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Preface

The neuromuscular disorders are a topic that nowadays shakes a lot of sensibility
in the scientific community and among common people, since the amount of
people suffering this kind of problems has been considerably increased. In fact
amyotrophic lateral sclerosis, brainstem stroke and spinal cord injury, are the
frequent causes of disability all around the world and lead up to 600 million people
to permanent neurological impairments [4]. The main question is that motor
impairment associated with this kind of deseases seriously compromise the quality
of ordinary life of these patients. Therefore, in order to restore motor functions
severals rehabilitative treatments have been experimented. The most traditional
approach includes: passive facilitation, promotion of alternative movements, aerobic
exercises, constraint-induced movement therapy or bilateral arm-training. However
with the recent technological advancements, the idea of an alternative rehabilitative
strategy based on neuroplasticity arose: it is the so called Brain-Computer Interface
(BCI). This platform employs neurophysiological signals originated in the brain to
operate external devices: this kind of technology thus provides severly impaired
people a new non-muscular channel for sending messages and commands to the
external world. A first attempt to use BCI technology in the clinical context as
a tool of neurological rehabilitation of motor paralysis was proposed in 1973 by
J.Vidal in patients affected by tetraparesis. Then, many other studies were carried
on and led to significant improvement of motor fuctions.
Nowadays research on BCI is a wide and various scenary, but this thesis work
focuses on a reality close to Padua, that is the S. Camillo Hospital Foundation
I.R.C.C.S. in Lido of Venice. There a BCI system for the recovery of motor
functions in mild impaired stroke survivors has been implemented. In particuar,
a closed-loop structure involving the subject’s brain, his/her upeer limb and a
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robotic arm controlled by a computer exploits the neuroplasticity property of
the brain with the rehabilitative goal to associate new healthy neural paths to a
more and more precise movement of the impaired upper limb. With a suitable
BCI training - where a force is continuously provided to the subject through
the robotic arm as a feedback of his/her neural activity - the patient learns to
control his/her neurophysiological signals and, consequently, improves his/her motor
abilities. However, the effectiveness of the force feedback strictly requires real-time
operations. In order to reach this condition a reliable EEG signal processing is
needed. Thus, the aim of this thesis work is designing a digital filter which allows
to instantaneously process the neurophysiological data and, in particular, identifies
the spontaneous energy decrease of the frequency bands related to the movement
of the limb - the so-called sensorimotor rhythms.
The present thesis is structured as follows:

Chapter 1: Firstly, some basic concepts about humann brain are reported;
then the origin and the current state-of-the-art of the BCI research is described
with special mention for its applications for the rehabilitation filed. The chapter
concludes with some perspective of the BCI future developments and its potentiali-
ties.

Chapter 2: In this section the BCI system implemented at San Camillo
Hospital (Venice) is considered. Its advantages and innovative aspects are brought
out along with some criticisms, e.g. the real-time requirement, that should be
improved in order to make it a reliable and effective recovery platform.

Chapter 3: This chapter introduces the actual subject of this work: a real
filter to be implemented in the San Camillo’s BCI system. Its general time and
frequency properties are defined, and its ideal model, which acts as a reference
for the real one in this project is presented. Besides that, the most common filter
design techniques are briefly explained.

Chapter 4: In this last chapter the simulations performed in MATLAB envi-
ronment are described in detail, along with the strategies adopted to choose the
most suitable digital filter for this BCI applications. Finally, the outcomes obtained
on simulate EEG signal are presented, along with the strategies that in future
could be adopted to continue the project.



Chapter 1

The Brain-Computer Interface

The acronym BCI - which stands for Brain Computer Interface - appeared for
the first time in 1973, as the name of a project conducted at the University of
California in Los Angeles [5]. That project layed its foundations on the evidence that
EEG waves contain usable information of conscious and unconscious experiences.
Indeed, important discoveries and insights had been collected about neural signals
since the latest 20s. In particular, human cerebral signals recorded on the scalp
were recognized as sustained fluctuations of the electrical potential correlated with
variations in the upper layers of the brain cortex below the scalp surface. It was also
noted that these signals structure could be modeled as a stochastic time series with
small amplitudes (up to few tens of microvolts) and a considerable amount of very
low frequencies (below 1 Hz) that "appear" and "disappear" somewhat randomly in
time. Besides, signals collected on two or more electrodes exhibited changing levels
of correlation, due either to physical proximity or to actual coordination between
different cortical sites. In this sustained "ongoing" electrical activity, short-lasting
(from 0.5 to 2 seconds) distinctive waveforms were also identified as evoked responses
to stimuly externally received by the subject.
Enthusistic about the recent achievements in the EEG and neurophysiological
field, in 1973, Jacques J. Vidal wrote: ”Can these observable brain signals be put
to work as carriers of information in man-computer communication or for the
purpose of controlling such an external apparatus as prosthetic devices?”[5]. That
is considered the first basic idea of BCI and Vidal is all over the world recognised as
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4 CHAPTER 1. THE BRAIN-COMPUTER INTERFACE

the father of these systems. In fact, the BCI project carried on in Los Angeles was
the first successfully attempt to evaluate the feasibility and reliability of operating
a man-computer dialogue by means of brain signals.

The success of the project is probably due to Vidal’s foresight that despite of
the rudimentary tools and incomplete knowledge about human brain available at
the beginning of the Seventies, foresaw the future applications of this interface, and
elevated computers to genuine prosthetic extensions of the brain. Then, considerable
advances in neurophysiology, in signal analysis techniques and in computer science
would be required to further approach that dreamer goal that nowasdays, years
after Vidal’s first words, remains far away from an actual daily life reality.

1.1 The human brain

Physiology and anatomy of the human brain are far to be completely explained,
although significant progresses were made. One of the most important step in the
neuroscience history was the invention of the electroencephalography in the latest
20s. The first registration of the human cerebral activity was performed by the
German physiologist and psychiatrist Hans Berger in 1929: with the experiment
he demonstrated the possibility of recording brain waves from the intact skull.
Since then, an enormous amount of neural data has been investigated: the scalp-
recorded brain signals showed a great deal of variability, reflecting the huge number
of parameters that can influence their behaviour. Moreover, Berger’s discovery
encouraged the development of brain study. Lots of hospitals, laboratories and
Universities had started to deeply investigate brain properties thanks to EEG and
other devices. Although the great effort most of the cerebral complexity remains
unclear and still fascinates researchers all over the world.
In the followings basic concepts of neurophysiology and neuroanatomy will be
provided. It is well-known that human Central Nervous System (CNS) is constituted
by brain and spinal cord. Brain, in particular, is shielded by two more layers that
are the skull and the scalp. Then, from an anatomical point of view brain is made
by three main parts, partially illustrated in Figure 1.1: cerebrum, cerebellum,
and brain stem [10]. Each of these can be hierarchically subdivided into many
regions, either according to the anatomical structure of the neural networks within
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Figure 1.1: The principle brain regions.

it, or according to the function performed by them. Specifically, cerebrum consists
of both left and right lobes with highly convoluted surface layers called cerebral
cortex. The latter includes regions for movement initiation, conscious awareness of
sensation, complex analysis, and expression of emotions and behaviour. Cerebellum
coordinates voluntary movements of muscles and maintains balance. Finally, the
brain stem controls involuntary functions such as respiration, heart regulation,
biorhythms, and neurohormone and hormone sections.
But the very basic computational unit of the nervous system is the nerve cell
or neuron. As shown in Figure 1.2, neuron is formed by dendrites (inputs), a
cell body and an axon(output). Each neuron receives inputs from other neurons.
Once the overall input to the specific neuron exceeds a critical level, the neuron
discharges a spike - an electrical pulse that travels from the body, down the axon,
to the next neurons or other receptors.
Receptors are, indeed, cells able to transmit information over long distances, across

Figure 1.2: The nerve cell structure.
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a dense net: each neuron is connected to approximately 10,000 other neurons,
mostly through dendritic connections. The junction between axons and dendrites,
or dendrites and dendrites of cells is called synapse, and the brain activities are
mainly related to the synaptic currents. Thanks to this effective and exceptionally
dense net of connection, brain can perform parallel computations in an extremelly
efficient way. Moreover, it has already been demonstrated that when a disease
partially damages brain, the latter can learn to use new resources to cope with
the impairment: this amazing brain property is generally called neuroplasticity.
advancements in the understanding of these neural capabilities and the advent of
powerful low-cost computer equipments, made the Vidal’s project an actual reality:
electroencephalographic or other electrophysiological measures of brain activity
can, nowadays, provide a new non-muscular reliable channel for sending messages
and commands to the external world: thus, the Brain-Computer Interface era was
begun.
Since Vidal’s epoch, BCI technology has attracted increasing interests from the
scientific community and has extended its potentials in several contexts. In fact,
it is well-known that a lot of different disorders can disrupt the neuromuscular
human system e.g. amyotrophic lateral sclerosis, brainstem stroke, brain or spinal
cord injury, cerebral palsy, muscular dystrophies, multiple sclerosis and numerous
other diseases. Brain-Computer Interfaces can indeed provide beneficial effects
against all these kinds of patologies. In particular, stroke is the third leading
cause of death worldwide, and the 60% survivors remains with severe impairments
that heavily compromise their ordinary life. It has been estimated that about 600
million people all around the world suffer from these deficits. An increasing number
of neurological patients due to the general ageing of the global population has
strongly driven the medical research on the way of alternative and more reliable
rehabilitation methods as BCI has promised to be.

