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Introduction

Nearly a century ago, astronomers began to realise that there is a large discrepancy between the
amount of mass deduced by the analysis of gravitational interactions in galaxies and clusters
of galaxies and the mass that interacts with us through electromagnetic fields. The name “dark
matter” was introduced to denote the hypothesis that this discrepancy is due to a component
of matter subject to the gravitational interaction but not to the electromagnetic one, resulting
as an opaque component of the mass budget inside the structures of the universe. Decades of
subsequent astronomical observations, and the recent striking developments in observational
cosmology, have nearly ruled out alternative proposals to explain this discrepancy, such as
the possibility that it is due to compact objects formed of ordinary matter, or that it is our
understanding of the gravitational interaction that is inadequate. This explains why the idea
that dark matter is made of a new type of particle (or even more than one), subject to yet
unknown interactions with ordinary matter, is widely shared today in the scientific community.

The quest for the dark matter particle(s) is today a compelling issue of Particle Physics,
Cosmology and Astrophysics. There is a large set of models that contain a dark matter particle
candidate, and within them there are different mechanisms responsible for the production of
dark matter in the early universe. The most promising one is the freeze out mechanism, because
of the striking coincidence (the so-called “WIMP miracle”, where WIMP stands for Weakly In-
teractive Massive Particle) between the mass range preferred by this production mechanism
and the mass scale required for new physics to appear in order to solve the gauge hierarchy
problem of the Standard Model. Within this framework, the dark matter particle should have
interactions with ordinary matter with a strength comparable with that of the electroweak inter-
actions, which open good chances for the experimental detection of dark matter particles. But
this is only one among the possible types of viable candidates: other production mechanisms
are possible, and candidates from physics beyond the Standard Model show a remarkable va-
riety of mass ranges and interactions with ordinary matter.

The variety of viable dark matter candidates proposed in theoretical models is accompanied
by a rich set of very different experimental searches: direct searches could detect the flux of
dark matter particles on the Earth, indirect searches look for the products of annihilations of
dark matter happening today in the universe in many possible final states, and collider searches
look for signals of dark matter production in high-energy reactions. The interplay among these
different searches is crucial to test the properties of a possible positive detection, and to check
that they can fit in the history of our universe.

The complex task of constraining many models with bounds coming from various experi-
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2 Introduction

ments forces both theorists and experimentalist to identify a theoretical framework that allows
to draw conclusions and exclusion limits as independently as possible from a specific model.
This need has motivated the use of effective theories to parametrise dark matter and its interac-
tions with the Standard Model: effective field theories consist in the mapping of a model con-
taining a certain number of particles and interactions into a model in which only the degrees
of freedom below a given energy scale, also called cut-off scale, are present. This approach,
although being extremely general because the number of possible effective operators with a
given mass dimension is limited, relies on the assumption that the energy scale involved in
the interaction of dark and ordinary matter is lower than the cut-off scale, which depends on
the detail of the specific model under exam. If this hypothesis is not satisfied, then the predic-
tions of the effective theory deviate from those of the corresponding complete model, until they
reach the limit in which the effective theory is no longer reliable. This is a subject of concern
for theorists and experimentalists, because the energy scale of the interactions in experiments
aimed at dark matter detection are likely to approach or even reach the cut-off scale of the effec-
tive theory, especially at colliders. This is the reason why an increasing attention has been paid
to understanding when the effective theory is reliable, and what is the possible bias induced
by the effective approach on the interpretation of experimental results.

The aim of this thesis is to analyse carefully the regime of validity of the predictions of the
effective theory when extracting limits from different types of measurements. To do so, it is
necessary to compare the effective theory with the full one, thus to specify a model: to keep
the approach as general as possible, the most sensible option is to identify simplified models,
i. e. models containing a minimal set of fields, defined by Lagrangians containing only renor-
malisable operators. These models allow a control over the regime of validity of the effective
theory, but keep the fundamental property of parametrising the essential features of a larger
class of models beyond the Standard Model. This is a relevant advantage, since we do not
have a compelling candidate dark matter model among the large set of available ones. Then
we choose as case studies two representative simplified models, with a fermionic dark matter
particle and a vector or a scalar mediator, respectively, and we critically discuss the reliability
of the predictions of the corresponding effective theories with respect to the complete models.

The content of the thesis is the following. In chapter 1, we review the history of dark matter,
and discuss the main evidences that prove its existence. Then we motivate the introduction of a
new particle as the explanation for dark matter, by discussing two alternative approaches that
are today basically excluded, or at least strongly disfavoured, by cosmological observations.
We continue by reviewing the possible mechanisms for the production of dark matter in the
early universe, and the main candidates for dark matter that are not WIMPS. In chapter 2, we
describe in detail the three categories of searches for dark matter (direct, indirect and collider
searches) and the most relevant WIMP candidates for dark matter. The main part of the thesis
consists of chapter 3, which contains the original contribution of this work. After a discussion of
the motivations for the use of simplified models and a description of the two models chosen for
this thesis, we derive the constraints coming from the relic abundance of dark matter, and from
direct, indirect and collider searches, for each of the two models. We finally summarise our
conclusions and the prospects of future work. Some more technical material is collected in two
appendices: appendix A contains relevant formulæ and conventions on Dirac and Majorana
fermions, while in appendix B we present the detailed calculation of the relic density through
the freeze out mechanism.



CHAPTER 1

Evidence and candidates for particle dark matter

In this chapter, we will review [1, 2, 3] the history of the discovery of dark matter (DM) on
a broad range of scales in our Universe (sec. 1.1). The increasing amount of evidence led
physicists and astronomers to propose various alternative explanations, along two possible
approaches: either by changing our model for gravity on the galactic scale (sec. 1.2.2) or by
adding other components of matter, which could be ordinary non-luminous matter (sec. 1.2.1)
or some yet unknown particle (sec. 1.4). Many decades of astronomical and cosmological ob-
servations eventually showed that the latter is the most viable option, and today a wide range
of possible candidates are predicted by many theories beyond the Standard Model (BSM).

Before discussing these possibilities, we will review the possible production mechanisms
of dark matter in the early universe after the primordial inflation (sec. 1.3), to point out the
relevant features that a viable candidate must possess to be consistent with the relic density of
dark matter observed today and with the standard cosmological model (the so-called ΛCDM).

1.1 Evidence for dark matter

1.1.1 Observations on the galactic scale

The first observations of non-luminous matter were done by Oort in 1932. His measurements of
the brightest stars in the Milky Way suggested that part of the gravitational mass of the galaxy
was missing if one only considered those stars, and this fact brought him to claim that the disk
of the galaxy was composed for two thirds by “dark matter” including stars less luminous
than the Sun, and gas and dust in the interstellar medium. Many years later, in 1959, Kinman
observed some deviations in the velocities of the globular clusters contained in the Milky Way
with respect to what expected from a pure disk mass model, and already suggested a linearly
rising mass distribution beyond the disk.

Also the observations of the spiral galaxy nearest to us, M31 (Andromeda), done by Babcock
in 1939, suggested that the ratio between gravitational and luminous mass was increasing in
the outer regions of the galaxy. Later measurements of the rotation curve of this galaxy in 1957
and 1975 showed a flat region. The studies were deepened in the following years, in particular
by Vera Rubin, who showed that, for a large sample of spiral galaxies, the rotation curve of
stars inside the galaxy did not fall off as predicted by Keplerian gravity, but kept a flat profile
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4 1. Evidence and candidates for particle dark matter

for a large distance outside the main disk. Since the radial velocity, in the approximation of
a circular motion and spherical symmetry, is given by v =

√
GM(r)/r (where G = 6.67 ×

10−11 N ·m2kg−2 is the gravitational constant and M(r) is the gravitational mass contained
inside a sphere of radius r centered in the barycenter of the galaxy) these results imply a dark
matter mass density proportional to r−2 within a large region outside the main disk of the
galaxy (see fig. 1.1).

Figure 1.1: Rotation curve of stars in the galaxy NGC 6503: this plots reports the rotation velocity as a
function of the radial distance, for many stars inside that galaxy. The dotted, dashed and dash-dotted
lines are respectively the contributions of gas, disk and dark matter to the gravitational mass contained
in the galaxy (from [2]). The profile of the rotation curve remains nearly constant for a large distance
outside the main disk radius, while, if the luminous mass and the gas were the only component of the
galaxy, Newtonian gravitational law would predict a fall-off proportional to 1/

√
r.

1.1.2 Observations on the intergalactic and cosmological scale

One year after Oort (1933), Fritz Zwicky measured the velocities of galaxies within the Coma
galaxy cluster, and deduced that the gravitational mass contained in the cluster was hundreds
of times greater than the luminous mass. Among the few possible explanations, he also quoted
Oort’s proposal of “dark matter”.

The large set of observations gathered from the early ’30s to the end of the ’80s provided
plenty of evidence that, in the framework of general relativity, a large part of the mass inside
and surrounding galaxies is not interacting through electromagnetic or nuclear interactions.

The first detailed observations of the Cosmic Microwave Background (CMB) on small angu-
lar scales (Maxima, Boomerang in 2000 and WMAP in 2003) allowed to measure the spectrum
of the anisotropies in the temperature of the CMB, which constrains many cosmological pa-
rameters, including Ωm (the sum of dark matter and baryon energy densities over the critical
density). Ωm affects the shape of the spectrum through many mechanisms, but mainly influ-
ences the heights of the first peaks. Already the first measurements of Maxima and Boomerang
pointed to a value of Ωm around 30%, and the current best measurement of the CMB, obtained
by the Planck satellite, gives Ωm = 31.6% [4], and an energy density of dark matter equal to
26.7% of the total one.

Another important probe for the distribution of dark matter is the observation of strong
gravitational lensing, i. e. the study of images of far galaxies bent or replicated because of the
passage of light near a very massive galaxy cluster. This kind of observations showed that
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the most massive clusters are largely dominated by dark matter, with ratios of gravitational to
luminous matter of the order of some hundreds.

We conclude this brief summary with an important and suggestive evidence, the observa-
tion of the Bullet cluster in 2006 [5]. This system is composed of two primary galaxy concen-
trations, which passed through each other ≈ 100 Myr ago. As a result of this collision, the
various components of the two galaxy clusters (dark matter, X-ray emitting plasma, and galax-
ies visible in the optical spectrum) underwent different interactions with the components of the
other cluster. While the ordinary matter components slowed down during the collision because
of their electromagnetic interactions, the dark matter components passed through each other
without significant consequences, in the hypothesis that they can interact only gravitationally
or through a very weak self-interaction. Under these conditions, the outcome of the collision
is a displacement between the barycentres of the hot gas distribution (visible in the X-ray spec-
trum by the Chandra satellite) and the dark matter distribution (which can be inferred by the
analysis of the weak gravitational lensing of background structures). The result is displayed
in fig. 1.2. This spectacular observation is very important, because it allows to constrain the
strength of dark matter self-interactions, and because it is a strong argument against the pro-
posals of modified gravitation (sec. 1.2.2). Indeed, if one rejects the dark matter hypothesis, it is
hard to explain without contradicting very basic assumptions on the nature of gravity why the
weak gravitational lensing points to a barycentre displaced with respect to the centre-of-mass
of the ordinary matter distribution.

Figure 1.2: Images of the Bullet cluster. In the left panel, a colour optical image showing the galaxies,
which make up only a few percent of the mass of the cluster. In the right panel, an X-ray image from the
Chandra telescope, showing where the bulk of the gas in the cluster is located. In both panels, the green
contours show the mass distribution inferred from gravitational lensing [5].

1.2 Attempted explanations for DM without new particles

In this section we will discuss two possible explanations for the effects described in the previ-
ous section. The two logical alternatives are modifying the Newtonian gravitational laws on the
galactic scale, to predict for some reason a gravitational attraction much stronger with respect
to the Newtonian one (at larger distances, or for lower accelerations as in the MOND case) in
order to explain the flat trend in rotation curves outside the galactic disk, or adding other com-
ponents of non-luminous matter. In the latter case, a conservative but relevant remark is that
we could have a poor understanding of non-luminous ordinary matter in the galaxies: sec. 1.2.1
discusses this possibility. The former possibility is then discussed in sec. 1.2.2, following the
discussion of [6, 7]: apart from possible theoretical inconsistencies of these models, also their
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phenomenological viability faces relevant difficulties. Nevertheless, as long as dark matter is
not observed through interactions different from the gravitational one, modified gravity could
still be considered, from an epistemological point of view, in order to confront the dark matter
paradigm with a contrasting one.

1.2.1 MACHOs: Massive Astrophysical Compact Halo Objects

To explain the strong hierarchy between the gravitational and luminous mass in galaxies, the
most straightforward proposal is that we do not correctly model the population of low mass
stars, stellar remnants and planetary mass bodies [1]. Compact astronomical bodies that con-
stitute a significant component of the mass of the galaxy are referred to as Massive Astrophys-
ical Compact Halo Objects (MACHOs). Their luminous faintness or opacity prevents us from
searching for MACHOs in direct imaging, leaving as the only probe the search for their gravita-
tional effects, in particular the gravitational lensing that they induce. In the case of the images
of single stars, the passage of a massive lensing body has the effect of a brightening of the star
on a time scale related to the mass and velocity of the intervening object, and typically ranges
between a few weeks and a year.

Various experiments in the past two decades have investigated the number density of MA-
CHOs in the Milky Way through this effect of microlensing (MACHO project, Optical Gravi-
tational Lensing Experiment, Expérience pour la Recherche d’Objets Sombres), and found no
conclusive evidence, placing strong upper limits on the number of massive bodies in the galaxy
in the mass regime of (10−7 ÷ 30) M�, where M� denotes the mass of the Sun.

For opaque bodies of masses greater than ∼ 100 M�, the time scale of microlensing is a
few years, therefore the efficiency for detecting objects in this mass range through this tipe of
surveys drops significantly. In this mass range, the most efficient methods rely on the study of
the lifetime of wide binary stars in the galaxy (which are likely broken up by the near passage
of massive bodies), bringing to the estimate that MACHOs of mass (10÷ 107) M� comprise no
more than ∼ 50% of the galactic halo, or on indirect studies of the velocity dispersion of the
galactic disk, which pose strong constraints on MACHOs with mass & 107 M�.

Today, even if further analyses of stellar remnants and primordial black holes are in progress,
galactic searches for dark matter in the form of MACHOs have reached a significant level of
maturity, and have firmly established that dark matter does not dissipate energy (because of
its very weak self-interactions) to clump into objects as massive as stars or planets, and that the
dominant matter component in galactic halos is more diffusely distributed [1, 8].

1.2.2 MOND: MOdified Newtonian Dynamics

The evidence for dark matter came from the observation of an inconsistency between the ob-
servations and the Newtonian model for the gravitational interaction. In analogy to similar
crises faced by astronomy in the past (discovery of Neptune as “dark matter”1, and precession
of the perihelion of Mercury explained through a modification of gravity), a possibility is that
the radial velocities of stars far from the centre of the galaxy are higher than expected because
they are subject to a gravitational force stronger than the Newtonian one.

This was the perspective of the proposal by Milgrom (1983) of MOND (MOdified Newto-
nian Dynamics). He postulated the following equation for the motion of a test particle subject

1In the 18th century, the observations of the motion of Uranus were in contrast with the Newtonian laws applied
to the known content of the Solar system; the proposal of introducing a new ingredient to the matter components,
i. e. the introduction of a new planet, led to the discovery of Neptune.
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to a gravitational field −~∇ΦN :

µ̃

(
|a|
a0

)
a = −~∇ΦN , µ̃(x)→

{
1 for x → ∞ ,
x for x → 0 ,

(1.1)

where a0 ≈ 10−8 cm s−2 is a preferred scale of acceleration. Outside the mass distribution of
a galaxy, at a radial distance r, |~∇ΦN | = GM/r2, where M understands only the baryonic
mass. Eq. (1.1) implies the Newtonian limit for accelerations greater than a0, while for a � a0
(therefore for extremely weak gravitational fields) the acceleration is the geometric mean of the
Newtonian one and a0. As a consequence, eq. (1.1) is able to predict a flat rotation curve for
galaxies (fig. 1.1) and also to explain the Tully-Fisher correlation, i. e. the experimentally ob-
served proportionality between the total baryonic mass of a disk galaxy and the fourth power
of the asymptotic rotation velocity [6].

Apart from these results, from a more theoretical point of view it is not clear from eq. (1.1)
if the deviation from the Newtonian limit comes from a modification of the inertial mass, or
the gravitational mass, or the second Newton’s law, or the gravitational force, and any of these
possibilities opens the door to many theoretical or experimental inconsistencies. Eq. (1.1) does
even violate momentum conservation, since the time derivative of the total momentum m1v1 +
m2v2 of an isolated system of two particles interacting gravitationally does not vanish, because
the values of the factor µ̃ will generally be unequal. Milgrom then suggested that this equation
is meaningful only for test particle motion in a background gravity field.

There have been some attempts to derive eq. (1.1) from a variational principle. The resulting
non-relativistic Lagrangian is

L = −
∫ [ a2

0
8πG

F
(
|~∇Φ|2

a2
0

)
+ ρ Φ

]
d3x , (1.2)

where ρ is the visible matter density, and F is a positive function such that µ̃(x) = F′(x). The
asymptotic trends of F are F(X2) → X2 for X2 → ∞ (so that µ̃ is constant) and F(X2) →
2
3 X3/2 for X2 → 0. This Lagrangian, which for extremely weak gravitational fields deviates
from the Newtonian behaviour (which corresponds to F(X2) = X2) is referred to as AQUAL
(AQUAdratic Lagrangian). It is clear that this formulation is non-local, since F cannot be a
polynomial in |~∇Φ|, and frame dependent: indeed, it is not sensible to consider a ratio |~∇Φ|/a0

without specifying the frame in which the vector ~∇Φ should be evaluated.
A relativistic formulation that reduces to the MOND equation in the weak field limit was

proposed by Bekenstein in 2004, and is called TeVeS (Tensor-Vector-Scalar theory). In this for-
mulation, one needs to introduce a timelike 4-vector field Uα, together with a scalar field φ, to
define a Jordan metric

g̃Jordan
αβ = e−2φgEinstein

αβ − (e2φ − e−2φ)UαUβ .

By requiring that Uα points in the time direction, it is possible to deduce the gravitational lens-
ing effect [6]. Such a recipe would violate the general covariance of the model, since the pre-
scription that a 4-vector should point in the time direction obviously is not a covariant one. In
order to get this constraint dynamically, Bekenstein proposed the following action:

STeVeS = − 1
32πG

∫ [
K1gαβgµνU[α,µ]U[β,ν] + K2(gαβUα;β)

2 − 2λ(gµνUµUν + 1)
]√
−g d4x . (1.3)

The first term is a Maxwell-like one, the second one is a gauge fixing term and the third term
fixes U 2 = −1 through a Lagrange multiplier. This model manages to reproduce the additional
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lensing far from the centres of galaxies, which is needed to reconcile the observations with the
visible matter content of galaxies.

The TeVeS formulation gives a viable theoretical framework leading to the MOND equation
(1.1). The main problems of this modified gravity approach are the following three [7].

First of all, MOND does not explain well the dynamics of galaxy clusters. The most remark-
able example is given by the Bullet cluster, discussed in sec. 1.1.2. The arguments proposed by
the supporter of TeVeS are that we should not draw conclusions from a single observation, that
also the CDM paradigm has some difficulties in modelling this cluster, and that the full calcu-
lations for this case of axisymmetric lens have not been performed so far in TeVeS: these are
true statements, but not very convincing, pointing out that the dark matter paradigm explains
much more successfully galaxy cluster dynamics.

As a second point, the spectrum of the anisotropies of the CMB in the TeVeS paradigm has
difficulties in reproducing the observed height of the third peak, which should be very small
in a baryon dominated model that lacks the extra gravitational force supplied by dark matter.

Finally, TeVeS gives completely different predictions about the power spectrum of matter
perturbations (fig. 1.3): in the ΛCDM paradigm, the so-called Baryon Acoustic Oscillations
(the peaks in the power spectrum of the matter distribution, linked to the propagation of
sound waves in the baryon-photon fluid before the recombination) are highly suppressed as
the baryons fall into the potential wells created by dark matter, while in a model without dark
matter the oscillations should be as apparent in the baryonic matter distribution as in the CMB.

Figure 1.3: The power spectrum of matter extracted from the data of the Sloan Digital Sky Survey (red
points with error bars), compared with the predictions of the ΛCDM model (black line), a no dark matter
model with Ωb ≈ 0.2, ΩDE ≈ 0.8 (blue dashed line), and the TeVeS predictions (blue solid line). The
TeVeS model, which amplifies the perturbations with respect to the dashed line prediction, reaches the
amount of inhomogeneities needed for the structure formation, but is in total disagreement with respect
to the observed power spectrum, whose “bumps” (the so-called Baryon Acoustic Oscillations) are highly
suppressed (from [7]).
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1.3 Production mechanisms of DM in the early universe

In the rest of this thesis, we will assume the DM paradigm, which seems today by far the most
viable hypothesis to explain the anomalies mentioned in sec. 1.1 and to fit the vast amount of
detailed cosmological observations.

In this section, we will briefly discuss how DM fits in the history of the early Universe,
i. e. we will explain the main features of the most plausible mechanisms by which dark matter
has been produced in the universe after the end of the inflation (the so-called reheating phase),
and has reached the current abundance.

1.3.1 Freeze out

Freeze out is the simplest mechanism that fixes the abundance of a species in an expanding
Universe [8, 3].

If two particles, say A and X, can interact with each other through the reaction AA� XX,
then, when initially the Universe is very hot (at energies much greater than the masses of the
two particles), the two species annihilate into each other maintaining the chemical equilibrium.
When the temperature T of the Universe drops below the higher of the two masses, say mX,
then the number density nX of X, in the hypothesis that X remains in thermal equilibrium,
must follow the non-relativistic Boltzmann distribution, which includes a suppression factor
e−mX/kT. Hence, the particles X will annihilate into particles A so as to follow the Boltzmann
distribution.

Therefore, nX should drop to zero as the Universe cools down, unless the reaction XX →
AA at a certain point becomes inefficient. This will happen indeed because of the expansion
of the Universe, which dilutes the concentration of non-relativistic particles proportionally to
a−3, where a is the scale factor2. Then, when the annihilation rate nX〈σv〉 (where 〈σv〉 is the
thermally averaged cross section for the reaction XX → AA) will decrease below the Hub-
ble rate of expansion H ≡ ȧ/a, the annihilation of the X particles will substantially cease.
The consequence is that nX keeps the same value it had at the moment of the freeze out, when
nX〈σv〉 ≈ H.

This mechanism could be specialised to the case of dark matter, if we denote by X the
corresponding particle and we assume that it can interact with another species (through some
yet unknown interaction, or possibly only through gravitational ones), and that it is in thermal
equilibrium in the early Universe.

This discussion can be made quantitative through the numerical solution of the Boltzmann
equations, a set of differential equations that describe the evolution of the number densities of
interacting species in an expanding universe. In the case we are discussing, the equation for nX
reads (we understand the subscript X for n)

dn
dt

= −3Hn− 〈σv〉
(

n2 − n2
eq

)
, (1.4)

where neq is the equilibrium number density of X. The first term on the right hand side of
eq. (1.4) accounts for the dilution due to the expansion, the second term comes from the XX →
AA process, while the third one comes from the opposite reaction AA → XX. This equation
can be solved numerically, with the result shown in fig. 1.4.

2The scale factor is the the function of time that multiplies the spatial part of the Friedmann-Robertson-Walker
metric,

ds2 = c2dt2 − a2(t)
[

dr2

1− kr2 + r2d2Ω
]

,

where k = −1, 0 or +1 depending on the geometry on the Universe, and d2Ω = dθ2 + sin2 θ dφ2.
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Figure 1.4: A scheme of the comoving number density (na3) of a stable species X during the process of
thermal freeze out, as a function of x = mX/T. The larger is the cross section for the process XX → AA,
the lower is the thermal relic density of X (from [9]).

In appendix B, we will describe in detail the derivation, from the definition of the thermally
averaged cross section 〈σv〉 that appears in eq. (1.4), of a simpler (exact) formula involving
only a one-dimensional integral, and then we will derive an approximate formula in the limit
of low temperature with a low velocity expansion. Then, we will show how to compute, with
an approximate solution of the Boltzmann equation, the relic abundance of dark matter ΩDM.
In the remainder of this section, we show through a qualitative estimate of ΩDM what we can
infer about the fundamental properties of the DM particle X.

Let us focus on the freeze out moment (denoted with a subscript f ): the condition n〈σv〉 =
H, together with the Friedmann equation for a radiation dominated Universe, H2 ∼ T4

f /M2
P

(by the symbol ∼ we will denote rough estimates, valid up to O(1) factors, and by MP the
reduced Planck mass 1/

√
8πG), brings to

n f ∼
T2

f

MP〈σv〉 . (1.5)

It is customary to define x ≡ m/T, and the yield Y ≡ n/s, where s is the entropy density of the
Universe. The thermal relic density of X is then (the subscript 0 denotes present-day quantities)

ΩX =
mXn0

ρc
=

mXT3
0

ρc

n0

T3
0
∼ mXT3

0
ρc

n f

T3
f
∼

x f T3
0

ρc MP

1
〈σv〉 , (1.6)

where the first approximation follows from Yf = Y0 and s f = s0 (isoentropic expansion of the
universe) with the approximation g∗ f ≈ g∗0 [9], and in the last passage we used eq. (1.5). If we
impose ΩX ∼ 0.3 in eq. (1.6), and we assume that X is weakly interacting with A and therefore
we write3 on dimensional grounds 〈σv〉 ∼ g4

weak/(16π2m4
X), then mX turns out to be in the

range 100 GeV – 1 TeV. Then, a weakly interacting particle with a weak scale mass (which is the
most straightforward requirement to solve the gauge hierarchy problem) naturally leads to the

3From now, we will usually assume c = 1, h̄ = 1, unless specified otherwise.
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correct relic abundance. This exciting coincidence was called “WIMP miracle”, where WIMP
stands for Weakly Interacting Massive Particle, and motivated in the last decades a wide belief
that the most likely particle candidate for dark matter is a WIMP4.

