Assume now that ↵(Af) = �✓(↵)↵(f), for all f 2 D. By Kolmogorov’s backward
equation (1.8) and a similar argument as (2.14), we have

@↵(Ptf)

@t
= ↵(APtf)

(2)
= �✓(↵)↵Pt(f), 8f 2 D,

where in (2) we used the relation (2.12) with Ptf as f . Reasoning in the same way as
before, we get

@↵(Ptf)

@t
=

@

@t
e�✓(↵)t↵(f) = �✓(↵)e�✓(↵)t↵(f).

Thus we deduce that
↵(Ptf) = e�✓(↵)t↵(f), 8f 2 D.

By assumption, there exists, for any measurable subset B ⇢ S⇤, an uniformly bounded
sequence (fn) in D which converges point-wisely to 1B. Finally, from the uniform bound-
edness of (fn) and P(S⇤) = 1, we deduce by dominated convergence that

↵Pt(1B) = e�✓(↵)t↵(f).

This implies immediately that ↵ is a QSD for the process Z, because the relation (2.13)
is fulfilled.

Long time limit of the extinction rate

Here we propose an interesting application of the latter proposition. We want to study
a quantity of interest in population’s dynamics: the long time behaviour of the killing
or extinction rate. In the demography setting, the process Z models the vitality of
some individual and t its physical age. Thus T is the death time of this individual,
corresponding to the hitting time of the age zero.
The definition of the extinction rate depends on the time setting:

• In the discrete time setting, the extinction rate of Z starting from µ at time t � 0
is defined by

rµ(t) = Pµ(T = t+ 1|T > t).

• In the continuous time setting, the extinction rate of Z starting from µ at time
t � 0 is defined by

rµ(t) = �

@
@tPµ(T > t)

Pµ(T > t)
,

when the derivative exists and is integrable with respect to µ.
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The QSDs play a main role in this framework. Indeed, recall by Proposition 2.2 that if
↵ is a QSD, then P↵(T > t) = e�✓(↵)t. Moreover the extinction rate r↵(t) is constant
and given by

r↵(t) =

(
1� e�✓(↵) in the discrete time setting

✓(↵) in the continuous time setting
, 8t � 0.

In the next proposition, we prove that the existence of a QLD for Z started from µ
implies the existence of a long term mortality plateau.

Proposition 2.6. Let ↵ be a QLD for Z, initially distributed with respect to a probability

measure µ on S⇤
. In the continuous time setting, we assume moreover that there exists

h > 0 such that A(Ph1S⇤) is well defined and bounded. In both time settings, the rate of

extinction converges in the long term:

lim
t!1

rµ(t) = r↵(0).

We remark the fact that if we had had a QSD instead of a QLD, the result would
have been trivial because we would have had rµ(t) constant in both time settings. We
refer to the introduction of Steinsaltz-Evans [11] for a discussion of the notion of QSD
in relationship with mortality plateaus.

Proof. In the discrete time setting, by the semi-group property and the definition of a
QLD, we have

rµ(t) = Pµ(T = t+ 1|T > t) = 1� Pµ(T > t+ 1|T > t)

= 1�
µPt(P11S⇤)

µPt(1S⇤)
���!
t!1

1� ↵(P11S⇤) = P↵(T = 1|T > 0) = r↵(0).

The limit is by definition the extinction rate at time 0 of Z starting from ↵. In the
continuous time setting, by the Kolmogorov forward equation (1.10), we have

@

@t
Pt+h1S⇤(x) = PtA(Ph1S⇤)(x), 8x 2 S⇤.

Since by hypothesis A(Ph1S⇤) is assumed to be bounded, we can di↵erentiate under the
integral sign, and we deduce that

@

@t
µPt+h(1S⇤) = µPtA(Ph1S⇤).

Then
@
@tµPt+h(1S⇤)

µPt(1S⇤)
=

µPtA(Ph1S⇤)

µPt(1S⇤)
���!
t!1

↵(APh1S⇤) = �✓(↵)↵(Ph1S⇤),
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by the definition of QLD and by Proposition 2.5. We also have

µ(Pt+h1S⇤)

µ(Pt1S⇤)
���!
t!1

↵(Ph1S⇤).

Finally, by multiplying and dividing by µ(Pt1S⇤), we get

rµ(t+ h) = �

@
@tµPt+h(1S⇤)

µPt+h(1S⇤)
���!
t!1

✓(↵),

which allows us to conclude the proof.

2.3 The finite case

From now on we will consider a Markov process (Zt)t�0 evolving in continuous time
in a discrete state space S = {0, 1, . . . , N}, N � 1, and we will assume that 0 is its
unique absorbing state, that is @S = {0}. The semi-group (Pt)t�0 is the sub-markovian1

semi-group of the killed process and we still denote by A the associated infinitesimal
generator. In this finite state space case, the operators A and Pt are matrices, and a
probability measure on the finite space S⇤ is a vector of non-negative entries whose sum
is equal to 1. The results of this section have been originally proved by Darroch and
Seneta in [6] and [7].

2.3.1 Perron-Frobenius Theorem

In this section, we will talk about one of the core tools used in literature regarding
QSDs: the Perron-Frobenius Theorem. We will not propose the original theorem, but
an adapted version taking as positive matrix the sub-markovian semi-group (Pt). For
the proof of the Perron-Frobenius Theorem, we refer to Gantmacher [14].

Theorem 2.7 (Perron-Frobenius Theorem). Let (Pt) be a sub-markovian semi-group

on {1, . . . , N} such that the entries of Pt0 are positive for t0 > 0. Thus, there exists a

unique positive eigenvalue ⇢, which is the maximum of the modulus of the eigenvalues,

and there exists a unique left-eigenvector ↵ such that ↵(i) > 0 for every i = 1, . . . , N
and

PN
i=1 ↵(i) = 1, and there exists a unique right-eigenvector ⇡ such that ⇡(i) > 0 for

every i = 1, . . . , N and
PN

i=1 ↵(i)⇡(i) = 1, satisfying

↵Pt0 = ⇢↵ and Pt0⇡ = ⇢⇡. (2.15)

1Is related to the fact that we are considering the process conditioned to non-absorbing states. This
means that kPtk < 1 or, better, the is at least a (since in our case Pt is a matrix) row whose sum is
strictly less than 1.
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In addition, since (Pt) is a sub-markovian semi-group, ⇢ < 1 and there exists ✓ > 0 such

that ⇢ = e�✓
. Therefore

Pt = e�✓tB +⇥(e��t), (2.16)

where B is the matrix defined by Bij = ⇡(i)↵(j), � > ✓ and ⇥(e��t) denotes a matrix

such that none of the entries exceeds Ce��t
, for some constant C > 0.

Therefore Theorem 2.7 gives us a complete description of the spectral properties of
Pt and A. The following result links the latter theorem with the theory of QSDs.

Theorem 2.8. Assume that Z is an irreducible and aperiodic process before extinction,

which means that there exists t0 > 0 such that the matrix Pt0 has only positive entries

(in particular, it implies that Pt has positive entries for t > t0)2. Then the Yaglom limit

↵ exists and is the unique QSD of the process Zt.

Moreover, denoting by ✓(↵) the extinction rate associated to ↵ (see Proposition 2.2),

there exists a probability measure ⇡ on S⇤
such that, for any i, j 2 S⇤

,

lim
t!1

e✓(↵)tPi(Zt = j) = ⇡(i)↵(j),

and

lim
t!1

Pi(T > t+ s)

Pj(T > t)
=

⇡(i)

⇡(j)
e�✓(↵)s.

Proof. Applying Perron-Frobenius Theorem to the sub-markovian semi-group (Pt)t�0, it
is immediate from (2.16) that htere exists ✓ > 0 and a probability measure ↵ on S⇤ such
that, for any i, j 2 S⇤,

e✓tPi(Zt = j) = e✓t[Pt]ij = ⇡(i)↵(j) +⇥(e�(��✓)t). (2.17)

We now observe that

X

j2S⇤

Pi(Zt = j) =
X

j2S⇤

(Pi(Zt = j, T > t) + Pi(Zt = j, T < t)| {z }
=�j,0

) = Pi(T > t),

since Zt is defined on S⇤ = S \ @S. Thus, using the fact that
P

i2S⇤ ↵(i) = 1, summing
over j 2 S⇤ in (2.17), we deduce that

e✓tPi(T > t) = ⇡(i) +⇥(e�(��✓)t). (2.18)

2Recall from Section 1.2 that Z is irreducible if for every i, j 2 S, Pi(Tj < 1) > 0. Thus
8i, j 2 S 9t0 > 0, k 2 N, 9s1, . . . , sk 2 R+ with t0 < s1 < · · · < sk, and 9i1, . . . , ik 2 S such that
pt0(i, i1)ps1(i1, i2) · · · psk(ik, j) > 0. Moreover, by aperiodicity there is no cyclic structure, thus the
latter inequality does not depend on the choice of i1, . . . , ik.
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It follows that, for any i, j 2 S⇤,

Pi(Zt = j|T > t) =
Pi(Zt = j)

Pi(T > t)
=

e✓tPi(Zt = j)

e✓tPi(T > t)

=
⇡(i)↵(j) +⇥(e�(��✓)t)

⇡(i) +⇥(e�(��✓)t)
���!
t!1

↵(j).

Thus the Yaglom limit exists and is equal to ↵. Since S is finite, in the following we can
interchange the sum with the limit, therefore we have, for any initial distribution ⌫ on
S⇤

lim
t!1

P⌫(Zt = j|T > t) =
X

i2S⇤

⌫(i) lim
t!1

Pi(Zt = j|T > t) =
X

i2S⇤

⌫(i)↵(j) = ↵(j).

For the arbitrariness of the choice of ⌫, we deduce that the Yaglom limit is the unique
QLD of Z, and thus it is its unique QSD. By Proposition 2.2, we have ↵P1(1S⇤) = e�✓(↵).
If we suppose that t0 < 1, by (2.15) we have

↵P1 = ⇢↵ ) e�✓(↵) = ↵P1(1S⇤) = ⇢↵(1S⇤) = e�✓,

so that ✓ = ✓(↵). Finally, using both (2.17) and (2.18), we get

Pi(T > t+ s)

Pj(T > t)
=

e�✓(t+s)Pi(T > t+ s)

e�✓tPj(T > t)
· e�✓s

���!
t!1

⇡(i)

⇡(j)
e�✓s,

which allows us to conclude the proof.

Remark 8. One can deduce from (2.17) and (2.18) that there exists a positive constant
CA such that

sup
j2S⇤,i2S⇤

|Pi(Zt = j|T > t)� ↵(j)|  CAe
�(��✓(↵))t,

where the quantity � � ✓(↵) is the spectral gap of A, i.e. the distance between the
first and second eigenvalue of A. Note that if e�✓ is an eigenvalue of Pt, then �✓ is an
eigenvalue of A because we are working with S finite, so (1.11) is satisfied. We want to
compare the last inequality with (2.9): if the time scale � � ✓(↵) of the convergence to
the quasi-limiting distribution is substantially bigger than the time scale of absorption
(� � ✓(↵) � ✓(↵)), the process will relax to the QSD after a relatively short time, and
after a much longer period, extinction will occur. On the contrary, if � � ✓(↵) ⌧ ✓(↵),
then the extinction happens before the process had time to relax to the quasi-limiting
distribution. In intermediate cases, where � � ✓(↵) ⇡ ✓(↵), the constant CA, which
depends on the whole set of eigenvalues and eigenfunctions of A, plays a main role which
needs further investigations.
In [17] one can find some interesting examples, together with numerical simulations.
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2.3.2 The Q-process

Let us now study the marginal distributions of the trajectories that survive forever, i.e.
conditioned to never be extinct.

Theorem 2.9. Assume that we are in the hypothesis of Theorem 2.8. For any i0, i1, . . . , ik 2
S⇤

, any 0 < s1 < · · · < sk < t, the limiting value limt!1 Pi0(Zs1 = i1, . . . , Zsk = ik|T >
t) exists.
Let (Yt)t�0 be the process starting from i0 2 S⇤

and defined by its finite dimensional

distributions

Pi0(Ys1 = i1, . . . , Ysk = ik) = lim
t!1

Pi0(Zs1 = i1, . . . , Zsk = ik|T > t). (2.19)

Then Y is a Markov process with values in S⇤
and transition probabilities given by

Pi(Yt = j) = e�✓(↵)t ⇡(i)

⇡(j)
pt(i, j),

for all i, j 2 S⇤
and t � 0. Moreover, Y is conservative, and has the unique stationary

distribution (↵(j)⇡(j))j2S⇤.

Proof. Let us denote ✓(↵) by ✓ for simplicity. Let i0, . . . , ik 2 S⇤ and 0 < s1 < · · · <
sk < t. We recall that, in our notation, Fs is the natural filtration of the process, equal
to �(Zu, u  s), 8s � 0. Then we have

Pi0(Zs1 = i1, . . . , Zsk = ik;T > t) = Ei0(1Zs1=i1,...,Zsk=ikEi0(1T>t|Fsk))

(1)
= Ei0(1Zs1=i1,...,Zsk=ikEik(1T>t�sk))

= Pi0(Zs1 = i1, . . . , Zsk = ik)Pik(T > t� sk),

where in (1) we used the Markov property. By Theorem 2.8,

lim
t!1

Pik(T > t� sk)

Pi0(T > t)
=

⇡(ik)

⇡(i0)
e✓(↵)sk .

Thus

lim
t!1

Pi0(Zs1 = i1, . . . , Zsk = ik|T > t) = Pi0(Zs1 = i1, . . . , Zsk = ik)
⇡(ik)

⇡(i0)
e✓(↵)sk , (2.20)

which gives us the existence of the limiting value. Let us now show that Y is a Markov
process. We have

Pi0(Ys1 = i1, . . . , Ysk = ik, Yt = j)
(2.20)
= e✓t

⇡(j)

⇡(i0)
Pi0(Zs1 = i1, . . . , Zsk = ik, Zt = j)

(By Markov property of Z) = e✓(t�sk)e✓sk
⇡(j)

⇡(ik)

⇡(ik)

⇡(i0)
Pi0(Zs1 = i1, . . . , Zsk = ik)Pik(Zt = j)

= Pi0(Ys1 = i1, . . . , Ysk = ik)Pik(Yt = j),
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and thus Pi0(Yt = j|Ys1 = i1, . . . , Ysk = ik) = Pik(Yt�sk = j).
By (2.20) and Theorem 2.8, we have

Pi(Yt = j) =
⇡(j)

⇡(i)
Pi(Zt = j)e✓t ���!

t!1

⇡(j)

⇡(i)
↵(j)⇡(i) = ↵(j)⇡(j),

therefore, by Theorem 1.6, one gets that (↵(j)⇡(j))j2S⇤ is the unique stationary distribu-

tion of Yt. Moreover let us compute the infinitesimal generator eA = {eq(i, j)} of Y from
the infinitesimal generator A of Z. Denoting also with eP (t) = {ept(i, j)} the semi-group
of Y , since

eps(i, j) = Pi(Ys = j) =
⇡(j)

⇡(i)
e✓sps(i, j) ��!

s!0

⇡(j)

⇡(i)
q(i, j),

we have for j 6= i,

eq(i, j) = lim
s!0

eps(i, j) =
⇡(j)

⇡(i)
q(i, j).

For j = i,

eq(i, i) = � lim
s!0

1� eps(i, i)
s

= � lim
s!0

1� e✓sps(i, i)

s

= � lim
s!0

1� e✓s + e✓s(1� ps(i, i))

s
(2)
= ✓ + q(i, i),

where in (2) we used the first order Taylor develop of the exponential. We thus check
that X

j2S⇤

eq(i, j) =
X

j2S⇤

⇡(j)

⇡(i)
q(i, j) + ✓.

Finally, from (2.15) we know that A⇡ = �✓⇡, then
P

j2S⇤ ⇡(j)q(i, j) = �✓⇡(i) and thusP
j2S⇤ eq(i, j) = 0, showing that Y is conservative.

