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Introduction

Black holes have always been an ideal framework to study gravity: from classical General
Relativity (GR) to the more recent quantum theories of gravity, providing a unique probe
of their non-perturbative aspects. The discoveries that BHs carry an entropy and Hawk-
ing radiate have opened puzzling questions, that a consistent and reliable theory of gravity
should be able to solve.
When one tries to associate to a black hole an entropy, found to be proportional to its hori-
zon area, a first problem immediately arises. In fact, according to Statistical Mechanics, we
would expect that a macroscopic entropy is associated to a large degeneracy of microscopic
states and we would like to find N ∼ eSBH microstates for a black hole. Such an interpre-
tation, however, is inconsistent with the no-hair theorem, which states that a black hole is
unique once one specifies its mass, charges and angular momentum.
Another puzzle due to uniqueness theorems and thermodynamic properties, in particular to
the thermal character of the Hawking radiation, is the information paradox, which emerges
in the process of formation and evaporation of a black hole. When one considers the forma-
tion, information is lost in the sense that, when the BH has formed, it is described only by
very few parameters, loosing completely track of the matter producing it. Also during the
evaporation process, we assist to a loss of information caused by the fact that the emitted
radiation depends only on BH temperature and consequently, could not carry other data.
So in both cases, it turns out that a a pure state evolves into a mixed one, determining a
violation of unitarity. Many efforts have been done trying to solve the paradox to regain
a unitary theory. In an attempt to give a solution to the problem, someone suggests that
Planck size corrections to Hawking computations could change the situation. However, in
[1], S. Mathur shows that not even these subtle quantum corrections can solve the paradox
and thus proposes, as an alternative, a completely new interpretation of black holes beyond
General Relativity.

In String Theory, a black hole can be constructed as a bound state of some extended objects,
called D-branes. Different types of D-branes exist according to their dimension and for each
of these types we can introduce a charge for the black hole. So, in the following, we will
refer to a n-charge BH, as a black hole containing n different types of brane. The D-
brane description turns out to be very useful in counting microstates degeneracy, allowing
to study the problem at at weak coupling (i.e. without gravity). A problem remains: how
these microstates look like at strong coupling? An interesting proposal for their gravitational
nature was made by Mathur in [2] and is know as the Fuzzball proposal. According to this
program, there should be an exponential number of horizon-free solutions associated to
each black hole, representing the different microstates and at least a subset of them can
be well described by solutions in Supergravity, the low energy limit of String Theory. The
microstates one can obtain differ from the naive geometry, obtained as a simple Supergravity
solution, at the horizon scale. The naive solution is recovered as a description of the ensemble
of the system, representing a sort of statistical average of all the quantum microstates. One
would expect that the number of such microstates should reproduce the macroscopic entropy.

The Fuzzball proposal represents a very appealing picture. It succeeds in constructing
examples of microstates for specific types of extremal black holes and appears to solve some
of the puzzles associated with black hole physics and in particular the information paradox.
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However, it is a great effort to find and characterise all the microstates solutions. And even
if it has been done for the D1-D5 system, for the next simplest case, i.e. 3-charge black hole
only few examples have been derived so far and the current results are still incomplete.
It is important to construct microstates for the D1-D5-P system, because it is the simplest
BPS black hole one can construct in five dimensions. In fact, as we will see in detail, in
classical SUGRA the 1- and 2-charge are "degenerate" black holes, in the sense that they
have vanishing horizon area. Ad well, the 2-charge solutions remain important to learn
features that are valid also in the black hole case.
In this work we will then concentrate on a special set of microstates carrying the same
charges of the D1-D5-P supersymmetric BHs, dubbed Superstrata ([3, 4, 5]).

An alternative and complementary way to look at microstates is provided by AdS/CFT
correspondence. According to this conjecture, a gravity theory in (d+ 1)-dimensional Anti
de Sitter space-time is intimately related to the d-dimensional Conformal Field Theory living
in its boundary. This duality can be applied to our case, because in a special limit, known
as decoupling or near horizon limit, the 2 and 3-charge geometries become asympototically
AdS3 × S3.
A holographic dictionary can be established between CFT states and geometries and it is
useful both for having a better understanding of the known microstate solutions and as a
guide to construct new ones. We will apply this dictionary in the study of 1

4 and 1
8 -BPS

states.

An important quantity, admitting both a CFT and a gravity interpretation is Entanglement
Entropy (EE). Its importance relies on the fact that it provides an interesting way to probe
the space-time and, conjecturally, reconstruct it. For this reason we concentrate part of this
work to the derivation and computation of EE for the special class of Superstrata solutions
mentioned above.
The idea of EE starts in quantum mechanics, where given a system we can divide it into
two subsystem A and B and compute the Von Neumann entropy for the density matrix
restricted to the subsystem A. The reduced density matrix ρA is obtained by tracing over
the degrees of freedom of the system B from the total density matrix ρ.
The definition and the computation of EE can be extended in QFT. We will skip the details
of these computations, to focus our attention on the definition of EE on the gravity side. In
fact, from AdS/CFT duality, we would expect that EE can be defined also in the gravity
theory. An expression for this holographic EE has appeared for the first time in a work by
Ryu and Takayanagi ([6]), forD dimensional AdS space-time. Following the Ryu-Takayanagi
proposal, we consider a dual CFT in (D−1) dimensions, defined on a manifold R×N , and we
divideN into two subregions A and B. According to the prescription by Ryu and Takayanagi,
the EE of the region A is:

SA =
Area(γA)

4GDN

where γA is a (D − 2) minimal surface in AdSD whose boundary is given by ∂A and GDN is
the Newton constant in D dimensions.
When we try to apply the RT formula to our 6D microstates geometries, however, we need to
face the problem that these metrics are only asymptotically AdS3×S3 and, in general, there
is no way to decouple the AdS3 from the compact part in the spacetime interior. As suggested
in [7, 8] it is necessary to generalize the RT prescription to adapt it to the 6 dimensional
case. In addressing this problem, the Superstrata solutions we consider represent a very
special case. For them, indeed, it is possible to define a reduced Einstein 3D metric g̃Eµν
asymptotically AdS, which does not depend on the coordinates on S3. One of the major
aims of this Thesis has been the attempt to give a general proof that when there exists such
an S3-independent 3D Einstein metric, the 6D minimization problem reduces to the 3D one.
This result allows us to restrict to the three dimensional part of the metric to compute the
EE of a generic interval, thus it is sufficient to compute geodesics of g̃E and apply the RT
prescription. In the final part of this work, we compute the EE a particular
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3-charge microstate in the limit in which is a small correction around the classical black hole.

This thesis is organized as follows.
In Ch. 1 we give a brief introduction of the laws of BH thermodynamic in GR, then we
review how to construct black holes in SUGRA, giving the explicit derivations for the 1-, 2-
and 3-charge BH.
In Ch. 2 we introduce the Fuzzball proposal and we show how it successfully accounts for
the microscopic counting of states. The second part of the chapter, instead, is devoted to
AdS/CFT duality, with special attention to the D1-D5 CFT dual to our gravity solutions.
The particular class of 3-charge microstates, we work with, is presented in Ch. 3. We sketch
the details of their derivation and review briefly how these states can be interpreted in CFT.
Ch. 4 and Ch. 5 are about Entanglement Entropy. In Ch. 4 we introduce this concept in
a general way on both the CFT and the gravity side. Then we specify to the derivation
of how the 6D problem of determining EE reduces to the simpler lower dimensional one.
Ch. 5 contains all the explicit computations of the Entanglement Entropy for the Supestrata
solutions introduced in Ch.3.

7
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Chapter 1

Black Holes in Supergravity

Black holes represent an ideal system to study a quantum theory of gravity.
Classical General Relativity (GR) predicts the existence of BHs as solutions of the Einstein-
Hilbert equations. Studying them in detail, then one discovers that they carry entropy
and admit a sort of thermodynamic description. However a BH Thermodynamics poses
some puzzling problems: first of all how can the macroscopic entropy have a statistical
interpretation as the logarithm of the number of microstates, if classical BHs have to satisfy
no-hair theorem. This theorem states, indeed, that stationary, charged, asymptotically flat
black holes are fully characterized by their mass, charges and angular momentum. So it is
incompatible with the existence of different microstates for the same black hole.
Another challenge of a quantum theory of gravity is proving a solution to the Hawking
information paradox. The information loss, related to the Hawking radiation, during the
process of formation and evaporation of a black hole, implying a violation of unitarity, creates
a problem not resolved yet in a satisfactory way by classical GR.

Progress in resolving this issues has been made, at least, for a special class of supersymmetric
black holes constructed in String Theory and in its low energy limit, Supergravity (SUGRA).
A promising idea of how one can count and possibly construct microstates of these black
holes is presented in the Fuzzball Proposal [2] by S. Mathur. According to these proposal
microstates should be described as horizon-free solutions and at least a class of them admit
a Supergravity description.

In this chapter, we start with a brief introduction of BH Thermodynamics and related open
questions, such as microscopic interpretation of their entropy and the Hawking information
paradox.
Since the study of black holes in Supergravity is an essential point to understand the mi-
crostates construction within the Fuzzball program, we then give an insight in the main
ideas of SUGRA. In the end we review the explicit construction of some types of these black
hole as bound state of some extended objects, known as p-branes.

1.1 BH thermodynamics and the information paradox

The idea that black holes could manifest a thermodynamic behaviour was motivated in
part by the discovery that the horizon has a non decreasing area A and thus could be
interpreted as an entropy. Between the late 1960’s and the early 1970’s, works by Hawking
and Bekenstein further extend this thermodynamic analogy. In particular, it was discovered
that a temperature can be associated to a BH and that it is related to its surface gravity κ̂
via:

TH =
κ̂

2π
(1.1)

9



10 1. Black Holes in Supergravity

This relation fixes the exact expression for the Bekenstein-Hawking entropy to be [9]:

SBH =
A

4GN
(1.2)

where GN is the Newton constant and A is the are of the horizon1.

It is possible to formulate four laws of BH mechanics by analogy with the ones of Thermo-
dynamics [10]:

0th law: surface gravity κ̂ for a stationary BH is constant over the horizon;

1st law: for a black hole of mass M , angular momentum J and charge Q

dM = κ̂
dA

8π
+ ωHdJ + ΦedQ (1.3)

where ωH is the angular velocity at the horizon and Φe is the electrostatic potential

2nd law: in any classical process the horizon area must be non decreasing, δA ≥ 0

3rd law: it is not possible to achieve κ̂ = 0 through a finite number of physical operations.

Moreover Hawking has shown that a black hole emits a thermal radiation, whose tempera-
ture, as seen from an asymptotically far away observer, is exactly the TH in Eq. (1.1).

The thermodynamic interpretation as well as the thermal character of the emitted radi-
ation lead to some problems and open unresolved questions. Among them there is the
Hawking information paradox : using a semi-classical approximation, it can be shown [11]
that information is lost in the processes of formation and evaporation of a black hole. For
semi-classical approximation we intend that we treat matter quantum mechanically, gravity,
instead, is not quantized and we use a classical metric as our background.
Let us start considering the formation of a black hole from a shell of matter in some pure
quantum state. According to the "no-hair" conjecture, we expect that after its creation, the
black hole will be completely characterised by very few parameters: its mass, charges and
angular momentum. However, if that is true, then, we have inevitably lost the information
about the initial state. In other words, if the conjecture applies, the black hole is described
only by the 3 parameters listed before, which stay the same, independently from the matter
collapsing to form the black hole. One might think that information could be recovered
later in some way through the emitted radiation. However, because of the thermal character
of this last one, this possibility can not realize. So in the process of formation it seems
that there is no way to avoid the occurrence of the paradox. Now let us consider particles
emission from the black hole. These particles are emitted as entangled pairs: let us call bi
the members of the pairs that stay outside the horizon and can escape to infinity, while the
particles inside the horizon are denoted with ci. If one looks only to the radiation outside
the horizon, then the system is in a mixed state. At this point this result, however, does not
imply any information lost. The mixed nature of the outgoing radiation is due to the fact
that we are looking only at half of the system, but there exist still the quanta ci, with which
the bis can be entangled, avoiding the paradox. The problem arises when the black hole
completely evaporates because of the infalling matter. Since these particles carry negative
energy, they cause the mass of the black hole to shrink and consequently they determine
an increase in the surface gravity and related temperature, which leads eventually to the
completely disappearance of the hole in a finite time. After the complete evaporation we
are left only with the bi particles entangled with nothing, but this means that a pure initial
state has evolved to a totally mixed one (the thermal outgoing radiation) and consequently
it implies a undesired violation of unitarity.

To evade the paradox and try to restore unitarity, one might think that small corrections,
at scale `p

RH
2, could in some ways carry the information and solve the problem. However, in

1Here and in the following we use natural units c = 1 = h̄
2Where `p is Planck length and RH the horizon radius
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(a) (b)

Figure 1.1: Comparison between the traditional black hole picture (a) and the Fuzzball proposal
(b).

[12] Mathur has shown that small deviations from Hawking calculations can not provide a
successfull resolution and that only order one corrections could avoid the information loss.
We postpone a more detailed description of Mathur argument to Ch. 4, where we introduce
entanglement entropy and related properties, which are essential for Mathur derivation.
Anyway, this argument strongly suggests that in attempt to have an unitary theory without
losing information, it is necessary a deep reinterpretation of what a black hole is. In partic-
ular, Mathur proposal, encoded in his Fuzzball program [2], is to overcome the traditional
picture of BHs and consider, instead, a black hole as an effective description of an ensem-
ble of geometries. These microstates differ from the traditional BH at the horizon scale:
where traditional BHs have a horizon and a singularity, a microstatate is regular ending in
a smooth cap, as depicted in Fig. 1.1. This difference is the key to escape from Hawking
paradox: we will point it out more clearly and explain better in the following.

In the next chapter we will analyse in detail this Fuzzball proposal, but let us first introduce
the Supergravity framework, where this program is realised.

1.2 Supergravity Framework

According to the Fuzzball proposal, black holes microstates can be derived as smooth and
regular solutions of classical Supergravity. So a brief introduction about this theory is
necessary, even if a complete dissertation is away from the purposes of this work.

A Supergravity theory is a theory with local Supersymmetry. One first introduces Super-
symmetry as a global space-time symmetry and then localizes it. As a global symmetry,
SUSY interchanges bosons B and fermions F and determines, in this way, that every parti-
cle has to be accompanied by a superpatner with opposite statistics and together they form
super-multiplets. Supersymmetric generators are a set of fermionic operators Qα, where α is
a spinor index, mapping bosons into fermions and whose infinitesimal action (parametrized
by a spinor ε) can be written as:

δB ∼ ε̄F, δF ∼ σµε∂µB

In generic D dimensions they satisfy an algebra of the form [13]:

[P,Q] = 0 , [M,Q] ∼ Q (1.4a)
{Qα, Qβ} ∼ (CΓµ)αβ Pµ + a (CΓµ1 ... µp)αβ Z[µ1 ...µp] (1.4b)

where P and M are the generators of the Poincaré algebra, C is the charge conjugation,
Γ’s are antisymmetrised products of gamma matrices and finally Z are called the central
charges, since it can be shown they commute with all the supersymmetric algebra.

Then, when one allows the parameter ε to depend on the spacetime coordinates, then Su-
persymmetry becomes local. The locality of the Supersymmetry implies invariance under
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diffeomorphism, but a theory invariant under general coordinate transformation is nothing
but a theory of gravity. One can conclude that a theory having local Supersymmetry con-
tains automatically gravity, we call such a theory Supergravity and its gauge mediator is a
spin 3/2 particle labelled gravitino.

Either the Supergravity theory and supersymmetric algebra depend and take a specific form
according to the dimension D of the space-time and to the number of supersymmetries
N (then generators take a further index: QIα with I = 1, . . . ,N ). The number N and
the dimensionality of the space time are related: it can be shown that in order to have a
consistent theory of gravity, in D=4 the maximum allowed number of supersymmetries is
N = 8 (in D=4, it corresponds to 4N = 32 real supercharges3) , while the biggest dimension
for a Supergravity theory is D=11 with N = 1.

The dimension of the spacetime D and the number of supersymmetries N differentiates
supergravity theories. It can be demonstrated that in D = 4 the maximum number of
supersymmetries allowed in order to have a consistent theory of gravity is N = 8 and that
that the biggest dimension for a supergravity theory is D = 11 (N = 1).

Let us conclude this introduction to Supergravity with a comment on a particular class
of multiplets called BPS states. Let us specify for the moment to the case D = 4, we
introduce the fermion generators QIα and its conjugate Q̄Iα (α = 1, 2). The corresponding
Supersymmetric algebra contains the commutator:{

QIα, Q̄
J
β

}
= 2σµαβPµδ

IJ ,
{
QIα, Q

J
β

}
= εαβZ

IJ (ZIJ = −ZJI) (1.5)

where we have defined σµ = (1,−σi), σi are Pauli matrices. Now let us consider for simplicity
the case in which there are 2 real generators: Q1 = Q†1 and Q2 = Q†2 and to be in the rest
frame (Pµ = m). Eqs. (1.5) become:

Q2
1 = m = Q2

2, {Q1, Q2} = Z (1.6)

Let us call |ψ〉 a generic state, then exploiting the hermiticity of the supercharges we get:

〈ψ| (Q1 ±Q2)2 |ψ〉 ≥ 0 (1.7)

〈ψ| (Q1 ±Q2)2 |ψ〉 = 2m± Z (1.8)

so

m ≥ |Z|
2

(1.9)

States saturating the bound, that is to say states such that 2m = |Z|, are called BPS (from
Bogomol’nyi–Prasad–Sommerfield) and they are invariant under half of the SUSY charges.
As an example, consider the state (Q1 − Q2) |ψ〉. If it saturates the condition (1.9), then
(Q1−Q2) |ψ〉 = 0⇒ Q1 |ψ〉 = Q2 |ψ〉. These two states are not independent, so the multiplet
is correctly described by the short multiplet :

{|ψ〉 , Q1 |ψ〉} (1.10)

where we could have chosen equivalently Q2 instead of Q1.
Similar arguments apply in higher dimension. In general, from the positiveness of the Hilbert
space one can infer a relation similar to Eq. (1.9) and obtain the Bogomol’nyi–Prasad–Sommerfield
bound:

E ≥ |Zr|, r = 1 . . . ,
N
2

(1.11)

where Zr is any central charge eigenvalue. Equality holds for BPS states and as a conse-
quence they must be annihilated by at least one SUSY generator Q, in this sense they are
supersymmetric.

3The number of real supercharges depends on the dimension dR of the spinorial representation in D
dimension:

D 2 4 6 10 11
dR 2 4 8 16 32
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1.2.1 10 dimensional SUGRA

In this Thesis we will work only with 10 dimensional Supergravity. It represents the low
energy limit of Type IIA and Type IIB Superstring Theory [13] and carries the highest
number of allowed supercharges, 32, with in D = 10 corresponds to N = 2 supersymmetries.
Type IIB and IIA differ for their field content. So let us look in detail to their massless
bosonic spectrum, which can be divided in 2 sectors:

• NS-NS sector, containing the string metric Gµν , the 2-form Kalb Ramond potential
B2 and the scalar dilaton Φ (such that the string coupling is gs = eΦ∞). The fun-
damental string, denoted with F1, is electrically charged w.t.r. to the field B2 while
magnetically to the NS5-branes (in Sec.1.2.2 we will explain what these extended ob-
jects are and we will introduce the concept of D-branes);

• R-R sector, whose fields consist in p-form potentials Cp (p is even in Type IIB and
odd in Type IIA), whose associated field strength is defined as Fp+1 = dCp. The
R-R gauge fields C(p+1) couple electrically to Dp-branes and magnetically to D(6−p)-
branes.

The bosonic part of the low energy 10 D effective action, at the second derivative level, is
[14]:

S10d = SNS-NS + SR-R + SCS (1.12)

SNS contains contributions from NS-NS fields and it is the same for both Type IIA-IIB
SUGRA:

SNS-NS =
1

2κ2
10

∫
d10x
√
−Ge−2Φ

(
R+ 4∂µΦ∂µΦ− 1

12
HµνρH

µνρ

)
(1.13)

whereH is B2 field strength (H ≡ dB). The ten-dimensional gravitational coupling constant
κ10 is related to G10

N (ten-dimensional Newton constant) and to the string coupling gs and
string length `s:

2κ2
10 = 16πG10

N =
(2π`s)

8g2
s

2π
(1.14)

This action is given in the string frame. It can be anyway rewritten in a different frame, the
Einstein frame, where the first term in (1.13) is expressed in the standard Einstein-Hilbert
form 4 just rescaling the metric as:

gEµν = e−Φ/2Gµν (1.17)

The second and the third terms in (1.12), respectively dubbed Ramond and Chern-Simons
terms, depend instead on the specific Supergravity type we are considering because they
contain R-R fields. In the table below, we report the expressions for these actions for Type
IIA and IIB:

Type IIA Type IIB

SR-R − 1
4κ2

10

∫
10

√
−G

(
|F2|2 +

∣∣∣F̃4

∣∣∣2) − 1
4κ2

10

∫
10

√
−G

(
|F1|2 +

∣∣∣F̃3

∣∣∣2 + 1
2

∣∣∣F̃5

∣∣∣2)
SCS − 1

4κ2
10
B2 ∧ F4 ∧ F4 − 1

4κ2
10
C4 ∧H3 ∧ F3

4Let us consider the action (1.13) in generic D dimension. We want to write the piece
∫ √
−Ge−2ΦR as

the standard Einstein Hilbert action
∫
dDx

√
−gERE through a metric redefinition Gµν = e∆gEµν . In order

to fix ∆ let us remember that under a rescaling the determinant transform as G ≡ detGµν → eD∆g and
R→ e−∆RE . To write the action in the standard form it is required:

e
D∆
2
−2Φ−∆ = 1 ⇔ ∆ =

4Φ

D − 2
(1.15)

. So going from the string frame to the Einstein one, the metric changes as:

gEµν = e
− 4φ
D−2Gµν (1.16)
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where we have defined
√
−G|Fi|2 ≡ Fi ∧ ∗Fi and:

F̃3 ≡ F3 − C0 ∧H3, F̃4 = F4 − C1 ∧H3, F̃5 ≡ F5 −
1

2
C2 ∧H3 +

1

2
B2 ∧ F3

For Type IIB Supergravity one has to impose an additional self duality constraint on the
5-form strength : F̃5 = ∗F̃5.

Before describing Dp branes, the building blocks of BH microstate, let us introduce two
necessary tools for this construction: dimensional reduction and dualities.

Dimensional reduction

Dimensional reduction allows to pass from a higher dimensional theory to a lower one through
the compactification of someone of the original space directions.
As an example, consider the Kaluza Klein reduction of the D dimensional action containing
graviton and dilaton, by compactifying one direction on a circle of radius R [15]. The D
dimensional action, we start with is:

S =
1

2κ2
D

∫
dDx
√
−Ge−2ΦD

(
R+ 4∂MΦD∂

DΦD
)

(1.18)

where xM ≡ (xµ, x), µ = 0, . . . , D − 2 and x is periodic (x ' x+ 2πR).
To get the (D-1) action, one has to:

• decompose the metric in terms of the lower dimensional metric ḡµν , the Kaluza-Klein
gauge fields Aµ and scalar σ as

GMN =

(
ḡµν + e2σAµAν e2σAµ

e2σAν e2σ

)
(1.19)

• consider the (D-1) dimensional dilaton

Φ̄D−1 = ΦD −
σ

2
(1.20)

• consider the lower dimensional Ricci scalar R̄ which is related to the the one defined
in D dimensions via:

R = R̄− ∂µσ∂µσ −
1

4
e2σFµνF

µν

with Fµν the field strength of Aµ.

If we Fourier expand the action (1.18) and considering only massless, x-independent contri-
butions of the reduced action, we finally obtain for the reduced action:

S =
1

2κ2
D−1

∫
dD−1x

√
−ḡe−2Φ̄

(
R̄+ 4∂µΦ̄∂µΦ̄− ∂µσ∂µσ −

1

4
e2σFµνF

µν

)
(1.21)

1

κ2
D−1

=
2πR

κ2
D

(1.22)

S duality

S duality is a duality mapping states and vacua of a theory with coupling constant g to the
ones of a theory with coupling 1

g .
In Type IIB Supergravity this duality acts:

• changing the sign of the dilaton Φ and consequently, since its VEV is related to the
string coupling constant, it maps gs → g′s = 1

gs
(in a way that (g′s)

1/4`′s = g
1/4
s `s);
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• exchanging B2 and C2, while F̃5, together with momentum P, stay unaltered. As a
consequence, fields in the action change accordingly as

D1 ↔ F1, D5 ↔ NS5, D3 ↔ D3 (1.23)

In the string frame the relevant set of transformation is:

Φ′ = −Φ (1.24a)

G′µν = e−ΦGµν (1.24b)

B′2 = C2 (1.24c)
C ′2 = −B2 (1.24d)

(1.24e)

In type IIB S duality relates, without changing type, two versions of the same theory: one
with strong coupling and the other one with small coupling.
The strong coupling limit of Type IIA, instead, is a completely different 11 dimensional
theory, called M theory.

T duality

T duality is a symmetry in String Theory. T duality on a circle switches the winding and
the momentum of a string and interchanges Type IIA and Type IIB.
Suppose that we want to apply T duality along an isometry direction y, such that y
parametrizes a circle of radius R. In the passage from Type IIA to Type IIB:

• the radius of the circle changes as

R′

`′s
=
`s
R
, `′s = `s

• the coupling constant gets rescaled, in order to leave invariant the low energy effective
action, as

g′s√
R′/`′s

=
gs√
R/`s

and this affects consequently the dilaton.

