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Introduction

In classical terms (see, for example, [Bou67, §I.3.5]), the joint spectrum Σf of a tuple f of

elements (f1, . . . , fn) of a unital commutative Banach C-algebra D can be defined as the

image of the map

∗f : X(D)→ Cn, χ 7→ (χ(f1), . . . , χ(fn)), (1)

where X(D) is the space of characters of D (i.e. the space of unital C-algebra homomor-

phisms D → C). Moreover, if we identify Cn with the space of characters of the C-algebra

of polynomials in n variables C[T1, . . . , Tn], then we can see ∗f as the map (between the

corresponding spaces of characters) induced by the homomorphism

ϕ : C[T1, . . . , Tn]→ D , Ti 7→ fi (∀ i = 1, . . . , n). (2)

As recounted in [Ber07], the problem from which the idea of Berkovich spaces originated

was that of defining an analogue of spectra for elements of a unital commutative Banach

K-algebra D , where K is a non-Archimedean field. The idea of Berkovich was to allow

characters to take values on Banach field extensions of K (something that is superfluous

in the complex case because of Gelfand - Mazur theorem, [Bou67, Corollaire I.2.5/2]).

This led him (in view of Proposition 1.2.8.iii) to define the following analogues for X(D)

and Cn: the Berkovich spectrum M (D) of D is the topological space of all bounded

multiplicative seminorms on D (with the weakest topology); the n-dimensional analytic

affine space AnK is the topological space of all the multiplicative seminorms onK[T1, . . . , Tn]

which extend the absolute value on K (with the weakest topology). Thus, for any f :=

(f1, . . . , fn) ∈ Dn, he could define an analogue of the map ∗f in (1) as the map induced

(see Definition/Proposition 1.2.4) by the analogue of ϕ with K instead of C, and could

define the joint spectrum of f as the image of this map. To allow more generality, he

further defined the spectrum Σϕ of a bounded homomorphism ϕ : A → D from a K-

affinoid algebra A (see Definition 1.5.4) to a unital commutative Banach K-algebra D as

the image of the induced map M (ϕ) : M (D)→M (A ). One can relate it to the definition
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of joint spectrum of a tuple of elements by considering AnK as the union of the Berkovich

spectra relative to the K-affinoid algebras K{r−1T } (see Definition 1.5.2) with |r| → ∞.

Now, for any unital commutative Banach C-algebra D , the (classical) holomorphic

functional calculus theorem (see, for example, [Bou67, §I.4]) says that there exists one

and only one map which associates to any tuple of elements f := (f1, . . . , fn) ∈ Dn a

homomorphism θf : Γ(Σf ,OCn)→ D such that, if z1, . . . , zn are the germs of the coordinate

functions on Cn, then θf (zi) = fi for each i = 1, . . . , n (plus some further properties). Here,

Γ(Σf ,OC) is the algebra of holomorphic functions on a neighborhood of Σf in Cn. The

purpose of this thesis is to provide a complete proof of the analogue theorem for unital

commutative Banach algebras over a non-Archimedean field K (Theorem 4.2.1). Omitting

some further properties that are proven, it says that there is a way to extend any bounded

homomorphism ϕ : A → D from a K-affinoid algebra A to a unital commutative Banach

K-algebra D to a homomorphism θϕ : Γ(Σϕ,OM (A )) → D , where Γ(Σϕ,OM (A )) is the

analogue of the algebra of holomorphic functions on a neighborhood of the spectrum.

We start, in Chapter 1, with a brief introduction to Berkovich’s setting for non-

Archimedean geometry, which ends with a construction of the analogue of the algebra

of holomorphic functions on a closed subset (§1.8) and a discussion of the morphisms to be

considered (§1.9). Then, in Chapter 2, we discuss relative interiors, which are an analytical

analogue of topological interiors for Berkovich spaces. In fact, they are useful in order to

prove Proposition 4.1.2, which is our first real step towards the proof of the holomorphic

functional calculus theorem. It says that every bounded homomorphism ψ : A → D from a

K-affinoid algebra A to a unital commutative BanachK-algebra D can be extended in one

and only one way to a bounded homomorphism θψ,Σhψ
: Γ(Σh

ψ,OM (A )) → D . Here, Σh
ψ is

the holomorphically convex envelope of the spectrum Σψ of ψ, and holomorphically convex

envelopes and spectra of homomorphisms are the subject of Chapter 3. Finally, in Chap-

ter 4, we state and prove the holomorphically functional calculus theorem (Theorem 4.2.1),

after (the analogue of) Arens - Calderon lemma (Lemma 4.1.3).

Given a unital commutative Banach C-algebra D and a tuple of elements (f1, . . . , fn),

the (classical) Arens - Calderon lemma (see, for example, [Gam69, Lemma III.5.2]) says

that for any open neighborhood U of the joint spectrum Σ(f1,...,fn) in Cn there exist some

elements fn+1, . . . , fn+m in D such that Π(Σp
(f1,...,fn+m)) ⊆ U , where Π: Cn+m → Cn is

the canonical projection and Σp
(f1,...,fn+m) is the polynomially convex envelope of the joint

vi



spectrum Σ(f1,...,fn+m), i.e. the set

{
z ∈ Cn+m

∣∣∣ |P (z)| ≤ max
w∈Σ(f1,...,fn+m)

|P (w)| ∀P ∈ C[T1, . . . , Tn+m]

}
.

The analogous lemma for a bounded homomorphism ϕ : A → D from a K-affinoid algebra

A to a unital commutative Banach K-algebra D says that for any open neighborhood

U of the spectrum Σϕ in M (A ) there exist r1, . . . , rn ∈ R>0 and a bounded homo-

morphism ϕ′ : A {r−1T } → D which extends ϕ and is such that Π(Σh
ϕ′) ⊆ U , where

Π is the continuous map M (A {r−1T }) → M (A ) induced by the inclusion of A into

A {r−1T }. Thus, for any open neighborhood U of Σϕ, we can construct a homomor-

phism Γ(U,OM (A )) → D extending ϕ by composing the pullback homomorphism (see

Definition 1.9.3 and Remark 1.9.6) Π∗
U,Σh

ϕ′
: Γ(U,OM (A )) → Γ(Σh

ϕ′ ,OM (A {r−1T })) with

the homomorphism θϕ′,Σh
ϕ′

: Γ(Σh
ϕ′ ,OM (A {r−1T })) → D previously described. This is the

way in which we will construct the homomorphism θϕ.
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Chapter 1

Conventions and preliminaries

Here we introduce the most important notions and propositions which are needed in the

following chapters, together with the notations and conventions used. This is meant to be

a quick introduction to non-Archimedean geometry as developed by V. G. Berkovich in

the first two chapters of [Ber90]. In particular, we introduce non-Archimedean fields and

Banach algebras (§1.1), Berkovich spectra (§1.2), spectral radii and residue rings (§1.3),

completed tensor products (§1.4), affinoid algebras and affinoid spaces (§1.5), affinoid do-

mains (§1.6), special subsets (§1.7), sheaves of affinoid functions (§1.8) and morphisms of

quasiaffinoid spaces (§1.9). We skip most of the proofs, while referring to [Ber90] or to

[BGR84]. We put a bit more attention than [Ber90] to the rings of affinoid functions on

closed subsets of affinoid spaces and to pullback homomorphisms (§1.8 and §1.9), since

they play an important role in the following chapters.

Convention 1.0.1. We use almost the same notations of [Ber90]. The only difference is

that we preferred a more coherent way of assigning names to mathematical objects; here

are our choices:

• M , N , i, j, k, l, m, n, s, t, u, and v represent (usually positive) integer numbers;

• ε, δ, C, p, q, r represent (usually positive) real numbers;

• S and T represent indeterminates;

• P and Q represent polynomials;

• K and L represent non-Archimedean fields;

• A , B and C represent K-affinoid algebras;

• D and E represent seminormed (usually Banach) K-algebras;
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• b and p represent ideals of a K-algebra;

• a, b, c, d, e, f , g and h represent elements of a K-algebra;

• X, Y and Z represent Berkovich spectra;

• x, y and z represent elements of a Berkovich spectrum;

• η, θ, ι, ξ, π, ρ, σ, τ , ϕ and ψ represent homomorphisms of K-algebras;

• χ represents characters of Banach K-algebras;

• Ξ, Π, Φ and Ψ represent (induced) continuous functions between Berkovich spectra

and morphisms of K-quasiaffinoid spaces;

• Λ represents subsets of a K-affinoid space which are either open or closed;

• Σ represents closed subsets of a K-affinoid space;

• U represents open subsets of a K-affinoid space;

• V represents special subsets of a K-affinoid space;

• W represents K-affinoid domains of a K-affinoid space.

Convention 1.0.2. Unless otherwise stated, all rings are supposed to be commutative

and with identity 1 6= 0, and all homomorphisms send the identity to the identity.

Convention 1.0.3. We use the term “canonical” to indicate the maps that are derived

or implied by the definitions or the universal properties of the objects involved. For ex-

ample, τD ′ , τD ′′ and η in Definition 1.4.4 and σW in Definition 1.6.1 are all canonical

homomorphisms.

1.1 Banach K-algebras

Definition 1.1.1. An absolute value on a field K is a map | · | : K → R≥0 such that, for

any c, c′ ∈ K, we have:

(i) |c| = 0 ⇐⇒ c = 0;

(ii) |cc′| = |c| |c′|;

(iii) |c+ c′| ≤ |c|+ |c′|.

It is said to be non-Archimedean if |c+ c′| ≤ max{|c| , |c′|} for all c, c′ ∈ K, and non-trivial

if there exists an element c ∈ K× = K \ {0} such that |c| 6= 1.
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Definition 1.1.2. A field K is called a non-Archimedean field if it is endowed with a

non-Archimedean absolute value | · | such that the map K × K → R≥0, (c, c′) 7→ |c− c′|

defines a complete metric on K.

Convention 1.1.3. Throughout this thesis we letK be a fixed arbitrary non-Archimedean

field. We denote its absolute value by | · |.

Definition 1.1.4. A K-algebra seminorm on a K-algebra D is a map || · || : D → R≥0

such that, for any f, g ∈ D , we have:

(i) f ∈ K =⇒ ||f || = |f |;

(ii) ||fg|| ≤ ||f || ||g||;

(iii) ||f − g|| ≤ ||f ||+ ||g||.

It is said to be non-Archimedean if ||f − g|| ≤ max{||f || , ||g||} for all f, g ∈ D , power-

multiplicative if ||fn|| = ||f ||n for all f ∈ D and n ∈ N, and multiplicative if ||fg|| =

||f || ||g|| for all f, g ∈ D . Furthermore, it is called a norm if ||f || = 0 only when f = 0.

Definition 1.1.5. A K-algebra D is called seminormed (resp. normed) if it is endowed

with a K-algebra seminorm (resp. norm). A K-algebra D is called Banach if it is endowed

with a K-algebra norm || · || such that the map D ×D → R≥0, (f, g) 7→ ||f − g|| defines a

complete metric on D .

Convention 1.1.6.

(i) For simplicity, we always suppose the K-algebra seminorm of any seminormed K-

algebra to be non-Archimedean.

(ii) If not stated otherwise, we denote the K-algebra seminorm of any seminormed K-

algebra by || · ||. If it is important to point out the K-algebra seminorm, we write

(D , || · ||) instead of just D .

(iii) For simplicity, we will write just “seminorm” instead of “K-algebra seminorm”.1

(iv) Whenever we write that a map ϕ between two K-algebras is a homomorphism, it is

intended that ϕ is a K-algebra homomorphism.

Definition 1.1.7. A homomorphism ϕ : D → D ′ between two seminormed K-algebras is

said to be bounded if there exists a bound C ∈ R>0 such that ||ϕ(f)|| ≤ C ||f || for all

f ∈ D .

1The actual definition of seminorm on a ring is like Definition 1.1.4, but with just ||0|| = 0 and ||1|| = 1
as condition (i).
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It is said to be contractive if we can choose C = 1.

It is said to be isometric (or an isometry) if ||ϕ(f)|| = ||f || for all f ∈ D , and it is

called an isometric isomorphism (resp. an embedding) if it is, moreover, bijective (resp.

injective).

It is said to be an admissible epimorphism if it is bounded and there exists C ′ ∈ R>0

such that any f ′ ∈ D ′ admits a preimage f ∈ D with ||f || ≤ C ′ ||f ′||; it is called an

admissible isomorphism if it is, moreover, injective.

Proposition 1.1.8. Any bounded homomorphism ϕ : D → D ′ between two seminormed K-

algebras is continuous. Moreover, the composition of two bounded homomorphisms (resp.

two contractive homomorphisms, two isometries, two admissible epimorphisms, . . . ) is a

bounded homomorphism (resp. a contractive homomorphism, an isometry, an admissible

epimorphism, . . . ).

Definition 1.1.9. Two seminorms || · || and || · ||′ on aK-algebra D are said to be equivalent

if the identity homomorphism ι : (D , || · ||)→ (D , || · ||′) is an admissible isomorphism.

Definition 1.1.10. Let b be an ideal of a seminormed K-algebra D . The quotient semi-

norm on D/b is defined by the formula

||f || := inf{||h|| | h ∈ π−1({f})} ∀ f ∈ D/b,

where π is the canonical projection of D into D/b.

Convention 1.1.11. If not stated otherwise, we assume any quotient of a seminormed

K-algebra to be endowed with the quotient seminorm.

Proposition 1.1.12. Let D be a Banach K-algebra.

(i) The group of units D× is open and any maximal ideal of D is closed.

(ii) If b is a closed ideal of D , then D/b is complete (i.e. it is a Banach K-algebra).

Definition/Proposition 1.1.13. A completion of a seminormedK-algebra D is a Banach

K-algebra D̂ with a homomorphism ι : D → D̂ which is an isometry with dense image.

Any two completions are the same up to isometric isomorphisms, and one can be defined

as the quotient of the K-algebra of Cauchy sequences in D modulo the ideal made of

the sequences that converge to zero (with ||(fi)i∈N|| := limi→∞ ||fi||, and the isometry

ι : D → D̂ sending each element f ∈ D to the constant sequence (f, f, . . . )).
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1.2 Berkovich spectra

Definition 1.2.1. A seminorm | · | on a seminormed K-algebra (D , || · ||) is said to be

bounded if there exits a bound C ∈ R>0 such that |f | ≤ C ||f || for all f ∈ D .

Proposition 1.2.2.

(i) If | · | is a power-multiplicative bounded seminorm on a seminormedK-algebra (D , || · ||),

then |f | ≤ ||f || for all f ∈ D .

(ii) Any multiplicative norm on a K-algebra D which is also an integral domain can be

extended, in one and only one way, to a multiplicative K-algebra norm on the field

of fractions Frac(D).

(iii) Any bounded seminorm on a seminormed K-algebra D can be extended, in one and

only one way, to seminorm on a completion D̂ . Moreover, the extension is bounded

by the same bounds of the original seminorm.

(iv) A non-Archimedean field admits a unique bounded multiplicative seminorm (which is

the absolute value).

Definition 1.2.3. The Berkovich spectrum, denoted by M (D), of a Banach K-algebra D

is the set of all bounded multiplicative seminorms2 on D , with the weakest topology which

makes all the maps |f | : M (D)→ R≥0, | · | 7→ |f | (for each f ∈ D) continuous.

Definition/Proposition 1.2.4. Any bounded homomorphism ϕ : D → D ′ between two

Banach K-algebras induces a continuous map M (ϕ) : M (D ′) → M (D) sending any

bounded multiplicative seminorm | · | to the composition | · | ◦ ϕ.

Remark 1.2.5. If ϕ : D → D ′ is a bounded homomorphism between two BanachK-algebras

and it has dense image, then M (ϕ) is injective.

Definition 1.2.6. Let D be a Banach K-algebra. A character of D is a bounded homo-

morphism χ : D → L to some non-Archimedean field L extending K.

Two characters χ′ : D → L′ and χ′′ : D → L′′ are said to be equivalent if there exists

a non-Archimedean field L and two embeddings ι′ : L′ ↪→ L and ι′′ : L′′ ↪→ L such that

ι′ ◦ χ′ = ι′′ ◦ χ′′. (This is clearly an equivalence relation.)

Definition 1.2.7. Let D be a BanachK-algebra and let x ∈M (D) be given by a bounded

multiplicative seminorm | · |x. It is clear that px := {f ∈ D | |f |x = 0} is a closed prime

2It is easy to see that any bounded multiplicative ring seminorm on a K-algebra is automatically a
K-algebra seminorm. Hence, the definition is not affected by the ambiguity given by Convention 1.1.6.iii.
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ideal of D . We denote by H (x) a completion of the field of fractions of theK-algebra D/px

with the quotient seminorm induced by | · |x. The canonical contractive homomorphism

D → H (x) is called the character associated to x and it is denoted by χx. Nonetheless,

we denote the image in H (x) of any f ∈ D by f(x), and we write |f(x)| for its absolute

value.

Proposition 1.2.8. Let D be a Banach K-algebra.

(i) If x ∈M (D) is given by a bounded multiplicative seminorm | · |x, then |f(x)| = |f |x
for all f ∈ D .

(ii) For any x ∈M (D) the image of the continuous map M (χx) : M (H (x)) →M (D)

is precisely {x}.