2.3.3 An example: QSDs for birth and death processes

We are describing here the dynamics of isolated asexual populations, as for example
populations of bacteria with cell binary division, in continuous time. Individuals may
reproduce or die, and there is only one child per birth. The population size dynamics
will be modeled by a birth and death process in continuous time.
We consider a birth and death processes with rates (�i) and (µi), that is a N-valued
regular Markov processes, whose jumps are +1 or -1, with transitions

i ! i+ 1 with rate �i,

i ! i� 1 with rate µi,
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where �i and µi, i 2 N, are non-negative real numbers.
Knowing that the process is at state i at a certain time, it will wait for an exponential
time of parameter �i before jumping to i+1 or, independently, will wait for an exponential
time of parameter µi before jumping to i�1. The total jump rate from state i is therefore
�i + µi. We will assume in what follows that �0 = µ0 = 0. This condition ensures that
0 is an absorbing point modeling the extinction of the population.
We consider a birth and death process Z = (Zt)t�0 with almost sure extinction. We will
show first a result concerning a necessary and su�cient condition for a sequence (↵(i))
in N⇤ to be a QSD for Z, then we will see cases under which QSDs are not unique.

Theorem 2.10. The sequence (↵(j))j2N⇤ is a QSD for Z if and only if

1. ↵(j) � 0, 8j � 1 and
P

j�1 ↵(j) = 1.

2. 8j � 2,

�j�1↵(j � 1)� (�j + µj)↵(j) + µj+1↵(j + 1) = �µ1↵(1)↵(j);

�(�1 + µ1)↵(1) + µ2↵(2) = �µ1↵(1)
2.

Proof. By Proposition 2.5 and for a QSD ↵, there exists ✓ > 0 such that

↵A = �✓↵,

where A is the infinitesimal generator of Z restricted to N⇤. Taking the jth component
of this equation, we get

�j�1↵(j � 1)� (�j + µj)↵(j) + µj+1↵(j + 1) = �✓↵(j);

�(�1 + µ1)↵(1) + µ2↵(2) = �✓↵(1).

Summing over j � 1, we get after re-indexing

0 =
X

j�1

(�j↵(j)� (�j + µj)↵(j) + µj↵(j)) = �✓

=1z }| {X

j�1

↵(j)+µ1↵(1).

Thus we deduce that ✓ = µ1↵(1), which concludes the proof.

The next result follows immediately.

Corollary 2.11. Let us define inductively the sequence of polynomials (Hn(x))n2N as

follows: H1(x) = 1 for all x 2 R and for n � 2,

�nHn+1(x) = (�n + µn � x)Hn(x)� µn�1Hn�1(x);

�1H2(x) = �1 + µ1 � x.
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Then, any QSD (↵(j))j satisfies for all j � 1,

↵(j) = ↵(1)⌘jHj(µ1↵(1)), (2.21)

where

⌘1 = 1; ⌘n =
�1 . . .�n

µ1 . . . µn
.

For the study of polynomials and their implication in birth and death processes we
refer to Van Doorn [20]. In particular, it is shown that there exists a non-negative number
⇠1 such that

x  ⇠1 () Hn(x) > 0, 8n � 1

By Corollary 2.11 then ↵(j) = ↵(1)⌘jHj(µ1↵(1)). Since for any j, ↵(j) > 0, we have
Hj(µ1↵(1)) > 0 for all j � 1 and then 0 < µ1↵(1)  ⇠1. We can immediately deduce
from this property that if ⇠1 = 0, then there is no quasi- stationary distribution. To go
further, define the series (S) with general term

Sn =
1

�n⌘n

1X

i=n+1

⌘i.

It can be shown that (see [20], Theorems 3.2 and 4.1)

lim
t!1

Pi(Zt = j|T > t) =
1

µ1
⌘j⇠1Hj(⇠1), thus ⇠1 = lim

t!1
µ1Pi(Zt = 1|T > t), 8i 2 S⇤,

also:

1. If ⇠1 = 0, there is no QSD.

2. If (S) converges, then ⇠1 > 0 and the Yaglom limit is the unique QSD.

3. If (S) diverges and ⇠1 6= 0, then there is a continuum of QSD, given by the one
parameter family (e↵j(x))0<x⇠1 :

e↵j(x) =
1

µ1
⌘jxHj(x).

With the latter result we conclude the chapter related to quasi-stationary distribu-
tions. The next step will concern an introduction to interacting particle systems, in
particular to a model that we will develop in its entirety and will be the core of this
paper: the voter model.



Chapter 3

Interacting particle systems

Throughout the following chapter we will make an overview of what interacting particle
system are, summarizing the general ideas of this field of research, in order to introduce
the model on which this thesis is focused on. We will mainly refer to the work of Liggett
[16] for the general theory, while we cite the papers of Cox [5], Aldous and Fill [1] and
Oliveira [18] for their approach to the duality of the problem and the study of the limit
behaviour of the system.
The field of interacting particle systems began as a branch of probability theory in the
late 1960’s. The original motivation for this field came from statistical mechanics, but,
as time passed, it became clear that models with a very mathematical structure could be
naturally formulated in other contexts: neural networks, spread of infection, behavioral
systems, etc. From a mathematical point of view, interacting particle systems represents
a natural departure from the established theory of Markov processes. A typical inter-
acting particle system consists of finitely or infinitely many particles which, in absence
of interaction, would evolve according to independent finite or countable state Markov
chains. If we add some type of interaction, the evolution of an individual particle is no
longer Markovian, while the system as a whole still is, though a very complex one.
The main problems which have been treated involve the long-time behaviour of the sys-
tem. The first step to derive limit theorems is to describe the class of invariant measures
for the process, since these are the possible asymptotic distributions. The next step is
to characterize the domain of attraction of each invariant measure, i.e. the class of all
initial distributions for which the distribution at time t of the process converges to the
invariant measures as t ! 1.
To be more precise, we will consider a compact metric space X with measurable struc-
ture given by the �-algebra of Borel sets. In our case, we will take X = W V , where V
will denote a finite or countable set of spacial locations (called sites) and W will be a
compact metric space which will play the role of the phase space of the random variable
located at each site; further on, we will consider as V a more specific set such as (the
vertex set of) graphs or lattices. Moreover, in the first part of this chapter we will use
all the notions described in Section 2.1 regarding Markov processes. In the view of inter-
acting particle systems, every -at most countable- ⌘t(·) 2 X = W V , t � 0, corresponds
to the evolution in time of stochastic processes (called coordinates) on the state space
W , while ⌘t corresponds to the evolution of the entire system, seen as a Markov process
on the uncountable totally disconnected space W V . This relation motivate the need to

39
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construct a new theory instead of using the more standard one related to Markov pro-
cesses.
In order to be more concrete, let us introduce informally some examples of interacting
particle systems on special state spaces. We remark the fact that we will deal only with
systems in which only one coordinate of ⌘t changes at a time. In general, however, in-
finitely many coordinates may change in any interval of time.

• The Stochastic Ising Model. This is a model for magnetism which was introduced
by Glauber (1963). It is a Markov process with W = {�1,+1} and V = Zd,
thus X = {�1,+1}Z

d
. The sites represent iron atoms, which are laid out on the

d-dimensional integer lattice Zd, while the value of ±1 at a site represent the spin
of the atom at that site. A configuration of spins ⌘ is then a point in {�1,+1}Z

d
.

The dynamics of the evolution are specified by the requirement that a spin ⌘(x) at
x 2 Zd flips to �⌘(x) at rate

exp

"
� �

X

y:|y�x|=1

⌘(x)⌘(y)

#
,

where � is a nonnegative parameter which represents the reciprocal of the temper-
ature of the system. Of course when � = 0, the coordinates ⌘t(x) are independent
two-state Markov chains (there is no more interaction), so the system has a unique
invariant measure, which is the the product of the stationary distributions for the
individual two-state chains of every site x 2 Zd, that is the Bernoulli product mea-
sure ⌫ on {�1,+1}Z

d
with parameter 1

2 . Furthermore, for any initial distribution,
the distribution at time t converges weakly to ⌫ as t ! 1 by the convergence the-
orem for finite-state irreducible Markov chains. Such a system, which has a unique
invariant measure to which convergence occurs for any initial distribution, will be
called ergodic. Nonergodicity corresponds to the occurrence of phase transitions,
with distinct invariant measures corresponding to distinct phases. The main prob-
lem to be resolved for the stochastic Ising model is to determine for which values
of � and d the process is ergodic. A complete answer is given in [16], Chapter IV.

• The Contact Process. This process was introduced and first studied by Harris
(1974). It is a Markov process with W = {0, 1} and V = Zd, thus X = {0, 1}Z

d
.

The dynamics are given by the following transition rates: at site x 2 Zd:

1 ! 0 at rate 1,

and
0 ! 1 at rate �

X

y:|y�x|=1

⌘(y),
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where � is a positive parameter which is interpreted as the infection rate. With
such interpretation, sites at which ⌘(x) = 1 are regarded as infected, while sites at
which ⌘(x) = 0 are regarded as healthy. Infected individuals became healthy after
an exponential time with parameter one, independently of the configuration, while
healthy individuals become infected at a rate that is proportional to the number
of infected neighbors. The contact process has a trivial invariant measure: the
pointmass at ⌘ ⌘ 0, i.e. µ 2 P(X) such that µ(⌘(x) = 0) = 1 for all x 2 X.
As might be expected, depending on the choice of � and d, there could be others
or the process could be ergodic. Again, a complete treatment of the argument is
given in [16], Chapter VI.

• The Voter Model. The voter model was introduced and mainly studied by Holley
and Liggett (1975). Here again W = {0, 1} and V = Zd, thus the state space
is X = {0, 1}Z

d
, and the evolution mechanism is described by saying that ⌘(x)

changes to 1� ⌘(x) at rate

1

2d

X

y:|y�x|=1

1⌘(x) 6=⌘(y).

In the voter interpretation of Holley and Liggett, sites in Zd represents voters who
can hold either of two political positions, which are denoted by zero and one. A
voter waits an exponential time of parameter one, and then adopts the position of
a neighbor chosen at random. The voter model has two trivial invariant measures:
the pointmasses at ⌘ ⌘ 0 and ⌘ ⌘ 1 respectively. Thus the voter model is not
ergodic. The first main question is whether or not are any other extremal invariant
measures. As we will see in the following sections, there are no others if d  2.
On the other hand, if d � 3, there is a one-parameter family {µ⇢, 0  ⇢  1} of
extremal invariant measures, where µ⇢ is translation invariant and ergodic, and
µ⇢(⌘ : ⌘(x) = 1) = ⇢ for all x 2 X. This dichotomy is closely related to the fact
that a simple random walk on Zd is recurrent if d  2 and transient if d � 3.
In terms of the voter interpretation, one can describe the result by saying that
a consensus is approached as t ! 1 if d  2, but that disagreements persists
indefinitely if d � 3.

Most of the latter introduction was taken from the Introduction Chapter of Liggett [16].
The core of this thesis is exactly the study of the Voter Model in a certain site space
V , given by a graph structure that we will explain later, in particular we will look for
quasi-stationary distributions for the process conditioned not to be absorbed.
This chapter is organized as follows: in Section 3.1 we will completely describe the
model, and we will recall some basics definitions and results which we will exploit in
this context. Then, in Section 3.2 we will analyze, both in general and specific site
spaces, such as V = Zd or V = ⇤ ⇢ Zd finite, the set of invariant measures and their
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domain of attraction. Furthermore, we will see in which cases there will be almost surely
absorption (consensus, in the voter interpretation), and, in those situations, we will cite
some bounds for the time to consensus. Eventually, in Section 3.3 we will motivate the
coalescing duality assumption, developing the voter model in a regular graph.

3.1 The Voter Model

Let us first introduce a more general family of models: the spin systems. They are
interacting particle systems in which each coordinate has two possible values, and only
one coordinate changes in each transition. Throughout all this chapter, the state space
of the system will be taken to be X = {0, 1}V , where V is a finite or countable set. The
transition mechanism is specified by a nonnegative function c(x, ⌘) defined for x 2 V
and ⌘ 2 X = {0, 1}V . It represent the rate at which the coordinate ⌘(x) flips from 0 to
1, or vice versa, when the system is in state ⌘. Therefore the process ⌘t with state space
X will satisfy

P⌘(⌘t(x) 6= ⌘(x)) = c(x, ⌘)t+ o(t),

as t # 0, for each x 2 V and ⌘ 2 X. Recall that P⌘(⌘t = ·) = P(⌘t = ·|⌘0 = ⌘), for all
t � 0 and ⌘ 2 X. The requirement that only one coordinate change in each transition
can be described by saying that

P⌘(⌘t(x) 6= ⌘(x), ⌘t(y) 6= ⌘(y)) = o(t),

as t # 0 for each x, y 2 V and ⌘ 2 X. The interaction among sites comes from the
dependence of c(x, ⌘) on ⌘: the transition rates are influenced not only by the value ⌘(x)
but also by the entire configuration.
The voter model is the spin system with rates c(x, ⌘) given by

c(x, ⌘) =

(P
y p(x, y)⌘(y) if ⌘(x) = 0,

P
y p(x, y)[1� ⌘(y)] if ⌘(x) = 1,

(3.1)

where p(x, y) � 0 for all x, y 2 V , and
P

y p(x, y) = 1 for all x 2 V . Moreover, we
will assume that p(x, y) is such that the Markov chain with this transition probabilities
is irreducible. Here p(x, y) represent the transition probability of the embedded chain
which describes the probability to pass from a site x to a site y. In fact, an equivalent
way of describing the rates is to say that a site x waits an exponential time of parameter
one, at which it flips to the value it sees at that time at a site y, chosen with probability
p(x, y). The voter interpretation which gives this process its name views V as a collection
of individuals, each of them taking two possible positions, denoted by 0 and 1, on a
political issue. After independent exponential times, an individual reassesses his opinion
by looking to the opinion of an acquaintance chosen at random.



3.1. THE VOTER MODEL 43

One of the main tools used in literature to study the voter model, which we will strongly
adopt from now on, is its duality with coalescing random walks. Such duality property
allows us to recast problems involving the voter model in terms of the dual system of
coalescing Markov chains.
Before we start to be more formal, we need to give a better understanding of the Markov
processes tools we will use to examine the model.

3.1.1 General Results

Here we are going to transpose some notions introduced for quasi-stationary distributions
in our new interacting particle context. Let X, V and W be as in the introduction of
this chapter. First of all, let us denote as a Markov process the collection {P⌘, ⌘ 2 X}

of probability measures on D[0,1) that satisfies the conditions given in Section 2.1,
where D[0,1) is the set of all functions ⌘· on [0,1) with values in X which are right
continuous and have left limits. The corresponding expectation is E⌘, moreover, if we
consider the Banach space C(X) of the continuous functions on X endowed with the
sup-norm, for f 2 C(X), we define

P (t)f(⌘) = E⌘[f(⌘t)].

Definition 3.1. A Markov process {P⌘, ⌘ 2 X} is said to be a Feller process if P (t)f 2

C(X) for every t � 0 and f 2 C(X).

Theorem 3.1. Let {P⌘, ⌘ 2 X} be a Feller process on X. Then the family of linear

operators {P (t), t � 0} on C(X) has the following properties:

1. P (0) = I, the identity operator on C(X).

2. The mapping t ! P (t) from [0,1) to C(X) is right continuous for every f 2

C(X).

3. P (t+ s) = P (t)P (s) for all f 2 C(X) and all s, t � 0.

4. P (t)1 = 1 for all t � 0.

5. P (t)f � 0 for all nonnegative f 2 C(X).

Such a family is called a Markov semi-group for the Markov process {P⌘, ⌘ 2 X}.

Moreover, given a Markov semi-group {P (t), t � 0} on C(X), there exists a unique

Markov process {P⌘, ⌘ 2 X} such that P (t)f(⌘) = E⌘[f(⌘t)].