1.2 State of the art in BCI

Generally speaking, a BCI is a system by which an impaired individual can
send responses and commands without using the usual communication channels,
i.e. peripheral nerves and muscles: then, BCI represents an alternative method for
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acting on the world [3]. Several kinds of BCIs have already ben implemented all
over the world in the last decades, therefore some distinctions are needed.

1.2.1 Dependent or independent BCIs

The first main distinction that can be highlighted is about the difference between
dependent and independent BCIs [3]. The following exampe should clarify both
the two definitions.
Consider a BCI system that allows the user to select one letter at time from a
matrix of them to form words and sentences.
If the signal that controls the BCI is the gaze direction detected from the EEG
traces, the BCI is defined as dependent, since it is dependent on a residual muscular
ability to move eyes. On the contrary, if intention to choose a letter within the
matrix is identified by an EEG, a MEG or another device the BCI is named
independent.

1.2.2 Synchronous or asynchronous BCI

BCIs can be differentiated also by means of their switching on and off mechanism:
if, on one hand, the BCI can be switched on and off by the user autonomously, i.e
without any external intervention by the technical staff or the core assistant, the
system is said to be asynchronous.
Otherwise, as in the most cases, the user can only control the BCI operations
when the platform has been previously started. In these cases the BCI is named
synchronous.

1.2.3 Invasive or non-invasive BCI

The third main distinction that can be made to classify the BCIs takes into
account the method to record the cerebral activity of the subject operating the
BCI.
In the USA, research is focused on invasive techniques to extract the cerebral
information: electrodes are usually implanted over the cortex and the so-called
electrocorticogram (ECoG) is used to provide control for the BCI. Besides that,
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microarray of electrodes or micro-electrodes grids are usually employed to record
local field potentials (LFPs) and neural spikes from the different parts inside brain.
However, in the rest of the world, many other non-invasive techniques are success-
fully adopted: cerebral activity is, then, recorded outside brain, over or surrounding
the scalp. Electroencephalography (EEG), magnetoencephalography (MEG), func-
tional magnetic resonance imaging (fMRI) and positron emission tomography
(PET) are the most popular techniques employed in Europe and, particularly, in
Italy.
A more detailed description of these methodologies is provided in the following.

1. Electroencephalography and magnetoencephalography
Since 1929 when Berger observed the activity of different neural populations
with an ancient analog EEG, investigations and therapies involved the use
of this device to assess the patient’s status on improvements after particular
treatments.
EEG is able to record cerebral changes in the range of milliseconds but has
the considerable drawback of a very poor spatial resolution.

To cope with these disadvantages, the MEG device is sometimes used as a
complementary or alternative method. However MEG is employed almost
exclusive in medical research because of its enormous costs of maintenance
without an actual outperformance of the EEG. EEG remains, then, the most
common tool in the clinical practise as weel as in most BCI research.
However it has to be mentioned that both these techniques suffer from high
susceptibility from external and other artefactual physiological interferences.
This consequently, means that a consistent and reliable signal processing is
needed to recover the useful physiological information from the background
noise.

2. Positron emission tomography
It is a nuclear medical imaging technique where a chemical compound labeled
with a short-lived positron-emitting radionuclide of carbon, oxygen, nitrogen,
or fluorine is injected into the body of the patient and the activity of such
a radiopharmaceutical element is quantitatively measured throughout the
target organs. This analysis returns a three-dimensional picture of functional
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processes ongoing in the body.

3. Functional magnetic resonance imaging
The basic principle that fMRI exploits is that when an area of the brain is
working to perform a specific activity it needs for a larger amount of oxygen
and this, consequently, means an increased blood flow in the active area is
registered.
fMRI then detects these changes in blood oxygenation and flow level in
correspondence to some activities performed by the subject under evaluation.
Analysis of the functional magnetic resonance tests produces statistical maps
that show brain areas most likely involved in such activities.

Therefore, a variety of techniques can be employed to monitor the brain
activity, but the most suitable device in BCI applications, in terms of costs
and equipments, means to be the EEG.

1.2.4 EEG based BCIs

As just exposed, for its properties the EEG signal offers the possibility of a new
non-muscular communication and control channel, a practical BCI. In this script is
considered and analyzed this kind of BCI, however despite the common method of
signal-acquisition, it will be necessary to make further classifications.

Introduction to EEG

First of all the EEG deserves to be described more in detail. An EEG signal
is a measure of currents that flow during synaptic excitations of the dendrites
of many pyramidal neurons in the cerebral cortex. When neurons are activated
the synaptic currents generates a magnetic field measurable by electromyogram
(EMG) and secondary electrical field over the scalp measurable by EEG systems.
Notice that the skull attenuates the signal, and there is an additional component
of noise generated either within the brain, or over the scalp. Therefore, only large
populations of active neurons can generate enough potential to be recordable using
the scalp electrodes, and this signal once received is amplified.
Since the brain is a surprisingly complex organ, constantly changing, and able to
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manage many human functions, thus is natural to expect to find this plurality also
in the EEG signals. Infact, there are five major brain waves distinguished by their
different frequency ranges. These frequency bands from low to high frequencies are
called:

• Delta (δ):
These waves lie within the range of 0.5-4 Hz and are primarily associated
with deep sleep.

• Theta (θ):
Such waves lie within the range of 4 - 7.5 Hz and are associated with access
to unconscious material, creative inspiration and deep medidation.

• Alpha (α):
These waves mainly appear in the parietal and occipital lobes of the brain. In
the frequency domain these waves lie within the range of 8 - 13 Hz and often
appear as sinusoidal shaped. This rhythm is believed to indicate a relaxed
state without any concentration.

• Beta (β):
These waves describe the brain activity in the range of 14 - 26Hz, and they
are associated with active thinking and active attention. Besides that, they
can be recorded over the frontal and central brain regions.

• Gamma (γ):
This frequency band includes all the frequencies above 30Hz. Their amplitudes
are very low and their occurence is rare, in fact their presence could confirm
certain diseases - these frequencies are mainly located in the frontocentral
area.

All the above waveforms, measured on the scalp, show amplitude values in the
range 10-100µV and they are only the main types of rhythm, however is often
difficult to understand and detect them, in fact it is possible to identify many other
brain waves.
For example the µ - rhythm is related to α in terms of amplitude and frequency.
However they are associated to different brain activities: µ denotes motor activities
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Figure 1.3: The basic design of any EEG based Brain-Computer Interface.

and is strongly recorded over the motor cortex; thus physical and imaginary
movements can be investigated through the analysis of these rhythms. Indeed it
is well-known from literature that during planning and execution of movement
these waves are blocked: that is the so called Movement Related Desynchronization
(MRD) phenomenon [2]. Which appeared in the brain’s area contralateral to the
imagined or performed movement, this phenomenon is exploited in some BCI’s
systems.

Since here has been spoken of EEG signal, however it is only the first step
of the BCI structure which is called signal acquisition. After this latter, follow
the signal processing and lastly the output device which actualizes the user’s intent.
Thus as any other BCI system, also the EEG-based BCI could be easily summed up
by a blocks structure, Figure 1.3. The main operations that respectively compete
to each block, are here below presented.

Signal acquisition

In the EEG -based BCIs, input signals come from an EEG device that records
cerebral activity in the scalp of the subject. Recent digital EEG systems consist
of a number of dedicate electrodes followed by a set of differential amplifiers (one
for each channel) and filters. Besides that, to analyse EEG signals and process
them in real time to provide the subject of a feedback is also necessary to digitize
them. Thus, at this step of the BCI scheme the input is acquired by the recording
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Figure 1.4: The standard International 10-20 electrodes setup.

electrodes, preprocessed, amplified and digitized.
The type and montage of the recording electrodes and their proper function are
crucial for acquiring high-quality data. The International Federation of Societies
for Electroencephalography and Clinical Neurophysiology recommends the usage of
a standard called 10-20 defined with 21 electrodes. Usually the earlobe electrodes
often identified as A1 or A2, respectively are used as reference electrodes[10]. In
accordance with the International System, the 21 electrodes are arranged in five
lines, and the EEG cap has two pivot points that are useful during preparation of
an EEG recording: they are called Inion and Nasion. As pointedly shown in Figure
1.4, the Inion point is the prominence at the base of the occipital bone, while the
Nasion is the top seam line of the nose. Each electrode is reffered with a letter
indicating the lobe wich it belongs and a number from 1 to 21. Odd number mean
position on the left hemisphere; on the other hand electrodes with even number lay
on the right hemisphere. In case that more channels are needed, an extension of
the conventional system can be operated: new electrodes can be placed in between
the above 21 electrodes evenly separated from those already present. However, in
BCI research applications often need a small number of electrodes decoding activity
of the movement-related regions. Once located the sensors, the electrical potential
difference between any electrode and the reference (A1 or A2) can be measured. It
has to be noted that sensors are closely spaced: this means that they are highly
correlated to each other.
For this reason the main problem is to separate the signals which carry information
from the background in EEG - generally defined as noise, infact EEG is a highly



1.2. STATE OF THE ART IN BCI 13

sensitive recording device so many other electrical internal and external signals can
intefere with it causing disastrous artefacts. Thus signals need to be preprocessed.
Eye-blinking, muscles movement, sweat and heartbeat are examples of physiological
artefacts. Then other external disturbances generated by surrounding devices and
environment can compromise EEG recordings. These disturbances can be removed
through filtering operations and using suitable algorithms.
Once the brain-activity information is acquired, the signal digitalization process has
to be performed. Since useful cerebral activity is mostly contained in a frequency
range between 0 and 100Hz the Nyquist criterion for correctly sampling on analog
signal establishes to choose a sampling frequency equal or higher than 200Hz.
In some applications where a higher resolution is required sampling frequencies
of up to 2000 samples/s should be used. As the quantization resolution regards,
a minimum of 16 bits is required to mantained the signal characteristics and,
consequently, their diagnostic information.