(iii) The assignment x 7→ χx induces a bijection between M (D) and the set of equivalence

classes of characters of D . The inverse map sends the equivalence class of a character

χ : D → L to the multiplicative bounded seminorm | · |L ◦χ, where | · |L is the absolute

value on L.

Remark 1.2.9. A basis of open neighborhoods of a point x ∈ M (D) is given by the sets

{y ∈M (D) | |fi(y)| < |fi(x)|+ εi ∧ |gj(y)| > |gj(x)| − δj ∀ i = 1, . . . , n, ∀ j = 1, . . . ,m},

with n,m ∈ N, εi, δj ∈ R>0 and fi, gj ∈ D for each i and j.

Theorem 1.2.10 ([Ber90, Theorem 1.2.1]). The Berkovich spectrum M (D) of any Banach

K-algebra D (with 0 6= 1) is non-empty, compact and Hausdorff.

1.3 Spectral radii and residue rings

Definition/Proposition 1.3.1. The spectral radius of a seminormed K-algebra D is the

map ρ : D → R≥0 defined by the formula

ρ(f) := lim
i→∞

i

√
||f i|| ∀ f ∈ D .

The limit in the formula is indeed well defined, and it is bounded by ||f ||.

Remark 1.3.2. If the seminorm || · || on D is power-multiplicative, then it clearly coincide

with the spectral radius.

Convention 1.3.3. We denote the spectral radius of any seminormed K-algebra by ρ( · ).

If we want to point out that it is associated to a seminormed K-algebra D , we could also

use the more precise notation ρD( · ).
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Proposition 1.3.4. Let D be a Banach K-algebra.

(i) ([Ber90, Theorem 1.3.1]). For any f ∈ D we have ρ(f) = maxx∈M (D) |f(x)|.

(ii) ([Ber90, Corollary 1.3.3, 1.3.4.ii]). The spectral radius ρ( · ) is a non-Archimedean

power-multiplicative seminorm.

(iii) For any bounded homomorphism ϕ : D → D ′ between two Banach K-algebras, we

have ρ(ϕ(f)) ≤ ρ(f) for all f ∈ D .

Definition 1.3.5. For any Banach K-algebra D , we define the ring

D◦ := {f ∈ D | ρ(f) ≤ 1}

and its ideal

D◦◦ := {f ∈ D◦ | ρ(f) < 1}.

The quotient D◦/D◦◦ is called the residue ring of D , and it is denoted by D̃ .

For any bounded homomorphism ϕ : D → D ′ between two Banach K-algebras, we

denote the induced homomorphism between the residue rings (well defined because of

Proposition 1.3.4.iii) by ϕ̃ : D̃ → D̃ ′.

1.4 Completed tensor products

Definition 1.4.1. Let D be a Banach K-algebra. A Banach D-algebra is a Banach K-

algebra D ′ together with a contractive homomorphism D → D ′.

Convention 1.4.2. If we say that a map ϕ : D ′ → D ′′ between two Banach D-algebras is

a homomorphism, it is intended that ϕ is a D-algebra homomorphism.

Proposition 1.4.3. Let D and (D ′, || · ||) be two Banach K-algebras, and let ϕ : D →

(D ′, || · ||) be a bounded homomorphism. Then, there exists a norm || · ||′ on D ′ which is

equivalent to || · || and is such that ϕ : D → (D ′, || · ||′) is contractive, thus making (D ′, || · ||′)

into a Banach D-algebra.

Proof. We define

||f ||′ := 1

||ϕ||

(
sup

h∈D\{0}
||ϕ(h)f || ||h||−1

)
∀ f ∈ D ′,

where ||ϕ|| := suph∈D\{0} ||ϕ(h)|| ||h||−1. The verification that || · ||′ (such defined) is a

norm equivalent to || · || and that ϕ : D → (D ′, || · ||′) is contractive is analogous to the

proof of [BGR84, Proposition 1.2.1/2].
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Definition/Proposition 1.4.4 ([BGR84, Proposition 3.1.1/2]). Let D be a Banach K-

algebra and let D ′ and D ′′ be two Banach D-algebras. Then, there exists a Banach

D-algebra D ′ ⊗̂D D ′′ together with two contractive homomorphisms τD ′ : D ′ → D ′ ⊗̂D D ′′

and τD ′′ : D ′′ → D ′ ⊗̂D D ′′ satisfying the following universal property: for any two bounded

homomorphisms η′ : D ′ → E , bounded by C ′, and η′′ : D ′′ → E , bounded by C ′′, there

exists a unique homomorphism η : D ′ ⊗̂D D ′′ → E , bounded by C ′C ′′, such that η◦τD ′ = η′

and η ◦ τD ′′ = η′′. Such a Banach D-algebra D ′ ⊗̂D D ′′ is called completed tensor product

of D ′ and D ′′ over D , and it is unique up to isometric isomorphisms.

Given d′ ∈ D ′ and d′′ ∈ D ′′, we denote by d′ ⊗̂ d′′ the element of D ′ ⊗̂D D ′′ given by

τD ′(d
′)τD ′′(d

′′).

Convention 1.4.5. Given two bounded homomorphisms between Banach K-algebras

D → D ′ and D → D ′′, we will consider the completed tensor product D ′ ⊗̂D D ′′ even

if they are not contractive. In fact, whenever we do so, we will not make use of the precise

norm of any element, but only of Berkovich spectra and the boundedness (or admissibility)

of some homomorphisms. Therefore, it is intended that we are considering D ′ and D ′′ to

be endowed with the equivalent norms of Proposition 1.4.3.

Definition/Proposition 1.4.6. Let D be a Banach K-algebra and let D ′, D ′′, E ′ and

E ′′ be four Banach D-algebras. Any two bounded homomorphisms ϕ′ : D ′ → E ′, bounded

by C ′, and ϕ′′ : D ′′ → E ′′, bounded by C ′′, induce a unique homomorphism

ϕ′ ⊗̂D ϕ
′′ : D ′ ⊗̂D D ′′ → E ′ ⊗̂D E ′′,

bounded by C ′C ′′, such that (ϕ′ ⊗̂D ϕ
′′) ◦ τD ′ = τE ′ ◦ ϕ′ and (ϕ′ ⊗̂D ϕ

′′) ◦ τD ′′ = τE ′′ ◦ ϕ′′

(where τD ′ , τD ′′ , τE ′ and τE ′′ are as in Definition 1.4.4).

Proposition 1.4.7 ([BGR84, Proposition 2.1.8/6]). Let D be a Banach K-algebra. If

ϕ′ : D ′ → E ′ and ϕ′′ : D ′′ → E ′′ are two admissible epimorphisms of Banach D-algebras,

then also the induced homomorphism ϕ′ ⊗̂D ϕ
′′ : D ′ ⊗̂D D ′′ → E ′ ⊗̂D E ′′ is an admissible

epimorphism.

1.5 K-affinoid algebras and K-affinoid spaces

Convention 1.5.1. We use bold symbols for multi-index notations. In particular, given a

K-algebra D and some positive real numbers r1 . . . , rn, we abbreviate D{r−1
1 T1, . . . , r

−1
n Tn}

as D{r−1T } (see the definition below). Furthermore, given a multi-index u = (u1, . . . , un)
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(belonging either to Nn or to Zn), then |u| :=
∑n

i=1 |ui|, Tu :=
∏n
i=1 T

ui
i and ru :=

∏n
i=1 r

ui
i .

Definition 1.5.2. Let D be a Banach K-algebra. Given n ∈ N and r1, . . . , rn ∈ R>0, we

define the following D-subalgebra of the D-algebra of formal power series over D in the

indeterminates T1, . . . , Tn:

D{r−1T } :=

{ ∑

u∈Nn
auT

u ∈ D [[T1, . . . , Tn]] | au ∈ D ∀u ∈ Nn ∧ lim
|u|→∞

|au| ru = 0

}
.

We endow it with the (relative) Gauss norm, which is given by

∣∣∣∣∣

∣∣∣∣∣
∑

u∈Nn
auT

u

∣∣∣∣∣

∣∣∣∣∣ := max
u∈Nn

||au|| ru.

Proposition 1.5.3. Let D be a Banach K-algebra and D ′ a Banach D-algebra. Moreover,

let us be given some positive real numbers r1, . . . , rn and q1, . . . , qm.

(i) The normed D-algebra D{r−1T } is complete (i.e. Banach).

(ii) If the norm on D is multiplicative, then so is the Gauss norm on D{r−1T }.

(iii) ρ
(∑

u∈Nn auT
u
)

= maxu∈Nn ρ(au)ru for all
∑

u∈Nn auT
u ∈ D{r−1T }.

(iv) D ′ ⊗̂D D{r−1T } = D ′{r−1T }.

(v) D{r−1T } ⊗̂D D{q−1S} = D{r−1T , q−1S}.

Definition 1.5.4. A Banach K-algebra A is said to be K-affinoid if there exits an ad-

missible epimorphism K{r−1
1 T1, . . . , r

−1
n Tn} → A for some n ∈ N and r1, . . . , rn ∈ R>0. If

we can choose r1 = · · · = rn = 1, then A is said to be strictly K-affinoid.

Definition 1.5.5. Let A be a K-affinoid algebra and let B be a Banach A -algebra. B is

said to be A -affinoid if there exits an admissible epimorphism A {r−1
1 T1, . . . , r

−1
n Tn} → B

for some n ∈ N and r1, . . . , rn ∈ R>0. If we can choose r1 = · · · = rn = 1, then B is said

to be strictly A -affinoid.

Proposition 1.5.6. Let A be a K-affinoid algebra and let B and C be two Banach A -

algebras.

(i) If B is A -affinoid, then it is also K-affinoid. Moreover, if B is strictly A -affinoid

and A is strictly K-affinoid, then B is strictly K-affinoid.

(ii) If B and C are (strictly) A -affinoid, then so is B ⊗̂A C .
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Definition 1.5.7. K-affinoid spaces are the Berkovich spectra of K-affinoid algebras.

Moreover, the morphisms between two K-affinoid spaces are the continuous maps which

are induced by bounded homomorphisms between the underlying K-affinoid algebras.

Remark 1.5.8. Later on, we will endow any K-affinoid space with a sheaf of functions.

Remark 1.5.9. The category of K-affinoid spaces is by construction the opposite of that of

K-affinoid algebras. In particular, since the category of K-affinoid algebras admits amal-

gamated sums in the form of completed tensor products (by Proposition 1.5.6.ii and the

universal property of completed tensor products), the category of K-affinoid spaces admits

fibered products: M (B) ×M (A ) M (C ) = M (B ⊗̂A C ) for any two bounded homomor-

phisms of K-affinoid algebras A → B and A → C .

Definition 1.5.10. We let
√
|K×| := {r ∈ R>0 | ∃n ∈ N, rn ∈ |K×|}, and we notice that

the multiplicative group R>0/
√
|K×| can be naturally endowed with the structure of a

Q-vector space. Now, positive real numbers r1, . . . , rn are called K-free if their projections

to R>0/
√
|K×| are Q-linearly independent.

Definition 1.5.11. Let r1, . . . , rn beK-free positive real numbers. We define the following

K-subalgebra of the K-algebra of Laurent series over K in the indeterminates T1, . . . , Tn:

Kr :=

{ ∑

u∈Zn
auT

u | au ∈ K ∀u ∈ Zn ∧ lim
|u|→∞

|au| ru = 0

}
.

We endow it with the norm given by
∣∣∣∣∑

u∈Zn auT
u
∣∣∣∣ := maxu∈Zn ||au|| ru.

Proposition 1.5.12. Let r1, . . . , rn be K-free real numbers. Then, Kr is a K-affinoid

algebra and a non-Archimedean field with non-trivial absolute value. Moreover, Kr =

Kr1 ⊗̂K . . . ⊗̂K Krn.

Proposition 1.5.13. Let r1, . . . , rn be K-free real numbers, and let D be a Banach K-

algebra. Then,

D ⊗̂K Kr =

{ ∑

u∈Zn
auT

u | au ∈ D ∀u ∈ Zn ∧ lim
|u|→∞

|au| ru = 0

}
,

where the right-hand side has norm given by
∣∣∣∣∑

u∈Zn auT
u
∣∣∣∣ := maxu∈Zn ||au|| ru and

spectral radius ρ
(∑

u∈Zn auT
u
)

= maxu∈Zn ρ(au)ru.

Moreover, the map M (D ⊗̂K Kr) → M (D) induced by the embedding of D into

D ⊗̂K Kr is surjective.

Proposition 1.5.14. For any K-affinoid algebra A there exist some K-free real numbers

r1, . . . , rn such that A ⊗̂K Kr is a strictly Kr-affinoid algebra.
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Remark 1.5.15. We will sometimes need to extend results proven in the strictly affinoid case

(and supposing non-trivial absolute value) to the general one. By the previous propositions,

to do so it is enough to show that the property passes from A ⊗̂K Kr to A , where A is

any K-affinoid algebra and r ∈ R>0 \
√
|K×|.

Proposition 1.5.16. Let A and B be two K-affinoid algebras. Moreover, let us be given

some positive real numbers r1, . . . , rn and q1, . . . , qn.

(i) ([Ber90, Proposition 2.1.4]). For any f ∈ A there exist C ∈ R>0 and N ∈ N such

that ||fn|| ≤ Cρ(f)n for all n ≥ N . Moreover, one can take N = 0 if f is not

nilpotent.

(ii) ([Ber90, Corollary 2.1.5]). Given a bounded homomorphism ϕ : A → B and given

f1, . . . , fn ∈ B, then ρ(fi) ≤ ri for all i = 1, . . . , n if and only if there exists a

(necessarily unique) bounded homomorphism ϕ′ : A {r−1T } → B extending ϕ and

sending Ti to fi for all i = 1, . . . , n.

(iii) ([Ber90, Corollary 2.1.6]). A is strictly K-affinoid if and only if ρ(f) ∈
√
|K×|∪{0}

for all f ∈ A .

(iv) ([Ber90, Proposition 2.1.7]). Let ϕ : A {r−1
1 T1, . . . , r

−1
n Tn} → B be an admissible

epimorphism and let us denote by fi the image of Ti (for each i = 1, . . . , n). Then,

there exists ε ∈ R>0 such that, for any choice of elements f ′1, . . . , f
′
n ∈ B with

||fi − f ′i || ≤ ε, the homomorphism ϕ′ : A {r−1T } → B sending Ti to f ′i for all

i = 1, . . . , n is an admissible epimorphism.

(v) Clearly, A {r−1T } ⊆ A {q−1T } if qi ≤ ri for all i = 1, . . . , n. Now, if the absolute

value on K is non-trivial and if B is strictly K-affinoid, then any bounded homo-

morphism ϕ : A {r−1T } → B admits a bounded extension ϕ′ : A {q−1T } → B with

qi ≤ ri and qi ∈
√
|K×| for all i = 1, . . . , n.

Proof. Let us prove (v). If ri /∈
√
|K×|, it means, by (iii), that ρ(ϕ(Ti)) < ri. Therefore, we

can find qi ∈
√
|K×| such that ρ(ϕ(Ti)) < qi < ri, because

√
|K×| is dense in R>0 (which

follows easily from the fact that the absolute value on K is assumed to be non-trivial). By

(ii), we can extend ϕ to a bounded homomorphism A {r−1
1 T1, . . . , q

−1
i Ti, . . . , r

−1
n Tn} → B.

It suffices to iterate this procedure for each i such that ri /∈
√
|K×|.

Theorem 1.5.17 ([BGR84, Theorem 6.3.5/1]). Let the absolute value on K be non-trivial

and let ϕ : A → B be a bounded homomorphism between two strictly K-affinoid algebras.

Then, the following are equivalent:
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(a) ϕ is finite;

(b) ϕ is integral;

(c) ϕ̃ is finite;

(d) ϕ̃ is integral.

1.6 K-affinoid domains

Definition 1.6.1. Let A be a K-affinoid algebra and let X := M (A ). A closed subset

W ⊆ X is called a K-affinoid domain in X if there exists a K-affinoid algebra AW and a

bounded homomorphism σW : A → AW such that:

(i) the induced map M (σV ) : M (AW )→ X has image W ;

(ii) for any bounded homomorphism of K-affinoid algebras ϕ : A → B such that M (ϕ)

has image inside W there is a unique bounded homomorphism ϕW : AW → B such

that ϕ = ϕW ◦ σW .

In such a situation, we say that W is represented by the homomorphism σW : A → AW .

Remark 1.6.2. This definition is equivalent to that in [Ber90, §2.2], as proven in [Tem05,

Corollary 3.2]

Convention 1.6.3. Let A be a K-affinoid algebra and let W be a K-affinoid domain in

M (A ).

(i) Whenever writing AW , we imply thatW is represented by a bounded homomorphism

σW : A → AW .

(ii) By means of Proposition 1.4.3, we assume AW to be a Banach A -algebra (i.e. σW to

be contractive).

(iii) If W ′ ⊆ W is another K-affinoid domain in M (A ), then the universal property of

K-affinoid domains gives a (canonical) bounded homomorphism σW,W ′ : AW → AW ′ .

We denote the image of any element f ∈ AW by f|W ′ .

Proposition 1.6.4. Let A be a K-affinoid algebra and let W be a K-affinoid domain in

M (A ).