To be more precise, let us write the metric as:

ds2 = gyy(dy +Aµdx
µ)2 + ĝµνdx

µdxν (1.25a)

B2 = Bµydx
µ ∧ (dy +Aνdx

ν) + B̂2 (1.25b)

Cp = Cp−1 ∧ (dy +Aµdx
µ) + Ĉp (1.25c)

where hatted quantities have no component along y, the direction of the duality.
Under T-duality, metric and fields get transformed as:

ds′2 = g−1
yy (dy +Bµydx

µ)2 + ĝµνdx
µdxν (1.26a)

e2Φ′ = g−1
yy e

2Φ (1.26b)

B′2 = Aµdx
µ ∧ dy + B̂2 (1.26c)

C ′p = Ĉp−1 ∧ (dy +Bµydx
µ) + Cp (1.26d)

The exchange of the fields gµy and Bµy has the physical meaning of swapping winding
number (F1) and momentum P. From the transformations of Cp forms we can guess how
the dimension of the Dp-branes is affected by T-duality. If y is a direction parallel to the
brane worldvolume, then Dp → D(p − 1); while if the transformation is performed along a
transverse direction the brane acquire an additional Neumann boundary condition5.

5How spatial dimensions of branes change under a T duality depends on the exchange of Neumann and
Dirichlet boundary conditions.
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1.2.2 Branes

Type II supergravity admits as solutions some extended object known as p-branes. As
mentioned before these membranes are charged with the respect to the forms appearing
in the Supergravity action. To understand better their behaviour, let us first recall how a
gauge field interacts with a point particle in classical electrodynamics. Let us consider a
point particle in 4 dimensions with charge q interacting with the 1 form A1; the interaction
Lagrangian is given by:

Lint = q

∫
γ

A1 (1.27)

where γ is the world-line of the particle. We know that the electric charge (Qe) and magnetic
one (Qm) can be read directly from the field strength F2 = dA1 (and its Hodge dual F̃ = ∗F )
as an integral over a 2-sphere S2:

Qe =

∫
S2

F̃ , Qm =

∫
S2

F (1.28)

We can generalize Eq. (1.27) for a p dimensional spacelike surface, with charge density µ,
interacting with a (p+ 1) form. The lagrangian is:

Lint = µ

∫
γp+1

Ap+1 (1.29)

We have seen that in SUGRA there are Cp forms, whose field strength is defined as Fp+1 ≡
dCp. In the light of the previous reasonings, one expects that

• a p form couples electrically to a (p− 1) brane

• and magnetically to a brane of dimension D − p− 3.

Now we can interpret the fields of the Supergravity action as electric and magnetic sources
for the B field (respectively, F1 fundamental string and NS 5-brane), while RR fields are
such that a p-brane in 10 D is charged electrically for Cp+1 and magnetically for C7−p.

It was Polchinski in [16] to propose that objects carrying RR charges are Dp-branes. More-
over he showed that D-branes breaks half of the supersymmetries of the original theory and
thus they are BPS states. Qualitatively, we can think that Dp-branes and p-branes describe
the same BPS states, but in different regime of validity: the first ones in String Theory, while
the second ones in the context of Supergravity. The two descriptions are anyway related:
the number of Dp-branes is connected to the charges of p-branes, trough quantization.

1.3 Constructing Black Holes

In this section we are going to present how to construct extremal BHs (or equivalently BPS
states) in Supergravity, using p-branes (see for example [13, 2]). We have already said that
each type of D-brane halves the number of supersymmetries of the vacuum solution, which
we assume to be a maximally supersymmetric one (i.e. 32 supercharges). For this reason we

D branes are defined in String theory as the objects where open strings can end. Let us consider an open
string Xµ(τ, σ), where τ and σ parametrize its world-sheet (µ = 0, . . . D). According to String Theory, the
end points (σ = 0 and σ = σ1) of an open string must satisfy one of the following boundary conditions:
• Neumann boundary condition: ∂σXµ(τ, σ)|σ=0,σ1 = 0. In this case the endpoints are free in space

and they are only constrained to move at the speed of light and orthogonal to the string velocity
vector.

• Dirichlet boundary condition: ∂τXµ(τ, σ)|σ=0,σ1 = 0, fixed endpoint condition.
Now if X0, . . . , Xp are Neumann, they define a p spatial dimensional hyperplane, a Dp-brane. To satisfy
the remaining D − p boundary conditions, the endpoints must lie on these p-spatial dimensional objects.
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will refer to the solution with only one type of brane as 1
2 -BPS state (16 supercharges left)

or 1-charge solution, to the D1-D5 system as 1
4 -BPS and so on... We are focusing on BPS

states because of their importance in computing entropy, as we will clarify in a moment.

Considering BPS states is a crucial point in the research for a statistical description of
BHs as an ensemble of different microstates. In Sec. 1.1 we have seen that a BH presents a
macroscopic entropy SBH of Eq. (1.2). Taking a statistical point of view, one would interpret
S in terms of the number Nms of microscopic states as

Nms = eSBH (1.30)

As we have already stressed before, such a description causes a problem, since it seems to
contradict the no hair theorem. How it can be possible to conciliate the existence of Nms
different microstates, with the statement that a BH is unique after the definition of its mass,
charges and angular momentum?
In the attempt to obtain a consistent picture, it is necessary to go beyond GR and to look
at how to construct BH in String Theory and in Supergravity. In these frameworks, one can
find and investigate microstates. A consistent microscopical analysis is possible essentially
by the use of BPS states. Thanks to their supersymmetric nature, for these states it is
meaningful a direct comparison between SBH and the statistical one Sstat = logNms. Let
us clarify better this point.

SBH is determined in a strong coupling regime because it represents the entropy of the BH
and a black hole exists only when the coupling gs � 1. On the other hand, we are able to
count the degeneracy of the states for the Sstat only in the opposite regime gs → 0. If the
coupling is small, indeed, the theory can be well described by a free field theory and it is
easier to determine the number of microstates.
In general, results obtained at different value of g can not be directly compared. However,
if states are BPS, then the index related to the difference of bosonic and fermionic states,
which accounts for the degeneracy, is protected by Supersymmetry and does not change
when gs changes. This is the reason why from the beginning, we have specialized to BPS
solutions.
In particular, in the following, we will show explicitly the accordance between SBH and
Sstat studying a special class of five dimensional black holes, obtained from the dimensional
reduction of p-branes solutions in 10 D Supergravity.

Before proceeding with the microstate counting, let us fist review how Black Holes can be
constructed as solution of classical Supergravity. In SUGRA, there are two ways in which
one can derive a BH solution.

• A direct method: we can start directly from a BPS configuration deriving the expres-
sions for the metric and for the fields from supersymmetry constraints.

• An indirect method, in which we can work with non BPS states starting from a generic
vacuum solution (satisfying the SUGRA equations) and then, applying a set of boosts
and dualities, we can add charges to the original state. Only in the end, we take the
extremal limit

In this Thesis, we will work only using the second approach. In particular we are interesting
in Type II Supergravity solutions, whose topology reduces to R1,4×S1×T 4 asymptotically.
Let us denote by (t, xi) the non-compact direction and choose polar coordinates for R4:

x1 = r sin θ cosφ

x2 = r sin θ sinφ

x3 = r cos θ cosψ

x4 = r cos θ sinψ

θ ∈
[
0,
π

2

]
φ, ψ ∈ [0, 2π]

Finally y is the coordinate of the S1 (y ' y+2πR) and za (a = 1, . . . , 4) label T 4 directions.
The solution generating technique we will follow, is a pure algebraic procedure to obtain new
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BHs solutions from known ones. Let us start from a five dimensional version of Schwarzschild
BH, direct product with S1 × T 4:

ds2
10 = −

(
1− 2M

r2

)
dt2 +

(
1− 2M

r2

)−1

dr2 + r2dΩ2
3 + dy2 + (dza)

2 (1.31)

sum over a are understood. The power of 1
r appearing in the solution, depends on the

dimensions of the compact space.
Since we have taken the Schwarzschild BH, which is a vacuum solution of GR, and we have
just taken its direct product with S1 × T 4, the metric (1.31) is a solution of 10 dimensional
Supergravity. Since there are no dilaton neither gauge fields, it can be interpreted both in
string and Einstein frame. Starting from Eq.(1.31), we can dress it with charges and in
some limits obtain the desidered BPS solutions. Once we have derived the metric, then to
compute the horizon area we can either[2]:

1. look at the 5D non compact dimensions after reduction on S1 × T 4 and compute the
area A5 in Einstein metric, obtaining the entropy as SBH =

AE5
4G5

;

2. derive the horizon area directly from the 10 dimensional metric and then use SBH =
AE10

4G10

The two results must match up to the identification:

G5 =
G10

(2πR)(2π)4V4
, G10 =

(2π)7g2
s`

8
s

16π
(1.32)

where (2π)4V4 is the volume of the torus.

1.3.1 1-charge solution

Now suppose to start from Eq. (1.31) and to add a charge. This can be done through a
boost : (

dt
dy

)
→
(

coshα sinhα
sinhα coshα

)(
dt
dy

)
≡
(
dt′

dy′

)
(1.33)

The boosting procedure takes solution to solution, in the sense that the transformed metric
still satisfies the equations of motion, but the metric we obtain is really a new and different
one. The reason is that a boost is not a globally defined transformation. Since it involves a
compact direction y, with a definite periodicity, it creates an identification also on the time
coordinate, which has no physical meaning. So the right way to proceed is to decompactify
first, then apply the boost changing the coordinates as Eq. (1.33) and finally compactify
back the S1 direction. The solution obtained in this way is really a new one.
After the boost, the metric becomes:

ds2 =

(
1 +

2M

r2
sh2α

)
︸ ︷︷ ︸

Sα

dy2 −
(

1− 2M

r2
ch2α

)
dt2 +

4M

r2
chα shαdydt

+

(
1− 2M

r2

)−1

dr2 + r2dΩ2
3 + (dza)

2 (1.34)

This can be interpreted in Type IIA SUGRA as a wave carrying momentum Py (some other

details can be found in Ap.B). To pass to F1, we need to T-dualize along y (Py
T duality−−−−−−→

F1y). In order to apply transformation rules (1.25)-(1.26) it is useful to rewrite the metric
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as:

ds2 = Sα
(
dy + S−1

α
2M
r2 chα shαdt

)2 − S−1
α

(
1− 2M

r2

)
dt2 +

(
1− 2M

r2

)−1
dr2+

r2dΩ2
3 + (dza)

2

Φ = 0

B = 0

C = 0

(1.35)

After the T-duality:
ds2 = S−1

α dy2 − S−1
α

(
1− 2M

r2

)
dt2 +

(
1− 2M

r2

)−1
dr2 + r2dΩ2

3 + (dza)
2

e2Φ = S−1
α

B2 = S−1
α

2M
r2 chα shαdt ∧ dy

(1.36)

This solution does not represent yet a BPS state. The extremal case is obtained only
performing the BPS limit, which consists of:{

α→∞
M → 0

but keeping fixed Me2α = 2Q (1.37)

where Q is the charge of the string. In this limit the function Sα becomes:

Sα = 1 +
2

r2

Me2α +Me−2α −M
4

→ 1 +
Q

r2
≡ Z(r) (1.38)

This limit applied to (1.36) give the 1
2 -BPS solution 6


ds2 = Z−1

(
−dt2 + dy2

)
+ dr2 + r2dΩ2

3 + (dza)
2

e2Φ = Z−1

B2 = −Z−1dt ∧ dy
(1.39)

in the end we want to compute the the area of the horizon from the 5 dimensional metric.
Reduction on T 4 is trivial, while reducing along y determines:{

ds2
5 = −Z−1dt2 + dr2 + r2dΩ2

3

e2Φ5 = e2Φ10e−σ = Z−1Z1/2 = Z1/2
(1.40)

To compute SBH we have to express the metric in Einstein frame, so we multiply ds2 by a
factor e−4Φ5/3 (from (1.16)):

ds2
5|E = −Z2/3dt2 + Z1/3

(
dr2 + r2dΩ2

3

)
(1.41)

The horizon is located at r = 0 and its area is:

A = 2π2
(
rZ1/6

)3

= 2π2r3

(
1 +

Q

r2

)1/2
r→0−−−→ A ∼ Qr2 = 0 (1.42)

So we have found that the 1-charge solution has SBH = 0 and we will see later on, this is
consistent with the microscopic count [2].

6Notice that we have shifted the B field. If one simply takes the BPS limit on B2, one would obtain:

Bty =
Q

r2

1

1 +Q/r2
= 1−

(
1 +

Q

r2

)−1

The constant shift can be neglected since it has no physical meaning.
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1.3.2 2-charge solution

To add another charge to the solution (1.36), we can perform another boost along y, intro-
ducing a new parameter β:

ds2 = S−1
α Sβ

(
dy + S−1

β

2M

r2
chβ shβ dt

)2

− S−1
α S−1

β

(
1− 2M

r2

)
dt2

+

(
1− 2m

r2

)−1

dr2 + r2dΩ2
3 + (dza)

2 (1.43)

This is a solution of Type IIB supergravity describing a fundamental string F1 carrying
momentum Py.
The final solution we want to describe is a bound state of D1-D5 branes, it can be generated
from the F1-P solutions using a set of S and T dualities. We summarize them above, while
explicit calculations are collected in Ap.B.(
F1y
Py

)
S duality−−−−−−→
along y

(
D1y
Py

)
Tz1,2,3,4−−−−−→

(
D5

Py

)
S−→
(
NS5
Py

)
Ty−→
(
NS5
F1y

)
Tz1−−→

(
NS5
F1y

)
S−→
(
D5
D1

)
The solution describing the D1-D5 system is:

ds2 = S
−1/2
β S

−1/2
α

[
dy2 −

(
1− 2M

r2

)
dt2
]

+ S
1/2
α S

1/2
β

[(
1− 2M

r2

)−1
dr2 + r2dΩ2

3

]
+S

1/2
β S

−1/2
α (dza)

2

e2Φ = SβS
−1
α

C2 = −S−1
β

2M
r2 chβ shβ dt ∧ dy − F (θ, α, β)dφ ∧ dψ

B2 = 0

(1.44)

Let us take the BPS limit: M → 0 and α, β →∞, keeping fixed:

Me2α = 2Q5, M2β = 2Q1

The functions Sα,β becomes:

Sα → 1 +
Q5

r2
≡ Z5, Sβ = 1 +

Q1

r2
≡ Z1 (1.45)

In the limit (1.45), the metric (1.44) reduces to:
ds2 = 1√

Z1Z5

(
−dt2 + dy2

)
+
√
Z1Z5

(
dr2 + r2dΩ2

3

)
+
√

Z1

Z5
(dza)

2

e2Φ = Z1

Z5

C2 = −
{(

1− Z−1
1

)
dt ∧ dy −Q5 sin2 θdφ ∧ dψ

} (1.46)

Now, we decide to compute the horizon area directly in 10 D, so let us first express the
metric in Einstein frame:

ds2|E =

(
Z5

Z1

)1/4

ds2 (1.47)

= Z
−1/4
5 Z

−3/4
1

(
−dt2 + dy2

)
+ Z

3/4
5 Z

1/4
1

(
dr2 + r2dΩ2

3

)
+ Z

−1/4
5 Z

1/4
1 (dza)

2 (1.48)

The area of the horizon is the product of contributions deriving from the length of the S1

direction, from the 3-sphere and the torus:

A = 2π2
(
r2Z

3/4
5 Z

1/4
1

)3/2

︸ ︷︷ ︸
S3

2πR
(
Z
−1/4
5 Z

−3/4
1

)1/2

︸ ︷︷ ︸
S1

(2π)4V4

(
Z

1/4
1 Z

−1/4
5

)4/2

︸ ︷︷ ︸
T 4

= 2π2 (2πR) (2π)4V4r
3 (Z1Z5)

1/2 r→0−−−→ r
√
Q1Q5 = 0 (1.49)
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Again the singularity is located at r = 0 and the horizon area together with SBH vanishes.
However, as we will see in Ch. 2, the count of microstate for the D1-D5 system is found to
be different from zero. This fact highlights some problems concerning the solution (1.46).
So let us give some further details about the 2-charge geometry. First of all, if one computes
its curvature, he realizes that it blows up as r → 0. Thus, the metric (1.46) can not be a
good Supergravity solution and we must include higher order derivatives corrections, which
might generate a finite horizon.
Another fact about the naive geometries obtained in SUGRA, as Eq. (1.46) and (1.52)
in the next section, is that they do not represents microstates. These classical SUGRA
solutions provide only the description of the ensemble of the microstates and for this reason
they are expected to have an entropy different from zero. Microstates geometries, instead,
must be derived from a physical source in String Theory, which for example could never be
localized in a point as the 2-charge naive solution. So, it is a general result, that to construct
microstates we need to take a different point of view, the one of String Theory. In particular
for the 2-charge case, microstates, as we will show later, are produced by stringy objects, a
fundamental string carrying momentum to be precise.

1.3.3 3-charge solution

The last solution we will see is the one with three charges: reducing in 5 dimension to
the so called Strominger-Vafa Black hole. Differently from the previous cases, the 3-charge
geometry is a BPS solution of classical SUGRA with finite horizon area and thus it represents
a real BH.

Following the indirect procedure, presented above. Take a boost with parameter γ to add
another charge to (1.44). The resulting metric describes a D1-D5-Py ststem:

ds2 = S−1/2
α S

−1/2
β Sγ

(
dy + S−1

γ

2M

r2
shγ chγ dt

)2

− S−1/2
α S

−1/2
β S−1

γ

(
1− 2M

r2

)
dt2

+ S1/2
α S

1/2
β

[(
1− 2M

r2

)−1

dr2 + r2dΩ2
3

]
+ S

1/2
β S−1/2

α (dza)
2 (1.50)

Finally we apply the BPS limit, with the additional constraint Me2γ = 2QP , we define:

Z1 = 1 +
Q1

r2
Z5 = 1 +

Q5

r2
ZP = 1 +

QP
r2

(1.51)

The resulting metric is:{
ds2 = 1√

Z1Z5

[
−dt2 + dy2 + QP

r2 (dy + dt)2
]

+
√
Z1Z5

(
dr2 + r2dΩ2

3

)
+ Z

1/2
1 Z

−1/2
5 (dza)

2

e2Φ = Z1

Z5

(1.52)

To obtain the D1D5P black hole in 5D Einstein frame, we need to:

1. reduce on the T 4. The dilaton changes according to Eq.(1.20) as:

e2Φ6 =
Z1

Z5

(
Z
−1/4
1 Z

1/4
5

)4

= 1

2. then on S1:

e2Φ5 = Z
1/4
5 Z

1/4
1 Z

−1/2
P

3. finally express the metric in the Einstein frame:

ds2
5|E =

(
Z
−1/6
5 Z

−1/6
1 Z

1/3
P

)
ds2

5 (1.53)

= −(Z5Z1ZP )−2/3dt2 + (Z5Z1ZP )1/3
(
dr2 + r2dΩ2

3

)
(1.54)
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From the last expression we can read off directly the horizon area and compute it at the
horizon (r = 0):

A = 2π2r3(Z5Z1ZP )1/2 r→0−−−→= 2π2
√
Q5Q1QP

which, as announced before, is different from zero. The associated entropy is:

SBH =
A

4G5
=

2πRV4

g2
s(α′)4

√
Q1Q5QP (1.55)

Now that we have an expression for the entropy in terms of the macroscopic charges, we
would like to interpret it from a microscopic point of view as the number of branes con-
structing the BH. This interpretation is made possible by the quantization of the charges
Qi. Let us look in detail to this quantization.

Let us start from Eq. (1.52) to extract the relation between mass and charge. It is sufficient
to look at the expansion of gtt term:

gtt ' −1 +
2

3

Q1 +Q5 +QP
r2

and it has to be compared to gtt ' −1 + 16πG5

3Ω3

M
r2 . We conclude that (using relations (1.32))

Q =
2πg2

s(α′)4

(2πR)V4
M

Remember that for a Dp-brane:

M = n · τp · L

where n is the number of superimposed D-branes, L is the length (or volume for p > 1) and
τp the tension (τp = 1

gs(2π)p(α′)(p+1)/2 ). For the momentum charge, instead, we takeM =
np
R .

Q1 = n1
gs(α

′)3

V4
(1.56a)

Q5 = n5gs(α
′) (1.56b)

QP = nP
g2
s(α′)4

V4R2
(1.56c)

What is really surprising is that, if now we substitute the quantized values, all the numerical
factors cancel to give:

SBH = 2π
√
n1n5nP (1.57)

which is exactly the same as we will obtain in Ch.2 from the microscopic computations.

1.3.4 3-charge solution: the rotating BH

To conclude this chapter, we present a more general 3-charge solution, now with an additional
angular momentum. To have a rotating solution, we start from the five dimensional extension
of Kerr metric (Myers-Perry [17]) times T 4 × S1:

ds2 = dy2 −
(

1− M

f

)
dt2 +

fr2

(r2 + a2
1)(r2 + a2

2)−Mr2
dr2 + fdθ2 (1.58)

+

{
r2 + a2

1

(
1 +

M

f
cos2 θ

)}
cos2 θdψ2 +

2Ma1a2

f
sin2 θ cos2 θdψdφ

+

{
r2 + a2

2

(
1 +

M

f
sin2 θ

)}
sin2 θdφ2 +

2M

f

(
a1 cos2 θdψ + a2 sin2 θdφ

)
dt+ (dza)

2
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where

f = r2 + a2
1 sin2 θ + a2

2 cos2 θ

and a1 and a2 are parameter related to the two angular momenta.
The procedure is analogous to the previous one, so we will not repeat the chain of dualities
needed to add the three charges and we will report directly the results obtained in [18].

The non extremal rotating D1-D5-P solution (we slightly change the notation calling δi the
boost parameters, i = 1, 5, P ) is found to be [18]:

ds2 = −
(

1− M cosh2 δp
f

)
dt2√
Z1Z5

+

(
1 +

M sinh2 δp
f

)
dy2

√
Z1Z5

− M sinh 2δp

f
√
Z1Z5

dtdy (1.59)

+ f
√
Z1Z5

(
r2dr2

(r2 + a2
1) (r2 + a2

2)−Mr2
+ dθ2

)
+

[(
r2 + a2

1

)√
Z1Z5 +

(
a2

2 − a2
1

)
K1K5 cos2 θ

√
Z1Z5

]
cos2 θdψ2

+

[(
r2 + a2

2

)√
Z1Z5 +

(
a2

1 − a2
2

)
K1K5 sin2 θ

√
Z1Z5

]
sin2 θdφ2

+
M

f
√
Z1Z5

(
a1 cos2 θdψ + a2 sin2 θdφ

)2
2M cos2 θ

f
√
Z1Z5

[(a1 cosh δ1 cosh δ5 cosh δp − a2 sinh δ1 sinh δ5 sinh δp) dt

+ (a2 sinh δ1 sinh δ5 cosh δp − a1 cosh δ1 cosh δ5 sinh δp) dy]dψ

2M sin2 θ

f
√
Z1Z5

[(a2 cosh δ1 cosh δ5 cosh δp − a1 sinh δ1 sinh δ5 sinh δp) dt

+ (a1 sinh δ1 sinh δ5 coshp−a2 cosh δ1 cosh δ5 sinh δp) dy]dφ+

√
Z1

Z5
(dza)

2

e2Φ =
Z1

Z5
(1.60)

where:

Zi = 1 +Ki = 1 +
M sinh2 δi

f
(1.61)

The quantized angular momenta are defined as (Jφ,ψ ∈ Z):

Jψ = −M(a1 cosh δ1 cosh δ5 cosh δp − a2 sinh δ1 sinh δ5 sinh δp)
π

4G5
(1.62)

Jφ = −M(a2 cosh δ1 cosh δ5 cosh δp − a1 sinh δ1 sinh δ5 sinh δp)
π

4G5
(1.63)

The BPS limit take the solution to the extremal case, whose 5D reduction reproduces the
BMPV 7 Black Hole. The conditions we have to apply in taking the BPS limit are

M → 0, δi →∞ with Me2δi = Qi (1.64)

There is an additional constraint on the ai, accounting for the fact that a BPS black hole in
5 dimensions can have only one angular momentum. In particular from computations, one
realizes that for general Jφ and Jψ, the extremal limit is singular and that it is necessary to
chose Jψ = −Jφ. In the BPS limit, the parameters ai admit an expansion for M → 0 as:

a1 = − J

2
√
Q1Q5

M√
Qp

+O(M3/2) (1.65)

a2 =
J

2
√
Q1Q5

M√
Qp

+O(M3/2)

7BMPV stands for Breckenridge, Myers, Peet and Vafa [19].