Signal processing: features extraction

Once received the digitized signal, is necessary to extracts the signal features
that encode the patient’s messages or commands. A BCI can perform both time
and frequency domain analysis. In general, the signal features extrapolated reflect
brain events like the firing of a specific cortical neuron or the synchronized and
rhythmic synaptic activation in sensorimotor cortex that produces a µ - rhythm.
The knowledge of location, size, and function of the cortical area generating a
rhythm or an evoked potential can indicate how it should be recorded, and how
users might best learn to control its amplitude.

Signal processing: Translation Algorithm

In this step the signal features, previously extracted, are translated through
algorithms into device commands-orders that carry out the user’s intent. Whatever
is the precise algorithm, it changes indipendent variables (signal features) into
dependent variables (device control commands)[3]. The effective algorithms have 3
levels of adaptation to each user.
First, when a new patient beginns a BCI traetment, the algorithm adapts to that
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user’s signal features. For example, if the signal feature is the µ-rhythm ampli-
tude, the algorithm should adjusts to the subject’s range of µ-rhythm amplitudes.
However, this first level of adaptation alone isn’t enough, because the BCI would
adjusts to the user only initially and never again, thus this is working-well only
if the user’s perfomance is very stable. Therefore is essential a second level of
adaptation which consists of periodic online adjustments to reduce the impact of
spontaneous variations, and to match as closely as possible the user’s range of
signal features values to the available range of device command values. Finally, the
third level of adaptation exploits plasticity and adaptive capacities of the brain.
Indeed, when an electrophysiological signal becomes an output that carries the
user’s intent to the outside world, it involves the adaptive capacities of the brain.
As like in brain conventional neuromuscular communication, BCI signal will be
affected by the device commands. Thus the wish is that the brain will modify signal
features in order to improve BCI operations. For example, if the features are still
µ-rhythm amplitudes, the correlation between that amplitude and the user’s intent
will hopefully increase during the treatment. An algorithm that uses this latter
level of adaptation could recognize this user’s improvement, and repay him/her
with faster communication. It could be easily understood how important, and at
the same time, hardly designed is this third level of adaptation, since it involves
the interaction of two adaptive controllers: user’s brain and the BCI system.

The output device

Commonly the output device is a computer screen, and the output is the selection
of targets, letters or icons appearing on it. Some BCIs also provide additional
output, for example the movement of a cursor towards an item previously selected,
in this case the output represents the feedback that the brain uses to maintain
and improve the accuracy of communication. The acquisition of the EEG signal
has also been used successfully, although on simple routes, such as control of a
wheelchair. Besides that, some BCI’s experiments are also testing the control of a
neuroprosthesis, in this case the user’s own hand represents the output device.
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Signal’s features

Above has been pointed out the benefits of using EEG records and the general
structure of such a BCI system. Although in the worldwide overview exist defferent
schools. Thus present-day BCIs fall into 4 groups based on the electrophysiological
signals they use.

• Visual evoked potentials (VEP)
A first one group can be identified as that led by Jacques Vidal. In the course
of his work, he developed a system that satidfied the current definition of a
dependent BCI. This platform used the VEP recorded from the scalp over
visual cortex to determine the direction of eye gaze, and thus to determine
the direction in which the user wished to move a cursor. Thus VEP-based
communication systems depend on the user’s ability to control gaze direction.

• Slow cortical potentials
Among the lowes frequency features of the brain-activity recorded EEG there
are slow voltage changes generated in cortex. These potentials swing are
noticed in time-intervals of 0.5-10 s and are called slow cortical potentials
(SCPs). These potentials either can be positive or negative, in the first case
they are associated with reduced cortical activation, while the negatives
correspond to movement and other function involving cortical activation.
These studies have been conducted for longer than 30 years by Niels Birbaumer
and his colleagues, who have verified that people can learn to control SCPs
and thereby control movement of an object on a computer screen. In this
treatment, EEG is recorded from electrodes at the vertex referred to linked
mastoids.

• P300 evoked potentials
From brain’s studies is known that particularly significant auditory, visual
or somatosensory stimuli tipically evoke in the EEG over parietal cortex a
positive peak at about 300 ms. Farwell and Donchin have used this "P300"
in a BCI, where the user faces a matrix of letters whose rows and column
at constant time intervals flash. The subject makes a selection by counting
how many times the row or column containing the desidered choiche flashes.
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The current P300-based BCI have a communication rate of one word per
minute, but further improvements are possible. The advantage of such a BCI
system lies in the fact that it requires no initial user training, indeed P300 is
a typical and spontaneous brain response.

• µ and β rythms from sensorimotor cortex
In awake people, motor cortical area often displays 8-12Hz EEG activity
when it is not engaged in brain activity, this idle state is called µ-rhythm and
is associated, as already mentioned, to the motor cortex. Some analyses have
induced the discovery that µ-rhythm comprises a variety of different 8-12Hz
waves, and are also associated with 18-26Hz β-rhythm. Therefore, several
factors have suggested that these waveforms could be good for EEG-based
BCIs, because they are associated with cortical areas connected to the brain’s
normal motor output channels. In particular, Gert Pfurtscheller [2] has
noticed that movement or preparation to it is typically accompanied by a
decrease in µ and β rythms, which starts in the contralateral brain hemisphere
to the movement. Hence, this phenomenon already nominated in this script,
have been called ”event/movement-related desynchronization”. While its
opposite rhythm increase is called ”event-related synchronization”. Thus,
Wolpaw, McFarland in the NY state and on the other hand Pfurtscheller
in Graz have implemented BCI systems that employed these latter brain
features. In their treatments through several repeated exercises, people with
or without motor disabilities learn to control µ or β rythms amplitude and
generally use that control to move a cursor to targets on a computer screen.

1.2.5 The main BCI’s centers

For its particularly innovative idea the Brain-Computer Interface soon has been
spread all around the world. Thus can be individuated several research areas, some
of which has been already mentioned above.

1. The Berlin BCI (BBCI) group, which operates since 2000, whose main focus
is reducing the intersubject variability of BCI [10].
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2. The Wadsworth BCI research headed by Wolpaw and McFarland, as already
said, uses mainly the ERD phenomenon of the µ-rhythm.

3. The Graz (Austria) BCI group is led by G.Pfurtscheller, their reasearch object
are µ or β rythms amplitude

4. The San Camillo Hospital in Venice and Santa Lucia Hospital in Rome are the
two major Italian BCI’s centres, the first one collaborates with N. Birbaumer
and whose experiments are exposed in Chapter 2.

1.3 BCI in future

BCI has been rapidly growing during the last three decades, and consequently
non-muscular commuication and control is no longer merely speculation. The
direct communication from the brain to the external world is possible and can
serve useful purposes, in particular here has been viewed the motor rehabilition
problem. Present BCIs in their best moments reach 25 bits/min. Thus the future
progress of the BCI technology will depend on how much information transfer
rate can be increased. The development is still in its beginning stages, and is
not clear how far this project can go. However it is clear that the development
depends on some crucial questions: BCI independence from the normal muscular
communication channels, signal acquisition methods, chosen signal features, feature
extraction techniques, translation algorithms, and output devices. Besides that,
an other desidered aim is the portability of the system. For BCI technology based
on wearable or epidermal EEG sensor systems, to become as useful for everyday
activity as a note-book is today, technological breakthroughs will be required. Some
such improvements may be enabled by Moore’s law that should continue to allow
extended scaling up in terms of amount of information integrated and the amount
of offline and online computation performed [?].
Moreover has been seen that feedback plays an important role in learning to control
human brain signals, and is of primary importance in re-stablishing the demaged
sensorimotor loop. In effect, the brain’s normal neuromuscular output channels
depend for their successful operation on feedback, when this latter is absent from
the start, motor skills do not develop properly; and when it is lost later on, skills



18 CHAPTER 1. THE BRAIN-COMPUTER INTERFACE

deteriorate. Thus, a BCI system must provide feedback and must interact in
a productive fashion with the adaptations the brain makes in response to that
feedback. Moreover, successful BCI operation requires that the user develop and
maintain a new skill, that consists of proper control of specific electrophysiological
signals, and it also demands that the BCI translates that control into output
that realizes the subject’s intent. However a complete feedback system requires
more effort and research to be undertaken. In addition, computationally efficient
algorithms have to be developed in order to cope with the real-time applications.
Finally, in order to reach a BCI system that could seroiusly promote motor learning
of stroke patients, independently from the level of subject disabilities, it must be
adapted to the real-time necessities.



Chapter 2

BCI at San Camillo Hospital

The San Camillo Hospital Fundation, which operates in Venice (Italy), since
1994 has been recognised by the Veneto region as Regional Specialised Hospital
in neuro-rehabilitation. Thus this Hospital has become a reference point for
patients, and their families, affected by brain and spinal cord injuries, stroke,
multiple sclerosis, Parkinson’s disease and so on. On March 2005, the San Camillo
Hospital received the qualification IRCCS (Istituto di Ricovero e Cura a Carattere
Scientifico). Besides, from more than 20 years the San Camillo Hospital conducts
an extensive scientific research recognized by the Italian Ministry of Health. And in
several of its researches, the Hospital takes advantage of a dense net of relationships
and co-operations with important national and international institutes.