An important point in this result is that the thermal relic density is mainly dependent on the
cross section σ, rather than on the mass mX, which appears in eq. (1.6) only through x f , which is
typically of the order of 20 for a WIMP candidate and does not vary much for different choices
of mX. Moreover, this mechanism is independent of the early thermal history of the Universe
and of the interactions at high energy scales.

We conclude this discussion about the freeze out mechanism by recalling the corresponding
requirements for dark matter: the DM particle X should be stable on cosmological scales and
in thermal equilibrium in the early Universe (moreover, its mass should be lower than the
reheating temperature), it should annihilate to other particles, and the corresponding cross
section must satisfy a lower bound, so that X is not over-abundant. The consequence of the
two last requirements is that it is possible to probe the existence of dark matter through one
of the strategies described in sec. 2.1 (if X can annihilate into Standard Model particles). A
peculiarity of the freeze out mechanism is that a weakly interacting particle X with a mass of
the order of the weak scale implies the correct total relic abundance of dark matter.

1.3.2 Freeze out and decay

A slightly more sophisticated mechanism with respect to the freeze out might offer a viable
option to get the correct relic abundance, even in a scenario in which the particle X undergoing
the freeze out has a mass a bit higher than the weak scale (for example around 1 TeV), or it is
electrically charged, but unstable on long time scales because of extremely weak interactions
(e. g. gravitational ones).

This mechanism, which opens many possibilities from the particle physics point of view,
goes under the name of “freeze out and decay”. In this case, the species X undergoes the freeze
out mechanism yielding a thermal relic density ΩX. Then, because of very weak interactions
(as gravitational ones), X can further decay to some particle Y with a decay X → Y + . . . ; if this
coupling is weak, the effect of Y on the freeze out of X is negligible. The result at late times is
that the species X nearly disappears, leaving a relic density for Y given by (if each X produces
only one particle Y)

ΩY =
mY

mX
ΩX .

If we now specialise this general framework, by assuming that X is a WIMP (now with a more
relaxed constraint on mX), and that mY is comparable or slightly lower than mX, then Y turns
out to have the correct relic abundance to be the DM candidate: a name used to denote this
species is “superWIMP”, as it should interact super-weakly and have a mass of the order of the
weak scale.

In this case, since X is unstable and is not the DM particle, it does not need to be neutral
(for a further discussion, see sec. 1.4.2).

If the decay channel of X includes, together with Y, some Standard Model (SM) particles,
a limit on the lifetime of X comes from the requirement that it does not decay after the nucle-
osynthesis, in order not to introduce a late time production of SM particles that could influence
the nucleosynthesis in a way incompatible with observations.

4This belief has put down so strong roots that in some references the acronym WIMP is occasionally used as a
synonym of dark matter; another commonplace led in sporadic cases to the use of “neutralino” as a synonym of
WIMP (see sec. 2.2). In this work, we will pay attention to the distinction of these terms.
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Figure 1.5: Evolution of the relic yield Y for the freeze out mechanism (solid coloured lines) and freeze
in via a Yukawa interaction (dashed coloured), deviating from the equilibrium density (solid black). The
arrows indicate the effect of increasing the coupling strength for the two processes (from [10]).

1.3.3 Freeze in

The production mechanism called freeze in can be seen for various reasons as the “opposite”
with respect to the freeze out mechanism, in particular for its constraints on the properties
of the dark matter candidate. We will sketch here only its basic features, and refer to [10]
for a more detailed discussion5, including BSM candidates and their possible experimental
signatures.

The basic framework of this production mechanism is the following. The assumptions
about the initial conditions of the dark matter candidate X are that, unlike for freeze out, the
species X is thermally decoupled from the thermal bath because it is weakly interacting with
its components. Another assumption is that the initial number density of X is negligible, for
example because after reheating the reactions that produce X in the final state are inefficient.
Although the interactions with the thermal bath are feeble, X is still produced, with a yield
which turns out to be inversely proportional to the temperature T, and therefore increasing in
time (we will show later the formulæ that justify this statement). Then the number density of X
keeps growing until the temperature drops below mX, and the reactions that produce X become
kinematically disfavoured. From that moment on, the number density of X will substantially
remain frozen because the interaction rate will be lower than the Hubble rate.

The most relevant feature of this mechanism is that the number density of X is greater for
higher couplings of X to the thermal bath, contrarily to the freeze out case (see fig. 1.5).

We will now estimate the yields expected for two possible renormalisable interaction terms,
to show that they turn out to be decreasing with temperature (and hence increasing with time).
The yield, being an adimensional quantity (once we set k = 1) must be the ratio of the two
dimensionful quantities which are involved, the decay rate Γ (for a three field interaction, or
n〈σv〉 for a two-to-two particles scattering) and the Hubble rate H ∼ T2/MP.

For a Yukawa interaction λψ1ψ2X among three fields with masses m1 > m2, mX, the decay
rate in the rest frame of ψ1 must be ΓRF ∼ λ2m1. The corresponding rate in the comoving frame
can be obtained by dividing for the boost factor T/m1; then YX ∼ Γ/H ∼ λ2m2

1MP/T3. By
evaluating the yield for the temperature T ≈ m1 at which the production is dominant (with

5An earlier application of this mechanism had already been done in [11] for the specific case of a gauge singlet
complex scalar S, interacting with the Higgs boson through the so-called Higgs portal, i. e. through an interaction
term λS†SH† H, which brings to a possible decay of the Higgs boson to SS after electroweak symmetry breaking.
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respect to later times when T < m) we get

YX ∼ λ2 MP

m1
.

In the case of the quadrilinear interaction Lint = λX2ψ2
1, the corresponding cross section will be

proportional to λ2/T2 for dimensional reasons (for early times, the two species are relativistic,
T & m1, mX), n ∼ T3 and YX ∼ n〈σv〉H−1 ∼ λ2MP/T which gives a final yield (for T ≈ m1) of
the same order as before, YX ∼ λ2MP/m1.

Even if the details of the freeze in mechanism and of the calculation of the relic density
change from case to case, the relevant point that emerges from this estimates is that the yield
predicted by this mechanism has opposite features with respect to the one predicted by freeze
out. We can estimate the latter from eq. (1.5) by inserting 〈σv〉 ∼ λ2/m2

X and T ∼ mX:

YFO ∼
1
α2

mX

MP
.

We can see that the two mechanisms generally yield the correct relic abundance of dark matter
for different regimes of the mass scales and interaction couplings (see fig. 1.6).

Figure 1.6: Schematic picture of the relic abundances due to freeze in and freeze out as a function of
coupling strength (from [10]).

We conclude by observing that the yield predicted by the freeze in mechanism mainly de-
pends on the particle (ψ1 in our notation) which produces the dark matter particle X, while
the prediction from the freeze out depends on X. Moreover, the comparison between the two
results shows that, in order to get ΩX ≈ 0.3, the coupling constant must be of the order of the
ratio between the weak scale and the Planck mass, λ ∼ v/MP: therefore, freeze in candidates
are likely to arise in theories where small couplings arise at linear order in the weak scale. For
a further discussion about possible candidates from supersymmetry or extra dimensions, see
[10].

1.3.4 Asymmetric dark matter

The mechanisms we have discussed until now give relic abundances of dark matter that de-
pend on microscopic quantities related to the interaction and couplings of the dark sector. For
example, we have seen that in the freeze out mechanism ΩDM depends in first approximation
only on the annihilation cross section for the process XX → AA.

Now, in our Universe the densities of dark matter and baryonic matter are comparable,
ΩDM ≈ 5Ωb. The two energy densities are both proportional to a−3, so they keep the same ratio
as the Universe expands. Then, the production mechanisms for the two species brought to sim-
ilar yields even if they took place in different times, and with completely different dynamics.
This is a quite surprising coincidence if we assume the freeze out mechanism for dark matter
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and some different scenario for baryogenesis: this can be an accident, or could be discussed on
anthropic grounds, or could be the dynamical result of two related production mechanisms for
the two species. The latter framework goes under the name of “asymmetric dark matter” [12, 13],
for reasons that will be clear in the following.

The current proposals about the explanation of the abundance of baryonic matter are linked
to the so-called baryon asymmetry, the strong disparity between the amount of matter and
antimatter in the Universe. This asymmetry is quantified by the difference between baryon
and antibaryon number densities, over the photon number density, η = (nb − nb̄)/nγ, and
is experimentally measured as 6 × 10−10. In order to explain dynamically this asymmetry,
the following conditions have to be fulfilled: baryogenesis must have happened out of the
thermal equilibrium, and there must be interactions that violate the baryon number B and C,
CP transformations.

One of the most promising options to solve this problem is to link it to the main experi-
mental problem of the minimal version of the Standard Model, the neutrino masses. If we add
the right-handed neutrinos to the SM with a Majorana mass term and Yukawa couplings to the
lepton and Higgs doublet, then the total leptonic number L is violated, and non-perturbative
phenomena6 could have communicated an L violation to the baryonic sector during the lepto-
genesis.

Independently from the mechanism that explains a slight initial asymmetry between baryons
and antibaryons in the early Universe, later annihilations of baryon and antibaryons remove
the symmetric part of the two components (decaying eventually into photons), leaving only
the asymmetric part, until this reaction is efficient. The result of this process is indeed that the
component which had a slightly smaller number density nearly disappears.

At this point, it is clear that the coincidence of the orders of magnitude of ΩDM and Ωb is
unexpected. Starting from these considerations, many production mechanisms for dark mat-
ter, similar to the baryogenesis paradigm, stem out: some CP violating process (which must
also violate the quantum number that makes DM stable) creates an asymmetry between dark
matter particles and antiparticles, to an amount comparable to the baryonic asymmetry. Then,
annihilations of dark matter leave only the asymmetric component which turns out to have a
number density comparable to Ωb.

Without entering into the details of any specific model, we only sketch the generic features
of this mechanism [12].

• An asymmetry between particle and antiparticle number density is initially created in the
visible and/or the dark sector, through some specific mechanism, at the same time or at
different ones.

• Some process communicates the asymmetry between the two sectors and then decouples,
“freezing in” their amounts.

• The symmetric components, in each of the two sectors, must finally annihilate away
through some efficient reaction. In analogy with the SM, this could happen in the dark
sector through the annihilation of particle and antiparticle into the vector mediators of
some dark force, or maybe with other higher dimension operators.

6The chiral anomaly for the global symmetries B and L implies non-perturbative configurations (called
sphalerons) that violate B and L, but preserve their difference B− L.
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1.4 Particle candidates for dark matter

1.4.1 WIMPs: Weakly Interactive Massive Particles

As we have discussed in sec. 1.3.1, the freeze out mechanisms presents a “WIMP miracle”, i. e. it
naturally predicts a correct ΩDM for a weakly interacting particle with a mass of the order of the
weak scale. The requirement that there are new particles at the weak (or TeV) scale (with some
non-negligible interaction with the Standard Model) is the most straightforward one to solve
the hierarchy problem. The coincidence that two very different problems at the microscopic
and the macroscopic scale pointed to the same prediction has motivated for some decades a
strong belief in the particle physics community that this should be the common solution to
both problems.

Furthermore, the mass scale and the interaction strength (comparable to the weak one of
the SM) of the WIMP motivate some hope of a relatively easy detection (at least with respect to
the other possibilities mentioned in this section) with some of the methods described in section
2.1, because the freeze out mechanism offers a lower bound on the interaction rate with the SM.
Because of its relevance to the collider searches that will be the focus of this thesis, we postpone
a more detailed discussion of WIMP candidates to sec. 2.2.

1.4.2 SuperWIMPs

SuperWIMP candidates are related to the production mechanism called “freeze out and de-
cay”, described in sec. 1.3.2. The extremely weak interactions of this candidate could seem
to disfavour any possibility of detection; nevertheless the interesting point about this produc-
tion mechanism is that it reduces the requirements about its producer (that we denoted by X),
which in this scenario can be a more generic WIMP with a mass also above the TeV and does
not need to be neutral, since it is not the DM candidate.

The classic example of this possibility is a weak scale gravitino as a superWIMP [3]. The
gravitino G̃ is the spin-3/2 partner of the graviton, and supergravity theories predict7 a mass
mG̃ = M2

susy/(
√

3MP), where Msusy is the supersymmetry breaking scale (not to be confused
with the mass of supersymmetric particles): this value can range from the Planck scale to the
milli-elettronvolt scale. In gravitino superWIMP scenarios, the role of the WIMP is played
by the Next to Lightest Supersymmetric Particle (NLSP), which can be a charged slepton, or
the sneutrino, or the chargino, or the neutralino (see sec. 2.2.1 for a discussion about super-
symmetric models and WIMP candidates). The gravitino then couples SM particles to their
superpartners through gravitino-sfermion-fermion interactions and gravitino-gaugino-gauge
boson interactions: these could be the interactions that lead to the decay of the WIMP to the
superWIMP, if the lifetime of the NLSP is sufficiently long that the decay of the WIMP does
not interfere with the freeze out mechanism, but not too long otherwise dark matter would be
produced too late.

Other candidates of superWIMP include axinos (the supersymmetric partners of axions,
mentioned in sec. 1.4.4), and graviton and axion states in extra-dimensional models.

1.4.3 Sterile neutrinos

As already mentioned, a possible solution to the problem of extending the Standard Model to
give mass to the neutrinos is the introduction of the right-handed neutrinos νR. These fermions
would be gauge singlets, and therefore it would possible to write a Majorana mass term for

7This formula holds once 〈V〉 = 0 has been imposed, which is perfectly motivated since cosmological observa-
tions tell us that the vacuum energy density is ρvacuum ≈ (0.003 eV)4.
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them, in addition to the Yukawa couplings to the left-handed lepton doublet LL and the Higgs
SU(2)L doublet Φ. The corresponding Lagrangian for the so-called νMSM (Neutrino Minimal
Standard Model) [14] is8 (here we restrict for simplicity to one lepton family)

LνMSM = LSM −YνLLΦcνR − 1
2 M(νR)cνR .

The mass eigenstates for the neutrinos, after electroweak symmetry breaking, are a mixture
of νL and νR; let us call the corresponding eigenvalues mν and Mν, and the corresponding
eigenstates ν and N. In the limit M � Yνv, where v = 246 GeV is the so-called electroweak
scale, linked to the vacuum expectation value (vev) of the neutral component H of the Higgs
doublet, 〈H〉 = v/

√
2, we can write the following relation of inverse proportionality between

them (this is the so-called type-I see-saw mechanism):

Mν ≈ M ≈ Y2
ν v2

2mν
. (1.7)

In this limit, the mixing between the two fermions is negligible, therefore the more massive
neutrino (that we will denote by Ni if we are including three lepton families) will nearly coin-
cide with νR, and therefore it is called “sterile neutrino”, because it has gauge interactions with
the SM only through the small mixing with the left-handed neutrino.

If we try to get the orders of magnitude in eq. (1.7), by assuming mν ∼ 0.1 eV and Yν ∼ 1
we recover M ∼ 1014 GeV: this scenario offers a further motivation for the study of Grand
Unification Theories (GUT).

Another option is to get a sterile neutrino mass of the order of a few keV, by postulating tiny
Yukawa couplings, of the order of 10−10, a value which is some orders of magnitude below the
smallest Yukawa coupling in the SM (Ye ≈ 3 · 10−6). This option is motivated by the possibility
of solving through this minimal modification of the SM three great puzzles such as neutrino
masses, dark matter and baryogenesis (see [14], and references therein).

In this scenario, the lightest sterile neutrino, say N1, is the dark matter candidate. Given its
low mass, the main physical decay channel appears only at one loop through the small mixing
with νL (see fig. 1.7). The overall result is a decay N → νLγ, with a peculiar experimental
signature given by the observation of an X-ray with defined energy M/2. This is indeed the
experimental search that has the best possibilities to probe this scenario.

N νL e∓

W±

νL

γ
N νL

W±

γ

νLe∓

Figure 1.7: Feynman diagrams at one loop for the decay of a sterile neutrino N into a photon and a left-
handed neutrino νL. The cross on the fermionic line denotes the νL component of the mass eigenstate N,
which is a mixture of νL and νR.

This keV sterile neutrino is a candidate of Warm Dark Matter (WDM). Depending on the
velocity distribution of the dark matter particles9, three classes of candidates are distinguished:
Cold Dark Matter (CDM), Warm Dark Matter and Hot Dark Matter (HDM). The latter is strongly

8By Φc and (νR)
c we denote the conjugate SU(2)L doublet and Lorentz spinors, respectively. For our notation

and conventions on Dirac and Majorana spinors, see appendix A.
9The velocity distribution depends on the mass but also on the production mechanism and the interaction rates

of this particle.
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constrained as it poorly enhances the formation of structure, and the current bound is that
HDM can constitute no more than 1% of ΩDM. The difference between CDM and WDM is
crucial for low scales: indeed, during the history of structure formation, WDM washes out the
structures at a scale below 100 kpc because of its higher kinetic energy which causes the es-
cape of DM from gravitational wells. Instead, for CDM this effect is relevant only for scales
of 10 kpc or below: therefore, the astrophysical observations of dwarf satellite galaxies, objects
within this range of dimensions, can help to distinguish between the two possibilities [15].

There are hints in the direction of WDM from the discrepancy between the low number of
satellite galaxies observed in the Universe with respect to the predictions of CDM simulations:
this phenomenon, the so-called missing satellite problem, is still under discussion, but seems to
favour the WDM case. Another problem of the CDM paradigm is the predicted steep profile
for the dark matter density near the centre of galaxies, because of the lower velocity profile
which binds more particles to the bottom of the potential. It is difficult to check this prediction
experimentally, and this is the reason why there is still debate about this so-called cuspy halo
problem.

1.4.4 Axions

Another possible dark matter candidate is given by a particle proposed to solve the so-called
“strong CP problem”, the axion. Before discussing its cosmological implications, we review the
strong physical motivations underlying this proposal [16, 17].

In a generic gauge theory, we could add to the Lagrangian a term proportional to tr(Fµν F̃µν),
where F̃µν = 1

2 εµνρσFρσ and Fµν is the non-Abelian field strength tensor. This term violates
parity and time reversal, but not charge conjugation, therefore it violates CP. This insertion
could seem useless, because this term is a four-divergence,

Fa
µν F̃a µν = ∂µKµ ≡ ∂µ

[
εµνρσ

(
Aa

νFa
ρσ −

g
3

fabc Aa
ν Ab

ρ Ac
σ

)]
, (1.8)

and we could expect that the surface integral
∫

Ω d4xFa
µν F̃a µν =

∫
∂Ω dσµKµ vanishes10. This

is not the case, however, in a non-Abelian gauge theory, where the physical requirement that
Fµν →r→∞

0 does not imply Aµ →r→∞
0, but that Aµ is a gauge transformed of 0, and indeed

solutions can be found with Fµν →r→∞
0 without Aµ →r→∞

0. This implies that the surface term is

not vanishing, and that the term FF̃ is not superfluous.
On the other hand, this term is linked to the chiral anomaly. This anomaly is associated to

the chiral (or axial) transformation, which transforms the fermions ψ of the theory into ψ′ =
eiβγ5 ψ: in the absence of a mass term for ψ, this is a symmetry of a gauge theory at the classical
level. In the case of QCD, this symmetry is only approximate, but it is sensible to take the
limit mu, md → 0 since the light quark masses are quite smaller than ΛQCD. At the quantum
level, instead, the axial symmetry does not hold11, because in the path integral formulation

10In this section, we are assuming that a Wick rotation has been performed, in order to work with a Euclidean
metric.

11This anomaly provides a solution to the so-called U(1)A problem [16], a puzzle of the first years of study of
QCD. In the limit of massless up and down quarks, QCD is invariant under a global symmetry U(2)V ×U(2)A; this
symmetry is spontaneously broken by quark condensates 〈uu〉, 〈dd〉 to U(2)V ' SU(2)Isospin ×U(1)B/Z2. There-
fore we would expect four pseudo Nambu-Goldstone bosons as a consequence of the breaking of the approximate
U(2)A, but in the hadron spectrum only the three pions have a reasonably low mass, while the η, η′ mesons have
respectively mη = 548 MeV and mη′ = 958 MeV. This was called the η- or U(1)A-problem by Weinberg in 1975,
who proposed that for some reason the symmetry U(1)A was not present. This turned out to be the correct answer,
as it was shown in 1976 by ’t Hooft in the discussion of the chiral anomaly, i. e. the absence of the symmetry U(1)A
at the quantum level.
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this transformation should be seen as a change of integration variables, which is accompanied
by the introduction of the Jacobian of the transformation. The computation of this Jacobian
brings to the addition in the Lagrangian of a term proportional to Fa

µν F̃a µν, which implies that
the divergence of the axial current jµ

5 = iψγµγ5ψ (in the massless case) is given by

∂µ jµ
5 =

g2N
32π2 Fa

µν F̃a µν , (1.9)

where N is the number of light quark flavours.
The crucial point of the strong CP problem is the following: the right-hand side of eq. (1.9)

must appear explicitely in the effective action of a non-Abelian gauge theory once we take into
account the structure of the vacuum of the theory: the instantonic configurations (to be defined
below) imply indeed the presence in the Lagrangian of the term (1.8), multiplied by the θ angle.
We are going to explain this fact in the following.

Because of the existence of the instantons, localised, topologically non-trivial solutions of
the Yang-Mills equations with a self-dual field strength tensor (Fµν = F̃µν), the true vacuum
of a non-Abelian gauge theory will be the superposition of vacuum configurations |n〉 char-
acterised by different winding numbers (or Pontryagin indices) n, associated to the Aµ field
configuration:

n[A] =
g2

32π2

∫
d4x Fa

µν F̃a µν .

Under a gauge transformation T1 characterized by a winding number of 1, the vacuum |n〉
gets transformed into T1|n〉 = |n + 1〉. Gauge invariance implies that T1 commutes with the
Hamiltonian, therefore the true vacuum is an eigenstate of the operator T1, and is called θ-
vacuum:

|θ〉 = ∑
n

e−inθ |n〉 , T1|θ〉 = eiθ |θ〉 .

If we now consider the vacuum-to-vacuum transition amplitude, we can see that (we denote
with an argument OUT, IN, the state of the system respectively for t → +∞, t → −∞, and we
denote the field strength by Gµν to specialise to QCD)

〈θ, OUT|θ, IN〉 = ∑
ν

eiνθ ∑
n
〈n + ν, OUT|n, IN〉 ,

where we recall that ν = g2

32π2

∫
dσµKµ = g2

32π2

∫
d4x Ga

µνG̃a µν.
Using the path integral definition of the vacuum-to-vacuum transition amplitude, we get

〈θ, OUT|θ, IN〉 = ∑
ν

eiνθ ∑
n
〈n + ν, OUT|n, IN〉 = ∑

ν

eiνθ ∑
n
〈n + ν|

∫
DG eiSQCD |n〉 =

= ∑
ν

eiνθ
∫
DG eiSQCD δ

(
ν− g2

32π2

∫
d4x Ga

µνG̃a µν

)
=

= ∑
ν

∫
DG e

i
[
SQCD + θ

g2

32π2

∫
d4x Ga

µνG̃a µν
]

δ

(
ν− g2

32π2

∫
d4x Ga

µνG̃a µν

)
,

where in the passage from the first to the second line we are imposing that the only contribution
to the matrix elements are those for which SQCD|n〉 = |n + ν〉, i. e. the configurations of Gµ

characterised by a winding number ν.
We see that the presence of instantons produces a non-trivial vacuum characterised by a

parameter θ which appears in the action as a coefficient of the term (1.8): this makes explicit
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the anomalous four-divergence of the axial current, eq. (1.9), and introduces a potentially large
source of CP violation in the Lagrangian.

In the Standard Model, containing the electroweak theory and QCD, the θ coefficient of
the term (1.8) gets an additional contribution [16] from the presence of the quark mass matrix,
which is in general complex: starting from a generic Lmass = qR i Mij qL j + h. c., the diagonali-
sation of the mass matrix involves a chiral transformation with parameter 1

2 arg(det M), which
brings to a shift in the θ angle: in other words, the coefficient of the term (1.8) actually reads

θ = θ + arg(det M) .

The introduction of the term θGG̃ in the QCD Lagrangian has relevant physical consequences
[17]. For example, its contributions to the vacuum energy turns out to be m2

π f 2
π cos(θ), where

fπ is the pion decay constant; the most relevant consequence is anyway its contribution to the
neutron electric dipole moment. Indeed, the presence of this term leads to an electric dipole
moment of the neutron proportional to θ, contradicting the experimental null detection. The
experimental bound |dn| < 3× 10−26 e·cm constrains θ . 10−9. The absence of an explanation
in the SM for the tiny value for this parameter is the strong CP problem.

This fine tuning problem can be faced either by invoking a spontaneous breaking of CP or
an additional dynamics that leads to a nearly vanishing θ.

The most straightforward option, originally put forward by Peccei and Quinn, is to make θ
somehow a dynamical variable: in this way, the minimisation of its potential energy (which we
have mentioned to be ∝ cos θ) brings to θ = 0. This can be done for example by introducing a
real scalar field a (the axion) coupled to QCD with

Laxion = (∂µa)2 +
a/ fa + θ

32π2 GG̃ ,

where fa is called axion decay constant, and by imposing a symmetry under the shift a′ = a+ α
with constant α12. Therefore, the potential energy for this field is periodic and proportional to
cos(a/ fa + θ), and would be minimised by a value of a which dynamically cancels the term
(1.8) from the QCD Lagrangian, eventually solving the strong CP problem.

We can finally discuss the phenomenological consequence of the existence of the axion. Its
mass turns out to be m2

a ≈ m2
π f 2

π/ f 2
a , i. e. ma ≈ (6 µeV) × (1012 GeV/ fa): hence, for a value

of fa around the TeV we get ma ∼ keV, while for higher values of fa around the GUT scale we
obtain ma ∼ 10−9 eV.

The couplings of the axion to matter are all suppressed by f−1
a ; therefore, if the axion de-

cay constant is large enough, it is extremely hard to detect its interactions with matter. The
strongest limits on ma come from the lifetime of red giant stars: indeed, the axion emission du-
ring their evolution contribute with the neutrino emission to the energy loss of the star, and the
observed age of red giants implies an upper bound for ma around 600 µeV. Another important
astrophysical constraint comes from supernovæ: indeed, the observation of the neutrino emis-
sion from the supernova SN1987A (19 events over 10 seconds) in the IMB (Irvine-Michigan-
Brookhaven) and Kamiokande detectors was in good accord with core-collapse model, and
precludes axions in the mass range 10−3 eV < ma < 2 eV [18].