(i) The bounded homomorphism σW : A → AW representing W is unique up to the

composition with admissible isomorphisms.
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(ii) ([Ber90, Proposition 2.2.4.i]). The map M (σW ) : M (AW ) → W is an homeomor-

phism.

(iii) ([Ber90, Remark 2.2.2.iii]). If ϕ : A → B is a bounded homomorphism of K-affinoid

algebras and Φ: M (B) → M (A ) is the corresponding morphism of K-affinoid

spaces, then Φ−1(W ) is a K-affinoid domain in M (B), and it is represented by

the canonical homomorphism B → B ⊗̂A AW .

(iv) ([Ber90, Remark 2.2.2.iv]). If W ′ is another K-affinoid domain in M (A ), then also

W ∩ W ′ is a K-affinoid domain in M (A ), and it is represented by the canonical

homomorphism A → AW ⊗̂A AW ′ .

Definition/Proposition 1.6.5. Let A be a K-affinoid algebra and let X := M (A ).

Given some elements f1, . . . , fm, g1, . . . , gn ∈ A and some positive real numbers p1, . . . , pm

and q1, . . . , qn, the closed subset

X(p−1f, qg−1) := {x ∈ X | |fi(x)| ≤ pi ∀i = 1, . . . ,m ∧ |gj(x)| ≥ qj ∀j = 1, . . . , n}

is said to be a Laurent domain in X, and it is a K-affinoid domain represented by the

canonical homomorphism

σX(p−1f,qg−1) : A → A {p−1T, qS}/b,

where b is the ideal generated by the elements Ti − fi and gjSj − 1 (for all i = 1, . . . ,m

and j = 1, . . . , n).

If n = 0 (i.e. if there are no gj ’s nor qj ’s), then X(p−1f) is said to be a Weierstrass

domain.

Remark 1.6.6. Let us be given a K-affinoid algebra A and a point x ∈ M (A ). By

Remark 1.2.9, the neighborhoods of x which are Laurent domains form a basis of neigh-

borhoods of x in M (A ).

Definition/Proposition 1.6.7. Let A be a K-affinoid algebra and let X := M (A ).

Given some elements f0, f1, . . . , fm ∈ A generating A (as an ideal) and given some positive

real numbers p1, . . . , pm, the closed subset

X(p−1f/f0) := {x ∈ X | |fi(x)| ≤ pi |f0(x)| ∀i = 1, . . . ,m}

is said to be a rational domain in X, and it is a K-affinoid domain represented by the
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canonical homomorphism

σX(p−1f/f0) : A → A {p−1T }/b,

where b is the ideal generated by the elements f0Ti − fi (for all i = 1, . . . ,m).

Proposition 1.6.8 ([BGR84, Proposition 7.2.3/7]). The intersection of two rational (resp.

Laurent, resp. Weierstrass) domains is a rational (resp. Laurent, resp. Weierstrass) do-

main.

Proposition 1.6.9 ([Ber90, Corollary 2.2.10, 2.2.11]). Let A be a K-affinoid algebra

and let W be a K-affinoid domain in M (A ) represented by a bounded homomorphism

σW : A → AW .

(i) If W is a Weierstrass domain, then σW has dense image.

(ii) If W is a rational domain in M (A ), then the localization of A with respect to the

elements not vanishing on W has dense image in AW .

(iii) If W is a rational (resp. Weierstrass) domain in X and W ′ is a rational (resp.

Weierstrass) domain in W , then W ′ is also a rational (resp. Weierstrass) domain in

X.

Theorem 1.6.10 (Gerritzen - Grauert, [BGR84, Corollary 7.3.5/3], [Tem05, Theorem 3.1]).

Let A be a K-affinoid algebra and let W be a K-affinoid domain in M (A ). Then, there

exists a finite cover of M (A ) by rational domains W1, . . . ,Wm such that W ∩ Wi is a

Weierstrass domain in Wi for each i = 1, . . . ,m.

Remark 1.6.11. In view of Proposition 1.6.9.iii, the previous theorem tells us that any

K-affinoid domain is a finite union of rational domains.

Proposition 1.6.12 ([Ber90, Corollary 2.2.7]). Let A be a K-affinoid algebra and let

X := M (A ). If W is a K-affinoid domain in X which is represented by an admissible

epimorphism, then X \W is a K-affinoid domain in X and there is an admissible isomor-

phism between A and AW ×AX\W (where the norm on the Cartesian product is given by

taking the maximum of the norms of the components).

1.7 Special subsets

Definition 1.7.1. Let A be a K-affinoid algebra and let X := M (A ). We say that V is

a special subset of X if it is a finite union of K-affinoid domains in X.
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Definition 1.7.2. Let A be a K-affinoid algebra and let Σ ⊆M (A ) be a closed subset.

The special neighborhoods (resp. Laurent neighborhoods, resp. Weierstrass neighborhoods)

of Σ are the (closed) neighborhoods of Σ that are special subsets (resp. Laurent domains,

resp. Weierstrass domains) in M (A ).

Proposition 1.7.3. Let A be a K-affinoid algebra and let Σ ⊆M (A ) be a closed subset.

Then, the special neighborhoods of Σ form a basis of neighborhoods of Σ.

Proof. Let U be an arbitrary open neighborhood of Σ. By Remark 1.6.6, there exists,

for any point x ∈ Σ, a Laurent domain Vx which is a neighborhood of x contained in U .

Since Σ is compact (by Theorem 1.2.10), it can be covered using only a finite number of

interiors of some Vx’s. The finite union of these Vx’s is clearly a special neighborhood of

Σ contained in U . This concludes the proof.

Definition/Proposition 1.7.4 ([Ber90, Corollary 2.2.6]). Let A be a K-affinoid algebra

and let X := M (A ). Let V be a special subset which is the union of a finite family

{Wi}i∈I of K-affinoid domains in X. We define

AV := ker

(⊕

i∈I
AWi →

⊕

(i,j)∈I2

AWi∩Wj

)
, (1.1)

where the map is the homomorphism of A -modules which sends

(ai)i∈I 7→ (ai|Wi∩j − aj|Wi∩j )(i,j)∈I2 .

We endow AV with the norm given by ||(ai)i∈I || := maxi∈I ||ai||.

It turns out that AV is a Banach A -algebra, and (as a consequence of Tate acyclicity

theorem, [Ber90, Proposition 2.2.5]) it does not depend, up to admissible isomorphisms,

on the choice of the cover {Wi}i∈I (and of the representations A → AWi). Thus, we

can consider AV as if it were determined directly by V . We denote the homomorphism

A → AV making AV into an A -algebra by σV .

Definition 1.7.5. If V ⊆ V ′ are two special subsets of a K-affinoid space X := M (A ),

then there is a (canonical) contractive homomorphism σV ′,V : AV ′ → AV , obtained by

defining AV ′ using a cover (made of K-affinoid domains) which extends that used for AV .

We call it restriction homomorphism and denote the image of an element f ∈ AV ′ by f|V .

Remark 1.7.6. Restriction homomorphisms are compatible with each other, meaning that

the composition of two (composable) restriction homomorphisms AV ′′ → AV ′ and AV ′ →

AV is the restriction homomorphism between AV ′′ and AV .

15



Proposition 1.7.7. Let A be a K-affinoid algebra and let V be a special subset of M (A )

with associated canonical homomorphism σV : A → AV .

(i) There is a canonical continuous map V → M (AV ) whose composition with the in-

duced map M (σV ) : M (AV )→M (A ) is the inclusion of V into M (A ).

(ii) V is a K-affinoid domain if and only if AV is a K-affinoid algebra and the image of

M (σV ) : M (AV )→M (A ) coincides with V .

Remark 1.7.8. The map of the first point is given by gluing the maps W → M (AW ) of

Proposition 1.6.4.ii, for all W in a finite cover of V made of K-affinoid domains.

The second point is a correction of [Ber90, Corollary 2.2.6], which is wrong as it is

stated. For a counterexample and a proof of the correct statement, see [Jon19].

Remark 1.7.9. Let A be a K-affinoid algebra and let V be a special subset of M (A ). By

means of the continuous map which is given in the first point of the previous proposition,

we can consider V also as a subset of M (AV ).

Definition/Proposition 1.7.10. Let ϕ : A → B be a bounded homomorphism of K-

affinoid algebras and let Φ: M (B)→M (A ) be the corresponding morphism ofK-affinoid

spaces. It follows from Proposition 1.6.4.iii that Φ−1(V ) is a special subset of M (B) for

any special subset V of M (A ). Moreover, there is a canonical homomorphism Φ∗V : AV →

BΦ−1(V ) for any special subset V of M (A ). It is induced by the canonical homomorphisms

AW → BΦ−1(W ) = B ⊗̂A AW for any K-affinoid domain W in a finite cover of V .

Furthermore, let ψ : A → B
Ṽ

be a bounded homomorphism, where A and B are

K-affinoid algebras and Ṽ is a special subset in M (B), and let Ψ: M (B
Ṽ

)→M (A ) be

the induced continuous map. For any K-affinoid domain W in M (A ) and any K-affinoid

domainW ′ ⊆ Ψ−1(W ) there exists a canonical homomorphism Ψ∗W,W ′ : AW → BW ′ by the

universal property of AW . Then, recalling Definition/Proposition 1.7.4 and the universal

property of kernels, we get a canonical homomorphism Ψ∗V,V ′ : AV → BV ′ for all special

subsets V in M (A ) and V ′ in Ṽ such that V ′ ⊆ Ψ−1(V ).

These homomorphisms are called pullback homomorphisms and they are compatible

with respect to restriction homomorphisms and compositions, in the sense of Proposi-

tion 1.9.4 below.

Remark 1.7.11. Let A be a K-affinoid algebra and let Π: M (A {r−1T }) → M (A ) be

the morphism of K-affinoid spaces induced by the inclusion of A into A {r−1T } for some

r1, . . . , rn ∈ R>0. We notice that for any special subset V of M (A ) we have

AV {r−1T } = A {r−1T }Π−1(V ).
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Indeed, it is true if V is a K-affinoid domain (because of Proposition 1.6.4.iii or by a direct

verification of the universal properties), and then it is clear that

AV {r−1T } = ker

(⊕

i∈I
AWi{r−1T } →

⊕

(i,j)∈I2

AWi∩Wj{r−1T }
)

when (1.1) holds.

1.8 Sheaves of K-affinoid functions

Definition 1.8.1. Let X := M (A ) be a K-affinoid space. For any open subset U of X,

we define the K-algebra of K-affinoid functions on U as the projective limit lim←−V⊆U AV

in the category of K-algebras, where V runs through the special subsets contained in U .

It is denoted by OX(U) or Γ(U,OX).

If U ⊆ U ′ is an inclusion of open subsets in X, then the universal property of projec-

tive limits gives a canonical homomorphism ρU ′,U : OX(U ′) → OX(U), called restriction

homomorphism.

Remark 1.8.2. It is easy to see that given three open subsets U ⊆ U ′ ⊆ U ′′, then the

restriction homomorphism from OX(U ′′) to OX(U) is the composition of the other two.

This means that OX is a presheaf of K-algebras on X.

Proposition 1.8.3 ([Ber90, §2.3]). Let X := M (A ) be a K-affinoid space.

(i) OX(X) = A ;

(ii) OX is actually a sheaf;

(iii) (X,OX) is a locally ringed space.

Definition 1.8.4. Let X := M (A ) be a K-affinoid space. For any closed subset Σ of X,

we define theK-algebra of K-affinoid functions on Σ as the injective limit lim−→U⊇Σ
Γ(U,OX)

in the category of K-algebras, where U runs through the open subsets of X containing Σ.

It is denoted by Γ(Σ,OX).

Definition/Proposition 1.8.5. It follows easily from the definitions that there is a canon-

ical homomorphism ρΛ′,Λ : Γ(Λ′,OX) → Γ(Λ,OX) for all subsets Λ ⊆ Λ′ of a K-affinoid

space X which are either open or closed (even one open and the other closed). We denote

the restriction to Λ of any f ∈ Γ(Λ′,OX) by f|Λ.

If U ⊆ U ′ are two open subsets of a K-affinoid space X and V is a special subset

such that U ⊆ V ⊆ U ′, then there is a canonical homomorphism σU ′,V : Γ(U ′,OX)→ AV
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and a canonical homomorphism σV,U : AV → Γ(U,OX). Moreover, if Σ is a closed subset

of X and V is a special neighborhood of Σ, then there exists a canonical homomorphism

σV,Σ : AV → Γ(Σ,OX) (which is the composition ρU,Σ ◦ σV,U , where U is any open neigh-

borhood of Σ inside V ).

All these homomorphisms are called restriction homomorphisms, and they all are com-

patible with each other (i.e. the composition of two composable ones is the restriction

homomorphism between the corresponding K-algebras).

Convention 1.8.6. Let X := M (A ) be a K-affinoid space and let Λ ⊆ Λ′ be two

open or closed subsets of X. Unless otherwise specified, whenever we write an arrow

Γ(Λ′,OX) → Γ(Λ,OX) we mean the restriction homomorphism. Anyway, we tend to

retain the name (“σV ”, “σU ′,V ”, “σV,Σ” and so on) in the case of special subsets.

Proposition 1.8.7. If Σ is a closed subset of a K-affinoid space X := M (A ), then

Γ(Σ,OX) can be calculated as the injective limit lim−→V ◦⊇Σ
AV (again in the category of

K-algebras) for V running through the special neighborhoods of Σ.

Proof. It is enough to prove that Γ(Σ,OX), together with the restriction homomorphisms

σV,Σ : AV → Γ(Σ,OX), satisfies the universal property for lim−→V ◦⊇Σ
AV . Suppose that

we are given a set of compatible homomorphisms ϕV : AV → D , where V runs through

all the special neighborhoods of Σ. For any open neighborhood U of Σ, we have seen

in Proposition 1.7.3 that there exists a special neighborhood V of Σ such that V ⊆ U .

Therefore, we get a set of compatible homomorphisms Γ(U,OX)
σU,V−−−→ AV

ϕV−−→ D , where

U runs through all the open neighborhoods of Σ (and V is a special subset inside U).

By the universal property of inductive limits, there exists a unique homomorphism ϕ

from Γ(Σ,OX) := lim−→U⊇Σ
Γ(U,OX) to D such that ϕV ◦ σU,V = ϕ ◦ ρU,Σ for any special

neighborhood V of Σ and any open subset U such that U ⊇ V . What we want is a unique

homomorphism ϕ : Γ(Σ,OX) → D such that ϕV = ϕ ◦ σV,Σ for any special neighborhood

V of Σ. Therefore, we notice that for any such V there exists an open neighborhood U ′ of

Σ inside V and a special neighborhood V ′ of Σ inside U ′, so we get the following diagram:

AV

Γ(U ′,OX) Γ(Σ,OX) D

AV ′

σV,Σ

ϕV

σV,U′

σV,V ′ ρU′,Σ

σU′,V ′

ϕ

ϕV ′

σV ′,Σ
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Now, by the compatibility of the restriction homomorphisms and the fact that (by hypoth-

esis) ϕV ′ ◦ σV,V ′ = ϕV , we obtain that

ϕ ◦ σV,Σ = ϕ ◦ ρU ′,Σ ◦ σV,U ′ = ϕV ′ ◦ σU ′,V ′ ◦ σV,U ′ = ϕV ′ ◦ σV,V ′ = ϕV ,

as we wanted.

1.9 Morphisms of K-quasiaffinoid spaces

Definition 1.9.1. Let UY be an open subset of a K-affinoid space Y := M (B) and let

UX be an open subset of a K-affinoid space X := M (A ). A morphism of K-quasiaffinoid

spaces Ξ: UY → UX consists of a continuous function Ξ: UY → UX and of a pullback homo-

morphism Ξ∗U : Γ(U,OX)→ Γ(Ξ−1(U),OY ) for any open subset U of UX . The continuous

function and the pullback homomorphisms must then satisfy the following properties (with

the first two just saying that Ξ is a morphism of locally ringed spaces):

(i) For any two open subsets U and U ′ of UX , with U ⊆ U ′, the following diagram

commutes:

Γ(U ′,OX) Γ(Ξ−1(U ′),OY )

Γ(U,OX) Γ(Ξ−1(U),OY )

Ξ∗
U′

Ξ∗U

(ii) Recalling Proposition 1.8.3.iii, the homomorphism induced by the pullback homo-

morphisms sends the maximal ideal of the stalk of the point Ξ(y) to the maximal

ideal of the stalk of y, for all y ∈ UY .

(iii) For any K-affinoid domain W in UX and any K-affinoid domain W ′ ⊆ Ξ−1(W ◦)3,

the homomorphism

AW
σW,W◦−−−−→ Γ(W ◦,OX)

Ξ∗
W◦−−−→ Γ(Ξ−1(W ◦),OY )

σΞ−1(W◦),W ′−−−−−−−−→ BW ′

is bounded.

The composition of two (composable) morphisms of K-quasiaffinoid spaces is given by

composing in the obvious ways both the continuous functions and the pullback homomor-

phisms.

3W ◦ denotes the topological interior of W in X. It is proven in Proposition 2.2.8 that it coincides with
the relative interior Int(W/X) defined in Definition 2.2.1.
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Convention 1.9.2. We will continue using this slight abuse of notation consisting in

denoting the underlying continuous function with the same symbol of the morphism of K-

quasiaffinoid spaces. Moreover, the asterisk will always indicate pullback homomorphisms

(in the generalized sense of Definition 1.9.3 below).