In particular, since some years ago, an alternative strategy to restore the motor
functions from stroke has been attempted: the BCI system. In this experiment,
the San Camillo Hospital has addressed the Department of Informtion Engineering
(DEI) of the University of Padua, for an engineering support. Thus after seeing the
entire BCI system, in the present chapter we focus our attention on the current
platform used at the San Camillo Hospital. In this cooperation between Hospital
and University a EEG-based Brain Computer Interface (BCI) has been used,
in particular has been experimented a non-invasive, closed-loop circuit system
between brain activity of the sensorimotor contralateral area of a stroke patient
and a proprioceptive contingent feedback, in order to promote the reconstruction
of the disrupted sensorimotor rhythm (SMR) loop. It should be specified that
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this BCI system has been applied to patients with mild hemiplegia that are able
to begin the asked movement autonomously and then the robot assistance helps
them in completing the task or in moving on a more accurate trajectory. Anyway
preliminary promising kinematic and neurophysiological outcomes supported the
hypothesis that a contingent force feedback can improve motor functions.
In this chapter the importance of a contingent feedback, but also important
attentions that must be taken into account for the system efficiency are highlighted.

2.1 Methodology

As just explained above, the goal of this study is to verify the importance of a
contingent force feedback in a BCI scheme.
The experiment consists in a treatment which lasts approximately three weeks and
is structured as described below:

• The initial screening evaluation:
during this phase the subject does not receive any force feedback, instead
he only undergoes a series of physiotherapic tests in order to know his
clinical condition. In particular, it is well-known that during a movement,
or even an imaginary one the spectral power in the sensorimotor area of the
contralateral hemisphere in the µ and β bands – (8,12) Hz and (13,20) Hz,
significatively decreases into respect to the rest condition. This phenomenon is
called movement-related-desynchronization (MRD), and as it can be expected
its frequency range and spatial localization is subjective, so it could vary
individually. For this reason a screening session is needed: it allows to identify
the scalp region and the range in which the MRD is stronger.

• Six BCI training sessions:
each session is constituted by three runs per arm and during each of them
the patient is asked to perform eighty times a standard center-out reaching
task, that consists in reaching one-out-of-four cardinal points grasping the
end-effector of a robotic device. The path that has to be covered is 18 cm
long and a cursor on a screen in front of the subject represents the position
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of the end-effector, thus providing a visual feedback of the trial course.
For convenience each trial is subdivided in 7 time-intervals:

– Pre-trigger: this is an initial window of 500 ms during which the subject
is at rest;

– Post-trigger: this interval is activated after the appearance on a screen of
the target cardinal point to reach. For simplicity it is further decomposed
in 3 phases, lasting 500 ms each, and during this interval the subject
has to wait in the starting position until an auditory signal is delivered.

– Reaction-time: after the above mentioned auditory sound, the patient
is allowed to move but his/her reaction is not instantaneous; on the
contrary it takes a little time to start the movement, usually about 400
ms. Indeed this time is needed firstly for the sound to be perceived by
the patient and processed by the auditory human system, secondly the
output motor command to be defined by the brain and transmitted to
the muscles.

– Movement: the patient moves his/her arm towards the target. A move-
ment is correctly performed if the subject reaches the target within a
time interval between 500 and 740 ms. Otherwise, it is considered too
slow or too fast and a different visual feedback on the screen is provided
to the patient.

– Return: finally, the patient is asked to return to the initial position and
relax before starting the next trial.

During the training just described, if the trauma is, for example, localized in
the right hemisphere then produces effects of hemiplegia on the left arm, thus
Cp2 and P4 electrodes shown in Fig. 2.1 has been selected for the injured
arm and the symmetric locations Cp1 and P3 are chosen for the healthy
one. These choices justify the fact that we are looking for the MRD in the
hemisphere contralateral to the moving arm. Regarding the frequency bin
was adopted the band detected during the initial evaluation, usually it is
between (11-14)Hz.
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Figure 2.1: EEG sensors lacation

• End test evaluation:
it takes place after the previous treatment of two weeks and as during the
screening session, the patient does not receive any force feedback.

2.2 The system

Similarly to the general BCI scheme viewed in Chapter 1, the system layout
adopted during the experiment is constituted by three main blocks: the acquisition
unit, the signal processor module and the feedback one. It constitutes a closed-loop.
Below, each block will be described in detail.

1. Acquisition unit:
This block includes an electroencephalographic cap provided with 29 recording
Ag/AgCl electrodes in a modified 10-10 system arrangement, and a 16 channels
g.TEC amplifier g.USBamp. Thus are available only 16 out of 29 sensors,
and are placed on the sensorimotor area, e.g. primary motor cortex, primary
somatosensory cortex and the associative somatosensory cortex, as shown in
figure 2.1. Each of these sensors is referred to the right-side ear lobe, whereas
a site between P3 and P4 has been chosen as ground.
Signals from the 16 sources are digitized with a 512 Hz of sampling rate and
a 24 bit of resolution. Then a digital signal processor (DSP) applies a band
pass filter between 0.1 and 60 Hz and a notch filter at 50 Hz to the data.
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Finally, the amplifier sent the digitized EEG signal via USB connection to
the processing unit.

2. Signal processing unit:
This is the heart of the system. A standard pc processes the signals by means
of BCI2000, a worldwide spread software implemented by Shalk in 2004 [7].
As already anticipated, this unit has an important role: it has to continuously
quantify the MRD during the movement, that is the spectral power decrease
in the selected (11,14)Hz band of the chosen two electrodes. These two
spectral estimations are combined to a final value, called neuro-feedback
(NFB). The latter can be viewed as a measure of the MRD phenomenon: the
larger the NFB, the stronger the MRD and, so, the stronger the assistive force
feedback provided to the patient. Finally, an UDP communication protocol
controls the transmission of the NFB quantity to the next module.

3. Feedback unit:
At this phase the NFB value coming from the previous block and updated
every 16ms is transformed into a force level with a maximum of 6N. This
contingent assistive target-directed force is provided to the subject during the
trial. By means of a robotic arm device - PHANTOM, Premium 3.0/6 DOF
Sensable Technologies. Actually, the feedback is delivered only if the current
NFB value exceedes a minimum threshold in order to ensure an effective
MRD-BCI control, helping the patient to accomplish the task. Thus, one can
easily imagine how the system forms a closed-loop.
On its turn, the feedback block is continuosly sending the task execution status
to the signal processing unit that could compare the EEG recordings with
the movement course. This inter-communication forms the afore mentioned
BCI closed-loop and it is necessary, to effectively control the BCI system, and
facilitate the following offline analysis during which the neurophysiological
data are correlated with the kinematic behaviour.

Thus, as said at the beginning of this session, is evident that the entire circuit
system constitutes a closed-loop between BCI and patient, however this leads the
closing of another loop much more important but not visually perceptible. Indeed,
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through the contingent feedback the sensorimotor loop compromised after the
stroke, is closed artificially.
The robotic arm device, headed by the feedback-unit, provides a force to the patient
and this impulse is sensed by the afferent pathways of the arm. Afferent neurons
are fibers that carry nerve impulses from receptors or sense organs towards the
central nervous system, in this case the sensorimotor perception is transferred to
the contralateral hemisphere of the brain, the injured one. So communication has
been restored, and has taken the form of a closed loop, as it should be under normal
conditions.

2.3 Outcomes analysis

As has been explained at the end of 2.2 by the co-operation of the various sys-
tem’s blocks are made available neurophysiological and kinematic data. Comparing
these outcomes of the final session into respect to the screening one, are quantified
the improvements of the patient after the BCI treatment.

The Phantom device could record the knob real-time trajectory and instantenous
speed through a sampling rate of 100 Hz, and other kinematic parameters as trial
duration, mean speed and displacement from an ideal straight path. All these
measures give different information, but equally important like: motor behaviour
that is how many times the subject successfully completes the task, the rough arm
control during the task course and finally improvements in the finer control and
accuracy of the movement. These outcomes are computed all over the 240 trials of
a session (80 trials each of three runs per arm).
Comparing these data is evident that the number of correct trials is significantly
higher at the final session than at the initial screening test for both the affected
and healthy arm. If at the beginning patient moved too slowly, with the training
motion ability becomes faster and the subject spends shorter time to reach the
target, thus the number of slow trials decreases.

Therefore, we have seen as such a BCI depends on the µ-rhythm. From the
study on the brain activity it is well known that movement preparation and even its
imagination are accompanied by that phenomenon already mentioned which is the
MRD of the µ-wave, and this is noted especially in the contralateral sensorimotor
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cortex. It should be observed that higher is the difference of the µ-rhythm between
the movement and the rest period, stronger will be the desynchronization.
From outcomes it can be seen that a marked focalization in the ipsilesional part
of the scalp arises. This fact agrees with the hypothesis that the ipsilesional part
of the scalp is involved in neuroplasticity activities that lead brain to modify its
functions, restore damaged paths or find alternative ways to re-stablish previous
communications. The BCI traetment should exploit at its best the brain neuroplas-
ticity, therefore through several repeated exercises the MRD could be voluntarily
monitored, and the brain region near the stroke learns to control the movement.
This approach is called operant conditioning.

In conclusion, the core idea of the BCI application presented in this chapter
is to exploit µ oscillations to control an haptic device that acts in its turn as an
input for the subject performing the task shaping a closed-loop scheme.
The neurophysiological data affirm the amplitude modulation of the µ-rhythm that
acts as a carrier signal, like in the AM radio communication with the difference
that here the information carried is about brain activity. The latter however can
be modified with time and with respect to a lot of internal and external different
causes.
This makes the MRD identification an issue, however the alghorithms used since
here return a not too precise characterisation of the phenomenon, which needs to
be better isolated from the typical EEG artefacts. This goal has been reached
off-line, but the desidered aim is a reliable real-time filtering algorithm, in order to
discard noise contributions in real-time.