24 1. Black Holes in Supergravity

where we have introduced the dimensionful angular momentum in terms of the quantized
integers Jψ,φ:

J ≡ Jψ
4G5

π
= −Jφ

4G5

π
(1.66)

In the limit (1.64) the functions Zi become :

Zi → 1 +
Qi
r2

which we will keep calling Zi for ease of notation.
The BPS metric, accordingly to (1.64), (1.65), becomes:

ds2 = − 1√
Z1Z5

(
1− Qp

r2

)
dt2 +

1√
Z1Z5

(
1 +

Qp
r2

)
dy2 − 2Qp

r2
√
Z1Z5

dtdy

+
√
Z1Z5

(
dr2 + r2dθ2

)
+ r2

√
Z1Z5(cos2 θdψ2 + sin2 θdφ2)

+
2J

r2
√
Z1Z5

(−dt+ dy)
(
cos2 θdψ − sin2 θdφ

)
+

√
Z1

Z5
(dza)

2 (1.67)

e2Φ =
Z1

Z5
(1.68)

To find the metric of the 5 dimensional BMPV black hole, we first perform the reduction
on the T 4, then the dilaton gets rescaled as:

e2Φ6 = 1 (1.69)

Reducing on the S1 is less easy and it is convenient to rewrite the metric as:

ds2
6 =

Zp√
Z1Z5

{
dy − Qp

r2Zp
dt+

J

r2Zp
(cos2 θdψ − sin2 θdφ)

}2

−
Z−1
p√
Z1Z5

dt2

+
√
Z1Z5(dr2 + r2dθ2) + r2

√
Z1Z5(cos2 θdψ2 + sin2 θdφ2)

− J2

r4Zp
√
Z1Z5

(cos2 θdψ − sin2 θdφ)2 −
2JZ−1

p

r2
√
Z1Z5

(cos2 θdψ − sin2 θdφ)dt (1.70)

After the reduction along y the dilaton becomes:

e2Φ5 = Z−1/2
p Z

1/4
1 Z

1/4
5 (1.71)

Written in Einstein frame, the metric is:

ds2
5|E = − (Z1Z5Zp)

−2/3
dt2 + (Z1Z5Zp)

1/3 [
dr2 + r2dθ2 + r2(cos2 θdψ2 + sin2 θdφ2)

]
− (Z1Z5Zp)

−2/3

{
J2

r4
(cos2 θdψ − sin2 θdφ)2 +

2J

r2
(cos2 θdψ − sin2 θdφ)dt

}
(1.72)

The horizon area is computed at rhor = 0:

A =

∫ π
2

0

dθ

∫ 2π

0

dψ

∫ 2π

0

dφ
√
gθθ(gψψgφφ − gφψ)2 (1.73)

= 2π2
√

(Z1Z5Zp)r6 − J2 r→0−−−→ 2π2
√
Q1Q5QP − J2 (1.74)

The resulting BH entropy,in terms of the quantized charges and angular momentum is:

SBH = 2

√√√√√√
(
πRV4

g2
s(α′)4

)2

Q1Q5Qp −
(

π

4G5

)2

J2︸ ︷︷ ︸
J2
ψ

= 2π
√
n1n5nP − J2

ψ. (1.75)



Chapter 2

The Fuzzball Proposal and the
D1-D5 CFT

In the previous chapter, we have tried to emphasize the paradoxes and problems arising
from a classical description of BHs, focusing our attention on the entropy problem and the
information paradox. We have also guessed that a possible way to avoid the information loss
is to allow for order one corrections to Hawking computations and think of the information
as distributed all throughout an horizon sized region.
An alternative interpretation for the BHs, in the context of a quantum theory of gravity,
is represented by the Fuzzball proposal [2]. Black holes are no more described as in the
traditional way depicted in Fig. (2.1)(a), but is rather described by a "quantum fuzz"[1] of
horizon size (Fig.2.1b). Fuzzballs represent microstates of the BH, one would like to count
and construct them explicitly in order to make a comparison with the Bekenstein-Hawking
entropy. And even if all the microstates for the 2-charge system have been identified, already
for the next simple case, the 3-charge one, we still lack a complete characterisation for them.
In this work we will work only with BPS states, taking the advantage from their supersym-
metric nature. Supersymmetry and the large charge limit we consider, make the degeneracy
of the states not to change as we change the coupling gs. So we are allowed to count
microstates at gs → 0, where there exists a treatable dual description in terms if a free
Conformal Field Theory (CFT). The results we obtain will remain valid for large gs, which
is the regime in which the BH is supposed to form.

In this Chapter we will first review the Fuzzball proposal and the microscopic count of states
for the D1-D5 and D1-D5-P system. Here and in Ch.3, we will focus on 3-charge microstates,
since from the classical point of view a real black hole, with non vanishing horizon, must
carry at least 3 charges.

(a) (b)

Figure 2.1: View of a traditional black hole (a) and a fuzzball(b)

25
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2.1 The Fuzzball Proposal for Black Holes

Given the thermodynamic description of black holes one would expect that there exist eSBH
microstates. An attempt to construct them explicitly was started by [20, 2, 21] and, at
least for the 2 charge case, all the microscopic geometries are fuzzballs: smooth and regular
solutions with no horizon.

2.1.1 The microscopic count of state

In Sec.1.3 we have reviewed how we can construct BHs in Supergravity, we call these ge-
ometries naive. We expect that these naive geometries account for the macroscopic char-
acteristics of the black holes and that they have an entropy different from zero. We have
already mentioned that SBH for the 2-charge BH vanishes and we have provided a possible
explanation in Sec. 1.3.2.
If the classical BH represents the ensemble of the microscopic degrees of freedom and for this
reason should have a non trivial S, on the other hand microstates are expected not to carry
an entropy. This explains why we are looking for the D1-D5 and D1-D5-P microstates to be
horizonless. It is the number of these microstates, expressed in terms of Sstat = logNms, to
be supposed to reproduce SBH .

Let us now specify to 1-, 2-, 3-charge BHs introduced before and try to compute their
microscopic entropy starting from their "stringy" representation.
Remember that for the 1-charge case, in SUGRA, we have obtained S1−charge

BH = 0 and this
result is found to be consistent with the microscopic computations. Consider the fact that
the 1-charge solution is represented by a fundamental string F1 wrapping n1 times around
the compact direction S1 in its ground state. As a consequence, its degeneracy comes from
the massless zero modes descending in Superstring Theory. The total number of degrees
of freedom is 256: 128 are bosonics, accounting for the degrees of freedom of fields and C
forms, while the other 128 are fermionic. So Sstat = log 256 and since it does not depend on
n1, in the large charge limit n1 →∞, it is zero at leading order reproducing the macroscopic
computation.

Introducing the 2-charge solution in Sec. 1.3.2, we have mentioned the fact that a singularity,
as the one it presents, located at a point is not allowed in String Theory. Thus when
considering possible microstates carrying the same charges as the D1-D5 system, we need to
change completely our point of view. In particular, these microstates, as suggested in [21, 2],
should be constructed from the S-dual system, that is the F1-P bound state. It consists of
a long single string closing on itself after n1 loops around the sphere S1. The momentum P
is bounded to the string, in the sense that it manifests as a travelling wave along y, carrying
nP units of momentum. This momentum can be distributed as transverse vibrations in a
lot of different ways, giving rise to a large degeneracy that can be computed in the small
coupling regime. To visualize the vibrations of the string we open it into a long string of
length 2πRn1 ≡ LT . The momentum is carried by transverse vibrations along T 4 and R4 (8
bosonic vibrations and 8 fermionic). Each harmonic of vibration of the string behaves like
a harmonic oscillator and each Fourier mode k has energy equal to momentum, given by:

ek = pk =
2π

LT
k (2.1)

The total momentum, instead, is:

P =
nP
R

=
2π

LT
(n1nP ) (2.2)

If we assume that there are mi units of the harmonic ki, each one carrying momentum (2.1),
then to obtain total momentum P (2.2), it is necessary that:∑

i

miki = n1nP (2.3)
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So to determine the degeneracy, it is sufficient to count in how many different ways one
can distribute n1nP harmonics. The number of partitions of the integer n1nP , is well
approximated, by the leading term of Hardy-Ramanujan formula:

N = e2π
√

n1nP
6 (2.4)

To reproduce the correct degeneracy, we need to remember that our fundamental string
vibrates along transverse directions bosonic and fermionic, so we have to consider them and
correct Eq. (2.4) by a factor α: N ∼ e2π

√
α
n1nP

6 .
To determine α, let us start considering nB bosonic directions. The momentum is distributed
among bosons as n1np

nB
and we have nB directions, then Eq. (2.4) gets modified as:(

e
2π
√
n1np
6nB

)nB
⇒ α = nB (2.5)

Since fermions count half of the bosons, the correct factor α is:

α = nB +
nF
2

(2.6)

In our case:

α = 8 + 4 = 12 ⇒ e2π
√

2n1nP (2.7)

And finally the entropy:

Sstat = logN = 2
√

2π
√
n1nP (2.8)

As announced before, we obtain a different result from the computation from the naive
geometry (1.46) for the reasons clarified before. In works as [21, 22] microstates geometries
describing a fundamental string vibrating have been constructed. They are found to be
smooth, horizonless, i.e. fuzzballs able to reproduce result (2.8). We will report some
explicit example in the next Chapter.

The last case we have to consider is the D1-D5-P system. To study its degeneracy it is
useful to work in the dual frame, where D1-D5-P system is mapped to the F1-NS5-P. To
start with consider only a NS5 brane, i.e. n5 = 1. The system is always described by a
fundamental string carrying momentum P as travelling wave, but this time it lies along the
NS5 and can vibrate only inside of it. Thus the allowed directions of vibrations are only the
4 ones belonging to the NS5 and transverse to the F1. So α changes as:

α = 4 + 2 = 6 ⇒ Sstat = 2π
√
n1nP

If now we allow n5 to be greater than one, considering the fact that the result should be
symmetric under the permutation of the charges due to dualities, we have that the entropy
for the three charge state is:

Sstat = 2π
√
n1n5nP (2.9)

which perfectly reproduces the Bekenstein-Hawking entropy (1.57). This is a remarkable
result, first derived by Stroeminger and Vafa in [23] for a slightly different system.

Similar arguments apply also on the CFT side, reproducing the microscopic computations,
as we will see in detail in Sec. 2.4

2.1.2 Microstates construction

Now we can return to the problem of how to construct 2-charge microstates. We know that
they should be solutions for a fundamental string with transverse vibrations (longitudinal
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vibrations of the fundamental string make no sense). Classically, these oscillations can be
parametrized through a function ~g(v), where ~g has components along directions transverse
to the string and we have defined v ≡ t+ y. The profile function ~g can not depend also on
u = t− y in order to preserve supersymmetry.

In the most general case, ~g has 8 components gA, with A taking value on T 4 × R4. We will
restrict to the case A = 1 . . . 4 or A = 1 . . . 4 plus a non trivial component along one of
the T 4 direction (in Ch.3), because in the duality frame, where the system is described by
a D1-D5 bound state, these solutions have rotationally invariance in the T 4.
The F1 string can have different strands and each one can carry a different vibration profile
g(s). The solution representing this system is [2]

ds2
string = Z−1

(
−dudv +Kdv2 + 2Aidx

idv
)

+
(
dxi
)2

+ (dza)
2

B = − 1
2 (Z−1 − 1)du ∧ dv + Z−1Aidv ∧ dxi

e2Φ = Z−1

(2.10)

where

Z = 1 +

n1∑
s=0

Q
(s)
1∣∣~x− ~g(s)(v)

∣∣2 , K =

n1∑
s=0

Q
(s)
1

∣∣∣~̇g(s)(v)
∣∣∣2∣∣~x− ~g(s)(v)
∣∣2 , Ai = −

n1∑
s=0

Q
(s)
1 ġ

(s)
i (v)∣∣~x− ~g(s)(v)

∣∣2
(2.11)

where dot indicates derivative with the respect to v.
In the "black hole limit", i.e. n1, nP → ∞ keeping g,R, V fixed, the sum over s can be
approximated by an integral:

n1∑
s=0

→
∫ n1

0

ds =

∫ 2πRn1

y=0

ds

dy︸︷︷︸
1/(2πR)

dy =
1

2πR

∫ LT

0

dy (2.12)

Finally, since the integrand functions depend only on v, we can further express the integral
as:

1

2πR

∫ LT

0

dv (2.13)

and the charges:

Q
(s)
1 → Q1

n1
(2.14)

In this limit, the general form of the solution (2.10) stays unvaried and only the functions
get modified as:

Z = 1 +
Q1

LT

∫ LT

0

dv

|~x− ~g(v)|2
, K =

Q1

LT

∫ LT

0

dv

∣∣∣~̇g(v)
∣∣∣2

|~x− ~g(v)|2
, Ai = −Q1

LT

∫ LT

0

dv
ġi(v)

|~x− ~g(v)|2
(2.15)

In order to obtain the D1-D5 bound state, we perform the chain of dualities in Sec.1.3.2,
remembering how charges change under these operations (B.14), thus:

Z → 1 +
Q′5
L

∫ L

0

dv

|~x− ~g(v)|2
≡ Z5 (2.16)

1 +K → 1 +
Q′5
L

∫ L

0

dv

∣∣∣~̇g(v)
∣∣∣2

|~x− ~g(v)|2
≡ Z1 (2.17)

Ai → −
Q′5
LT

∫ LT

0

dv
ġi(v)

|~x− ~g(v)|2
≡ Ai (2.18)
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(a) (b)

Figure 2.2: (a) Naive 2 charge geometry with a singularity at r = 0 (b) Fuzzball geometries of
2-charge D1-D5, the dashed line accounts for an area such that A

4G
∼ √n1n5.

where L = 2π
Q′5
R . Finally, the D1-D5 solution is:

e2Φ =
Z1

Z5
(2.19)

ds2 =
1√
Z1Z5

[
(dy +Bidxi)

2 − (dt−Aidxi)2
]

+
√
Z1Z5

(
dxi
)2

+

√
Z1

Z5
(dza)

2 (2.20)

where following [22] we have defined Bi ≡ Bti = Biy such that dB = − ∗R4 dA. We will
return to this solution, even if with a slightly different notation in Ch.3, where we will report
some examples.
The differences between the solution (2.20) and the naive geometry compared to the naive
geometry are shown in Fig. 2.2.
Let us look in detail to the behaviour of the D1-D5 geometry (2.20) for different values of
the parameters involved. Let us define |~x|2 = r2 and distinguish 3 different regions:

• r2 � Q1,5 ↔ asymptotically flat regime, in this limit

Z1 → 1, Z5 → 1, Ai → 0 (2.21)

so the metric (2.20) becomes:

ds2 ' −dt2 + dy2 +

4∑
i=1

dxidxi +

4∑
a=1

dzadza (2.22)

and we recover Minkowski space-time.

• r2 ∼ Q1,5 � |~g|2, so that1

Z1 → 1 +
Q1

r2
, Z5 → 1 +

Q5

r2
, Ai → 0 (2.23)

and the metric becomes exactly the same as the naive one (1.46).

• the most interesting region is the decoupling or near-horizon limit, which occurs
for |~g|2 � Q1,5 and r2 � Q1,5. It consists essentially in neglecting the asymptotically
flat part in Z1,5 (i.e. the factor 1). In this region thanks to the remaining dependence
on the shape of |g|, the presence of difference and diverse microstates appear.
In the decoupling region, we can further take the asymptotic limit, r2 � |~g|2, then

Z1 →
Q1

r2
, Z5 →

Q5

r2
, Ai → 0 (2.24)

and the metric:

ds2 ' r2

√
Q1Q5

(−dt2 + dy2) +

√
Q1Q5

r2

(
dxi
)2

+

√
Q1

Q5
(dza)

2 (2.25)

1Notice that Q1 = Q5
L

∫ L
0 dv

∣∣∣~̇g∣∣∣2
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and rewriting using polar coordinates for R4 and changing r → r̃ ≡ r√
Q1Q5

ds2 '
√
Q1Q5

(
−dt2 + dy2 +

dr̃2

r̃2

)
︸ ︷︷ ︸

AdS3 in Poincaré coordinates

+
√
Q1Q5 dΩ2

3︸ ︷︷ ︸
S2

+

√
Q1

Q5
(dza)

2

︸ ︷︷ ︸
T 4

(2.26)

with the radius RAdS = (Q1Q5)1/4 = RS3 .
Eq. (2.26) tells us that all fuzzball solutions are asymptotically AdS3 × S3 × T 4. The
existence of this limit motivates their study in the dual CFT.

To conclude we want to make a comment about the regularity of the solutions obtained
above. While the F1-P solution contains a physical singularity, it can be shown that in
the D1-D5 frame, where we define microstates, solutions are completely regular. So let us
concentrate on D1-D5 solutions defined by the fields (2.16)-(2.18). The potential source of
singularity are the points ~x→ ~g(v), defining a curve in R4. We will soon discover that this
is only a coordinate singularity.
In the curve ~x = ~g choose a point v0 and introduce a coordinate z to measure distances along
the curve, z '

∣∣∣~̇g(v0)
∣∣∣(v − v0). In the plane transverse to the curve define the coordinates

x⊥, then:

Z5 '
Q5

L

∫ +∞

−∞

dv

|x⊥|2 + z2
=

Q5

L
∣∣∣~̇g(v0)

∣∣∣
∫ +∞

−∞

dz

ρ2 + z2
=

Q5

L
∣∣∣~̇g(v0)

∣∣∣ πρ (2.27)

Z1 '
Q5

∣∣∣~̇g(v0)
∣∣∣

L

π

ρ
(2.28)

Az ' −
Q5

L

π

ρ
(2.29)

where we have used polar coordinates for the plane. From the expression for A and the from
the relation dB = − ∗4 dA, we get:

B = Q̃(cos θ − 1)dφ

where Q̃ ≡ Q5π
L . Now concentrate on the y − x⊥ part of the 2-charge metric (2.20):

ds2|y,x⊥ '
ρ

Q̃

[
dy − Q̃(1− cos θ)dφ

]2
+
Q̃

ρ

(
dρ2 + ρ2dθ2 + ρ2 sin2 θdφ2

)
(2.30)

which is the metric of a Kaluza-Klein monopole expanded around ρ ' 0. From KK monopole
theory, we know that the potential singularity at ρ = 0 is nothing more than a coordinate
singularity. We can easily show it looking the relevant part which can develop a singularity:

ds2 ' ρ

Q̃
dy2 +

Q̃

ρ
dρ2 ρ=r2

=
r2

Q̃
dy2 + 4Q̃dr2 = 4Q̃

(
dr2 +

r2

4Q̃2
dy2

)
(2.31)

the last one is the metric of a completely regular 2D plane after the identification of y

2Q̃
as

an angular coordinate, but this happens if and only if y has periodicity 4πQ̃. This condition
is trivially verified if one remembers:

Q̃ =
Q5π

L
=

Q5π

2πQ5/R
⇒ 4πQ̃ = 2πR (2.32)

Since the regularity requirement is satisfied, we can conclude that the y, ρ, θ, φ part of the
metric is regular. For what concern the t− z part we have:

ds2|t,z ' −
ρ

Q̃

(
dt+

Q̃

ρ
dz

)2

+
Q̃

ρ
dz2 = − ρ

Q
dt2 − 2dtdz (2.33)
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which is regular when ρ→ 0 and the same is true for the T 4 part.

So far we have shown that the D1-D5 solutions we have constructed have no singularity,
nor horizon (otherwise we will associate to them an entropy and they would be no more
microstates). Differently from the naive geometry, as shown in Fig. (2.2), these microstates
end in different caps according to the choice of the profile function ~g. To summarize different
microstates can be derived considering different profiles of oscillations of a F1-P system. For
a generic state it can be shown that the wavelength of vibration is [2]:

λ ∼ R
√
n1

nP

Due to the oscillations, the transverse coordinates undergo a change:

∆x ∼
∣∣∣~̇g∣∣∣λ =

∣∣∣~̇g∣∣∣R√n1

np
∼ ∆x ∼ R

√
QP
Q1

R

√
n1

np
∼
√
α′

where we have used QP ∼
∣∣∣~̇g∣∣∣Q1. The value of ∆x gives a roughly approximation of the

size of the region in which we are sensitive to the presence of different microstates. The
naive geometry is a good approximation as far as r >

√
α′ and for smaller values the effect

of oscillations start to manifest themselves. The value r =
√
α′ is represented in Fig.2.2 by

the dashed line and delimits a ball shaped region which gives the "size" of the bound state.
In order to compute the area of this ball, consider the expression for the area obtained in
Eq. (1.49) and evaluate it for r =

√
α′, then:

AE ∼
√
Q1QPRV4α

′1/2 ⇒ AE
4G10

∼
√
n1nP (2.34)

This result agrees with the microscopic entropy, up to an undetermined constant, which we
can not fix by this rough evaluation.

2.1.3 Summary and conclusion

We have shown that the microstates we have constructed so far for the 2-charge system are
horizonless and perfectly regular. The region where they differ from the naive geometry
presents a "fuzzball boundary" or stretched horizon satisfying a Bekestein-Hawking entropy
relation (2.34). In this way, SBH acquires a statistical connotation as the log of the number
of microstates.

In our derivation we have assumed that the quantum states of the string have a large
occupation number in each harmonic, and consequently they are well approximated by a
classical profile. Moreover, we have seen that our microstates are horizonless and the only
thing that can be interpreted as a horizon is the fuzzball boundary, depicted in Fig.2.2, by a
dashed line. However it is not a true horizon as in classical GR, providing a solution for the
information paradox. The absence of horizon, indeed, invalidates one of the fundamental
hypothesis Hawking has done in his derivation.

To conclude, remember that for the moment the Fuzzball proposal remains only a conjecture.
It succeeds to give a meaning to the microscopical entropy of the 2-charge microstates and
tries to give an answer to the information paradox, admitting that the emitted radiation
retains in some way the information relative to each microstate. At the same time, however,
the proposal is not totally exhaustive: for example, has not yet been able to give a complete
description of the 3-charge fuzzball microstates. As we will see in the next chapters only a
subclass of geometries has been found for the the 1

8 -BPS state, having a good description
in Supergravity. We will review the general expression of this subclass of geometries with 3
charges and try compute their Entanglement Entropy.

At this point it is useful to introduce the AdS/CFT correspondence. It provides a map
between geometries and CFT states, turning out to be a useful tool for degeneracy counting
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and for understanding more deeply the characteristics of microstates. It eventually reveals
very important to interpret the holographic EE.

2.2 AdS/CFT conjecture

Starting from the late 90th, it was proposed that there could exist a correspondence between
a d+1 dimensional AdS space-time, defined as the bulk, and a Conformal Field Theory (CFT)
in d dimensions living in its boundary. This proposal is know as AdS/CFT correspondence
and it is the most explicit and powerful instance of gravitational holography. This conjecture
was motivated mainly by two arguments:

• the number of degrees of freedom of a CFTd, measured by its entropy, goes like its
spatial volume, i.e. SCFT ∝ Vold−1. At the same time, we have observed that the
Bekestein-Hawking formula relates the entropy of BH to the area of the horizon. So,
if we consider a BH in d+ 1 dimension, its entropy is proportional to the area of the
boundary of a d dimensional region Σd, that is to say SBH ∝ Area(∂Σd) = Vol(Σd−1).
So we retrieve the same behaviour on the gravity side as well as on the CFT one.

• Another argument suggesting the existence of this correspondence follows from ’t Hooft
large N limit. ’t Hooft showed that when one considers a gauge U(N) theory, one can
make an expansion of the amplitudes for N → ∞ keeping g2N fix, where g is the
coupling constant of the Yang-Mills theory. It turns out that the different powers
of N correspond to the different topologies of Feynman diagrams and consequently
only certain graphs are not suppressed as N becomes large. The main contributions
are found to derive from planar graphs (those that can be drawn on a paper without
self-crossing). This type of expansion is very similar to the perturbative analysis of a
closed string theory.

Both these arguments suggest the idea of an intimate correlation between a gravity descrip-
tion and CFT. What one finds, then, is the two theory are related in such a way that they
are valid in opposite coupling regimes, i.e. when the gauge theory is strongly coupled, the
string one is weakly coupled and viceversa.

The groundbreaking work on AdS/CFT by Maldacena [24] concentrated, in particular, on
the equivalence between a four dimensional SU(N) super Yang-Mills theory and Type IIB
closed superstring theory defined on AdS5 × S5. Let us summarize briefly the main points,
just to provide a general idea.
In the original work [24] the correspondence is introduced as an open/closed string duality.
Let us consider N coincident D3-branes in ten dimensional type IIB string theory. They
can be viewed equivalently:

1. as the submanifold where open-strings can end and with which closed strings can
interact;

2. are solutions of closed superstring theory, in the sense that they create a background
where closed string can propagate

Now consider the low energy limit. Then the description

1. reduces now to two decoupled systems, closed strings propagating in flat space-time
and massless open strings attached to the D3-branes realizing (after quantization) a
N = 4 Supersymmetric Yang-Mills theory (SYM) with gauge group SU(N);

2. represents massless closed strings in a Type IIB supergravity background, described
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in general by the metric:

ds2 = Z(r)−1/2
3∑

µ=0

(dxµ)
2

︸ ︷︷ ︸
‖ to D3-branes

+Z(r)1/2
(
dr2 + r2dΩ2

5

)︸ ︷︷ ︸
⊥ to D3-branes

Z(r) = 1 +
4πgsN`

4
s

r4
≡ 1 +

R4

r4

(2.35)

The low energy limit is equivalent to the near horizon limit: so we perform an expansion
around r → 0 and introduce the variable z ≡ R2

r then:

ds2|nh ' R2 dz
2 + (dxµ)

2

z2
+ R2dΩ2

5 (2.36)

which is nothing than AdS5× S5 (both of radius R)

These observations lead to the correspondence

SU(N) SYM

gYM s.t. g2
YM = 4πgs

⇔
IIB on AdS5 × S5

(R/`s)
4

= g2
YMN

(2.37)

The two descriptions are tractable in two different regimes of the parameters, in particular:

• Type IIB becomes simple when R
`s
� 1 when it can be described as a supergravity

theory. However, also the effective coupling g2
YMN is large and consequently the gauge

theory is not tractable in this limit;

• in the opposite limit, i.e. g2
YMN � 1, SYM can be successfully treated perturbatevely.

From these observations, it seems that boundary and bulk descriptions can not be in general
tested simultaneously. It is generally true, except in certain special situations: for example
when we consider observables not depending on the effective coupling constant or preserving
some supersymmetries.
The correspondence between the gravity and the gauge theory is evident also when one looks
at the symmetries characterising these theories. Before concentrating on these symmetries,
let us make a brief comment on the SYM we are dealing with. The Yang-Mills SU(N)
theory, realized on the world-volume of D3-branes, has N = 4 SUSY, that is to say it
has 16 supercharges in D=4. Since it is also a conformal theory we need to add to them
other 16 superconformal charges, obtaining a total of 32 supercharges. The theory admits
an additional R-symmetry SU(4)R, where an R symmetry does non commute with the
supercharges. We can summarize the correspondence and the symmetries identifications as:

N = 4SYM ←→ IIB on AdS5 × S5

O(4, 2) conformal group O(4, 2) isometries of AdS5

16 SUSY+16 conformal charges 32 supercharges in the near horizon

SU(4) R symmetry SO(6) ' SU(4) S5 isometries

Schematically, the relevant aspects of this correspondence we need to retain are that the
boundary of AdS5 is R1,3 and here the dual CFT lives. In a CFT states and operators are
the same and they are related to fields in AdS, in such a way that the conformal dimension
of CFT operators corresponds to energy in AdS.