Similarly to what we have seen in (2.3), if we take µ 2 P(X), the set of all probability
measures on X, and a Markov process {P⌘, ⌘ 2 X}, then the corresponding Markov
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process with initial distribution µ is a stochastic process ⌘t whose distribution is given
by

Pµ =

Z

X

P⌘µ(d⌘).

In view of this,

Eµ[f(⌘t)] =

Z

X

P (t)f dµ, 8f 2 C(X).

This suggest the following definition.

Definition 3.2. Suppose {P (t), t � 0} is a Markov semi-group on C(X). Given µ 2

P(X), µP (t) 2 P(X) is defined by the relation
Z

X

f d[µP (t)] =

Z

X

P (t)f dµ,

for all f 2 C(X).

The probability measure µP (t) is interpreted as the distribution at time t of the
process when the initial distribution is µ. We now want to study the limit behaviour of
µP (t) as t ! 1. To do that we need the following

Definition 3.3. A measure µ 2 P(X) is said to be invariant for the process with Markov
semi-group {P (t), t � 0} if µP (t) = µ for all t � 0. The class of invariant µ 2 P(X)
will be denoted with I. Moreover, define Ie as the set of extreme invariant measures ,
i.e. the elements of I which can not be written as a nontrivial convex combinations of
elements of I.

Proposition 3.2. The following properties holds:

1. µ 2 I if and only if Z

X

P (t)f dµ =

Z

X

f dµ,

for all f 2 C(X) and all t � 0.

2. I is a compact convex subset of P(X).

3. I is the closed convex hull of Ie.

4. If ⌫ = limt!1 µP (t) exists for some µ 2 P(X), then ⌫ 2 I.

5. I is not empty.

Let us conclude this introductory section with a definition that describes the nicest
situation which one can have relative to convergence of µP (t) as t ! 1.



3.2. INVARIANT MEASURES 45

Definition 3.4. The Markov process with semi-group {P (t), t � 0} is said to be ergodic
if

i. I = {⌫} is a singleton, and

ii. limt!1 µP (t) = ⌫ for all µ 2 P(X).

Now we are ready to study the ergodic theory related to the voter model.

3.2 Invariant measures

In this section, we will find all the extremal invariant measures of the voter model and
their domain of attraction. Our aim is just to provide the main ideas and general results,
hence we will not give any proof. For a detailed discussion of the topics, we suggest the
references [16], [5] and [18].
Recall that the flip rates of this interacting particle system are given by (3.1), and p(x, y)
are the transition probability of an irreducible Markov chain on the site space V . Let
us mention the definition of the set of bounded harmonic functions for a Markov chain
with transitions p(x, y). Thus, let

H =
n
↵ : V ! [0, 1] such that

X

y

p(x, y)↵(y) = ↵(x), 8x 2 V
o
. (3.2)

In particular, we will need a certain subset H
⇤ of H. In order to describe it, let X(t)

and Y (t) be two independent copies of the continuous time Markov chain, having P =
{p(x, y)}x,y2V as the embedded chain transition matrix, i.e. with transition probabilities
(we are assuming the transition rate equal to one)

pt(x, y) = e�t
1X

n=0

tn

n!
p(n)(x, y),

where p(n)(x, y) are the n-step transition probabilities associated to p(x, y). It can be
shown that, for ↵ 2 H, ↵(X(t)) is a bounded martingale. Therefore, by martingale con-
vergence theorem, limt!1 ↵(X(t)) exists with probability one and the following subset
of H is well defined

H
⇤ =

n
↵ 2 H : lim

t!1
↵(X(t)) = 0 or 1 a.s. on the event E

o
,

where E = {there exists tn " 1 such that X(tn) = Y (tn)}. Using the Markov property
on

g(x, y) := P(x,y)(X(t) = Y (t) for some t � 0), (3.3)



46 CHAPTER 3. INTERACTING PARTICLE SYSTEMS

x, y 2 V and (X(0), Y (0)) = (x, y), it can be seen that g(x, y) is a nonnegative super-
martingale, thus limt!1 g(X(t), Y (t)) exists a.s., so E can be nonempty. For ↵ 2 H,
define ⌫↵ to be the product measure on X with marginals

⌫↵{⌘ : ⌘(x) = 1} = ↵(x).

We can now state

Theorem 3.3. The following holds:

(a) µ↵ = limt!1 ⌫↵P (t) exists for every ↵ 2 H, and µ↵ 2 I.

(b) µ↵{⌘ : ⌘(x) = 1} = ↵(x) for all x 2 V .

(c) Ie = {µ↵ : ↵ 2 H
⇤
}.

Therefore we have a complete description of the set I of the invariant measures for
the voter model, and the set Ie of the extremal measures of I. Before stating the next
theorem concerning the domain of convergence of invariant measures, we define

µ̂(A) := µ{⌘ : ⌘(x) = 1 for all x 2 A},

where µ 2 P(X) and A 2 VF , the class of finite subset of V .

Theorem 3.4. The following holds

(a) Suppose µ 2 P(X) and ↵ 2 H
⇤
. Then limt!1 µP (t) = µ↵ if and only if

lim
t!1

X

y2V

pt(x, y)µ̂({y}) = ↵(x), and

lim
t!1

X

u,v2V

pt(x, u)pt(x, v)µ̂({u, v}) = ↵2(x),

for all x 2 V .

(b) Suppose g(x, y) = 1 for all x, y 2 V , so that H
⇤ = {0, 1}. If ✓ 2 [0, 1] and

µ 2 P(X), then limt!1 µP (t) = ✓�1 + (1� ✓)�0 if and only if

lim
t!1

X

y2V

pt(x, y)µ̂({y}) = ✓, for all x 2 V,

where �x is the Dirac measure with mass in x 2 V .

Weaker conditions still hold if we take ↵ 2 H instead of H⇤, see [16] Chapter V.
At this point we are able to characterize the set I of all invariant measures for the voter
model and their domain of attraction. Since we are interested in the case in which the
elements of V represent the vertices of a finite graph, first we will briefly discuss the
di↵erence between the cases V finite and V infinite, then we will approach the finite
graph case.
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3.2.1 Absorbing states

As we are studying the voter model with two opinions, i.e. W = {0, 1}, it is obvious
that the states {⌘ : ⌘(x) = 1 8x 2 V } and {⌘ : ⌘(x) = 0 8x 2 V } are absorbing for the
process, since once the system is in one of those it gets trapped and remains in that state
forever. We want to connect this concept with that of the invariant measure. To do this,
we first observe that if V is finite (and the p(x, y) chain irreducible) then all stationary
distributions are trivial, i.e., concentrated on absorbing states, since no matter the initial
state, ⌘t will get trapped at all 0’s or 1’s with probability one. In such a situation, the
first question that might be asked is how can one estimate the hitting time ⌧c to reach
consensus (or consensus time), where

⌧c := inf{t > 0 : ⌘t(x) = ⌘t(y) 8x, y 2 V }. (3.4)

In particular we cite the work of Cox [5], where V = Zd
\ [�N/2, N/2)d, N = 2, 4, . . . , is

the d-dimensional torus in Zd and p(x, y) are given by a symmetric random walk in V . In
such setting, several estimates of E[⌧c] are reported, mainly using the coalescing duality of
the voter model which we will explain in the next section. Another relevant observation
is that we can study the behaviour of the process conditioned on non absorption: it will
be our focus for the next chapters.
If we now consider the case in which V is not finite, the preceding argument that links the
invariant measures to the absorbing states fails. Indeed it is possible to have a nontrivial
stationary distributions. For a matter of simplicity, let us take V = Zd, and let p(x, y)
be the transition functions of a symmetric random walk on V , p(x, y) = 1

2d1|x�y|=1.
With such assumptions H is characterized by all the constants functions ✓ 2 [0, 1] and
H

⇤ = {0, 1}. Similar to the previous section, let ⌫✓ be the product measure with density
✓ on X = {0, 1}Z

d
, i.e.

⌫✓{⌘ : ⌘(x) = 1} = ✓ 8x 2 Zd.

We can then state

Theorem 3.5. Let {⌘t, t � 0} be the Markov process representing the voter model on

the state space X = {0, 1}Z
d
. The following holds

(i) If d  2, then Ie = {⌫0, ⌫1} and limt!1 µP (t) = ✓⌫0+(1� ✓)⌫1, where µ 2 T
1
and

✓ = µ{⌘ : ⌘(x) = 1} for all x 2 Zd
.

(ii) If d � 3, then Ie = {⌫✓, ✓ 2 [0, 1]}, and limt!1 µP (t) = ⌫✓, where µ 2 T and

✓ = µ{⌘ : ⌘(x) = 1} for all x 2 Zd
.

Remark 9. The latter theorem is a consequence of a result of Holley and Liggett [15],
which suppose in (i) that X(t)�Y (t) (an irreducible symmetric random walk on Zd, with

1The set of translation invariant probability measures of X
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X(t) and Y (t) as in (3.3)) is recurrent, instead of d  2, and in (ii) that X(t) � Y (t)
is transient, instead of d � 3. Clearly the cited hypothesis are equivalent, since an
irreducible symmetric random walk in Zd is recurrent if and only if d  2, and transient
if and only if d � 3.

Thus, if d  2 and letting t ! 1, we have consensus almost surely. More precisely,
there is a probability ✓ that clustering occurs with all states 0’s, and a probability 1� ✓
that clustering occurs with all states 1’s, where ✓ = µ{⌘ : ⌘(x) = 1} and µ 2 P(X) is
the initial distribution of ⌘t. This implies that

P⌘0(⌘t(x) 6= ⌘t(y)) �!
t!1

0,

for every x, y 2 Zd and all initial state ⌘0.
On the contrary, if d � 3 and letting t ! 1, coexistence of opinions occurs almost
surely, i.e. there exists a translation invariant stationary distribution in which each
of the possible states in {0, 1} has positive density. In fact, for all possible invariant
measures ⌫✓ 2 Ie, ✓ 2 [0, 1], we have that ✓ = ⌫✓{⌘ : ⌘(x) = 1} = µ{⌘ : ⌘(x) = 1} for all
x 2 Zd and every initial distribution µ 2 T .

3.3 Duality with coalescing random walk

The aim of this section is to explain and motivate the duality relation between the voter
model and the coalescing random walks. To do so, in view of the next chapters, we
will consider the voter model on a r-regular2n-vertex graph G, i.e. the corresponding
Markov process {⌘t, t � 0} will be defined as follows

⌘t : V (G) �! {0, 1}, 8t � 0,

where V (G) is the vertex set of G and {0, 1} are the usual possible opinions of each site
at time t. Using the above notation, V = V (G) is the site space, furthermore, the edge
set of G is given by E = {(x, y) : x, y 2 V (G), p(x, y) > 0}. Let us now briefly recall
the evolution of the model. In the continuous time voter model we envisage a person
at each vertex, which initially has an opinion corresponding to 0 or 1. As time passes,
opinions change according to the following rule. For each person x and each time interval
[t, t+dt], with chance dt the person chooses uniformly at random a neighbor, say y, and,
if they are of the same opinion nothing happens, otherwise x changes his opinion to the
current opinion of person y. Since the graph is finite, the consensus time ⌧c described in
(3.4) is well defined.
We now introduce the coalescing random walk process on the graph G. At time t = 0

2A regular graph is a graph where each vertex has the same number of neighbors or, equivalently,
the same degree. A regular graph with vertices of degree r is called a r-regular graph.
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there is one particle at each vertex of the graph. These particles perform independent
continuous-time random walks on the graph, but when particles meet they coalesce into
clusters and the cluster thereafter sticks together and moves as a single random walk.
Therefore if at time t there are clusters at distinct vertices, composed by one or more
particles, then during [t, t+dt] each cluster has chance dt to move to a random neighbor
and (if that neighbor is occupied by another cluster) to coalesce with that other cluster.
Note that, since the graph is finite, the total number of clusters can only decrease over
time, and at some random time �c the particles will have all coalesced into a single
cluster.
In order to connect these two processes, we are going to show an example of their
evolution in the 8-cycle graph, where the i’th vertex is connected to the vertices i + 1
and i�1, furthermore the vertices 0 and 8 are considered equal. Regarding the following
construction, we adapted the one used into the work of Aldous and Fill [1], Chapter 14.

Figure 3.1: Comparing voter model and coalescing random walk

Here in Figure 3.1, for each edge e and each direction on e, was created a Poisson
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process of rate 1
r . Fixing t0 > 0, time evolution is horizontal and an event of the Poisson

process for edge (i, j) at time t is indicated by a vertical black arrow i ! j at time
t. Note that we introduced two time parameters: t for the voter model, which evolves
foreward, and T for the coalescing RW, which evolves backward.
In the voter model, we interpret time (t) as increasing left-to-right from 0 to t0, and
we interpret an arrow j ! i at time t as meaning that person j adopts i’s opinion a
time t. While in the coalescing random walk model, we interpret time (T ) as increasing
right-to-left from 0 to t0, and we interpret an arrow j ! i at time t as meaning that the
cluster (if any) at state j at time t jumps to state i, and coalesces with the cluster at i
(if any). The blue and red horizontal lines in the figure indicate part of the trajectories.
Moreover, we have shown, by way of example, the evolution of initial opinions 0 and 1
relating to the 4th and 3rd vertex (t = 0), respectively, which will influence the opinions
of vertices from 2 to 7 (t = t0). If we observe such evolution back in time, putting
a random walker on every vertex from 2 to 7 and considering the coalescing process,
it turns out that starting from six walkers (T = 0) they coalesced into two (T = t0).
Generalizing what we have just observed, we can state that: for any vertices i, j, k the
event (for the voter model)

“The opinions of persons i and j at time t = t0 are both the opinion initially held by k”

is exactly the same as the event (for the coalescing random walk process)

“The particles starting at i and at j have coalesced before time T = t0 and their cluster

is at vertex k at time T = t0.”.

Therefore, the event (for the voter model)

“By time t = t0 everyone’s opinion is the opinion initially held by person k.”

is exactly the same as the event (for the coalescing random walk process)

“All particles have coalesced by time T = t0, and the cluster is at k at time T = t0.”.

As an immediate consequence, the hitting times ⌧c and �c have the same distribution
until time t0, i.e.

P(⌧c  t) = P(�c  t), 8t  t0. (3.5)

However, as we will see further on, it holds P(⌧c  t)  P(�c  t), for all t � 0. In
particular, the inequality strongly depends on the choice of the initial distributions of
opinions. Turning back to the setting of (3.5), let us denote with C the distribution of
consensus and coalescing time. In [1] several bounds for E[C] are given, mainly using the
structure of the finite graph we are working with, moreover, the problem of finding an
universal bound was posed. In early 2012, Oliveira [18] proposed the following solution
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Theorem 3.6. There exists a universal constant K > 0 such that, for any graph G
and any set W of opinions, the expected value of the consensus time of the voter model

defined in terms of G and W , started from an arbitrary initial state, is bounded by

K TG
hit.

Where

TG
hit := max

v,w2V (G)
Ew[⌧v] = largest expected hitting time for A,

⌧v is the usual hitting time for v 2 V (G), and A is the infinitesimal generator of the
Markov chain on V (G), which we consider to be irreducible and reversible3.
In order to conclude this chapter, let us summarize some of the key concepts in what
follows. The crucial di↵erences between a classical Markov chain and an interacting
particle system are: the state space, that is no longer countable since is given by X =
{0, 1}V , and the mechanism of the flipping rates c(x, ⌘), which is strictly related to both
interaction between agents x 2 V and the transition probabilities p(x, y), x, y 2 V . Let
us now focus the attention on the voter model. The approach to invariant measures
revolves around the concept of absorbing states. If we are in a site state V where there is
no sure absorption (as in Zd, with d � 3), then the properties of the invariant measures
depends on the characteristics of the lattice; otherwise, if we consider the model in a
context where absorption happens almost surely, then the invariant measures are only
the trivial ones related to the absorbing state. Thus, an interesting treatment could be
the study of the process conditioned not to be absorbed, in particular we can look for
quasi-stationary distributions.
In the next chapter we will study the voter model in a complete bipartite graph Kn,m,
n,m 2 N, following the very recent paper of Ben-Ari, Panzo, Speegle and VandenBerg
[2]. We will look for QSDs for the voter model conditioned on non absorption, and we will
see how they can be used to determine a particular distribution which will characterize
the size of the “dissenters” in our voter context.