Chapter 3

Design of a real filter

After seeing in Chapter 2 how works the BCI’s system at San Camillo Hospital
and the important results provided by a contingent force feedback, comes the real
aim of this script.
Outcomes obtained by various experiments clearly show that the closed-loop scheme
is significantly better if compared with previous BCI applications realized as open-
loop circuit. However this approach introduces some problems and complicates
the operation of the signal processing: in order to give a contingent feedback,
which closes the sensorimotor loop damaged by the stroke injury and enhances the
neuroplasticity of the brain, this force must be given in real-time that means before
the movement, because only in this manner the patient can assimilate the correct
action.
In defining the meaning of real-time we can be a little bit flexible, the important
matter is giving the force before the movement, that is during the reaction-time
which, as has been explained in 2.1, is subjective, yet it can be approximately set
equal to 500 ms.

Besides, as already highlighted the signal process is not commonplace, during
this stage are carried out several operations: the BCI platform receives the EEG
signal previously digitized and here is applied a filter within a frequency band,
where it is believed that MRD is present, then should be calculated the energy
value and the corresponding brain area has to be located. Whenever actually there
is the MRD phenomenon in the desidered brain area the patient would receive a
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positive feedback, elsewhere - although it has not be tested yet - a negative one,
but in both cases timely to the action. Thus each one of these operations must be
done in time.
In addition the use of the filter makes the situation more delicate, in fact as
well known the ideal filter isn’t achievable, hence must be utilized a real filter
which approximates how much better the ideal one, however introducing delay and
distortion.

Thus, in this chapter firstly are described the parameters which characterize
each filter, secondly is discussed the implementation of a digital filter in software.

3.1 Filter specifications

In electronics, telecommunications, computer science and all those disciplines
that deal with signals, in a variety of applications it is of interest to change the
relative amplitudes of the frequency components in signal, or perhaps eliminate some
frequency components entirely, a process referred to as filtering [11]. In our case
are considered filters designed to pass some frequencies essentially undistorted, and
significantly attenuate or eliminate others, these are called frequency-selective filters.
Furthermore, depending on the nature of the frequencies that need to be passed, is
possible to identify some basic types of filter. For example, a lowpass filter is a filter
that passes low frequencies, those around ω = 0, and attenuates higher frequencies.
A highpass filter is a filter that passes high frequencies and attenuates or rejects low
ones. Finally, a bandpass filter - which is designed in this thesis-work - is a filter
that passes a band of frequencies and attenuates frequencies both higher and lower
than those in the band that is passed. And in each case, ωc, the cutoff frequency
is the frequency defining the boundaries between frequencies that are passed and
frequencies that are rejected. Practically, a filter is an element that receives a signal
x(t) as input, and return y(t), a filtered version of the first one. Consequently,
filtering can be accomplished through the use of LTI systems, for this reason a
filter in time domain is characterized by its impulse response, often denoted h[k], it
is a measurement of how a filter will respond to the delta function, and its length
is specified by N, the filter order. But the filter behaviour is mostly observed in
frequency domain, thus an important parameter is the frequency response H(ω),
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obtained by the Fourier’s transform of h[k]. Now is necessary to make an other
distinction, the LTI system at issue can be described by differential or difference
equations. In the first case the filter is said to be analog, which is a system operating
on continuous-time analog signals. However, reminding the context in which we are
working on, as saw in 2.2 the EEG signal, before being filtered, has been digitized,
for this reason we need a digital filter, which performs its operations on a sampled,
discrete-time signal.

3.2 The ideal digital filter

Fist of all, will be considered the ideal model in order to highlight the important
properties in which we are interested.
Since it is believed that the MRD phenomenon of the µ and β waves may occur
approximately around the value of 12Hz, therefore for an initial analysis we concen-
trate our attention on a frequency window sufficiently wide, set equal to [8-18]Hz,.
The ideal digital filter has to pass signal components of this frequency interval
without any distortion, thus - as shown in Fig. 3.1 - should have a frequency
response that values one at these frequencies and zero at all other frequencies. As
known the range of frequencies where the frequency response takes the value of
one - that is (8,18)Hz - is called passband, therefore 10Hz is the bandwidth and
the range of frequencies where the frequency response is equal to zero is called
stopband of the filter. Besides, the digital filters have a periodic spectrum with a
period equal to the sampling frequency Fs. Also, in the presence of a real signal in
time the frequency response exhibits hermitian symmetry. Due to the periodicity
of the signal in the frequency domain the hermitian symmetry translates in a her-
mitian symmetry between sample at frequency f0 and the corresponding negative
frequency located at Fs-f0, that means this samples are complex conjugates, but
have the same amplitude’s value. For the case under study where we are designing
a bandpass filter in the band (8,18) Hz the hermitian symmetry is for the samples
at the frequency range (504-494) Hz. Specifically, if we consider a time interval 1
second long, we have 512 samples in the time domain. If we compute the signal
in the frequency domain by FFT the 512 frequency samples numbered from 0 to
511 represents the spectrum samples at a frequency equal to the index number.
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Figure 3.1: Ideal filter’s frequency response

So, the ideal filter has zero values in the range [0-7], [19-493], [505-511], while it
assumes the value 1 in the remaining samples, specifically for the samples [8-18]
and [494-504]. As we will see, this ideal filter is quite useful in describing idealized
system configurations, but it isn’t realizable in practice and must be approximated.

3.3 A real digital filter

In 3.2 has been stated the desired characteristics, however such an ideal band-
pass filter cannot be generated in practice, first of all because the corresponding
impulse response is a sinc signal multiplied by a cosine function, that is not
absolutely summable, and hence, the transfer function is not BIBO stable, then
must also be noted that such an impulse response is not causal and is of doubly
infinite length [9]. Thus the ideal filter with ideal features of Figure 3.1 cannot be
realized by an LTI filter with a transfer function of finite order. Consequently, for
practical purposes the ideal frequency response specifications are relaxed and is
adopted a scheme of tolerance by including a transition band between the passband
and the stopband to permit the magnitude response to decay gradually from its
maximum value in the passband to the zero value in the stopband. Infact is
sufficient to ensure that outside the specified frequency range the signal energy
is arbitrarily small. Moreover, the magnitude response is allowed to vary by a
specified amount both in the passband and the stopband.
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3.3.1 Correspondence between frequency ’f’ and angular
frequency ’ω’

Since here with the term ’frequency’ have been meant two different size: in
3.1 defining the lowpass, highpass and bandpass filters has been discussed their
frequency behaviour respect to ’ω’, instead in 3.2 ’f’, the size measured in Hz,
has been interpreted as frequency. To avoid misunderstandings it is necessary to
make some clarifications. During the MATLAB simulations and filter designing,
as frequncy has been considered the quantity indicated with f, because the EEG
machines as any other device measure the frequency in Hz. In this sense has been
defined the frequency samples of the filter, the bandwidth 8-18Hz, the sampling
frequency equal to 512Hz and so on. However commonly filter’s parameter, al-
gorithms and Fourier’s transform formulas are expressed as function of ω known
as angular frequency and measured in rad/s. These two sizes are related by the
formula:

ω = 2π ∗ fT (3.1)

At the frequency value f0 = 1
T

the angular frequency ω assumes the value 2π rad/s,
thus it is defined in intervals whose length values 2π - the simplest one is [0,2π]
- and outside this interval, in accordance to the periodicity property, the trend
would be analogous. Therefore the frequency axis, previously defined in [0,512]Hz,
will be described in [0,2π] in function of ω. The axis is still divided in 512 samples,
with the difference that now the space among each other values 2π

N
, where 2π is

the new length and N=512 the total frequency’s samples. In this manner the real
sample at 256Hz now corresponds to π, and as like the samples at 0Hz and 512Hz,
for periodicity, were equal, now this equivalence is between 0 and 2π. However, for
convenience, the interval 2π long considered is the range [-π, π], the same used in
the next integrals.
Reminding the periodicity and Hermitian symmetry, can be deduced the follow
correspondences:

• for the positive frequencies, f ∈ [0,256]Hz ⇒ ω ∈ [0,π];
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• for the the negative frequencies located in [257,511]Hz

⇒ ω ∈ [(−π + 2π
N

), (−2π
N

)];

Notice that in the above interval the extremes are included, thus the first interval
has 257 samples, while the second one 255, a total of 512 samples as desidered.
Similarly, also the filter’s parameters can be expressed in the angular frequency
domain, that is:

• the bandwidth primarily define as the frequency range [8,18]Hz becomes
[
8
(2π
N

)
, 18

(2π
N

)]
rad/s

• on the other hand the negative frequencies [494,504]Hz correspond to

[(494−N)2π
N

,
(504−N)2π

N

]
rad/s

Once specified these relations, can be introduced some important measures and
formulas conventionally expressed in ω. Referring to Figure 3.2, important param-
eters are band edge frequencies ωsl, ωpl, ωpu and ωsu, passband [ωpl-ωpu], transition
bands ∆ωL= ωpl - ωsl and ∆ωU= ωpu - ωsu, stopband, cutoff frequencies ωcl and
ωcu, passband ripple (or deviation) δp and stopband ripple δs. Notice that for ideal
(desired) filter, the passband frequency magnitude is normalized to 1 while the
stopband to 0, and the frequency response of the designed filter oscillates between
the high amplitude of 1 or the low amplitude of 0.