An experimentally interesting signature of axions is offered by their coupling to photons
through a f−1

a aFF̃ = f−1
a a ~E · ~B: this interactions implies that the passage of an axion in a very

strong magnetic field can bring to its conversion in a photon. This is the phenomenon exploited

12This shift invariance can be imposed by introducing a scalar field σ ≡ |σ|ei a
fa and a U(1)PQ global chiral

symmetry, under which σ and the fermion fields are charged. If the potential of σ has a minimum for |σ| = fa, a is
the Goldstone boson associated to the spontaneous breaking of U(1)PQ.
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by various current experiments (ADMX, CAST), which are expected to reach soon interesting
sensitivities in the parameter space.

What are the cosmological implications of axions? First of all, the hypothesis of a standard
thermal relic production with Ωa ≈ ΩDM requires a mass ma around 80 eV. On the other hand,
this value would imply a decay time for an axion in two photons too short on cosmological
scales [3].

Therefore, some other production mechanism for the axion must take place: we can dis-
tinguish two possible cases, depending on whether the energy scale TPQ of the breaking of
U(1)PQ is over or below the reheating temperature TR at the end of inflation [18, 3]. In any
of these cases, axions behave as cold dark matter, even if their mass is tiny, because they are
produced out of the thermal equilibrium with a low energy distribution.

Before the breaking of U(1)PQ, the axion mass is negligible.
In the case TPQ > TR, the spontaneous breaking of U(1)PQ, which generates different values

of 〈a〉 in various patches of the spacetime, happens before inflation, and our Universe today
originated from a region that was very small before inflation, and very likely had an homoge-
neous value of 〈a〉. In that case, the relevant contribution of axions came when QCD effects
became relevant, at an energy scale around 1 GeV. At this point, the field a rolls from its initial
value (some initial phase that we denote by θi) towards the true minimum, where it begins to
oscillate and contributes to the local energy density as non-relativistic matter; this phenomenon
is called vacuum realignment. The current axion energy density is then

Ωa ' 0.15
(

fa

1012 GeV

) 7
6

θ2
i .

If inflation occurs before the Peccei-Quinn phase transition, our observable Universe should
consist of a mixture of many patches with different expectation values 〈a〉. Along their bound-
aries there could lie topological defects, as domain walls, or axionic strings, with observable
effects. The axion production from domain wall decay is expected to be sub-dominant to vac-
uum realignment, but the relic density radiated by axionic string may be of the same order, or
even an order of magnitude larger [3, 19].

We conclude this section with two plots that summarise the limits on the axion’s mass,
decay constant and coupling constant to photons (figs. 1.8 and 1.9).

Figure 1.8: Exclusion ranges for ma (and correspondingly for fa). The dark intervals are the approximate
CAST and ADMX search ranges. The lighter constraints are more model dependent (from [20]).
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Figure 1.9: Current constraints (shaded) and theoretical predictions for two specific models (KSVZ,
DFSZ) in the (ma, gaγ) plane (by gaγ we denote the coupling constant between axions and photons of
the term aFF̃). “Allowed mass” denotes the window of axion allowed by the upper bound on ma from
astrophysical observations (red giants, for example) and the lower bound due to the energy density
predicted by the vacuum realignment mechanism (from [3]).





CHAPTER 2

WIMP candidates

In this chapter, we will describe, following the lines of [1, 2, 3], the possible experimental
searches for dark matter, distinguishing three broad categories: direct, indirect and collider
searches. Then we will focus on the WIMPs, the DM candidates which offer by far the best
chances for detection colliders, and will be the focus of this thesis.

2.1 Searches for dark matter

Keeping in mind the discussion of sec. 1.3 about the possible scenarios for the production of
DM in the early Universe, we can argue that apart from the gravitational interaction, to which
(according to General Relativity) all the particles in Nature are subject, dark matter must couple
also to some of the other components of the Universe with some other (weak) interaction.
Indeed, to be produced after inflation, the DM particle must couple to the inflaton or to some of
the particles generated during the reheating phase (the period after the inflationary expansion
during which the inflaton field decays into the SM particles). Moreover, each of the mechanisms
discussed in sec. 1.3 involves an interaction which, although possibly very weak, must have
been efficient at least at some time in the history of the Universe. In particular, the freeze out
mechanism produces consistent relic densities in the hypothesis of an interaction with the SM
with a strength comparable to the one of the SM SU(2)L interaction: this possibility leaves
room for detection in the near future with some of the methods described below.

Because of these reasons, it is reasonable to assume that there is a non-gravitational interac-
tion between DM and the SM. The generic Feynman diagram involving two DM particles (that
we will denote by X) and two SM particles on the external lines implies three possible search
channels, depending on the temporal direction assumed for the interaction (fig. 2.1).

From this scheme, it is clear that a positive result from any of these searches could be probed
by the other ones, depending on the regions of higher sensitivity specific to each experiment.
Therefore, it is likely that the best constraints we can get about any DM candidate will come
from an interplay of all of the three research channels. A crucial point is to understand in
which limits and with which model (i. e. with which effective field theory parametrisation) we
can compare these constraints. This will be the main conceptual point of the work of this thesis.

23
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Figure 2.1: Schematic Feynman diagrams involved in the three possible searches for dark matter, which
suppose some interaction between the dark matter particle (X) and some of the Standard Model particles
(SM).

2.1.1 Direct searches

Direct searches try to detect the motion of Earth through the DM distribution of our galaxy.
Indeed, the relative motions of the Earth with respect to the Sun (at a speed of 30 km/s) and of
the Sun with respect to the galaxy and therefore with respect to the DM distribution (at a speed
around 220 km/s) imply a relatively large flux of DM particles through the Earth. This flux,
also called “DM wind”, can be quantified as ΦDM ∼ 1011 m−2s−1/(mχ/GeV).

Hence a possible experimental search consists in monitoring a large detector made of a spe-
cific material with high density, in order to maximise the cross section of a DM particle with
one of the nuclei of the detector (see fig. 2.1). The expected signal is extremely low, and can be
observed only if the background of cosmic rays and other sources is minimised: this is accom-
plished by putting the detectors underground, usually in mines or inside a mountain under a
thick layer of rock. This choice reduces the background from cosmic rays with respect to the
surface of the Earth at the order of one over a thousand. Eventually, an important point that
can allow to distinguish the expected signal from the background is the periodicity: indeed, the
flux of DM through the Earth should show an annual modulation, as we will discuss below.

In order to quantify the expected number of events, many inputs from different research
fields must be specified:

• Astrophysical input: we should have a precise estimate of the flux of DM particles, which
depends both on the local density distribution and on the velocity distribution of DM.
The only way to get a detailed prediction is to compare some ansatz for these functions,
which depend on some unspecified parameters, with the result of numerical simulations
and with phenomenological inputs from astrophysics and cosmology. For example all the
density profiles for DM that have been proposed display the common behaviour ρ ∝ r−2,
i. e. a density proportional to inverse of the square of the radial distance from the center
of the galaxy, for r of the order of the galactic visible disk dimension.

• Experimental and Particle Physics input: a careful choice of the material of the detector must
be done. Indeed, depending on the nuclear mass and spin of the nucleus, the event rate is
increased respectively for spin-independent and spin-dependent cross sections with DM,
i. e. cross sections that do not depend (or do) on the spin of the nucleons. Furthermore, in
order to maximise the cross section of the interaction, it is better to choose a material with
high density. Finally, also the cost of the experiment must be taken into account. Just to
mention some relevant examples for the spin-independent searches, the chosen material
in some current experiments are xenon (e. g. XENON100, LUX, ZEPLIN), germanium
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(CDMS, EDELWEISS, CoGeNT), calcium tungstate (CRESST), sodium iodide (DAMA).

We now discuss the estimate of the event rate in direct experiments from a more quantitative
point of view [1, 21, 22].

First of all, we can neglect the scattering of DM with the electrons bound to the nucleus:
indeed, since the incoming DM particle is not relativistic, in the interaction the nucleus is seen
as a bound state (there is not sufficient energy to resolve its costituents), whose geometric cross
section is by far larger than the one with an electron.

The rate R of nuclear recoils due to DM scatterings (event rate) is usually calculated as a
differential rate with respect to the recoil energy ER ≡ mX(v2

out − v2
in)/2, where mX is the DM

mass, and vin and vout are the incoming and outcoming speed of the DM particle in the detector
frame (in this section, all quantities will be understood in the detector frame, unless we specify
otherwise). This is the amount of kinetic energy left by the incoming DM particle in the detector
after the interaction. The scattering between DM and nucleus, given the non-relativistic speed
of DM ( of order 10−3), is in the elastic regime.

The rate of expected events per unit of time and volume follows from the definition of
differential cross section:

d2R
dv dER

=
d2σXN

dv dER

(
v, ER

)
n0 ndet v , (2.1)

where v is the DM speed, n0 and ndet are respectively the local density of DM and the number
density of nuclei in the detector, and d2σXN/dv dER is the differential cross section for the
elastic interaction between the DM particle X and the nucleus N.

We now integrate over the DM velocity, by introducing a suitable velocity distribution: this
is the main astrophysical input, together with n0, and must be deduced from the comparison
of observations and numerical simulations. The usual ansatz for the velocity distribution is the
Maxwell distribution1 with two modifications. First, we must consider that an upper limit for
v is given by the so-called escape velocity vesc, above which a DM particle is not gravitationally
bound to the Milky Way. A standard value is vesc ≈ 650 km/s, but recent analyses suggest
vesc ≈ 544 km/s (see references in [21]). Secondly, the WIMP speed distribution in the detector
frame is obtained through a time-dependent Galilean transformation ~v → ~v + ~vE(t), where
~vE(t) is the velocity of the Earth in the galaxy rest frame, equal to the sum of the Sun’s peculiar
motion~v�, with |~v�| ≈ 220 km/s, and the revolution velocity~vorb

E of the Earth around the Sun.
This vectorial sum can be approximate to |~vE(t)| = |~v�|+ V⊕ cos(2πt), where t is measured in
years (starting from the 1st June), and V⊕ ≈ 30 km/s.

Therefore, the distribution function with respect to the vector velocity ~v of DM is given by
(we understand a normalisation factor)

f̃ (~v) ∝ exp
(
−|~v +~vE(t)|2

2σ2

)
Θ(|~v| − vesc) ,

where Θ(x) is the Heaviside function, and σ is a parameter usually taken in the range 220 km/s
< σ < 270 km/s. This distribution can be integrated with respect to the angular variables,
leading to a speed distribution depending only on v = |~v|, that we will denote by f (v). In
first approximation, the main component of the relative speed of DM particles is the rotation
velocity of the Solar System around the center of the Milky Way, which is of the order of 220
km/s; the peculiar motion of the Sun and the rotation velocity are corrections to this value,
which in turn are by far larger than the peculiar speed of DM particles, which are assumed
follow a Maxwell distribution that today is peaked at velocities around 50 m/s (according

1This is an isotropic distribution, but this assumption does not hold for all the models proposed for the DM
velocity distribution.
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to the CDM paradigm) [23], since the ratio T/m scales as a−2 for a non-relativistic and non-
interacting species.

Returning to eq. (2.1), we can write the differential rate per unit of time and mass (of the tar-
get inside the detector) dividing by the density of the detector material ρdet, then we integrate
over v to get

dR
dER

=
ρ0

mX

ndet

ρdet

∫ vmax

vmin

v f (v)
d2σXN

dv dER

(
v, ER

)
dv , (2.2)

where ρ0 is the local DM density, usually taken equal to 0.3 GeV/cm3, ndet/ρdet gives the in-
verse of the mass mN of a nucleus of the detector, vmax is determined by vesc and ~vE(t), and
vmin is the minimum DM speed which can cause a recoil of energy ER, which turns out to be

vmin =
√
(mNER)/2µ2

N , where µN = mXmN/(mX + mN) is the reduced mass of X and the nu-
cleus. This formula follows from this alternative expression for ER, which can be derived from
kinematical considerations:

ER =

(
1
2

mXv2
in

)
4µN

mX + mN

(
1− cos θ∗

2

)
,

where θ∗ is the recoil angle in the center-of-mass frame. We notice that ER is maximum for a
value of mX equal to mN : if we recall that the detector is sensitive to the recoil energy ER, we
can understand why the limits on the cross sections coming from direct detection experiments
are stronger in the range mX ≈ 10÷ 100 GeV, near to the mass of the nuclei of the target mate-
rial of the experiment. Moreover, from eq. (2.2), we can understand the qualitative behaviour
of the sensitivity of direct detection for high values of mX: indeed, the cross section in first
approximation will be proportional to the a parameter with mass dimension (the cut-off scale
Λ, that will be introduced in eq. (2.3)) raised to the power (−4), thus for dimensional reasons
it will be also proportional to the reduced mass µN , that for mX much greater than mN tends to
the smaller of the two, i. e. mN . Thus the cross section tends to a constant for mX > mN , but the
number density of dark matter, which is the first multiplicative factor in eq. 2.2, can be written
as ρ0/mX, where ρ0 is basically fixed by the observed energy density of dark matter. Therefore,
this factor 1/mX mildly reduces the sensitivity of direct detection for masses mX > mN .

At this point, in eq. (2.2) the only quantity to be discussed is the cross section σXN for the
elastic scattering between X and the nucleus. This cross section can be derived from the micro-
scopic theory through three steps.

First, we can compute the differential cross section for the scattering between a parton (a
quark or a gluon) and X from the microscopic theory: this can be done in a specific model by
using a complete theory (also called ultraviolet or UV theory), or by using an effective field
theory (EFT) approach. In an effective Lagrangian, one considers all the possible effective non-
renormalisable operatorsO(d)

i of mass dimension d between two quarks (or gluons) and two X
fields, each of them with an unknown coefficient c(d)i ,

LEFT = ∑
d≥5

∑
i

c(d)i
Λd−4 O

(d)
i , (2.3)

where Λ is the cutoff scale, which allows to quantify the goodness of the truncation up to a
certain dimension d. Indeed, depending on the energy scale E of the interaction and the value
of Λ, one can approximate eq. (2.3) by truncating the first sum up to a dimension d such that
(E/Λ)d � 1. One think about the Lagrangian (2.3) from the Wilsonian point of view, in which
all the degrees of freedom of a renormalisable theory with energy higher than Λ have been
integrated out, and therefore in the resulting Lagrangian the operators of dimension d ≥ 5
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listed in eq. (2.3) appear. From this perspective, we can be more precise about the condition
(E/Λ)d � 1: in fact, we can relate the cut-off scale Λ to the masses and the couplings of
heavy fields which have been integrated out in the Wilsonian Lagrangian. A more detailed
discussion of the EFTs describing the interactions between DM and SM particles will be given
at the beginning of the next chapter.

Returning to our discussion about the event rate for direct searches, we must now con-
vert the microscopic cross section for the parton-DM interaction to a cross section between a
nucleon (a neutron or a proton) and X. This is done by using the hadronic matrix elements,
i. e. the matrix elements for the operators containing quark or gluon fields, which introduce the
form factors, functions depending on the momentum exchanged in the interaction that must be
measured experimentally and represent the main source of uncertainty in the overall estimate
of the event rate. To mention some possibilities, if some of the effective operators O(d)

i contain
the term qγµγ5q or qγµq, where q is some quark field and γµ, γ5 are the 4× 4 Dirac matrices,
then we should compute respectively Ma = 〈n|qγµγ5q|n〉, where n is a neutron or a proton,
and Mv = 〈n|qγµq|n〉. We have cited this couple of examples (respectively, a vector-axial cou-
pling and a vector coupling) because the final result can depend (as for Ma) or not (as for Mv)
on the spin of the nucleon. This point is very important from the experimental point of view,
because in order to probe spin-dependent interactions it is necessary to use a target with nuclei
with a non-vanishing total spin (in other words, the spin-dependent interaction is a coherent
interaction with all the nucleons, therefore the interference effects can strongly decrease the
cross section). This is why only some experiments are sufficiently sensitive to spin-dependent
interactions, and the exclusion limits for that case are weaker.

Eventually, the quantity σXN can be obtained from the cross section between X and a nu-
cleon through nuclear physics considerations. Thanks to the use of nuclear wavefunctions, we
can get an approximation of the cross section with a nucleus by introducing parameters which
are measured experimentally by nuclear physicists (for further details, see [21] and references
therein).

In fig. 2.2 we report the current limits (fig. 2.2a) on the spin-independent cross section of
nucleon and dark matter from various experiments, together with the claims of detection from
some other competitor ones (fig. 2.2b). In fig. 2.3 we report the corresponding limits for spin-
dependent direct searches.

Fig. 2.2b shows the strong tension between the positive results of some experiments and
the exclusion limits of other ones. There is still a high pitched debate about the interpreta-
tion of these results. Among the reasons why the various experimental collaborations do not
find an agreement in their conclusions, there are the difficulty of understanding all the possi-
ble backgrounds that contaminate the signal (only a few experiments have a preferred signal
region with nearly zero expected events), and the problems in comparing the results of dif-
ferent experiments, which are due to the different materials and DM-SM interactions which
are peculiar to each of them. Moreover, as we explained before, there are various theoretical
uncertainties with respect to astrophysical and particle physics inputs, which are sometimes
faced differently by the experiments. Eventually, it must be said that the current aptitude
among both experimentalists and theorists is usually rather skeptical, mainly because of the
smaller number of positive results with respect to the negative ones, that put exclusion limits
in the signal regions singled out by positive claims. Anyway it is fair to say that there is still
room for proposals about the nature of DM and its interactions which are compatible with both
classes of results. A couple of possibilities that have been explored is that the events observed
in positive detections are due to an inelastic scattering X SM → X′ SM, where X′ is another
new particle slightly heavier than X, or to channeling, a condensed matter effect that lowers
the threshold for cristalline detectors (see references in [3]). If these indications were correct,
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(a) Recent upper bounds at 90% confidence level (CL)
from direct searches on the cross section between a WIMP
and a nucleon, as a function of the mass. The solid
lines represent the upper bounds coming from CDMS II
(red), EDELWEISS II (orange), XENON 100 (green). The
dashed lines refer to projected sensitivities for some fu-
ture upgrades of the experiments, and the point distri-
butions refer to possible theoretical predictions from su-
persymmetric models. The filled regions in the upper
left corner represent claims of detections, which are dis-
cussed in fig. 2.2b (from [24]).

(b) Claims of positive detections from vari-
ous experiments, compared with the exclu-
sion limits coming from competitor ones.
The blue and red lines refer to CDMS II
limits, the orange one reports EDELWEISS
limit and the green ones the XENON limit.
The filled region identify possible signal
regions (at 90% CL or higher) from Co-
GeNT (yellow), DAMA/LIBRA (light or-
ange), CRESST (pink). The overall signal re-
gion from these claims is represented by the
blue dot and contours (68% and 90% CL, for
dark and light blue respectively) (from [25]).

Figure 2.2: Limits from direct searches on spin-independent cross sections for the scattering of DM
(which in the labels on the axes is identified with the WIMP, since this is the DM candidate relevant for
these searches).

Figure 2.3: Limits from direct searches on spin-dependent cross sections for the scattering of DM (which
in the labels on the horizontal axis is identified with the WIMP, since this is the most relevant DM
candidate for these searches) (from [1]).

the favoured parameters would be mX ≈ 1 ÷ 10 GeV and a spin-independent cross section
σSI ≈ 10−41 ÷ 10−39 cm2.
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2.1.2 Indirect searches

Indirect techniques are based on the search of radiation produced in dark matter annihilations,
as sketched in the second diagram of fig. 2.1 [2, 3]. Indeed, the reactions which produced dark
matter in the early Universe are now inefficient (the thermally averaged cross section times the
DM density is much lower than the Hubble rate) and their impact on the DM relic density is
negligible, but dark matter annihilation continues and may be observable.

The flux of the radiation produced by these annihilations is proportional to the annihilation
rate Γann, which in turn depends on the square of the DM density, Γann ∝ ρ2

DM. Therefore
the most promising directions to look at, in order to maximise the probability of detecting the
products of these interactions, are the regions where dark matter accumulates, which are also
called in this context amplifiers. Dense regions of the galactic halo, as the galactic center, are
therefore the target of many astrophysical searches, but also the Sun or the Earth could act as
amplifiers for dark matter annihilations, since DM could lose energy through the scattering
with nucleons inside these objects.

In the following, we will discuss the main types of indirect searches, and eventually we will
briefly discuss two current experimental anomalies which might be related to DM.

As already mentioned, one of the most interesting regions for the indirect detection of DM
is the galactic center, where, according to the results of numerical simulations, the dark matter
density profile is expected to grow as a power law ρ(r) ∝ r−α with α greater than 2, which is
the exponent for the outer region of the galaxy. A consequence of this steep density profile is
that the annihilation rate can strongly increase with α. The products of these annihilations that
could be detected experimentally are photons, with energies ranging from the keV (X-rays) to
the GeV (γ rays), neutrinos, electrons and positrons, and protons and antiprotons. The latter,
being electrically charged, are deviated by the electric or magnetic fields present along the line
of sight (the line departing along the direction of observation of the experiment), and therefore
their spatial distribution is random and does not keep track of the original source. This fact
complicates the probe of dark matter annihilation into electrically charged final products, be-
cause the correlation of these particles with their source is crucial in order to prove that they
are indeed the products of DM annihilations.

Another possibility is to look for the annihilations coming from the Earth or the Sun: be-
cause of the high density of these bodies, DM in the solar system should cumulate towards
their centre because of their gravitational attraction and the loss of energy in elastic scatterings
with nuclei. Among the products of annihilation of DM, neutrinos are the only particles that
could escape from the center of the Earth or the Sun and be detected by experiments. Hence, a
possible search consists in looking for unexpected fluxes of neutrinos coming from the center
of the Earth or the Sun. The best possibilities for this detection come from high energy neu-
trinos: indeed, in the case of a Cherenkov detector, neutrinos of higher energy are more likely
to produce (through a weak charged interaction) a muon, which leaves a track (identified by
the Cherenkov cone) much straighter than the one of an electron, since its energy loss is lower.
Therefore, muon tracks remain more aligned with the direction of the original neutrino, allow-
ing to map the positions of the sources of most energetic neutrinos. A final remark about this
type of searches is that the cross section for production of neutrinos from DM annihilations is
strongly model dependent: for example, for a neutralino candidate (see sec. 2.2.1) there is a non
negligible branching ratio for the production of neutrinos only if its mass is higher than the W
or Z boson mass, while for Kaluza-Klein DM (sec. 2.2.2) the expected flux of very energetic
neutrinos is higher [2].

We now discuss two anomalies observed in the e+, e− cosmic rays and in X-rays, and their
possible interpretation as signals of DM annihilations.

The first one is confirmed by many satellite-based experiments dedicated to the observa-
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tion of cosmic rays, among which the latest one (AMS) gives the most precise measurement
(see fig. 2.4): in an energy range above some GeV, the number of observed positrons is higher
than expected. The positron fraction is expected to be decreasing above this threshold, while
experimentally, up to some hundreds of GeV, is increasing. The origin of this behaviour is still
under debate, and could very well be of astrophysical origin: our modelling of the background
of cosmic rays could miss some astrophysical phenomenon which increases the number of ob-
served positrons in that energy range. Despite this possibility, one may explore the hypothesis
that this excess of positrons comes from DM annihilations. The problem with this proposal is
that the required cross section should be two or three orders of magnitude greater than the one
expected from the freeze out mechanism in order to get the observed relic density. Then the
cross section for this process should be enhanced today with respect to the freeze out time: a
possible way out could be given by the so-called Sommerfeld enhancement, an increase in the non
relativistic limit in the cross section for a process with a massless mediator2 of a factor

S =
παX/v

1− e−παX/v ,

where v is the relative speed of the colliding DM particles, and αX is the fine structure constant
for the interaction that allows the annihilation [3]. Since v was typically around 1/3 at the freeze
out, while today is of order 10−3, in principle this mechanism could seem to accommodate the
prediction. This unfortunately is not true anyway, because the relic density of DM constrains
αX (and then S) from above. There are some other proposed dark matter explanations, but
these seem more elaborate than the astrophysical ones [3].

Figure 2.4: Measurement of the positron fraction, defined as Ne+/(Ne− + Ne+) where Ni is the number
of observed particles of type i, from the experiments of AMS-02, PAMELA and Fermi-LAT, which are
three satellite-based experiment dedicated to the detection of cosmic rays (from [26]).

Another anomaly, recently claimed in [27] and (with a larger data sample) in [28], consists
in the observation of an unidentified spectral line in the X-ray spectrum from various galax-
ies. These analyses consider the spectrum of many galaxy clusters, each of them shifted of an
energy equal to the opposite of the redshift of that object, in order to be able to directly compare
and sum the various spectra. This operation has also the effect of disentangling the final result
from the systematic errors (such as background lines or instrumental response artefacts) which

2In the case of a massive light mediator with mass M∗, S has approximately the same tendence until S ≈
αXmX/mM, which acts as a cutoff.
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have a defined energy: indeed, since these effects occur in the detector frame, the “average” of
spectra of galaxies at different redshifts3 smears out these errors and amplifies intrinsic (though
weak) spectral lines. The result of the two analyses that we have cited is the observation of an
unidentified very weak line at the energy of 3.57± 0.03 keV, which is argued not to correspond
to any atomic transition in the galactic plasma. Both collaborations support the hypothesis that
this line is the result of the decay of a sterile neutrino N (sec. 1.4.3) into a left-handed neutrino
νL and a photon (fig. 1.7). Neglecting the tiny mass of νL, the decay products share each an
energy equal to half of the neutrino mass mN (in the rest frame of N), and indeed the photon
should be monoenergetic4. This observation would imply mN ≈ 7.1 keV. Furthermore, the two
papers give an estimate of the dark matter density along the line of sight, which, together with
the observed flux of X-rays at that energy, allows to infer the lifetime of this DM candidate.
Specialising this formula to the case of a decaying sterile neutrino, the decay width constrains
the mixing angle θ between left-handed and right-handed neutrinos, and it turns out to have
sin2(2θ) ≈ 7 × 10−11. Even if the analysis exposed in [27] seems rather accurate, and finds
a spatial distribution for these X-rays which is peaked towards the centre of the galaxies (as
expected in the case of decaying dark matter), these claims need further confirmations from
upcoming analyses, and also alternative explanations must be considered.