3Since we are assuming irreducibility, the chain has a unique stationary distribution ⇡. We say that
the infinitesimal generator A = {q(i, j)}i,j2V (G) (and thus the associated Markov chain) is reversible
w.r.t. ⇡ if ⇡(x)q(x, y) = ⇡(y)q(y, x), for all distinct x, y 2 V (G).
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Chapter 4

Voter model on Complete Bipartite
Graphs

Through this chapter we will connect all the notions and results encountered so far. In
particular, we will study the discrete-time voter model on the complete bipartite graphs

Kn,m. These are heterogeneous graphs whose vertex set can be partitioned in two disjoint
groups, a “large” group L of size n and a “small” one S of sizem, where each vertex of L is
connected to all of the vertices of S and vice versa, and there are no connections between
vertices in the same group. The aim of this chapter is to investigate what happens when
consensus is conditioned to never occur, as we have seen that in finite graphs it happens
almost surely. More specifically, we study the quasi-stationary distribution (QSD) for
the voter model on Kn,m and its limit behaviour under the QSD when m is fixed and
n ! 1. The reasons why we are interested in such a limit are: to find out if the lack
of consensus is due to a minority number of dissenters, or if the opinions are relatively
balanced, and, taking n � m, to find out how the distributions of opinions in L di↵ers
from S. We will follow closely [2] during all this chapter, it will be our main reference.
In Section 4.1 we summarize the properties of both the QSD and voter model -still on
a general finite graph- that we will use in order to obtain the results, emphasizing the
connection between the eigenvalue of the QSD (we say “the” QSD because we will show
that under our conditions it exists and is unique) and the consensus time. Then, in
Section 4.2 we continue the duality discussion introduced in Section 3.3. More precisely,
we point out in which cases the knowledge of the distribution of the coalescing time is a
necessary and su�cient condition for determine the eigenvalue of the QSD for the voter
model conditioned on nonabsorbing. Finally, in Section 4.3 we completely develop the
core result of this chapter, which regards the distribution of opinions under the QSD for
the voter model on Kn,m, letting n ! 1 and m fixed.

4.1 Introduction

For a matter of completeness, in this section we will give a quick summary of the theory
concerning the voter model on a general finite graph, and the theory of QSDs. Let us
begin with the latter. For more details and all the references, see Chapter 2.
During all this chapter, di↵erently from what we saw previously, we will consider the

53
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voter model with discrete time setting and on a discrete state space. Thus, we will study
the QSDs on that context. Suppose that Y = {Yt : t 2 Z+} is a Markov chain on a finite
state space S̄ and transition function P̄ . Note that here P̄ is a |S̄|⇥ |S̄| matrix. Recall
that the state i 2 S̄ is absorbing if and only if

Pi(Y1 = i) = 1,

where as usual Pi(Yt = ·) = P(Yt = ·|Y0 = i), for all t � 0. Denote with � ⇢ S̄ the set
of the absorbing states. We will assume that

(1) � is nontrivial, i.e. it is not empty and its complement �c is not empty; and

(2) � is accessible from every state. That is, for every state i 2 S̄, there exists t 2 Z+

such that
Pi(Yt 2 �) > 0.

An immediate consequence of these assumptions is that the hitting time ⌧ of the
absorbing set � is finite almost surely. That is, for any initial distribution µ 2 P(S̄) we
have Pµ(⌧ < 1) = 1, where

⌧ = inf{t 2 Z+ : Yt 2 �}.

Let P be the sub-stochastic transition function obtained by restricting P̄ to the comple-
ment of � in S̄. We denote this complement by S. In other words, as we anticipated
in the previous chapters, P is the principal sub-matrix obtained from P̄ by removing all
rows and columns corresponding to states in �. Therefore, taking any initial distribution
µ for Y whose support is contained in S, we have

Pµ(Yt = j, ⌧ > t) = µP t(j), 8t 2 Z+, 8j 2 S, (4.1)

where, with P t we denote the t-power of the sub-stochastic matrix P , and with µP t(j)
we indicate the j’th component of the resulting product between the vector µ and the
matrix P t. In particular,

Pµ(⌧ > t) =
X

j2S

µP t(j), 8t 2 Z+. (4.2)

Furthermore,
lim
t!1

Pµ(⌧ > t)
1
t (4.3)

exists. Moreover, if one considers the restriction of S to the states accessible from the
support of µ, then the limit above coincides with spectral radius of the resulting principal
sub-matrix. In fact, it is a direct consequence of the Gelfand’s Formula, using || · ||1 as
matrix norm while considering the rewrites (4.1) and (4.2).
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Remark 10. There is a specific case in which the above statements are immediate. If in
(4.3) we take as initial distribution µ a quasi-stationary distribution (assume it exists),
from (2.9) and, more precisely, Remark 6 we know that

Pµ(⌧ > t)
1
t =

⇥
�t
⇤ 1

t = �,

where � 2 (0, 1) is the spectral radius of P restricted to the support of µ, and such that
µP = �µ. Thus it follows that limt!1 Pµ(⌧ > t)1/t = �.

Recall now that a probability measure ⌫ on S̄ is called a quasi-stationary distribution
for the Markov chain Y if

P⌫(Yt = j|⌧ > t) = ⌫(j), 8j 2 S, 8t 2 Z+.

Note that ⌫ is supported on S, therefore will be viewed as a probability measure on S.
Moreover, we can rewrite the latter equation using (4.1) and (4.2) to have

⌫P t = C⌫(t)⌫,

where C⌫(t) =
P

j2S ⌫P
t(j). If we plug t = 1 in the above equation, we get the following

well-known result, which we have already seen with the Perron-Frobenius Theorem (2.7)
and Proposition 2.2.

Proposition 4.1. The following holds

(i) A probability vector ⌫ on S is a QSD if and only if ⌫ is a left eigenvector for P ,

with strictly positive eigenvalue �. That is, if

⌫P = �⌫,

with � being the spectral radius of P restricted to the linear space spanned by the

indicators of the support of ⌫.

(ii) If ⌫ is a QSD, then the distribution of ⌧ under P⌫ is geometric with parameter

1� �.

Furthermore we recall also the following theorem, that gives us su�cient conditions
for the existence and uniqueness of QSDs, and provides the domain of attraction for
these QSDs.

Theorem 4.2. The following holds

(i) If P is irreducible then there exists a unique QSD.
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(ii) If P is primitive, i.e. irreducible and aperiodic, then for any initial distribution µ,

lim
t!1

Pµ(Yt 2 ·|⌧ > t) = ⌫,

where ⌫ is the unique QSD.

As last part of this introduction section, we want to describe more formally what
stated in the previous chapter. Let G = (V,E) be a finite, connected graph with vertex
set V and edge set E. We will study on this thesis a discrete-time version of the voter
model on G. To this aim, recall that the state space of the voter model is W V , where W
is the set of phases (or opinions) and V is the vertex set of G; if not di↵erently specified,
we will consider W = {0, 1}. Moreover, the whole process is described by the coordinate
functions ⌘t(·) : V ! W , for every t 2 Z+, where ⌘t(v) represents the opinion of the
vertex v at time t. A state of the system is instead a function ⌘ : V ! W , it represents a
sort of snapshot of all the opinions on a fixed time. The evolution of the opinions proceeds
as follows: a vertex is picked uniformly, this vertex samples a neighbor uniformly, then
the former vertex adopts the opinion of the latter. We call consensus states all the states
⌘ so that all the opinions are the same. Note that the set of absorbing states � coincides
with the set of consensus state. Since G is connected, the model reaches a consensus
almost surely. In fact, by construction, the hypothesis (2) of � is fulfilled.
We write ⌘ = {⌘t, t 2 Z+} for the discrete-time voter model on G. The probability of a
transition from ⌘ to ⌘0 is positive if and only if there exists (v, v0) 2 V ⇥ V such that

(1) {v, v0} 2 E, the edge set of G.

(2) ⌘0(v) = ⌘(v0). That is, the new opinion of the first vertex is taken from the old
opinion of the second one.

(3) ⌘0(u) = ⌘(u) for all u 6= v. That is, only one opinion at time step can change.

Now if the pair ⌘ and ⌘0 satisfy the above conditions, then a transition is obtained by
first uniformly sampling the vertex v among all those for which a matching v0 exists, and
then adopting the opinion of v0. This leads to the following transition function:

p(⌘, ⌘0) =
1

|V |

X

v2V

X

v0:{v,v0}2E

1⌘0(v)(⌘(v0))

deg(v)

Y

v 6=v0

1⌘0(u)(⌘(u)).

All other transitions are not allowed.
We can now rewrite the absorption time in the context of the voter model, as we have
seen in (3.4), i.e.

⌧ = inf{t � 0 : ⌘t(v) = ⌘t(v
0) 8v, v0 2 V }.
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Eventually, using both (4.3) and Proposition 4.1, we write �V(G, µ) for the spectral
radius associated to the voter model on the graph1G, with initial distribution µ. It thus
holds

�V(G, µ) = lim
t!1

Pµ(⌧ > t)
1
t .

We will see that the search for �V(G, µ) will be crucial for our problem. At this exact
point the duality of the model comes to our aid. In the next section we will prove a
result which, under some reasonable conditions, will allow us to compute �V(G, µ) in a
very clever way.

4.2 Duality approach

The foundation of our analysis is based on the well-known duality between the continuous-
time voter model and coalescing random walks, described partially in Section 3.2. In
this section, we develop a discrete-time analogue of this duality. In order not to lose gen-
erality, we will consider the voter model on a general finite connected graph G = (V,E).
Moreover, we assume that the opinion set W can be as large as the number of vertices,
i.e., at most we could consider that initially each vertex has a di↵erent opinion. For a
discussion (and application) of the bipartite graph case with opinions {0, 1}, we refer to
Section 4.3.
As anticipated before, the first step towards finding a QSD is identifying �V(G, µ). The
connection with coalescing random walks that will be described in this section simplifies
the analysis of the time until consensus, by identifying the distribution of ⌧ with the
distribution of the time until two random walks on the graph first meet. The idea is
to describe the propagation of opinions back in time, tracing whose opinion each vertex
inherited from previous steps, going all the way back to time zero.
For the following, almost algorithmic, description of the coalescing context, we com-
pletely refer to [2]. In passing from time t� 1 to t in the voter model, we first uniformly
select a vertex v, then uniformly select a neighbor u and assign ⌘t(v) = ⌘t�1(u). For each
t 2 Z>1, the sampling of vertex v and its neighbor are independent of and identically
distributed as the respective sampling for other times. Furthermore, this sampling is
also independent of the actual opinions up to time t�1. Fix some time T 2 N. We want
to trace whose of the original opinions, the ones at t = 0, each vertex holds at time T .
To this aim, we construct a random directed graph GT on V ⇥ {0, . . . , T} which evolves
exactly the same as the voter model, but back in time. Below we indicate the evolution
foreward in time of the voter model with t 2 {0, . . . , T}, while the backward evolution
of GT is given by n = T � t, t 2 {0, . . . , T}. Equivalently, we can define t in terms of n

1We mean the spectral radius of the adjacency matrix associated to the finite graph G = (V,E), i.e.
the matrix Ad = {ai,j} such that ai,j = 1 if {i, j} 2 E and 0 otherwise.
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as t = T � n.
We now describe the three-steps construction of the random walks on GT .

1. Adopting other’s opinions. If at time t = T � n the vertex v is selected to adopt
the opinion of vertex u at time t� 1 = T � (n+ 1), we will draw a directed arrow
(v, n) ! (u, n+1), where (v, n), (u, n+1) 2 V ⇥ {0, . . . , T}. We begin from n = 0
up to n = T or, equivalently, from t = T up to t = 0. See Figure 4.1 below for an
illustration of this procedure on a star graph with T = 6.

Figure 4.1: Realization of the voter model on a star graph of order 3, where the vertices
are the circles, labeled 0,±1, and the edges are the vertical line segments. Here we
consider W = {a, b, c} as set of opinions . Note that the t-time of the voter model
runs from left to right and appears at the bottom, while the n-time of the random
directed graph runs from right to left and appears at the top. An arrow from (v, n) to
(u, n+1) represents vertex v adopting at time t = T �n the opinion of vertex u at time
t� 1 = T � (n+ 1). For example, the first arrow from (1, 6) to (0, 5) means that vertex
0 (which has initial opinion b) adopts the opinion c of the near vertex 1 at time t = 1.

2. Keeping one’s opinion Since only one vertex can possibly change opinion in a
single time step, in the previous figure we add dashed vectors to represent it. More
precisely, let h(n) be the unique vertex (v, n) with an arrow to some (u, n+ 1), as
obtained in Step 1. For all n and v 2 V \ {h(n)}, we draw an arrow from (n, n) to
(v, n+ 1). See Figure 4.2 for an illustration of this step.

3. Construction of paths. Considering both Step 1 and Step 2, for every v 2 V there
exists a unique path from (v, 0) to (·, T ). This corresponds to the backward tracing
of the opinion of (·, T ), which is clearly the same of the one of (v, 0). Given v 2 V ,
the unique path is a sequence (v0 = v, 0) ! · · · ! (vT , T ) where, given vn 2 V ,
vn+1 2 V is the unique vertex such that (vn, n) ! (vn+1, n + 1). Since the path
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is determined by the choice of v and T , we denote it by XT (v) := {XT
n (v) : n =

0, . . . , T}, where XT
n (v) = vn. Finally, in order to complete our construction, we

remove from the graph GT all the arrows (dashed or not) that are not used for any
path (v0, 0) ! · · · ! (vT , T ). This final step is illustrated in Figure 4.3.

Figure 4.2: We added dashed horizontal arrows to Figure 4.1, which represent all the
vertices that keep their opinion in a time step.

Figure 4.3: The random graph G6, obtained after removing useless arrows from Figure
4.2. The path of the random walk X6(�1) has a shadow on it. Moreover, it is useful to
note that the path of the random walk X6(0) coincides (or better, coalesces) with the
one of X6(�1) from time n = 1 onwards; same thing happens to the path of X6(1), from
time n = 3 onwards. Observe that it all happens because at time t = T all the vertex
have the same opinion.

From our construction, for each v 2 V , XT (v) is a Markov chain on G whose initial
distribution is the point-mass at v, i.e. �v, and with transition functions given by

p(u, u) =
|V |� 1

|V |
, p(u, w) =

1

|V |

1

deg(u)
1E(u, w), 8u, w 2 V.
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Equivalently, XT (v) is a lazy random walk on G with probability 1� 1
|V | of staying put

at each step.
Getting inspired by the Markov chain XT (v), we are now ready to build a proper system
of coalescing random walks (CRWs). Define a system of coupled random walks Y =
{Yt(v) : v 2 V, t 2 Z+} as follows. Set first Y0(v) = v for each v 2 V ; if we were talking
about the voter model, we would have said that each initial opinion is di↵erent. Assume
that Ys(·) is defined for s  t, we uniformly and independently sample v 2 V and a
neighbour u of v. If Yt(·) 6= v, then we set Yt+1(·) = Yt(·). Otherwise we set Yt+1(·) = u.
We will refer to Y as the coalescing random walks on the graph G. The idea is the same
of the one mentioned in Section 3.3: we start with |V | random walks on a graph, one for
each vertex, they evolve independently, and once two of them meet in a common vertex
they became a single new random walk. Note that if we look at the distribution of Y
until a time T 2 N fixed, it coincides with the joint distribution of XT (v), v 2 V . In
fact, for any two distinct vertices v, v0 2 V , let

�T
v,v0 := inf{n 2 {0, . . . , T} : XT

n (v) = XT
n (v

0)}, with inf ; = 1,

and let
�v,v0 := inf{t 2 Z+ : Yt(v) = Yt(v

0)}.