Digital filters studied in this chapter are specific causal and discret-time LTI
systems. However the causality, synonym of feasibility, has important implications
on behavior in frequency of the filter, that are here below discussed briefly:

• The frequency response cannot be zero except in a finite set of points;

• The amplitude of the frequency response, as shown in Figure 3.2, cannot be
constant on a finite band, band-pass and stop-band show oscillations that
cannot be eliminated - this is the Gibbs phenomenon which will be later
explained.



3.3. A REAL DIGITAL FILTER 33

Figure 3.2: Relations among the frequency responses of an ideal band-pass filter
and the designed filter.

Therefore, any digital filter that will be here considered is a particular LTI causal
discrete-time system, however it could be differentiated by its impulse response
length, since there are two main categories:

• IIR filters: belong to this group all systems having an infinite impulse
response h[n]. For a causal IIR discrete-time system with a causal input x[n],
the convolution sum can be expressed in the form:

y[n] =
n∑
k=0

x[k]h[n− k] (3.2)

• FIR filters: if the impulse response h[n] is of finite length, that is,
h[n]=0 for n<N1 and n>N2 , with N1 < N2

then it is known as a finite impulse response (FIR) discrete-time system. In
this case the convolution sum is expressed as finite sum:

y[n] =
N2∑

k=N1
h[k]x[n− k] (3.3)

This latter will be the type of filter used in all the next simulations, in fact the
FIR filter will be more preferable than the IIR one, for two its properties:

1. A FIR filter is always causal and stable;
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this can be noted observing its transfer function:

H(z) =
N∑
n=0

h[n]z−n (3.4)

It is a polynomial in z−1, of degree N, with a unique pole in z=0, that is
inside the unit circle.

2. A FIR filter could have a linear-phase design, this is ensured by the following
condition:

h[n] = ±h[N − n] (3.5)

Comes now the real design of the digital filter, apropos exist several approaches
that can be used, however the aim of this script is not that of displaying the
different techniques, but rather attempt to identify a filter actually achievable, and
in some sense - that will be clarified later - as close as possible to the ideal one in
order to use it in the operations of signal processing for the BCI.
Therefore below will be given only a brief explanation of the various design methods,
for more detailed information the reader is referred to [9].

3.3.2 FIR filter design based on windowed Fourier Series

Let Hd(ejω) denote the desidered frequency response function. Since Hd(ejω) is
a periodic function of ω with period 2π, it can be expressed as a Fourier series,

Hd(ejω) =
∞∑

n=−∞
hd[n]e−jωn (3.6)

where the Fourier coefficients hd[n]are the corresponding impulse response samples.
However the desidered frequency response has sharp transitions between bands,
and the the corresponding impulse response sequence hd[n] is of infinite length and
noncausal.

• Least Integral-Squared Error Design :
In this case the objective is to find a finite-duration impulse response sequence
ht [n] of length 2M +1 whose DTFT Ht(ejω) approximates the desidered
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DTFT Hd(ejω) in some sense. Actually the used approximation criterion is
to minimize the integral-squared error:

Φ = 1
2π

∫ π

−π
|Ht(ejω)−Hd(ejω)|2dω (3.7)

where
Ht(ejω) =

M∑
n=−M

ht[n]e−jωn (3.8)

Using the Parseval’s relation it could be rewritten as:

Φ =
∞∑

n=−∞
|ht[n]− hd[n]|2 (3.9)

from this latter is clear that the integral-squared error is minimum when
ht[n]= hd[n] for -M ≤ n ≤ M, in practice the best approximation in the
mean-square error is obtained by truncation.
Defining the rectangular window rettM(n) as:

rettM =

1, se |n| ≤M ,

0, elsewhwere

we have ht[n] = hd[n] ∗ rettM(n) , that is ht[n] is obtained multiplying
the desidered impulse response hd[n], that we would approximate, by the
rectangular window rettM(n) just defined. However ht[n] isn’t causal, hence
can be derived a causal FIR filter with an impulse response h[n] simply by
delaying ht[n] by M samples: h[n] = ht[n-M].
Yet the causal filter obtained by such a sudden cutoff of the impulse response
coefficients of the ideal filter causes some undesired effects, indeed exhibits
an oscillatory behaviour in its magnitude response, this is well-known as
Gibbs phenomenon . The reason can be explained examininig the windowing
process in the frequency domain, where from the convolution theorem the
expression ht[n] = hd[n] ∗ rettM(n) becomes:
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Ht(ejω) = 1
2π

∫ π

−π
Hd(ejω)Ψ(ej(ω−ϕ))dϕ (3.10)

Ψ stands for the frequency response of the rectangular window rettM (n), and
is defined as follow:

Ψ(ejω) =
M∑

n=−M
e−jωn = sin([2M + 1]ω/2)

sin(ω/2) . (3.11)

This response consists of a main lobe and many sidelobes, thus is an oscillatory
signal and when is convolved, as indicated in 3.10, with the ideal response
Hd(ejω) will result a response Ht(ejω) having a non-zero transition width and
ripples in both the passband and stopband, this is the fact to which has been
alluded at the beginning, and illustrated in Figure 3.2.

From 3.10 can be observed that if Ψ(ejω) is a very narrow pulse centered at
ω=0, that means a delta function, the interesting result of the convolution
operation is Ht(ejω) = Hd(ejω), this is ideally our aim. On the grounds
that the main lobe of Ψ is characterized by its width 4π

2M + 1, this will be
narrow as an impulse function if M → ∞, in other word this implies that
the length 2M + 1 of the rettM(n) window should be very large. On the
other hand, the length or order 2M + 1 of the filter ht[n], and hence that of
rettM(n), should be as small as possible in order to make the computational
complexity of the filtering processes easier. Thus we have found two important
but contradictory requirements, that must be taken into account during the
designing evaluations.

In conclusion the presence of the oscillatory behaviour in the Fourier transform
of a truncated Fourier series representation is due to two reasons:

1. The impulse response of an ideal filter is infinitely long and not absolutely
summable, and consequently the filter is unstable;

2. The rectangular window has an abrupt transition to zero.

• Fixed Window Functions:
When we simulate Ht(ejω) using Maltlab sofware, with N = 2M +1 in the
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hundreds we still see the non-zero transition width and ripples due to the
Gibbs phenomenon. An infinitely long windows is not practical, so the idea is
to look for finite duration windows which perform better than the rectangular.
Infact the oscillatory phenomenon can be reduced, but not eliminated, by
using a window that tapers smoothly to zero or by providing a smooth
transition from the passband to the stopband. In literature there are many
windows proposed, however there are four commonly used tapered windows
- the same that have been used in this work - of length N = 2M + 1 listed
here below:

– Bartlett window w[n] = 1− |n|
M + 1, −M ≤ n ≤M

– Hann window w[n] = 1
2 [1 + cos( 2πn

2M + 1)], −M ≤ n ≤M

– Hamming window w[n] = 0.54 + 0.46cos( 2πn
2M + 1), −M ≤ n ≤M

– Blackman window w[n] = 0.42 + 0.5cos( 2πn
2M + 1) + 0.08cos( 4πn

2M + 1),
−M ≤ n ≤M

In Fig. 3.3 can be observed a comparison between these latter and the
rectangular one. Could be noticed a common property, all the windows
mentioned are symmetric about the mid-point n = N − 1

2 , these when
combined with the symmetry or antisymmetry of the filter’s impulse response
will make the corresponding designed filter linear phase. As seen for the
rectangular window, to ensure a fast transition from the passband to the
stopband, the window should have a very small main lobe width, but as
N increases also the sidelobes amplitudes rise. Contrariwise, to reduce the
passband and stopband ripple δ, the area under the sidelobes should be
very small, therefore the two conditions cannot occur togheter. Anyway, the
maximum amplitude of the oscillations created by the rectangular window is
substantially greater than those generated from others windows, then can be
noted an improvement.
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Figure 3.3: A comparison between the most used windows

Figure 3.4: An example of low-pass filter designed through windowing

3.3.3 Design of Equiripple Linear-phase FIR Filters

As seen, the previuos method based on window creates some oscillations, which
can be attenuated but not eliminated, in particular can be observed a peak in
correspondence of the cutoff and bandstop frequencies, as shown in Figure 3.4.
Thus the idea is attempt to lower the maximum oscillations amplitude, in order to
spread this ripples all over the pass-band and stop-band. This is the optimization
technique for the design of FIR filters, which try to minimize iteratively an error
measure that is a function of the difference between the desired frequency response
D(ejω)and the frequency response H(ejω) of the filter being designed. The weighted
error function is given by

ε(ω) = W (ω)[H(ω)−D(ω)], (3.12)

where W(ω) is a positive weighting function. This approach attempt iteratively
to adjust the coefficients of the amplitude response H(ω), until the peak absolute
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value of ε is minimized. The linear-phase FIR filter obtained in this way is usually
called the equiripple FIR filter, since after ε has been minimized, the weighted
error function exhibits an equiripple behavior in the frequency range of interest.
In literarute exists several algorithms dealing the problem, however these will be
neglected .

Concluding, these are the FIR filters that are evaluated in Chapter 4. The
design of these objects using a peculiar MATLAB’s toolbox has been realized. And
keeping in mind the purpose of the project, namely design a real filter in order to
measure the energy of EEG signals, the performance of each real filter, comparing
it with the ideal one, has been tested. Despite the different techniques adopted,
there are obviously common features: all of them are pass-band filters in the range
(8-18)Hz as set in 3.2, for each one a transition band of 0.5 Hz has been accepted,
and regarding their order N it can be initially assumed equal to 200.