Definition 1.9.3. Let Ξ: UY → UX be a morphism of K-quasiaffinoid spaces, where UY is

an open subset of a K-affinoid space Y := M (B) and UX is an open subset of a K-affinoid

space X := M (A ). For any closed subset Σ of UX there is a canonical homomorphism

Ξ∗Σ : Γ(Σ,OX) → Γ(Ξ−1(Σ),OY ) induced by the pullback homomorphisms relative to the

open neighborhoods of Σ.

Given an open or closed subset Λ of UX and an open or closed subset Λ′ of Ξ−1(Λ), we

denote by Ξ∗Λ,Λ′ the composition of Ξ∗Λ with the restriction homomorphism Γ(Ξ−1(Λ),OY )→

Γ(Λ′,OY ). However, if Λ is declared to be a special subset and Λ′ ⊆ Ξ−1(Λ◦)4, then we

define Ξ∗Λ,Λ′ as the composition

AΛ
σΛ,Λ◦−−−→ Γ(Λ◦,OX)

Ξ∗
Λ◦,Λ′−−−−→ Γ(Λ′,OY )

if Λ′ is declared to be an open or closed subset, and as the composition

AΛ
σΛ,Λ◦−−−→ Γ(Λ◦,OX)

Ξ∗
Λ◦−−→ Γ(Ξ−1(Λ◦),OY )

σΞ−1(Λ◦),Λ′−−−−−−−→ BΛ′

if Λ′ is declared to be a special subset.

We call all these maps pullback homomorphisms.

Proposition 1.9.4. The pullback homomorphisms Ξ∗Λ,Λ′ of the previous definition are

compatible with respect to restrictions and compositions, that is:

(i) For any open or closed subsets Λ̃ ⊆ Λ and Λ̃′ ⊆ Λ′ such that Λ̃′ ⊆ Ξ−1(Λ̃), the

following diagram commutes:

Γ(Λ,OX) Γ(Λ′,OY )

Γ(Λ̃,OX) Γ(Λ̃′,OY )

Ξ∗
Λ,Λ′

Ξ∗
Λ̃,Λ̃′

(Of course, in case e.g. Λ is declared to be a special subset, then we should substitute

Γ(Λ,OX) with AΛ.)

4But recall Definition/Proposition 1.7.10, for when Λ′ 6⊆ Ξ−1(Λ◦) but Ξ is a morphism of K-affinoid
spaces, Λ′ ⊆ Ξ−1(Λ), and both Λ and Λ′ are special subsets.
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(ii) For any other morphism of K-quasiaffinoid spaces Ψ: UZ → UY and for any open or

closed subset Λ′′ ⊆ Ψ−1(Λ′), we have (Ξ ◦Ψ)∗Λ,Λ′′ = Ψ∗Λ′,Λ′′ ◦ Ξ∗Λ,Λ′ .

Proof. It is immediate, if one unravels all the (various) definitions and recall Defini-

tion 1.9.1.i and the compatibility of restriction homomorphisms (Definition/Proposition

1.8.5).

Remark 1.9.5. The homomorphism Ξ∗Λ,Λ′ : AΛ → BΛ′ in the last case of Definition 1.9.3

is bounded. Indeed, if {Wi}i∈I is a finite cover of Λ made of K-affinoid domains, then the

homomorphisms Ξ∗Wi,Ξ−1(Wi)∩Λ′ ◦σΛ,W : AΛ → BΞ−1(Wi)∩Λ′ are bounded, as a consequence

of Definition 1.9.1.iii and the definition of the norm on BΞ−1(Wi)∩Λ′ . Then, since those are

the homomorphisms σΛ′,Ξ−1(Wi)∩Λ′ ◦ Ξ∗Λ,Λ′ , it follows from the definition of the norm on

AΛ that Ξ∗Λ,Λ′ is bounded by the maximum of the bounds of those homomorphisms.

Remark 1.9.6. Let ψ : A → B
Ṽ

be a bounded homomorphism where A and B are K-

affinoid algebras and Ṽ is a special subset of M (B). We let Ψ: M (B
Ṽ

) → M (A )

be the induced continuous map, and we denote M (B) by Y and M (A ) by X. By

their compatibility with restriction homomorphisms, the pullback homomorphisms from

Definition/Proposition 1.7.10 induce a pullback homomorphism

Γ(U,OX)→ Γ(Ψ−1(U) ∩ Ṽ ◦,OY )

for any open subset U of M (A ). It is easy to see that Ψ|Ṽ ◦ : Ṽ ◦ →M (A ) together with

these pullback homomorphisms is a morphism of K-quasiaffinoid spaces.

Considering the particular case in which Ṽ = M (B), we obtain that the morphisms

of K-affinoid spaces are also morphisms of K-quasiaffinoid spaces.

Proposition 1.9.7. Let U be an open subset of a K-affinoid space M (B) and let X :=

M (A ) be another K-affinoid space. Let Ξ: U → X be a morphism of K-quasiaffinoid

spaces and let Ṽ ⊆ U be a special subset. Then, the morphism of K-quasiaffinoid spaces

M (Ξ∗
X,Ṽ

)|Ṽ ◦ : Ṽ ◦ → X induced by Ξ∗
X,Ṽ

: A → B
Ṽ

(in the way explained in the previous

remark) coincides with the restriction Ξ|Ṽ ◦ .

Proof. Let us fix a point y ∈ Ṽ ◦ ⊆M (B
Ṽ

) and let us prove that M (Ξ∗
X,Ṽ

)(y) = Ξ|Ṽ ◦(y).

We let W be a Laurent neighborhood of Ξ|Ṽ ◦(y) in X, and we let W ′ ⊆ Ξ−1

|Ṽ ◦
(W ◦) be

a Laurent neighborhood of y in Ṽ ◦ (which exists by Remark 1.6.6). In particular, y is

in the image of the map M (σ
Ṽ ,W ′) : W ′ = M (BW ′) → M (B

Ṽ
) by Remark 1.7.8. By

Proposition 1.9.4, the bounded homomorphism Ξ∗W,W ′ : AW → BW ′ makes the following
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diagram to commute:

A B
Ṽ

AW BW ′

Ξ∗
X,Ṽ

σW σ
Ṽ ,W ′ (1.2)

It follows that M (Ξ∗
X,Ṽ

)(y) ⊆ M (σW )(AW ) = W . Now, since M (A ) is Hausdorff and

the Laurent neighborhoods W of Ξ|Ṽ ◦(y) form a basis of neighborhoods, it follows that

their intersection is just {Ξ|Ṽ ◦(y)}. Therefore, M (Ξ∗
X,Ṽ

)(y) = Ξ|Ṽ ◦(y), as we wanted.

Let us now consider the pullback homomorphisms. If W is a K-affinoid domain in X

andW ′ is a K-affinoid domain in Ξ−1(W ◦)∩ Ṽ ◦ = Ξ−1

|Ṽ ◦
(W ◦), then the pullback homomor-

phism AW → BW ′ relative to M (Ξ∗
X,Ṽ

)|Ṽ ◦ and the one relative to Ξ|Ṽ ◦ must coincide, be-

cause (by the universal property of AW ) there is a unique bounded homomorphism AW →

BW ′ making the diagram in (1.2) to commute. Then, recalling Definition/Proposition

1.7.4 and the universal property of kernels, also the pullback homomorphisms AV → BV ′

with V a special subset in X and V ′ a special subset in Ξ−1(V ◦) ∩ Ṽ ◦ = Ξ−1

|Ṽ ◦
(V ◦) must

coincide, if they are to satisfy Proposition 1.9.4.i. Finally, by passing to the projective

limits, also the pullback homomorphisms Γ(U,OX)→ Γ(Ξ−1(U)∩ Ṽ ◦,OY ) must coincide,

for any open subset U in X. This concludes the proof.
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Chapter 2

Inner homomorphisms and relative

interiors

Here we introduce inner homomorphisms (§2.1), proving the equivalence of 3+1 possible

definitions, and relative interiors (§2.2), proving some of their properties and in particular

their relation with inner homomorphisms (Proposition 2.2.7). Moreover, we prove that

the relative interior coincides with the topological one in the case of affinoid domains

(Proposition 2.2.8) and we apply this fact in order to study the Weierstrass neighborhoods

of a closed subset (Proposition 2.2.10). We are following [Ber90, §2.5] but trying to give

more detailed proofs.

Throughout this chapter, we let A be a K-affinoid algebra, B an A -affinoid algebra

and D a Banach A -algebra. Moreover, we denote M (A ) by X and M (B) by Y .

2.1 Inner homomorphisms

Definition/Proposition 2.1.1. A bounded homomorphism ϕ : B → D is said to be

inner with respect to A if it has one of the following equivalent properties:

(a) There exist r1, . . . , rn ∈ R>0 (for some n ∈ N) and an admissible epimorphism

π : A {r−1T } → B such that ρ(ϕ(π(Ti))) < ri for all i = 1, . . . , n.

(b) For any bounded homomorphism ψ : A {r−1S} → B there exists a polynomial P =

Sm + a1S
n−1 + · · · + am ∈ A [S] such that ρ(ai) ≤ ri for all i = 1, . . . ,m, and

ρ(ϕ(ψ(P ))) < rm.

(c) For any ε ∈ ]0, 1[ there exist r1, . . . , rn ∈ R>0 (for some n ∈ N) and an admissible

epimorphism π : A {r−1T } → B such that ||ϕ(π(Ti))|| < εri for all i = 1, . . . , n.
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If, moreover, the absolute value on K is non-trivial and A and B are strictly K-affinoid,

then the properties above are also equivalent to:

(d) the ring ϕ̃(B̃) is integral over ϕ̃(Ã ).

Convention 2.1.2. We will refer to these equivalent ways of defining inner homomor-

phisms as “property (a)”, “property (b)”, “property (c)” and “property (d)”.

Proof. (a) =⇒ (d). We assume that the absolute value on K is non-trivial and that A and

B are strictlyK-affinoid. Moreover, we let π : A {r−1
1 T1, . . . , r

−1
n Tn} → B be an admissible

epimorphism such that ρ(ϕ(π(Ti))) < ri for all i = 1, . . . , n. By Proposition 1.5.16.v, we

may assume that ri ∈
√
|K×| for all i = 1, . . . , n (clearly, the extension of an admissible

epimorphism is still an admissible epimorphism). It means that we can pick ui ∈ N>0

and ci ∈ K× such that ruii =
∣∣c−1
i

∣∣ (for all i = 1, . . . , n), and consider the bounded

homomorphism η : A {T } → A {r−1T } sending each Ti to ciT ui .

We let π′ := π ◦ η, and we notice that, by construction, ρ(ϕ(π′(Ti))) < 1 for all

i = 1, . . . , n. Moreover, η is finite because every element of A {r−1T } can be written in

the form

u1−1∑

j1=0

· · ·
un−1∑

jn=0

[(∑

k∈Nn
aku+jc

−k(cTu)k

)
T j

]
with lim

|k|→∞
|aku+j | rku+j = 0

and, for any fixed j = (j1, . . . , jn), the element between the round brackets is the image

through η of the element
∑

k∈Nn(aku+jc
−k)T k ∈ A {T }, which is well defined because

lim
|k|→∞

∣∣∣aku+jc
−k
∣∣∣ = lim

|k|→∞
|aku+j | rku = r−j lim

|k|→∞
|aku+j | rku+j = 0.

Since η is finite and π is surjective, then also the composition π′ := π ◦ η must be

finite. This is equivalent, by Theorem 1.5.17, to the fact that π̃′ : Ã {T } → B̃ is integral,

which clearly implies that ϕ̃(B̃) is integral over ϕ̃(π̃′(Ã {T })). Finally, we have that

ϕ̃(π̃′(Ã {T })) = ϕ̃(Ã ) because ρ(ϕ(π′(Ti))) < 1 implies ϕ̃(π̃′(Ti)) = 0 for all i = 1, . . . , n.

(d) =⇒ (b). We assume that the valuation on K is non-trivial, that A and B are

strictly K-affinoid and that ϕ̃(B̃) is integral over ϕ̃(Ã ). We consider a bounded ho-

momorphism ψ : A {r−1S} → B and we have to produce a polynomial P as in (b). By

Proposition 1.5.16.v, we may assume that r ∈
√
|K×|. Then, we can further assume r = 1.

Indeed, we can pick u ∈ N>0 and c ∈ K× such that ru =
∣∣c−1

∣∣, and consider the bounded

homomorphism η : A {S} → A {r−1S} sending S to cSu: if we can find a polynomial

Q = Sm+a1S
m−1+· · ·+am such that ρ(ai) ≤ 1 for all i = 1, . . . ,m and ρ(ϕ(ψ(η(Q)))) < 1,

24



then the polynomial P := c−mη(Q) = Sum + c−1a1S
u(m−1) + · · · + c−mam is such that

ρ(c−iai) ≤ rui for all i = 1, . . . ,m and ρ(ϕ(ψ(P ))) < rum, as we wanted.

Thus, it remains only to prove the case in which r = 1. In this case, by hypothesis,

ϕ̃(ψ̃(S)) ∈ ϕ̃(B̃) is integral over ϕ̃(Ã ). It means that there exists a polynomial Tm +

ϕ̃(ã1)Tm−1 + · · · + ϕ̃(ãm) ∈ ϕ̃(Ã )[T ] having ϕ̃(ψ̃(S)) as a root. Then, for any choice of

a1, . . . , am ∈ A ◦ lifting ã1, . . . , ãm, the polynomial P = Sm + a1S
m−1 + · · · + am is such

that ρ(ai) ≤ 1 for all i = 1, . . . ,m, and ϕ̃(ψ̃(P̃ )) = 0, that is ρ(ϕ(ψ(P ))) < 1.

(a) =⇒ (b). Recalling Proposition 1.4.7, we notice that if property (a) holds for ϕ,

then it holds also for ϕ ⊗̂K idKp : B ⊗̂K Kp → D ⊗̂K Kp (relatively to A ⊗̂K Kp) for any

p /∈
√
|K×|. Having already proven the implications (a) =⇒ (d) and (d) =⇒ (b) in the

strictly affinoid case, it is enough (by Remark 1.5.15) to show that if property (b) holds for

ϕ ⊗̂K idKp (relatively to A ⊗̂K Kp) with p /∈
√
|K×|, then it holds also for ϕ (relatively

to A ). So, let us consider a bounded homomorphism ψ : A {r−1S} → B and assume

the existence of a polynomial Q = Sm + a1S
m−1 + · · · + am ∈ (A ⊗̂K Kp)[S] such that

ρ(ai) ≤ ri for all i = 1, . . . ,m, and ρ(ϕ ⊗̂K idKp(ψ ⊗̂K idKp(Q))) < rm. With reference to

Proposition 1.5.13, we let ai,j ∈ A be elements such that ai =
∑

j∈Z ai,jT
j , and we consider

the polynomial P := Sm + a1,0S
m−1 + . . . , am,0 ∈ A [S]. Since ρ(ai) = ρ(

∑
j∈Z ai,jT

j) =

maxj∈Z ρ(ai,j)r
j ≥ ρ(ai,0), we have that ρ(ai,0) ≤ ρ(ai) ≤ ri for all i = 1, . . . ,m, and also

ρ(ϕ(ψ(P ))) ≤ ρ(ϕ ⊗̂K idKp(ψ ⊗̂K idKp(Q))) < rm, as we wanted.

(b) =⇒ (c). Since B is assumed to be A -affinoid, there exists an admissible epimor-

phism η : A {r−1
1 T1, . . . , r

−1
n Tn} → B. For all i = 1, . . . , n, let us denote by ηi the restric-

tion of η to A {r−1
i Ti}. Assuming that ϕ satisfies property (b), then also each ϕ◦ηi satisfies

the same property. Indeed, for any bounded homomorphism ψ : A {r−1S} → A {r−1
i Ti},

the polynomial P given by property (b) of ϕ (with respect to the bounded homomorphism

ηi◦ψ) works also for the property (b) of ϕ◦ηi (with respect to the bounded homomorphism

ψ).

Suppose, for the moment, that we are able to prove the implication (b) =⇒ (c) when

B = A {r−1S}, for any r ∈ R>0. Applying this to ϕ ◦ ηi (for each i), with fixed ε ∈ ]0, 1[,

we get admissible epimorphisms πi : A {r−1
i,1 Ti,1 . . . , r

−1
i,mi

Ti,mi} → A {r−1
i Ti} such that

||ϕ(ηi(πi(Ti,j)))|| < εri,j for all i = 1, . . . , n and j = 1, . . . ,mi. By Proposition 1.4.7 and

Proposition 1.5.3.v, we can put all the πi’s together and form an admissible epimorphism

π′ : A {r−1
1,1T1,1, . . . , r

−1
n,mnTn,mn} → A {r−1

1 T1, . . . , r
−1
n Tn}

such that, for all i = 1, . . . , n, the restriction of π′ to A {r−1
i,1 Ti,1 . . . , r

−1
i,mi

Ti,mi} coin-
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cides with πi (up to the inclusion of A {r−1
i Ti} into A {r−1

1 T1, . . . , r
−1
n Tn}). Therefore,

||ϕ(η(π′(Ti,j)))|| = ||ϕ(ηi(πi(Ti,j)))|| < εri,j for all i = 1, . . . , n and j = 1, . . . ,mi. Hence,

η ◦ π′ is an admissible epimorphism proving property (c).