From its appearance the AdS/CFT correspondence has been a very appealing idea, which has
been extended beyond the case AdS5×S5 and which has found lots of possible applications.
In the next section, we will investigate the CFT describing our microstates, introducing a
“holographic dictionary” able to map gravity geometries to states in the dual CFT.
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Figure 2.3: Open strings attached to n1 parallel D1 branes and n5 parallel D5 branes. Open strings
modes give rise respectively to a U(n1) and U(n5) gauge theory.

2.3 The D1-D5 CFT

In Sec. 2.1.2 we have seen that for small r, in the decoupling limit, D1-D5 geometries are
asymptotically AdS3 × S1 × T 4. The AdS/CFT correspondence, then, suggests that there
should exist a dual Conformal Field Theory, a CFT2, carrying 8 supercharges and providing
an alternative description of the same system. This field theory is called D1-D5 CFT. We
will introduce it following mainly [25, 7, 20].

2.3.1 A general introduction

Before starting, remember that in Supergravity we have introduced the D1-D5 system as a
bound state of n1 D1 branes wrapped around the sphere S1 and n5 D5 branes extended in
T 4×S1. From this moment on, we will assume that the S1 radius R is very large compared
to the length of the T 4 (R� 4

√
V4), so that the effective description of our system is in two

dimensions.
Considering the D1-D5 system, we can take 2 different prospective: we can consider it as a
gauge theory or in a "branes within branes" description. Let us give more details.

Gauge Theory description

We know that open strings can start and end on the D-branes. In the case of two systems of
branes (D1 and D5 in our specific case), one has to consider open strings with both endpoints
on the same type of branes (let us indicate them has 1− 1 and 5− 5 strings) or one starting
and ending on different branes (1− 5 and 5− 1), as shown in Fig. 2.3.

• 5−5 case: open strings modes gives rise to a U(n5) gauge theory with 16 supercharges
in the 6 dimensional world-volume. Modes parallel to the brane represent U(n5) gauge
fields, while those transverse give adjoint scalars. A similar reasoning applies to 1− 1
open strings.

• 1− 5 and 5− 1 strings: in this case we are left only with 8 supercharges as we want to
describe a bound state of D1-D5 branes. So we expect that this type of string is the
one describing the states we are interested in.

Remember that we have assumed that the radius of the S1 is much larger that the length
of the T 4, thus we can dimensionally reduce our theory to 1+1 dimension (time t and
S1 direction y). The potential for this 2D theory presents two class of minima known as
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Coulomb and Higgs branch. The first one refers to the configuration in which the branes
separates in the non compact space breaking the gauge group. When they are coincident,
instead, we talk about the Higgs branch. This last one accounts for the bound states of the
D1-D5 branes and it is the one we are interested in.

Instantonic description

Another equivalent way to look at the the D1-D5 system is to consider D1-branes as in-
stantons of the D5-branes gauge theory. As we have already said, open string modes on n5

coincident D5-branes give rise to a U(n5) gauge theory, defined in the 5+1 worldvolume of
the branes and having 16 supercharges. Within this world-volume, the U(n5) SYM theory
admits instantonic solutions localized in T 4 but which can still maintain a dynamics along
S1 and such that break half of the original supersymmetries. These instantons can be iden-
tified with the D1-branes wrapping the y direction. So we can look at the brane bound state
as n1 strings of instantons of the U(n5) gauge theory, localized in T 4 and whose moduli
space we denote withMinst. Then we can describe D1-D5 states trough a 1+1 sigma model
with target spaceMinst. This is a N = (4, 4) SCFT whose central charge is related to the
dual AdS radius via the relation:

c =
3RAdS3

2G3
= 6n1n5 (2.38)

The identification of the moduli space is definitely non trivial. Since we have always in
mind to work with quantities protected by Supersymmetry, we can restrict ourselves to a
special point of the moduli space, the orbifold point. Here the target space becomes the
symmetrized product of N ≡ n1n5 copies of the T 4, i.e. Minst = (T 4)

N

/SN (SN is the group
of permutation and its presence determines the appearance of twisted sectors).
Summarizing, the sigma model at the orbifold point is:

(t, y)︸ ︷︷ ︸
R×S1

Σ−−−−→
(
T 4
)N

SN
(2.39)

and the theory is just a collection of 4n1n5 free bosons and 4n1n5 doublets of chiral and
antichiral fermions.

For the D1-D5 system, the correspondence is established between the near horizon limit of
D1-D5 geometries (Type IIB SUGRA compactified on T 4), which is asymptotically AdS3×S3

and the N = (4, 4) CFT2, living in the Anti de Sitter boundary. From the duality, we
expect that the 2 theories have the same symmetries. We need to say that in the near
horizon limit, the 8 supercharges of the D1-D5 bound states are enhanced to 16. A similar
situation happens for the CFT, the N = (4, 4) theory has only 8 supercharges, but since the
theory is conformal, we need also to consider the commutators of the supercharges with the
conformal transformations. These commutators give addition superconformal charges and
as a consequence SUSY is doubled. In the table below, we have summarized the main group
correspondences.
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AdS side CFT side

• SO(2, 2) isometry group
of AdS3, this can be written
as SO(2, 2) ' SL(2,R)L ⊗
SL(2,R)R. Where we have dis-
tinguished between right and left
accordingly to the fact that the
AdS Killing vectors can depend
either in the combination t− y or
t+ y.

• SL(2,R)⊗SL(2,R) globally de-
fined Virasoro algebra in 2D. In
2 dimensions, in general, the Vi-
rasoro generators Ln and L̄n are
infinite (n ∈ Z), but the globally
well-behaved subalgebras contains
only n = 0,±1.

• SO(4)E isometries of S3 • SU(2)L⊗SU(2)R ' SO(4) R-
symmetry. In our CFT we have
4 left and 4 right moving super-
charges, and the SU(2) group ro-
tates the charges in the same sec-
tor (they transform as a doublet).

• SO(4)I rotations of T 4 • SU(2)1 ⊗ SU(2)2 symmetry.

For what concerns the description of states in the 2 dual theories we refer to the next
section. Let us only anticipate that the asymptotically flat microstates are dual to states
in the RR sector. Fermions must be in the Ramond sector, i.e. they must be periodic in
the S1 direction, to reproduce flat space-time at infinity. In fact, in the Ramond sector
the vacuum energy is zero thanks to the fact that worldsheet susy is realised (i.e. every
fermion cancels exactly every boson). On the contrary, if we had antiperiodic fermions in
the gravity description, we would have found a non trivial vacuum energy and we would
have lost asymptotic flatness required for our geometries.

2.3.2 Orbifold Model for the D1D5 CFT

In the limit of a free field theory, the CFT is well described by a 2 dimensional sigma model
defined on R× S1, whose (T 4)

N

/SN .
Now we can define the field content of the theory. For each copy of the T 4 there are:

• 4 bosonic excitations (X), giving the position of the effective string on the torus;

• 4 left-moving fermions (ψ);

• 4 right-moving fermions (ψ̃)

where fermions can be periodic on S1 (R sector) or antiperiodic (NS sector). The central
charge is then c = 6 for each of the n1n5 copies.

We can classify the fields according to the representations of the symmetry group listed
above. Let us define the indices:

• α and α̇ referring to doublet of, respectively, SU(2)L and SU(2)R (α, α̇ = ±);

• A and Ȧ for SU(2)1 and SU(2)2 doublets;

• an index r to label the copy (r = 1 . . . , n1n5).

According to these classification, the fields content of the theory is:{
XAȦ

(r) (t, σ), ψαȦ(r) (t+ σ), ψ̃α̇Ȧ(r) (t− σ)
}

(2.40)

where we have defined σ ≡ y
R and from this moment on all the tilded quantities we will

refer to the right moving sector. Pictorially we can think of the CFT as a collection of n1n5

strings or "strands". The base space of the sigma model is a cylinder (σ ∼ σ + 2π), where
strings can be singly wound (untwisted sector), as in Fig.2.4(a) or can be attached together
in longer "component strings" (b) (twisted sector). The existence of untwisted and twisted
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(a)

k1 k2 k3

(b)

Figure 2.4: Untwisted (a) and twisted sector (b).

sector is due to SN , which can act mapping some copies of the T 4 into each other. The
untwisted sector defined by the condition:

XAȦ
(r) (t, σ + 2π) = XAȦ

(r) (t, σ) (2.41)

and we are left with n1n5 strands. Strings joined together, instead, form the twisted sector.
It can be defined, for example, by a condition:

XAȦ
r (t, σ + 2π) = XAȦ

(r+1))(t, σ) (2.42)

In general a component string can go around the cylinder ki times before closing to herself,
but if we have mi strands of such winding ki, they must satisfy the constraint:∑

i

kimi = N (2.43)

If we perform a Wick rotation (t → τ = i tR ), then, the cylinder is mapped to a complex
plane spanned by the coordinates

z = eτ+iσ, z̄ = eτ−iσ (2.44)

Consequently left moving fermions become holomorphic functions ψαȦ ≡ ψαȦ(z), while
right moving are antiholomorphic ones depending on z̄. Bosonic coordinates, in the end,
can be factorized as XAȦ(z) and XAȦ(z̄).
In addition, we know that each sector 2 realizes a N = 4 superconformal symmetry. At
a generic point in the moduli space, the current algebra is composed by the stress energy
current T (z), the supercurrents GαA(z) and the SU(2)L currents Ja(z) (a accounts for su(2)
generators: a = 1, 2, 3 or a = ±, 3). The corresponding modes are Ln, GαAn Jan . In principle
they generate an infinite dimensional algebra, but we are interested only on the globally
defined subalgebra, which consists of the generators annihilating the NS vacuum:{

L±1, L0, G
αA
± 1

2
, Ja0

}
(2.45)

It is worth mentioning that the eigenvalue of L0 gives the conformal dimension h and we
can further classify states according to the eigenvalues j3 of J3

0 and j of (Ja0 )
2.

2.3.3 Untwisted sector

The untwisted sector of the CFT is characterised by all k = 1. We will review schematically
the mode expansion of fields and currents and we will discuss the vacuum states together
with other interesting operators. We refer to [25] for a complete description. Only in the
end we will briefly make some comments about the twisted sector.

First of all we need to define how field boundary conditions change passing from the theory
defined on the cylinder to the one on the complex plane. While bosons keep the same
periodicity, fermions undergo a change 3:

2We will treat in details the left sector, but the same is true for the right one. It is sufficient to put a
tilde above all operators and functions and substituting z with z̄

3When one maps to the complex plane, there is a Jacobian factor that switches the sign so that periodic
fermions in the z-plane correspond to anti-periodic fermions on the cylinder and vice-versa
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cylinder C plane

R sector periodic antiperiodic
NS sector antiperiodic periodic

These periodicities justify the following mode expansions (we report only the left case, the
right one is analogous):

• for bosons

∂XAȦ
(r) (z) =

∑
n∈Z

αAȦ(r)nz
−n−1 (2.46)

• fermions in the R sector

ψαȦ(r) (z) =
∑
n∈Z

ψαȦ(r)nz
−n− 1

2 (2.47)

• fermions in the NS sector

ψαȦ(r) (z) =
∑

n∈Z+ 1
2

ψαȦ(r)nz
−n− 1

2 (2.48)

satisfying the following commutation relations:[
αAȦ(r)n, α

BḂ
(s)m

]
= εABεȦḂnδn+m,0δrs ,

{
ψ1Ȧ

(r)n, ψ
2Ḃ
(s)m

}
= εȦḂδn+m,0δrs (2.49)

Vacuum states and some important operators

In order to fully characterise a vacuum state, one needs to specify the states of bosons and
fermions, and each of these, by itself, is a direct product of the state in the left and right
sector.

• the vacuum state for bosons is |00〉(r) such that:
(
αAȦn

)
(r)
|00〉(r) = 0(

α̃AȦn

)
(r)
|00〉(r) = 0

∀n ≥ 0, ∀A, Ȧ

• vacuum state of fermions in the NS sector |0〉NS(r) are such that:
(
ψαȦn

)
(r)
|0〉NS(r) = 0(

ψ̃α̇Ȧn

)
(r)
|0〉NS(r) = 0

∀n > 0, ∀α, α̇, Ȧ

• Ramond vacuum state deserves a special mention. Because of the presence of zero
modes, there is not only one vacuum, but a set of degenerate vacua. In particular
among the zero mode we decide to take as creation operators ψ2Ȧ

0 (r) and ψ̃2Ȧ
0 (r), while

we choose 4 annihilation operators to be ψ1Ȧ
0 , ψ̃1Ȧ

0 ). In this way we can define, for
each copy, one of the Ramond vacua as |++〉R(r) through:{
ψαȦn |++〉R = 0

ψ̃α̇Ȧn |++〉R = 0
∀n > 0 , ∀α, α̇, Ȧ ∨

{
ψ1Ȧ

0 |++〉R = 0

ψ̃1̇Ȧ
0 |++〉R = 0

but

{
ψ2Ȧ

0 |++〉R 6= 0

ψ̃2̇Ȧ
0 |++〉R 6= 0

which carries the maximum possible eigenvalues for SU(2)L⊗SU(2)R symmetry. The
other vacua differer for the values of j3 and j̃3.
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Figure 2.5: Singly wound components strings with spins represented by arrows

To better characterise the degenerate vacua, let us define:

J+
(r) =

1

2
ψ1Ȧ

(r)εȦḂψ
1Ḃ
(r) (2.50a)

J−(r) = −1

2
ψ2Ȧ

(r)εȦḂψ
2Ḃ
(r) (2.50b)

J3
(r) = −1

2

(
ψ1Ȧ

(r)εȦḂψ
2Ḃ
(r) − 1

)
(2.50c)

(2.50d)

The mode expansion is:

J
(a)
(r) (z) =

∑
n∈Z

J
(a)
(r)nz

−(n+1) (2.50e)

and equivalently for J̃(r)(z̄).
Degenerate R-R vacua are obtained by the action of these operators on |++〉R(r) and are
classified according to the respective eigenvalues, i.e.

∣∣jR3 , j̃R3 〉 (jR3 and j̃R3 can take values
± 1

2 ≡ ±). In detail:

J−(r)0 |++〉R(r) = |−+〉R(r) (2.51a)

J̃−(r)0 |++〉R(r) = |+−〉R(r) (2.51b)

J−(r)0J̃
−
(r)0 |++〉R(r) = |−−〉R(r) (2.51c)

The last vacuum we consider is the one with jR3 = 0 = j̃R3 . Actually, there are other 3
bosonic RR vacua, which we neglect because they are not T 4-invariant. The state |00〉(r)
can be obtained from |++〉 with the action of another operator:

Oαα̇(r)(z, z̄) = − i√
2
ψαȦ(r) εȦḂψ̃

α̇Ḃ
(r) =

∑
n,m∈Z

Oαα̇(r)mnz
−(n+1/2)z̄−(m+1/2) (2.52)

In particular:

|00〉R(r) = O22̇
(r)00 |++〉R(r) (2.53)

In the pictorial representation of Fig.2.4, we can think about the ground states as singly
wound strings to which we assign a spin (Fig. 2.5).

Spectral flow

States carrying D1-D5 charges (in the near horizon limit) are RR ground states. Let us
consider a very specific example whose gravity dual will be derived in Sec. 3.2, starting from
the circular profile (3.9). At the orbifold point in CFT, this configuration corresponds to the
product of n1n5 |++〉1 states. The total state is an eigenstate of (J3, J̃3) with eigenvalues(
N
2 ,

N
2

)
.
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Consider the associated metric in the decoupling limit:

ds2
dec ' −

r2 + a2

√
Q1Q5

dt2 +
r2

√
Q1Q5

dy2 +

√
Q1Q5

r2 + a2
dr2+

√
Q1Q5

[
dθ2 + sin2 θ

(
dφ− dt

R

)2

+ cos2 θ

(
dψ − dy

R

)2
]

+

√
Q1

Q5
dŝ2

4 (2.54)

Perform the change of coordinates:

φ→ φ̃ ≡ φ− t

R
, ψ → ψ̃ ≡ ψ − y

R
(2.55)

under which the metric (2.54) becomes global AdS3×S3×T 4. In CFT the global AdS3×S3

metric corresponds to the NS-NS vacuum state |0〉NS . This coordinate change (2.55), which
notice it is non vanishing at the boundary of AdS, is defined to be, in the dual CFT frame,
a spectral flow. Spectral flow is a transformation mapping states from the R sector to the
NS one and viceversa.

Under spectral flow the modes of the operator change as:

L′n = Ln − αJ3
n +

cα2

24
δn0

J3′
n = J3

n −
cα

12
δn0

J±′n = J±n∓α

G±A′n = G±An∓α2

(2.56)

where α ≡ 2a+ 1 with a ∈ Z.
Consequently conformal dimension and J3 eigenvalue transform:

h′ = h+ αj3 + α2 c

24
(2.57)

j′3 = j3 + α
c

12
(2.58)

To pass from R to NS, α = 1, while α = −1 for the opposite case.

Chiral primaries

Operators as J (a) and Oαα̇ are chiral primary operators. A state |ψ〉 is a global primary if

L+1 |ψ〉 = 0 = GαA+ 1
2
|ψ〉 (2.59)

while it is chiral if, for every A

G+A
− 1

2

|χ〉 = 0 (2.60)

and antichiral,

G̃+A
− 1

2

|χ〉 = 0 (2.61)

Chiral primaries are states satisfying both these conditions. They are characterised by
having h = j3 = j (and in the right sector h̃ = j̃3 = j̃) if they are chiral, or h = −j3 for
antichiral.

In the untwisted sector chiral primaries are:

• h = j = 0 the NS vacuum |0〉NS , which is the lowest dimensional existing primary;

• two with h = j = 1
2 , ψ

+Ȧ
− 1

2

|0〉NS ;
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(a) (b) (c)

Figure 2.6: Various examples of state with different number of component strings. Arrows indiacate
spins. R states correspond to chiral primaries with: (a) ki = N, n = 1, (b) generic state, (c)[
ΣsiṡiN/m

]m
with all the component strings with the same diemnsion.

• J+
−1 |0〉

NS , which has j = h = 1.

States obtained starting from these chiral primaries and acting upon them with L−1, J
−
0

and G−A− 1
2

are called (super-)descendants.

To conclude, remember the action of spectral flow on the charge and dimension of a state
(Eq. (2.57)-(2.58)). Ramond vacua are one unit of spectral flow from chiral primary (h = j3)
states in the NS sector; or equivalently, negative one units of spectral flow from anti-chiral
primary (h = −j3) states. Therefore, there is a one-to-one correspondence between the R
vacua and the NS chiral primary states.

2.3.4 Twist operators

The orbifolding by the permutation group, generates ‘twist’ sectors, created by twist oper-
ators joining together some strings in a longer "component string". We will not be working
with the twist sector, let us only mention the fact that boundary conditions and mode ex-
pansions in the twisted sector become slightly more complicated with the respect to the
untwisted case.

Twist operators, denoted σk for bosons and Σk for fermions, take k single strands and sew
them together in a string of length k creating identifications between the different copies. As
a consequence, vacuum states are the same of the untwisted case, except for an additional
k label, while operator definitions receive a further sum over the number of the k strings
joined together.
For L and R bosons, NS and R fermions we have different twist operators. For bosons we
introduce the operators σXk and σ̃Xk , such that it creates a ground state of length k as;

lim
z→0

σXk (z)σ̃Xk (z̄)
(
⊗kr=1 |00〉(r)

)
= |00〉k (2.62)

In the NS sector, remembering that these fermions are scalar under SU(2)L ⊗ SU(2)R

lim
z→0

Σk(z, z̄)
(
⊗kr=1 |0〉

NS
(r)

)
= |0〉NSk (2.63)

and finally in the R sector:

lim
z→0

Σs1ṡ2k (z, z̄)
(
⊗kr=1 |++〉R(r)

)
= |++〉NSk (2.64)

where s1 and ṡ2 spin values are adjusted in order to conserve spin from the r.h.s. to the
l.h.s.
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Twist operators are very useful to visualize the D1-D5 system [20]. Indeed let us consider
the most generic NS chiral primary:

n∏
i=1

[
Σsiṡiki

]mi
,

n∑
i=1

kimi = N ≡ n1n5 (2.65)

The corresponding R ground states, represented in Fig.2.6, aremi multiwound string wrapped
ki times around the S1 for a total of N component strings. si and ṡi (si, ṡi = ±) refer to
the the (jR, j̃R) spin carried by the component string. For example in Fig. 2.6(c) it is
represented a state with m component strings with all the spin aligned and if we choose
s = ṡ = −, then the CFT state has a total spin j ≡ j = j̃ = m

2 , which is the maximum
value of j.
In the previous chapter, to construct D1-D5 geometries we started from the dual representa-
tion as a fundamental string F1 of total length LT carrying momentum P. This momentum
is represented as a quantum of vibration in the transverse direction (let us indicate with
i = 1, 2, 3, 4 the R4 coordinates) generated by the creation operator of the corresponding
oscillator αi−n. In general if the string has n1 units of momentum , the state of the string
can be written as:

[
αi1−k1

]m1 · · ·
[
αi1−kn

]mn |0〉 , n∑
l=1

klml = N (2.66)

Now comparing states (2.65) and (2.66), we can argue that if in the D1-D5 R ground state
we have a component string wrapping ki times, then in the F1-P system it is mapped to
a momentum mode α−kl of wavelength LT

kl
and the 4 spin polarization (sl, ṡl) = (±,±)

correspond to the the different i = 1 of the αi modes4.

2.4 Holographic dictonary

We have introduced the D1-D5 CFT with the aim to provide an alternative description
of microstate geometries. In particular, it is possible to write down a quite systematic
identification procedure linking 2 and 3- charge geometries to CFT states. These states are
superposition of vacua or of excitated vacua in the Ramond sector. In particular, since on
the gravity side we are considering extremal geometries, only one among the left and right
sector can be excited. We will always assume that the right movers stay unaltered in the
RR ground state, while we can act on the left sector.

To conclude this chapter, we want to show how the CFT description gives an alternative
perspective on the counting of microstates of Sec. 2.1.1. For the D1-D5 case, let us start
considering n5 = 1, then we can visualize the system as D1 branes living on the other
brane. We have seen that the state can be represented in the R sector as a collection of
component strings of different lengths. The extremal situations are n1 singly wound loops
or only one string wrapping n1 times. But also all the other configurations are allowed, they
must only respect the constraint that the total windings is n1. If now n5 becomes greater
than 1, the total number of strands become n1n5 and the D1 "fractionates". To understand
what we mean with "fractionate" suppose to have n1 = 1 D1 brane bound to n5 D5 branes.
Fractionation means that the D1 brane appear as n5 "fractional" D1 branes, each one with a
tension equal to τD1

n5
. Thus if we have n1 units of D1 charge, we have n1n5 units of fractional

D1 charge.
Also for n5 > 1 the logic stays the same, we need to look at all the possible configurations
of these strands to count microstates. This is equivalent to the number of partition of n1n5;

4One can show [20], [22] that the choice of all spins aligned corresponds to a fundamental string rotating
in a plane (as the simplest 2 charge case we have study). If spins are not aligned instead, the circle becomes
an ellipse.
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remembering that each component string has 16 possible R ground states: 8 bosonic and 8
fermionic, we obtain the same result as in Eq. 2.8, that the number of microstates is:

N = e2
√

2π
√
n1n5

In the 3-charge case, we have a system of D1 and D5 branes, giving a total winding number
of n1n5. We can arrange them in different configurations with the usual constraint that:∑

i

miki = n1n5 (2.67)

Then we want to add nP units of momentum and in principle we can just distribute it in any
configurations respecting Eq. (2.67). It can be shown [2], however, that in computing the
number of microstates the strand configuration which gives the major contribution to the
entropy (at least at leading order) is the one with only one component string with winding
k = n1n5 . In this extremal case each unit of momentum becomes an excitation of the string
at level n1n5 and if we consider all the nP units the effective level of excitation comes to be
n1n5nP giving the entropy (2.9):

S = 2π
√
n1n5nP (2.68)

In the next chapters we will look in detail to some of this 1
4 and 1

8 -BPS states. We will
see how the holographic dictionary one can construct, gives us a powerful tool to relate
the profile function and the 1-form appearing in the supergravity solutions to specific CFT
states. In particular one can connect the warp factors Zi to the VEVs of CFT anti-chiral
primary operators. In doing so, we will try to resume the main characteristics of this CFT
interpretation, but we refer to [7, 3, 26] for a more complete explanation.
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Chapter 3

Superstrata solutions

So far, we have introduced in general the idea behind the Fuzzball proposal and we have said
that the microstates, we are going to consider, are BPS states. On the gravity side they can
be described by solutions of ten dimensional Type IIB Supergravity, whose ten dimensional
space-time has the topology R1,4 × S1 × T 4.

The problem of constructing and classifying fuzzball microstates for the 2 charge extremal
D1-D5 system has been started by [20] and completed in later works by I.Kanitscheider,
K.Skenderis and M.Taylor. These 1

4 -BPS states are described by smooth classical solutions
of supergravity and they reproduce exactly the microscopic counting of microstates.
In this work, instead, we will investigate Superstrata, smooth and horizonless geometries
preserving 4 supersymmetries on ( 1

8 -BPS) and having the same charges as the D1-D5-P black
hole. These class of microstates is less understood and only partially classified, however it is
of great importance. In fact, in classical SUGRA the D1-D5-P system has a finite horizon,
representing a true BH, hence it is an ideal framework in which to examine the fuzzball
conjecture. To construct these new geometries, it was supposed, by analogy with the 2.charge
case, that at least a subclass of them, can be constructed as classical supergravity solutions.
Many works, such as [26, 27, 28, 3, 4], have been devoted to the construction of these new
geometries. They are found to have neither horizon nor singularity, to present an AdS throat
region and at spatial infinity they reduce to Strominger-Vafa BH.