Chapter 4

Matlab Simulation

Here, the work that has been performed in MATLAB is explained in detail:
simulations, counts and consequently from the outcomes, comparisons and consid-
erations. Everything in order to achieve the best solution to our problem has been
done: verify the presence and effects of de-synchronization phenomenon - remind
it is a decrease of the energy - in the µ-rhythm recorded by the EEG. In fact, in
conditions under which we have at our disposal the recordings of the EEG signals,
obtained by asking the patient to perform exercises, i.e. the movement of an arm,
filtering this recorded signal by an ideal pass-band filter (such as that described in
3.2 ), is possible to measure its energy over a fixed time window, thus verifying the
actual presence of the MRD phenomenon.
Herein the same energy analysis using a real digital filter is repeated, notice that -
as explained in Chapter 3 - the real filter introduces distortion and especially delay,
this is the aspect in which we are most interested, since we would like to give the
patient a real-time feedback.

4.1 Construction of the signal

First of all is necessary to describe the signal, which is the real subject of the
work, because is on this latter that the various filters have been tested.
To verify the efficiency of the filter it has been considered appropriate to generate
a synthetic signal, that means it has length, energy values and other parameters

41
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established and eventually modified in the course of the analysis by us, this obviously
using a signal actually recorded would not have been possible. This synthetic signal
should simulate the information acquired from the EEG records, and when it
arrives at the processing stage it has already been digitized, therefore has been
considered a sampled sequence s[n]. The sampling frequency has been set equal
to 512 Hz - that means there are 512 samples per second - and for convenience in
carrying out the calculations and in using the FFT algorithm, the length of s[n]
has been put equal to a power of 2, and precisely 214 that is 16384 NFFT samples.
In 2.1 has been viewed that an experiment session is constituted by eigthy trials,
here for our considerations has been created a short sequence of only 3 trials. The
trials corresponds to the EEG signal recorded during an exercise, thus it carries
the real information; each trial for convenience is subdivided by us in 7 phases and
these by one or more markers, mi which as reference points are used, are identified.
Furthermore, as known from neurological studies and as already explained, during
the imagination and execution of the task in the brain occurs an energy decrease,
the so called MRD phenomenon that we should identify through the filter, so in
the construction of the artificial signal this spontaneous neural phenomenon has
been taken into account, trying to simulate it. Here below are listed the intervals
that compose a single trial.

1. Pre-Trigger:
It has a fixed length of 256 samples and its marker is called m1;

2. Post-Trigger 1:
This has the same fixed length of 256 samples, is distinguished by m2, and at
this point begins the de-synchronization, thus the values of these samples are
multiplied by a coefficient equal to 0.9;

3. Post-trigger 2:
It is constituted by 256 samples, marked by m3 and has a coefficient equal to
0.7;

4. Post-trigger 3:
It has a length analog to 2) and 3), is marked by m4 and has a coefficient
equal to 0.66;
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5. Reaction-time:
This interval clearly is subjective, thus a variable length in the range of
[200,500] samples has been set, and marked by m5. Here the patient is
preparing him/her-self for the asking task, therefore in the sensorimotor
brain area the energy continues to decrease and there is an even more low
coefficient, equal to 0.64;

6. Movement:
Also this phase is individual, its length can vary between [500-1000] samples,
differently from the other blocks, this has two markers, m6 at the beginning of
the interval, and m7 is set 256 samples farther, and all the block is multiplied
by 0.62;

7. Return :
This period could be constituted by 1000 or 1500 samples and is marked by
m8. Here the subject returns to the idle state, thus the MRD phenomenon
finishes.

This structure has been applied three times - one for each trial. It is the core of
the signal, but at the beginning a sequence of 10 blocks each containing 256 samples
- totaling 2560 starting points - has been introduced as illustrated in Figure 4.1.
This latter correspond to an initial condition of rest of the patient, so hasn’t any
useful information, however these samples in the signal processing operation result
helpful, because allow the real filter to deplete its transitory phase, infact now the
impulse response will have the main lobe, due to the causality, no longer centered
around the 0 but shifted slightly later. However, if the order N of the filter initially
set equal to 200, were to be increased may would be necessary to lengthen this
initial phase.
In order to simulate as closely as possible the uncertainty of the EEG signal, the
total sequence - 2560 starting samples plus the 3 trials - has been defined as a
white Gaussian process, that is a particular random process. A generic random
process is a function of two variables

x : Z× Ω 7→ R (4.1)
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Figure 4.1: The structure of the synthetic signal: at the beginning there are 10
blocks of 256 samples each one, then there is a sequence of 3 trials each one done
up of seven phases idicated by one or more markers mi.

where Z is the temporal domain of the discrete-time process, Ω is the sample space
of some probability space. If we fix ω = ω0, the process is indicated as x(nT), with
n ∈ Z, and is called a realization of x. An important class is that of Gaussian
processes. Recalling that a single random gaussian variable x ∼ N(µ , σ2 ) is
characterized by its probability density function:

pX(a) = 1√
2πσ2

e−
(a−µ)2

2σ2 (4.2)

More generally, N random variables forms the random vector X = [x1, x2, ..., xN ]T

and are said to be jointly gaussian if their joint pdf is as follows:

pX(a) = 1√
2NπNdetkX

e
−

1
2 (a−µX)T k−1

X (a−µX)
(4.3)

where µX = E(X) = (E(x1), E(x2), .., E(xn))T is the mean vector and
kX = E((X − µX)(X − µX)T ) is the covariance matrix. Thus, a random process is
said to be Gaussian if, casually selected N signal’s samples these are N random
variables jointly Gaussian, that is their pdf is defined by expression 4.3, and the
amplitude of each sample is indipendent from the previous values, that is the process
is memoryless. Besides that, each one of these Guassian variables x is normalized,
namely has mean, mX = 0, and variance σ2 = 1, thus from the definition of
statistical power and variance follows that Mx=1 .

• Statistical power of x: Mx= E[|x2|]
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Figure 4.2: The signal s[n] which simulates the EEG records, it is a realization of
the random process

• Variance of x : σ2
x = E[(x−m)2]

Then the statistical power of the entire sequence is still equal to one. Therefore,
having seen the independence among signal samples, we can also deduce their
incorrelation, that is:

rX(τ) = E[x(t)x(t− τ)] = 0,∀τ 6= 0 (4.4)

from this latter follows that the autocorrelation function can be expressed as

rX(τ) = aδ(τ), (4.5)

with a > 0. Then the power spectral density S(f) of the signal, defined as the
Fourier Transform of rX(τ), from the well-known properties of δ function turns out
to be a constant.
This implies that S(f) will be constant at all frequencies, and is the reason why the
signal is defined white. Lastly, after this sequence a series of zeros up to reach a
total length of 16384 samples has been queued - obtaining the signal in Fig. 4.2 -
the reason of this operation is avoiding the Aliasing phenomenon in the frequency



46 CHAPTER 4. MATLAB SIMULATION

Figure 4.3: The respective lengths of the signal s[n], the generic impulse response
h[n] and the output signal y[n] obtained from the convolution sum of the previouses.

domain.
The reason of the initial 2560 samples, and the final sequence of zeros can be clearly
understood refering to Figure 4.3. As already exposed, for convenience in using the
FFT algorithm, the length of s[n] has been set equal to a power of 2, and precisely
it values 16384, thus NFFT=16384. The generic impulse response h[n] has a length
equal to N +1, where N is the filter’s order. However in order to carry out correctly
the convolution sum with s[n], h[n] has been viewed as a vector 16384 samples long,
with N +1 initial samples, and filled up with a sequence of zeros. Notice that the
condition

NTs +NTh < NFFT

allows to avoid the undesidered Aliasing phenomenon, which otherwise would lead
to the overlapping of the various replicas of the spectrum. Moreover, from the
Figure 4.3 can be seen that y[n] length is equal to

NTs +NTh ,

but outside the central sequence of amplitude Ts − Th, there are two subsequences
both NTh samples long. These latter sequences correspond to an initial and final
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transitory phase due to the filter. For this reason is necessary to introduce the
initial sequence of 2560 samples, because this let the filter to complete its transitory
phase.

4.2 Filtering

Once the signal has been built, on this latter is possible to test the ideal filter
and the FIR filters designed using the MATLAB toolbox. The FIR filters that
has been decided to design and compare are: the least-squared designed filter, the
equiripple filter, Bartlett window, Hamming window, Hann window, Blackman
window and the Rectangular window. Whole these filters in MATLAB are called
dfilt objects. Recalling that in the designing phase of these objects have been set:

1. The filter order N, equal to 200;

2. The sampling frequency equal to 512Hz;

3. Fc1 the first cut-off frequency at 8Hz, and the second one Fc2 equal to 18Hz;

4. Finally, a transition band of 0,5Hz.

Entering all these parameters, MATLAB returns us the respective impulse response
coefficients, that is the samples of h(n).

To proceed in the evaluation of the filter there are different philosophies.
A first one approach consists in considering the impulse responses:

• hI(t), the ideal impulse response whose energy is EhI ;

• h(t), the impulse response of a generic FIR filter, with energy equal to Eh.

Defining the residual error as:

e(t0) = EhI (t)− Eh(t+ t0), (4.6)

where t0 indicates the amount of which has been delayed the real filter respect to
the ideal one. With the least squared estimation could be identify the value of t0
that minimizes the error just defined. And the result will be two impulse responses



48 CHAPTER 4. MATLAB SIMULATION

very similar in terms of waveforms.
Alternatively, since we are designing a filter to evaluate the energy values, and the
input signal is a random process we could check whether may be possible to find
some regularity. Therefore the optimal filter is selected according to the similarity
of the energies in output. This second method, is a post-processing evaluation, and
omits certain smallness in the structure of the filter, however, in our case may be a
valid procedure.