Thus, it remains only to prove the implication (b) =⇒ (c) when B = A {r−1S}. We

let P = Sm + a1S
m−1 + · · · + am ∈ A [S] be such that ρ(ai) ≤ ri for all i = 1, . . . ,m

and ρ(ϕ(P )) < rm (we are considering ψ = idB in the text of property (b)). For any

M ∈ N>0, we consider the polynomial PM = SmM + b
(M)
1 SmM−1 + · · ·+ b

(M)
mM . It is such

that ρ(b
(M)
i ) ≤ ri for all i = 1, . . . ,mM , as it can be seen from the expansion

PM =
∑

k0,...,km∈N
k0+···+km=M

M !

k0! · · · km!
(Sm)k0(a1S

n−1)k1 · · · (am)km ,

(in a way analogous to the one used later in the proof of the claim), or from the fact that

otherwise we would have

ρ(PM ) ≥ max
i=1,...,mM

ρ(b
(M)
i )rmM−i > rmM = ρ(P )M .

Moreover, it follows from Proposition 1.5.16.i that there exists a constant C ′ ∈ R>0 such

that
∣∣∣∣ϕ(PM )

∣∣∣∣ ≤ C ′ρ(ϕ(P ))M for all M large enough. Then,

lim
M→∞

∣∣∣∣ϕ(PM )
∣∣∣∣

rmM
= lim

M→∞

(
ρ(ϕ(P ))

rm

)M
= 0.

It means that for any ε > 0 we can find M ∈ N such that
∣∣∣∣ϕ(PM )

∣∣∣∣ < C−1εrmM , where

C is any fixed bound of ϕ.

From now on, let us fix ε ∈ ]0, 1[, and let us denote by

Q = Sn + a′1S
n−1 + · · ·+ a′n

the polynomial PM (so that n := mM) for M large enough, so that ||ϕ(Q)|| < C−1εrn.

Recall that ρ(a′i) ≤ ri for all i = 1, . . . , n and that this fact implies that ρ(Q) ≤ rn.

Let us pick q ∈ R>0 such that r ≤ q and Crε−1 < q. We define a homomorphism

π : A {q−1T0, r
−nT1, r

−(n+1)T2, . . . , r
−(2n−1)Tn} → A {r−1S} = B

by sending T0 to S and Ti to Si−1Q (for all i = 1, . . . , n). It is well defined and bounded

because of Proposition 1.5.16.ii, since ρ(S) = r ≤ q and ρ(Si−1Q) ≤ ρ(Si−1)ρ(Q) ≤
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ri−1rn = rn+i−1 for all i = 1, . . . , n. Finally, we notice that

||ϕ(π(T0))|| = ||ϕ(S)|| ≤ C ||S|| = Cr < εq

and

||ϕ(π(Ti))|| ≤
∣∣∣∣ϕ(Si−1)

∣∣∣∣ ||ϕ(Q)|| ≤ Cri−1 ||ϕ(Q)|| < εrn+i−1 ∀ i = 1, . . . , n,

so it remains only to prove that π is an admissible epimorphism. This will follow from the

following claim:

Claim. For all j ∈ N there exist two polynomials Gj ∈ A [T1, . . . , Tm] and Hj ∈ A [T0]

such that π(Gj + Hj) = Sj and Hj has degree at most n − 1. Moreover, there exists a

constant C ∈ R>0 such that ||Gj || ≤ Crj for all j ∈ N and
∣∣∣
∣∣∣h(j)
i

∣∣∣
∣∣∣ ≤ Crj for all j ∈ N and

all i = 1, . . . , n, where h(j)
1 Tn−1

0 + · · ·+ h
(j)
n−1T0 + h

(j)
n = Hj.

Proof of the claim. We construct the polynomials Gj and Hj by induction on j. The base

case is simple: for all j ≤ n − 1 we can take Hj = T j0 and Gj = 0. Now, let us assume

the validity of first part of the claim for all j < l, with l ≥ n. By euclidean division, let us

write l = tn+s with t, s ∈ N and s < n. We notice that SsQt must be a monic polynomial

of degree tn+ s = l; let us give a name to its coefficients: SsQt = Sl + b
(l)
1 Sl−1 + · · ·+ b

(l)
l .

Now, we define

Gl := T t−1
1 Ts+1 − (b

(l)
1 Gl−1 + . . . b

(l)
l−nGn)

and

Hl := −(b
(l)
1 Hl−1 + . . . b

(l)
l−nHn)− (b

(l)
l−n+1T

n−1
0 + b

(l)
l−n+2T

n−2
0 + · · ·+ b

(l)
l )

(which means that Gl = T1 and Hl = −(b
(l)
1 Tn−1

0 + b
(l)
2 Tn−2

0 + · · · + b
(l)
l ) in case l = n).

These two polynomials satisfy the first part of the claim for j = l. Indeed, by inductive

hypothesis, deg(Hl) ≤ n− 1 and

π(Gl +Hl) = π(T1)t−1π(Ts+1)−
l−n∑

i=1

b
(l)
i π(Gl−i +Hl−i)− π(b

(l)
l−n+1T

n−1
0 + · · ·+ b

(l)
l ) =

= Qt−1(SsQ)−
l−n∑

i=1

b
(l)
i S

l−i − (b
(l)
l−n+1S

n−1 + · · ·+ b
(l)
l ) =

= SsQt − (b
(l)
1 Sl−1 + · · ·+ b

(l)
l ) = Sl.

Let us now prove the “moreover” part. For any l ∈ N, we notice that b(l)i = 0 if i > l−s,

and otherwise b(l)i can be seen (formally) as a homogeneous polynomial of degree i in the
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formal ring of polynomials Z[a′1, . . . , a
′
n], when considering each a′k to have degree exactly

k. Indeed, b(l)i is the coefficient of the monomial of Qt with degree (in the variable S)

l − i− s = tn− i, and

Qt =
∑

k0,...,kn∈N
k0+···+kn=t

t!

k0! · · · kn!
(Sn)k0(a′1S

n−1)k1 · · · (a′n)kn .

Clearly, the terms of degree tn− i (in the variable S) are those such that

nk0 + (n− 1)k1 + · · ·+ kn−1 = tn− i

and hence (considering now deg a′k = k for all k = 1, . . . , n) their coefficients have degree

equal to

k1 + · · ·+ nkn = k1 + · · ·+ nkn + tn− (k0 + · · ·+ kn)n =

= tn− [nk0 + (n− 1)k1 + · · ·+ (n− (n− 1))kn−1] =

= i,

as we wanted.

Now, since ρ(a′k) ≤ rk for all k = 1, . . . , n (and since ρ is a non-Archimedean seminorm),

it follows that ρ(b
(l)
i ) ≤ ri for all l ∈ N and i = 1, . . . , l. By induction, it is easy to see

that, for every l ∈ N, the coefficients h(l)
1 , . . . , h

(l)
n of Hl are homogeneous polynomials of

degree at most l in the formal variables ak (always with deg ak = k, for all k = 1, . . . , n).

Therefore, if C ∈ R>0 is such that ||a′k|| ≤ Crk for all k = 1, . . . , n, then
∣∣∣
∣∣∣h(l)
i

∣∣∣
∣∣∣ ≤ Crl for

all l ∈ N and all i = 1, . . . , n.

We want now to prove that there exists a constant C ′ ∈ R>0 such that ρ(Gj) ≤ C ′rj

for all j ∈ N. We use induction again, and show that, for any l ≥ n, if C ′ > 1 is such that

ρ(Gl−i) ≤ C ′rl−i for all i = 1, . . . , n, then the same constant is such that ρ(Gl) ≤ C ′rl.

Indeed, recalling that ρ(b
(l)
i ) ≤ ri for all i, we obtain that

ρ(Gl) = ρ(T t−1
1 Ts+1 − (b1Gl−1 + · · ·+ bl−nGn)) ≤

≤ max{ρ(T t−1
1 Ts+1), ρ(b1Gl−1), . . . , ρ(bl−nGn)} ≤

≤ max{rn(t−1)rn+s, r(C ′rl−1), . . . , rl−n(C ′rn)} = C ′rl,

as we wanted. Then, we notice that every Gl is not nilpotent, because of its monic

monomial T q−1
1 Ts+1. Therefore, by Proposition 1.5.16.i, we can find a constant C ′′ ∈ R>0
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such that ||Gl|| ≤ C ′′ρ(Gl) ≤ C ′′C ′rl for all l ∈ N.

To conclude, we can just pick C ∈ R>0 such that C ≥ C ′′C ′ (where C ′ is such that

C ′ > 1 and ρ(Gi) ≤ C ′ri for all i = 0, . . . , n− 1) and ||a′k|| ≤ Crk for all k = 1, . . . , n.

Let us use the claim to prove that π is indeed an admissible epimorphism. For any

element f =
∑

j∈N bjS
j ∈ A {r−1S} (meaning that limj→∞ ||bj || rj = 0), we define g :=

∑
j∈N bjGj and h :=

∑
j∈N bjHj = d1T

n−1
0 + · · · + dn, where di :=

∑
l∈N blh

(l)
i for all

i = 1, . . . , n. They are all well defined because of the upper estimates in the claim, which

give also the bounds

||g|| ≤ C max
j∈N
||bj || rj = C ||f ||

and

||h|| = max
i=1,...,n

||di|| qn−i ≤ max
i=1,...,n

max
j∈N

C ||bj || rjqn−i ≤ C
(

max
i=1,...,n

qn−i
)
||f || .

Finally, since π(Gj +Hj) = Sj for all j ∈ N, it is clear that π(g + h) = f .

(c) =⇒ (a). This implication is trivial.

Corollary 2.1.3. Let r /∈
√
|K×|. If ϕ : B → D is a bounded homomorphism and

ϕ ⊗̂K idKr : B ⊗̂K Kr → D ⊗̂K Kr is inner with respect to A ⊗̂K Kr, then ϕ is inner with

respect to A .

Proof. Already proven, inside the proof of the implication (a) =⇒ (b).

Corollary 2.1.4. Let ϕ : B → D be a bounded homomorphism which is inner with respect

to A . Then, for any bounded homomorphism of A -affinoid algebras ψ : B′ → B and any

bounded homomorphism of Banach A -algebras ξ : D → D ′, the composition ξ◦ϕ◦ψ : B′ →

D ′ is inner with respect to A .

Proof. By Proposition 1.3.4.iii, it is clear that the composition ξ ◦ϕ ◦ψ : B → D ′ satisfies

property (a) if ϕ ◦ ψ : B′ → D does. Then, it is enough to show that the composi-

tion ϕ ◦ ψ satisfies property (b). This follows because for any bounded homomorphism

η : A {r−1S} → B′ there exists a polynomial P = Sm + a1S
n−1 + · · · + am ∈ A [S] with

ρ(ai) ≤ ri for all i = 1, . . . ,m, such that ρ((ϕ ◦ ψ)(η(P ))) = ρ(ϕ((ψ ◦ η)(P ))) < rm (by

property (b) of the inner morphism ϕ, with respect to the bounded homomorphism ψ ◦ η),

and this polynomial (depending on η, which is arbitrary) proves property (b) for ϕ ◦ ψ.

Note that we have already used this fact at the beginning of the proof of the implication

(b) =⇒ (c).
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2.2 Relative interiors

Recall that A is a K-affinoid algebra, that B is an A -affinoid algebra and that X :=

M (A ) and Y := M (B).

Definition 2.2.1. The relative interior of a morphism of K-affinoid spaces Ξ: Y → X

is the set Int(Y/X) of points y ∈ Y such that the associated characters B → H (y) are

inner with respect to A .

Moreover, the complement of Int(Y/X) in Y is called the relative boundary of Ξ and

is denoted by ∂(Y/X).

Remark 2.2.2. More explicitly, using property (a), y ∈ Int(Y/X) if and only if y ∈ Y

and there exist r1, . . . , rn ∈ R>0 (for some n ∈ N) and an admissible epimorphism

π : A {r−1
1 T1, . . . , r

−1
n Tn} → B such that |π(Ti)(y)| < ri for all i = 1, . . . , n.

It follows that Int(Y/X) is always an open subset of Y , since it is a union of open

subsets (one for any admissible epimorphisms like π).

Example 2.2.3. Let us consider the particular case A = K. The existence of an admissible

epimorphism π : K{r−1
1 T1, . . . , r

−1
n Tn} → B such that |π(Ti)(y)| < ri for all i = 1, . . . , n

(property (a)) means the existence of an embedding of Y into the closed polydisc E(0, r) :=

M (K{r−1T }) such that y lies in the open polydisc D(0, r) := {x ∈ E(0, r) | |Ti(x)| <

ri ∀ i = 1, . . . , n}. On the other hand, the existence, for any bounded homomorphism

ψ : K{r−1S} → B, of a polynomial P = Sm + a1S
n−1 + · · · + am ∈ K[S] such that

|ψ(P )(y)| < rm while |ai| ≤ ri for all i = 1, . . . ,m (property (b)) implies that the image

of y in E(0, r) := M (K{r−1S}) cannot be the Gauss point (i.e. the point corresponding

to the Gauss norm).

In particular, considering the extension Kr of K when r /∈
√
|K×|, we see that

Int(Kr/K) = ∅. In fact, the norm on Kr extends the Gauss norm on K{r−1S} after

the canonical inclusion of K{r−1S} into Kr; it follows that the only point in M (Kr) (re-

call Proposition 1.2.2.iv) is sent by the induced map M (Kr)→M (K{r−1S}) precisely to

the Gauss point.

Proposition 2.2.4.

(i) In view of Remark 1.5.9, any two morphisms of K-affinoid spaces Φ: Y → X

and Ψ: X ′ → X induce a morphism Ψ′ : Y ′ → Y , where Y ′ := Y ×X X ′. Then,

Ψ′−1(Int(Y/X)) ⊆ Int(Y ′/X ′).

(ii) For any two morphisms of K-affinoid spaces Ξ: Z → Y and Ψ: Y → X, we have

Int(Z/X) = Int(Z/Y ) ∩ Ξ−1(Int(Y/X)).
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(iii) If Z ⊆ Y ⊆ X are K-affinoid spaces, then Int(Z/X) ⊆ Int(Y/X).

Proof. (i). Let y′ ∈ Y ′ be such that y := Ψ′(y′) ∈ Int(Y/X); we need to prove that

y′ ∈ Int(Y ′/X ′). We let X ′ = M (A ′) and Y ′ = M (B′), where B′ := B ⊗̂A A ′. By

Remark 2.2.2, there is an admissible epimorphism π : A {r−1
1 T1, . . . , r

−1
n Tn} → B with

|π(Ti)(y)| < ri for all i = 1, . . . , n. By Proposition 1.4.7, the induced homomorphism

π′ := π ⊗̂A idA ′ : A ′{r−1T }︸ ︷︷ ︸
A {r−1T } ⊗̂A A ′

→ B′︸︷︷︸
B ⊗̂A A ′

is an admissible epimorphism too. Moreover, if we denote the underlying bounded homo-

morphisms by ψ : A {r−1T } → A ′{r−1T } and ψ′ : B → B′, then we have a commutative

diagram

A {r−1T } B

A ′{r−1T } B′

π

ψ ψ′

π′

and

∣∣π′(Ti)(y′)
∣∣ =

∣∣π′(ψ(Ti))(y
′)
∣∣ =

∣∣ψ′(π(Ti))(y
′)
∣∣ =

∣∣π(Ti)(Ψ
′(y′))

∣∣ = |π(Ti)(y)| < ri.

This shows that y′ ∈ Int(Y ′/X ′), as we wanted.

(ii). We let X = M (A ), Y = M (B) and Z = M (C ), and we let Φ := Ψ ◦ Ξ. For any

z ∈ Z, we define y := Ξ(z) and x := Ψ(y) = Φ(z). We have to prove three clauses:

z ∈ Int(Z/X) =⇒ z ∈ Int(Z/Y ). This follows by the previous point (using the same

names for functions, even if not for spaces), noticing that Z = Z ×X Y , with Ψ′ being

nothing but the identity of Z (since Z, with the identity and Ξ, clearly satisfy the universal

property for the Cartesian product).

z ∈ Int(Z/X) =⇒ y ∈ Int(Y/X). Considering property (b), let η : A {r−1S} → B be

any bounded homomorphism. Since z ∈ Int(Z/X), there exists a polynomial P = Sm +

a1S
m−1 + · · ·+ am ∈ A [S] such that ρ(ai) ≤ ri for all i = 1, . . . ,m and |(ξ ◦ η(P ))(z)| <

rm, where ξ : B → C is the bounded homomorphism underlying Ξ. We conclude that

y ∈ Int(Y/X) because |η(P )(y)| = |η(P )(Ξ(z))| = |(ξ ◦ η(P ))(z)| < rm.

z ∈ Int(Z/Y ) ∧ y ∈ Int(Y/X) =⇒ z ∈ Int(Z/X). By hypothesis we have two

admissible epimorphisms π : A {r−1
1 T1, . . . , r

−1
n Tn} → B and η : B{q−1

1 S1, . . . , q
−1
m Sm} →

C such that |π(Ti)(y)| < ri for all i = 1, . . . , n and |η(Sj)(z)| < qj for all j = 1, . . . ,m.