2.1.3 Collider searches

The last diagram of fig. 2.1 suggests another option to investigate the origin of dark matter, in
the hypothesis that some (weak) non-gravitational interaction with the SM occurs: the possible
production of dark matter at colliders.

Because of the extremely weak interaction with ordinary matter, DM is expected not to
leave any track in the detectors and to escape from them undetected: therefore, its experimental
signature is a rather large amount of missing energy5 (/ET). However, some additional trigger
requirement must be chosen, therefore the usual analysis for DM searches involves the search
of a single jet (from quark or gluon initial state radiation) plus /ET [29, 30, 31, 32] or a single
photon (from electromagnetic initial state radiation) plus /ET [33, 34]. The main SM background
for this type of searches comes from the events where a Z boson is produced6 and decays in
two neutrinos (which escape from the detectors too) with an initial state radiation (ISR) of a jet
or a photon. This background could be reduced in principle in an e+-e− collider, where the total
energy of the collision can be tuned far from the resonant production of the Z and the colliding
particles could be polarised (in order to suppress the cross sections for the weak interactions);
this cannot be done unfortunately in a hadronic collider as the LHC, where the initial energy
and polarisation of the colliding partons cannot be constrained [3].

A usual requirement about the DM candidate is that it respects a discrete Z2 parity, and
therefore it should be produced only in pairs. This is a completely reasonable assumption,
indeed the stability of DM on cosmological scales, and the hypothesis that it has some kind
of non-gravitational interaction with the observable sector, makes it very unlikely that in any
typical model there are not decay channels (at higher order in loops) for DM, unless some
discrete symmetry which gives a different quantum number to the observable and the dark

3In [27], for example, the 73 galaxies considered in the sample range in redshift from z = 0.01 to z = 0.35.
4We point out that the observation of a monoenergetic photon, if this is the product of a decay, implies a two-

body decay of some particle X′ into two photons or a photon plus an invisible particle. The latter case includes νLγ
or X′′γ, where X′′ is a stable particle of the dark sector: but then the decaying particle X′ was not the lightest one
in the dark sector, and its relic density should be too low to account for the observed flux of these photons.

5This quantity is defined as /ET ≡ |/~pT|, where /~pT is the opposite of the sum, over all the reconstructed particles,
of their momenta projected onto the plane orthogonal to the beam direction.

6Another relevant background is given by W → `ν events in which the lepton is misidentified as a jet, or it is not
isolated, or it is emitted out of the geometric acceptance region [29].
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sector is preserved. In that case, the lightest particle with a given quantum number for that
symmetry is absolutely stable. This is what naturally happens for example in supersymmetry
and extra-dimension models (sec. 2.2.1, 2.2.2). Hence the relevant Feynman diagrams for the
search of DM at colliders are those of fig. 2.5.
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Figure 2.5: Feynman diagrams for the production of DM at LHC with an additional jet or photon in
the final state (we understand the symmetric diagrams in which the final jet or photon is radiated from
the other incoming parton). The DM final states are drawn with a double straight line, in order not to
assume implicitly a given spin for the DM candidate (in the case of a real scalar field or a Majorana
fermion X, in the final state there are two X particles instead of XX). The cross section for the second
diagram is further suppressed if X is heavy, because of the low value of the gluonic parton distribution
function for high energy fractions.

We must make an additional remark about this type of search. The observation of missing
particles at colliders simply reveals that some particles weakly interacting with the SM were
produced, but it is far from a compelling evidence that this can be the DM candidate. In case of
a positive detection by the experimental collaborations, further studies (or even further collider
experiments) are needed to understand the mass and the lifetime of that particle, and possibly
the branching ratios for its decays. Then, on the basis of these data, one should compute the
thermal relic density and check that the result is consistent with cosmological observations.
Therefore only further analyses and complementary studies of a discovered “invisible” particle
with different experimental approaches can convince that this is indeed the DM candidate: this
consideration is very relevant for collider searches [3].

We now turn to a more detailed discussion of the experimental results. We focus on the
monojet search [29, 30, 31, 32], which at hadron colliders gives stronger limits with respect to
the monophoton search.

In table 2.1 we present the selection cuts imposed on the data sample by the two experi-
ments CMS and ATLAS. Apart from some minor differences, the common goal of their selec-
tion is to select events with a large amount of /ET and an energetic jet, by suppressing QCD dijet
events and rejecting events with isolated leptons coming from the hard scattering.

The estimates of the two main backgrounds that we have already mentioned, the Z(→
νν) + j and W(→ `ν) + j events, are done by using the data sample, while other minor back-
grounds are estimated through Montecarlo (MC) simulation. Both analyses find a number of
events in the data passing the selection cuts compatible with the SM expectations, and are
therefore able to put the exclusion limits reported in table 2.2 (for CMS) and figure 2.6 (for
ATLAS).

These exclusion limits can be interpreted also in terms of an effective field theory descrip-
tion, as we have outlined in sec. 2.1.1. We can choose a subset (or all) of the effective operators
of mass dimension ≤ d, and assume that the corresponding EFT description can be used to
predict the number of events generated at the collider, by computing the corresponding cross
section. This assumption is very delicate when we are dealing with the energy regimes of col-
liders [35, 36, 37], because the energy Q exchanged during the parton interaction is very high
and could even reach the energy scale of the mass M∗ of the mediator of the interaction be-
tween DM and SM: the nearer is Q to M∗, the poorer is the prediction of the EFT about the
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CMS [31] ATLAS [32]

Cut on /ET

/ET > 250, 300, 350, 400
450, 500, 550 GeV

/ET > Ei, where Ei, depending
on the signal region, is equal to
120, 220, 350 or 500 GeV

Jets requirement

pT(j1) > 110 GeV pT(j1) > Ei
|η(j1)| < 2.4 |η(j1)| < 2.0

∆φ
(
~pT(j1), ~pT(j2)

)
< 2.5 ∆φ

(
/~pT, ~pT(j1)

)
> 0.5

No more than 2 jets with No more than 2 jets with
|~pT| > 30 GeV and |η| < 4.5 |~pT| > 30 GeV and |η| < 4.5

Lepton veto
No isolated µ, e with No e with |~pT| > 20 GeV, |η| < 2.47
|~pT| > 10 GeV No µ with |~pT| > 7 GeV, |η| < 2.5

Table 2.1: Main selection cuts imposed by CMS (luminosity of 19.5 fb−1 of 2012 data at a collision energy
of
√

s = 8 TeV) and ATLAS (luminosity of 10 fb−1 of 2012 data at a collision energy of
√

s = 8 TeV) in
the monojet search. We denote the jets of the event as ji and we order them by decreasing |~pT|. If we use
polar coordinates and denote by θ the angle between a particle track and the beam axis, and by φ the
angle in the transverse plane with respect to the plane of the collider, we can define the pseudorapidity
as η ≡ − ln tan(θ/2).

/ET (GeV)→ ≥ 250 ≥ 300 ≥ 350 ≥ 400 ≥ 450 ≥ 500 ≥ 550

Total SM 49154 ± 1663 18506 ± 690 7875 ± 341 3663 ± 196 1931 ± 131 949 ± 83 501 ± 59
Data 50419 19108 8056 3677 1772 894 508
Expected 3580 1500 773 424 229 165 125
Observed 4695 2035 882 434 157 135 131

Table 2.2: Exclusion limits reported by CMS (luminosity of 19.5 fb−1 of 2012 data at a collision energy of√
s = 8 TeV) in the monojet search, given as upper limits (at 95% CL) on the number of non-SM events

that could pass the selection cuts, normalised to the luminosity of the data sample [31].

Figure 2.6: Exclusion limits reported by ATLAS (luminosity of 10 fb−1 of 2012 data at a collision energy
of
√

s = 8 TeV) in the monojet search, given as upper limits on the visible cross section, which is equal to
the absolute cross section multiplied by the event acceptance and the identification efficiency [32].

process. In particular, when the collision energy is sufficient for a resonant production of the
mediator, the cross section in the complete theory receives an enhancement that the EFT cannot



34 2. WIMP candidates

predict, thus the limit predicted by the effective theory underestimates the true limit.
This is the approach used in [32] to deduce exclusion limits on the cutoff scale Λ of the

EFT description, on the basis of the exclusion limits from the collider experiments. In fig. 2.7
we report the result obtained in [32] for the lower limit of Λ as a function of the DM mass
mX. The procedure to obtain these limits is the following: one computes the cross section of an
EFT including only a chosen operator, for the production of XX + j, which will be a function
of the two parameters mX, Λ. Then, for each value of mX, one can convert the experimental
upper limit on the cross section for that process (obtained from the ATLAS experiment) into a
lower limit on the cut-off scale Λ. In fig. 2.7 we report the results for the three possible effective
operators for the interaction between two partons and two DM particles, which are listed in
table 2.3. All these operators assume that the DM particle X is a Dirac fermion.

Name Initial state Lorentz structure Operator Mass dimension

D5 q, q vector-vector
1

Λ2 XγµX qγµq 6

D8 q, q pseudovector-pseudovector
1

Λ2 Xγµγ5X qγµγ5q 6

D11 g, g scalar
αS

4Λ3 XX (Ga
µν)

2 7

Table 2.3: List of possible EFT operators for the interaction between two SM particles (indicated in the
column “Initial state”) and two DM particles, in the hypothesis that the latter is a fermion. These are the
operators used in [32] to get lower limits on Λ.We notice that the definition of D11 includes the strong
coupling constant αS because this operator typically arises at one loop in the UV theory.

We can see that the lower limits on the cut-off scale are very different, depending on the
operator under exam. In particular, we see that the limits for the operators D5 and D8 are very
similar, while the limit for D9 is stronger and the one for D11 is much weaker.

2.2 WIMP candidates for dark matter

In this section we review a class of DM candidates that was postponed in the discussion of
sec. 1.4, the WIMPs, which are the best candidates within our current experimental reach, in
particular at colliders. We discuss three categories of WIMPs: the first is the Lightest Super-
symmetric Particle (LSP), which is surely one of the most motivated from the point of view of
particle physics, then we discuss the Lightest Kaluza-Klein Particle (LKP) that arises in theories
with extra dimensions, and finally we sketch some possibilities along another possible scenario,
in which one tries to get a viable DM candidate by adding the least number of ingredients to
the SM.

2.2.1 Candidates from supersymmetry

The first studies of supersymmetry (SUSY in the following) date back to the beginning of the
’70s in two dimensional string theories; then Wess and Zumino discussed the first SUSY model
by focusing on the properties implied by a transformation that links scalar and fermionic fields,
and some years later the SUSY algebra turned out to be the only extension of the Poincaré al-
gebra consistent with a non trivial S-matrix (Haag-Lopuszanski-Sohnius theorem) (for a peda-
gogical review see [38] and references therein).

It is quite impressive that some of the most critical problems of the SM, as the hierarchy
problem, or dark matter, or the inclusion of quantum gravity, found only later in SUSY, respec-
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Figure 2.7: ATLAS lower limits at 90% CL on the cutoff scale Λ as a function of the mass mχ, each of
them obtained by assuming that the DM-SM interaction proceeds only with the operator indicated in
the legend. The uncertainties around the expected limit (blue ±1σ and ±2σ band) include the varia-
tion expected from statistical fluctuations and experimental systematic uncertainties on SM and signal
processes. The thin dotted lines around the observed limit show the impact of theoretical uncertainties.
The green line shows the value of Λ which would give the correct cross section in order to yield the
observed relic abundance, in the hypotheses that the production mechanism is the freeze out and that
the corresponding operator is the only contribution to the DM-SM interaction. The light grey areas in
the lower right corner indicate the region where Λ > mX/(2π), where the EFT approach must break
down because the kinematics imposes a momentum transfer greater than M∗ (in the hypothesis that the
couplings of the mediator to DM and SM remain in the perturbative regime gq, gX < 4π).

tively, a coherent explanation (or at least a mitigation of the problem), a WIMP candidate, and
the hint of a possible path to the solution (supergravity and superstring theories).

In this thesis, we will not provide a detailed introduction to SUSY and to the simplest su-
persymmetric extension of the SM, the so-called Minimal Supersymmetric Standard Model
(MSSM), we refer to [38] for this. We mention only the basic facts that are needed to introduce
the DM candidates from SUSY.

We begin by summarising in table 2.4 the supersymmetric multiplets contained in the
MSSM, in order to fix the notation and to introduce the fields contained in this model. The
supersymmetry transformations relate each of these fields to the other fields contained in that
supermultiplet.

A part of the MSSM Lagrangian describes the kinetic terms and the usual gauge interactions
for each of the scalar and spinor fields, with the addition of the “supersymmetrised versions”
of the interactions [38], i. e., for each interaction vertex, there is also an interaction where two
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Names spin 0 spin 1
2 spin 1 (SU(3)C, SU(2)L, U(1)Y)

squarks, quarks
Q (ũL d̃L)

T (uL dL)
T (3, 2, 1

6 )
Uc ũ∗R (uR)

c (3, 1, − 2
3 )

(×3 families) Dc d̃∗R (dR)
c (3, 1, 1

3 )

sleptons, leptons L (ν̃L ẽL)
T (νL eL)

T (1, 2, − 1
2 )

(×3 families) Ec ẽ∗R (eR)
c (1, 1, 1)

Higgs, higgsinos
Hu (H+

u H0
u)

T (H̃+
u H̃0

u)
T (1, 2, 1

2 )

Hd (H0
d H−d )T (H̃0

d H̃−d )T (1, 2, − 1
2 )

gluino, gluon (a = 1, . . . , 8) G̃a Ga (8, 1, 0)

winos, W bosons W̃± W̃0 W± W0 (1, 3, 0)

bino, B boson B̃ B (1, 1, 0)

Table 2.4: Field content of the MSSM.

among the interacting fields are replaced by their supersymmetric partners, and the others are
left unchanged. One of such vertices that will be cited in the following (to discuss the mass of
the DM candidate) is the interaction between the neutral Higgs field H0

i (where i denotes u or
d), the neutral Higgsino H̃0

i and one gaugino between W̃0 and B̃.
In addition to this part of the Lagrangian, there is also a contribution from the so-called

superpotential W. This is defined as a function of the superfields (that we generically denote
Φi), and its contribution to the resulting Lagrangian in terms of the component fields (among
which we denote by φi and ψi the corresponding scalar and fermion field, respectively) is given
by

∂2W
∂Φi∂Φj

∣∣∣∣
Φi→φi

ψ
iPLψj +

∣∣∣∣∣ ∂2W
∂Φi

∣∣∣∣
Φi→φi

∣∣∣∣∣
2

,

where the subscript Φi → φi means that, after the derivative calculation, the superfields must
be replaced by their scalar components. For the MSSM, the superpotential is

WMSSM = UcYuQHu − DcYdQHd − EcYeLHd + µHuHd , (2.4)

where Yi (i = u, d or e) are the 3 × 3 Yukawa matrices in the flavour space, and µ is a real
constant with the dimension of a mass.

Since L and Hd have exactly the same quantum numbers under the SM gauge group (see
table 2.4), we could also add to the superpotential the terms where the Hd multiplet is replaced
by L, and also a term of the form UcDcDc. The problem with these terms is that they would
violate the baryonic (B) and/or leptonic (L) number, which are extremely constrained by the
experiments. These quantum numbers are defined for the various multiplets as follows: B =
+1/3 for Q, B = −1/3 for Uc and Dc, and B = 0 for the others; L = +1 for L, L = −1 for Ec

and 0 for the others.
The way to forbid these term in the superpotential (and therefore to avoid strong unmoti-

vated fine tuning) is to impose that a discrete Z2 symmetry is preserved, the so-called matter
parity. This quantum number is defined on the superfields as (−1)3B−L, and imposing that
each term of WMSSM must have a matter parity number equal to +1 forbids the unwanted terms
to appear. This symmetry (which commutes which the supersymmetry transformations) can
be equivalently rephrased in term of the R-parity, which is defined on the component fields
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as (−1)3B−L+2s, where s is the spin of each field in a supermultiplet7. We can now justify the
choice of the notation for the fields in table 2.4: in fact, we have denoted with a tilde all the
fields with R-parity equal to −1, which are the superpartners of the SM particles (including in
this case an extended Higgs sector).

R-parity has important physical consequences, and the most relevant is directly linked to
what we have discussed in sec. 2.1.3: the lightest particle with R-parity equal to −1 cannot
decay into lighter particles because otherwise it would violate R-parity, therefore it is abso-
lutely stable. This is exactly the type of discrete symmetry that could make the DM candidate
stable on cosmological scales. Therefore, the MSSM predicts a DM candidate if the lightest
supersymmetric particle (LSP) is electrically neutral.

The remaining part of the MSSM Lagrangian is denoted by Lsoft and includes the soft su-
persymmetry breaking terms: Lsoft arises when supersymmetry is spontaneously broken and
some heavy sector describing spontaneous supersymmetry breaking is integrated out. Indeed,
exact supersymmetry implies that all the fields belonging to the same supermultiplet have the
same mass: since this is evidently far from what happens in Nature, supersymmetry, if present
at a higher scale, must be spontaneously broken at the electroweak scale. For the MSSM, Lsoft
is

Lsoft =−
1
2

(
M3G̃aG̃a + M2W̃ iW̃ i + M1B̃B̃ + c.c.

)
−
(

ũ∗RAuQ̃Hu − d̃∗RAdQ̃Hd − ẽ∗RAe L̃Hd + c.c.
)

− Q̃∗m2
QQ̃− L̃∗m2

L L̃− ũ∗Rm2
uũR − d̃∗Rm2

dd̃R − ẽ∗Rm2
e ẽR

−m2
Hu

H∗u Hu −m2
Hd

H∗d Hd − (bHuHd + c.c.) ,

(2.5)

where the indices a and i run respectively on 1, . . . , 8 and 1, 2, 3, and Au, Ad, Ae, m2
Q, m2

L, m2
u,

m2
d, m2

e are complex 3× 3 matrices in the flavour space. The parameters M1, M2, M3 and b can
be complex, but are taken to be real in many phenomenological analyses, for simplicity and to
avoid strong constraints from CP-violation.

We can now discuss the possible LSP candidates in supersymmetric theories.

• Neutralino: this is the name given to each of the mass eigenstates which arise as a mixing
of the four neutral fermion fields B̃, W̃0, H̃0

d and H̃0
u. These fields have the same quantum

numbers, therefore the mass eigenstates (that we will denote by χ̃0
i , i = 1, . . . , 4) will be

a mixing among them; a similar diagonalisation must occur in the (H̃±u , W̃±) space, and
the corresponding Dirac eigenstates are called charginos. After the electroweak symmetry
breaking (EWSB), the expectation values of the neutral Higgs bosons are 〈H0

u〉 = vu,
〈H0

d〉 = vd. Then the mass matrix in the MSSM in the (B̃, W̃0, H̃0
d , H̃0

u) space is

Mχ̃0 =


M1 0 −g′vd/

√
2 g′vu/

√
2

0 M2 gvd/
√

2 −gvu/
√

2
−g′vd/

√
2 gvd/

√
2 0 −µ

g′vu/
√

2 −gvu/
√

2 −µ 0

 , (2.6)

where the terms M1, M2 appear in Lsoft, µ comes from the so-called µ-term of the su-
perpotential (eq. (2.4)), and the other mass terms come from the higgsino-gaugino-Higgs
boson gauge interaction vertex after EWSB. The eigenvalues of this matrix are the masses
of the neutralinos. The lightest among them can be the LSP, depending on the overall

7R-parity is equivalent to matter parity, because for each interaction vertex of the MSSM the product of (−1)2s

for the correponding fields is equal to +1.
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mass spectrum of the model which is determined by the values of the coefficients of Lsoft
and the expectation values vu, vd.

• Sneutrino: this scalar superpartner of the neutrino is potentially a viable DM candidate
because it is a colour singlet and is electrically neutral. Today, however, the searches
performed at colliders (in particular at LEP) and in direct searches have nearly ruled
out this candidate in the MSSM. Indeed, since the sneutrino interacts via the Z boson,
it would have been already detected in direct searches if it was the DM particle, and
sneutrino masses below mZ/2 are ruled out by the agreement of the invisible width of
the Z boson measured at LEP with the value predicted by the SM. Extended models with
right-handed or sterile neutrinos may reopen the possibility of sneutrino dark matter by
lowering the interaction cross section.

• R-hadrons: this is the name given to condensates of squarks and gluinos which are singlets
of the strong interaction SU(3)C. They can be seen as “supersymmetrised” versions of
the hadrons of the SM: they could be DM candidates, since they are electrically neutral.
They are a candidate of Strongly Interacting Massive Particle (also called SIMP). Today
they basically ruled out by the strong constraint from the Earth heat flow: when the dark
matter capture rate in Earth is efficient, the rate of energy deposition by dark matter self-
annihilation products would grossly exceed the measured heat flow of Earth. The limits
from this constraint exclude a nucleon-DM cross section higher than around 10−34÷ 10−33

cm2, severely restricting the chances that this could be the DM candidate [39, 40].

• Gravitino: this is the spin-3/2 superpartner of the graviton in supergravity theories. Its
mass is related to the the supersymmetry breaking scale F (of the dimension of a mass
squared) by mG̃ = F/(

√
3MP), where MP = 1/

√
8πG is the reduced Planck mass. There

is no theoretical reason to expect the gravitino to be heavier or lighter than the lightest SM
superpartner, thus the gravitino has the same chances of the neutralino to be the LSP. As
discussed in section 1.4.2, the gravitino is likely to be a SuperWIMP candidate, i. e. a very
weakly interacting candidate that decoupled from the thermal bath in the early universe
through the mechanism of the freeze out and decay (sec. 1.3.2).

2.2.2 Lightest Kaluza-Klein particle

Another important class of DM candidates is given by the so-called Lightest Kaluza-Klein par-
ticles, which arise in models with extra dimensions with respect to the usual four spacetime
dimensions ([41] and references therein).

The ancestor of these models is the well known proposal put forward by T. Kaluza in 1919
(his article was published in 1921), and improved by O. Klein in 1926. With the intention to
unify gravity and electromagnetism, Kaluza proposed a theory with a five dimensional space-
time, in which the metric GAB(X), with A, B = 0, 1, 2, 3, 5, X = (xµ, y), does not depend on
the fifth extra spatial coordinate y. In his model, the four vector Gµ5 is associated with the
electromagnetic potential, and the Einstein’s equations RAB − 1

2 GABR = κ2TAB bring to the 10
usual equations for general relativity for A, B = 0, . . . , 3, while for A = 0, . . . , 3, B = 5 they
yield Maxwell equations after a suitable identification of the charge. Moreover, Klein pointed
out that the periodicity of the fifth direction had to do with quantization, since the momentum
in the fifth direction had to be an integer multiple of 1

` , where 2π` m is the period in the y
direction. Even if this theory turned out to be inconsistent, many of its features are common to
many successive higher dimensional theories.

Extradimensional models returned to be amply studied at the end of the 90’s with more
emphasis on phenomenology. An important paper by Arkani-Hamed, Dimopoulos and Dvali
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in 1998 in the contezt of supergravity and superstring theories suggested that spacetime can
have more than 4 dimensions and all the SM particles are confined to a four-dimensional sub-
variety, referred to as a “3-brane”. The only fundamental force whose interactions spread in
the extra dimensions is gravity, and they postulate that in the higher dimensional spacetime
general relativity holds, and deduce the consequences for our world on the 3-brane. They ob-
serve that the limit on the size of the extra dimensions would then be fixed by the experimental
tests on Newton’s law of gravitation, which are now probing the µm scale. In their proposal,
the weakness of gravitational forces is due to the leak of gravity into the extra dimensions, and
the hierarchy problem is translated into the problem of the discrepancy between the large size
of the extra dimensions and the value of the Planck length.

Among the various subsequent proposals, the Randall-Sundrum (RS) set-up is one of the
most promising. They propose that the SM particles are confined on a 3-dimensional brane
living in a 5-dimensional anti de Sitter space time, where only gravity can propagate. In their
model, the weak scale is generated from the Planck scale through an exponential hierarchy,
arising from the background metric: in this way, only a modest fine-tuning is required with
respect to what is needed in ADD model.

These proposals encouraged many phenomenological investigations of models of extra di-
mensions, also called Kaluza-Klein (KK) models. Their common feature is the presence of
“towers” of discrete levels of excited states with respect to the ordinary SM particles, due to
the quantisation of the momentum of the fields (gravitons, or in some cases also the SM par-
ticles) along the extra dimensions. The first level of excited states can be produced at energies
of the order of 1/R, where R is the radius of compactification of the extra dimension, which
ranges from the order of the meV−1 (≈ mm) in ADD models, to the TeV−1 (≈ 10−18 m) when
ordinary particles can propagate in extra dimension, or even to M−1

P .
The excited KK states are in general not stable, since they can decay to states of lower

energy. The discrete Z2 symmetry that insures the stability of the Lighest KK Particle (LKP) is
the so-called Kaluza-Klein parity, a discrete symmetry related to the conservation of momen-
tum along the extra dimension, which remains unbroken in a some specific class of models
named Universal Extra Dimensions (UED). This symmetry allows for the LKP, if it is electri-
cally neutral with interactions of a strength comparable to that of the electroweak force, and if
the extra dimension has a size of the order of the TeV−1 , to be the DM candidate.

Among the relevant possibilities for the LKP that arise in various extra dimensional models,
we cite the following:

• KK graviton: in the original ADD proposal, it is the only field that can propagate in the
extra dimension. This is a SuperWIMP candidate, and would be produced in the early
Universe analogously to the gravitino in supergravity theories. In some scenario, without
some fine tuning it tends to have parameters that overclose the universe (i. e. that brings
to an energy density higher than the critical one corresponding to a flat universe);

• KK gauge boson: the lightest neutral mass eigenstate among the excited states of the elec-
troweak bosons (the equivalent of the photon, that in KK modes is mainly composed
by the excited state B1 of the B boson), could the a WIMP candidate for DM. In some
scenarios, also the Z1 or H1 (the excited states of the Z and H bosons) can be the LKP;

• KK neutrino: also the excited state of the left-handed neutrino could be the dark matter
candidate;

• KK radion: it is the scalar degree of freedom related to the size of the extra dimension. It
has typically the same mass and coupling of the KK graviton, and it is also affected by an
overclosure problem in some models;
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• KK branon: these excited states corresponds to brane fluctuations, in models where the SM
particles are confined on a brane. They can be thought as the Goldstone bosons arising
from spontaneous symmetry breaking of translational invariance in the presence of the
branes.