4.2.1 Energy evaluations

All the next considerations will be done on the energy values, which is an
important measure of the EEG signal.
Initially has been considered the signal s[n] just described in 4.1, and in order to
have a greater knowledge on the behavior of the signal energy, has been chosen to
calculate this parameter over 256 samples. Performing this calculation, the energy
has been defined as the sum of the squares, that is:

E =
256∑
i=1

x2
i . (4.7)

Besides that, the entire sequence has been subdivided into 34 slots - 10 for the
initial sequence, and 8 for each trial - each of them is identified by a point mi

that marks the beginning. The count has been performed more times, moving
the markers, mi, each time 8 samples further, to better understand the effects of
de-synchronization along the signal.
Knowing that the energy can be described by an exponential random variable,
has been found that its mean value mT over 256 samples is equal to 0.5, then the
corresponding variance σ2 is 1

32, and the outcomes obtained confirm these values.
All these calculations has been repeated for the signal filtered by the ideal

filter, and the various FIR filters constructed. Practically, has been determined the
energy of the filtered signal on sequences of 256 samples, and beginning in points
identified by mi + ∆, where ∆ = h× 8 and h = 0, 1, 2, ..., 128.
It has been decided to proceed by steps of 8, as it is not too great but not too small,
and suitable for a first evaluation, if during the analysis we would have access to
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Figure 4.4: The first samples of the ideal impulse response

more data, then will be possible to apply a more meticulous finding. Goal lies in
identifying the optimal value for ∆, and what means optimal will be explained
later.

First of all have been considered the outcomes obtained using the ideal filter,
with delay set equal to 0, that is the ideal output as it appears after filtering
operations, without applying any further delay. At this step have been calculated
the ratio between the energies of the trials’s slots, ETk with 1 ≤ k ≤ 24 , and
the energy in the third one block E3, this provides 24 values - 8 for each trial.
Therefore, the energies ETk namely have been normalized respect to E3, this
operation attempts to stabilize the random process. The choice to take E3 as a
reference parameter is made according to the length of the ideal impulse response,
this latter is sinc*cos function and making a zoom on the initial part, in Figure
4.4 it can be seen that the impulse decays after about 500 samples, then in order
to have a fine evaluation of the energy we should wait until the third block of 256
samples.
Thus we have these 24 values :

ET1

E3
,
ET2

E3
,
ET3

E3
, ....,

ET24

E3
(4.8)

Therefore, considering the real filters these operations have been repeated, with the
difference that here have been applied a delay. Indeed, it is known that a real filter



50 CHAPTER 4. MATLAB SIMULATION

introduces a proper delay - since its impulse response isn’t centered arround the
0 - and considering the output obtained, in the energy calculation an additional
delay has been introduced, that is the initial points mi have been translated to
samples multiple of 8 gradually larger. The idea is to iterate this operation for
each FIR filter and delay, in order to find that value of ∆ which makes the output
energy much more similar to that obtained by the ideal filter. Notice that, since
the evaluations are made on the filtered sequence it is a post-processing approach.

As optimization criterion has been used the least-squared estimation, considering
as residual error the amount:

ek,h = (ETk , h
E3, h

)− (ETk
E3

) (4.9)

where, 1 ≤ k ≤ 24 indicates the slot and h stands for the delay value applied to
the FIR filter. Thus, the aim is search such a value of ∆, or rather h at which the
mean squared error is minimal, that is:

h∗ = argmin
24∑
k=0

(ek,h)2

24 (4.10)

This will be more clear with an example.
For a generic FIR filter, setting the delay equal to h, the 24 ratios are:

ET1,h

E3,h
,
ET2,h

E3,h
,
ET3,h

E3,h
, ...,

ET24,h

E3,h
(4.11)

Now is possible to relate the two sequences of values, by the mean-squared-error
definition follows:

(ET1,h

E3,h
− ET1

E3
)

2
+ (ET2,h

E3,h
− ET2

E3
)

2
+ ....+ (ET24,h

E3,h
− ET24

E3
)

2

24 (4.12)

The smaller the value obtained, better the real filter approximates the ideal
one in terms of output’s energy. This considerations should be executed for each
delay’s value, thus is possible to find the least one error, which ideally should
tend to zero. Once determined, for each filter, the optimal value of h, the filter’s
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performance could be studied and compared through the SNR evaluation. As
known, SNR stands for Signal-to-Noise-Ratio, infact this parameter compares the
level of a desired signal to the level of background noise. In our case, the energy of
the output obtained through the ideal filter stands for the useful signal, whereas
the minimal mean-squared-error represents the noise, or better distortion.

SNR = Eyideal∑24
k=0

(ek,h∗)2

24

(4.13)

4.2.2 Outcomes analysis

Since the synthetic signal s[n], as the potential EEG signal, is a random process
the obtained results obviously aren’t ever the same, however through several filtering
operations some results can be observed.
As above exposed our optimization criterion is the mean-squared error, clearly
we are interested in the minimum value of this error, and consequently in the
corresponding delay ∆. Observing various simulations, this delay’s values in most
cases is located around the peak of the main lobe of the filter’s impulse response,
or it is spaced of few samples from this point - it was an expected result. Since
the peak corresponds to the 100th sample, then the designed filter introduces a
delay approximately equal to 200ms, and regarding our application, it could be
acceptable.
An other investigation is based on the SNR ratio, as known, the higher the SNR
value, more negligible is the distortion, and consequently the correspondent FIR
filter is approaching well the ideal one in terms of energy. By this latter parameter
we can be satisfied because its value is approximately 103 or equivalently 30dB.
Notice that the two parameters, namely the optimal delay ∆ and the maximum
SNR ratio, sometimes aren’t correlated, thus comparing the various filters a trade-
off of these two measures should be taken into account. Reminding that, the
analysis just explained has been executed shifting the markers point mi at samples
multiple of 8 even more higher, actually the error identified as minimum might be
only a relative minimum value, then the search could be refined. In practice, once
determined the minimum value of the error, and the corresponding delay ∆, the
energy evaluation on the fixed windows of 256 samples has been perfomed again,
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but the research has been focused around ∆, that is considering the previouses
7, and nexts 7 samples. Therefore, proceeding sample by sample the minimum
absolute error for the corresponding real filter has been found.

Rather than, setting the filter order N equal to 50, obviously it introduces a
lower delay, but on the other hand has been observed that the SNR ratio decreases
- it stands in the hundreds - thus it does not appears as a better choice. Even
though would be necessary more measurements, some constants outcomes can
be observed: among the designed real filters, the major SNR ratio usually is
reached by the least-squared designed FIR filter, the equiripple or eventually by
the Rectangular window. This latter, in Chapter 3 has been discarded because
of the Gibbs phenomenon, instead regarding our problem it seems to be a good
possibility, but to confirm this hypothesis further and more sophisticated analyses
are neeeded.



Chapter 5

Conclusions

Since the beginning of this thesis-work, the primary importance of a contingent-
feedback in closed-loop BCI system has been highlighted. In fact, it constitutes
an input for the impaired subject, in this manner he/she could maintain and
improve the communication. Thus it is an attempt to reconstruct the disrupted
SMR loop, in fact in normal condition means the body and the senses the brain
would independently provide such a feedback. Actually a child, since the most
banal action, learns receiving a feedback response about the status of the action in
progress. However this physiological and spontaneous brain activity, in an artificial
way, will not be as easily implemented.
Along the chapters of this thesis-work have been exposed the delicate operation of
the EEG signal processing, which consists of several steps: the extraction of signal
features which encode the patient’s message, the identification of location, size
and function of the brain area generating the signal feature, and finally through
algorithms the translation of the encode brain message into device-commands;
this latter constitutes for the patient a form of feedback response. These whole
procedures must be done in time to allow the subject learning the correct action.
Thus, even if in different ways, any BCI system should cope with the real-time
issue.

The present thesis-work focused on the San Camillo’s Brain-Computer interface,
described in detail in chapter 2. In this case, acting in real time means: detect the
MRD phenomenon on the controlateral hemisphere, calculate the corresponding
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contingent force feedback and provide it at the beginning of the movement phase.
We have at our disposal about 500ms. Confident results has been reached off-line,
but the desidered aim is a reliable real-time filtering algorithm, in order to discard
noise-contribution in real-time, during the BCI’s treatment. Therefore, the present
thesis-work with its aim of designing a real digital filter with the features descibed
in chapters 3 and 4, is a first attempt to solve the question of the real-time.
However from the obtained results emerges that the project hasn’t reached the
aim yet, and we are only at the beginning step, in fact it isn’t able to determine
exactly the most suitable filter. Firstly, this limit can be explained by the fact that
the signal s[n] is too brief, in effect in order to be able to get a statistic would be
needed more trials. The research may proceed using different approaches and tools,
which due to time constraints here have not been tested, but examples of different
and possible future strategies are:

1. The energies ETk could be normalized respect to the mean value of the
energies in the first 10 blocks, rather than to E3;

2. Alternatively, the normalization could be executed previously, that is the
energy of the signal filtered by the real FIRs can be normalized respect to
the energy of the ideal output;

3. Finally, could be used a completely different approach based on the impulse
response, rather than on the filtered signal. This method has been already
mentioned in chapter 4, it attempts to find a simalirity in terms of waveforms;
it might be stronger, that is if this latter idea should work well then it also
implies the efficiency of the method in this thesis-work presented.
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