After a general introduction on the supersymmetry equations these geometries need to sat-
isfy, we will review the construction of D1-D5 microstates as in Eq. (2.20) and starting from
them we will construct 1/8 BPS states. After having constructed them as solutions of IIB
supergravity, we will interpret these states in the light of the D1 D5 CFT. In the dual CFT,
the construction procedure [26] starts from a Ramond-Ramond ground state(RR) and we
show that new solutions can be obtained through the action of the generators of the Vi-
rasoro algebra or/and of the R symmetry one. Geometrically this procedure is equivalent
to very specific change of coordinates, which lead to new 3-charge gravity solutions called
super-descendants.

3.1 Supergravity equations

Assuming only invariance under T 4 rotations, in [27] the general 3-charge solution of type IIB
supergravity compactified on S1 × T 4 is derived. The metric , in string frame, representing
these solutions can be expressed as:

ds2
(10) = − 2α√

Z1Z2

(dv + β)

[
du+ ω +

F
2

(dv + β)

]
+
√
Z1Z2ds

2
4 +

√
Z1

Z2
dŝ2

4 (3.1)

45
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where ds2
4 and dŝ2

4 are respectively the Euclidean metric of the non compact spacial directions
(diffeomorphic to R4) and the flat metric on the torus; the time t and the S1 direction y are
expressed in terms of the null coordinates:

v =
t+ y√

2
, u =

t− y√
2

The other functions appearing in the metric are the 0-forms defined on R4 F and Z1, Z2, Z4.
α is defined as a combination of these functions:

α =
Z1Z2

Z1Z2 − Z2
4

Finally ω and β appearing in Eq.(3.1) are 1-forms in R4. For the microstates of interest, β
is assumed to be v-independent and to have self dual strenght dβ = ∗dβ (differential and
hodge dual are intended w.t.r. to ds2

4) and ds2
4 is taken to be the flat Euclidean metric.

Reduction on the T 4 and the passage to the Einstein frame, lead Eq. (3.1) to 6D metric:

ds2
6|E = − 2√

P
(dv + β)

[
du+ ω +

F
2

(dv + β)

]
+
√
Pds2

4 (3.2)

where we have called P = Z1Z2 − Z2
4 .

In order to complete the description of the Type IIB solution, we need to specify:

• the dilaton: e2φ = αZ1

Z2

• the Kalb-Ramond field, represented by the 2 form

B = −α Z4

Z1Z2
(du+ ω) ∧ (dv + β) + a4 ∧ (dv + β) + δ2

where we have introduced the 1-form a4 and the 2-form δ2 on R4

• the RR 0-,2- and 4-forms

C0 =
Z4

Z1

C2 = − α

Z1
(du+ ω) ∧ (dv + β) + a1 ∧ (dv + β) + γ2

C4 =
Z4

Z2
v̂ol4 − α

Z4

Z1Z2
γ2 ∧ (du+ ω) ∧ (dv + β) + x3 ∧ (dv + β)

where a1, γ2 and x3 are in order a 1,2,3-form and v̂ol4 is the torus volume form. As
an alternative to C2 one can consider its dual form C6

C6 = v̂ol4 ∧
{
−Z1

P
(du+ ω) ∧ (dv + β) + a2 ∧ (dv + β) + γ1

}
(3.3)

where a2 and γ1 are respectively a 1- and a 2-form.

Two important remarks: except for β and the R4 metric, all the other forms can depend
non trivially on v; to have supersymmetry the metric and all the functions presented above
have not to depend on u.

To preserve supersymmetry and to satisfy the equations of motion these geometries should
fulfill some constraints encoded in a set of equations derived in [27] and reported below. Let
us define D ≡ dR4 −β∧ d

dv and indicate with a dot the derivative with the respect to v, then

• Equations for Z1 and Z2 together with Θ1 ≡ Da1 + γ̇2 and Θ2 ≡ Da2 + γ̇1

D ∗4 DZ1 = −Θ2 ∧ dβ (3.4a)
D ∗4 DZ2 = −Θ1 ∧ dβ (3.4b)



3.2. 2-charge solutions 47

DΘ2 = ∗4DŻ1, Θ2 = ∗4Θ2 (3.5a)

DΘ1 = ∗4DŻ2, Θ1 = ∗4Θ1 (3.5b)

• Equations for Z4 and Θ4 ≡ Da4 + δ̇2:

D ∗4 DZ4 = −Θ4 ∧ dβ (3.6a)

DΘ4 = ∗4DŻ4, Θ4 = ∗4Θ4 (3.6b)

As we can see, equations for Zi and Θi are linear and homogeneous. Analogous expressions
exist for ω,F , they are still linear but not homogeneous. The non homogeneous terms are
quadratic in Zi and Θi:

Dω + ∗4Dω + Fdβ = Z1Θ1 + Z2Θ2 − 2Z4Θ4 (3.7)

∗4D ∗4
(
ω̇ − 1

2
DF

)
= ∂2

v(Z1Z2 − Z2
4 )−

(
Ż1Ż2 − Ż4

2
)
− 1

2
∗4 (Θ1 ∧Θ2 −Θ4 ∧Θ4) (3.8)

To construct 1
8 -BPS solutions, we will follow a solution generating technique [4, 3]. This

procedure allows to solve the BPS equations, dividing the problem in different steps:

• zero layer, i.e. solving equations for ds2
4 and β. In this work, we will use a simple

configuration in which ds2
4 is flat and β is v independent and with a selfdual strenght.

• first layer, finding the expressions for Z1, Z2 and Z4 and the respective Θ. We start
from the 2-charge microstate solution and add momentum charge. Exploiting the
linearity of the BPS equations, we can find a basis and express the Zi as a superposition
of this basis. Requiring the regularity of the solutions, then further constrains their
form.

• second layer, once know the expression for Zi and Θi, one can try to solve for ω and
F . This is in general, a very non trivial task.

3.2 2-charge solutions

In Sec. 2.1.2 we have already said that 2-charge microstates are constructed as vibrations of
a fundamental string, classically parametrized by a profile function ~g(v). Then a chain of S
and T duality maps the F1-P state to the D1-D5 one. We restrict to the subclass where A
takes values A = 1, . . . , 5, where the first 4 are the direction of R4 and the other one is the
direction of the T 4. In the D1-D5 frame this subclass has an invariance under T 4-rotations.

The simplest profile one can consider is the circular one:

g1(v) = a cos

(
2πv

L

)
, g2(v) = a sin

(
2πv

L

)
(3.9)

where L = 2πQ5

R and Q5 is the D5 charge. A more interesting example occurs when another
oscillation is turned on along the T 4 direction (which is singled out in the chain of T and S
duality).

g1(v) = a cos

(
2πv

L

)
, g2(v) = a sin

(
2πv

L

)
, g5(v) = − b

k
sin

(
2πkv

L

)
(3.10)
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In Appendix C we report the expression for the warp factors Z1, Z2, Z4 and of β and ω along
with some explicit derivations. The geometry associated with the profile (3.10) is:

ds2
(10) = −2

√
Z1Z2

Z1Z2 − Z2
4

(dv + β) (du+ ω) +
√
Z1Z2ds

2
4 +

√
Z1

Z2
dŝ2

4 (3.11a)

Z2 = 1 +
Q5

Σ
, Z4 = Rbak

sink θ cos(kφ)

Σ(r2 + a2)k/2
(3.11b)

Z1 = 1 +
R2

Q5


(
a2 + b2

2

)
Σ

+
b2

2
a2k sin2k θ cos(2kφ)

Σ(r2 + a2)k

 (3.11c)

β =
Ra2

√
2Σ

(
sin2 θdφ− cos2 θdψ

)
, ω =

Ra2

√
2Σ

(
sin2 θdφ+ cos2 θdψ

)
(3.11d)

ds2
4 =

Σ

r2 + a2
dr2 + Σdθ2 + (r2 + a2) sin2 θdφ2 + r2 cos2 θdψ2 (3.11e)

where the parameters a and b are related via:

a2 +
b2

2
=

√
Q1Q5

R
(3.12)

As expected for fuzzball microstates, for both cases presented:

• asymptotically, for large r, the ten dimensional metric reduces to R4,1 × S1 × T 4;

• in the asymptotic decoupling limit the metric tends to AdS3 × S3 × T 4.

The last thing we want to stress is that, as expected, these geometries have no horizon nor
singularity.

3.3 Solution generating technique

Among 3-charge microstates, we will focus our attention to superstrata solutions [3], which
are smooth microstate geometries with have the same charges as D1-D5-P black holes in
five dimensions. In the dual CFT, they were first derived in [26] as descendants of chiral
primaries .
Let us list the main point of the solution generating technique ([3, 4]) we are going to follow:

1. The starting point is the rotating 2 charge state (3.10) in the decoupling limit;

2. Then we add momentum while maintaining the BPS nature of the states. This is
achieved exciting only one sector, that is to say we act only in the left moving-sector,
keeping the right one untouched. Some intermediate steps are needed:

(a) Spectral flow from R to NS sector. To apply the solution generating technique of
[3], we need to work with NS states, so we have to go from the R ground state
to the NS sector, via de coordinate transformation (2.55). The result of spectral
flow is a chiral primary state in the NS sector (hNS = jNS and h̃NS = j̃NS).

(b) Chiral rotation. We can act on the chiral primaries with the generators of the
SL(2,R)L×SU(2)L algebra. On the gravity side their action is a diffeomorphism
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which is non trivial at the AdS boundary.

L0 =
iR

2
(∂t + ∂y) (3.13a)

L±1 = ie±i
√

2v
R

[
−R

2

(
r√

r2 + a2
∂t +

√
r2 + a2

r
∂y

)
± i

2

√
r2 + a2∂r

]
(3.13b)

J3
0 = − i

2

(
∂φ̃ + ∂ψ̃

)
(3.13c)

J±0 =
i

2
e±i(φ̃+ψ̃)

(
∓i∂θ + cot θ∂φ̃ − tan θ∂ψ̃

)
(3.13d)

They satisfy the usual algebraic relations:

[L0, L±1] = ∓L±1, [L+1, L−1] = 2L0[
J3

0 , J
±
0

]
= ±J±0 ,

[
J+

0 , J
−
0

]
= 2J3

0

The action of J0 corresponds to S3 rotations, while L generates conformal trans-
formation in AdS3.

NS states obtained by spectral flow have maximum angular momentum, so they
are annihilated by J−0 and L+1. The action of J+

0 and L−1, instead, is non trivial
and generates new states labelled superdescendants. To understand better, we can
look at this construction from the CFT point of view. As it will clarified later, in
the NS-NS sector the state related to Z4 is represented by an (anti)chiral primary
state, defined |00〉NSk . We can act on this m times with J+

0 (m ≤ k, m = k being
the maximum value of the angular momentum) and n times with L−1(we can act
as many times as we want). Then the corresponding super-descendants are:(

J+
0

)m
(L−1)

n |00〉NSk
spectral−−−−−→
flow

(
J+
−1

)m (
L−1 − J3

−1

)n |00〉Rk

(c) Inverse spectral flow. Using the inverse of (2.55) we bring the solution back to
the R sector in order to read again the metric in the original ansatz presented
before.

3. At the linearized level (in b) we can act with the infinitesimal transformations (3.13) to
get perturbatevely new solutions [29] and take a linear combinations of them to make
the superstratum. However it is possible using the linear structure of the equations
expleined above to promote the result to a non perturbative level.

In the next section we will see in more detail how this can be done through an explicit
example, following the procedure of [3] and [4]. In particular we will see that the
infinitesimal solutions for Z4 can be used directly for the finite case (arbitrary large
b) and how to solve the BPS equations to get the new smooth 6D metric removing all
the possible sources of singularities.

3.4 Constructing the solutions

Following the point (3) above, we can generate new solutions acting with L−1 or J3
0 on NS

states. At the linear order in b ds2
4, β, ω,F , Z1,2 do not receive corrections and they remain

the same as (C.3), (C.9), (C.11) and only Z4 and Θ4 changes. According to the technique
of [30], we can read new geometries, acting with the infinitesimal transformations (3.13) on
the scalar function C0 = Z4

Z2
= Ŷ , where

Y ≡ e−ikφ̃ sink θ
e−

ikt
R

(a2 + r2)
k/2

(3.14)
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Since at the linearised level Z2 does not change, then a change in Ŷ is equivalent to a change
in Z4.
We will concentrate only on descendants generated by the action of the SL(2,R) generator
[29] 1, they are obtained as:

(L−1) Ŷ =
kr

(a2 + r2)
k
2 + 1

2

sink θ
(
−e− iktR −ikφ̃−

i(t+y)
R

)
(3.15)

Iterating n times, remembering that we have defined
√

2v = t+ y and expressing the result
in the RR sector (so that ik

(
t
R + φ̃

)
= ikφ): k and n generic

Z4 = bR
∆k,n

Σ
e−iv̂k,n ≡ bzk,n (3.16)

Θ4 = −
√

2b∆k,ne
−iv̂k,n

[
i

(
nr sin θ − n Σ

r sin θ

)(
dr ∧ dθ

(r2 + a2)
cos θ +

r sin θ

Σ
dφ ∧ dψ

)
− n

(
dr ∧ dφ

r
− cot θdθ ∧ dψ

)]
≡ bϑk,n (3.17)

where

∆k,n =

(
a√

r2 + a2

)k (
r√

r2 + a2

)n
sink θ

v̂k,n = n

√
2v

R
+ kφ

We have verified that these field satisfy the BPS equation, in particular that Θ4 is self dual
with the respect to ds2

4 metric and that:

∗4DŻ4 = DΘ4

3.4.1 First layer of BPS equations

Exploiting the linearity of the first layer of BPS differential equations (3.4)-(3.6), i.e. the
conditions for Zi, we can take as Z4 and Θ4 a linear combination of the modes (3.16) and
(3.17):

Z4 =
∑
k,n

bk,n4 zk,n, Θ4 =
∑
k,n

bk,n4 ϑk,n (3.18)

Since the equations for the other Z are the same as the ones for Z4, we can think to expand
also these fields using the same modes:

Z1 =
Q1

Σ
+
∑
k,n

bk,n1 zk,n, Z2 =
Q5

Σ
+
∑
k,n

bk,n2 zk,n (3.19)

and analogously for the Θs.

Now, in order to extend these solutions not only to the infinitesimal case, but to the full
finite, non linear problem, some important remarks are needed.

• First of all, since the BPS equations are linear, the Zi and Θi obtained as superposition
of modes zk,n and ϑk,n remain solutions even when the bi coefficients are taken to be
finite.

1In the conventions of [3] and [4] we have put m = 0
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• We require that the expressions for ds2
4 and β do not change:

ds2
4 = Σ

(
dr2

r2 + a2
+ dθ2

)
+ (r2 + a2) sin2 θdφ2 + r2 cos2 θdψ2

β =
Ra2

√
2Σ

(sin2 θdφ− cos2 θdψ)

• The last step needed to construct the metric is solving the second layer of BPS equa-
tion the one for F and ω and requiring that the solution is regular and free from
singularities. It is found in [3], [4] that these requirements strongly constrain the form
of the bi coefficients and consequently of the Zi.

3.4.2 Second layer of BPS equations

Solutions for F and ω are not known in general and must be constructed case by case. It
can be shown ([3, 4, 26] ) that exact smooth solutions of the form (3.18), (3.19), constructed
from the 2-charge configuration (3.10), exist if:

• bk,n2 = 0, i.e. all the Z2 modes are trivial;

• one adjusts the coefficients bk,n1 and bk,n4 in such a way that the ω and F depend only on
the difference of modes (v̂k,n−v̂k′,n′). In fact solutions to Eq.s (3.7)-(3.8) will depend in
principle on both the sum and the difference of modes. However, solutions containing
the sum of modes become in general singular, thus it is necessary to rearrange the b1-
coefficients to cancel the terms containing these sums. This tuning of the coefficients
is known as coiffuring and it is a fundamental tool to guarantee the regularity of the
solution.

We now restrict to the one single mode case, that is to say we take only a single term in
the sums appearing in Eq. (3.18), 3.19. For this particular case, the result of coiffuring is

that Z1 depends on v̂2k,2n5 and bk,n1 =
(
bk,n4

)2

≡ b2 and, in this way, it is possible to solve
completely the second layer.
The complete ansatz for the single-mode superstratum is:

Z2 =
Q5

Σ
, Z1 =

Q1

Σ
+
b2R2

2Q5

∆2k,2n

Σ
cos v̂2k,2n, Z4 = Rb

∆k,n

Σ
cos v̂2k,2n (3.20a)

Θ1 = 0, Θ2 =
b2

2

R

Q5
ϑ2k,2n, Θ4 = bϑk,n (3.20b)

F1,n = − b
2

a2

(
1− r2n

(r2 + a2)n

)
(3.21)

ω1,n =
R√
2Σ

[
sin2 θ

(
a2 + b2

(
1− r2n

(r2 + a2)n

))
dφ+ a2 cos2 θdψ

]
(3.22)

where we have reported the solution for ω and F only for k = 1 and n arbitrary 2. We have
concentrated on this case because metric derived from this anstatz presents a remarkable
and very interesting property. Its reduced 3D metric in Einstein frame does not depend
on S3 coordinates. This characteristic is quite incredible and no other cases are known at
the moment. We will use this independence when we will compute the EE of this class of
solution in Sec. 4.2.

2A complete dissertation for generic k,m and n can be found in [5]
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3.4.3 Metric for k = 1 and arbitrary n

Let us recall the generic expression for the 6 dimensional metric after the reduction on T 4:

ds2
6 = − 2√

P
(dv + β)

(
du+ ω +

F
2

(dv + β)

)
+
√
Pds2

4

where

P ≡ Z1Z2 − Z2
4

Let us substitute the expression (3.21), (3.22) and Eq.(3.20a) for k = 1 and keep in mind
Eq. (3.12). Then we obtain:

P =
R2

2Σ2

(
2a2 + b2 − (1− F0)

b2a2

r2 + a2
sin2 θ

)
(3.23)

ds2
6|E = − dt2√

Q1Q5

Σ

Λ

(
1− b2

2a2
F0

)
+

dy2

√
Q1Q5

Σ

Λ

(
1 +

b2

2a2
F0

)
+

Σ√
Q1Q5

b2

a2Λ
F0dtdy

(3.24)

+
√
Q1Q5Λ

(
dr2

r2 + a2
+ dθ2

)
+

√
Q1Q5

Λ
sin2 θ

(
dφ2 − 2a2

R(2a2 + b2)
2dtdφ

)
(3.25)

+

√
Q1Q5

Λ
cos2 θF1

(
dψ2 − b2F02dtdψ + (2a2 + b2F0)2dydψ

R(2a2 + b2)F1

)
(3.26)

We have introduced the useful functions:

Λ ≡
√
PΣ√
Q1Q5

F1(r) ≡ 1− a2b2

2a2 + b2
r2n

(r2 + a2)n+1

F0(r) ≡ 1− r2n

(r2 + a2)n

Now we want to rewrite Eq. (3.24) in a convenient way, i.e. we want that the Einstein metric
in six dimensions takes the form3

ds2
6|E = gµνdx

µdxν +Gαβ(dyα +Aαµdx
µ)(dyβ +Aβνdx

ν) (3.27)

where µ and ν are indices such that at the boundary become coordinates of AdS3 (xµ =
{r, t, y}) while α and β of S3 (yα = {θ, φ, ψ}).

ds2
6|E = Λ

√
Q1Q5

dr2

r2 + a2
+ Λ

√
Q1Q5dθ

2 +

√
Q1Q5

Λ
sin2 θ

(
dφ− 2a2

R(2a2 + b2)
dt

)2

+

(3.28)
√
Q1Q5

Λ
cos2 θF1

(
dψ − b2F0dt+ (2a2 + b2F0)dy

R(2a2 + b2)F1

)2

+

√
Q1Q5

ΛR2(2a2 + b2)

{
− dt2

[
Σ

2a2 − b2F0

a2
+

4a4 sin2 θ

2a2 + b2
+

b4F 2
0 cos2 θ

F1(2a2 + b2)

]
+

dy2

[
Σ

2a2 + b2F0

a2
− cos2 θ

(2a2 + b2F0)2

(2a2 + b2)F1

]
+ 2dtdy(b2F0)

[
Σ

a2
− cos2 θ

2a2 + b2F0

(2a2 + b2)F1

]}
From this expression we can read directly:

Gαβ =

Λ
√
Q1Q5 0 0

0
√
Q1Q5
Λ

sin2 θ 0

0 0
√
Q1Q5
Λ

F1 cos2 θ

 , detGαβ = (Q1Q5)3/2F1

Λ
sin2 θ cos2 θ

3This form of the metric will be useful to Entanglement Entropy computation of Ch. 5.
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Aφt =
2a2

R(2a2 + b2)
; Aψt =

b2F0

R(2a2 + b2)F1
; Aψy =

2a2 + b2F0

R(2a2 + b2)F1

Finally we reduce on the S3 finding the 3D Einstein metric, which will be crucial to the
Entanglement Entropy computations of Ch.4 :

g̃Eµν = gµν
detGαβ

detGαβ |r→∞
(3.29)

g̃Eµνdx
µdxν =

√
Q1Q5

(r2 + a2)2

[
r2 +

R2a4

Q1Q5

(
1 +

b2

2a2
F0

)]
dr2 −

r2
(

1− b2

2a2F0

)
+ R2a4

Q1Q5√
Q1Q5

dt2

(3.30)

+
r2
(

1 + b2

2a2F0

)
√
Q1Q5

dy2 +
b2

a2

r2F0√
Q1Q5

dtdy

3.5 CFT dual states

In order to understand better what the geometries we have constructed are, it can be useful
to give their description in the dual D1-D5 CFT.

3.5.1 1
4
-BPS states

According to the holographic dictionary, 2-charge microstate geometries are represented at
the orbifold point in the R sector by a collection of Nk strands of winding k, we will denote
with |s〉k (where s = (j3, j̃3) = (0, 0) (±,±)). Hence a generic ground state ψ{N(s)

k }
is

specified by the partition of {N (s)
k } satisfying the usual constraint:∑

k,s

kN
(s)
k = N (3.31)

So

ψ{
N

(s)
k

} ≡∏
k,s

(|s〉k)N
(s)
k (3.32)

These states are, by construction, eigenstates of the zero modes of J3 =
∑N
r=1 J

3
(r) and

J̃3 =
∑N
r=1 J̃

3
(r) with eigenvalues

∑
k,s sN

(s)
j .

A generic geometry is dual to a superposition of such R ground states and from the gravity
side, the D1-D5 state is specified by the profile functions gi(v), i = 1, · · · , 5. This suggests
the existence of a correspondence between RR states and profile functions. The holographic
recipe fixes the nature of this correspondence, after Fourier expanded the gi(v):

• the five i components of gi are related to the 5 possible spin configuration |s〉 =
|00〉 , |++〉 , |−+〉 , |+−〉 , |−−〉;

• the length of the strands is determined by the harmonic number in the Fourier expan-
sion;

• finally the number of each type of strands depends on the magnitude of the harmonic
mode



54 3. Superstrata solutions

In particular,

g1(v) + ig2(v) =

∞∑
k=1

1

R

√
Q1Q5

N

(
A

(++)
k

k
e

2πik
L v +

A
(−−)
k

k
e−

2πik
L v

)
(3.33)

g3(v) + ig4(v) =

∞∑
k=1

1

R

√
Q1Q5

N

(
A

(+−)
k

k
e

2πik
L v +

A
(−+)
k

k
e−

2πik
L v

)
(3.34)

g5(v) = − Im

( ∞∑
k=1

1

R

√
2Q1Q5

N

A
(00)
k

k
e

2πik
L v

)
(3.35)

where Ak is a dimensionless parameter satisfying the condition:∑
k,s

∣∣∣A(s)
k

∣∣∣2 = N (3.36)

and where we have express explicitly the (J3, J̃3) values for each A(J3,J̃3).
From the expressions (3.33)-(3.35), we understand that, given set of Fourier coefficient
{A(s)

k }, it specifies a profile, the profile determines the geometry according to Eq.(C.1a)
and finally the CFT state dual to the geometry is given by the superposition:

ψ
({
A

(s)
k

})
=

′∑
{
N

(s)
k

}
∏
k,s

A
(s)
k

N
(s)
k

· ψ{
N

(s)
k

} =

′∑
{
N

(s)
k

}
∏
k,s

(
A

(s)
k |s〉k

)N(s)
k

(3.37)

where the prime over the sum reminds us the constraint (3.31).
However the only superposition giving a state well described in Supergravity, is the one with
average numbers of strands N̄ (s)

k � 1. The average number, then, is related to the Fourier
coefficient via:

N̄
(s)
k =

∣∣∣A(s)
k

∣∣∣2
k

(3.38)

In the limit N̄ (s)
k � 1, the sum in Eq. (3.37) is peaked around this average value, thus we

can neglect the sum and consider the state as the simple product of the angular momentum
eigenstates.