We extend π to an admissible epimorphism A {r−1T , q−1S} → B{q−1S} in the obvious

way (i.e. sending Sj to Sj for each j). Its composition with η then gives an admissible
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epimorphism σ : A {r−1T , q−1S} → C such that |σ(Ti)(z)| < ri for all i = 1, . . . , n and

|σ(Sj)(z)| < qj for all j = 1, . . . ,m, as we wanted.

(iii). This is just a particular case of the implication z ∈ Int(Z/X) =⇒ y ∈ Int(Y/X)

given in the proof of the previous point.

Proposition 2.2.5. Let W be a K-affinoid domain in Y and let V be a special subset of W

with a finite cover {Wi}i=1,...,n by K-affinoid domains. Then, the canonical homomorphism

σW,V : BW → BV is inner with respect to A if and only if all the canonical homomorphisms

σW,Wi : BW → BWi are inner with respect to A .

Proof. The “only if” part follows immediately from Corollary 2.1.4. Let us prove that σW,V

satisfies property (b) if all the homomorphisms σW,Wi do. Let ψ : A {r−1S} → BW be

a bounded homomorphism. By hypothesis, we assume to have polynomials Pi = Smi +

a
(i)
1 Smi−1 + · · ·+a(i)

mi , for all i = 1, . . . , n, such that ρ(a
(i)
j ) ≤ rj and ρ(σW,Wi(ψ(Pi))) < rmi

for all i = 1, . . . , n and j = 1, . . . ,mi. Let

P :=

n∏

i=1

Pi = Sm + a1S
m−1 + · · ·+ am.

From ρ(a
(i)
j ) ≤ rj for all i and j, we obtain that ρ(ai) ≤ ri, and also that ρ(σW,Wi(ψ(Pk))) ≤

ρ(Pk) ≤ rmk for all i, k = 1, . . . , n. From these second inequalities and the strict one

ρ(σW,Wi(ψ(Pi))) < rmi , it follows that ρ(σW,Wi(ψ(P ))) < rm for all i = 1, . . . , n. Since the

norm on BV is by definition the maximum of the norms on the BWi ’s (after the restriction

homomorphisms), it follows that ρ(σW,V (ψ(P ))) = maxi=1,...,n ρ(σW,Wi(ψ(P ))) < rm, and

this finishes the proof.

Proposition 2.2.6. Let Σ be a closed subset of Y . Then, Σ is contained in Int(Y/X)

if and only if for any ε ∈ ]0, 1[ there exist r1, . . . , rn ∈ R>0 (for some n ∈ N) and an

admissible epimorphism π : A {r−1
1 T1, . . . , r

−1
n Tn} → B such that Σ ⊆ Y ((εr)−1f), where

fi := π(Ti) for all i = 1, . . . , n.

Proof. The “if” part is trivial. For the other direction, let us fix Σ ⊆ Int(Y/X) and ε ∈

]0, 1[. For any y ∈ Σ there exists an admissible epimorphism πy : A {r−1
y,1T1, . . . , r

−1
y,nyTny} →

B such that |πy(Ti)(y)| < ry,i for all i = 1, . . . , ny. For all such i, we set fy,i := πy(Ti)

and pick qy,i ∈ R>0 such that |πy(Ti)(y)| < qy,i < ry,i. Then, the Weierstrass do-

main Wy := Y (q−1
y fy) is a neighborhood of y in Y , and the canonical homomorphism

σWy : B → BWy is inner with respect to A by property (a) (since ρ(σWy(πy(Ti))) =

ρ(σWy(fy,i)) ≤ qy,i < ry,i for all i = 1, . . . , ny).
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Because Σ is compact, it lies in a finite union V :=
⋃m
i=1Wyi , for some points yi in Σ. By

the previous proposition, the canonical homomorphism σV : B → BV is inner with respect

to A . This means that we can find an admissible epimorphism π : A {r−1
1 T1, . . . , r

−1
n Tn} →

B such that ||σV (π(Ti))|| < εri for all i = 1, . . . , n (property (c)). Denoting fi := π(Ti)

and recalling that the image of M (BV ) in Y contains V , we have that

max
y∈V
|fi(y)| ≤ max

y′∈M (BV )

∣∣σV (fi)(y
′)
∣∣ ≤ ||σV (fi)|| < εri ∀ i = 1, . . . , n.

Hence, Σ ⊆ V ⊆ Y ((εr)−1f), as we wanted.

Proposition 2.2.7. Any bounded homomorphism ϕ : B → D is inner with respect to A

if and only if the induced map M (ϕ) : M (D)→ Y has image inside Int(Y/X).

Proof. First, let us denote the image of M (ϕ) by Σ, and let us notice that

ρ(ϕ(f)) = max
z∈M (D)

|ϕ(f)(z)| = max
y∈Σ
|f(y)| ∀ f ∈ B. (2.1)

Now, if ϕ : B → D is inner with respect to A , it means that there exists an admissible

epimorphism π : A {r−1
1 T1, . . . , r

−1
n Tn} → B such that ρ(ϕ(π(Ti))) < ri for all i = 1, . . . , n.

By the previous formula (with f = π(Ti)), it follows that |π(Ti)(y)| < ri for all y ∈ Σ and

all i = 1, . . . , n. This shows (by Remark 2.2.2) that Σ ⊆ Int(Y/X) if ϕ is inner with

respect to A .

For the other direction, let us suppose that Σ ⊆ Int(Y/X). By Proposition 2.2.6, fixed

ε ∈ ]0, 1[, there exists an admissible epimorphism π : A {r−1
1 T1, . . . , r

−1
n Tn} → B such that

Σ ⊆ Y ((εr)−1f), where fi := π(Ti) for all i = 1, . . . , n. Using formula (2.1) again, it

follows that ρ(ϕ(π(Ti))) = maxy∈Σ |π(Ti)(y)| ≤ εri for all i = 1, . . . , n. This shows that ϕ

is inner with respect to A if Σ ⊆ Int(Y/X).

Proposition 2.2.8. If Y is an affinoid domain in X, then Int(Y/X) coincides with the

topological interior Y ◦ of Y in X.

Proof. Let us prove the inclusion Y ◦ ⊆ Int(Y/X) first. By Remark 1.2.9, given any point

y in the topological interior of Y , there must exist an open neighborhood of y inside Y of

the form {x ∈ X | |fi(x)| < r′i ∧ |gj(x)| > q′j ∀ i = 1, . . . , n, ∀ j = 1, . . . ,m}, for some fi’s

and gj ’s in A . For each i and j, we pick ri < r′i and qj > q′j in such a way that

y ∈ U := {x ∈ X | |fi(x)| < ri ∧ |gj(x)| > qj ∀ i = 1, . . . , n, ∀ j = 1, . . . ,m}.
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Then, by construction, y ∈W ⊆ Y , where W is the Laurent domain

X(r−1f, qg−1) := {x ∈ X | |fi(x)| ≤ ri ∧ |gj(x)| ≥ qj ∀ i = 1, . . . , n, ∀ j = 1, . . . ,m}.

It follows directly from the construction of AW in Definition/Proposition 1.6.5 that

there exists an admissible epimorphism π : A {r−1T , qS} → AW which sends Ti to fi

(for all i) and Sj to g−1
j (for all j). In particular, |π(Ti)(y)| < ri for all i = 1, . . . , n and

|π(Sj)(y)| < q−1
j for all j = 1, . . . ,m. This shows that y ∈ Int(W/X) ⊆ Int(Y/X), where

the last inclusion follows from Proposition 2.2.4.iii.

Now, let us prove the inclusion Int(Y/X) ⊆ Y ◦. By Theorem 1.6.10, there exists a finite

cover of X by K-affinoid domains W1, . . . ,Wm such that Yj := Y ∩Wj is a Weierstrass

domain in Wj for each j = 1, . . . ,m. Let us be given an arbitrary point y ∈ Int(Y/X)

and let j ∈ {1, . . . ,m} be such that y ∈ Yj . We apply Proposition 2.2.4.i with X ′ := Wj ,

with Y ′ := Y ×X X ′ = Y ∩Wj = Yj and with Ψ and Ψ′ being respectively the inclusions

of Wj in X and of Yj in Y . Since Ψ′−1(Int(Y/X)) = Yj ∩ Int(Y/X) 3 y, we obtain that

y ∈ Int(Yj/Xj). If Int(Yj/Xj) ⊆ Y ◦j , then we would get that y ∈ Y ◦
j
⊆ Y ◦. Therefore, we

can restrict ourself to case of a Weierstrass domain: for simplicity, we assume Y to be a

Weierstrass domain in X (forgetting Yj and Xj) and prove the inclusion Int(Y/X) ⊆ Y ◦

in this case.

Let y be any point in Int(Y/X); it means that there exists an admissible epimorphism

π : A {r−1
1 T1, . . . , r

−1
n Tn} → AY such that

y ∈ U := {y′ ∈ Y |
∣∣fi(y′)

∣∣ < ri ∀ i = 1, . . . , n},

where fi := π(Ti) for each i = 1, . . . , n. We know that A is dense in AY because we

assumed Y to be a Weierstrass domain. Hence, we can find f ′1, . . . , f
′
n ∈ A such that

||f ′i − fi|| < ri for all i = 1, . . . , n, and such that (by Proposition 1.5.16.iv) the homo-

morphism π′ : A {r−1T } → AY sending Ti to f ′i for all i = 1, . . . , n is an admissible

epimorphism.

Let us set

U ′ := {x ∈ X |
∣∣f ′i(x)

∣∣ < ri ∀ i = 1, . . . , n}

and

W := X(r−1f ′) = {x ∈ X |
∣∣f ′i(x)

∣∣ ≤ ri ∀ i = 1, . . . , n}.

We notice that Y ⊆ W because |f ′i(y′)| ≤ max{|fi(y′)| , ||f ′i − fi||} ≤ ri for all y′ ∈ Y
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and i = 1, . . . , n. For an analogous reason U ′ ∩ Y = U . Moreover, π′ clearly induces an

admissible epimorphism from AW = A {r−1T }/(T1− f ′1, . . . , Tn− f ′n) to AY . It coincides

with the restriction homomorphism AW → AY by the universal property of AW ; therefore,

by Proposition 1.6.12,W must be the disjoint union of Y and of anotherK-affinoid domain

W ′. We notice that U = U ′ ∩ Y = U ′ \W ′, and since U ′ is open (in X) and W ′ closed

(in X), then U must be open (in X). This concludes the proof because, by construction,

y ∈ U ⊆ Y .

Corollary 2.2.9. Let W ⊆ W ′ be two K-affinoid domains in X. The restriction homo-

morphism σW ′,W : AW ′ → AW is inner with respect to A if and only if W lies in the

topological interior of W ′.

Proof. Since W and W ′ are the images in X = M (A ) of M (AW ) and M (AW ′) (respec-

tively), it follows immediately from Proposition 2.2.7 that σW ′,W is inner with respect to

A if and only if W ⊆ Int(W ′/X). But Int(W ′/X) coincides with the topological interior

of W ′ by the previous proposition.

Proposition 2.2.10. A closed subset Σ ⊆ X lies in the topological interior of a Weierstrass

domain W if and only if for any ε ∈ ]0, 1[ there exists a representation W = X(r−1f)

such that Σ ⊆ X((εr)−1f) for some f1, . . . , fn ∈ A and r1, . . . , rn ∈ R>0.

Proof. The “if” part is trivial. For the other direction, the hypothesis becomes that Σ

is contained in Int(W/X), by Proposition 2.2.8. Then, by Proposition 2.2.6, there exists

an admissible epimorphism π : A {r−1
1 T1, . . . , r

−1
n Tn} → AW such that Σ ⊆ W ((εr)−1f),

where fi := π(Ti) for all i = 1, . . . , n. We know that A is dense in AW ; hence, by

Proposition 1.5.16.iv, we can assume that fi ∈ A for all i = 1, . . . , n. We let W ′ :=

X(r−1f), and we notice that ker(π) contains the ideal generated by all Ti − fi, so that π

induces an admissible epimorphism

AW ′ = A {r−1T }/(T1 − f1, . . . , Tn − fn)→ AW ,

which must coincide with the restriction homomorphism. By Proposition 1.6.12, the com-

plement W ′ \W is a K-affinoid domain in X with AW ′
∼= AW ×AW ′\W . We pick a real

number 0 < rn+1 < 1, and we let e be the element of AW ′ corresponding to the pair (0, 1)

under the previous identification. By the density of A in AW ′ , we can pick fn+1 ∈ A such

that ||e− fn+1|| < εrn+1. Then, it is easy to see that

W = {x ∈W ′ | |fn+1(x)| ≤ rn+1} = X(r−1f)

35



and Σ ⊆ X((εr)−1f), where, now, r and f are tuples of n+ 1 elements.
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Chapter 3

Holomorphically convex envelopes

and spectra of homomorphisms

Here we introduce holomorphically convex envelopes of closed subsets (§3.1), proving their

relations with Weierstrass neighborhoods (Proposition 3.1.2 and Corollary 3.1.3), and spec-

tra of homomorphisms (§3.2), proving some of their properties, especially with respect to

holomorphically convex envelopes. We are following [Ber90, §2.6, §7.3] but trying to give

more detailed proofs.

3.1 Holomorphically convex envelopes

Throughout this section, we let X := M (A ) be a K-affinoid space and we let Σ be any

closed subset of X.

We recall that if f ∈ Γ(U,OX), where U is an open neighborhood of Σ, then we denote

its restriction to Σ by f|Σ. In particular, this applies to all f ∈ A = Γ(X,OX).

Definition/Proposition 3.1.1.

(i) For any x ∈ Σ and any special neighborhood V of Σ there is a canonical homo-

morphism AV → H (x). Hence, by Proposition 1.8.7 and the universal property of

inductive limits, we get a canonical homomorphism Γ(Σ,OX) → H (x). We denote

the image in H (x) of any f ∈ Γ(Σ,OX) by f(x) (and the absolute value of f(x) by

|f(x)|).

(ii) We notice that
∣∣f|Σ(x)

∣∣ = |f(x)| for any f ∈ A and x ∈ Σ.

(iii) The assignment ||f ||Σ := maxx∈Σ |f(x)| for f ∈ Γ(Σ,OX) defines a non-Archimedean

seminorm || · ||Σ on Γ(Σ,OX).
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(iv) We denote the completion of (Γ(Σ,OX), || · ||Σ) by H (Σ), and the closure of the

image of A = Γ(X,OX) in H (Σ) by P(Σ).

(v) The holomorphically convex envelope of Σ in X is the topological space

Σh := {x ∈ X | |f(x)| ≤
∣∣∣∣f|Σ

∣∣∣∣
Σ
∀f ∈ A }

(with the topology induced form that of X).

(vi) We say that Σ is holomorphically convex in X if Σ = Σh.

Proof. (i). The canonical homomorphism AV →H (x) is given by the composition of the

restriction homomorphism AV → AW , where W is any K-affinoid domain inside V and

containing x, and the homomorphism AW →H (x) obtained by the universal property of

K-affinoid domains. Indeed, given two affinoid domainsW andW ′ inside V and containing

x, then the two homomorphisms AV → AW → H (x) and AV → AW ′ → H (x) are the

same, since they both coincide with the homomorphism AV → AW∩W ′ → H (x) (by

the compatibility of restriction homomorphisms and the universal property of K-affinoid

domains).

(ii). It follows directly from the construction in the previous point (considering V = X)

that f|Σ(x) and f(x) are the same point of H (x).

(iii). Clearly, ||c||Σ = |c| for all c ∈ K, and for all f, g ∈ Γ(Σ,OX) we have

||f + g||Σ =
∣∣(f + g)(x′)

∣∣ ≤
∣∣f(x′)

∣∣+
∣∣g(x′)

∣∣ ≤ ||f ||Σ + ||g||Σ

and

||fg||Σ =
∣∣(fg)(x′′)

∣∣ ≤
∣∣f(x′′)

∣∣ ∣∣g(x′′)
∣∣ ≤ ||f ||Σ ||g||Σ ,

where x′ and x′′ are points of Σ (which exist by the compactness of Σ) realizing the

maxima.

Proposition 3.1.2.

(i) Any Weierstrass neighborhood W of Σ is also a neighborhood of Σh.

(ii) The intersection of all Weierstrass neighborhoods of Σ coincides with Σh.

(iii) There is an homeomorphism between M (P(Σ)) and Σh.

Proof. (i). By proposition 2.2.10, we can write W = X(r−1f) and Σ ⊆ X((εr)−1f) for

some f1, . . . , fn ∈ A , r1, . . . , rn ∈ R>0 and ε ∈ ]0, 1[, i.e. W = {x ∈ X | |fi(x)| ≤ ri ∀ i =
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1, . . . , n} and Σ ⊆ {x ∈ X | |fi(x)| ≤ εri ∀ i = 1, . . . , n}. This immediately implies that
∣∣∣∣fi|Σ

∣∣∣∣
Σ
≤ εri for all i = 1, . . . , n, and therefore Σh ⊆ {x ∈ X | |fi(x)| ≤ εri ∀ i =

1, . . . , n}. This set is clearly contained in the interior of W = X(r−1f), so we are done.