We do not discuss thoroughly the various classes of extra dimensional models, which dis-
play also remarkable differences between them; we have mentioned some relevant examples
just to show the variety of DM candidates provided by this class of theories.

2.2.3 Minimal dark matter

The two classes of model that we have discussed in the previous two sections have a strong
motivation in the solution of the gauge hierarchy problem. The “little hierarchy problem” that
arose after LEP (and is confirmed by the present results of the LHC), i. e. the agreement of
the predictions of the SM with the results of the collider searches, which points to a mild fine
tuning in the Higgs boson mass if the scale of new physics is around or above the TeV scale.

An alternative approach, motivated also by the little hierarchy problem, is to give up solv-
ing the hierarchy problem, and to consider the DM problem as the starting one for model
building. Within this approach, we review the main features of the so-called minimal dark mat-
ter (MDM) proposal [42].

This approach, proposed by Cirelli and Strumia, consists in adding to the SM the minimal
set of ingredients for DM: only one electroweak multiplet X (which can be a complex scalar
or a Dirac fermion field), singlet under SU(3)C in light of the exclusion limits from the Earth’s
heat flow mentioned when discussing R-hadron candidates. Moreover, to minimise the as-
sumptions, no discrete symmetry is introduced to make the DM stable: only the electroweak
multiplets that do not allow for interactions that would lead to a rapid decay of DM are con-
sidered. Therefore, in the absence of interactions with the SM particles apart from the gauge
interactions, the only parameter of MDM is the mass M of the electrically neutral component
of X .

If we denote by (n, Y) the quantum numbers under SU(2)L ×U(1)Y, n must be lower or
equal to 5 (for fermionic X ) or 8 (for scalar X ) in order not to accelerate too much the running
of the coupling constant of SU(2)L, bringing to non-perturbative values at the Planck scale, and
by requiring a value of Y such that there is an electrically neutral component of X . Now, direct
detection constraints for a DM particle interacting with the exchange of a Z boson require Y to
be 0. Furthermore, by excluding the choices of n that allow for operators that can bring to the
decay of X 0, only two possibilities are left: a fermionic 5-plet and a scalar 7-plet. The scalar
option would leave room for a non-minimal quartic interaction with the H boson (the so-called
Higgs portal), thus Cirelli and Strumia consider only the 5-plet option. It is clear that such high-
dimensional SU(2)L representation cannot bring to an interaction with the SM fermions that is
renormalisable and singlet under the SM gauge group: thus the stability of DM comes out as
an accidental property of the model, and is not gained through additional discrete symmetries.

Once the multiplet is fixed, the only parameter M is constrained by the requirement of the
correct relic abundance through the freeze out mechanism. The calculation of the relic density
for the DM candidate requires taking into account the Sommerfeld enhancement, discussed
in sec. 2.1.2, since the weak interaction bosons turn out to be much lighter (of two order of
magnitude) than X 0. This effect increases the cross section, and implies a value for M of 9.6
TeV. This WIMP candidate has a higher mass than the typical ones (below the TeV) because of
the Sommerfeld enhancement and the coannihilations with its charged partners, which have
very similar masses: in particular, the mass of the X± is only 166 MeV higher than M.
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At colliders, the searches for this candidate are nearly hopeless: indeed, a clear signature
could come from the production X± rather than from X 0, but the energy needed to produce
X+X− is much higher than the one reachable by the LHC. Apart from that, the X± particles
would decay into X 0π± within an average distance τ = 1.8 cm because of the small mass
splitting, that also implies a rather low energy for the pion: a similar track represent a difficult
signal for triggers.

Direct searches have better chances to detect the MDM candidate, because its interaction
cross section with nucleons is around 10−44 cm2, which is within the reach of future exper-
iments. On the other hand, indirect searches are even more likely to detect a signal of X 0

annihilations, which would produce W+W− pairs that in turn decay to all particles: e+, p, γ,
ν. Furthermore, the cross section would still be increased by the Sommerfeld enhancement,
thanks to the large difference between M and the mass of the gauge bosons. For a more com-
plete discussion about the possibilities of detection through the various indirect searches, see
[42].





CHAPTER 3

Discussion of two simplified models for DM

3.1 From effective theories to simplified models

As we have seen in the previous two chapters, there is plenty of DM candidates in many ex-
tensions of the SM. Even by restricting to the candidates that have the best options to be seen
at colliders or in direct searches, the WIMP candidates, described in sec. 2.2, within each of
the scenarios we have introduced there are different specific models, each with its own pe-
culiarities. To derive and discuss the constraints from experiments, it is clear that it is not
practical to take each of the possible models and derive the exclusion limits on its specific pa-
rameters. It would be a burdensome task, and rather meaningless because by changing slightly
the characteristics of the model we could change the exclusion limits. Furthermore, in some of
the experimental set-ups the energy of the interaction could be below the threshold needed to
appreciate the details of a complete theory: in other words, an experiment cannot excite the
degrees of freedom of energy higher than its energy scale. Thus, in such a situation, there is no
need to specify the whole theory, and the effective theory can sometimes take into account all
the physical phenomena relevant to the experiment.

This type of considerations motivated the study of the exclusion limits coming from various
searches in terms of the effective operators describing the interaction of DM with SM particles:
some of the first papers that introduced an EFT analysis for the collider limits are [40, 43]. This
approach became even more motivated after direct and collider searches began to rule out ap-
preciable regions of the parameter space, motivating a more agnostic approach in the search
of DM. A valuable advantage of the use of effective theories for the parametrisation of DM
interactions is that, once one fixes a maximum mass dimension for the operators of the EFT,
their number is limited, and one can parametrise virtually any complete model through a finite
number of coefficients. The fragile side of this approach is that the approximate equality be-
tween the predictions of the complete theory and those of its effective description breaks down
around the cut-off energy scale, which depends in general on the details of the microscopic
completion of the theory. Recently, this has been the subject of many studies, which pointed
out that at the energy regimes of collider searches the EFT is usually not applicable: the conse-
quence is that, with the increase in the energy of the interaction, the predictions of the complete
theory begin to deviate from those of a given complete theory.

This problem clearly requires an overcoming of the naı̈f EFT approach, especially in sight

43



44 3. Discussion of two simplified models for DM

of the higher energy collisions expected in the next runs of the LHC or of the next planned
colliders. The most sensible option is to identify benchmark renormalisable theories that allow
a control over the validity of the corresponding effective theory ([35, 36, 37, 44] and references
therein). These models are usually called simplified models, since they can be seen as a simpli-
fication of existing theories beyond the Standard Model, where one specifies a renormalisable
theory that introduces a minimal set of new fields, usually only the DM particle and the me-
diator of its interactions with the SM. However, the meaning of these models is deeper than a
mere depletion of more complete and sophisticated theories: indeed, simplified models cap-
ture essential features of more extended theories, thus share with effective theories a degree of
generality that makes them very useful as a tool to parametrise different models. Simplified
models are broad enough to include the features of classes of models, but on the other hand
allow a precise control of the range of validity of the corresponding EFT. In this sense, they
capture the main advantages of both the effective theory approach (because of their genera-
lity: a few simplified models can include many of the possible scenarios for particle DM) and
complete UV theories such as for example the MSSM or the Kaluza-Klein set-up (because they
allow a control over the limits of validity of the effective theory approach).

3.2 Our simplified models

In this thesis we will consider two simplified models, described in sections 3.2.1 and 3.2.2. In
both models, DM is a fermion neutral under SM gauge groups, and interacts via a particle
mediator with the quark sector of the SM: the main difference will be in the mediator of the
DM-SM interaction.

We choose to restrict the interaction to the quark sector, leaving aside the leptonic one to
avoid the limits from e+-e− colliders and electroweak precision tests. Our choice leads to com-
parable limits from direct detection and collider searches. Indeed, in direct searches (where the
kinematic regime is non-relativistic) the cross section of the interaction of DM with the whole
nucleus is by far larger than the cross section with a bound electron. Thus, for DM interacting
only with leptons the interaction with nuclei would arise at one-loop, yielding looser limits.

3.2.1 Model A: vector mediator

In this model we consider a massive vector mediator Z′ that makes the DM candidate X interact
with the quarks. We assume that X is a Dirac fermion, and that in the interaction Lagrangian
the field Z′µ is coupled to a axial vector current built out of X and the quarks: this is the only
renormalisable interaction (together with the vector one) between a fermion and a vector boson
that preserves Lorentz invariance.

Therefore the Lagrangian for this model is

LModel A = LSM + LZ′ + LX + Lint ,

LZ′ = −
1
4

Z′µνZ′µν +
1
2

m2
Z′Z
′
µZ′µ , Zµν = ∂µZ′ν − ∂νZ′µ ,

LX = iXγµ∂µX−mXXX ,

Lint = Z′µ Jµ
Z′ = Z′µ

(
gq ∑

flavours
qγµγ5q + gXXγµγ5X

)
,

(3.1)

where the sum is understood to be over all the six quark flavours, LSM is the SM Lagrangian
and the four real parameters1 of the model are gq, gX, mZ′ , mX.

1The couplings gq, gX must be real so that the Lagrangian is real. On the other hand their relative sign is not
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We could see the interaction of this model as a mimicry of a U(1) gauge interaction: indeed
a possible high energy scenario that motivates this model is the spontaneous breaking of a
Grand Unified Theory (GUT) to the SM gauge group, leaving this U(1) as a remnant subgroup.

The choice of an axial vector interaction instead of a vector one is very relevant: indeed, this
implies that, at the leading order, the interactions between DM and the nuclei in direct searches
are spin dependent, and thus the constraints from these experiments on the parameters of the
model are much looser.

Another important choice involves the quark couplings to Z′: in eq. (3.1) we have assumed
a diagonal coupling matrix Gij = g13 in the quark family space, for both up- and down-type
quarks. Indeed, writing a non-diagonal mass matrix would introduce flavour changing neutral
currents that are strongly constrained by experimental limits. The most natural assumption is
then that the three couplings are equal, so that G = g13 and the quarks can be rotated in
any basis without changing the interaction with the Z′. The only degree of freedom left is the
possibility to assign two different couplings to down-type and up-type quarks: for simplicity,
we assume that these two couplings are equal. This choice would correspond to gauging an
“axial baryon number”2; it also allows to write the sum over the quark flavours in eq. (3.1) in a
SU(2)L invariant way.

We now derive the effective Lagrangian associated to eq. (3.1). In the limit in which the
Z′ boson is much heavier than the energy scale of the interaction, we can neglect the terms
containing ∂µZ′with respect to the mass term for Z′. Then the approximate equations of motion
for Z′ are

Z′µ = − 1
m2

Z′
Jµ
Z′ ,

and if we substitute them into eq. (3.1) we get

LA
EFT ≈

g2
X

2m2
Z′
(Xγµγ5X)(Xγµγ5X) (3.2a)

−
g2

q

2m2
Z′

∑
flavours

(qγµγ5q) ∑
flavours

(qγµγ5q) (3.2b)

−
gqgX

m2
Z′

(Xγµγ5X) ∑
flavours

(qγµγ5q) . (3.2c)

The effective interaction term (3.2a) could be constrained by the limits on DM self-interaction,
(3.2b) is constrained by the di-jet searches at hadronic colliders such as the LHC, and the DM-
quark effective interaction (3.2c) is the one of interest for the calculation of the DM relic abun-
dance and the direct and collider searches.

3.2.2 Model B: scalar mediator

In our second simplified model we assume as mediator particle is a scalar boson charged under
the SM gauge group, which mediates the interaction with a Majorana fermion χ that is the DM
candidate.

This scenario is strongly motivated by supersymmetry. Indeed, in the MSSM the most
plausible DM candidate (together with the gravitino in supergravity theories) is the neutralino

constrained: if we think to this interaction as a gauge one (explicitly broken in this Lagrangian by the Z′ mass), their
signs depend on the “charges” of the quarks and X under the U(1) interaction. We assume for simplicity that both
gq and gX are positive, since for the cases of interest to us their sign will not be relevant.

2For simplicity, and in the spirit of simplified models, we will ignore the additional degrees of freedom and/or
interactions required by the mechanism of anomaly-cancellation, as well as the possible kinetic and/or mass mixing
between the Z′ and the Z.
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(a Majorana fermion), which interacts (among the others) with all the particles charged under
the electroweak interactions because of its B̃, W̃0 components. Thus it interacts with quarks in
a vertex with the squarks, the supersymmetric partners of quarks, which are coloured scalars.

These considerations should not induce to think that model B is simply a parametrisation
of the MSSM or of one of its extensions. As we have discussed before, the goal of simplified
models is to capture some features that could be common to many more complete models,
without the limitation of selecting a specific one, which could have for example fixed coupling
constants or peculiar decay channels. This is the reason why, in our model, we only make the
hypothesis of a Majorana fermion DM with a scalar mediator, leaving the coupling constants
free and discussing the remaining issues without referring to a specific extension of the SM
such as the MSSM.

We now discuss our model. The renormalisable (and Lorentz scalar) interaction term be-
tween a quark q, the DM particle χ and a generic scalar mediator φ is a term of the type qχφ.

If we assume that χ is a singlet of the SM gauge group, then φ should have the same quan-
tum numbers of the quark q: in particular, it will transform in the fundamental representation
of SU(3)C, and its SU(2)L ×U(1)Y quantum numbers will be (2, 1/6), (1, 2/3) (1,−1/3) de-
pending on whether q is the left-handed doublet QL, the right-handed up-quark uR or the
right-handed down-quark dR. We choose to consider the second case mentioned above, and
we denote the scalar mediator as ũR, the usual notation of the MSSM, to recall the substantial
analogies between these two particles. Indeed, limits on squark searches can be recast into
limits on our scalar mediator.

As for model A, we must now discuss the flavour issue for this model. The most elegant
and natural solution to avoid the problems with the constraints from flavour-changing neutral
currents is to introduce three scalar mediators ũi

R (i = 1, 2, 3) that couple each to the respective
quark ui

R with a universal coupling constant, with the ũi
R degenerate in mass. In this way we are

free to rotate the three scalars with the same matrix used for the quarks, leaving the Lagrangian
invariant. This is our assumption for model B. Then, whenever we write uR, ũR, we understand
that the same relation holds for all the three generations. Another option, discussed in [45], is to
assume that there is only one scalar, coupling only to the up quark (in the mass basis) at some
energy scale. In [45] it is shown that the renormalisation group (RG) equations do not ruin
very much this situation, i. e. that starting from three couplings gui ≈ (1, 0, 0) at high energies,
the RG-induced coupling of ũR to the charm quark is still below the limits coming from D− D
oscillations.

After these preliminary considerations, we write down the complete Lagrangian of model
B:

LModel B = LSM + LũR + Lχ + Lint ,

LũR = (DµũR)
†(DµũR)−m2

ũR
ũ†

RũR , Dµ = ∂µ − igSGa
µTa − ig

2
3

Bµ ,

Lχ =
1
2

iχγµ∂µχ− 1
2

mχχχ ,

Lint = −gDM ũR uR χ + h. c. ,

(3.3)

where the covariant derivative Dµ acting on ũR contains the strong coupling constant gS, the
gluon fields Ga

µ, (a = 1, . . . , 8), the generators Ta of su(3) in the fundamental representation,
the gauge field Bµ of U(1)Y and its coupling constant g. The coupling constant gDM is a priori
complex, but can be chosen real and positive by absorbing its phase into a redefinition of the
ũR field.

Similarly to what we have done for model A, the EFT (reliable as long as the energy scale
of the interaction is lower than mũR) can be obtained by neglecting the terms containing ũR or
its derivatives with respect to the mass term for ũR. The corresponding equation of motion for
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ũR is

ũR = − gDM

m2
ũR

χuR ,

which after substitution into eq. (3.3) yields

LB
EFT ≈

g2
DM

m2
ũR

(
χuR

)(
uRχ

)
=−

g2
DM

8m2
ũR

(
χγµγ5χ

)(
uγµu

)
(3.4a)

−
g2

DM

8m2
ũR

(
χγµγ5χ

)(
uγµγ5u

)
, (3.4b)

where in the second equality we have used the Fierz transformation (eq. (A.7)).
We conclude this section by observing that models A and B, even if arising from very differ-

ent set-ups, bring to an effective interaction between quarks and DM parametrised by similar
effective operators. In particular, the operator (3.2c) is the same as (3.4b): this interaction is
formed by two axial-vector Lorentz bilinears built out of DM and quarks. The complete effec-
tive interaction of model B then includes also the operator (3.4a). This is a concrete example
of the power of EFT approach in parametrising a very large set of theories; but we must keep
in mind that the expressions (3.2) and (3.4) are sensible approximations only at sufficiently
low energy scales, and the advantage of picking up a simplified model is that one can control
the theory even at the energy scales of collider experiments, without completely spoiling the
generality of the approach.

3.3 Relic density of DM

The first constraint of interest for a DM model is that the relic abundance of the DM candidate
today should be equal to (or at least lower than, if one conservatively assumes that other species
contribute to the DM relic density) the one observed today. The most precise measurement of
ΩDMh2 (where h = H/(100 km/s/Mpc)) currently comes from the Planck satellite [4], which
gives ΩDMh2 = 0.1199± 0.0027.

In our models, we assume that the relic density arises through the usual freeze out mech-
anism. In appendix B we review the Boltzmann equation, which allows to calculate the relic
density on the basis of the thermally averaged cross section 〈σv〉; we derive for 〈σv〉 an exact
expression (eq. (B.7)), and the following approximate one,

(B.10) 〈σv〉 ≈ 1
4g2m2

(
a +

3(16b− a)
8x

)
, (B.10)

obtained by performing a low-velocity expansion in the limit of low temperature. The coeffi-
cients a and b defined by

(B.9) (σannF̃) ≈ a + bv2 , (B.9)

and can be calculated from the microscopic theory They allow us to compute the approximate
value of the relic density on the basis of eq. (B.19) and (B.20).

In this section we compute these coefficients in models A and B. Before, we must introduce
some notation and other formulæ that are useful for the evaluation of the moduli squared of
the matrix elements we are going to calculate in this chapter.
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3.3.1 Notation, and useful formulæ

Before discussing the specific cases of models A and B, we introduce the notation and other
useful formulæ for the calculation of the Mandelstam variables in the center-of-mass frame.

Once we compute the Feynman amplitudeM for given particle helicities (in our case, we
will have two fermions in the initial state and two other fermions in the final one, and we will
denote their helicities by r1, r2 for the ingoing particles and s1, s2 for the outgoing ones), we
must compute the unpolarised modulus squared |M2| by summing over the helicity and the
colour configurations of the final states and by averaging over those of the initial state.

Then, the differential cross section in the center-of-mass frame for the scattering of two
particles into two other ones is given by (the quantity (σannF̃) that appears in the first equality
is defined in eq. (B.4))

σann =
(σannF̃)

4g2F
=

1
4g2F

1
16π2

|~k|√
s

∫
|M2|dΩ =

1
64π2

|~k|
|~p|

1
s

∫
|M2|dΩ , (3.5)

where F =
√
(p1 · p2)2 −m4 = |~p|

√
s is the flux factor, s is the Mandelstam variable (p1 + p2)2,

and~p and~k are respectively the incoming and outgoing 3-momenta in the center-of-mass frame
(see fig. 3.1).

~p

−~p

~k

−~k

IN IN

OUT

OUT

θ

Figure 3.1: Notation about the momenta of the scattering particles in the center-of-mass frame.

The Mandelstam variables t, u can be evaluated in center-of-mass frame as follows: denoting
by p1, p2, k1, k2 respectively the incoming and outgoing 4-momenta of a scattering between
two initial particles of mass m and two final particles of mass m′ , we have

p1 = (
√

s/2, 0, 0, |~p|) , p2 = (
√

s/2, 0, 0,−|~p|) ,

k1 = (
√

s/2, |~k| sin θ, 0, |~k| cos θ) , k2 = (
√

s/2,−|~k| sin θ, 0,−|~k| cos θ) ,

where
|~p| =

√
s/4−m2 , |~k| =

√
s/4−m′2 . (3.6)

Thus we obtain

t = (p1 − k1)
2 = −s/2 + m2 + m′2 + 2 cos θ|~p||~k| , (3.7)

u = (p1 − k2)
2 = −s/2 + m2 + m′2 − 2 cos θ|~p||~k| . (3.8)

A quantity that will often appear in the calculations of the following cross sections is

t2 + u2

2
=

s2

4
+
(

m2 + m′2
)2
− s
(

m2 + m′2
)
+ cos2 θ

[
s2

4
− s(m2 + m′2) + 4m2m′2

]
. (3.9)
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3.3.2 Model A: calculation of the thermal relic density

We will now calculate the cross section for the process qq → XX, in the full theory, for model
A.

The Feynman diagram for this process is displayed in fig. 3.2.

X(p1)

q(k2)X(p2) Z′

q(k1)

Figure 3.2: Feynman diagram for the process XX → qq in model A.

Before writing the amplitude for this process, we must calculate the decay width of the Z′

boson as a function of the masses and couplings of the model. The allowed decay channels
for the Z′ are into XX and qq, if mZ′ > 2mX, 2mtop. Thus we can calculate the amplitude for a
Feynman diagram in which Z′ decays into two generic fermions (fig. 3.3).

Z′(p)

f (k2)

f (k1)

µ

β

α

Figure 3.3: Feynman diagram for the decay Z′ → f f in model A.

The amplitude for the diagram of fig. 3.3 is

M = ig f

(
u(k1)γ

µγ5v(k2)
)

αβ
ε
(λ)
µ ,

where ε
(λ)
µ , λ = 1, 2, 3, is the polarisation vector of the Z′ boson. The modulus squared of the

amplitude, summed over the final fermion polarisations and averaged over the three polarisa-
tions of the Z′, gives

|M2| =
c f

3
g2

f

[
∑
λ

ε
(λ)
µ ε

(λ)
ν

]
tr
(
(/k1 + m f )γ

µγ5(/k2 −m f )γ
νγ5
)
=

=
4c f

3
g2

f m2
Z′

(
1−

4m2
f

m2
Z′

)
,

where c f is the colour multiplicity (cX = 1, cq = 3). The phase space and the flux factor for the
decay into two particles give

dΓZ′

dΩ
= ∑

f

1
64π2

1
mZ′

√√√√1−
4m2

f

m2
Z′
|M2| ,

that after the integration over the angular variables gives the total decay width

ΓZ′ =
mZ′

12π

g2
X

(
1− 4m2

X
m2

Z′

) 3
2

+ ∑
q

3g2
q

(
1−

4m2
q

m2
Z′

) 3
2

 . (3.10)
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We can now write down the Feynman amplitude for the annihilation process XX → qq
(fig. 3.2):

M = v(p2)(igXγµγ5)u(p1) (−i)

(
ηµν −

qµqν

m2
Z′

)
1

q2 −m2
Z′ + iΓZ′mZ′

u(k1)(igqγνγ5)v(k2) ,

(3.11)
where q = p1 + p2. Before taking the modulus squared of eq. (3.11), it is useful to simplify
it with the equations of motion of the spinors: the term qµqν/m2

Z′ can be contracted with the
Lorentz bilinears, and by using

v(p2)/qγ5u(p1) = v(p2)/p2γ5u(p1)− v(p2)γ
5/p1u(p1) = −2mXv(p2)γ

5u(p1) ,

u(k1)/qγ5v(k2) = u(k1)/k1γ5v(k2)− u(k1)γ
5/k2v(k2) = 2mqu(k1)γ

5v(k2) ,

we get

M = i
gqgX

q2 −m2
Z′ + iΓZ′mZ′

·

·
[(

v(p2)γ
µγ5u(p1)

) (
u(k1)γµγ5v(k2)

)
+

4mXmq

m2
Z′

(
v(p2)γ

5u(p1)
) (

u(k1)γ
5v(k2)

)]
.

(3.12)

From this expression, we must now compute the sum over all the fermion polarisations of
|M2|, including a factor 3 due to the admissible colour configurations in the final state, and
we do not have to include the factor g2 = 4 due to the average over the initial states that is
cancelled in the expression of (σannF̃). The result is

|M2| =
48 g2

qg2
X

(s−m2
Z′)

2 + Γ2
Z′m

2
Z′

[
t2 + u2

2
−m4

X −m4
q + 6m2

Xm2
q − 8m2

qm2
X

s
m2

Z′
+ 4m2

qm2
X

s2

m4
Z′

]
.

(3.13)
From the expression for |M2|, we can obtain (σannF̃) by following eq. (3.5): we must perform
an integral over the angular variables that appear in (t2 + u2)/2 (eq. 3.9), and the final result is

(σannF̃) =
1

16π2
|~k|√

s

∫
|M2|dΩ

=
2
π

g2
qg2

X

(s−m2
Z′)

2 + Γ2
Z′m

2
Z′

√
1−

4m2
q

s
· (3.14a)

·
[

s2 − 4s(m2
x + m2

q) + 28m2
Xm2

q − 24m2
Xm2

q
s

m2
Z′

+ 12m2
qm2

X
s2

m4
Z′

]
. (3.14b)

This is an exact formula for (σannF̃) into a couple of quarks; the total annihilation cross section
must be summed over the quark flavours. Following the procedure discussed in appendix B,
we now expand this expression in powers of v, the modulus of the relative velocity between
the incoming DM particles, to identify the coefficients a and b that appear in eq. (B.9). Thus
we expand s ≈ m2

X(4 + v2): to make the formulæ more readable, we define α = mq/mX,
β = mX/mZ′ . The terms inside eq. (3.14) can be expanded as

(3.14a) ≈ 2
π

g2
qg2

X

m4
X

β4
√

1− α2

(4β2 − 1)2 + Γ2
Z′/m2

Z′

(
1 +

α2

8(1− α2)
v2
)(

1− 2(4β2 − 1)β2

(4β2 − 1)2 + Γ2
Z′/m2

Z′
v2

)
,

(3.14b) ≈ 4m4
X

[
3α2(1− 8β2 + 16β4) +

(
1− α2(1 + 6β2 − 24β4)

)
v2
]

.
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Some caution is needed in this expansion: indeed, the term inside the first squared brackets
in the first line comes from the expansion of the squared root (coming from the phase space
integration) in eq. (3.14a). In the limit α → 1, i. e. for mX tending to the mass of a quark, the
square root is expanded around zero, where it is not an analytical function. This is why the
expression inside the square brackets diverges for α → 1. On the other hand, as it can be seen
in figure 3.4, this expansion does not affect very much the final results: in the plot, it is clear
that the deviation from the exact formula due to the non-analiticity of this expansion ceases for
mX just a few GeV over the top quark mass [46].
From the previous equations we can finally calculate a, b in model A (we understand a sum
over the 6 quark flavours whose mass is below mX):

a =
8
π

g2
q g2

X
β4
√

1− α2

(4β2 − 1)2 + Γ2
Z′/m2

Z′
· 3α2(1− 8β2 + 16β4) ,

b =
8
π

g2
q g2

X
β4
√

1− α2

(4β2 − 1)2 + Γ2
Z′/m2

Z′

×
[(

−6α2β2(4β2 − 1)
(4β2 − 1)2 + Γ2

Z′/m2
Z′

+
3α4

8(1− α2)

)
(1− 8β2 + 16β4) +

(
1− α2(1 + 6β2 − 24β4)

)]
.