According to this picture in terms of strands, we can visualize the 1
4 BPS states, constructed

explicitly in Sec. 3.2, as depicted in Fig. 3.1. In particular the profile (3.9) corresponds to
the state with N single strands (Fig. 3.1a), each one with the maximum angular momentum
(+,+). The total system is a Ramond ground state with j = j̃ = n1n5

2 and h = n1n5

4 = h̃.
Profile (3.10) has, in addition to strands of length one, another type of strands with quantum
number (0, 0) and length k. The number of strands (+,+) is proportional to a2, while b2

2k
counts the number of second type strands4. Explicitly the geometry described by Eq. (3.11a)
can be associated to a CFT state, given by the coherent superposition of N (00)

k ≡ p |00〉k
and N (++)

1 |++〉1 (where in order to satisfy Eq.(3.31) N (++)
1 = N − kp)

|Ψ〉 =

N/k∑
p=1

(
A

(++)
1 |++〉1

)N−kp (
A

(00)
k |00〉k

)p
(3.39)

The correspondence goes further: through an expansion in spherical harmonics of the Zi
and computing the expectation values of some specific chiral primary operators in CFT,

4To be precise, one should consider coherent states, summing over all possible configurations. However,
as previously said, since we are working in the limit of N(s)

k large, the sum is peaked over the average number
which is determined by the amplitude of the Fourier coefficients.
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(a) Eq. (3.9) (b) Eq. (3.10)

Figure 3.1: Types of strands in the CFT correspondind to the analysed profiles

it is possible to relate directly the gravity parameters appering in the Zi to the Fourier
coefficients Ai. We will not treat this topic here and we refer for example to [31] for details.
We report only the result for our example, in this case we have:A

(++)
1 = R

√
N

Q1Q5
a

A
(00)
k = R

√
N

2Q1Q5
bk

(3.40)

In the limit N (s)
k large

∣∣∣A(++)
1

∣∣∣2 and
∣∣∣A(00)

k

∣∣∣2/k count, respectively, the number of |++〉 and
|00〉k states.

3.5.2 1
8
-BPS states

The holographic dictionary for 1
8 -BPS states is less understood than the previous one.

As we have done in the gravity framework, we want to construct these 3 charge geometries
starting from 1

4 states. The ground state we start with (in the approximation of N (s)
k large)

is the product of |++〉1 and |00〉k states. To increase by one the number of charges we
can act n times, in the NS sector, with the operator (L−1 − J3

−1) on |00〉k. The result is
adding nP units of momentum to the state but no angular momentum. The momentum nP
is generally defined in the R sector to be nP = hR − h̃R.

A generic 1
8 -BPS will be a superposition:

ψ(A1, Bk,n) =
∑

N1,Nk,ns.t.(3.43)

AN1
1 (Bk,n)Nk,nψN1,Nk,n (3.41)

ψN1,Nk,n = (|++〉1)
N1

((
L−1 − J3

−1

)n
n!

|00〉k

)Nk,n
(3.42)

with the constraint:

N1 + kNk,n = N (3.43)

However, since we work in the N large limit, we can neglect the sum and considering only
the saddle points values for N1, Nk,n [4]:

N̄1 = |A1|2, kN̄k,n =

(
n+ k − 1

n

)
|Bk,n|2 (3.44)

where the CFT dimensionless coefficients A and B are related to the Supergravity variables
a and bk,n4 through:

|A1| ≡= R

√
N

Q1Q5
a, |Bk,n| ≡= R

√
N

Q1Q5

(
n+ k − 1

n

)−1

bk,n4 (3.45)
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Knowing the average number N̄k,n we can read directly the total momentum charge: since
each |00〉k strand carries one unit of momentum, it is given by n times the average number:

np = nN̄k,n =
R2N

Q1Q5

n

2k

(
n+ k − 1

n

)−1 (
bk,n4

)2

(3.46)



Chapter 4

Entanglement Entropy

4.1 A general introduction

Entanglement Entropy (EE) is a very useful quantity when we want to investigate the
properties of a given quantum field theory. In this chapter we want to review the basic ideas
of what EE is and give a description from different view points, quantum mechanics, QFT
and in the end we will give a holographic interpretation.

4.1.1 Basic definitions and properties

Let us start from an example: consider a quantum mechanical system in a pure state |Ψ〉,
then its density matrix is:

ρtot = |Ψ〉 〈Ψ|

For the total system one can define the von Neumann entropy as:

Stot = −trρtot log ρtot

This quantity is trivially zero for a pure state, but imagine, now, to divide the system into
two subsystems A and B. We make this split in such a way that the total Hilbert space can
be written as a direct product: Htot = HA⊗HB . Then, we can introduce a reduced density
matrix for the subsystem A, tracing over B degrees of freedom:

ρA ≡ trBρtot

and equivalently for B. With these few definitions one is already able to introduce the notion
of entanglement entropy(EE): the EE of the subsystem A is given by the von Neumann
entropy of the reduced density matrix :

SA = −trA log ρA (4.1)

Note that even if the initial state is a pure one, in general the reduced density is not, so SA
is in principle different from zero.

In order to clarify better these ideas let concentrate on a pure state |Ψ〉 of the form:

|Ψ〉 =
∑
i,j

cij |i〉A ⊗ |j〉B

where |i〉A and |j〉B are respectively a base for HA (of dimension dA) and HB (dimension
dB). According to the form of the coefficients matrix ci,j , two different types of states can
exist:

57
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• separable state ⇔ |Ψ〉 = |Ψ〉A ⊗ |Ψ〉B , i.e. cij factorize as cij = cAi c
B
j . In this case

also the reduced density matrix is that of a pure state and EE vanishes (SA = 0);

• entangled state ⇔ cij 6= cAi c
B
j , then the state can not be written as a product. In

this case when we trace out the degrees of freedom of the subsystem B we are left with
a reduced density matrix ρA of a mixed state, so its EE is now non trivial.

From this simple example, it is clear that EE measures how much a given state differs
from a separable one, or equivalently how much is entangled with another. It goes from
zero (separable state) to its maximum SmaxA = log(min(dA, dB)), when a given state is a
superposition of all possible quantum states with an equal weight [32].
Consider for instance a system of two particles A and B of spin 1/2, their Hilbert space
being spanned by HA,B =

{
|+〉A,B , |−〉A,B

}
. Suppose the state is an entangled one:

|Ψ〉 =
1√
2

(|+〉A |−〉B − |−〉A |+〉B)⇔ ρtot = |Ψ〉 〈Ψ|

ρA = 〈+|B ρtot |+〉B + 〈−|B ρtot |−〉B

=

(
1
2 0
0 1

2

)
From the reduced density matrix we can finally compute the EE:

SA = −tr
[(

1
2 0
0 1

2

)(
− log 2 0

0 − log 2

)]
= log 2

This result tells us that the state |Ψ〉 is maximally entangled, since it saturates the upper
bound for dA = dB = 2.

The Entanglement Entropy is characterised by some properties:

• for a pure state the EE of a subsystem A and its complement B is the same SA = SB .
It is not true if the state is mixed;

• subadditivity, given two disjoint systems A and B

SA + SB ≥ SA∪B

• strong subadditivity for any three disjoint systems A,B and C

SA∪B∪C + SB ≤ SA∪B + SB∪C

SA + SC ≤ SA∪B + SB∪C

Before going on with the derivation of EE in QFT, we want to use the concepts and the
properties just introduced, to review the Mathur argument, cited in Ch. 1, concerning the
failure of small corrections as a solution of the information paradox. In particular in [33]
he shows, using strong subadditivity, that small corrections to the leading order Hawking’s
computations can not solve the problem and only order unity modifications could fix the
paradox.

Let us consider the creation of a black hole from matter collapsing in a semiclassical approx-
imation, then gravity background is Schwarzschild BH:

ds2 = −
(

1− 2M

r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2
2

while the general state of this system is a quantum one:

|Ψ〉 ≈ |ψ〉M ⊗ |ψ〉pair (4.2)
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N

Sent

N

Sent

Figure 4.1: Entanglement entropy: for a body with its radiation rises and then falls, for a BH with
Unruh vacuum rises monotically

Particle pairs created from the vacuum are in an entangled state. The pair is composed by a
particle outside the horizon, which can escape to infinity and we will call b and the another
one, we denote with c, which is inside the horizon and can fall in it. |ψ〉M represents the
matter, which is far away from the created quanta.
For each time t, a pair is created. The form of the state is assumed to be:

|ψ〉pair =
1√
2

(
|0〉cN+1

|0〉bN+1
+ |1〉cN+1

|1〉bN+1

)
(4.3)

Let us denote |ΨM,c, ψb(tN )〉 the generic state at the time tN , when N pairs have been
generated. At the following step another pair is added and if we assume that all the created
couples have the same form (4.3), then:

|ΨM,c, ψb(tN+1)〉 = |ΨM,c, ψb(tN )〉
|0〉cN+1

|0〉bN+1
+ |1〉cN+1

|1〉bN+1√
2

(4.4)

Since particles bi are entangled with the ci’s, at any step we can define the Entanglement
entropy of the state as:

SEE ≡ −trb (ρb log ρb) (4.5)

We have seen that for an entangled state S = log 2. At each step a new pair appears, the
particle created earlier move away from each other and from the region of production. Then
the EE for N pairs is:

SEE(tN ) = N log 2 (4.6)

Notice that the entropy of our system keeps rising monotonically with N . This is a char-
acteristic of BH radiation, which is completely different from the common behaviour under
evaporation of a normal body. The latter, as shown in Fig.4.1, has an Sent, which rises and
finally returns to zero.

Now we want to deform the leading state (4.4) by a small perturbation. In the simplest case,
this can be done simply considering a slight modification of (4.3) and (4.4) and specifying
what we mean for a small correction. So first of all, let us introduce two orthonormal basis
ψi for the M and c quanta and χi for the b:

|ΨM,c, ψb(tn)〉 =
∑
i

Ciψiχi (4.7)

The expression of the entropy thus changes as:

SEE(tN ) = −
∑
i

|Ci|2 log |Ci|2 ≡ SN (4.8)
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Now assume that time evolution does not affect the bi created at earlier times. It is reason-
able since they are far away from the hole, but changes the form of ψi. So at time tN+1, we
have:

χi(tN+1) = χ(tN ) (4.9)

ψi(tN+1) = ψ
(1)
i S(1) + ψ

(2)
i S(2) (4.10)

where we have introduced the orthonormal vectors:

S(1) =
|0〉cN+1

|0〉bN+1
+ |1〉cN+1

|1〉bN+1√
2

S(2) =
|0〉cN+1

|0〉bN+1
− |1〉cN+1

|1〉bN+1√
2

Consequently the state becomes:

|ΨM,c, ψb(tN+1)〉 = S(1)
∑
i

Ciψ
(1)
i χi︸ ︷︷ ︸

Λ(1)

+S(2)
∑
i

Ciψ
(2)
i χi︸ ︷︷ ︸

Λ(2)

(4.11)

Assuming normalization of |Ψ〉, then:

||Λ(1)||2 + ||Λ(2)||2 = 1 (4.12)

A direct comparison between the state (4.4) and (4.11) shows the identification at leading
order:

ψ
(1)
i = ψi, ψ

(2)
i = 0

Now we can define a small deformation: a correction is small if:

||Λ(2)|| < ε, ε� 1 (4.13)

The interpretation of this requirement is clear: ||Λ(2)|| small means that the probability to
find the state of created pair in S(2) is much less than unity and the most probable state
remains the original one S(1). If a deformation does not satisfies (4.13), instead, we will call
it an "order unity" correction.

Once defined what we mean for small corrections, we want to prove that under this as-
sumption, the entanglement of the b quanta with those in the black hole increases at
each stage of time evolution. For ease of notation let us denote {b} ≡ {b1, . . . , bN} and
(M, {c} ≡ {c1, . . . , cN}). Differently from the leading order, now the pair created at time
tN+1, i.e. (cN+1, bN+1), can interact weakly with (M, {c}). The statement we want to prove
is that: supposed that the {b} quanta has an entropy SN at time tN and that the new
pair generated at tN+1 differers from Hawking state (4.4) only by a small correction (4.13),
the entropy of emitted quantity S({b} + bN+1) is non decreasing. In order to prove it 3
intermediate passages are necessary, we summarize them below and collect their proofs in
Ap. (A):

1. the entanglement of (cN+1, bN+1) with the rest of the system S(cN+1, bN+1) is bounded
by ε

S(cN+1, bN+1) < ε

2. S({b}, cN+1, bN+1)) ≥ SN − ε

3. S(cN+1) > log 2− ε
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To prove our statement, we need only one version of the strong subadditivity theorem:

S(A+B) + S(B + C) ≥ S(A) + S(C) (4.14)

So we set A = {b}, B = bN+1 and C = cN+1, then, exploiting the relations obtained above,
(4.14) reads:

S({b}+ bN+1) ≥ SN + S(cN+1)︸ ︷︷ ︸
<log 2−ε

−S(cN+1, bN+1)︸ ︷︷ ︸
<ε

(4.15)

S({b}+ bN+1) > SN + log 2− 2ε (4.16)

We have proven that if corrections are small in the sense of (4.13) then, at each step of the
evolution, the entropy has to increase. Consequently, it fails the belief that small departures
from the leading state (4.4) can change Hawking’s conclusions and solving the information
paradox. Thus, if we wish the entanglement to be zero the created pairs should change to a
state quasi-orthogonal to the semiclasically expected one, that is to say that we need some
"order unity" corrections.

Let us now return to the description of Entanglement Entropy in QFT and in gravity via
the AdS/CFT.

4.1.2 Entanglement Entropy in QFT

We can define EE also for Quantum Field Theory. In d + 1 dimension [6], we consider as
a subsystem a d dimensional submanifold A, with boundary ∂A. Since the EE is always
divergent in a continuum theory, we need to introduce an UV cut-off a. Then, it can be
proved that the EE takes the general form:

SA ∝
Area(∂A)

ad−1
+ subleading term

This simple area law does not always describe efficiently EE in generic situations and suffers
from different corrections according to the system one wants to describe. However, written
in this form, it shows a strong resemblance with Bekenstein-Hawking entropy SBH and it
was exactly this similarity that originally motivated research on entanglement entropy and
its possible relation with SBH , even though this analogy soon after turns out not to be
completely correct.

In QFT Entanglement Entropy is usually computed through a technique known as replica
trick [34] (in the following we will assume to work with Euclidean time). The main idea
of this method is to consider n fictitious copies of our original theory, then it is possible to
compute the nth power of ρA (ρnA) and express the usual EE as:

SA = lim
n→1

logTrA (ρnA)

1− n
(4.17)

= − ∂

∂n
logTrA (ρnA)

∣∣
n=1

(4.18)

where in the last passage we have used the de l’Hôpital theorem and the normalization
TrAρA = 1.1

In analogy with QM, in QFT we start considering a complete set of operator φ̂(t, ~x), whose
eigenvectors and eigenvalues are determined via φ̂(0, ~x) |φ0(~x)〉 = φ0(~x) |φ0(~x)〉. Then given

1This expression is equivalent to eq.(4.1): let us call λi the eigenvalues of the reduced density matrix.
By definition logTrA

(
ρnA
)

= log
(∑

i λ
n
i

)
, so

∂

∂n
log

(∑
i

λni

)∣∣∣∣∣
n=1

=
1∑
i λ
n
i

∣∣∣∣
n=1

∑
i

λni log λi
∣∣
n=1

=
1∑
i λi︸ ︷︷ ︸
1

∑
i

λi log λi = Tr (ρA log ρA)
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(a) (b)

Figure 4.2: (a) Reduced density matric ρA [32]. (b)Replica trick for a single interval region. The
separated sheets represnt different copies.

a state |Ψ〉, the functional Ψ [φ0(~x)] = 〈φ0(~x)|Ψ〉 corresponds to the usual wave function in
QM. We can define the partition function via path integral as:

Z =

∫
Dφ0 〈Ψ|φ0〉 〈φ0|Ψ〉 (4.19)

Now suppose to divide the system into two subsystems A and B, such that we will call φB
the field with support only on the region B and φA the field with ~x ∈ A. The reduced
density ρA is obtained tracing out the B degrees of freedom:

ρA =
1

Z

∫
Dφ
〈
φB
∣∣Ψ〉 〈Ψ∣∣φB〉

The values ρabA of the reduced density matrix, once specified the boundary conditions for
φA(t = 0−, ~x) = φAa and φA(t = 0+, ~x = φAb ),

ρabA =
〈
φAa
∣∣ ρA ∣∣φAb 〉 =

1

Z

∫ t=+∞

t=−∞
Dφe−SE [φ]

∏
~x∈A

δ
(
φ(0+, ~x)− φAb (~x)

)
δ
(
φ(0−, ~x)− φAa (~x)

)
(4.20)

SE being the Euclidean action. In Fig. 4.2(a) we report a pictorial representation of the
reduced density matrix: if we think of our space-time as a plane of coordinates t and ~x, then
integrating out the B degrees of freedom can be viewed as sewing together all the ~x 6∈ A,
while in correspondence of ~xA there are cuts (we have assumed that the region A is a single
interval).
Replica trick consists in making n identical copies, labelled by an index j, 1 ≤ j ≤ n and
then compute the trace sewing them together along the cuts in such a way that φbj = φaj+1

and identifying φn at t = 0+ with φ1 at t = 0−. This procedure is depicted schematically in
Fig. 4.2(b). We define Zn the partition function of the surface constructed by the n copies,
then the trace is:

TrρnA =
Zn
Zn

(4.21)

where Zn is the nth power of the original partition function.

In general it remains difficult to compute TrρnA, but in the case of 2 dimensional CFT there is
a way to rewrite eq.(4.21), making computation easier. In particular, suppose that we want
to compute the EE for a single interval A of length l in a state |s〉 using the replica trick.
We have learnt that we need to consider n copies of the CFT and it is necessary to glue
them together imposing that the fields φk (k = 1, 2, · · · , n), defined on every sheet, satisfy
specific boundary conditions. For CFT2 it can be shown [35] that the surface constituted
by the n copies can be mapped to the complex plane and here we can define some local
operators, known as twist fields. These fields are related to the invariance of the theory
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under exchange of the copies. So we can introduce two twist fields associated to the opposite
cyclic permutation:

Tn, for the permutation i→ i+ 1modn (4.22)
T−n, for the permutation i+ 1→ imodn (4.23)

It can be proved that

TrρnA = 〈s| Tn(z, z̄)T−n(w, w̄) |s〉 (4.24)

where z, z̄, w, w̄ are coordinates on the complex plane. As an example, consider a 1D infinite
long system and identify A with the interval ` = |u− v|. This theory is assumed to have
central charge c and UV cut-off a (or lattice spacing). Then it can be shown [32] that for
this system:

TrρnA = cn

(
v − u
a

)−2dn

(4.25)

where dn is the conformal dimension of either Tn and T−n,

dn =
c

12

(
n− 1

n

)
(4.26)

and cn is a constant to be fixed in such a way in the limit n→ 1 c1 = 1. Now it is sufficient
to apply Eq. (4.18) to obtaining:

SA '
c

3
log

l

a
(4.27)

4.1.3 Holographic Entanglement Entropy

Determining EE in CFT using (4.24) or (4.20) is not simple in most cases. However, we
know that AdS/CFT correspondence relates a d+1 dimensional conformal field theory with
a bulk theory on the AdSd+2 spacetime. In the previous section we have seen that one can
define and compute EE in a CFT, so it is natural to ask if it is possible to derive this entropy
as a pure geometrical quantity in AdS, exploiting the power of this duality.

In [6] (and its generalization in [36]) Ryu and Takayanagi propose a way to compute EE
through AdS/CFT correspondence.
Their conjecture states that the entanglement entropy SA in CFTd+1 can be computed as:

SA =
Area(γA)

4GN
(4.28)

where γA is a d-dimensional minimal surface in AdSd+2, which has ∂A as a boundary, while
GN refers to the Newton constant in (d+ 2) dimensions. The original conjecture in [6] was
valid for the static AdS spacetime, but it has been generalized in a covariant way in [36].
To motivate the conjecture, start considering AdS3/CFT2, with the spatial direction of CFT
compactified on a circle S1 of radius R, and focus on EE for a single interval. It can be
shown that, looking at Eq. (4.25) in AdS/CFT, the trace can be rewritten as:

TrρnA ∼ e−2dn
Lγ
R ⇒ SA = 2

Lγ
R

∂ (dn)

∂n

∣∣∣∣∣
n=1

=
c

6

Lγ
R

where Lγ is the length of the geodesic whose boundary is l. Then, remembering

c =
3R

2G
(3)
N

(4.29)
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so

SA =
Lγ

4G
(3)
N

which perfectly agrees with the prescription (4.28). The same reasoning can be extended to
higher dimensional cases.

4.2 Minimal surface in 6D spacetime

We have seen that for theories, which admit a gravity dual described by classical Einstein
gravity and whose states are dual to AdSd+2 spacetimes, EE can be computed via RT
formula (4.28) or its generalization in [36].
One of our goal is to study the EE for a single interval of length l in the 1

8 -BPS states.
These geometries, however, have a product stricture AdS3 × S3 only asymptotically. In
general, there is no canonical way to decouple the 3D part asymptotically AdS from the rest
of the spacetime. Thus in these cases we can not apply the usual RT formula and we need
to extend it. A way to extend the prescription for calculating EE was presented in [8], it
applies to stationary geometry asymptotically AdS×S and generalizes the covariant EE of
[36]. According to [8], given a 1D spacial region A = [ 0, l ], its EE should be defined as:

SA =
areaA
4GN

(4.30)

where, this time, A is a co-dimensional 2 extremal surface in the six dimension spacetime
(such that at the boundary it reduces to ∂A× S3) and GN is the 6D Newton constant.

In this work, we want to prove that for a special class of geometries, it is possible to reduce
exactly the 6D problem to a 3D one, to which the original RT prescription applies. Let us
be more specific.
In [8, 7] it was suggested that it is always possible to rewrite our 6D metric with an almost
product structure, as:

ds2 = gµνdx
µdxν +Gαβ

(
dxα +Aαµdx

µ
) (
dxβ +Aβνdx

ν
)

(4.31)

where coordinates are such that at the boundary xµ and xα are respectively coordinates of
AdS3 and S3. From the metric written in this way we can define:

g̃Eµν ≡ gµν
detG

detG0
(4.32)

which is the reduced 3D Einstein metric, where detG = detGαβ and G0 is the round metric
of S3.
For some 3-charge solution, in particular for the Superstrata (k = 1, n) in Ch.3, g̃Eµν is inde-
pendent from the coordinates on S3. For microstate metrics satisfying this characteristic, it
is possible to prove that the extremal surface in 6D is equivalent to xµ×S3, where xµ(λ) is a
geodesic of g̃Eµν . This propriety determines a great simplification in computing EE. In fact it
allows, in this case, not to consider the full 6D problem and to restrict the three dimensional
part of the metric, which is asymptotically AdS and whose EE can be computed via RT
prescription:

SA =
Lγ

4GN
=
c

6

Lγ
RAdS

= n1n5
Lγ
RAdS

(4.33)

where we have used the fact that for microstate geometries:

GN =
3

2

RAdS

c
, c = 6n1n5

with c the central charge of the dual CFT, n1, n5 the number of D1, D5 branes and RAdS
the AdS radius.
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4.2.1 Derivation

Let us go through the derivation and verify our statement.
According to Eq. (4.30), in 6D to compute EE we need to find an extremal four dimensional
surface, which we parametrize as xI (λ, xα), I = {µ, α} 2. The induced metric on the
submanifold is:

ds2
∗ = gµνdx

µ
∗dx

ν
∗ +Gαβ

(
dxα +Aαµdx

µ
∗
) (
dxβ +Aβνdx

ν
∗
)
≡ g∗IJdxIdxJ (4.34)

whit:

dxµ∗ = ẋµdλ+ ∂αx
µdxα

where for short we have denoted ẋµ ≡ ∂xµ

∂λ . Following the idea of Ryu and Takayanagi, xI
should extremize the area functional

I [xµ(λ, xα)] =

∫
dxαdλ

√
detg∗ (4.35)

We want to find under which assumptions the minimization problem in higher dimensions is
equivalent to the one in 3D. In terms of extremal surfaces, we want to show which conditions
the original metric must satisfy in such a way that x̄I = (xµ(λ), xα), where xµ(λ) is a
geodesic of g̃E , is a solution of the minimization problem (4.35). Extremizing the function
I is equivalent to solve Euler-Lagrange equations:

∂
√
detg∗
∂xρ

− ∂

∂λ

∂
√
detg∗
∂ẋρ

− ∂

∂xξ
∂
√
detg∗

∂∂ξxρ
= 0 (4.36)

In order to prove that the 3D geodesic is a solution, we will compute Eq. (4.36) in x̄ or
equivalently consider ∂αxµ = 0.