Then
P(�T

v,v0 = t) = P(�v,v0 = t), 8t  T. (4.4)

Also, let
� := max

v,v0
�v,v0 .

Before we continue, we would like to recall a fundamental but useful fact. Suppose that
⌘ is a Z+- valued random variable with the property that for some � 2 [0, 1],

� = lim
t!1

P(⌘ > t)
1
t .

If we take ⇢ � 1, we can write

E[⇢⌘] =
1X

k=1

⇢k(P(⌘ > k � 1)� P(⌘ > k)) = ⇢P(⌘ > 0) +
1X

k=2

⇢kP(⌘ > k � 1)

�

1X

k=1

⇢kP(⌘ > k) = ⇢+ (⇢� 1)
1X

k=1

⇢kP(⌘ > k).

(4.5)

It follows that the radius of convergence of E[⇢⌘] coincides with the one of
P1

k=1 ⇢
kP(⌘ >

k). By the Cauchy-Hadamard theorem, it is equal to 1/�, and in particular

1

�
= sup{⇢ : E[⇢⌘] < 1}. (4.6)
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Now define
�CRW(G) := lim

t!1
P(� > t)

1
t ,

and recall that
�V(G, µ) = lim

t!1
Pµ(⌧ > t)

1
t .

Both limits exists as � and ⌧ are hitting times of finite-state Markov chains and decay
geometrically (possibly with a polynomial correction). Thus, from (4.6) it follows that

1

�CRW(G)
= sup{⇢ : E[⇢�] < 1}, (4.7)

as well as
1

�V(G, µ)
= sup{⇢ : Eµ[⇢

⌧ ] < 1}. (4.8)

We are finally ready to state the first result of this section.

Proposition 4.3. Let G = (V,E) be a finite connected graph. Then, for any initial

opinion distribution µ for the voter model on G, it holds

�V(G, µ)  �CRW(G). (4.9)

Proof. We want to compare the distributions of the consensus time ⌧ and the coalescing
time �. Let us denote with i the state of the voter model where all initial opinions are
distinct, i.e. where ⌘0(v) = v, v 2 V . We observe first that under Pi the distribution of
⌧ and � coincide, that is

Pi(⌧ > t) = P(� > t), 8t 2 Z+.

This happens because, as noted in the construction ofY, the system of coalescing random
walks can be seen as a voter model back in time where all initial opinions are distinct,
since at time t = 0 we have that Y0(v) = v, for all v 2 V . Thus, under Pi the time
to reach consensus will be equal to the time for which all random walks coalesce into a
single one. Let now µ be any initial distribution for the voter model on G. For a reason
similar to the above, the distribution of ⌧ under Pµ is stochastically dominated by its
distribution under Pi, i.e.

Pµ(⌧ > t)  Pi(⌧ > t), 8t 2 Z+.

It follows that
Pµ(⌧ > t)  P(� > t), 8t 2 Z+.

Finally, using the definitions of �V(G, µ) and �CRW(G), we can conclude that

�V(G, µ)  �CRW(G),

and µ = i is a su�cient condition for equality.



62 CHAPTER 4. VOTER MODEL ON COMPLETE BIPARTITE GRAPHS

We will now examine others, more general, su�cient conditions for the equality in
(4.9). For this purpose, we state the following

Proposition 4.4. Let G = (V,E) a finite connected graph and consider the voter model

{⌘t, t 2 Z+} on it. If one of the following two options holds:

(i) With positive probability, all initial opinions are distinct;

(ii) There exists t 2 Z+, such that for every distinct v, v0 2 V , Pµ(⌘t(v) 6= ⌘t(v0)) > 0,

then

�V(G, µ) = �CRW(G).

Proof. In view of Proposition 4.3, it is enough to prove the reverse inequality �V(G, µ) �
�CRW(G). Suppose first µ to be such that Pµ(⌘0(v) 6= ⌘0(v0), 8v, v0 2 V ) > 0. For ⇢ � 1,
it holds

max
v,v02V

E[⇢�v,v0 ]
(1)

 E[⇢�] 
X

v,v02V

E[⇢�v,v0 ], (4.10)

where in (1) we used Jensen’s inequality. It therefore follows that E[⇢�] < 1 if and only
if2 maxv,v02V E[⇢�v,v0 ] < 1. Now we can write

�CRW(G)
(4.7)
=

1

sup{⇢ : E[⇢�] < 1}

(4.10)
=

1

sup{⇢ : maxv,v0 E[⇢�v,v0 ] < 1}

= max
v,v0

1

sup{⇢ : E[⇢�v,v0 ] < 1}

(4.6)
= max

v,v0
lim
t!1

P(�v,v0 > t)
1
t

= lim
t!1

⇣
max
v,v0

P(�v,v0 > t)
⌘ 1

t
.

(4.11)

Let v, v0 2 V be di↵erent and fix t̄ 2 Z+, which later will be a general time replaced
by t 2 Z+. We make this distinction in order to exploit the properties of Xt̄(v). If we
suppose that X t̄

t (v) = u 6= u0 = X t̄
t (v

0) and ⌘0(u) 6= ⌘0(u0), then necessarily ⌘t(v) = ⌘0(u)
and ⌘t(v0) = ⌘0(u0) since: ⌘0(u) 6= ⌘0(u0) implies that we are dealing with two di↵erent
CRW, and u 6= u0 means that until time t  t̄ they haven’t met yet. Hence, at time t
there are at least two vertices with two distinct opinions, i.e. ⌧ > t. Summing, we have

Pµ(⌧ > t) �
X

u 6=u0

Pµ(X
t̄
t (v) = u,X t̄

t (v
0) = u0, ⌘0(u) 6= ⌘0(u

0)),

and we can sum over all u, u0 because ⌘0(u) 6= ⌘0(u0) implies u 6= u0. Moreover, note
that we put � instead of = because that is only a su�cient condition for ⌧ > t. Since

2The “if” part comes from (4.10), while the “only if” follows from the fact that maxv,v02V E[⇢�v,v0 ] �
E[⇢�v,v0 ], for all v, v0 2 V , so in particular it applies to the couple v, v0 that fulfills the max in �.
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⌘0 is independent of the random walks, we can decouple the condition on the RWs from
the condition on the initial opinions, and limit the summation only to pairs u, u0 where
u 6= u0. We can now use (4.4) in order to get

Pµ(⌧ > t) �
X

u 6=u0

Pµ(X
t̄
t (v) = u,X t̄

t (v
0) = u0) Pµ(⌘0(u) 6= ⌘0(u

0))

�

X

u 6=u0

Pµ(X
t̄
t (v) = u,X t̄

t (v
0) = u0) c

(2)
= P(�v,v0 > t) c,

(4.12)

where

c := min
u 6=u0

Pµ(⌘0(u) 6= ⌘0(u
0))

(3)

� Pµ(⌘0(v) 6= ⌘0(v
0), 8v, v0 2 V ). (4.13)

The inequality in (3) holds because the event {all initial conditions are distinct} =
T

u 6=u0{⌘0(u) 6=
⌘0(u0)} is contained in the event {⌘0(u) 6= ⌘0(u0)} for all u 6= u0, therefore the contain-
ment remains if we take the pair u, u0 that realize the minimum value of c. While in
(2) we rewrote, using (4.4) and the independence of the CRWs, the event {�v,v0 > t}
decomposing it in the union of all the possible cases in which it occurs.
As long as c > 0, this implies that the geometric decay of ⌧ starting from µ is at least
as slow as that of �v,v0 . In our hypothesis, by (i) and (4.13), c is always strictly positive.
Thus, by arbitrariness of v, v0 2 V , and using both (4.12) and (4.11), we get

�CRW(G)  �V(G, µ).

Hence, the su�cient condition (i) for the equality has been proved.
Next, we relax the condition for equality a little further using (ii). Suppose that µ0 is
an initial distribution on any number of opinions such that for some t0 2 Z+, we have
Pµ0(⌘t0(u) 6= ⌘t0(u

0)) > 0 for every pair of vertices u 6= u0. Denote the distribution of
⌘t0 with µ and note that �V(G, µ) = �CRW(G) follows from the previous case, since c in
(4.13) is strictly positive. Thus, we are only left to determine the connection between
�V(G, µ0) and �V(G, µ); we remark the fact that the initial distribution is µ0, not µ. To
this aim, for any ⇢ � 1 we can use the Markov property to write

Eµ0 [⇢
⌧ ] � E[⇢⌧ , ⌧ > t] = Eµ0

⇥
(1� 1⌧t0)⇢

t0Eµ[⇢
⌧ ]
⇤

= ⇢t0
⇣
Eµ0

⇥
Eµ[⇢

⌧ ]
⇤
� Eµ0

⇥
1⌧t0Eµ[⇢

⌧ ]
⇤⌘

� ⇢t0(Eµ[⇢
⌧ ]� 1).

Hence if Eµ[⇢⌧ ] if infinite, then so is Eµ0 [⇢
⌧ ]. Therefore, it follows from (4.8) that

�V(G, µ0) � �V(G, µ). Thus �V(G, µ0) � �CRW(G) and the equality follows by (4.9),
which allows us to conclude the proof.
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An important consequence is the following

Corollary 4.5. Let G = (V,E) be a finite connected graph and suppose that µ is the

initial distribution on the opinions {0, 1} where all vertices have opinion 0 except for one

uniformly chosen vertex which has opinion 1. Then

�V(G, µ) = �CRW(G).

As for the proof, we exploit Proposition 4.4, in particular the su�cient condition (ii),
since at time t = 0 there is a positive probability that every pair of di↵erent vertices
have distinct opinions.
We conclude this section exposing an example where we apply all the result that we
discussed. We consider the complete graph of grade n, Kn, and we look for the limit
distribution of the (unique) QSD as n ! 1. We want to evidence the fact that even
the existence of a limiting distribution is not obvious. The same example is reported in
[2], Section 4.

Example 1. Let Kn be the complete graph3 with n vertices and consider the voter model
onKn, for n � 3, with two opinions: “yes” and “no”. This Markov chain, when restricted
to the nonabsorbing states, is irreducible and aperiodic. Hence it follows from Theorem
4.2 that the chain conditioned on nonabsorbtion converges to the unique QSD. Writing
down the eigenvalue equation from Proposition 4.1, we have

� ⌫n(k) =
k(k � 1) + (n� k)(n� k + 1)

n(n� 1)
⌫n(k)

+
(k + 1)(n� k � 1)

n(n� 1)
⌫n(k + 1) +

(n� k + 1)(k � 1)

n(n� 1)
⌫n(k � 1),

where k represents the number of “yes” opinions, and ⌫n(0) = ⌫n(n) = 0. The equation is
solved by taking ⌫n(k) =

1
n�1 and � = 1� 2

n(n�1) . If we now choose an initial distribution

µ such that it is not supported on the consensus states {⌘ : ⌘(x) = 1, 8x 2 V } and
{⌘ : ⌘(x) = 0, 8x 2 V }, by irriducibility of the chain we have that (ii) of Proposition
4.4 holds, and therefore �CRW(G) = �V(G, µ). By (4.11), we have to look only at two
random walks on Kn at di↵erent vertices. Following the evolution of Y for two walkers,
the probability that they meet in the next step is 2

n(n�1) . Thus, again by (4.11), we have

that �CRW(Kn) = 1 �
2

n(n�1) , as established above through a direct calculation of the
QSD.

Summarizing, the QSD for the voter model on the complete graph Kn is uniform
on the nonabsorbing states. In particular, the QSDs do not converge to a probability
distribution as n ! 1, since ⌫n(k) ! 0 for all k 2 {0, . . . , n}, as n ! 1. In the next

3A complete graph is a simple undirected graph in which every pair of distinct vertices is connected
by a unique edge.
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section, we will study the behaviour of the same limit on the bipartite graph Kn,m. We
will see that, this time, we will have convergence of the QSD to a non-trivial probability
distribution, as n ! 1 and m 2 N fixed.

4.3 Main results on Complete Bipartite Graphs

Recall that a complete bipartite graph Kn,m = (V,E) is a graph whose vertex set V is
the disjoint union of L and S, where |L| = n and |S| = m, m  n, and its edge set is
E = {{l, s} : l 2 L, s 2 S}. We will study the QSDs for the voter model on Kn,m with
two opinions, “1” and “0”, also referred as “yes” and “no”, respectively. As noted before,
since in the voter interpretation L represent a very large group of people compared to
those of S, we assume m  n. In Figure 4.4 above we present an example where n = 10,
m = 5, and the two opinions “1” and “0” are represented with colors red and green. We
will also assume the following additional conditions which we need in order to guarantee
irreducibility:

m � 2 or

m = 1 and n � 3.
(4.14)

The set � of absorbing states for the voter model on Kn,m is given by

� = {⌘ : ⌘(x) = 1 8x 2 V, or ⌘(x) = 0 8x 2 V }.

In addiction, there is a set of states

BP := {⌘ : ⌘(l) = 1� ⌘(s), l 2 L, s 2 S},

which are not accessible from any other state not in BP . This is due to the fact that
the number of opinions is equal to the number of partitions of V . In the next chapter,
where we will try to generalize some of the results given in the bipartite graphs to the
k-partite graphs (k � 3), we will see that this set of boundary points will no more
be a problem. Thus, we will eliminate the subsets � and BP from our state space of
the model. Since under (4.14) the voter model on Kn,m with two opinions is aperiodic
and irreducible, by Theorem 4.2 and Proposition 4.1 it follows that, starting from a
distribution µ supported on (�[BP )c and conditioning on not reaching consensus, the
model converges to the unique QSD which is also supported on (� [ BP )c. We denote
this QSD with ⇡n,m and note that it is a left eigenvector corresponding to the eigenvalue
�n,m = �V(Kn,m, µ) = �CRW(Kn,m), for the restriction of the transition function of the
voter model to (� [ BP )c. The main idea behind this construction is the following:
we want to find the QSD for our model and to do this we need its eigenvalue �n,m =
�V(Kn,m, µ), but this is di�cult in general, thus we exploit the duality of the model
in order to obtain the equality �V(Kn,m, µ) = �CRW(Kn,m). We therefore reduced the
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Figure 4.4: Realization of the voter model on the complete bipartite graph K10,5. On
the left is presented the set L = {0, . . . , 9}, while on the right S = {10, . . . , 14}. The
circles represent the vertices of the graph and the black lines the edges, while the two
opinions are represented with colors red and green inside the circles.

problem of finding the geometric rate of the time to absorption in the voter model, i.e.
�V(Kn,m, µ), to searching the time for which two distinct random walks meet for the first
time on Kn,m.
To continue our analysis, we will exploit the symmetry among vertices within each group.
Instead of following the opinion on each vertex, we will follow the number of “yes”
opinions in each of the groups S and L. This leads to a Markov chain on the state space
{0, . . . , n} ⇥ {0, . . . ,m}. Each state is an ordered pair (k, h), with k representing the
number of “yes” in group L and h representing the number of “yes” in S. The only
allowed transitions are the following

(i) (k, h) ! (k + 1, h). This happens if a “no” vertex in L is sampled and adopts a
“yes” from S. Recall that the evolution consists in choosing uniformly a vertex
and, independently, in choosing a neighbor whose opinion is taken from the first.
Thus, the above transition happens with probability n�k

n+m
h
m .

(ii) (k, h) ! (k � 1, h). This happens if a “yes” vertex in L is sampled and adopts a
“no” from S. The probability is therefore k

n+m
m�h
m .

(iii) (k, h) ! (k, h + 1). This happens if a “no” vertex in S is sampled and adopts a



4.3. MAIN RESULTS ON COMPLETE BIPARTITE GRAPHS 67

“yes” from L. The probability is therefore m�h
n+m

k
n .

(iv) (k, h) ! (k, h � 1). This happens if a “yes” vertex in S is sampled and adopts a
“no” from L. The probability is therefore h

n+m
n�k
n .