(ii). By the previous point, it is clear that Σh is contained in the intersection of all the

Weierstrass neighborhoods of Σ. Let us prove the converse: we suppose that x /∈ Σh and

find a Weierstrass neighborhoodW of Σ such that x /∈W . By our assumption, there exists

f ∈ A such that
∣∣∣∣f|Σ

∣∣∣∣
Σ
< |f(x)|. Then we take r ∈ R>0 such that

∣∣∣∣f|Σ
∣∣∣∣

Σ
< r < |f(x)|

and define the Weierstrass domain W := X(r−1f) = {y ∈ X | |f(y)| ≤ r}. It is clear that

it does not contain x and that Σ lies in its interior.

(iii). With a slight abuse of notation, let us denote by || · ||Σ also the norm on P(Σ).

Moreover, let us denote by ϕ the canonical homomorphism A → P(Σ). It is easy to

see that ||ϕ(f)||Σ =
∣∣∣∣f|Σ

∣∣∣∣
Σ
≤ ||f || for all f ∈ A . Therefore, ϕ induces a continuous

function M (ϕ) : M (P(Σ)) → X. Since M (P(Σ)) is compact and X is Hausdorff, it

is enough to show that M (ϕ) is injective and has image Σh. We notice that M (ϕ)

is indeed injective, because the image of A in P(Σ) is dense by construction. Now,

an element x is in the image of M (ϕ) if and only if there exists y ∈ M (P(Σ)) such

that |f(x)| = |ϕ(f)(y)| for all f ∈ A . But |ϕ(f)(y)| ≤ ||ϕ(f)|| =
∣∣∣∣f|Σ

∣∣∣∣
Σ
. Thus, the

inequality |f(x)| = |ϕ(f)(y)| ≤
∣∣∣∣f|Σ

∣∣∣∣
Σ

(for all f ∈ A ) shows that x ∈ Σh if x is in

the image of M (ϕ). As for the converse implication, we notice that for any x ∈ Σh we

have |f(x)| ≤
∣∣∣∣f|Σ

∣∣∣∣
Σ

= ||ϕ(f)||Σ for all f ∈ A . Hence, x extends in a unique way to a

seminorm on the completion of (A , || · ||Σ ◦ϕ). It remains only to notice that P(Σ) is such

a completion: P(Σ) is complete (since it is a closed subspace of a complete metric space)

and ϕ : (A , || · ||Σ ◦ ϕ)→P(Σ) is an isometry with dense image almost by definition.

Corollary 3.1.3. If Σ is holomorphically convex in X, then Γ(Σ,OX) can be calculated

as the inductive limit lim−→W ◦⊃Σ
AW (in the category of K-algebras) for W running through

the Weierstrass neighborhoods of Σ.

Proof. We start with an easy topological lemma: let U be an open subset of a compact

set X and let {Wi}i∈I be compact subsets of X such that their intersection is inside U ;

then there exists a finite number of them whose intersection is inside U . In fact, X \ U

is compact, {X \Wi}i∈I is an open cover of X \ U , and the complements of any finite

subcover give a finite number of Wi’s whose intersection is inside U .

We apply this lemma to any open subset U ⊆ X containing Σ, with the compact subsets

being the Weierstrass neighborhoods of Σ. Their intersection is indeed inside U because

it coincides with Σ, by the second point of the previous proposition (under our hypothesis
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that Σ = Σh). A finite intersection of Weierstrass domains is again a Weierstrass domain

by Proposition 1.6.8. Hence, since U was arbitrary, the neighborhoods of Σ which are

Weierstrass domains form a basis of neighborhoods of Σ. The thesis now follows by a

proof completely analogous to the one of Proposition 1.8.7.

3.2 Spectra of homomorphisms

Throughout this section, we let A be a K-affinoid algebra and D a Banach K-algebra.

Definition 3.2.1. The spectrum of a bounded homomorphism ϕ : A → D is the image of

the induced function M (ϕ) : M (D)→M (A ) as a closed subset of M (A ). It is denoted

by Σϕ.

Example 3.2.2. By Proposition 1.2.8.ii, the spectrum of a character χx : A →H (x) is the

point {x} inducing the character.

Remark 3.2.3. Let ϕ : A → D be a bounded homomorphism. Unravelling all the defini-

tions, we get

∣∣∣∣f|Σϕ
∣∣∣∣

Σϕ
= max

x∈Σϕ
|f(x)| = max

z∈M (D)
|ϕ(f)(z)| = ρ(ϕ(f)) ∀ f ∈ A . (3.1)

Proposition 3.2.4. Let ϕ : A → D be a bounded homomorphism. For any Weierstrass

neighborhood W of the spectrum Σϕ there exists one and only one bounded homomorphism

ϕW : AW → D which extends ϕ.

Proof. For any W as in the statement and for any fixed ε ∈ ]0, 1[, Proposition 2.2.10 tells

us that W = X(r−1f) and Σϕ ⊆ X((εr)−1f) for some f1, . . . , fn ∈ A and r1, . . . , rn ∈

R>0. Let us prove that we can construct a (clearly unique) bounded homomorphism

ϕ′ : A {r−1T } → D which extends ϕ and sends Ti to ϕ(fi) for all i = 1, . . . , n. We start

by noticing that ρ(ϕ(fi)) = maxx∈Σϕ |fi(x)| ≤ εri for all i = 1, . . . , n, where the equality

is shown in (3.1) and the inequality is because Σϕ ⊆ X((εr)−1f). Now, the fact that

ρ(ϕ(fi)) := lim
u→∞

u
√
||ϕ(fi)u|| ≤ εri

implies that (for each i = 1, . . . , n) there exists mi ∈ N such that ||ϕ(fi)
u|| < rui for all

u ≥ mi. Then, we pick a real number C such that C ≥ 1 and C ≥ ∏n
i=1 ||ϕ(fi)

ui || for

any possible choice (for each i = 1, . . . , n) of ui = 1, . . . ,mi. It follows that ||auϕ(f)u|| ≤

C ||au|| ru for all au ∈ A . This shows that ϕ′ is well defined and bounded, as we wanted.
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To conclude, it is clear that ker(ϕ′) contains the ideal generated by all Ti − fi, so

that ϕ′ factors (in a unique way) as a composition of the canonical projection and of

a homomorphism ϕW (extending ϕ) from AW = A {r−1T }/(T1 − f1, . . . , Tn − fn) to

D . Moreover, the homomorphism ϕW : AW → D extending ϕ is unique because the

composition of any such homomorphism with the canonical projection A {r−1T } →

A {r−1T }/(T1 − f1, . . . , Tn − fn) must coincide with ϕ′.

Proposition 3.2.5. Let ϕ : A → B and ψ : B → D be two bounded homomorphisms,

with B a K-affinoid algebra. Let Ψ: Z → Y and Φ: Y → X be the induced continuous

functions between Berkovich spectra. Then, Φ(Σh
ψ) ⊆ Σh

ψ◦ϕ ⊆ Σh
ϕ.

Proof. For any y ∈ Σh
ψ we have |g(y)| ≤ maxz∈Z |ψ(g)(z)| for all g ∈ B, by formula (3.1).

Then, Φ(y) is such that

|f(Φ(y))| = |ϕ(f)(y)| ≤ max
z∈Z
|ψ(ϕ(f))(z)| =

∣∣∣
∣∣∣f|Σψ◦ϕ

∣∣∣
∣∣∣
Σψ◦ϕ

∀ f ∈ A .

This shows the first inclusion. The second one follows from the two simple facts that

Σψ◦ϕ = Φ(Ψ(Z)) ⊆ Φ(Y ) = Σϕ and that taking the holomorphically convex envelopes

preserves inclusions.

Corollary 3.2.6. Let ξ′ : A {r−1
1 T1, . . . , r

−1
n Tn} → D and ξ′′ : A {q−1

1 S1, . . . , q
−1
m Sm} → D

be two bounded homomorphisms, and let ξ : A {r−1T , q−1S} → D be the (bounded) homo-

morphism acting as ξ′ on the Ti’s and as ξ′′ on the Sj’s. Furthermore, let Π, Π′ and Π′′ be

the morphisms of K-affinoid spaces induced by the inclusions of A in A {r−1T , q−1S},

in A {r−1T } and in A {q−1S}, respectively. Then Π(Σh
ξ ) ⊆ Π′(Σh

ξ′) ∩Π′′(Σh
ξ′′).

Proof. We apply Proposition 3.2.5 with ψ = ξ and with ϕ being the inclusion of A {r−1T }

into A {r−1T , q−1S}. Denoting by Φ the map induced by ϕ, we obtain that Φ(Σh
ξ ) ⊆ Σh

ξ′ .

Hence, Π(Σh
ξ ) = Π′(Φ(Σh

ξ )) ⊆ Π′(Σh
ξ′), where the first equality follows from the fact that

Π = Π′ ◦ Φ. The other inclusion Π(Σh
ξ ) ⊆ Π′′(Σh

ξ′′) is completely analogous.

Proposition 3.2.7. Let ϕ : A → D be any bounded homomorphism, let D ′ be the closed

K-subalgebra of D generated by the image of ϕ, and let ϕ′ denote the induced homomor-

phism A → D ′. Then, Σϕ′ = Σh
ϕ.

Proof. Recalling formula (3.1), we have

∣∣∣∣f|Σϕ
∣∣∣∣

Σϕ
= ρD(ϕ(f)) = ρD ′(ϕ

′(f)) =
∣∣∣
∣∣∣f|Σϕ′

∣∣∣
∣∣∣
Σϕ′

∀ f ∈ A .
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Thus, Σh
ϕ′ = Σh

ϕ, and it remains to prove that Σh
ϕ′ ⊆ Σϕ′ . We notice that for any x ∈ Σh

ϕ′

we have

|f(x)| ≤
∣∣∣∣f|Σϕ

∣∣∣∣
Σϕ

= ρ(ϕ(f)) ≤ ||ϕ(f)|| ∀ f ∈ A .

It follows that x can be extended to a seminorm on the completion of (A , || · || ◦ ϕ). It

remains only to notice that D ′ is such a completion: D ′ is complete (since it is a closed

subspace of a complete metric space) and ϕ : (A , || · ||Σ ◦ ϕ) → D ′ is an isometry with

dense image almost by definition.
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Chapter 4

The holomorphic functional calculus

Here we prove Arens - Calderon lemma (§4.1), and we use it to prove the holomorphic

functional calculus theorem (§4.2). We are following [Ber90, §7.3] but trying to give more

detailed proofs.

4.1 Preliminary results

Throughout this section we let A be a K-affinoid algebra and D a Banach K-algebra.

Moreover, we denote the K-affinoid space M (A ) by X.

Definition 4.1.1. Let Σ be a closed subset of X. A homomorphism ϕ : Γ(Σ,OX) → D

is said to be bounded if the compositions AV
σV,Σ−−−→ Γ(Σ,OX)

ϕ−→ D (with the restriction

homomorphisms) are bounded for all special neighborhoods V of Σ.

Proposition 4.1.2. Every bounded homomorphism ϕ : A → D can be extended in one

and only one way to a bounded homomorphism θϕ,Σh : Γ(Σh,OX) → D , where Σh is any

holomorphically convex subset of X containing the spectrum Σϕ.

Proof. By Corollary 3.1.3, we have that Γ(Σh,OX) = lim−→W ◦⊇Σh
AW , where W runs

through the Weierstrass neighborhoods of Σh. It now follows from Proposition 3.2.4 (and

the universal property of inductive limits) that ϕ has one and only one bounded extension

θϕ,Σh : Γ(Σh,OX)→ D .

The aim of this chapter is to construct an extension of any bounded homomorphism

ϕ : A → D not just to Γ(Σh
ϕ,OX), but to Γ(Σϕ,OX).

Lemma 4.1.3 (Arens - Calderon). Let ϕ : A → D be a bounded homomorphism. For any

open neighborhood U of the spectrum Σϕ there exist r1, . . . , rn ∈ R>0 (for some n ∈ N>0)

and a bounded homomorphism ϕ′ : A {r−1T } → D which extends ϕ and is such that

43



Π(Σh
ϕ′) ⊆ U , where Π is the continuous map M (A {r−1T })→ X induced by the inclusion

of A into A {r−1T }.

Proof. First, we prove the following claim:

Claim. Let x be a point in X\Σϕ. Then, there exist q1, . . . , qm ∈ R>0 (for some m ∈ N>0)

and a bounded homomorphism ϕx : A {q−1S} → D which extends ϕ and is such that x /∈

Πx(Σh
ϕx), where Πx is the continuous map induced by the inclusion of A into A {q−1S}.

Proof of the claim. Let us denote by b the ideal of D ⊗̂K H (x) generated by the elements

ϕ(a) ⊗̂ 1−1 ⊗̂ a(x) for all a ∈ A . Let us suppose, by contradiction, that b 6= D ⊗̂K H (x).

Then, also the closure b of b must be different from D ⊗̂K H (x), otherwise b would

intersect the group of units (D ⊗̂K H (x))×, since this is open by Proposition 1.1.12.i. It

follows that we have a commutative diagram

A D

H (x) D ′′

ϕ

χx

with D ′′ := D ⊗̂K H (x)/b 6= {0} being a Banach K-algebra. The image of the continuous

map M (D ′′)→ X induced by the two coinciding compositions A → D ′′ must be the point

{x} by Example 3.2.2. On the other hand, the image of that map must ly inside Σϕ. This

contradicts our hypothesis that x /∈ Σϕ, and thus b = D ⊗̂K H (x). This means that we

can write

1 =
m∑

i=1

(ϕ(ai) ⊗̂ 1− 1 ⊗̂ ai(x))gi ⊗̂hi (4.1)

for some ai ∈ A , gi ∈ D and hi ∈H (x).

For each i = 1, . . . ,m, we let ri ∈ R>0 be such that ri > ||gi||. Then, recalling

Proposition 1.5.16.ii, we let ϕx : A {r−1T } → D be the bounded homomorphism which

extends ϕ and sends Ti to gi for all i = 1, . . . ,m. We denote by D ′ the closed K-subalgebra

of D generated by the image of ϕx (i.e. generated by ϕ(A ) and the gi’s), and we denote

by ϕ′x (resp. ϕ′) the bounded homomorphism obtained by restricting the codomain of ϕx

(resp. ϕ) to D ′. Proposition 3.2.7 tells us that Σϕ′x = Σh
ϕx , so we want to prove that

x /∈ Π(Σϕ′x).

We suppose, by contradiction, that there exists y ∈ M (D ′) such that M (ϕ′)(y) = x.

By Proposition 1.2.8.iii, it means that the two characters χy◦ϕ′ : A →H (y) and χx : A →

H (x) are equivalent, i.e. there exist two embeddings ιy : H (y) ↪→ L and ιx : H (x) ↪→ L

to a non-Archimedean field L extending K such that ιy ◦χy ◦ϕ′ = ιx ◦χx. By the universal

property of the completed tensor product, ιy ◦χy and ιx induce a bounded homomorphism

44



D ′ ⊗̂K H (x) → L, and it is easy to see that all the elements ϕ(a) ⊗̂ 1 − 1 ⊗̂ a(x) with

a ∈ A are in its kernel. It follows that ιx : H (x) → L factors as a composition H (x) →

D ′ ⊗̂K H (x)/b′ → L, where b′ is the ideal of D ′ ⊗̂K H (x) generated by the elements

ϕ(a) ⊗̂ 1− 1 ⊗̂ a(x) for all a ∈ A . This is contradictory because b′ must be the whole ring

D ′ ⊗̂K H (x) by formula (4.1). We have thus proven that x /∈ M (ϕ′)(M (D ′)). Finally,

since M (ϕ′) = Πx ◦M (ϕ′x) (because ϕ′x extends ϕ′ by construction), this is equivalent to

saying that x /∈ Πx(M (ϕ′x)(M (D ′))) = Πx(Σϕ′x).

Let us fix a neighborhood U of Σϕ. For all x ∈ X \ U ⊆ X \ Σϕ, we let ϕx and Πx be

as in the statement of the claim, which tells us that the set Ux := X \Πx(Σh
ϕx) is an open

neighborhood of x (in fact Πx(Σh
ϕx) is compact and hence closed in X). Since X \ U is

compact, it is covered by a finite number of Ux’s: let us denote the corresponding points by

x1, . . . , xt. We construct ϕ′ (and Π) by putting together all the ϕxi ’s (resp. Πxi ’s) in the

same way as ξ is constructed after ξ′ and ξ′′ (resp. Π after Π′ and Π′′) in Corollary 3.2.6.

That corollary ensures us that

Π(Σh
ϕ′) ⊆

t⋂

i=1

Πxi(Σ
h
ϕxi

) = X \
(

t⋃

i=1

Uxi

)
⊆ U,

as we wanted. (The corollary gives the first inclusion, the subsequent equality is an appli-

cation of De Morgan laws and the last inclusion follows from the fact that the Uxi ’s cover

X \ U by construction.)

4.2 The theorem

Theorem 4.2.1 (holomorphic functional calculus). There exists one and only one way,

satisfying the following properties, to extend any bounded homomorphism ϕ : A → D

from a K-affinoid algebra A to a Banach K-algebra D to a bounded homomorphism

θϕ : Γ(Σϕ,OX)→ D (where X := M (A )).