Let us look in detail at the induced metric (4.34):

g∗λλ =
(
gµν +AαµA

β
νGαβ

)
ẋµẋν

g∗λa =
(
gµν +GγδA

γ
µA

δ
ν

)
∂αx

µẋν +GαγA
γ
µẋ

µ

g∗αβ = Gαβ +
(
gµν +GγδA

γ
µA

δ
ν

)
∂αx

µ∂βx
ν +Aγµ (Gαγ∂βx

µ +Gβγ∂αx
µ)

For later use, we report the induced metric evaluated at the solution:

g∗
∣∣
x̄I
≡ ḡ =

((
gµν +AαµA

β
νGαβ

)
ẋµẋν GγαA

γ
µẋ

µ

GγαA
γ
µẋ

µ Gαβ

)
(4.37)

and its inverse:

ḡλλ = gλλ, ḡλα = −gλλAαµẋµ, ḡαβ = Gαβ + gλλAαµA
β
ν ẋ

µẋν (4.38)

where we have denoted gλλ the inverse of:

gλλ ≡ gµν ẋµẋν

Moreover,

det ḡ = gµν ẋ
µẋν det (Gαβ) = g̃Eµν ẋ

µẋν det (G0) (4.39)

Looking at the components of g∗IJ we immediately realise that when we consider derivatives
w.t.r. to xρ and ẋρ in (4.36), there is no difference between differentiating the full induced

2 A generic parametrization is xI(λ, ξα). Since the area functional contains an integrand over ξα, and
is thus invariant under reparametrization of ξα, we can, without loss of generality, identify ξα with the
space-time coordinate xα (ξα = xα)



66 4. Entanglement Entropy

metric or directly ḡ (terms proportional to ∂αxµ are not involved in differentiation and can
be simply put to zero). In other words:

∂
√

det g∗
∂xρ

∣∣∣∣∣
x̄I

≡ ∂
√

det ḡ

∂xρ
(4.40)

∂

∂λ

∂
√

det g∗
∂ẋρ

∣∣∣∣∣
x̄I

≡ ∂

∂λ

∂
√

det ḡ

∂ẋρ
(4.41)

The only non trivial term in the Euler-Lagrange equations is the last one, but even in this
case there is a simplification:(

∂

∂xξ
∂
√

det g∗
∂∂ξxρ

) ∣∣∣∣∣
x̄I

=
∂

∂xξ

(
∂
√

det g∗
∂∂ξxρ

∣∣∣∣∣
x̄I

)

So we can firstly concentrate on3

∂
√

det g∗
∂∂ξxρ

∣∣∣∣∣
x̄I

=

√
det ḡ

2
ḡIJ

∂g∗IJ
∂∂ξxρ

∣∣∣∣∣
x̄I

(4.42)

In this case the only components that contribute are ( I, J ) = (λ, α ) or (α, β ), computed
in the solution they are: 

∂g∗λα
∂∂ξxρ

=
(
gµρ +GγδA

γ
µA

δ
ρ

)
ẋµδξα

∂g∗αβ
∂∂ξxρ

= Aγρ

(
Gαγδ

ξ
β +Gβγδ

ξ
α

)
So:

∂
√

det g∗
∂∂ξxρ

∣∣∣∣∣
x̄I

=
√

det ḡ
(
Aξρ − gλλgµρAξν ẋµẋν

)
(4.43)

Finally performing the last derivative, one obtains substituting gµν with g̃Eµν and defining
gλλ = 1

gλλ
= 1

g̃Eµν ẋ
µẋν
· det(G0)

detG ≡ g̃λλ det(G0)
detG :

∂

∂xξ
∂
√

det g∗
∂∂ξxρ

∣∣∣∣∣
x̄I

=
∂

∂xξ

{√
g̃Eπσẋ

πẋσ ·
√

det(G0)
[
Aξρ − g̃λλg̃EµρAξν ẋµẋν

]}
(4.44)

=
∂
√
g̃Eπσẋ

πẋσ

∂xξ

√
detG0

[
Aξρ − g̃λλg̃EµρAξν ẋµẋν

]
+ (4.45)

+
√
g̃Eπσẋ

πẋσ
√

detG0

{
∇0
ξA

ξ
ρ − ẋµẋν

(
∂
(
g̃λλg̃Eµρ

)
∂xξ

Aξν + g̃λλg̃Eµρ∇0
ξA

ξ
ν

)}

where ∇0
ξ is the covariant derivative w.t.r. to the round metric of the 3-sphere4.

The 3 dimensional geodesic xµ is a solution if and only if this term vanishes. From eq.(4.45)
we see that this happens if two conditions are satisfied:

1. ∂ξ
(
g̃Eµν
)

= 0, in this way the first and third term in (4.45) are zero. But this require-
ment is exactly the definition of a factorizable metric, a metric whose 3D Einstein
metric reduced on S3 does not depend on angular coordinates.

2. ∇0
ξA

ξ
ρ = 0 de Donder gauge condition

3Given a generic invertible square matrix A,

detA = eTr logA

4We have used also the relation: given a generic vector Jξ ⇒ ∇ξJξ = 1√
detG

∂ξ

(√
detGJξ

)
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Summarizing our results, we have proven that when a metric is factorizable and the gauge
fields satisfies the de Donder gauge, then (4.36) reduces to:

∂
√
g̃Eπσẋ

πẋσ

∂xρ
− ∂

∂λ

∂
√
g̃Eπσẋ

πẋσ

∂ẋρ
= 0 (4.46)

which is the same minimization problem we impose to find the geodesics of g̃Eµν . Property
(1) is non trivial to be realised and might depend on a clever coordinate choice in the original
6D metric. Surprisingly, the geometries of Sec. (3.4.3) are factorizable in the coordinates
used to derive the geometry, as can be seen from Eq. (3.30).
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Chapter 5

Deriving EE for g̃Eµν

We have seen that for the geometry of Sec. (3.4.3), the problem of computing the EE can
be reduced to the RT recipe applied to an asymptotically AdS3 metric. So let us review the
key passages needed to compute the Entanglement Entropy in this case.

5.1 Stationary case

Since we have proven that, for factorizable metrics satisfying the de Donder gauge condition,
the higher dimensional problem is equivalent to the 3D one, we can start directly with the
stationary three dimensional metric(g̃Eµν = g̃Eµν(r)):

ds2 = (grrdr
2 + gttdt

2 + gyydy
2 + 2gtydtdy)

where we have assumed g̃Ery = 0 = g̃Ert = 0, which is always true for our geometries.
It is convenient to parametrize the geodesic xµ(λ) in terms of proper time, i.e.:

g̃Eµν ẋ
µẋν = 1 (5.1)

where ẋµ ≡ dxµ

dλ . We know that geodesics are defined by the minimization of the functional:

L =

∫
dλ

(√
grr ṙ2 + gttṫ2 + gyy ẏ2 + 2gty ṫẏ

)
≡
∫
Ldλ⇔ ∂L

∂xµ
− ∂

∂λ

∂L
∂ẋµ

= 0

Since we are assuming that the metric does not depend explicitly on t and y, Euler-Lagrange
equations with the respect to these coordinates greatly simplify:

∂L
∂ṫ

= C1 (5.2)

∂L
∂ẏ

= C2 (5.3)

where C1 and C2 are two constants of motion to be fixed later.
Solving (5.2),(5.3) taking into account the condition (5.1), one finds:

ṫ =
C1gyy − C2gty
gttgyy − g2

ty

(5.4)

ẏ =
C2gtt − C1gty
gttgyy − g2

ty

(5.5)

ṙ2 =
1

grr

[
1−

(
gyyC

2
1 + gttC

2
2 − 2C1C2gty

gttgyy − g2
ty

)]
(5.6)

69
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The two constants C1 and C2 are determined by the choice of boundary conditions. We
are interested in a spatial region A at fixed time (t = t̄), made of an interval of length l.
The endpoints of the geodesic have to lie at the boundary of AdS, but for r →∞ the area
diverges, as expected for the EE in the dual CFT. So, as usual, we introduce an IR cut-off
r0, which we will consider as the AdS boundary for computations, and at the end we will
take the results for large r0. Thus boundary conditions are:

0 =

∫ t̄

t̄

dt =

∫ λ2

λ1

ṫdλ = 2

∫ r0�1

r∗
dr
ṫ

ṙ
(5.7)

l =

∫ l

0

dy =

∫ λ2

λ1

ẏdλ = 2

∫ r0�1

r∗
dr
ẏ

ṙ
(5.8)

Lγ =

∫ λ2

λ1

dλ = 2

∫ r0�1

r∗
dr

1

ṙ
(5.9)

where r∗ is the geodesic turning point, such that ṙ
∣∣
r=r∗

= 0.
In the end we compute EE via Eq. (4.33).

5.2 Static case

When the metric is static (i.e. there are not terms gty), we can take a submanifold at constant
t and the only relevant components of the metric remain gyy(r) and grr(r). Eq.(5.4)-(5.6)
simply reduce to:

d

dλ
(gyy ẏ) = 0 ⇒ ẏ =

C

gyy
(5.10)

grr ṙ
2 + gyy ẏ

2 = 1 ⇒ ṙ =

√
gyy−C2

grrgyy
(5.11)

The turning point is now defined through

gyy(r∗)− C2 = 0 (5.12)

Boundary conditions are the same as the stationary case, apart the fact that condition (5.7)
is automatically satisfied and (5.8) and (5.9) simplify in:

l = 2C

∫ r0

r∗
dr

√
grr

gyy (gyy − C2)
(5.13)

Lγ = 2

∫ r0

r∗
dr

√
grrgyy
gyy − C2

(5.14)

5.3 Some examples

Now we have all the necessary tools to compute the EE for the superstrata solutions described
in Ch. 3. We will first present the case n = 0, k = 1 and then pass to the generic n metric. In
the latter case computations can not be handled analytically, therefore we first consider the
a → 0 limit, where the metric reduces to BTZ BH and then we will perform an expansion
around this solution. In particular, in order to present explicit results, we will concentrate
on the case n = 1.

For the sake of clarity, all computations are collected in Appendix D, while only the main
relevant results are presented below.
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5.3.1 Case n = 0, k = 1

When n = 0 the reduced metric g̃Eµν describing the D1-D5 geometry (3.28) is:

ds2 =
√
Q1Q5

r2 + ã2

(r2 + a2)2
dr2 − r2 + ã2

√
Q1Q5

dt2 +
r2

√
Q1Q5

dy2

where, for short, we have defined ã2 ≡ a4

a2+ b2

2

. Remember that the radius R of the compact

direction y is related to a, b and to the RAdS ≡ (Q1Q5)1/4 by the relation

R =

√
Q1Q5

a2 + b2

2

≡
√
Q1Q5

a0
(5.15)

The metric is static, so we can use the prescriptions in Sec.5.2. Let us start from determining
the turning point r∗, this one is given by the solution of

r2

√
Q1Q5

− C2 = 0 ⇒ r∗ =
∣∣∣C (Q1Q5)

1/4
∣∣∣ ≡ |ω| (5.16)

ω is determined by the constraint:

l

R
= arccos

(
ω2 − ã2

ω2 + ã2

)
− ω

ã

√
a2 − ã2

a2 + ω2
log

(
2a2 + ω2 − ã2 − 2

√
(a2 + ω2)(a2 − ã2)

ã2 + ω2

)
(5.17)

For convenience we will indicate with α the ratio l
R , α ∈ [ 0, 2π ] .

The Entanglement Entropy of a region A, made of an interval of length l is

SA = n1n5

{
log

(
4r2

0

a2 + ω2

)
+

√
a2 − ã2

a2 + ω2
log

(
2a2 + ω2 − ã2 − 2

√
(a2 + ω2)(a2 − ã2)

ã2 + ω2

)}
(5.18)

Unfortunately we are not able to invert analytically Eq.(5.17) and express SA as a function
of l. However, in order to have an intuitive idea, we can invert it in some interesting regimes.
We decide to keep Q1, Q5 and R fixed, so that ã2 = a4

a2
0
and to look at two opposite limits:

when a2

a2
0
� 1 and when a2

a2
0
∼ 1 (which is equivalent to consider an expansion in small b).

• a2

a2
0
� 1

ω = a0

(
2

α
− a2

a2
0

α

3

)
+O(a4)

and consequently at this order of approximation:

SA ' n1n5

{
log

(
α2r2

0

a2
0

)
− a2

a2
0

α2

6

}
In Fig.(5.1) it is represented the behaviour of the turning point r∗ and of the EE as
functions of the opening angle α. We can notice that SA is not symmetric. We might
expect this result, in fact in the limit a → 0, the geometry reduces to massless BTZ
black hole, which is dual to the mixed state representing the statistical ensemble of
all the 2-charge states. Since the geometry in this limit represent a BH, which is not
a pure state, the EE should be increasing, as we obtain in Fig.5.1(b). The EE of an
interval l is equal to that of its complement π − l if and only if the state is pure.
Moreover notice. in Fig.5.1(a), that r∗ never reaches zero. This characteristic reveals
the emergence of a phenomenon known as Entanglement shadow. An Entanglement
shadow appears when the minimal surfaces anchored on the boundary, in our case our
geodesics, will not penetrate a region and thus the EE can not probe this portion of
space-time.
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Figure 5.1: r∗ and EE in small a approximation. We plot the results for different values of ε2 =(
a
a0

)2

: blue for ε = 0.2, orange ε = 0.1 and green ε = 0.01. In the zoomed graph the effect of
entanglement shadow is highlighted.
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Figure 5.2: r∗ and EE in small b approximation. Since at our order of approximation there is no
difference between our geometry and AdS, the represented r∗ and SA would be the same for the
pure state.

• a2

a2
0
∼ 1 ↔ b � 1, keeping only the order b2 the problem is exactly the same as pure

AdS 1

ω = a0 cot
α

2
+O(b4)

SA = 2n1n5 log

(
2r0

a0
sin
(α

2

))
+O(b4)

As shown in Fig.(5.2), the EE of a pure state is symmetric, as we expected, and there
is no place for entanglement shadows.

5.3.2 Generic n metric: a = 0 limit

As announced before, we now want to compute the EE for the geometries presented in
Ch.3. Since for generic n, we are not able to perform the calculation analytically, we start
looking at the case a = 0. In this limit the metric is that one of an extremal, rotating BTZ

1In this approximation (o(b2)) the metric is:

ds2 '
√
Q1Q5

1

r2 + a2
0

dr2 −
r2 + a2

0 − b2√
Q1Q5

dt2 +
r2

√
Q1Q5

dy2

There is no difference between the computation in this metric and that one for pure AdS since at order b2
the only term which receive corrections is gtt, which never enters the calculations.
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Figure 5.3: r∗ and EE for a metric with a generci n in the limit a = 0.As explicit examples we plot
the results for n = 1 (blue), n = 5 (orange) and n = 10 (green).

black hole. The Bañados-Teitelboim-Zanelli BH is a black hole solution of 2+1 dimensional
gravity, characterised by a negative cosmological constant, i.e. it is asymptotically Anti-de
Sitter. Written in our coordinates

ds2 =

√
Q1Q5

r2
dr2 − 1√

Q1Q5

(
r2 − b2n

2

)
dt2 +

1√
Q1Q5

(
r2 +

b2n

2

)
dy2 +

b2n√
Q1Q5

dtdy

(5.19)

and it has a horizon at r = 0.
Following the procedure explained in Sec.5.1, it is possible to determine the turning point,
which is the indicator of the presence of Entanglement shadow and to compute the EE
for this geometry. We skip the calculations, reported in Appendix D.2, to present the two
important results:

r∗ = (2nQ1Q5)1/4

√
b

l

√
coth

(
l

2

b
√
n√

2
√
Q1Q5

)
(5.20)

= n1/4

√
2Q1Q5

lR
coth

(
l
√
n

2R

)
(5.21)

where the S1 radius R2 = 2Q1Q5

b2 .

In Fig.(5.3 a) we plot r∗

b = n1/4
√
α

coth
(
α
√
n

2

)
as a function of α = l

R . Since coth(x) is always
equal or greater than one, the turning point

r∗ ≥ bn1/4

√
α

(5.22)

This is a sign of Entanglement shadows, because it indicates that the geodesic is not able
to probe spacetime for r < r∗.
To conclude the Entanglement Entropy is

SA = n1n5 log

√2lr2
0 sinh

(
bl
√
n√

2
√
Q1Q5

)
b
√
n
√
Q1Q5

 (5.23)

In order to match this result with similar computations known in the literature, that in [37]
for example 2, we need to introduce the dimensionless UV cut off in the dual conformal field

2In order to obtain the metric (2.3) of [37] we need to perform the following coordinate change: y
RAdS

→

φ; r → r̃ ≡
√
r2 + r̄2 ⇒ ds2 =

R2
AdS r̃

2

(r̃2−r̄2)2
dr̃2 − (r̃2−r̄2)2

R2
AdS

r̃2
dt2 + r̃2

(
dφ+ r̄2

R2
AdS

r̃2
dt

)2
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theory as ε = (Q1Q5)1/4

r0
� 1 and rearrange the terms in:

SA = n1n5

{
log

 l

(Q1Q5)1/4︸ ︷︷ ︸
L

r0

(Q1Q5)1/4︸ ︷︷ ︸
1/ε

+

+ log

(
(Q1Q5)1/4

b
√

n
2

r0

(Q1Q5)1/4
sinh

(
b
√
n√

2(Q1Q5)1/4

l

(Q1Q5)1/4

))}

= n1n5

{
log

(
L

ε

)
+ log

(
RAdS

r̄ε
sinh

(
r̄L

RAdS

))}
where we have defined3 r̄ ≡ b

√
n
2 and RAdS = (Q1Q5)1/4. In this form the expression for

SA agrees with the result found in [37].

5.3.3 EE for n = 1

We want to study EE for the generic microstates (a 6= 0) in Ch. 3, whose reduced metric in
Einstein frame is:

ds2
3 =

√
Q1Q5

(r2 + a2)2

(
r2 +

a4

a2
0

(
1 +

b2

2a2
Fn

))
dr2 − 1√

Q1Q5

(
r2

(
1− b2

2a2
Fn

)
+
a4

a2
0

)
dt2

+
r2

√
Q1Q5

(
1 +

b2

2a2
Fn

)
dy2 +

b2

a2

r2Fn√
Q1Q5

dtdy

where Fn ≡ 1−
(

r2

r2+a2

)n
. As announced before, we will concentrate only in the case n = 1

(key results are still valid also for a generic n, but computations are longer and not very
enlightening).

With this simplification, the expressions of ṙ, ẏ and ṫ are easier (see (D.4)-(D.6)), but it is
not enough to make analytic computations. For this reason, we decide to solve the problem
perturbatively in a, keeping Q1, Q5 and R fixed, so that

b2

2
= a2

0 − a2, a2
0 =

Q1Q5

R2
y

Rememeber that, as in the case n = 0, the ratio a
a0

tell us if our microstate tend to the BTZ
black hole, or, in the opposite limit, it is a small deformation of AdS3 × S3:

0 <
a

a0
< 1

{
a
a0
→ 1 ⇔ AdS3 × S3

a
a0
→ 0 ⇔ BH

In particular we are interested in the small a expansion. We expand the turning point and
the constants of motion k1 and k1 (obtained as the sum and the difference of the previous
C1, C2, see Eq. (D.7)) around the solution obtained for a = 0 (labelled with a subscript 0):

r∗ ' r∗0 + a2δr, r∗0 = (Q1Q5)1/4

√(
2a0

l

)
coth

(
a0l

2
√
Q1Q5

)
(5.24)

k1 ' k0
1 + a2δ1, k0

1 =
2a0 coth

(
a0l√
Q1Q5

)
4
√
Q1Q5

k2 ' k0
2 + a2δ2, k0

2 =
2 4
√
Q1Q5

l

Explicit integrations, that can be found in D.3, lead to the following results:
3In [37] r̄ = r0 which is different from our r0 indicating the cut off
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as a function of α

• the two constants we have to fix, change at order a2 as shown in eq. (D.18) and (D.19);

• δr∗ does not receive corrections at order a2 and that is true for every n. So the expres-

sion for the turning point is the same as (5.20): r∗ = 4
√
nQ1Q5

√
2a0

l coth
(

a0l
√
n

2
√
Q1Q5

)
.

In particular the microstates have Entanglement shadows.

• Entanglement entropy changes at order a2 (if we introduce the parameter α ≡ l
Ry
, α ∈

(0, 2π)):

SA ' n1n5 log

(
r2
0

a2
0

· α sinhα

)
(5.25)

− a2

a2
0

(n1n5)

{
α2

2

(
1

2
cosh(α)sech2

(α
2

)
+ 1

)
+

3

4
α sinh(α)sech2

(α
2

)}

In Fig.(5.4), it depicted how the EE changes with the variation of the ratio a
a0
, which

controls the perturbative expansion. In addition it shows that in microstates there are small
deviations from the black hole EE.
We have seen that for a microstate, treated as a small deformation of the case a = 0, its
EE gets corrections with the respect to the BH. An interpretation of this result and a more
deepened study of the Entanglement shadows in the context of the dual CFT, could be
interesting and could help to have a clearer understanding of these phenomena. We leave
such analysis for future work.
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Conclusion

In this work, we have devoted our attention to the study of the Entanglement Entropy of a
subclass of 1

8 -BPS microstate solutions. Motivated by the surprising discovery that already
in their original coordinates, these configurations present a reduced 3D Einstein metric g̃µν
independent from xα coordinates, we study under which assumptions the 6 dimensional
minimization problem for EE reduces to a lower dimensional one. We have proved that
for factorizable metrics satisfying a de Donder gauge condition, computing the EE for a
single interval in the full 6 dimensional metric is equivalent to determine the length of g̃E
geodesics.
We then have applied this result to compute explicitly the EE for the 1

8 -BPS microstates
with k = 1 and n = 0 and the generic case with n ≥ 1.

We start this work discussing the thermodynamic behaviour of black holes, highlighting
how this characteristic together with the no hair theorem, causes the appearance of some
standing puzzles such as the information loss paradox and the entropy problem. These issues
make evident the need of a new perspective of BH Physics beyond classical GR, which must
be able to give a description of a black hole in terms of microstates.

We investigate the Fuzzball proposal as be a possible solution to these problems. What is
promising about the Fuzzball program is that, besides trying to solve the information para-
dox, it provides us with an effective procedure to construct microstate geometries. These
last ones are found to be regular and horizonless solutions of Supergravity. For this reason,
a part of this work has been devoted to an introduction to Supergravity, with a special
attention to the ten dimensional case. Within this context we have investigated the con-
struction of extremal black holes as bound states of branes. In particular, since the final
goal of the Thesis is to study the EE for the 1

8 -BPS states, we have focused our attention on
the three-charge system. In five dimensions it reduces to the Stroeminger-Vafa black hole
and in 10 D it is constructed as a D1-D5-P system.

The prescription of Ryu and Takayanagi to compute EE is a interesting example of how the
Holographic principle applies. To contextualize their proposal we have reviewed the general
ideas of the AdS/CFT conjecture. The correspondence reveals to be very useful also in
the study of microscopic description of BHs . It provides a deeper insight on the nature of
the microstates and establishes a dictionary between geometries ad CFT states in further
support of the Fuzzball proposal. With this aim, we have introduced the Conformal Field
Theory relevant for the D1-D5 states, the D1D5 CFT at the orbifold point. In this particular
regime, the theory is distant from being a good description of a black hole. However, some
quantities, such as the index related to states degeneracy, are protected by Supersymmetry
and do not change if we computed them in the region where the CFT is a free field theory.

In the second part of this work, we have concentrated on Superstrata solutions. These
horizonless Supergravity solutions, having the same charges as general supersymmetric D1-
D5-P black holes, can be obtained adding momentum to the 2-charge geometries. In the
dual CFT description, in the NS sector, the role of adding a momentum charge, is played
by the generator of the SL(2,R)L × SU(2)L symmetry group of AdS3 × S3. To obtain the
desired states, we can act on the NS (anti-)chiral primary state, we have denoted |00〉NSk , m
times with J+

0 and n times with the Virasoro generator L−1.
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The resulting state is
(
J+

0

)m
(L−1)

n |00〉NSk .

To derive the corresponding metric, we have restricted to the case m = 0 and k = 1.
To further investigate these solutions, we devoted the last part of this Thesis to the compu-
tation of their Entanglement Entropy. We introduce in a very general way the concept of
Entanglement Entropy, assuming the perspectives firstly of Quantum Mechanics and then of
QFT (in particular the conformal case). Finally we report the Ryu-Takayanagi prescription
for the holographic computation of EE, which applies to AdS space-time (or at most AdS
times a compact space).

The 6D metric of our microstates configuration are only asymptotically AdS3 × S3, thus it
is impossible to apply the RT formula directly as it is. As suggested in [8, 7], we have to
generalize the prescription and adapt it to our case.
In this work we have shown that, at least for the special class of factorizable geometries, for
what concerns EE computation, it is equivalent to solve the full 6D extremization problem
or, instead, finding minimal curve in the 3D asymptotically AdS metric. What is surprising is
that the metrics we deal with are factorizable in the same coordinates used in the derivation.
We do not rule out the possibility, even if hard to prove, that for every metrics there exists
a suitable change of coordinates making g̃Eµν xα-independent.
Once we have proved the equivalence between the 6D problem and the lower dimensional
one, we have restricted our attention to the three dimensional part of our solution. In this 3D
asymptotically AdS space-time, the RT prescription applies and we can compute geodesics
of g̃E to find the EE. In the concluding chapter, we have computed explicitly the EE for a
single interval of length l in the Superstrata metrics introduced before. In studying their
EE we have notice the appearance of a phenomenon known as Entanglement shadow, which
consists in a region of space-time not probed by the minimal surfaces. It has been conjectured
(suggestively) that the whole space-time could be reconstructed from the knowledge of the
EE of the boundary CFT. Consequently, the presence of these shadows, might invalidate this
conjecture and it might indicate that more refined CFT quantities are needed to reconstruct
the space-time. For example, in [38] a new quantity, called entwinement is proposed as a
good quantity to compute entanglement in the presence of shadows. In [38], it is investigate
the static BTZ black hole, where entanglement shadows appear. These shadows appear
because in computing the canonical EE one consider only the minimal geodesics and they
only penetrate to a certain maximum depth in the spacetime. It is proved, however, that
the longer geodesics, discarded in EE, do penetrate the shadows and it is guessed that they
must be related in some way to physical quantities in the CFT. In particular, it can be
shown that they contribute to entwinement, which would be eventually the right picture
capturing the entanglement of this system.
The result of our computations, indeed, have to be reinterpreted in the light of the dual CFT,
if we want to understand better the meaning and the possible consequences of a presence of
entanglement shadows in microstate geometries.

Moreover, when we have considered the generic n metric, in order to carry out the com-
putations, we have performed an expansion in small a. In this approximation, microstates
represents a small deformation of the classical BH and the results we have obtained are
indeed in agreement with this interpretation. A useful analysis to carry in future, would
be to repeat numerically (keeping finite values for a and b) the same computations we have
done analytically. In this way, we could improve our comprehension of EE for the microstate
geometries and probably clarify the effects of Entanglement shadows.