(3.15)

These formulæ allow a more precise estimate of the relic density with respect to what is avail-
able in the literature: in [47], that considers the model of a Z′ mediator with DM, it is stated
that, in the limit of β� 1 and zero velocity,

〈σv〉 = 1
16m2

X

8g2
qg2

X

π
β4
√

1− α2 3α2 ,

but from the comparison with eq. (B.11) we see that the previous formula neglects also the
second order of 〈σv〉 in 1/x f , and assumes ΓZ′ � mZ′ . Both assumptions, as we will see in the
following, are rather extreme for this specific model.

An important point to notice is that a, the leading order term for v→ 0, is proportional to α:
then, it vanishes in the limity of massless quarks. This is called helicity suppression, and is due
to the vector-axial coupling that we have imposed. A way to understand this phenomenon is
to express the matrix element of eq. (3.12) in the limit of massless quarks, and non relativistic
dark matter: then, only the first term inside the squared brackets of eq. (3.12) survives. The DM
spinors can be written in the Weyl basis as

u(p1) =
√

mX

(
ξ
ξ

)
, v(p2) =

√
mX

(
ξ ′

−ξ ′

)
,

where ξ, ξ ′ are two Weyl spinors. The Lorentz bilinear can be written in terms of these two-
components spinors as (see formulæ in appendix B)

v(p2)γ
µγ5u(p1) = m

(
ξ ′† −ξ ′†

) ( 12
12

)(
σµ

σµ

)(
−12

12

)(
ξ
ξ

)
=

= −m(ξ ′†σµξ + ξ ′†σµξ) =

{
− 2mξ ′†ξ µ = 0 ,
0 µ = 1, 2, 3 .

Then, the non-relativistic expansion of the DM current selects the temporal component of the
Lorentz product with the quark current. This can be rewritten as follows: first, we decompose
into left-handed and right-handed spinors with

qγµγ5q = qRγµqR − qLγµqL .
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Each of these has a vanishing µ = 0 component: we are going to show this fact for the right-
handed quarks. The corresponding spinors in the Weyl basis are

u(k1) =
√

2E


0
0
1
0

 , v(k2) =
√

2E


0
0
0
−1

 ,

then the temporal component of the Lorentz bilinears reads

uR(k1)γ
0vR(k2) = 2E

(
0 0 1 0

) (−σ0

σ0

)
0
0
0
−1

 = 2E
(
1 0

)
σ0
(

0
−1

)
= 0 .

This argumentation shows that in the limit of massless quarks, and non-relativistic dark matter,
the amplitude of the annihilation XX → qq vanishes.

Returning back to the goal of this section, we can compute the thermal relic density by
using the equations (3.15) and (B.19). In fig. 3.4 we show the effects in model A of the two ap-
proximations introduced in the derivation of eq. (B.10) for the thermally averaged cross section
〈σv〉 presented in appendix B. The first approximation consists in the expansion of the Bessel
function in the integral in eq. (B.7). The analytical result of this approximation is drawn with a
brown line, which basically coincides with the blue line (corresponding to the exact solution):
this means that the approximation of the Bessel function is perfectly allowed. The second ap-
proximation comes from the expansion of (σannF̃) of eq. (B.9) (purple line): the two distortions
induced by this approximation are discussed in the caption of fig. 3.4.

At this point, we have an expression for the relic density of X in terms of four parameters:
mX, mZ′ , gq, gX. By imposing that the corresponding relic density is equal to the value measured
by Planck (ΩDM = 0.1199), we can remove one degree of freedom. The resulting constraints
are discussed in the next section.

3.3.3 Constraints on model A from the relic density

We begin the discussion of the constraints arising on model A from the requirement of the
correct relic density by checking the limit that one could have obtained by use of the effective
field theory (Lagrangian (3.2)). That regime is obtained by imposing mZ′ � ΓZ′ and mZ′ � mX.
The corresponding limit is the one shown in figure 3.5: the annihilation cross section, in the
EFT limit, depends on gq, gX, mZ′ only through the combination Λ = mZ′/

√gqgx, which is
then directly constrained once mX is fixed.

In the following, we are going to show some limitations and distortions of the picture of
the EFT. First, we notice from the form of the coefficients a and b (eq. (3.15)), which appear in
the relic abundance through eq. (B.19, B.11), that, in the complete theory, the annihilation cross
section 〈σv〉 depends on the overall coefficient 1/Λ4 = g2

qg2
x/m4

Z′ , on ΓZ′/mZ′ that appears
in the denominator of a and b, and then subleadingly on the value of β = mX/mZ′ , through
various terms of higher order in β. Thus, the behaviour of the relic density as a function of the
parameters of the model is not easily predictable through a completely analytical approach. In
order to derive the bounds on the parameters of the model, we generated a sample of values
of (gq, gX, mX, mZ′) (with gq, gX ∈ [0.1, 4π], mX ∈ [10, 1000] GeV) that yield ΩDMh2 = 0.1199,
and we have analysed their distribution in the parameters space.
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Figure 3.4: Comparison between eq. (B.7) and (B.10), in the case of model A. The bump around 172.9
GeV is due to addition of the tt annihilation channel, and is enhanced in the approximation of (σann F̃)
in the limit v → 0 because near that threshold the espansion of the factor

√
1− 4m2

q/s coming from
the phase space integration is not analytical. On the other hand, the difference between the two around
the resonance mX ∼ mZ′/2 is due to the fact that there, the expansion of the denominator (s−m2

Z′)
2 +

Γ2
Z′m

2
Z′ for v → 0 should not be truncated because the term of higher order in v2 allow a better tracking

of the resonance in the s-channel.

Figure 3.5: Constraint on the coefficient of the effective operator (3.2c) in the effective field theory (ob-
tained in the limit mZ′ � ΓZ′ and mZ′ � mX) from the observed relic density. The curve disappears in
a small window around the top mass, where the low velocity limit used to derive ΩDMh2 is not a valid
approximation. This plot is a substantial improvement over the naı̈f estimate presented in [47], where it
is stated that, for mX greater than the top mass, the relic density constrains Λ to be approximately 1500
GeV: this turns out to be the correct value only for mX ≈ mtop.

The most important fact that comes out from this check is that there are various regions of
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the parameter space that are not allowed by the relic density constraint because of the non-
perturbativity of the couplings: this behaviour is not captured at all by the EFT approach. The
most representative plot in this sense is the one shown in figure 3.6, which shows the constraint
in the (mX, gX) plane for fixed mZ′ , gq. If we follow the curves from higher to lower values of
mX, we see that gX is slightly increasing until the top quark mass; below that threshold, the
annihilation channel XX → tt disappears and the cross section strongly decreases, thus the
coupling should increase in order to keep the same value of 〈σv〉. The crucial point is that the
higher is gX, the bigger the decay width ΓZ′ (eq. (3.10)) gets. In this region, ΓZ′ rises up to
non-perturbative values (of the same order or even higher than mZ′), and then suppresses the
annihilation cross section because of its appearance in the denominator of (3.15). Since both
(ΓZ′/mZ′)

2 (once we neglect the quark decay contribution) and the overall coefficient 1/Λ4 are
proportional to g2

X, the two compensate and the annihilation cross section can never grow to
the needed value. Thus, the region of low mX in figure 3.6 is not allowed. In all the following
plots, we do not show the points for which ΓZ′/mZ′ > 1: we take this as the (conventional)
limit between perturbative and non-perturbative regime.

Figure 3.6: Relic density constraint on gX as a function of mX , for fixed mZ′ ' 1 TeV (within 5%) and dif-
ferent regions of gq, shown with different shades of blue. Analytical contour lines for the corresponding
values of gq are superimposed on the plot with the same colour. Only the points for which ΓZ′/mZ′ < 1
are shown.

As a second point of discussion, we focus now on the dependence of 〈σv〉 on the parame-
ters of the model. As we have already mentioned, it is proportional to the overall coefficient
1/Λ4 = g2

qg2
x/m4

Z′ , it is strongly affected by ΓZ′/mZ′ when it reaches non-perturbative values,
and further depends on β = mX/mZ′ . We can observe from eq. (3.15) that, in the limit of low β,
the dependence of a, b on β is very mild. This is indeed what happens in the large majority of
the cases: figure 3.7 shows that, within the allowed region in the (mX, mZ′) plane, β is nearly
always smaller than 0.5 once we impose ΓZ′/mZ′ < 1. This can be rephrased as the implication
that β > 0.5 forces the width to be large: this can be understood by noticing that the resonance
production is no more possible for β > 0.5, then the cross section must be enhanced (in order
to track the required value for the annihilation cross section) by enlarging the couplings, which
in turn increase the width up to non-perturbative values.

This remark allows us to focus on the relevance of the width ΓZ′/mZ′ on 〈σv〉. We can have a
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Figure 3.7: Distribution in (mX , mZ′) of the sample of parameter values allowed by the relic density
constraint. Regions of fixed β = mX/mZ′ are shown with different colours.

better understanding of what we have discussed in figure 3.6 by observing the plot in figure 3.8.
This plot shows the distribution of the allowed values in the (mX, Λ = mZ′/

√gqgX) plane. By
observing fig. 3.8, two important considerations can be made: first, we notice that a relevant
portion within this region is occupied by points where ΓZ′/mZ′ is larger than 0.25, i. e. by points
which tend to a non-perturbative regime. In the remaining portion, if we restrict to the points
with a low ratio β = mX/mZ′ , we see that the remaining region (in dark blue) is very thin, and
for a fixed value of mX there is substantially only one allowed value for Λ. Thus, we have a
computational cross-check of what we could guess from the analytic expression, i. e. that for
low β (which happens often), the annihilation cross section 〈σv〉mainly depends on 1/Λ2 and
ΓZ′/mZ′ , and that the latter is often relevant because it can reach non-perturbative values. This
peculiar behaviour is in turn a consequence of the helicity suppression of the annihilation cross
section, which requires the coupling to grow to high values in order to track the correct relic
abundance of DM. But the most important point that we get from this plot is that the use of
the EFT hides a large portion of the allowed parameter space: in particular, if we fix a given
Λ, the value predicted by the EFT (the dark blue zone) should be replaced by a considerably
larger interval (the light blue area) in which the correct relic density can still be obtained. In
this sense, fig. 3.8 is a clear illustration of the limited reliability of the EFT in regimes that are
far from being extreme, in this case the region mX > 0.2 mZ′ .

3.3.4 Model B: calculation of the thermal relic density

In this section, we will derive the annihilation cross section (σannF̃) needed to compute the relic
density in model B.

The Feynman diagrams contributing to this process are those of fig. 3.9. The arrows in these
diagrams display the conservation of the colour charge, or equivalently the conservation of the
particle number (i. e. the difference between particles and antiparticles, which is the conserved
charge associated to the U(1) invariance for complex fields). This explains why the χ lines do
not carry any arrow.
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Figure 3.8: Distribution in (mX , Λ) of the sample of parameter values allowed by the relic density con-
straint. The points for which ΓZ′/mZ′ > 0.25 are shown in red: these correspond to a strong coupling
regime. In the remaining region, light and dark blue differentiate between β higher or lower than 0.2.
The thin yellow line shows the limit on Λ that we get from the effective theory (fig.3.5): it falls within
the region of low β (dark blue dots), as expected.

χ(p2) uR(k2)

χ(p1) uR(k1)

ũR

uR(k2)

ũR

uR(k1)

χ(p2)

χ(p1)

Figure 3.9: Feynman diagrams for the process χχ → uRuR in model B; the two diagrams have an
opposite sign, because of the anticommutation that one must impose on the Majorana fermions.

To write the amplitude of a Feynman diagram with Majorana fermions, the best way of writing
the correct spinors associated to the external legs is to explicitly calculate the matrix element
associated to that diagram (see appendix A). The result, with the use of eq. (A.9), gives

M = ig2
DM

[
1

t−m2
ũR

(
v(p2)PRv(k2)

) (
u(k1)PLu(p1)

)
− 1

u−m2
ũR

(
v(p1)PRv(k2)

) (
u(k1)PLu(p2)

)]
.

(3.16)

As discussed in appendix B, the relative minus sign arises because of the anticommutation that
we must impose on the two Majorana spinors to contract their fields with the creation operators
from the initial state.

In the calculation of the modulus squared of this matrix element, some attention must be
paid when contracting the spinor indices (to get the traces over gamma matrices) in the inter-



3.3. Relic density of DM 57

ference terms. Indeed, as explained also in [48], in the interference terms it is necessary to use
the sum rules (eq. (A.11)), which require to transpose some of the matrices resulting from the
contraction of the spinors. In the following equation, we write explicitly the resulting traces:

|M2| = 3
4

g4
DM

{
tr
[
(/p2 −mχ)PR(/k2 −mq)PL

]
tr
[
(/k1 + mq)PL(/p1 + mχ)PR

]
(t−m2

ũR
)2

(3.17a)

+
tr
[
(/p1 −mχ)PR(/k2 −mq)PL

]
tr
[
(/k1 + mq)PL(/p2 + mχ)PR

]
(u−m2

ũR
)2

(3.17b)

−
tr
[

PR(/k2 −mq)PL(/p1 −mχ)CTPT
L (/k1 + mq)TPT

RC−1(/p2 −mχ)
]

(t−m2
ũR
)(u−m2

ũR
)

(3.17c)

−
tr
[

PR(/k2 −mq)PL(/p2 −mχ)CTPT
L (/k1 + mq)TPT

RC−1(/p1 −mχ)
]

(t−m2
ũR
)(u−m2

ũR
)

}
(3.17d)

The first two terms in eq. (3.17) are the modulus squared of the diagrams corresponding to the t
and u channel respectively, while (3.17c) and (3.17d) come from the interference term. In order
to compute the traces, the following formulæ are useful to simplify the projection operators:

PR(/p±m)PL = /pPL , PR(/p±m)PR = ±mPR ,
PL(/p±m)PR = /pPR , PL(/p±m)PL = ±mPL .

The first two traces in eq. (3.17) can then be computed straightforwardly, and give

(3.17a) =
4 k1 · p1 k2 · p2

(t−m2
ũR
)2

=
(m2

χ + m2
q − t)2

(t−m2
ũR
)2

,

(3.17b) =
4 k2 · p1 k1 · p2

(u−m2
ũR
)2

=
(m2

χ + m2
q − u)2

(u−m2
ũR
)2

.

The last two traces in (3.17c) and (3.17c) must be simplified with the formulæ (A.4), together
with the formula for the transposed gamma matrices, γT = −C−1γµC, which imply [48]

CTPT
L (/k1 + mq)

TPT
RC−1 = PL(/k1 −mq)PR = /k1PR .

With the use of this equation, the traces of the numerators in (3.17c) and (3.17d) give the same
result (notice that they are simply related by the switch of p1 and p2),

m2
χ 2 k1 · k2 = m2

χ(s− 2m2
q) .

The final result for the annihilation cross section times F̃ (eq. (3.5)) is

d(σannF̃)
d(cos θ)

=
1

16π

√
1−

4m2
q

s
3
4

g4
DM·

·
[
(m2

χ + m2
q − t)2

(t−m2
ũR
)2

+
(m2

χ + m2
q − u)2

(u−m2
ũR
)2

+
4m2

qm2
χ − 2sm2

χ

(t−m2
ũR
)(u−m2

ũR
)

]
. (3.18)

The cos θ integral in eq. (3.18) is a cumbersome one: the dependence of t, u on cos θ can be
found in eq. (3.7), (3.8). Thus, to derive the coefficients a, b of the expansion for low velocities,
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defined in eq. (B.9), we use the software Mathematica to expand eq. (3.18) up to the second order
in v and to perform the integral in cos θ. The result can be written in a more compact form by
defining, analogously to model A, α = mq/mχ, β = mχ/mũR (we understand a sum over the
up-type quark flavours whose mass is below mχ):

a =
3

8π
g4

DM
β4
√

1− α2

(1 + β2 − α2β2)2 α2 ,

b =
3

64π
g4

DM
β4
√

1− α2

(1 + β2 − α2β2)2 ·

·
[

16− 7α2 +
3α2

1− α2 − β2α2(16− 7α2) + β4(1− α2)(14− 4α2 + 7α4)

]
.

(3.19)

With these expression, we are able to apply the formulæ derived in appendix B to calculate the
relic density of χ after the freeze out.

To understand the results of the plots obtained by imposing the correct relic density, we
must discuss the limit in which the EFT is valid. First of all, we write down the result for
(σannF̃) in the effective theory: the amplitude for the process χχ → qq is analogous to the one
for the complete theory (eq. (3.16)), with the important difference that the two propagators are
replaced by m2

ũR
. Thus the modulus squared of the amplitude requires the calculation of the

same traces of eq. (3.17), with the replacement of the denominators by m4
ũR

. The result can be
then simplified in

|M2| =
3g4

DM

4m4
ũR

[
(m2

χ + m2
q − t)2 + (m2

χ + m2
q − u)2 + 4m2

qm2
χ − 2sm2

χ

]
=

3g4
DM

2m4
ũR

[
t2 + u2

2
−m4

χ −m4
q + sm2

q

]
.

(3.20)

From the comparison between this formula and eq. (3.18), or directly from the Feynman ampli-
tudes for the full theory and the effective one, it is easy to understand that the limit in which
the EFT gives reliable predictions is when (m2

ũR
− t) ≈ m2

ũR
, (m2

ũR
− u) ≈ m2

ũR
. Now, in the

annihilation process, t and u are negative: if we recall the definitions (3.6) and the expressions
(3.7) and (3.8), we can rewrite t and u as (for each ± or ∓ factor, the upper one refers to t and
the other to u)

−(|~k| − |~p|)2 − 2|~k| |~p| ± 2 cos θ|~k| |~p| = −(|~k| − |~p|)2 − 2(1∓ cos θ)|~k| |~p| < −(|~k| − |~p|)2 ,

which is negative. With a similar calculation, the lower limit on t, u turns out to be

t, u > −(|~k|+ |~p|)2 .

Thus we can neglect t and u in the denominators of eq. (3.18) if

mũR � (|~k|+ |~p|)2 =

(√
s
4
−m2

q +

√
s
4
−m2

χ

)2

→
v→0

(m2
χ −m2

q) ,

that is always a positive quantity since χ can only annihilate to lighter quarks. Thus the condi-
tion of validity for the predictions of the effective theory for the relic density is

β = mχ/mũR � 1 .

We notice that in the limit of zero velocity the annihilation cross section displays the helic-
ity suppression, as it happened in model A. Indeed, for mq = 0 and v = 0, t and u are equal
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to −m2
χ, and the expression inside squared brackets in eq. (3.18) vanishes. This can be ex-

plained with the same calculation performed for model A (sec. 3.3.2), which showed that in the
limit of non-relativistic dark matter and relativistic quarks, with an axial-vector coupling, the
Lorentz bilinear vanishes. In this case, we can explain this phenomenon also by invoking the
conservation of angular momentum [46, 49]. Indeed, the incoming χ particles, in the limit of
zero velocity, annihilate in s-wave, i. e. the leading component in the expansion of the overall
wavefunction in spherical harmonics is the one corresponding to ` = 0 (corresponding to zero
orbital angular momentum). Since they are identical fermions (while in model A the particles
X and X are distinguishable), they cannot share all the same quantum numbers, then their total
wavefunction must have spin 0 (otherwise their spin should be aligned). Therefore, the overall
angular momentum in the initial state is 0. On the other hand, in the final state the two quarks
are massless, thus their helicities cohincide with the chiralities of the corresponding spinors.
Since the quark current is a Lorentz axial vector, the current couples spinors with the same chi-
rality, and thus the corresponding quark and antiquark have opposite helicities; hence, since
they have opposite velocities, their spins are aligned. Therefore, the total angular momentum
of the final state is 1, and is different from the angular momentum of the initial state.

The helicity suppression reduces significatively the annihilation cross section for this pro-
cess. As we have seen also in model A, this implies that in order to yield the correct relic
abundance the coupling will be rather strong, and the limits from direct and indirect searches
(that we are going to discuss in the following sections) will be by far less constraining.

3.3.5 Constraints on model B from the relic density

In this section, we show the results obtained by imposing the correct relic density of dark matter
through the freeze out mechanism. We use the formulæ derived in appendix B to calculate the
relic density from the knowledge of the coefficients a and b.

We will analyse only the region of the parameter space where mũR is higher than mχ. In-
deed, when the two masses are comparable the analysis of the freeze out for the two species
cannot be done for each of them independently, because the process χχ→ qq has a rate compa-
rable to ũRũ∗R → qq, and the two species χ and ũR, which interact via the exchange of a quark,
decouple together. In this situation, the two Boltzmann equations describing the evolution of
their number densities cannot be disentagled, and they must be solved simultaneously through
a numerical procedure. This regime is also called coannihilation. In order to avoid the complica-
tions related to this issue, we will assume from now on that mũR is not of the same order of mχ.
The constraints from various kind of searches for models analogous or equivalent to our model
B have been recently discussed in the literature [50, 51, 52], and [45] studies the case when the
two masses are comparable. In the following, we fix β = mχ/mũR = 0.9 as the maximum value
for this ratio, analogously to what is done e. g. in [50]. In this work, we will focus only on the
region where the two masses are not comparable, in order to discuss more carefully the limits
of the predictions of the effective theory with respect to the complete one.

We observe that the only quarks with which DM is interacting are the up-type ones (u, c, t
flavours), then for mχ below the top quark mass the allowed annihilation channels are only
two, with respect to the five channels available in model A. Recalling the effect of helicity
suppression (i. e. the coefficient a in the expansion of (σannF̃) is negligible for low values of the
quark masses), this implies that, in the region mχ < mt, the required values of the couplings
will be higher, and the mass of the mediator lower, with respect to what we have seen for model
A.

We now turn to the discussion of the plots resulting from the requirement that the relic
density is the correct one. In model B, the free parameters of the model are three (gDM, mũR ,
mχ), and the requirement of the correct relic abundance leaves only two degrees of freedom.



60 3. Discussion of two simplified models for DM

We begin by showing the limit obtained in the EFT: this limit can be achieved from the
formulæ for the full theory by choosing a very high value for mũR . In that limit mũR appears
only in the scale Λ = mũR /gDM that factorises from the cross section through a factor Λ−4, thus
we can easily rescale the energy scale Λ with the value of mũR that we have imposed, obtaining
the plot in fig. 3.10. We will see in the following how this plot changes in the full theory.

Figure 3.10: Value of the scale Λ = mũR
/gDM in the EFT for model B that give the correct relic density,

as a function of mχ. As discussed in the text, the cutoff scale sharply decreases for mχ below mt because
the annihilation channels reduce from three to two. The plot is discontinuous in a small region around
mt because there the factor b is singular (because of the expansion around zero of the square root factor
which comes from the phase space integration).

The plot in fig. 3.11, which displays the contour lines for gDM that yield the correct relic
density as a function of mχ (at fixed mũR), shows the relevant difference with respect to what
happens in model A, where, for given mass parameters, the rise of the couplings brings ΓZ′

to very high values that suppress the cross-section and forbid the relic abundance to track
the correct one. This phenomenon is a consequence of the exchange of the mediator in the
s-channel, and is not a feature of model B: figure 3.11 shows that, for a fixed mediator mass
mũR , there is always a couple of values (mχ, gDM) that brings to the correct relic abundance.
We recall the difference with respect to figure 3.6, where the contour lines for gX could not go
below a given threshold in mX.

We now build a sample of allowed values for the triplet of parameters (gDM, mχ, mũR) by
choosing randomly gDM ∈ [0.1, 4π], mχ ∈ [5, 1000] GeV (with a uniform distribution on the
logarithm of these quantities), and by calculating mũR by requiring that it brings the correct
relic density. We reject the resulting triplet of parameters if mχ > 0.9 mũR . Then we study the
distribution of the points of our sample in the parameter space. We begin by discussing the
parameter that is relevant for the validity of the EFT: the ratio β = mχ/mũR . As observed in the
previous section, the condition to assure that t, u � m2

ũR
is that β � 1. The distribution of the

allowed points in the (mχ, mũR) plane is shown in fig. 3.12: we can see that, similarly to what
happened in model A, a large amount of them lies within the region of β < 0.2 (we recall that
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Figure 3.11: Contour lines in the (mχ, gDM) plane for fixed mediator masses. The required value for
gDM rises sharply for mχ below the threshold of the top mass, because of the disappearance of that
annihilation channel, and the consequent decrease of the total annihilation cross section.

it is a logarithmic plot, thus the surface of the upper regions looks smaller than it actually is).

Figure 3.12: Distribution of the points of the sample in the (mχ, mũR
) plane. The colour of the points

depends on the corresponding ratio β = mχ/mũR
.