(Composition property). For any bounded homomorphism ψ : D → D ′ between two

Banach K-algebras, the diagram

Γ(Σϕ,OX) D

Γ(Σψ◦ϕ,OX) D ′

θϕ

ψ

θψ◦ϕ

(4.2)

commutes.

(Superposition property). Any morphism of K-quasiaffinoid spaces Ξ: U → X ′ from
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an open neighborhood U of Σϕ to a K-affinoid space X ′ := M (A ′) gives rise to a bounded

homomorphism

ψ : A ′
Ξ∗
X′,Σϕ−−−−→ Γ(Σϕ,OX)

θϕ−→ D

such that Σψ = Ξ(Σϕ) and such that the diagram

Γ(Σψ,OX′) Γ(Σϕ,OX)

D

Ξ∗Σψ,Σϕ

θψ θϕ

(4.3)

commutes.

Proof. (Construction of θϕ). Let V be any special neighborhood of Σϕ. Making use of

Lemma 4.1.3, we let ϕ′ : A {r−1T } → D be an extension of ϕ such that Π(Σh
ϕ′) ⊆ V ◦,

where Π is the canonical morphism from X ′ := M (A {r−1T }) to X. By Proposition 4.1.2,

it follows that ϕ′ can be extended in one and only one way to a bounded homomorphism

θϕ′,Σh
ϕ′

: Γ(Σh
ϕ′ ,OX′) → D . Then, we define the bounded homomorphism θϕ,V : AV → D

as the composition θϕ′,Σh
ϕ′
◦ Π∗

V,Σh
ϕ′
, where Π∗

V,Σh
ϕ′

: AV → Γ(Σh
ϕ′ ,OX′) is the pullback

homomorphism. We can see that it is indeed bounded by decomposing it further as (θϕ′,Σh
ϕ′
◦

σΠ−1(V ),Σh
ϕ′

) ◦Π∗V .

A {r−1T } Γ(Σhϕ′ ,OX′)

A D

AV

ϕ′ θ
ϕ′,Σh

ϕ′

ϕ

θϕ,V

Π∗
V,Σh

ϕ′

Figure 4.1: Homomorphisms involved in the construction of θϕ,V .

Let us now prove that the homomorphism θϕ,V just defined does not depend upon

ϕ′. For this, let us use for a moment the notations of Corollary 3.2.6, that is, let (ξ′,Π′)

and (ξ′′,Π′′) stand for two possible couples (ϕ′,Π), and let (ξ,Π) be constructed as in the

corollary. Now, the corollary tells us that Π(Σh
ξ ) ⊆ V ◦, and so it suffices to prove that

θξ,Σhξ
◦ Π∗

V,Σhξ
= θξ′,Σh

ξ′
◦ Π′∗

V,Σh
ξ′

(since the other equality with ξ′′ and Π′′ instead of ξ′ and

Π′ is then completely analogous). Let us denote by Φ the morphism of K-affinoid spaces

induced by the inclusion of A {r−1T } into A {r−1T , q−1S} (again with reference to the

text of Corollary 3.2.6). By Proposition 3.2.5, we have that Φ(Σh
ξ ) ⊆ Σh

ξ′ , so there exists a

pullback homomorphism Φ∗
Σh
ξ′ ,Σ

h
ξ

: Γ
(
Σh
ξ′ ,OM (A {r−1T })

)
→ Γ

(
Σh
ξ ,OM (A {r−1T ,q−1S})

)
. By
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the uniqueness of the extension θξ′,Σh
ξ′

: Γ
(
Σh
ξ′ ,OM (A {r−1T })

)
→ D of ξ′, we obtain that

θξ,Σhξ
◦Φ∗

Σh
ξ′ ,Σ

h
ξ

= θξ′,Σh
ξ′
. On the other hand, since Π = Π′◦Φ, the compatibility of pullbacks

with respect to compositions (Proposition 1.9.4.ii) gives Π∗
V,Σhξ

= Φ∗
Σh
ξ′ ,Σ

h
ξ

◦Π′∗
V,Σh

ξ′
. Hence,

θξ,Σhξ
◦Π∗

V,Σhξ
= θξ,Σhξ

◦ Φ∗
Σh
ξ′ ,Σ

h
ξ
◦Π′∗

V,Σh
ξ′

= θξ′,Σh
ξ′
◦Π′∗

V,Σh
ξ′
,

as we wanted.

By Proposition 1.8.7, in order to construct θϕ : Γ(Σϕ,OX) → D , it remains only to

show that the bounded homomorphisms θϕ,V are compatible. Hence, we let V ⊆ V ′ be

two special neighborhoods of Σϕ. Since we have proven that θϕ,V ′ := θϕ′,Σh
ϕ′
◦Π∗

V ′,Σh
ϕ′

does

not depend upon ϕ′, we can take ϕ′ such that Π(Σh
ϕ′) ⊆ V ◦ ⊆ V ′◦. Then, θϕ′,Σh

ϕ′
is (by

construction) independent of whether we are considering V or V ′, while the triangle

AV ′ AV

Γ(Σh
ϕ′ ,OX′)

σV ′,V

Π∗
V ′,Σh

ϕ′
Π∗
V,Σh

ϕ′

commutes by Proposition 1.9.4.i. This concludes the proof of the compatibility of the

θϕ,V ’s and our construction of θϕ, which is bounded because the homomorphisms θϕ,V are

bounded, and extends ϕ because θϕ,X = θϕ.

(Composition property). Let V be a special neighborhood of Σϕ and let ϕ′ be as above,

in the construction of θϕ. By Proposition 3.2.5 we have that Σh
ψ◦ϕ′ ⊆ Σh

ϕ′ , and in view of

Proposition 1.9.4.i there is a commutative diagram

AV

Γ(Σh
ϕ′ ,OX′) Γ(Σh

ψ◦ϕ′ ,OX′)

Π∗
V,Σh

ϕ′
Π∗
V,Σh

ψ◦ϕ′

ρ
Σh
ϕ′
,Σh
ψ◦ϕ′

Moreover, we notice that both ψ ◦ θϕ′,Σh
ϕ′

and θψ◦ϕ′,Σh
ψ◦ϕ′
◦ ρΣh

ϕ′ ,Σ
h
ψ◦ϕ′

extend ψ ◦ ϕ′. This

extension must be unique by Proposition 4.1.2; hence,

ψ ◦ θϕ,V = ψ ◦ θϕ′,Σh
ϕ′
◦Π∗

V,Σh
ϕ′

=

= θψ◦ϕ′,Σh
ψ◦ϕ′
◦ ρΣh

ϕ′ ,Σ
h
ψ◦ϕ′
◦Π∗

V,Σh
ϕ′

=

= θψ◦ϕ′,Σh
ψ◦ϕ′
◦Π∗

V,Σh
ψ◦ϕ′

= θψ◦ϕ,V .

The commutativity of the diagram in (4.2) then follows by considering the inductive limit

on the special neighborhoods V of Σϕ.
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(Superposition property). By Proposition 1.7.3, we can find a special neighborhood Ṽ of

Σϕ inside U . We fix such a special subset Ṽ and notice that the restriction homomorphism

Γ(U,OX) → Γ(Σϕ,OX) factors through A
Ṽ

by Definition/Proposition 1.8.5. Recalling

the construction of θϕ, it follows that ψ := θϕ ◦ Ξ∗X′,Σϕ = θ
ϕ,Ṽ
◦ Ξ∗

X′,Ṽ
. After this new

decomposition of ψ and after Remark 1.9.5, we can be sure that ψ is indeed bounded.

Furthermore, by Proposition 1.9.7 and the simple fact that Σθ
ϕ,Ṽ

= Σϕ (as subsets of Ṽ ◦),

we obtain that

Σψ = M (Ξ∗
X′,Ṽ

)(Σθ
ϕ,Ṽ

) = Ξ(Σϕ),

as we wanted.

Now we need to define a lot of homomorphisms: see Figure 4.2 for a representation of all

of them. Using Lemma 4.1.3 (as in the construction of θϕ), we let ϕ′ : A {q−1S} → D be an

extension of ϕ such that Π(Σh
ϕ′) ⊆ Ṽ ◦, where Π is the morphism induced by the inclusion

of A into A {q−1S}. Let us denote Ṽ ′ := Π−1(Ṽ ) and let θ
ϕ′,Ṽ ′ : A {q−1S}

Ṽ ′ → D be

the composition θϕ′,Σh
ϕ′
◦ σ

Ṽ ′,Σh
ϕ′

(well defined because Σh
ϕ′ ⊆ Ṽ ′◦).

Now, let V be any special neighborhood of Σψ. Using Lemma 4.1.3 again, we let

ψ′ : A ′{r−1T } → D be an extension of ψ such that Π′(Σh
ψ′) ⊆ V ◦, where Π′ is the

morphism induced by the inclusion of A ′ into A ′{r−1T }. If Π′′ denotes the morphism

induced by the inclusion of A into A {q−1S, r−1T } and Ṽ ′′ := Π′′−1(Ṽ ), we notice that

A {q−1S}
Ṽ ′{r

−1T } = A {q−1S}
Ṽ ′ ⊗̂A ′ A

′{r−1T } = A {q−1S, r−1T }
Ṽ ′′

by Proposition 1.5.3.iv and Remark 1.7.11. Let us denote by θ
ϕ′′,Ṽ ′′ : A {q−1S, r−1T }

Ṽ ′′ →

D the homomorphism induced (through the universal property of completed tensor prod-

ucts) by θ
ϕ′,Ṽ ′ and ψ′. We let ϕ′′ := θ

ϕ′′,Ṽ ′′ ◦ σṼ ′′ , and we notice that ϕ′′ extends

ϕ′. In particular, by Proposition 3.2.5, Π′′(Σh
ϕ′′) ⊆ Π′(Σh

ϕ′) ⊆ Ṽ ◦, which means that

Σh
ϕ′′ ⊆ Ṽ ′′◦. Hence, using Proposition 4.1.2, we can decompose θ

ϕ′′,Ṽ ′′ as a the composi-

tion θϕ′′,Σh
ϕ′′
◦ σ

Ṽ ′′,Σh
ϕ′′
.

Let us denote by Ξ′ : Ṽ ′′◦ → M (A ′{r−1T }) the morphism of K-quasiaffinoid spaces

associated (as explained in Remark 1.9.6) to the canonical homomorphism A ′{r−1T } →

A {q−1S, r−1T }
Ṽ ′′ . If we denote the inclusion of A ′ into A ′{r−1T } by ι and the canon-

ical homomorphism A ′{r−1T } → A {q−1S, r−1T }
Ṽ ′′ by τ , then

Π′ ◦ Ξ′ = M (ι) ◦M (τ)|Ṽ ′′◦ = M (Ξ∗
X′,Ṽ

)|Ṽ ◦ ◦M (Π′′∗
X,Ṽ ′′

)|Ṽ ′′◦ = Ξ|Ṽ ◦ ◦Π′′|Ṽ ′′◦ (4.4)

by Proposition 1.9.7 and the fact that, by construction, τ ◦ ι = Π∗
Ṽ ,Ṽ ′′

◦ Ξ∗
X′,Ṽ

(and that
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Ṽ ′′ = Π′′−1(Ṽ )). Moreover, the fact that by construction

θϕ′′,Σh
ϕ′′
◦ Ξ′

Σh
ψ′ ,Σ

h
ϕ′′
◦ ρM (A ′{r−1T }),Σh

ψ′
= θϕ′′,Σh

ϕ′′
◦ σ

Ṽ ′′,Σh
ϕ′′
◦ τ = θ

ϕ′′,Ṽ ′′ ◦ τ = ψ′

implies that θψ′,Σh
ψ′

= θϕ′′,Σh
ϕ′′
◦Ξ′

Σh
ψ′ ,Σ

h
ϕ′′

by the uniqueness of the bounded homomorphism

Γ(Σh
ψ′ ,OM (A ′{r−1T }))→ D extending ψ′ (Proposition 4.1.2).

Now, let V ′ be a special neighborhood of Σϕ inside Ξ−1(V ◦) ∩ Ṽ ◦. We recall that, by

construction, θϕ is the homomorphism induced by the homomorphisms θϕ,V ′ := θϕ′′,Σh
ϕ′′
◦

Π′′∗
V ′,Σh

ϕ′′
for such special neighborhoods V ′ (we can define θϕ,V ′ in that way because we have

shown it to be independent of the choice of the decomposition). By (4.4) and Proposition

1.9.4.ii, we obtain the following commutative diagram:

A ′V Γ
(
Σh
ψ′ ,OM (A ′{r−1T })

)

D

AV ′ Γ
(
Σh
ϕ′′ ,OM (A {q−1S,r−1T })

)

Π′∗
V,Σh

ψ′

Ξ∗
V,V ′

Ξ′∗
Σh
ψ′
,Σh
ϕ′′

θ
ψ′,Σh

ψ′

Π′′∗
V ′,Σh

ϕ′′

θ
ϕ′′,Σh

ϕ′′

Hence,

θϕ,V ′ ◦ Ξ∗V,V ′ = θϕ′′,Σh
ϕ′′
◦Π′′∗

V ′,Σh
ϕ′′
◦ Ξ∗V,V ′ = θψ′,Σh

ψ′
◦Π′∗

V,Σh
ψ′

= θψ,V .

The commutativity of the diagram in (4.3) then follows by considering the inductive limit

on the special neighborhoods V of Σψ (and, consequently, the inductive limit on the special

neighborhoods V ′ of Σϕ).

(Uniqueness). Let θ̃ϕ : Γ(Σϕ,OX)→ D be a holomorphic functional calculus extension

of ϕ (possibly different from that constructed before). Let V be any special neighborhood

of Σϕ and let ϕ′ : A {r−1T } → D and Π: X ′ → X be as in the construction of θϕ. By the

superposition property (relative to the morphism Π), the triangle

Γ(Σϕ,OX) Γ(Σϕ′ ,OX′)

D

Π∗Σϕ,Σϕ′

θ̃ϕ θ̃ϕ′

must commute. Moreover, the diagram

AV Γ(Σϕ,OX)

Γ(Σh
ϕ′ ,OX′) Γ(Σϕ′ ,OX′)

σV,Σϕ

Π∗
V,Σh

ϕ′
Π∗Σϕ,Σϕ′

ρ
Σh
ϕ′
,Σϕ′
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commutes by Proposition 1.9.4.i. Recalling the homomorphisms θϕ′,Σh
ϕ′

and θϕ,V from the

construction of θϕ, we have that

θ̃ϕ◦σV,Σϕ = θ̃ϕ′◦Π∗Σϕ,Σϕ′◦σV,Σϕ = θ̃ϕ′◦ρΣh
ϕ′ ,Σϕ′

◦Π∗
V,Σh

ϕ′
= θϕ′,Σh

ϕ′
◦Π∗

V,Σh
ϕ′

= θϕ,V = θϕ◦σV,Σϕ ,

where θ̃ϕ′ ◦ ρΣh
ϕ′ ,Σϕ′

= θϕ′,Σh
ϕ′

by the uniqueness of the homomorphism θϕ′,Σh
ϕ′

extending

ϕ′. It follows that θ̃ϕ = θϕ, as we wanted, by considering the universal property of the

inductive limit lim−→V ◦⊇Σ
AV = Γ(Σϕ,OX).
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A
{q

−
1
S
,r

−
1
T
} Ṽ
′′

Γ
( Σ

h ϕ
′′
,O

M
(A

{q
−

1
S
,r

−
1
T
})
)

A
{q

−
1
S
,r

−
1
T
}

A
{q

−
1
S
} Ṽ
′

Γ
( Σ

h ϕ
′,

O
M

(A
{q

−
1
S
})
)

A
{q

−
1
S
}

A
V
′

D

A
Ṽ

A

A
′ V

A
′

Γ
( Σ

h ψ
′,

O
M

(A
′ {
r
−

1
T
})
)

A
′ {
r
−

1
T
}

σ
Ṽ
′′
,Σ
h ϕ
′′

θ
ϕ
′′
,Ṽ
′′

θ
ϕ
′′
,Σ
h ϕ
′′

σ
Ṽ
′′

ϕ
′′

σ
Ṽ
′ ,

Σ
h ϕ
′

θ
ϕ
′ ,
Ṽ
′

θ
ϕ
′ ,

Σ
h ϕ
′

σ
Ṽ
′

ϕ
′

θ
ϕ
,V
′

Π
′′
∗
V
′ ,

Σ
h ϕ
′′

Π
∗ Ṽ
,Ṽ
′

σ
Ṽ
,V
′

θ
ϕ
,Ṽ

Π
′′
∗
Ṽ
,Ṽ
′′

σ
Ṽ

ϕ

θ
ψ
,V

Ξ
V
,V
′

Π
′∗ V
,Σ
h ψ
′

Ξ
X
′ ,
Ṽ

σ
V

ι

ψ

θ
ψ
′ ,

Σ
h ψ
′

Ξ
′∗ Σ
h ψ
′,

Σ
h ϕ
′′

ψ
′

τ

ρ
M

(
A
′ {

r
−

1
T
})
,Σ
h ψ
′

F
ig
ur
e
4.
2:

H
om

om
or
ph

is
m
s
in
vo
lv
ed

in
th
e
pr
oo

f
of

th
e
su
pe

rp
os
it
io
n
pr
op

er
ty
.
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