To conclude let us summarise the main and useful implications of our Entanglement Entropy
computation. It reveals the presence of entanglement shadows in microstate geometries,
which have to be further analysed. In addition, we have shown that the BH behaviour is
corrected in a microstate when we compute the EE. It is only the first step for a deeper
CFT interpretation, that we will leave for a future work.
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Appendix A

Mathur Theorem

To prove (1), we need to start constructing the density matrix for the system (cN+1, bN+1):

ρ(cN+1,bN+1) =

(〈
Λ(1)

∣∣Λ(1)
〉 〈

Λ(1)
∣∣Λ(2)

〉〈
Λ(2)

∣∣Λ(1)
〉 〈

Λ(2)
∣∣Λ(2)

〉) =

(
1− ε2

1 ε2

ε2 ε2
1

)
(A.1)

where we have defined
〈
Λ(1)

∣∣Λ(2)
〉
≡ ε2, ||Λ(2)||2 ≡ ε2

1 and used the relation (4.12). Notice
that both εi are small, since by hypothesis (4.13) ε2

1 < ε2 and by mean of Cauchy-Schwartz
inequality1 〈

Λ(1)
∣∣∣Λ(2)

〉
≤ ||Λ(1)||︸ ︷︷ ︸

<1

||Λ(2)||︸ ︷︷ ︸
<ε

< ε

Since we want to compute the Entanglement Entropy we diagonalize (A.1), its eigenvalues
being:

λ1 =
1

2

(
1 +

√
1 + 4(ε4

1 − ε2
1 + ε2

2)

)
= 1− (ε2

1 − ε2
2) + o(ε3) (A.2)

λ2 =
1

2

(
1−

√
1 + 4(ε4

1 − ε2
1 + ε2

2)

)
= (ε2

1 − ε2
2) + o(ε3) (A.3)

and consequently:

SEE ' −
[
1− (ε2

1 − ε2
2)
]

log
[
1− (ε2

1 − ε2
2)
]︸ ︷︷ ︸

'−(ε21−ε22)

−(ε2
1 − ε2

2) log
(
ε2

1 − ε2
2

)
(A.4)

= (ε2
1 − ε2

2) log
e

(ε2
1 − ε2

2)
+ o(ε3) < ε (A.5)

To motivate (2), we need to recall the subadditivity relation: given 2 systems their entropy
satisfy

S(A+B) ≥ |S(A)− S(B)| (A.6)

and the inequality in (2) is trivially proven just identifying A = {b} (S({b}) = SN ) and
B = (cN+1, bN+1), so:

S({b}, cN+1, bN+1)) ≥ S({b})− S(cN+1, bN+1)) ≥ SN − ε (A.7)

where in the last passage we have used the result in (A.5).

1We do not care about the sign of
〈
Λ(1)

∣∣Λ(2)
〉
since this term will appear always squared, so for simplicity

we consider it positive from the beginning
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To conclude we consider problem (3), so let us construct the density matrix for cN+1 from
(4.11):

ρcN+1
=

1

2

(〈
Λ(1) + Λ(2)

∣∣Λ(1) + Λ(2)
〉

0
0

〈
Λ(1) − Λ(2)

∣∣Λ(1) − Λ(2)
〉) (A.8)

=
1

2

(
1 + 2ε2 0

0 1− 2ε2

)
(A.9)

the corresponding entropy

S(cN+1) = log 2− 4ε2
2 + o(ε3) > log 2− ε (A.10)



Appendix B

Further remarks on solution
generating technique

B.1 1-charge solution

First of all we want to understand how a boost can add a momentum charge. This becomes
clear when we reduce the metric following the Kaluza-Klein procedure. For simplicity let us
look only to the 6D part of (1.35), keeping in mind that we want to reduce on S1:

ds2 = Sα

(
dy + S−1

α

2M

r2
chα shαdt

)2

− S−1
α

(
1− 2M

r2

)
dt2 +

(
1− 2M

r2

)−1

dr2 + r2dΩ2
3

(B.1)

Written in this way it is very simple to identify the KK gauge field:

At = S−1
α

2M

r2
chα shα

and derive the charge1

Q = R
MΩ3

16πG5
sh(2α)

The lower dimensional charge is the y component of the six dimensional momentum.

B.2 2-charge solution

The starting point is the F1-Py system described in Type IIB:
ds2 = S−1

α Sβ

(
dy + S−1

β
2M
r2 chβ shβ dt

)2

− S−1
α S−1

β

(
1− 2M

r2

)
dt2

+
(
1− 2M

r2

)−1
dr2 + r2dΩ2

3 + (dza)
2

e2Φ = S−1
α

B2 = S−1
α

2M
r2 chα shαdt ∧ dy

(B.2)

1As it follows from ADM formalism

81



82 B. Further remarks on solution generating technique

Thank to S-duality (1.24) we can transform F1-Py → D1y-Py (Type IIB):
ds′2 = S

1/2
α ds2 = S

−1/2
α Sβ

(
dy + S−1

β
2M
r2 chβ shβ dt

)2

− S−1/2
α S−1

β

(
1− 2M

r2

)
dt2

+S
1/2
α

{(
1− 2M

r2

)−1
dr2 + r2dΩ2

3 + (dza)
2
}

e2Φ = Sα

C2 = −S−1
α

2M
r2 shα chαdt ∧ dy

(B.3)

Now T-duality along the four torus directions take the D1 brane to a D5 one carrying
momentum. The resulting solution is again of Type IIB Supergravity . We perform explicitly
the first T duality, for example along z1 (in the convention of (1.25) our C2 is equal to Ĉ2

and A = 0):
ds′2 = S

1/2
α ds2 = S

−1/2
α Sβ

(
dy + S−1

β
2M
r2 chβ shβ dt

)2

− S−1/2
α S−1

β

(
1− 2M

r2

)
dt2

+S
1/2
α

{(
1− 2M

r2

)−1
dr2 + r2dΩ2

3 +
∑4
a=2 (dza)

2
}

+ S
−1/2
α

(
dz1
)2

e2Φ = S
1/2
α

C3 = −S−1
α

2M
r2 shα chαdz1 ∧ dt ∧ dy

(B.4)

Doing the same on the other za directions, we get:
ds′2 = S

1/2
α ds2 = S

−1/2
α Sβ

(
dy + S−1

β
2M
r2 chβ shβ dt

)2

− S−1/2
α S−1

β

(
1− 2M

r2

)
dt2

+S
1/2
α

{(
1− 2M

r2

)−1
dr2 + r2dΩ2

3

}
+ S

−1/2
α (dza)

2

e2Φ = S−1
α

C6 = −S−1
α

2M
r2 shα chαdt ∧ dy ∧ dz1 ∧ dz2 ∧ dz3 ∧ dz4

(B.5)

It can be useful to substitute to the 6-form its dual C2, defined via the relation:

∗ (dC6) = dC2 (B.6)

First of all the only non trivial component of the differential of C6 is:

(dC6)rty1234 = −2Mchα shα
∂

∂r

(
S−1
α

r2

)
(B.7)

Its hodge dual has only component along the coordinates of the 3-sphere and it is reasonable
to assume that it would depend only on θ (and eventually on the boost parameters α and
β). So we guess that:

dC2 = ∗ (dC6) = f(θ, α, β)dθ ∧ dφ ∧ dψ ⇒ C2 = F (θ, α, β)dφ ∧ dψ (B.8)

where we have called F the primitive of f with the respect to θ.
Now we can apply S duality, the NS5-Py Type IIB solution is represented by:

ds2 = Sβ

(
dy + S−1

β
2M
r2 chβ shβ dt

)2

− S−1
β

(
1− 2M

r2

)
dt2

+Sα

[(
1− 2M

r2

)−1
dr2 + r2dΩ2

3

]
+ (dza)

2

e2Φ = Sα

B2 = F (θ, α, β)dφ ∧ dψ
C2 = 0

(B.9)

Then a T duality along S1 takes the system to NS5y1234-F1y (Type IIA):
ds2 = S−1

β dy2 − S−1
β

(
1− 2M

r2

)
dt2 + Sα

[(
1− 2M

r2

)−1
dr2 + r2dΩ2

3

]
+ (dza)

2

e2Φ = S−1
β Sα

B2 = S−1
β

2M
r2 chβ shβ dt ∧ dy + F (θ, α, β)dφ ∧ dψ

C2 = 0

(B.10)
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Our final goal is to find the solution for a D1-D5 system. However the last solution we have
obtained is in IIA, so we first apply a T duality along one of the direction of the torus, for
example z1, and only after that we do the last S-duality transformation. Notice that, since
the coefficient behind (dz1)2 is 1 and the fields have no component along this direction, the
action of the T duality acts trivially on the ansatz (B.10) and its only effect is to take the
solution from Type IIA to Type IIB. S-duality, instead, changes the solution as:

ds2 = S
−1/2
β S

−1/2
α

[
dy2 −

(
1− 2M

r2

)
dt2
]

+ S
1/2
α S

1/2
β

[(
1− 2M

r2

)−1
dr2 + r2dΩ2

3

]
+S

1/2
β S

−1/2
α (dza)

2

e2Φ = SβS
−1
α

C2 = −S−1
β

2M
r2 chβ shβ dt ∧ dy − F (θ, α, β)dφ ∧ dψ

B2 = 0

(B.11)

In the limit (1.45), the metric becomes:

ds2 =
1√
Z1Z5

(
−dt2 + dy2

)
+
√
Z1Z5

(
dr2 + r2dΩ2

3

)
+

√
Z1

Z5
(dza)

2 (B.12)

In the BPS limit we can derive the exact form of F , which is found to be, up to an unphysical
constant shift:

F (θ) = −Q5 sin2 θ (B.13)

It is worth looking at the changes in the parameters of the theory under the chain of dualities
from F1-Py → D1-D5 (for simplicity we redefine gs = g, Rz1 = R1 and the torus volume
V4 = V ):

g
Q1

R
R1

V

 S−→


1/g
Q1/g
R/
√
g

R1/
√
g

V/g2

 T1234−−−→


g/V
Q1/g
R/
√
g√

g/R1

g2/V

 S−→


V/g

Q1V/g
2

R
√
V /g√

V /R1

V

 Ty−→


√
V /R

Q1V/g
2

g/(R
√
V )√

V /R1

V



T1−→


R1/R
Q1V/g

2

g/(R
√
V )

R1/
√
V

R2
1

 S−→


R/R1

Q1V R/(g
2R1)

g/(
√
RR1V )√

RR1/V
R2

 ≡

g′

Q′5
R′

R′1
V ′

 (B.14)

where we have used the conventions of [22] for:

S duality : g′ =
1

g
, R′ =

R
√
g

T duality on y : g′ =
g

Ry
, R′y =

1

Ry
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Appendix C

2 charges solutions

As explained in [22] it is possible to derive the solution representing the D1-D5 bound states
starting from the description of a fundamental string F1 carrying the momentum P, applying
a chain of T and S duality. The 2 charges solution is then defined from the profile of the
string along R4, given by the functions gi(v′) i = 1, 2...4 and along one of the direction of
the T 4 (the one used in T duality) denoted by g(v).

The Lunin-Mathur solution can be written in the form of (3.1) 1: it is sufficient to choose,
after having defined the length of the F1 as L = 2πQ5

R :

Z1 = 1 +
Q5

L

∫ L

0

dv′
|ġi(v′)|2 + |ġ(v′)|2

|xi − gi(v′)|2
, Z2 = 1 +

Q5

L

∫ L

0

dv′
1

|xi − gi(v′)|2
(C.1a)

Z4 = −Q5

L

∫ L

0

dv′
ġ(v′)

|xi − gi(v′)|2
(C.1b)

a1 = a4 = x3 = 0, F = 0 (C.1c)

β =
B −A√

2
, ω = −A+B√

2
where A = −Q5

L

∫ L

0

dv′
ġjdx

j

|xi − gi(v′)|2
, dB = − ∗4 dA

(C.1d)

We review the construction of two examples of 2 charges solution: the first one being the
simplest possible case, while the second geometry will be the starting point upon which
constructing the 3 charges microstates.

Let us begin with the circular profile, which has non trivial oscillation in the plane defined
by the first two coordinates of R4

g1(v′) = a cos ξ, g2(v′) = a sin ξ (C.2)

where we have define ξ ≡ 2π
L v
′. On R4 it is useful to introduce a set of coordinates

x1 = r̃ sin θ̃ cos φ̃, x3 = r̃ cos θ̃ cos ψ̃

x2 = r̃ sin θ̃ sin φ̃, x4 = r̃ cos θ̃ sin ψ̃

so that |xi − gi(v′)|2 = r̃2 + a2 − 2ar̃ sin θ̃ cos
(
ξ − φ̃

)
Then:

Z2 = 1 +
Q5

2π

∫ 2π

0

dξ
1

r̃2 + a2 − 2ar̃ sin θ̃ cos
(
ξ − φ̃

) = 1 +
Q5√

a4 + r̃4 + 2a2r̃2 cos 2θ̃

= 1 +
Q5

r2 + a2 cos2 θ
(C.3)

1We report only the most relevant points, an extended version can be find in the original work [22] or
in [26].
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after having performed another change of coordinates

r̃2 = r2 + a2 sin2 θ, cos2 θ̃ =
r2 cos2 θ

r2 + a2 sin2 θ

In the very same way we can derive:

Z1 = 1 +Q5a
2

(
2π

L

)2
1

r2 + a2 cos2 θ
= 1 +

Q1

r2 + a2 cos2 θ
(C.4)

where it is clear the identification Q5a
2
(
R2

Q2
5

)
= Q1. It defines the relation between the

charges, the S1 radius R and the parameter a

R =

√
Q1Q5

a
(C.5)

A =
Ra

2π

∫ 2π

0

dξ

{
sin
(
ξ − φ̃

)
r̃2 + a2 − 2ar̃ sin θ̃ cos

(
ξ − φ̃

) (dr̃ sin θ̃ + r̃ cos θ̃dθ̃
)

−
r̃ sin θ̃ cos

(
ξ − φ̃

)
r̃2 + a2 − 2ar̃ sin θ̃ cos

(
ξ − φ̃

)dφ̃} (C.6)

= −a
√
Q1Q5

sin2 θ

r2 + a2 cos2 θ
dφ (C.7)

We know that F ≡ dB = − ∗4 dA, so first we need to compute2

dA = −a
√
Q1Q5

(
a2 + r2

)
sin(2θ)

(a2 cos2 θ) + r2)
2 dθ ∧ dφ+ a

√
Q1Q5

2r sin( θ)

(a2 cos2 θ) + r2)
2 dr ∧ dφ (C.8a)

Frψ = − ∗4 (dA)θφ = a
√
Q1Q5

2r cos2(θ)

(a2 cos2 θ + r2)
2 ≡ ∂rBψ (C.8b)

Fθψ = − ∗4 (dA)rφ = a
√
Q1Q5

r2 sin(2θ)

(a2 cos2 θ + r2)
2 ≡ ∂θBψ (C.8c)

So:

B = −a
√
Q1Q5

cos2 θ

r2 + a2 cos2 θ
dψ (C.8d)

Finally, if we define Σ = r2 + a2 cos2 θ and using (C.5)

β =
Ra2

√
2Σ

(
sin2 θdφ− cos2 θdψ

)
, ω =

Ra2

√
2Σ

(
sin2 θdφ+ cos2 θdψ

)
(C.9)

The second, more interesting for future purposes, 2 charges solution we want to analyse is
the one with the same gi of (C.2), but with an additional

g(v′) = − b
k

sin (kξ) (C.10)

where k is a natural number. Computations are very similar to the ones we have done for
the previous example and indeed β, ω and Z2 are exactly the same (we choose the same
coordinates for ds2

4), the only difference is that there is an additional piece in Z1 due to the
integration of g and this time Z4 6= 0. Even though there is a non trivial component of the

2In the new coordinate ds24 =
(r2+a2 cos2 θ)

r2+a2 dr2 + (r2 + a2 cos2 θ)dθ2 + (r2 + a2) sin2 θdφ2 + r2 cos2 θdψ2



87

profile along one of the direction of the torus, the geometry is still invariant under rotations
of the T 4. The expression for Z1 and Z4 are:

Z1 = 1 +
R2

Q5


(
a2 + b2

2

)
Σ

+
b2

2
a2k sin2k θ cos(2kφ)

Σ(r2 + a2)k

 (C.11)

Z4 = Rbak
sink θ cos(kφ)

Σ(r2 + a2)k/2
(C.12)

Θ1 = Θ2 = Θ4 = 0 (C.13)

and this time

R2 =
Q1Q5

a2 + b2

2

(C.14)

Notice that even if the appearance in Z4 of an explicit dependence on φ the 6 dimensional
metric, defined as (3.2) is still φ-independent, since this warp factor appear only in P =

Z1Z2 − Z2
4 and P = R2

2Σ

[
2a2+b2

Σ − b2a2k sin2k θ
(r2+a2)Σ

]
, which depends only on r and θ.
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Appendix D

Explicit computations for EE

D.1 Case n = 0

In order to find ω = r∗ as a function of the interval length l, we need to solve the constraint:

l = 2ω
√
Q1Q5

∫ r0�1

ω

dr
1

r(r2 + a2)

√
r2 + ã2

r2 − ω2

=

√
Q1Q5

a2
√
a2 + ω2

{
2ω
√
a2 − ã2arctanh

(√
(a2 − ã2)(r2 − ω2)

(r2 + ã2)(a2 + ω2)

)

− iã
√
a2 + ω2 log

[
iã

ω
− iω

ã
− 2iãω

r2
+ 2

√
(ã2 + r2)(r2 − ω2)

r2

]}∣∣∣∣r0�1

ω

= ã2

√
Q1Q5

a2︸ ︷︷ ︸
R

{
arccos

(
ω2 − ã2

ω2 + ã2

)
− ω

ã

√
a2 − ã2

a2 + ω2
log

(
2a2 + ω2 − ã2 − 2

√
(a2 + ω2)(a2 − ã2)

ã2 + ω2

)}

Note that for evaluating the integral in the extreme r0, which is the IR cut-off, we perform
an expansion around r0 →∞.
Using eq.(5.14) we can determine the geodesic length in terms of ω and consequently of l.

Lγ = 2(Q1Q5)1/4

∫ r0

ω

r

r2 + a2

√
r2 + ã2

r2 − ω2

= 2(Q1Q5)1/4

{
−
√
a2 − ã2

a2 + ω2
arctanh

(√
(a2 − ã2)(r2 − ω2)

(ã2 + r2)(a2 + ω2)

)
+ log

(√
r2 + ã2 +

√
r2 − ω2

)} ∣∣∣∣r0
ω

= (Q1Q5)1/4

{
log

(
4r2

0

a2 + ω2

)
+

√
a2 − ã2

a2 + ω2
log

(
2a2 + ω2 − ã2 − 2

√
(a2 + ω2)(a2 − ã2)

ã2 + ω2

)}
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D.2 Generic n: a = 0 limit

Let us start from expressing (5.4), (5.5) and (5.6) in terms of the components of the metric
in (5.19)

ṫ =
√
Q1Q5

(
b2n

2

C2 − C1

r4
− C1

r2

)
ẏ =

√
Q1Q5

(
b2n

2

C1 − C2

r4
+
C2

r2

)
ṙ2 =

r2

√
Q1Q5

{
1−

√
Q1Q5

C2 − C1

r4

[
(C1 + C2)r2 − b2n

2
(C2 − C1)

]}
⇒

ṙ =
1

r
√
Q1Q5

√
r4 −

√
Q1Q5

[
(C2

2 − C2
1 )r2 − b2n

2
(C2 − C1)2

]
The turning point r∗ is given by the largest root of:

r4 −
√
Q1Q5

[
(C2

2 − C2
1 )r2 − b2n

2
(C2 − C1)2

]
= 0

r− = ± (Q1Q5)1/4

√
2

√√√√C2
2 − C2

1 −

√
(C1 − C2)2

(
(C1 + C2)2 − 2

b2n√
Q1Q5

)

r+ = ± (Q1Q5)1/4

√
2

√√√√C2
2 − C2

1 +

√
(C1 − C2)2

(
(C1 + C2)2 − 2

b2n√
Q1Q5

)

Since r+ > r−, we take r∗ = r+.
C1 and C2 are fixed by the boundary conditions on y and t. For easier calculations it is
convenient to consider, instead of (5.7) and (5.8) separately, their sum:

l

2
=

∫ r0

r∗
dr
ṫ+ ẏ

ṙ
= (Q1Q5)3/4(C2 − C1)

∫ r0

r∗
dr

1

r
√
r4 −

√
Q1Q5

[
(C2

2 − C2
1 )r2 − b2n

2 (C2 − C1)2
]

= −
√
Q1Q5√
2b
√
n

log

(
r2

∆

) ∣∣∣∣r0�1

r∗

where:

∆ =b
√
n 4
√
Q1Q5

√
b2n
√
Q1Q5(C1 − C2)2 + 2r2

(√
Q1Q5(C2

1 − C2
2 ) + r2

)
+

+
√
Q1Q5

(
b2n(C1 − C2) + r2(C1 + C2)

)
And finally evaluating it in the extremes:

l

2
=

√
Q1Q5√
2b
√
n

log

(√
2b
√
n+ 4
√
Q1Q5(C1 + C2)√√

Q1Q5(C1 + C2)2 − 2b2n

)

Solving for C2

C2 =

√
2b
√
n

4
√
Q1Q5

coth

(
l

b
√
n√

2
√
Q1Q5

)
− C1 (D.1)
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The other constraint follows from:

0 =

∫ r0

r∗
dr
ṫ

ṙ
= (Q1Q5)3/4

∫ r0

r∗
dr

(
b2n
2
C2−C1

r2 − C1

)
r
√
r4 −

√
Q1Q5

[
(C2

2 − C2
1 )r2 − b2n

2 (C2 − C1)2
]

=

√
b2n
√
Q1Q5(C1 − C2)2 + 2r2

(√
Q1Q5(C1 − C2)(C1 + C2) + r2

)
r2(C1 − C2)

+
4
√
Q1Q5

b
√
n

log

(
∆

r2

) ∣∣∣∣r0�1

r∗

=

√
2

C1 − C2
+

4
√
Q1Q5

b
√
n

log

((√
2b
√
n+ 4
√
Q1Q5(C1 + C2)

)√√
Q1Q5(C1 + C2)2 − 2b2n

)

This result can be substituted in eq.(D.1) to obtain:

C1 =
b
√
n coth

(
l b

√
n√

2
√
Q1Q5

)
√

2(Q1Q5)1/4
− (Q1Q5)1/4

l
(D.2)

C2 =
b
√
n coth

(
l b

√
n√

2
√
Q1Q5

)
√

2(Q1Q5)1/4
+

(Q1Q5)1/4

l
(D.3)

With these results the expressions for r∗ and ṙ become:

r∗ = (2nQ1Q5)1/4

√
b

l

√
coth

(
l

2

b
√
n√

2
√
Q1Q5

)

ṙ =
1

r 4
√
Q1Q5

√√√√2b2nQ1Q5

l2
−

2
√

2b
√
n
√
Q1Q5r2 coth

(
l b

√
n√

2
√
Q1Q5

)
l

+ r4

Integration of 1
ṙ leads immediately to the geodesic length

Lγ = 4
√
Q1Q5 log

2lr2
0 sinh

(
bl
√
n√

2
√
Q1Q5

)
√

2b
√
n
√
Q1Q5



D.3 n = 1

Let us start reporting the explicit expressions of (5.6) and of the combination (5.4) with
(5.5) when we choose n = 1 in the metric of the superstratum: In this case the expression
for:

ṙ =
a0

(
a2 + r2

)3/2
4
√
Q1Q5

{
1

a4 (a2
0 + r2) + a2a2

0r
2 + a2

0r
4

(D.4)

−
√
Q1Q5

(
a6(k1 + k2)2 + a4r2(k1 + k2)2 + 4a2a2

0k2r
2(k1 + k2) + 4a2

0k2r
2
(
k1r

2 − a2
0k2

))
4 (a4r (a2

0 + r2) + a2a2
0r

3 + a2
0r

5)
2

}1/2

ẏ + ṫ

ṙ
=

(Q1Q5)3/4
(
a4(k1 + k2) + 2a2

0k2r
2
)

a0r
√
a2 + r2

·∆−1/2 (D.5)

ẏ − ṫ
ṙ

=
(Q1Q5)3/4

(
(a6 + a4r2)(k1 + k2) + 2a2a2

0r
2(k1 + 2k2)− 4a4

0k2r
2 + 2a2

0k1r
4
)

a0r (a2 + r2)
3/2

·∆−1/2

(D.6)
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Where we have defined

∆ ≡− a6
√
Q1Q5(k1 + k2)2 + 4r4

(
a4 + a2a2

0 − a2
0k1k2

√
Q1Q5

)
+

− r2
(√

Q1Q5

(
a4(k1 + k2)2 + 4a2a2

0k2(k1 + k2)− 4a4
0k

2
2

)
− 4a4a2

0

)
+ 4a2

0r
6

Note that, w.t.r to the previous case, we have introduced two new constants:

C2 + C1 = k1 (D.7)
C2 − C1 = k2 (D.8)

(D.9)

First of all we need to find the geodesic turning point δr∗

ṙ(r∗0 + a2δr, k0
1 + a2δ1, k0

2 + a2δ2) = ṙ(r∗0 , k
0
1, k

0
2)︸ ︷︷ ︸

0

+ a
tanh

(
a0l

2
√
Q1Q5

)
l 4
√
Q1Q5

√
a0l

[
− 1

2
a2

0δ2l
3 4
√
Q1Q5 sinh

(
a0l√
Q1Q5

)
csch4

(
a0l

2
√
Q

)
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So equating to zero we get the expression for the variation of the turning point in terms of
the other variations:
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Using the same expansions as in (5.24) we get the following approximate forms for:
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where we have defined
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Now in order to find the condition for δ1 and δ2 we have to integrate the expression in (D.11)
and (D.17) from r∗ + a2δr∗ and the cut-off r0 and we must recover the result =

(
l
2

)
at the

order a = 0.∫ r0
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dr
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So at the first order in a the condition imposed by (D.17) is simply

δr = 0

Then taking into account this condition, we consider also the contribution at order a2 in
(D.13),(D.16) obtaining:
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Finally we can compute the geodesic length Lγ
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