We can now inspect how the plot obtained in the EFT for the limit on the cut-off scale Λ



62 3. Discussion of two simplified models for DM

(fig. 3.10) changes in the complete theory. We can guess that, since the EFT is valid in the limit
β � 1, deviations from that curve will arise for higher β, i. e. for smaller mũR (once we fix a
value of mχ on the horizontal axis). The denominators in eq. (3.18) are higher than m4

ũR
: thus

the deviations from the EFT will show up in a shift downwards of the line of fig. 3.10, because
the scale Λ must be smaller if the denominators change (increase) from the expression (3.20) to
(3.18). In fig. 3.13 we can see a confirmation of this guess. We can also see that the overall effect
of considering the complete theory with respect to EFT broadens the expected curve for Λ by
roughly 30% of its value, thus it a rather relevant effect, even if it is not as crucial as in model
A where in the complete theory the mediator could be resonantly produced.

Figure 3.13: Distribution of the points of the sample in (mχ, Λ) plane. The different colours correspond
to different values of β. The thin yellow line corresponds to the prediction of the EFT: we can see that
its prediction cohincides with that of the full theory for β � 1, and that the allowed range for Λ spans
around the 30% of the value predicted by EFT.

From figure 3.13 we can infer the behaviour of the coupling constant for each of those
points. Indeed, while the colours of the dots show that, for fixed mχ, mũR decreases (in the
red region) of an order of magnitude, the scale mũR /gDM has a much lower excursion. Thus
we expect that the coupling constant will scale like mũR : thus the upper region corresponds
to higher values of gDM. What is not predicted by the effective theory is the absolute value of
the coupling gDM in that region: the overall scale Λ of the EFT is sensitive only to the ratio
mũR /gDM, and not to the absolute value of gDM, which is of crucial importance for discussing
the validity of the perturbative description for the full theory. The plot in figure 3.14 shows
that the region of validity of the EFT corresponds to a coupling even higher than 4 (red points).
This phenomenon can be eventually attributed to the helicity suppression, which decreases the
annihilation cross section and requires the coupling to grow larger. It is interesting however
to notice that the limit that we recover from the effective theory turns out to correspond to a
non-perturbative regime of the microscopic theory.
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Figure 3.14: Distribution of the points of the sample in the (mχ, Λ) plane. The various colours corre-
spond to different values of the coupling constant gDM. The upper strip of red and light blue dots, which
is the one predicted by the effective theory (we know from fig. 3.13 that it corresponds to low values of
β), correspond to points with gDM > 2, thus to a strongly coupled regime of the microscopic theory.

3.4 Limits from direct detection

In this section, we discuss the limits from direct search experiments on the two models we
consider. We have already discussed the main points of the procedure to calculate the event
rate for a given experiment, starting from the microscopic theory, in section 2.1.1. In order to
derive the exclusion limits on our models, we use the tools provided by Cirelli et al. in [22]: they
supply a set of functions that allow to derive, through a straightforward recipe, the constraints
on any EFT for the interaction between DM and quarks or gluons. In the following, we briefly
review their procedure.

As we have already explained in 2.1.1, the starting point is an EFT at the microscopic level,
which involves some among the 10 effective operatorsOq

k of lowest dimension between quarks
and DM, and the 4 effective operators Og

k between quarks and gluons (for a complete list of
them, see [53]). Therefore the interaction Lagrangian of the EFT reads

LDM−q,g
eff =

10

∑
k=1

∑
q

cq
kO

q
k +

4

∑
k=1

cg
kO

g
k . (3.21)

As we mentioned in section 2.1.1, this Lagrangian is transposed to the nucleon level with the
introduction of form factors, i. e. the expectation values of the operators Oq

k , Og
k on a nucleon

(N = n, p, where n and p stand respectively for neutron and proton) state:

LDM-n,p
eff =

10

∑
k=1

∑
N=n, p

cN
k ON

k , (3.22)
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and the relations between the coefficients cq, g
k and cN

k are given in [22]. This is the step that in-
troduces the main uncertainties: indeed, the determination of the nucleon form factors through
experiments and lattice QCD simulations is still subject to relevant uncertainties.

The following step consists in rewriting the previous operators in the non-relativistic limit.
The resulting operators can be functions only of the exchanged momentum~q, the relative veloc-
ity ~v between DM and the nucleus, and the respective spins~sDM, ~sN . Among these operators,
the 11 most relevant ones are listed in [22], together with the relations between the coefficients
cN

k and cN
i that appear in

LDM−n,p
eff, NR =

11

∑
i=1

cN
i (λ, mX)ONR

i , (3.23)

where the cN
i are a function of the DM mass mX and the undetermined coefficients of the model,

denoted collectively by λ.
Then, we have to take into account the following series of steps, as we mentioned also in

sec. 2.1.1:

• sum over the contributions from all the nucleons inside the nucleus, for each component
T of the target, and taking the modulus squared of the amplitude, obtaining

|M2|T =
m2

T
m2

N

11

∑
i,j=1

∑
N,N′=n,p

cN
i (λ, mX)c

N′
j (λ, mX)F(N,N′)

i,j (v, ER, T) , (3.24)

where mT is the mass of the target nucleus and mN is the mass of a nucleon (we can
neglect the small difference between mp and mn), and F(N,N′)

i,j are form factors that depend
on specific target;

• deduce the differential cross section dσ/dER with respect to the recoil energy;

• calculate the differential event rate dRT/dER with respect to the recoil energy: this step
takes into account the DM velocity distribution and density;

• introduce suitable factors, specific to each experiment, to model the response of the de-
tector to the signal. These include the response function, i. e. the probability that in an
event with recoil energy ER the measure gives an energy E′, and the efficiency of the
measurement as a function of the recoil energy;

• deduce the expected number of events observed by a given experiment, for each energy
bin.

The crucial point of the procedure developed in [22] is that all the previous steps are linear with
respect to the form factors F(N,N′)

i,j introduced in eq. (3.24). This means that we can perform all

the steps of the previous list on the form factors, to get integrated form factors F̃ (N,N′)
i,j , and write

the final result in a very simple form:

Nexp = X
11

∑
i,j=1

∑
N,N′=n,p

cN
i (λ, mX)c

N′
j (λ, mX)F̃ (N,N′)

i,j , (3.25)

where Nexp is the total number of expected event and X is a fixed coefficient, function of the
masses and the DM density. This consideration is crucial for our final result. Indeed, in order
to derive a constraint on the parameters λ of the model (from the experiments that give a
negative result), [22] introduces the likelihood ratio test statistic, i. e. the logarithm of the ratio
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between the likelihood functions L of obtaining the experimentally observed data ~Nobs =
~Nexp + ~Nbkg (with the vector notation we denote a histogram over the energy bins, and ~Nbkg

are the background events), over the likelihood function for obtaining the background only:

TS(λ, mX) = −2 ln

(
L (~Nobs|λ)
L (~Nbkg)

)
.

This quantity has an approximate χ2 distribution, with a number of degrees of freedom equal
to the number of free parameters λ of the model. Therefore, given a certain confidence level
(CL), we can infer the limit on the parameters by solving TS(λ, mX) = χ2

CL, i. e. the χ2 value
corresponding to the desired CL for a given number of free parameters.

The last step of the procedure of [22] is the following: once we fix a bound on the parameter
λB(mX) of a simple benchmark model (they consider λB as the cut-off scale of the effective op-
erator corresponding to a scalar coupling of DM with protons), we can get the limit on another
model by imposing TS(λB(mX), mX) = TS(λ, mX), which can be shown to be solved by

11

∑
i,j=1

∑
N,N′=n,p

cN
i (λ, mX)c

N′
j (λ, mX)F̃ (N,N′)

i,j (mX) = [λB(mX)]
2F̃ (p,p)

1,1 (mX) =⇒

11

∑
i,j=1

∑
N,N′=n,p

cN
i (λ, mX)c

N′
j (λ, mX)Y (N,N′)

i,j (mX) = [λB(mX)]
2 , (3.26)

Y (N,N′)
i,j ≡ F (N,N′)

i,j

/
F (p,p)

1,1 .

In conclusion, the linearity of the event rate with respect to the form factors brings to eq. (3.26),
which can be solved numerically rather easily, and allows to infer, with a few steps, the con-
straint on the parameters of any EFT for the interaction between DM and quarks or gluons.
The overall procedure will be clarified by its application to models A and B.

3.4.1 Constraints on model A from direct searches

First of all, we must understand if the EFT of model A is reliable in the context of direct search
experiments.

The Feynman amplitude for the interaction Xq → Xq at the tree level can be simply ob-
tained by eq. (3.11) through a crossing symmetry, by replacing the Mandelstam variable s by t
and viceversa. Then the modulus squared of the amplitude immediately follows from eq. (3.13),
and reads (we must average over the initial spin configurations, thus we divide by 4)

|M2| =
12 g2

qg2
X

(t−m2
Z′)

2 + Γ2
Z′m

2
Z′

[
s2 + u2

2
−m4

X −m4
q + 6m2

Xm2
q − 8m2

qm2
X

t
m2

Z′
+ 4m2

qm2
X

t2

m4
Z′

]
.

This result, obtained in the complete theory, must be compared with the one we would get
from the effective theory, that is

|M2| =
12 g2

qg2
X

m4
Z′

[
s2 + u2

2
−m4

X −m4
q + 6m2

Xm2
q

]
.

Thus we can safely use the EFT to describe the DM-quark interactions in direct search experi-
ments if the following equations hold:

t� mZ′ , ΓZ′ � mZ′ . (3.27)
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The first condition is always satisfied in the non-relativistic regime. Indeed, the momenta of
the incoming and outgoing X particle in the c. o. m. frame are respectively

p1 = (E∗, 0, 0, mXv∗) , k1 = (E∗, mXv∗ sin θ, 0, mXv∗ cos θ) ,

where E∗ and v∗ are the energy and velocity of X in the c. o. m. frame. Since v∗ is of order 10−3

for the elastic scattering on nuclei, we get

t = (p1 − k1)
2 = −m2

X(v
∗)2
(

sin2 θ + (1− cos θ)2
)
= −4m2

X(v
∗)2 sin2 θ

2
� m2

X, m2
Z′ .

We now discuss the second condition of eq. (3.27). If we suppose not to neglect ΓZ′ with re-
spect to mZ′ , then the cross section for the DM-quark interaction in the complete theory is
proportional to 1/(Λ̃)4 with Λ̃ = m′Z

4
√

1 + (ΓZ′/mZ′)2/√gqgx = Λ 4
√

1 + (ΓZ′/mZ′)2, while the
EFT gives an overall coefficient 1/Λ4. Then, once we fix mX, the given limit ` that we obtain
from the experiments should be assigned to Λ̃ instead of Λ: since 4

√
1 + (ΓZ′/mZ′)2 > 1, the

limit ` is in general a conservative one, i. e. the true limit on m′Z/√gqgx is lower (of a factor
4
√

1 + (ΓZ′/mZ′)2) than the one that we get from the use of the EFT. This correction is always
small in the perturbative regime: the factor 4

√
1 + (ΓZ′/mZ′)2 brings a 10% correction only for

ΓZ′/mZ′ > 0.7.
Thus we can safely proceed with the effective theory for model A, with interaction (3.2c).

Using the notation of [22], we have

LDM−q
eff = ∑

q
cq

8O
q
8 = − 1

Λ2 (Xγµγ5X)∑
q
(qγµγ5q) , cq

8 = − 1
Λ2 .

The corresponding DM-nucleon interaction is given by

LDM−N
eff = ∑

N=n,p
cN

8 ON
8 = ∑

N=n,p
cN

8 (Xγµγ5X)(Nγµγ5N) , cN
8 = ∑

q
cq

8∆(N)
q = − 1

Λ2 ∑
q

∆(N)
q ,

where ∆(N)
q is the fraction of nucleon spin carried by the quark q, defined through the hadronic

matrix element 〈N|qγµγ5q|N〉. In general, ∆(n)
q = ∆(p)

q , and they are negligible for c, b, t quarks.

The uncertainty on these coefficients is rather large: if we define ∆ ≡ ∑q ∆(p)
q , the values of this

quantity (according to the references in [22]) can vary up to the 30%. We decide to use the
values used by the references [54, 56, 57] of [22], which are used in the software MicrOMEGA,
and give ∆ = 0.32, because they are among the most recent available, and are the ones endowed
by most recent papers on direct detection. Therefore,

LDM−N
eff = − ∆

Λ2 (O
n
8 +Op

8 ) .

Finally, the non-relativistic limit of this Lagrangian gives

out〈X, N|ON
8 |X, N〉in = −16mXmNONR

4 , ONR
4 =~sX ·~sN ,

cN
4 = 16mXmN

∆
Λ2 .

In conclusion, in model A eq. (3.26) reads

[λB(mX)]
2 =

[
cN

4 (Λ, mX)
]2[
Y (n,n)

4,4 (mX) + 2Y (n,p)
4,4 (mX) + Y (p,p)

4,4 (mX)
]

,
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Figure 3.15: Lower limits on the scale Λ = mZ′/
√gqgX as a function of mX from various direct search

experiments.

where we used the fact that Y (N,N′)
i,j = Y (N′,N)

j,i . With the use of the functions TS(λB(mX), mX)

and Y (N,N′)
i,j provided by the authors of [22], we can extract then a limit on the parameter Λ

from six experiments: the results are shown in figure 3.15.

The strongest constraint comes from the LUX experiment, operating at the Sanford Un-
derground Research Facility in South Dakota. This experiment uses liquid Xenon, which is
sensible to spin-dependent cross sections because of the unpaired neutron in the isotopes 129Xe
and 131Xe. Since in this model this is the strongest constraint, it is sufficient to use only this
experiment to derive the constraints from direct searches. We can see that the constraint from
direct searches is stronger for DM masses of the order of the mass of the nuclei used in the expe-
riment, because there the recoil energy is higher for kinematical reasons, and it decreases for
increasing mX, because even if the scattering cross section tends to a constant (σXN ∝ µ2

N/Λ4)
there is an additional 1/mX factor in the rate, since dR/dER ∝ nDM = ρ0/mX (see eq. (2.2) and
the following comments).

We can now superimpose this plot to the corresponding one obtained from the relic density
constraint (fig. 3.8), with the result shown in fig. 3.16.

The exclusion limit from LUX is competitive with the relic density constraint: a large por-
tion of the parameter space in which ΓZ′/mZ′ must be greater than 0.25 to yield the correct
ΩDM is excluded, and in the region 14 < mX/GeV < 30 direct searches and the relic density
constraints nearly rule out model A. Very interestingly, that region is not completely excluded
by direct searches only thanks to the light blue points, which are not predicted by the EFT
(they correspond to mX > 0.2mZ′). Thus, once again, the difference between the constraints
predicted by the effective theory and those obtained in the full theory is appreciable.
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Figure 3.16: Superimposition of the limits from the relic density constraint and the LUX limit on the
scale Λ = mZ′/

√gqgX as a function of mX . The legend for the colours of the dots is the same of fig. 3.8:
the red dots correspond to 0.25 < ΓZ′/mZ′ < 1, and the remaining ones (with ΓZ′/mZ′ < 0.25) are dark
and light blue respectively if β = mX/mZ′ < 0.2 or β > 0.2.

3.4.2 Constraints on model B from direct searches

We now discuss the implementation of the bounds from direct searches on model B. First of all,
as we have done for model A, we must discuss whether the application of the effective theory
is consistent.

As mentioned in the previous section, the modulus squared of the amplitude for the pro-
cess χq → χq can be obtained by the corresponding formula for the process χχ → qq by a
crossing symmetry, which exchanges the Mandelstam variables s and t, leaving u unchanged.
The crucial point is that in the direct search detection, both s and u are not suppressed by the
DM velocity. Indeed, we can write the momenta of the particles involved in the process as (we
denote by v∗ the speed of the incoming particles in the c. o. m. frame, of order 10−3, and we
approximate to 0 the mass of the up quark which is the only relevant one because of PDFs and
the interaction of χ with up-type quarks):

p1 = (mχ, 0, 0, mχv∗) +O(v2) , k1 = (mχ, mχv∗ sin θ, 0, mXv∗ cos θ) +O(v2) ,
p2 = (mχv∗, 0, 0, −mχv∗) k2 = (mχv∗, −mXv∗ sin θ, 0, −mχv∗ cos θ) ,

s = (p1 + p2)
2 = m2

χ[1 + (v∗)2] +O(v2) ,

u = (p1 − k2)
2 = m2

χ[1− 2v∗ − (v∗)2(1 + 2 cos θ)] +O(v2) .

Thus we see that without the specific assumption mχ � mũR , it is not possible to assume that
t, u are much smaller than m2

ũR
, thus it is not possible to trust the effective theory, which is

valid only if that limit holds. For this reason, we must be cautious about the interpretation of
the constraint from direct searches on this limit.
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Now we derive the bounds from direct searches on the scale of the effective theory of model
B, keeping in mind that they are reliable only in the regime β � 1. Using the notation of [22],
the effective Lagrangian (3.4) reads

LDM−q
eff = ∑

q=u,c,t
cq

6O
q
6 + cq

8O
q
8 , cq

6 = cq
8 = − 1

8Λ2 .

The corresponding DM-nucleon interaction is given by

LDM−N
eff = ∑

N=n,p
cN

6 ON
6 + cN

8 ON
8 = ∑

N=n,p
cN

6 (χγµγ5χ)(NγµN) + cN
8 (χγµγ5χ)(Nγµγ5N) ,

cN
6 =

{
2cu

6 = −2/8Λ2 N = p,
cu

6 = −1/8Λ2 N = n,
cN

8 = ∑
q=u,c,t

cq
8∆(N)

q = − 1
Λ2 ∆(N)

u ,

where ∆(N)
u ≡ ∆u = 0.84 in the reference we cited in the previous section. The last step brings

to the non-relativistic limit of the interaction between DM and nucleon:

out〈χ, N|ON
6 |χ, N〉in = 8mχmNONR

8 + 8mχONR
9 , ONR

8 =~sχ ·~v⊥ , ONR
9 = i~sχ · (~sN ×~q) ,

out〈χ, N|ON
8 |χ, N〉in = −16mχmNONR

4 , ONR
4 =~sχ ·~sN ,

cN
4 = 2mχmN

∆u

Λ2 , cN
8 = −mχmN

1
Λ2 · ηN , cN

9 = −mχ
1

Λ2 · ηN ,

where we denote ηN = 2 for N = p, ηN = 1 for N = n. We notice that the coefficients of the
NR expressions of ON

6 (coming from the interaction term (3.4a)) and ON
8 (coming from (3.4b))

have opposite signs: this means that the interference between the amplitudes corresponding to
the two operators is destructive. This interference will decrease the limit from direct searches
on the scale Λ.

We are now able to write down the expression (3.26) for model B. By writing explicitly the
coefficients cN

i , and recalling that Y (N,N′)
i,j = Y (N′,N)

j,i , we obtain the following expression (we
understand the argument (mχ) of the Y functions)

[λB(mχ)]
2 =

1
Λ4

[
4m2

χm2
N∆2

u

(
Y (n,n)

4,4 + 2Y (n,p)
4,4 + Y (p,p)

4,4

)
+ m2

χm2
N

(
Y (n,n)

8,8 + 4Y (n,p)
8,8 + 4Y (p,p)

8,8

)
+ m2

χ

(
Y (n,n)

9,9 + 4Y (n,p)
9,9 + 4Y (p,p)

9,9

)
− 2m2

χm2
N∆u

(
2Y (n,n)

4,8 + 3Y (n,p)
4,8 + 2Y (n,p)

8,4 + 4Y (p,p)
4,8

)
− 2m2

χmN∆u

(
2Y (n,n)

4,9 + 3Y (n,p)
4,9 + 2Y (n,p)

9,4 + 4Y (p,p)
4,9

)
+ m2

χmN

(
2Y (n,n)

8,9 + 4Y (n,p)
8,9 + 4Y (n,p)

9,8 + 8Y (p,p)
8,9

)]
.

With the use of the functions Y and of the test function provided by [22] we obtain the exclusion
plot shown in figure 3.17. In the region of low mχ, below 8 GeV, the stronger limit comes from
the PICASSO experiment, situated at SNOLAB in Ontario, that is sensible also to very low DM
masses because it uses a C4F10 target, made of very light nuclei.

We can superimpose this exclusion limit from direct searches with the one we have obtained
for the constraint from the relic density. The result is shown in figure 3.18.
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Figure 3.17: Lower limits on the scale Λ = mũR
/gDM as a function of mχ from various direct search

experiments.

Figure 3.18: Overlay of the lower limit on the cut-off scale Λ = mũR
/gDM as a function of mχ from direct

searches with the distribution of the points in the parameter space yielding the correct relic abundance.

In model B, the exclusion limit from direct searches is much more relevant, and excludes
the region from 10 to 80 GeV for mχ. We must keep in mind anyway that the limit from direct
searches uses the effective theory, and the result with the complete theory could be different:
in particular, the limit will be slightly lower once we take into account a finite β. On the other
hand, we have seen in the relic density calculation that this effects should be expected to yield
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a difference around 20− 30%, thus the excluded range will shrink but will survive even in the
complete theory.

3.5 Constraints from the flux of p

An important probe for a DM particle interacting with quarks is the observation of the flux of
antiprotons in the cosmic rays arriving on the Earth from our galaxy. Indeed, the product of
DM annihilations would include protons and antiprotons, and the latter could in principle offer
an efficient probe for this type of interaction, given the low amount of antiparticles in the flux
of cosmic rays. The background is given by the antiprotons produced during the diffusion of
cosmic rays in the galaxy: they can be produced for example through the interactions with the
nuclei that populate the interstellar medium, or they could be the result of hadronic interactions
of protons accelerated by Supernova remnants; thereafter, they are accelerated by the same
sources that accelerate primary cosmic rays [54, 55].

The crucial point, in order to analyse the observations of space-based experiments as PA-
MELA or FERMI-Lat, is to have a reliable model for the production of cosmic rays and their
diffusion in the galaxy, from their origin until they reach the Earth. The starting point for this
analysis is a diffusion equation, accounting for the acceleration of astroparticles due to mag-
netic fields in the galaxy, and energy losses for charged particles. Then, it is necessary to pro-
vide a simple geometric model for the galaxy, and reasonable assumptions about the sources
of the acceleration of cosmic rays, and the convective motions in the interstellar medium. The
variety of models that one can propose are then cross-checked with the experimental observa-
tions. Returning back to our goal, it is possible to tune the parameters of the allowed models
with the observed flux of protons and the ratio of the observed boron-to-carbon nuclei flux in
cosmic rays, in order to predict with these parameters the flux of antiprotons. The agreement
with the observed flux is today rather convincing, and the absence of anomalies yields upper
exclusion limits on the thermally averaged annihilation cross section of DM to qq today. Never-
theless, even if future observations (as the forthcoming results of AMS) were in disagreement
with the expected rate of p cosmic rays, some caution is in order before claiming that this is
an indirect signal of DM annihilation: as discussed in [55], we could have difficulties in testing
this possibility against astrophysical explanations for a possible anomaly.

We do not go into further details in this topic. In the following sections, we check the
exclusion limits from the observed flux of p cosmic rays for models A and B. We take the
bounds derived in [54] on the annihilation cross section of DM into qq today, as a function of
the DM mass, for two sets of astrophysical parameters, called MED and MAX in ref. [54]3.

In order to derive the constraints on our models, we plot the thermally averaged annihila-
tion cross section in the limit of zero temperature (hence x → ∞), that from eq. (B.11) reads

〈σv〉 = a
4g2m2

DM
(3.28)

for the annihilation into two quarks, and we compare it with the two exclusion limits obtained
in [54] with the MED and MAX parameters.

3.5.1 Constraints on model A from the p flux

In Model A, the helicity suppression dicussed in section 3.3.2 makes the cross sections for the
annihilation into light quarks (up, down, strange, charm) negligible with respect to the annihi-

3Ref. [54] uses also another set of parameters called MIN, which is ruled out by [56]. For a recent discussion of
the impact of the uncertainties about the propagation model for cosmic rays on the estimate of the p flux, see [57]
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lation into bottom and top. Thus we plot the distribution of 〈σv〉 (eq. (3.28)) for the annihilation
into bottom (for mb < mX < mt) or top (dominant for mX > mt) quarks, as a function of mX,
for the points in the parameter space that satisfy the relic density constraint. Then we super-
impose the upper limit on this quantity from [54], for the MED parameters (which are more
conservative in the assumptions on the model for cosmic rays propagation) and the MAX ones.
The result is shown in figure 3.19. The lines that we display in the plot correspond to the upper
limit on the XX → bb thermally averaged cross section: this is indeed nearly identical to the
limit XX → tt, thus the same line can be read as a limit for both annihilation channels.

Figure 3.19: Plot of the quantity 〈σv〉 of eq. (3.28) for the annihilation into bottom (for mb < mX < mt)
or top (for mX > mt) quarks, as a function of mX , for the sample of points in the parameter space
that satisfy the relic density constraint. The points in red correspond to a strongly coupled Z′ boson.
Superimposed in darker and lighter green are the excluded regions from [54] for the MED and MAX
parameters, respectively.

We can see that the observation of the flux of p in cosmic rays, in model A, poses a bound
only for the annihilation into bb. Indeed, the bound for the annihilation into tt is basically iden-
tical to the previous one, and the limit is competitive with the relic abundance constraint only
for DM masses below O(10) GeV, thus largely below the top mass threshold. Nevertheless,
the bound from bb annihilations is not completely negligible: if we trust the MAX astrophys-
ical parameters, they pose a lower limit on mX around 20 GeV. The more conservative MED
bound instead is almoust touching the lower limit of 10 GeV (we recall that this sample was
generated for 10 < mX/ GeV < 1000). Nevertheless, this plot shows that the impact of the
bound from antiprotons in cosmic rays can be relevant for low DM masses; on the other hand,
a possible future anomaly could be at first sight a very interesting hint for DM annihilations,
but as discussed for example in [55] it could be difficult to discard alternative astrophysical
explanations.
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3.5.2 Constraints on model B from the p flux

In the case of model B, our initial choice of the quantum numbers of the scalar mediator is
crucial for what concerns the constraint from the flux of antiprotons. Indeed, we have chosen
ũR to have the same quantum numbers of the up, right-handed quarks. Thus, given the helicity
suppression which makes the coefficient a of eq. (B.9) negligible for mχ < mt, the only relevant
constraints from the p flux in cosmic rays comes from the annihilation to top quarks. The
situation would have been very different if at the beginning we had made the DM interact with
down-type right-handed quarks (which would have been constrained only by the χχ → bb
annihilation) or with the left-handed doublet (bringing to an interaction with all the quark
flavours).