(v) (k, h) ! (k, h). This happens with probability k
n+m

h
m + h

n+m
k
m + n�k

n+m
m�h
m +

m�h
n+m

n�k
n = kh+(n�k)(m�h)

nm .

Of course, (0, 0),(n,m) are the unique absorbing states, and the set BP collapses into
two states, (0,m) and (n, 0), not accessible from any other state. Thus eliminating these
four states, the new chain is irreducible. As a result, it possesses a unique QSD which
we denote by µn,m. Furthermore, the absorption time for the new chain from any initial
state coincides with the time to absorption for the voter model starting from any state
with matching numbers of opinions in both S and L. Thus, if we apply Proposition 4.1 to
the new chain, we get that the eigenvalue corresponding to µn,m is equal to �n,m. Now fix
any state (k, h) of our chain. Adapting all the possible transitions to the corresponding
state, we obtain the following eigenvalue equation for µn,m:

�n,m µn,m(k, h) = µn,m(k, h)
kh+ (n� k)(m� h)

nm

+ µn,m(k � 1, h)
(n� k + 1)h

(n+m)m
+ µn,m(k + 1, h)

(k + 1)(m� h)

(n+m)m

+ µn,m(k, h� 1)
(m� h+ 1)k

(n+m)n
+ µn,m(k, h+ 1)

(h+ 1)(n� k)

(n+m)n
.

(4.15)

At this point, we can finally exploit the duality of the voter model with the coalescing
random walks. We are going to use it strongly in the next proof.

Proposition 4.6.

�n,m = �CRW(Kn,m) = 1�
2

n+m

 
1�

r
1�

1

2n
�

1

2m

!

= 1�
�n,m
n+m

,

where

�n,m = 2

 
1�

r
1�

1

2n
�

1

2m

!
.

Proof. We assume first m > 1 and, by (4.14), n 2 N. From (4.11) it is enough to consider
only two coalescing random walks on Kn,m. We have to look at the evolution of Y in
Section 4.2. The two CRW paths can be in either one of the following states:
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1. Both walks are in di↵erent vertices of L.

2. Both walks are in di↵erent vertices of S.

3. One walk is in S and the other one in L.

4. They are both at the same vertex.

Label these four states of the system as 1, 2, 3, 4, respectively. Of course, 4 is the absorb-
ing state for the CRW, so we will omit it from our calculations. Let us consider the state
1. We know that at every time step only one of the two random walks can possibly move,
therefore the probability that the system moves from the state 1 to the state 2 is zero.
While the probability to move from 1 to 3 is equal to the sum (recall that the RWs moves
independently) of the probability of the events {the first RW moves and goes in S} and
{the second RW moves and goes in S}; both events happen with probability 1

n+m , thus
the probability to pass from the state 1 to the state 3 is 2

n+m . The probability to stay
put from each of the states 1,2,3 is equal to the probability that none of the two random
walks moves, i.e. 1 �

2
n+m . The same reasoning can be applied starting from state 2.

We need to be more careful starting from state 3, since we do not want that the CRWs
meet at the same vertex. Thus, from state 3 the system can transition to 1 or 2 with
respective probabilities 1

n+m
n�1
n and 1

n+m
m�1
m . As a result the substochastic transition

function on states 1, 2, 3 is

0

@
n+m+2
n+m 0 2

n+m

0 n+m+2
n+m

2
n+m

1
n+m

n�1
n

1
n+m

m�1
m

n+m+2
n+m

1

A . (4.16)

Since from both states 1 and 2 the transitions are either to themselves, with the same
probability, or to state 3, with the complementary probability, the lumping4 conditions
holds, so we can consolidate these states into one, leading to the matrix

✓ n+m+2
n+m

2
n+m

1
n+m(n�1

n + m�1
m ) n+m+2

n+m

◆
. (4.17)

The characteristic equation is

⇣
��

n+m� 2

n+m

⌘2
�

2

(n+m)2
2mn�m� n

nm
= 0.

4Given a stochastic matrix P , we say that P is a lumpable matrix on a partition T of the state
space if and only if, for any subset ti and tj in the partition and for any states n, n0

2 ti, one hasP
k2tj

p(n, k) =
P

k2tj
p(n0, k).
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Therefore the two eigenvalues, �+ and ��, are given by

�± = 1�
2

n+m
±

1

n+m

r
4�

2

n
�

2

m

= 1�
2

n+m

 
1⌥

r
1�

1

2n
�

1

2m

!
,

and the largest eigenvalue is obtained by choosing ��(with the “-” sign), giving the
expression in the statement.
It remains to consider m = 1 and n � 3. In this case, state 2 is not possible. We
therefore eliminate the second row and column from (4.16), ending up with the matrix
(4.17) and then continue as before.

We now give a direct relation between �n,m and µn,m.

Proposition 4.7.

�n,m = 1�
2

n+m
(µn,m(1, 0) + µn,m(0, 1)).

Proof. Let (K,H) be the random vector representing the number of “yes” in L and
S, respectively, whose distribution is µn,m. Recall that the set of absorbing states is
composed by (0, 0) and (n,m), thus, since µn,m is not supported on them, we have
µn,m(0, 0) = µn,m(n,m) = 0. We can therefore sum on both sides of (4.15) over �1 

k  n+ 1 and �1  h  m+ 1, while eliminating from the sum the pairs (k, h) = (0, 0)
and (k, h) = (n,m) to obtain

�n,m =
1

nm

�
E[KH] + E[(n�K)(m�H)]

�

+
1

m(n+m)

�
E[(n�K)H]� µn,m(n� 1,m)m

�

+
1

m(n+m)

�
E[(m�H)K]� µn,m(1, 0)m

�

+
1

n(n+m)

�
E[(m�H)K]� µn,m(n,m� 1)n

�

+
1

n(n+m)

�
E[(n�K)H]� µn,m(0, 1)n

�

= 1�
1

n+m
(µn,m(n� 1,m) + µn,m(1, 0) + µn,m(n,m� 1) + µn,m(0, 1))

= 1�
2

n+m
(µn,m(1, 0) + µn,m(0, 1)),

where the last equality follows from invariance under relabeling of the two opinions.
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An interesting fact, as we will see in the next chapter, is that in the case of complete
tripartite graph (and then in the k-partite) a connection between � and µ as in (4.7) can
still be proved, but a direct computation of � as in (4.6) will not be possible.

Remark 11. As a secondary result, we now show how to compute µn,m(|, 0) in the special
case wherem = 1. As the state (0,1) is in the boundary points BP and not in the support
of µn,1, its measure vanishes and using Proposition 4.6 along with Proposition 4.7 gives

µn,1(1, 0) =
n+ 1

2
(1� �n,1) = 1�

r
1

2
�

1

2n
=

�n,1
2

. (4.18)

Writing out the eigenvalue equation (4.15) in the case m = 1 and h = 0 leave us with

⇣
�n,1 �

n� k

n

⌘
µn,1(k, 0) = µn,1(k + 1, 0)

k + 1

n+ 1
+ µn,1(k, 1)

n� k

n(n+ 1)
.

Due to invariance under relabelling of the two opinions, we can write µn,1(k, 1) = µn,1(n�
k, 0). In addition, from Proposition 4.6 we can rewrite �n,1 as

�n,1 �
n� k

n
=

k

n
�

�n,1
n+ 1

,

so that we can plug it into the eigenvalue equation above and get

⇣k
n
�

�n,1
n+ 1

⌘
µn,1(k, 0) = µn,1(k + 1, 0)

k + 1

n+ 1
+ µn,1(n� k, 0)

n� k

n(n+ 1)
. (4.19)

This nonlocal recurrence relation can be solved through iteration. Having calculated
µn,1(1, 0) in (4.18) and recalling that µn,1(n, 0) = 0, we can plug k = n � 1 into (4.19)
and obtain ⇣n� 1

n
�

�n,1
n+ 1

⌘
µn,1(n� 1, 0) = µn,1(1, 0)

1

n(n+ 1)
,

or
µn,1(n� 1, 0) =

�n,1
2(n2 � n�n,1 � 1)

.

We can repeat this procedure inductively. Having calculated µn,1(|, 0) and µn,1(n� |, 0)
for | = 1, . . . , k < n, we can use (4.19) to recover µn,1(k+1, 0) and then µn,1(n�k�1, 0).

In the next technical lemma we show the asymptotic behaviour of µn,m as n ! 1,
in the case where h 6= 0.

Lemma 4.8. Suppose k � 0 and h > 0. Then

lim
n!1

µn,m(k, h) = 0.
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Proof. Assume both k, h > 0. From the eigenvalue equation for µn,m (4.15), we have

⇣
�n,m �

kh+ (n� k)(m� h)

nm

⌘
µn,m(k, h) = (1 + o(1))

h

m
µn,m(k� 1, h) +O

⇣ 1
n

⌘
, (4.20)

as n ! 1. From Proposition 4.6, we know that �n,m ! 1 as n ! 1. Moreover, the
coe�cient of µn,m(h, k) on the left-hand side of (4.20) tends to h

m + o(1) as n ! 1.
Hence, since h > 0, we get

µn,m(k, h) = (1 + o(1))µn,m(k � 1, h) +O
⇣ 1
n

⌘
, as n ! 1. (4.21)

Now suppose for sake of contradiction that lim supm!1 µn,m(k0, h0) = ✏ > 0 for some
k0

� 0 and h0 > 0. Then (4.21) implies that limj!1 µnj ,m(k
0 + 1, h0) = ✏ along some

subsequence {nj}j�0. Similarly, (4.21) can be used again to show that limj!1 µnj ,m(k
0+

2, h0) = ✏ along the same subsequence. Reasoning inductively both forwards and back-
wards in k, it follows that limj!1 µnj ,m(k, h

0) = ✏ for all k � 0 and h0 > 0. In par-
ticular, for j large enough we have µnj ,m(k

0 + 2, h0) > ✏
2 for 0  k  d

2
✏ e. HenceP

0kn µnj ,m(k, h
0) �

P
0kd 2

✏ e
µnj ,m(k, h

0) > 1, a contradiction.

As a consequence, when we will look for the limit distribution of µn,m, we will have
to concern only to the values on the states (k, 0), k � 0.
Before going on we recall from [9] that the Sibuya distribution with parameter � 2 (0, 1]
is a probability distribution on Z+ with probability mass function f� and probability
generating function �� given by

f�(k) =
�

k!

k�1Y

j=1

(j � �), k 2 Z+,

��(z) = 1� (1� z)�, |z| < 1.

(4.22)

When � 2 (0, 1), the Sibuya distribution is heavy tailed and, in this case, f� decays
according to a power law with

f�(k) ⇠
1

⇡
sin(�⇡)�(1� �)

1

k�+1
, as k ! 1.

We denote this probability distribution by Sib(�). See [2] for a more detailed list of
references about it. Furthermore, define

�m := 2

 
1�

r
1�

2

m

!
, (4.23)

and note that �n,m ! �m as n ! 1, where �n,m was defined in Proposition 4.6.
In the following proposition we calculate the pointwise limit of µn,m as the size of the
large partition tends to infinity.
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Proposition 4.9. Let f�m be as (4.22), with �m defined in (4.23). Then, for k � 0

µ1,m(k, 0) := lim
n!1

µn,m(k, 0) =
1

2
f�m(k).

Proof. For Lemma 4.8 we know that limn!1 µn,m(0, 1) = 0. Therefore it follows from
Proposition 4.6 and Proposition 4.7 that

µ1,m(1, 0) =
�m
2
. (4.24)

Returning to (4.15) with k � 1 and h = 0 (for h > 0 we know that µ1,m(k, h) = 0), we
can write

�n,m µn,m(k, 0) = µn,m(k, 0)
n� k

n
+ µn,m(k + 1, 0)

k + 1

n+m
+ µn,m(k, 1)

n� k

n(n+m)
.

If we rewrite now �n,m using Proposition 4.6, rearranging the latter equation we can
write

µn,m(k + 1, 0) =
n+m

k + 1

 
µn,m(k, 0)

 
k

n
�

�n,m
n+m

!
� µn,m(k, 1)

n� k

n(n+m)

!
. (4.25)

Letting n ! 1 in (4.25) and recalling that �n,m ! �m and µn,m(k, 1) ! 0, we get

µ1,m(k + 1, 0) = µ1,m(k, 0)
k � �m
k + 1

.

We can now argue inductively starting from (4.24) to conclude that

µ1,m(k, 0) =
�m
2

1

k!

k�1Y

j=1

(j � �m)

=
1

2
f�m(k), k 2 Z+.

Finally we can state the main result of this chapter. We recall once again that all the
results are taken from the very recent paper of Ben-Ari, Panzo, Speegle and VandenBerg,
in [2].

Theorem 4.10. Let C ⇠ Bern(1/2) and D ⇠ Sib(�m) be independent, where �m is

defined in (4.23) and with Bern(p) we denote a Bernoulli random variable which takes

values 0 and 1 with probability 1�p and p, respectively. Then the distribution of opinions

under the QSD for the voter model on Kn,m as n ! 1 converges weakly to the following:
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(i) All vertices of S have opinion C.

(ii) All but D vertices in L have opinion C.

Proof. By the invariance under relabeling of the two opinions, we know that µn,m(k, h) =
µn,m(n� k,m� h). Hence Proposition 4.9 implies that

lim
n!1

µn,m(n� k,m) = lim
n!1

µn,m(k, 0) =
1

2
f�m(k), k 2 Z+. (4.26)

Since we know that f�m is a probability mass function, it follows from the Portmanteau
theorem5 that the QSDs for the voter model on Kn,m converge weakly as n ! 1 to
the probability distribution where: S attains a consensus of all “0” or all “1” each with
probability 1/2, and, conditioned on the opinion of S, the number of vertices in L which
are of a di↵erent opinion has probability mass function f�m .

Remark 12. The same result can be seen using a more direct approach. In fact, using
the relabelling of the two opinions, from (4.26) it follows that dissent towards opinions
1 and 0 are analogous, that is

µ1,m{k disagreements towards opinion 0} =
1

2
f�m(k), and

µ1,m{k disagreements towards opinion 1} =
1

2
f�m(k).

It follows that

µ1,m{9 disagreements towards opinion 0} = µ1,m{9 disagreements towards opinion 1}

=
X

k2N

1

2
f�m(k) =

1

2
.

Therefore the system polarize itself to opinions 0 or 1 with equal probability. So, if we
indicate with C the prevailing opinion of the system, we have that C ⇠ Bern(1/2). By
Lemma 4.8, we know that the distribution of all the opinions in S, under the QSD as
n ! 1, is necessarily the dominant one, i.e. all the vertices in S has opinion C. Again
from (4.26), it follows that

µ1,m{k disagreements in L |C = |} =
1

2
f�m(k), | 2 {0, 1},

that is
µ1,m{k disagreements in L , C = |} = f�m(k), | 2 {0, 1}.

5Adapted to our context, gives equivalents conditions for weak convergence of a sequence of prob-
ability distributions in a probability space. In particular, we can say that our sequence of probability
measures {µn,m}n2N converges weakly to a probability mass function f if limt!1 µn,m(A) = f(A), for
all continuity sets A of f , i.e. for all Borel sets A such that f(@A) = 0.



74 CHAPTER 4. VOTER MODEL ON COMPLETE BIPARTITE GRAPHS

Thus, indicating with D the number of disagreements in L, we have that D has density
mass function equal to Sib(�m).

An immediate consequence is the following

Corollary 4.11. The distribution of the number of disagreements along edges in Kn,m

under the QSD tends to mD as n ! 1, where D ⇠ Sib(�m).



Chapter 5

Voter model on Complete k-partite
Graphs

In this last chapter we will discuss two possible generalizations of the results given by
Ben-Ari et al. in [2] that we treated in Chapter 4. In the first and main generalization we
will consider the voter model evolving in a more general set of complete graphs, namely
the k-partite ones, with k � 2. Our goal is to provide the limit behaviour of the QSD for
the conditional process as the size of one of the k sets goes to infinity, while the other k�1
sizes remain fixed. This will be fully discussed in Section 5.1. Our conclusions shows a
result that is completely similar to the one of the bipartite case. In fact, the distribution
of opinions under the QSD for the voter model on the k-partite graph K converges to
the following setting: all vertices of the fixed k � 1 sets share the same opinion, which
can be 0 or 1 according to a Bernoulli distribution of parameter 1/2, while the totality of
dissenters is located in the set whose size explodes and is distributed according a Sibuya
distribution of parameter � 2 (0, 1), where � depends on the -fixed- sizes of the k � 1
sets. Through Section 5.2 we will deal again with the case k = 2, i.e. going back to
bipartite graphs, but this time we will suppose that both sizes of the sets diverges as the
size of the first one goes to infinity. We will consider two main cases, depending on the
fact that the two sizes grow with the same speed or one prevails over the other. We will
show that in both situations the limit in distribution of the QSD does not converge to
a probability measure, leading to the same result mentioned in Chapter 4 regarding the
complete graphs Kn.

5.1 Complete k-partite graphs

Let Km0,m1,...,mk�1
= (V,E), k � 2, be a complete k-partite graph whose vertex set V

is the disjoint union [
k�1
i=0 Si, where |Si| = mi for all i = 0, . . . , k � 1, and mi  m0 for

all i = 1, . . . , k � 1; while its edge set is the disjoint union E = [
k�1
i=0Ei, where Ei =

{{si, sj} : si 2 Si, sj 2 Sj, 8j 6= i}, for all i = 0, . . . , k � 1. Denote K := Km0,m1,...,mk�1
.

We will study QSDs for the voter model on K with two opinions, “0” and “1”, also
referred to as “no” and “yes”, respectively. The evolution of the model is exactly the
same as in the complete bipartite graph. Similarly, the set of the absorbing states � is

� = {⌘ : ⌘ ⌘ 1 or ⌘ ⌘ 0}.

75
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Instead of following the opinion on each vertex, we will follow the number of “yes”
opinions in each of the groups Si, i = 0, . . . , k � 1.
This leads to a Markov chain on the state space ⌦ := {0, . . . ,m0}⇥ {0, . . . ,m1}⇥ · · ·⇥

{0, . . . ,mk�1}. Each state is an ordered k-uple (h0, . . . , hk�1), with hi representing the
number of “yes” opinions in group Si, for all i = 0, . . . , k� 1. In view of the study of the
asymptotic behaviour of the unique QSD for the process, we will consider the size of the
first set S0 to be dominant with respect to the others, and letm0 ! 1 while fixing allmi,
i 6= 0. In the following, we will write an arrow (h0, . . . , hk�1) ! (h0, . . . , hi±1, . . . , hk�1)
meaning that in this changing of states only the i-th coordinate changes.
Let us introduce some other notations in other to simplify the expressions: we write
N :=

Pk�1
i=0 mi and Ni := N �mi, for all i = 0, . . . , k� 1. In this chain, the only allowed

transitions are the following

1. (h0, . . . , hk�1) ! (h0, . . . , hi+1, . . . , hk�1). This happens if a “no” vertex is sampled
in Si and a “yes” vertex is sampled on one of the others Sj, j 6= i. These events
are independent because the uniform choice of the adjacent vertex is itself. The
probability of such a transition is therefore

mi � hi

N

P
j 6=i hj

Ni
, 8i 2 {0, . . . , k � 1}. (5.1)

2. (h0, . . . , hk�1) ! (h0, . . . , hi�1, . . . , hk�1). Similarly, this happens if a “yes” vertex
is sampled in Si and a “no” vertex is sampled on one of the others Sj, j 6= i. The
probability of such a transition is therefore

hi

N

✓
1�

P
j 6=i hj

Ni

◆
, 8i 2 {0, . . . , k � 1}. (5.2)

3. (h0, . . . , hk�1) ! (h0, . . . , hk�1). This happens if a “yes” vertex is sampled in Si and
a “yes” vertex is sampled on one of the others Sj, j 6= i, for every i 2 {0, . . . , k�1},
or if a “no” vertex is sampled in Si and a “no” vertex is sampled on one of the
others Sj, j 6= i, for every i 2 {0, . . . , k � 1}. The probability of such a transition
is therefore

1

N

k�1X

i=0


hi

Ni

X

j 6=i

hj +
(mi � hi)(Ni �

P
j 6=i hj)

Ni

�
. (5.3)

Clearly, since there are only two opinions, the unique absorbing states are the all zeros k-
uple (0, . . . , 0) and (m0, . . . ,mk�1). Let now fix any state (h0, . . . , hk�1) of our new chain.
Moreover, let us denote with µ := µm0,...,mk�1

the unique QSD for the chain supported in
⌦\�, and with � := �m0,...,mk�1

the corresponding eigenvalue. Under some irreducibility
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assumptions, as done in the bipartite case, the following eigenvalue equation for µ is
fulfilled

� µ(h0, . . . , hk�1) = µ(h0, . . . , hk�1)
1

N

k�1X

i=0


hi

Ni

X

j 6=i

hj +
(mi � hi)(Ni �

P
j 6=i hj)

Ni

�

+
k�1X

i=0

µ(h0, . . . , hi + 1, . . . , hk�1)
(hi + 1)

N

✓
1�

P
j 6=i hj

Ni

◆

+
k�1X

i=0

µ(h0, . . . , hi � 1, . . . , hk�1)
(mi � hi + 1)

N

P
j 6=i hj

Ni
.

(5.4)

Note that we adapted the transitions (5.1),(5.2) and (5.3) to the corresponding states of
the eigenvalue equation.
From now on we will enumerate all our attempts of generalization following the steps of
Chapter 4 and [2]. In particular, we will consider every intermediate result needed to
prove Theorem 4.10 and we aim, whenever possible, to extend it to our context.

Generalization of Proposition 4.6

Just like in the bipartite graphs, it is enough to consider only two coalescing random
walks on K. First of all we need to count in how many states the CRWs can be found,
and, in order to write the transition matrix, we need to sort each of them. Let us start
by the counting problem. It can be solved by enumeration:

1. There are k states corresponding to the events that both the coalescing random
walks are in distinct vertices of the same set Si, for all i 2 {0, . . . , k � 1}.

2. Since we want to let m0 ! 1, we start counting by S0. There are surely k � 1
states which corresponds to the event that one CRW is on S0 and the other one
in Si, for every i 2 {1, . . . , k � 1}. Fix now a CRW on S1. Since the state that
one random walk is on S0 and the other one on S1 has been already counted
before, there are k � 2 states corresponding to have one CRW on S1 and the
other in Si, i 2 {2, . . . , k � 1}. Thus, reasoning inductively and taking a general
j 2 {0, . . . , k � 1}, we have k � 1 � j states corresponding to have a CRW on Sj

and the other one on Si, for every j < i  k � 1. It follows that for all these cases
there are

Pk�1
j=0 k � 1� j = k2�k

2 states.

3. There is 1 state corresponding to have the two coalescing random walks on the
same vertex in K.
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Of course, similarly to the bipartite case, we will exclude the latter state because we are
conditioning the system to never reach consensus states (the analogous for CRWs are
clearly the coalescing states). We can therefore conclude that there are k2+k

2 possible
states for the two CRWs. It follows that the corresponding transition matrix will have a
size of k2+k

2 ⇥
k2+k
2 .

We now need to sort all these states. To do so, since the main set of our interest is S0, we
chose to define all the possible states as ordered couples (i, j), i, j 2 {0, . . . , k�1}, i < j,
that represents the event in which one of the two CRWs is in Si and the other one in Sj.
The restriction i < j refers to the fact that we consider the state (i, j) equivalent to the
state (j, i), since we are not interested in which random walk is in Si or Sj. We decided
to sort the states in the following way: the first k are given by (i, i), i = 0, . . . , k � 1;
then there are k� 1 states given by (0, j), j 2 {1, . . . , k� 1}; then there are k� 2 states
given by (1, j), j 2 {2, . . . , k � 1}; proceeding this way we end up with the last state
(k � 2, k � 1). By way of example, all the possible (sorted) states with k = 5 are

(0, 0), (1, 1), (2, 2), (3, 3), (4, 4), (0, 1), (0, 2), (0, 3), (0, 4), (1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4).

We are left to find all the possible probabilities to move from a state to another, and to
write the corresponding transition matrix P . Thanks to the way we ordered the states,
it is useful to visualize P as a block matrix of the form

P =


A B
C D

�
,

where A is a k ⇥ k matrix whose entries corresponds to the probabilities to pass from a
state (i, i) to (j, j), i, j 2 {0, . . . , k�1}; B is a k⇥ k2�k

2 matrix whose entries corresponds
to the probabilities to pass from a state (i, i) to (j, l), i, j, l 2 {0, . . . , k�1}, j < l; C is a
k2�k
2 ⇥ k matrix whose entries corresponds to the probabilities to pass from a state (j, l)

to (i, i), i, j, l 2 {0, . . . , k� 1}, j < l; and finally D is a k2�k
2 ⇥

k2�k
2 matrix whose entries

corresponds to the probabilities to pass from a state (j, l) to (i, p), i, j, l, p 2 {0, . . . , k�1},
j < l, i < p. Recall that mi is the size of the set Si, N =

Pk�1
i=0 mi, and that Ni = N�mi

for all i 2 {0, . . . , k � 1}. Thus, the passing probabilities are

• Let us start form block A. Since at most one of the two CRWs moves in a time
step, the only nonzero probabilities are the ones for the system to stay put, that is

P((i, i) ! (j, j)) = �i,j
⇣
1�

2

N

⌘
, 8i, j 2 {0, . . . , k � 1}, (5.5)

where �i,j = 1 if i = j and 0 otherwise. It follows that A is a scalar matrix.

• Block B. Here we have the transitions (i, i) ! (j, l). For the same reason as the
block A case, the only nonzero probabilities are the ones in which either i = j or
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i = l. In this case, suppose i = j, one of the two random walks in Si has to move
to Sl, this happens if the vertex corresponding to the CRW in Si is sampled and if
the selected neighbour is a vertex in Sl. Thus we get

P((i, i) ! (j, l)) = �i,j
2ml

NNi
+ �i,l

2mj

NNi
, 8i, j, l 2 {0, . . . , k � 1}, j < l. (5.6)

• In block C we are in the opposite situation compared to block B. Here we have the
transitions (j, l) ! (i, i). Even here the only nonzero probabilities are the ones in
which either i = j or i = l. The only precaution we have to take is that we want
to rule out the case where the two CRWs meet at the same vertex (otherwise they
would coalesce into a single random walk). For these reasons the corresponding
probabilities are

P((j, l) ! (i, i)) = �i,j
mi � 1

NNl
+ �i,l

mi � 1

NNj
, 8i, j, l 2 {0, . . . , k � 1}, j < l. (5.7)

• Finally, in block D we deal with the transitions (j, l) ! (i, p). We have two cases:
if (j, l) = (i, p), then the probability of such transition equals to the probability for
the system to stay put, that is

P((j, l) ! (i, p)) = 1�
2

N
, (5.8)

for all i, j, l, p 2 {0, . . . , k�1}, j < l, i < p such that (j, l) = (i, p). Consider now the
case (j, l) 6= (i, p). By the previous observations, the corresponding probabilities
are

P((j, l) ! (i, p)) = �j,i
mp

NNl
+ �j,p

mi

NNl
+ �l,i

mp

NNj
+ �l,p

mi

NNj
, (5.9)

for all i, j, l, p 2 {0, . . . , k � 1}, j < l, i < p such that (j, l) 6= (i, p).

Since we want to study �, the spectral radius of P , as m0 ! 1, we can simplify the
expressions above leaving only the probabilities that are O

�
1
m0

�
as m0 ! 1 and mi fixed

for every i 6= 0. Therefore the remaining nonzero probabilities are:

• For (5.5) in block A we are left with:

P((i, i) ! (j, j)) = �i,j
⇣
1�

2

N

⌘
⇠

m0!1
�i,j
⇣
1�

2

m0

⌘
, (5.10)

for all i, j 2 {0, . . . , k � 1}.

• For (5.6) in block B we are left with:
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– (0, 0) ! (0, j), j 6= 0,

P((0, 0) ! (0, j)) =
2mj

NN0
⇠

m0!1

2mj

m0N0
, (5.11)

for all j 6= 0.

– (i, i) ! (0, j), i, j 6= 0,

P((i, i) ! (0, j)) = �i,j
2m0

NNj
⇠

m0!1
�i,j

2

m0
, (5.12)

for all i, j 6= 0.

• For (5.7) in block C we are in the symmetric case considering block B, therefore
we have:

– (0, j) ! (0, 0), j 6= 0,

P((0, j) ! (0, 0)) =
m0 � 1

NNj
⇠

m0!1

1

m0
, (5.13)

for all j 6= 0.

– (0, j) ! (i, i), i, j 6= 0,

P((0, j) ! (i, i)) = �j,i
mi � 1

NN0
⇠

m0!1
�i,j

mi � 1

m0N0
, (5.14)

for all i, j 6= 0.

• Finally, for (5.8) in block D we are in the same case of (5.10), and for (5.9) in the
same block we get:

– (0, i) ! (j, l), i, j 6= 0, j < l,

P((0, i) ! (j, l)) = �i,j
ml

NN0
+ �i,l

mj

NN0
⇠

m0!1

1

m0N0

�
�i,j ml + �i,l mj

�
, (5.15)

for all i, j 6= 0, j < l.

– (j, l) ! (0, i), i, j 6= 0, j < l,

P((l, j) ! (0, i)) = �j,i
m0

NNl
+ �l,i

m0

NNj
⇠

m0!1

1

m0

�
�j,i + �l,i

�
, (5.16)

for all i, j 6= 0, j < l.

We were not able to explicitly find the spectral radius � of P , but the relations from
(5.10) to (5.16) will be useful to bound an important parameter in the next sections.
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Generalization of Lemma 4.8

Assume that hi > 0 for every i 2 {0, . . . , k�1}. We want to study limm0!1 µ(h0, . . . , hk�1),
in particular we claim that the limit goes to 0. Recall that µ = µm0,...,mk�1

significantly
depends on the size of the sets Si. Let us consider (5.4), we want to rewrite it only
considering terms that are not o(1) as m0 ! 1. If we look at (5.3), we note that it can
be rewritten as

k�1X

i=0

1

N

hi

Ni| {z }
(?)

X

j 6=i

hj +
k�1X

i=0

(mi � hi)

N| {z }
(??)

⇣
1�

P
j 6=i hj

Ni

⌘
.

The terms in (?) are all o(1) as m0 ! 1, since N =
Pk�1

i=0 mi, as well as for the terms
in (??) with index i 6= 0, while if i = 0 we are left with m0�h0

N �!
m0!1

1. It follows that,

as m0 ! 1, (5.3) equals to

1�

P
j 6=0 hj

N0
+ o(1).

Reasoning analogously, we get that all terms in (5.1) goes to 0 as m0 ! 1, while in
(5.2) the only coe�cient that survives is the one with i = 0. This leads to the following
rewriting of (5.4)

�µ(h0, . . . , hk�1) =
⇣
1�

P
j 6=0 hj

N0
+ o(1)

⌘
µ(h0, . . . , hk�1)

+

P
j 6=0 hj

N0
µ(h0 � 1, h1, . . . , hk�1) +O

⇣ 1

m0

⌘
, as m0 ! 1.

Since, from the previous result1, we know that � ! 1 as m0 ! 1, we get

µ(h0, . . . , hk�1) = (1 + o(1))µ(h0 � 1, h1, . . . , hk�1) +O
⇣ 1

m0

⌘
, (5.17)

which is the same result obtained in equation (4.21), in Chapter 4. Since the last part
of the proof of Lemma 4.8 uses only (5.17), we can state that this result is also valid
in the k-partite case. Therefore, taking hi � 0 for all i 2 {0, . . . , k � 1} and such thatP

j 6=0 hj 6= 0, i.e. such that at least one hj > 0, j 6= 0, we have

lim
m0!1

µ(h0, . . . , hk�1) = 0. (5.18)

1We did not fine explicitly the value of �, but we can state that � ! 1 as m0 ! 1 because the
matrix P of the previous section tends to the identity matrix as m0 ! 1, therefore its spectral radius
must tend to 1.
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Generalization of Proposition 4.7

Let (H0, . . . , Hk�1) be a random vector representing the number of “yes” in Si for all
i = 1, . . . , k � 1, respectively, whose distribution is the unique QSD for the process
µ = µm0,...,mk�1

. We recall that, since the all zeros k-uple (0, . . . , 0) and (m0, . . . ,mk�1)
belong to � (the set of absorbing states), µ(0, . . . , 0) = µ(m0, . . . ,mk�1) = 0 because the
support of µ is ⌦\�. Therefore we can sum on both sides of (5.4) over �1  hi  mi+1,
i = 0, . . . , k� 1, while eliminating from the sum the pairs (h0, . . . , hk�1) = (0, . . . , 0) and
(h0, . . . , hk�1) = (m0, . . . ,mk�1). To this aim, let us first consider separately the general
terms of the sums over i = 0, . . . , k�1 on the right-hand side of (5.4). After a re-indexing,
setting again N :=

Pk�1
i=0 mi and Ni := N �mi, from the hi + 1 part we obtain

1

N

h 1

Ni
E
h
Hi(Ni �

X

j 6=i

Hj)
i
� µ(ei)

i
, 8i 2 {0, . . . , k � 1},

where ei represent the null k-uple with value 1 in the i-th position. Similarly, from the
hi � 1 part we have

1

N

h 1

Ni
E
h
(mi �Hi)

X

j 6=i

Hj

i
� µ(m0, . . . ,mi � 1, . . . ,mk�1)

i
, 8i 2 {0, . . . , k � 1};

while

1

N

1

Ni

h
E
h
Hi

X

j 6=i

Hj

i
+ E

h
(mi �Hi)(Ni �

X

j 6=i

Hj)
ii
, 8i 2 {0, . . . , k � 1},

corresponds to the general term of the sum of the probability for the system to stay put.
Thus, putting all together in (5.4), it follows that

� =
1

N

k�1X

i=0

⇢
1

Ni
E
h
Hi

X

j 6=i

Hj

i
+

1

Ni
E
h
(mi �Hi)(Ni �

X

j 6=i

Hj)
i

+
h 1

Ni
E
h
Hi(Ni �

X

j 6=i

Hj)
i
� µ(ei)

i

+
h 1

Ni
E
h
(mi �Hi)

X

j 6=i

Hj

i
� µ(m0, . . . ,mi � 1, . . . ,mk�1)

i�
.

After some computations, we notice that all the means cancel each other out, leading us
to the following expression

� =
1

N

k�1X

i=0

h
mi � µ(ei)� µ(m0, . . . ,mi � 1, . . . ,mk�1)

i
.
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Finally, the invariance under relabeling of the two opinions allows us to write µ(m0, . . . ,mi�

1, . . . ,mk�1) as µ(ei). Thus the final result is

� = 1�
2

N

k�1X

i=0

µ(ei). (5.19)

Generalization of Proposition 4.9

From (5.19) it follows that limmo!1 � = 1. Moreover, from Section 5.1, in the gen-
eralization of Proposition 4.6, we can say that there exists � := �(m1, . . . ,mk�1) such
that

� = 1�
�

N
+ o
⇣ 1

m0

⌘
, as m0 ! 1, (5.20)

where we recall that N =
Pk�1

i=0 mi. Set µ1(·) := limm0!1 µm0,...,mk�1
(·) = limm0!1 µ(·),

and consider the states (h0, . . . , hk�1) such that h0 � 1, h1 = · · · = hk�1 = 0. By (5.18)
the latter are the only states in which µ1 may not vanish. Therefore we can write the
eigenvalue equation (5.4) with the only states (h0, 0, . . . , 0), h0 � 1, obtaining

�µ(h0, 0, . . . , 0) = µ(h0, 0, . . . , 0)
1

N


m0 � h0 +

X

i 6=0

mi(Ni � h0)

Ni

�

+ µ(h0 + 1, 0, . . . , 0)
h0 + 1

N
+

1

N

✓
1�

h0

N

◆X

i 6=0

µ(h0, ei),

where ei is the null k� 1-uple with 1 in position i, and Ni = N �mi. After rearranging
the terms and substituting � = 1� �

N we get

µ(h0 + 1, 0, . . . , 0) = µ(h0, 0, . . . , 0)
N

h0 + 1


1�

�

N
�

1

N

✓
m0 � h0 +N0 �

X

i 6=0

mih0

Ni

◆�

�
1

h0 + 1

✓
1�

h0

N

◆X

i 6=0

µ(h0, ei).

Observe that we can neglect the last term on the right-hand side since, as m0 ! 1, we
have that µ1(h0, ei) = 0. Similarly,

P
i 6=0

mih0

Ni
! 0 as m0 ! 1. Thus, taking the limit

of m0 ! 1, we are left with

µ1(h0 + 1, 0, . . . , 0) = µ1(h0, 0, . . . , 0)
h0 � �

h0 + 1
, (5.21)

for every h0 � 1. Note that if we write � as 1� �
N , and in (5.19) let m0 ! 1, we get

µ1(1, 0, . . . , 0) =
�

2
. (5.22)
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It follows that we can solve the recursive equation (5.21) with the initial condition (5.22).
The final result is

µ1(h0, 0, . . . , 0) =
�

2

1

h0!

h0�1Y

j=1

(j � �), 8h0 � 1. (5.23)

It is immediate that the latter equivalence implies

µ1(h0, 0, . . . , 0) =
1

2
f�(h0), 8h0 � 1, (5.24)

where f� is the probability mass function of the Sibuya distribution of parameter � � 0.
The last claim that we need to prove is that �  1. Then we could conclude that, as
m0 ! 1, the distribution of dissenters under the QSD µ tends to the Sibuya distribution
of parameter � 2 (0, 1).
To this aim we recall that the first order limit behaviour of the transition matrix P , as
m0 ! 1, is given by the relations (5.10)-(5.16). Since P is a non-negative matrix, it
holds that its spectral radius � is bounded as follows

min
i

X

j

pi,j  �  max
i

X

j

pi,j,

where (pi,j), i, j 2 {1, . . . , k
k+k
2 }, are the elements of the matrix P . The upper bound is

clearly 1, due to the fact that P is sub-stochastic, while we are interested in the lower
bound. Using (5.10)-(5.16), we find that the sum of every row of P gives either 1 or
1� 1

m0N0
. Therefore we have that

� � 1�
1

m0N0
.

As stated at the beginning of this section, we can consider (5.20) as the approximation
of � as m0 ! 1. With such rewriting, the latter inequality becomes

� <
N

m0N0
⇠

m0!1

1

N0
< 1.

Since we are interested in the asymptotic behaviour of �, we can conclude that under
our hypothesis � 2 (0, 1).
Eventually, from (5.24), it follows a result similar to Theorem 4.10 for complete bipartite
graphs.

Theorem 5.1. Let C ⇠ Bern(1/2) and D ⇠ Sib(�) be independent, where � 2 (0, 1)
depends on m1, . . . ,mk�1 and with Bern(p) we denote a Bernoulli random variable which

takes values 0 and 1 with probability 1 � p and p, respectively. Then the distribution of

opinions under the QSD for the voter model on the complete k-partite graph K, with

k � 2, as m0 ! 1 converges weakly to the following:
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(i) All vertices of every Si, for all i 6= 0, have opinion C.

(ii) All but D vertices in S0 have opinion C.

In particular, in the k-partite case there is a dominant opinion, which can be 0 or 1
chosen with Bernoulli distribution of parameter 1/2, that brings to consensus k-1 sets
over k, and all the dissenters are concentrated in the biggest set (the one whose size
goes to infinity) with density given by the Sibuya distribution of parameter � 2 (0, 1).
We can use the invariance under relabeling of the two opinions to rewrite this result as
follows

lim
m0!1

µm0,...,mk�1
(m0 � h0,m1, . . . ,mk�1) = lim

m0!1
µm0,...,mk�1

(h0, 0, . . . , 0) =
1

2
f�(h0),

for all h0 � 1.

5.2 Bipartite case with both n,m ! 1

In the following section we introduce our second attempt of generalization regarding
the work of Ben-Ari et al. in [2]. This time, instead of taking k sets and studying the
asymptotic behaviour of the QSD as the size of one set goes to infinity, we return to
bipartite graphs Kn,m, and we consider the case in which both the sizes n and m tend
to infinity. To this aim, let us rewrite m = g(n), where g : N ! N is a regular function
such that

lim
n!+1

g(n) = +1.

Clearly, all the results that do not involve the limit of n ! 1 in Chapter 4 still hold
in our settings. In particular, the eigenvalue equation for the unique QSD µ := µn,g(n),
with eigenvalue � := �n,g(n), for the process is still

�µ(k, h) = µ(k, h)
kh+ (n� k)(g(n)� h)

ng(n)

+ µ(k � 1, h)
(n� k + 1)h

(n+ g(n))g(n)
+ µ(k + 1, h)

(k + 1)(g(n)� h)

(n+ g(n))g(n)

+ µ(k, h� 1)
(g(n)� h+ 1)k

(n+ g(n))n
+ µ(k, h+ 1)

(h+ 1)(n� k)

(n+ g(n))n
.

(5.25)

Moreover, if we consider the transition matrix of the (two) coalescing random walk
processes used to derive �, we can notice that each of its entries do not depend on the
growth of n and g(n) as n ! 1. This implies that the corresponding spectral radius, i.e.
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�, will be the same whether g(n) increases, for example, exponentially or logarithmically
with n. In fact its value will be

� = 1�
2

n+ g(n)

 
1�

s

1�
1

2n
�

1

2g(n)

!
= 1�

�

n+ g(n)
, (5.26)

where � := �n,g(n) = 2

✓
1 �

q
1� 1

2n �
1

2g(n)

◆
. It follows that � ! 0 and � ! 1 as

n ! 1, for any function g(·).
Also the result that links the eigenvalue � to the values of QSD µ in (0, 1) and (1, 0) still
holds

� = 1�
2

n+ g(n)
(µ(1, 0) + µ(0, 1)).

Let us now define µ1(k, h) := limn!1 µ(k, h) = limn!1 µn,g(n)(k, h) as the limit in
distribution of the QSD, for any state (k, h) 2 {0, . . . , n} ⇥ {0, . . . , g(n)}. If we rewrite
in the latter relation � as in (5.26), we get

µ(1, 0) + µ(0, 1) =
�

2
�!
n!1

0,

that is
µ1(1, 0) = µ1(0, 1) = 0. (5.27)

This equation shows a first relevant di↵erence between the case in which only n ! 1

and the one in which both n,m ! 1. Another significant di↵erence regards the limit
distribution itself. In their article, Ben-Ari et al. showed that for any k � 0 and h > 0,
limn!1 µn,m(k, h) = 0; we now see that in our case such statement can not hold in
general. If we take the eigenvalue equation (5.25) and rewrite � as in (5.26) we obtain
✓
1�

�

n+ g(n)

◆
µ(k, h) = µ(k, h)

kh+ (n� k)(g(n)� h)

ng(n)

+ µ(k � 1, h)
(n� k + 1)h

(n+ g(n))g(n)
+ µ(k + 1, h)

(k + 1)(g(n)� h)

(n+ g(n))g(n)

+ µ(k, h� 1)
(g(n)� h+ 1)k

(n+ g(n))n
+ µ(k, h+ 1)

(h+ 1)(n� k)

(n+ g(n))n
,

for all k, h � 0. We can get rid of every term that is o(1) as n ! 1. Thus, after a
rearrangement we are left with

�� µ(k, h) = �µ(k, h)


h

✓
1 +

n

g(n)

◆
+ k

✓
1 +

g(n)

n

◆�
+ µ(k � 1, h)h

n

g(n)

+ µ(k + 1, h) (k + 1) + µ(k, h� 1) k
g(n)

n
+ µ(k, h+ 1) (h+ 1).

(5.28)
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Therefore there are two relevant cases to treat, depending on the fact that n
g(n) tends to

1 (equivalently 0) or a positive constant as n ! 1. Let us consider first the latter case.
Suppose that n

g(n) ! c > 0 as n ! 1. Recalling that � ! 0 as n ! 1, it follows that

if we let n ! 1, (5.28) becomes

µ1(k, h)

✓
hc+ h+ k +

k

c

◆
= µ1(k � 1, h)hc+ µ1(k + 1, h) (k + 1)

+ µ1(k, h� 1)
k

c
+ µ1(k, h+ 1) (h+ 1),

(5.29)

for all k, h � 0. Let us take k = 0 in the previous equation, with h � 0. We get the
following recursive formula in h � 0

µ1(0, h)
�
hc+ h

�
= µ1(1, h) + µ1(0, h+ 1) (h+ 1).

Using the initial conditions (5.27) and the fact that µ1 is not supported on the states
(0, 0) and (0,�1), it follows that

µ1(1, h) = µ1(0, h) = 0 8h � 0. (5.30)

Reasoning similarly, if we consider (5.29) with h = 0 and k � 0, we obtain another recur-
sive relation that can be solved still using (5.27) and the fact that µ1 is not supported
on (0, 0) and (�1, 0). The result is

µ1(k, 1) = µ1(k, 0) = 0 8k � 0. (5.31)

At this point, let us go back to (5.29) and take k = 1, h � 0 (or h = 1 and k � 0). By
(5.30) (respectively (5.31)), it follows that µ1(2, h) = 0 for all h � 0 (µ1(k, 2) = 0 for
all k � 0). Reasoning inductively we conclude that

µ1(k, h) = 0 8k, h � 0. (5.32)

Thus, we conclude that in the case in which n
g(n) ! c > 0 as n ! 1, the limit behaviour

of the QSD for the process does not converge to a probability distribution, in the same
way as we have seen in the case of the complete graph Kn, in Example 1.
Suppose now that n

g(n) ! 1 as n ! 1, so that g(n)
n ! 0 as n ! 1. We can rewrite

(5.28) as follows

h
n

g(n)

⇥
µ(k � 1, h)� µ(k, h)

⇤
= µ(k, h)


k + h+ k

g(n)

n
� �

�
� µ(k + 1, h) (k + 1)

� µ(k, h� 1) k
g(n)

n
� µ(k, h+ 1) (h+ 1),

(5.33)
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for all h, k � 0. If we consider h = 0 the left-hand side vanishes, thus taking the limit
n ! 1 we obtain

µ1(k, 0) k = µ1(k + 1, 0) (k + 1) + µ1(k, 1), 8k � 0.

Similarly to the previous case, using the initial conditions (5.27), we have

µ1(k, 0) = µ1(k, 1) = 0, 8k � 0.

Let us now consider h 6= 0 and divide, from both sides, the equation (5.33) by n
g(n) .

Leaving only the terms that are not o(1) as n ! 1, we get

h[µ(k � 1, h)� µ(k, h)] = o(1), as n ! 1. (5.34)

Thus, necessarily
µ1(k, h) = µ1(k � 1, h), 8k, h � 0.

Using the fact that µ1 is not supported on the states (�1, h), for every h � 0, it follows
that

µ1(k, h) = 0, (5.35)

for all k, h � 0. Leading to the same result of the case n
g(n) ! c > 0 as n ! 1, in (5.32).

We finally conclude that in both cases n
g(n) ! c > 0 and n

g(n) ! 1, as n ! 1, there
exists no QSD for the asymptotic system, exactly as it happens in the complete graph
Kn; the continuous-time analogue of such case was treated in [10].
A possible interpretation to the fact that the limit distribution vanishes on all states is
that the mass of the system, through the limit, will be concentrated out of the support
of µ1. This implies that there must be probability mass only on the states (0, 0) and
(1,1), as n ! 1.
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