We have seen that in model A the relevant limit is the one for the annihilation into bb. In
the case of model B, since there is still the helicity suppression, the annihilation cross section
into light quarks (u, c) is completely negligible, then we expect that the bound from p does not
constrain model B. This is indeed what happens, as we can see from fig. 3.20. Thus, we can
conclude that model B is not constrained by this type of indirect search.

Figure 3.20: Plot of the quantity 〈σv〉 (eq. (3.28)) for the annihilation into top quarks (in model B, DM
interacts only with up-type right-handed quarks) as a function of mχ, for the sample of points in the
parameter space that satisfy the relic density constraint. Superimposed in darker and lighter green
respectively are the upper exclusion limits from [54] for the MED and MAX parameters.

3.6 Signals at colliders

In this section, we will review the most relevant limits from hadronic collider searches on the
models we consider. The constraints can come from both the search of the mediators and the
search of the DM particle in monojet or multijets plus /ET.
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As we have also discussed in sec. 2.1.3, collider searches can be in general more constrain-
ing than various types of experimental constraints, but are also subject to some limitations in
certain domains of the parameter space: on one hand, they are less sensitive to the nature of
the interaction of the interaction of DM with quarks, because in the high energy regime effects
such as the helicity suppression are no more relevant, and the experimental search does not
give sensible differences for vector or axial-vector quark currents. On the other hand, the high
energy regime of a collider such as the LHC could also hide the DM particle if it is very weakly
interacting and the mass parameters of the model are sufficiently low. Eventually, a problem
of the interpretation of collider limits that we have already discussed in sec. 2.1.3 is that the
EFT can be mislead to under- or overestimate the limit on specific models, since very often the
energy range of the momentum transfer can exceed the cut-off scale.

3.6.1 Constraints on model A from dijet searches

We begin by discussing the relevant search for the mediator of model A. The peculiar signature
at an hadronic collider of a vector boson interacting with quarks as the Z′ is the so-called dijet
production, i. e. the production of a high pT quark and antiquark that are dressed in the final
state as two jets with nearly opposite direction, through the exchange of the Z′ in the s-channel.
This type of searches have been performed in all the hadronic colliders of the last decades.

The limits coming from the agreement of these results with the expected rate in the SM
bring to exclusion limits on any model introducing additional interactions leading to a dijet
final state. A comprehensive analysis of the limits on a massive Z′ boson of the same type
as in model A has been recently performed in [58]. The most relevant signal of a massive
boson exchanged in the s-channel comes near the resonance, thus at a collision energy (at the
partonic level) of the order of the mass of the Z′. For a fixed mZ′ , the energy necessary to excite
the resonance is of the order of mZ′ . It is worth mentioning that in an hadronic collider the
exact amount of energy available at the partonic level is not tunable with precision, thus the
sensitivity to a resonance is not as strong as in a leptonic collider. Depending on the mass
range of the Z′ boson, the best limit does not in general come by the collider with the highest
energy and luminosity, also because of the different cuts necessary to reduce the strong QCD
background at different collision energies. Therefore, in order to get constraints on a large range
of mZ′ it is necessary to combine the limits from a large range of experiments. Eventually, each
exclusion limit for a given value of mZ′ can be cast as a limit on the coupling constant gq of the
massive boson to the quark current.

In order to compare the exclusion limits from the dijet searches to the coupling constant
gq of model A, we can exploit the plot obtained in [58], which shows the upper limit on the
coupling constant gq as a function of the mZ′ from searches performed in the following experi-
ments: UA1 and UA2 at the SPS, CDF and D0 at the Tevatron, and ATLAS and CMS at the LHC.
The result of their analysis is superimposed in figure 3.21 to the distribution in the (mZ′ , gq)
plane of the sample of parameter values yielding the correct relic density constraint.

A first remark is that, in order to constrain the Z′ mass over a sufficiently large range,
it is necessary to include many experiments performed at different energies. The resulting
constraints are rather inhomogeneous, in the sense that the upper limit of gq can range from
around 0.7 to values over 2, depending on the mass of the Z′, with an irregular behaviour.
Thus, there are still open regions with allowed values of gq of the order of unity. The second
important remark concerns the impact of these limits on our model. We can see from the plot in
fig. 3.21 that, for gq higher than 0.7÷ 0.8, ΓZ′ > 0.25 mZ′ , independently of mZ′ , mX and gX. This
is due to the presence of many (up to 6) decay channels of the Z′ into quarks, which represent
the main contribution to ΓZ′ . Thus this decay width can rapidly increase to non-perturbative
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Figure 3.21: Constraints from various dijet searches on the coupling constant gq as a function of the Z′

boson mass [58], superimposed to the points allowed by the relic density constraint. In blue are the
points with ΓZ′/mZ′ < 0.25, while the dots with 0.25 < ΓZ′/mZ′ < 1 are shown in light red with a
smaller size in order to keep the plot readable. See [58, table II] for the details about the experimental
searches used to derive these limits.

values for large couplings to the quarks: as we have discussed in section 3.3.3, the increase of
ΓZ′ to non-perturbative values suppresses the annihilation cross section, preventing the relic
density from tracking the correct one. This explains why in model A the constraints from dijet
searches do not exclude nearly any point with ΓZ′/mZ′ < 0.25.

3.6.2 Constraints on model A from monojet searches

The collider searches which can try to detect the production of DM must select events with
a large missing energy and one (or more than one) jet, or a photon (as we have discussed in
sec. 2.1.3). At a hadronic collider, the best exclusion limits come from the jet plus /ET searches.
Thus we check the constraint coming from the monojet plus /ET searches at the LHC. As dis-
cussed in sec. 2.1.3, these searches put an upper limit on the production cross section of DM,
which can be recast as a lower limit on the cut-off scale of a given effective operator describing
the interaction between two quarks and two DM particles. The effective operators used in the
CMS and ATLAS searches [29, 30, 31, 32] assume a Dirac fermion as dark matter candidate, and
give the limits on the operators (or some of the operators) listed in table 2.3.

In order to derive the constraint on model A from the monojet searches, we take the most
stringent limits, coming from [31], on the effective operator with axial-vector couplings, which
is exactly the one corresponding to our model (effective Lagrangian (3.2c)). We consider then
the limits derived from the analysis of CMS based on 19.5 fb−1 at

√
s = 8 TeV, on the cut-off

scale Λ for the effective operator, whose coefficient is 1/Λ2, as a function of m2
X. We super-

impose this limit to the distribution of points allowed by the relic density constraint, together
with the limit obtained from direct searches. The result is shown in figure 3.22.

The exclusion limit on the effective operator (eq. (3.2c)) excludes the region of low DM
mass: it is important to keep in mind that this limit could be different if obtained with the
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Figure 3.22: Superimposition of the limits from the relic density constraint (coloured dots), the LUX
lower limit (blue lower line) and the CMS lower limit (green line) from [31] on the scale Λ = mZ′/

√gqgX
as a function of mX . The red dots are the ones with 0.25 < ΓZ′/mZ′ < 1, and the remaining are coloured
in dark blue (if β < 0.2) or lighter blue otherwise.

full theory. For example, in the case of a relatively light resonance, the limit would be much
stronger around mX & mZ′/2, since in that region the production of the mZ′ could be enhanced
by the resonance. The most important conclusion that we can draw is that the limit from the
relic density that we would have obtained from the EFT (blue line) would have implied a lower
limit on mX around 90 GeV from the CMS limit, while the calculation of the relic density with
the complete theory shows that the ligh blue dots remain over the CMS limit even for mX
around 40 GeV. This shows that how much the use of the EFT can distort the exclusion limit
that one would obtain from the full theory.

We can also compare the relevance of the CMS limit on the axial-vector operator with the
limit from LUX, which is the best limits from direct searches for that same operator. We can see
that, in this particular case, the limit from CMS is always stronger than the limit from direct
searches. Nevertheless it is important to mention that it is only thanks to the high integrated
luminosity reached by the CMS search (19.5 fb−1) that this happens. Indeed, until the first
release of the monojet searches [29, 30], the limit from direct searches was higher than the
collider one for high DM masses. In order to have a quantitative comparison, we overlay the
current limit from LUX on the axial-vector operator with the exclusion limit on that effective
operator from [30], which had analysed 4.7 fb−1 at

√
s = 7 TeV. The message that we can draw

from this comparison is that the limits from monojet and direct searches have been strongly
improving in the last few years; however the comparison shown in fig. 3.23 is based on the use
of the effective theory, which we have shown to be justified in direct searches for model A, but
may not be reliable in collider searches, depending on the mass values of the model.
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Figure 3.23: Superimposition of the lower limit on the cut-off scale of the vector-axial effective operator
obtained by ATLAS in [30] and the current lower limit from the direct search experiment LUX (green
line shadowed area). The former is weaker than the second one for mX & 700 GeV.

3.6.3 Constraints on model B from mediator searches

We now turn to the discussion of the relevant constraints from collider searches on model B. In
this section, we discuss constraints on the search for the mediator ũR, and in the next section
we show the limit on the search of the DM particle through the monojet plus /ET search.

We recall that in model B there are three different mediators ũ(i)
R , where the index i runs

over the three generations. The limits from collider searches thus are relevant only for ũ(1)
R , the

mediator of the first family generation, because of the PDFs. On the other hand, we supposed
that the three mediators are degenerate in mass to avoid flavour issues, thus the same limit
applies to all the three mediators.

The production of the mediator at colliders brings to a final state composed of jets plus /ET:
indeed, ũR is unstable and decays to χ u, and the mediators must be produced in couple if they
are charged under the same Z2 parity as the DM particle (as in the case of supersymmetry). A
representative diagram for this process is shown in fig. 3.24.

q

q

χ

χ

ũR

ũR

q
χ

q

Figure 3.24: A representative Feynman diagram for the production of two ũR, decaying each into DM
plus a quark. This is the most relevant production channel if the coupling constant gDM is large enough;
for a complete list of the production channels (at tree level) of a couple of ũR at a hadron collider, and a
discussion of their contribution to the total cross section, see [45].

As discussed in [59], also monojet plus /ET searches are sensitive to the process in fig. 3.24,



78 3. Discussion of two simplified models for DM

because their cuts on additional jets are not so severe to completely discard events with two
hard jets. We can derive the limits on the mediator of model B from the searches dedicated
to supersymmetric particles. Indeed, this type of searches are sometimes performed within a
simplified framework, in order to avoid to specify completely the details of the supersymmetric
extension that one is considering, and to show representative results. The latest search of this
type performed by ATLAS [60] (analogous results are presented by CMS in [61]) considers also
a case which coincides with our model B, where the gluino are decoupled (this is obtained by
putting their mass to a value over the TeV threshold). Indeed, gluinos contribute significantly
to the process with a final state of multijets plus /ET. Then [60] further distinguishes a case
where the 8 squarks (up-type and down-type squarks, each with its two chiralities, for the two
lightest families) and a scenario with only one light squark: the latter case coincides with model
B, once we take into account the PDFs of the partons which are negligible for c, t quarks.

The corresponding limit of [60, fig. 10c] is a lower limit on the neutralino mass (which
corresponds to χ in model B) as a function of the squark mass (mũR in our model). This limit
rapidly decreases for mũR & 400 GeV: this comes from the suppression of the PDFs for large
parton energy fraction.

We can then superimpose this limit on the distribution of the points of the sample in the
parameters space of values that yield the correct relic density, with the result shown in figure
3.25. We can see that the limit from squark searches excludes a large part of the parameter space
for mũR . 300÷ 350 GeV. We recall that the point over the exclusion curve, on the upper right,
tend to the limit mχ = 0.9mũR , and that the white region corresponds to mχ > 0.9 mũR contains
the coannihilation region; thus we are not really able to define a general excluded region for
mũR , but rather in the limit of low β.

Figure 3.25: Limit on the DM mass mχ as a function of the mediator mass mũR
(recasting the squark

search performed in [60]), superimposed with the distribution of the points of the sample yielding the
correct relic density. In red are shown the points with coupling gDM > 2.
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3.6.4 Constraints on model B from monojet searches

In this section, we will discuss the impact of the limits coming from monojet searches on the
effective axial-vector operator, for model B.

In this case, before applying the limit listed by the CMS collaboration [31] as we have done
for model A, we must take into account the following differences. The CMS limit on the ef-
fective operator (χγµγ5χqγµγ5q)/Λ2

CMS is obtained by assuming that χ is a Dirac fermion,
interacting with all the quarks. In model B, the effective theory is described by two operators:
one with the contraction of two axial-vector Lorentz bilinears of eq. (3.4b), and one with the
contraction of a vector and an axial-vector (eq. (3.4a)). Thus the difference between the limit
σCMS from the CMS search on the cross section for the production of χχ j and the limit σB that
would arise by considering our model must take into account the following numerical factors:

• χ in model B is a Majorana fermion. Then the Feynman rule that we would obtain from
an operator (χγµγ5χqγµγ5q)/Λ2

B, where χ is a Majorana fermion with its kinetic term
normalised accordingly, is twice the amplitude obtained by assuming that χ is a Dirac
fermion (as shown in appendix A). This factor 2 gets squared in the modulus squared of
the amplitude. Then, an additional factor 1/2 must be introduced in the case of Majorana
DM when computing the phase space integral, because the two particles in the final state
are identical. Thus, this first difference gives an factor of 2 in the ratio σB/σCMS.

• The EFT of model B also contains the coupling of a vector quark current to a axial-vector
DM current (eq. 3.4a). We can show that its contribution to the cross section is identical
to the one from the term of eq. (3.4b) in two ways. First, we can think of the chirality of
the quarks involved in the two interactions: indeed, the PDFs allow us to restrict to the
up and down quarks, which can be considered massless at the energy scale of LHC, thus
chiralities of the spinors and helicities of the corresponding particles coincide. Both in the
vector and axial-vector quark current, the two spinors involved in the interaction have the
same chirality. Thus the two interaction involve equivalently left- or right-handed quarks,
without any interference between these contributions. Therefore the contributions of the
two operators to the final cross section are equal. Otherwise, we can reach the same
conclusion by rewriting the sum of the two interaction terms as(

χγµγ5χqγµγ5q
)
+
(

χγµγ5χqγµq
)
= 2

(
χγµγ5χqγµPRq

)
.

The factor 2 in front of the squared brackets yields a factor 4 in the cross section, while the
projection operator PR selects only one between the two possible chiralities for the two
incoming quarks; thus the average over the initial states gets decreased by 1/2. From
both points of view, the factor coming from this issue on the ratio σB/σCMS is 2.

• As a last point, we must recall that in model B the DM interacts only with the up-type
quarks. An accurate estimate of the numerical effect of this difference requires the de-
tailed calculation through the PDFs. Since the cut-off scale Λ gets rescaled by this factor
raised to the power −4 (as we explain below), also a rough estimate is sufficient for our
scope. In the kinematical region of interest, only the up and down quarks have relevant
PDFs, and the up quark PDF is twice the down quark one (in first approximation). In
model B, only the up quarks interact with DM, while in the CMS model also the interac-
tion with down quarks is included. Then the overall factor in the ratio σB/σCMS is 2/3.

In conclusion, these three differences imply that the limit σB on the cross section (as predicted in
model B) is greater than the value σCMS obtained by CMS by an overall factor 2 · 2 · 2/3 = 8/3.
Thus, since the cross section is proportional to Λ−4, the limit on the cut-off ΛB of the operator
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of model B is equal to (8/3)−1/4ΛCMS. Therefore in figure 3.26 we report the limit on the cut-
off scale listed by CMS [31] divided by a factor 4

√
8/3, superimposed to the distribution of the

points yielding the correct relic density.

Figure 3.26: Limit from CMS (green line) on the cut-off scale Λ as a function of mχ from the monojet
searches in the framework of the EFT. This limit has been divided by 4

√
8/3 with respect to the one

published in [31]. In the same plane we show with a blue line the limit from direct searches, and the dis-
tribution of the points of parameter space yielding the correct relic abundance. The blue dots correspond
to points for which gDM < 2, while the red ones correspond to 2 < gDM < 4π.

We can see that in model B the constraint from the corresponding effective theory from
monojet searches is by far much more constraining with respect to model A. Indeed in this
case the lower limit on mχ is pushed to around 200 GeV. This is basically due to the fact that
the cut-off scale needed to reach the correct relic abundance is much smaller than in model A.
Indeed, in that case the possibility of a nearly resonant production of the mediator (due to the
interaction in the s-channel) increases the cross section, allowing for higher values of Λ in order
to keep the correct annihilation cross section: this phenomenon, which happens precisely when
departing from the EFT limit, raises the range of allowed values for Λ = mZ′/

√gqgX. On the
other hand, in model B this phenomenon does not happen because of the mediator exchange
in the t and u channel. In this model, the departure from the EFT limit pushes downwards the
required value of Λ = mũR /gDM that brings to the correct relic density. Thus the exclusion limit
on the cut-off scale from monojet searches has a stronger impact on the exclusion limit.



Conclusions

In this thesis we have considered two simplified models for dark matter, to compare critically
how experimental data are interpreted in the effective theory and in the complete model. The
first model, A, includes a vector mediator with axial vector couplings to the quarks and to
a Dirac fermion dark matter. The second model, B, assumes that dark matter is a Majorana
fermion interacting with the Standard Model right-handed up-type quarks and some coloured
scalars with the same gauge quantum numbers.

First, we have examined the relic density constraint. The result obtained with the complete
theory shows the limitations of the effective theory approach: in particular, in model A, the
possibility of a resonant production of the mediator and the important effects of its decay width
in certain regions of the parameter space are missed by the effective theory. On the other hand,
the effective theory is still adequate for a rough estimate of the effective interaction strength,
with a difference varying from a factor of two to almost an order of magnitude for increasing
dark matter mass.

Then we have moved to direct searches. The kinematic channel in which the mediator is
exchanged is relevant for the validity of the effective theory. For model A the effective theory
is perfectly adequate in the non-relativistic regime of direct search experiments. In model B its
predictions are correct only in the limit of high mass of the mediator with respect to the dark
matter particle. However, in model B this effect is not expected to be strongly relevant as long
as the masses of the mediator and of the dark matter particle are not very close, as we assumed
to avoid some delicate issues in the calculation of the relic density. Therefore, we have used the
effective theory to set the limits on our models.

Afterwards, we have compared the relic density constraint with the bound coming from the
observed flux of antiprotons in cosmic rays: this is the most relevant indirect search channel
because in our models dark matter interacts with quarks. Because of the helicity suppression
present in our models, i. e. the vanishing of the cross section for the annihilation of DM particles
into quarks in the limit of massless quarks and non-relativistic dark matter, the bound from p
is relevant only for the annihilation into the heaviest quarks allowed by the interactions. The
most relevant constraint turns out to be on the annihilation into b-b quarks, and has an impact
on model A but not on model B, where the dark matter particle interacts only with up-type
quarks.

Finally, we have discussed the collider searches for the mediators and the dark matter par-
ticles. It is worth stressing that the full model includes the mediator, which can be directly
produced at colliders, while in the effective theory this degree of freedom is absent. In model
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A, the limits on the mediator come from the searches for Z′ bosons decaying into di-jets, and
translate into constraints that are not competitive with the others in the region of perturbative
couplings. In model B, the mediator can be identified with a squark, the scalar quark partner
in supersymmetry, and some of the limits from squark searches at the LHC can be applied.
We find that a large part of the parameter space is excluded for a mass of the mediator below
300÷ 350 GeV. The search for dark matter at colliders is performed with the analysis of events
with a jet and a large amount of missing transverse energy. For simplicity and because of the
limited time available, we have taken directly the lower limit on the strength of the effective op-
erator derived by the CMS collaboration, and we have compared that limit with those obtained
from direct searches and with the relic density constraint.

The main result of this analysis is that the overall effect of using the effective theory rather
than the complete underlying model might still be an acceptable strategy for the interpretation
of dark matter searches. However, to reach a firmer and more general conclusion some more
work would be needed, which goes beyond the aim and the time constraints of the present
thesis. First, it would be interesting to implement a more detailed analysis of the limits from
monojet searches, to compare the predictions of the effective theory and those of the underly-
ing model also in this case. We can expect that in model A the most relevant differences will
arise when the mass of the mediator is sufficiently low that its resonance can be excited at the
LHC. Second, it would be interesting to relax the assumption of pure axial vector coupling in
model A: if we allow for a vector component of the couplings, the helicity suppression ceases,
and we can expect an increase on the lower bounds on the effective scale, both for the relic den-
sity constraint and direct searches, while this should not impact very much collider searches.
It would be interesting to check the size and the relative difference of these changes. Then,
an assumption of model B whose relevance would be interesting to check is the choice of the
quarks with which dark matter is interacting. Depending on the quantum numbers of the me-
diator (and of dark matter, which we have assumed to be a singlet of the Standard Model), the
interaction could be with right-handed down-type quarks or with left-handed quarks. Finally,
in model B a region of the parameter space that we have not considered yet is the one in which
the dark matter mass approaches (from below) the mass of the mediator: in that regime, also
called co-annihilation, the two species decouple simultaneously in the early universe, and the
Boltzmann equations for their number densities must be solved together.



APPENDIX A

Spinor conventions

In this appendix we summarise some conventions and useful formulæ on four-components
spinors.

We adopt the following sign convention for the four-dimensional flat metric:

ηµν = diag(+1, −1, −1, −1) , ηµρ ηρν = δ
µ
ν .

The Dirac equation is
(iγµ∂µ −m)ψ = 0 ,

where the field ψ is called spinor and the 4× 4 Dirac matrices γµ satisfy

{γµ, γν} = 2ηµν14 .

A convenient basis of dimension 16 for the spinor bilinears with definite Lorentz transforma-
tion properties is given by

ΓA = {14, γµ, σµν, iγ5γµ, γ5} , A = 1, . . . , 16 , (A.1)

where σµν is defined as σµν ≡ i/2[γµ, γν] and the matrix γ5 (where the position of the index 5
is irrelevant) is defined by γ5 = iγ0γ1γ2γ3. The basis of eq. (A.1) has been chosen in order to
satisfy the normalisation

tr(ΓAΓB) = 4 δA
B , (A.2)

where the matrices ΓA are defined by lowering the space-time indices with the metric ηµν:

ΓA = {14, γµ, σµν, iγ5γµ, γ5} , A = 1, . . . , 16 .

The representation of the Lorentz group corresponding to a Dirac spinor is reducible in two
representations acting separately on the two 2-dimensional subspaces selected by the projectors

PL =
1− γ5

2
, PR =

1 + γ5

2
. (A.3)

We choose the Weyl representation as a specific representation for the γ matrices:

γµ =

(
02 σµ

σµ 02

)
, γ5 =

(
−12 02
02 12

)
,
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where the σ matrices are defined as follows1:

σµ = {σ0, σ1, σ2, σ3} , σµ = {σ0, −σ1, −σ2, −σ3} ,

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The main advantage of this representation is that the left and right projectors of eq. (A.3) take
the simple form

PR =

(
02 02
02 12

)
, PL =

(
12 02
02 02

)
,

so that a four-component spinor can be neatly decomposed into two two-components spinors,
called Weyl spinors, which transform under an irreducible representation of the Lorentz group.
The usual notation for two-components spinors is the following: right-handed spinors, which
are annihilated by PR, have a dotted greek upper index and an upper bar, while left-handed
spinors have a lower undotted greek index,

ψ =

(
ξα

η̄α̇

)
.

The transformed under charge conjugation of a four-component spinor is obtained through

ψc = C(ψ)T ,

where the operator C (which satisfies C†C = 14) is given by C = −iγ2γ0 and the Dirac conjugate
ψ is ψ = ψ†γ0. We quote some relevant properties of the conjugation matrix C that are useful
in the calculations of chapter 3:

C−1 = C† = −C , CT = −C , C2 = −14 , [C, PL] = [C, PR] = 0 . (A.4)

A Majorana spinor (that we will usually denote by χ) is defined as a self-conjugate spinor:

χ = χc = C(χ)T , χ =

(
ξα

ξ̄ α̇

)
, (A.5)

where ξ̄ α̇ is defined as ξ̄ α̇ = εα̇β̇(ξβ)
∗.

By using the definition (A.5), we can easily show that the Lorentz vector χγµχ is 0 if χ is a
Majorana spinor by writing explicitely the vector current in terms of two-components spinors.

We now present the so-called Fierz transformations, which allow to rewrite the product of
two Lorentz bilinears, i. e. of two Lorentz tensors built with two four-component spinors, as
the sum of analogous terms with the exchange of some of the spinor fields. In formulæ, we can
rewrite a Lorentz bilinear ψ1ΓAψ2 ψ3ΓBψ4 as

ψ1ΓAψ2 ψ3ΓBψ4 = ∑
C,D

CAB
CD ψ1ΓCψ4 ψ3ΓDψ2 ,

where the coefficients CAB
CD are given, with the normalisation convention chosen in (A.2), by

CAB
CD =

1
16

tr
(

ΓCΓAΓDΓB
)

. (A.6)

In section 3.2.2 we have rewritten the interaction Lagrangian of the effective theory for model
B in terms of Lorentz bilinears involving only χ or quark currents: starting from the term

1The bar in σµ has nothing to do with the spinor conjugation.
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χPRu uPLχ, we can use eq. (A.6) to deduce the coefficients of the Fierz transformation. The
only non vanishing ones give(

χPRu
)(

uPLχ
)
=

1
2

(
χγµPLχ

)(
uγµPRu

)
,

which can be simplified, by recalling that a vector current for a Majorana spinor is zero, into(
χPRu

)(
uPLχ

)
= −1

4

(
χγµγ5χ

)(
uγµPRu

)
. (A.7)

We conclude this appendix by recalling some peculiarities of Majorana spinors with respect
to Dirac ones when dealing with Feynman diagrams and the corresponding Feynman rules.
First, we must remember that the Feynman rule corresponding to a given Lagrangian term
containing twice the same Majorana field χ gets an additional factor 2 with respect to the Dirac
case. Indeed, eq. (A.5) implies that, in the expansion of the Majorana spinor field χ in terms of
the energy eigenstates, the annihilation and creation operators coincide:

χ(x) =
∫ d3k

(2π)32E ∑
r=1,2

[
ur(~k) br(~k)e−ik·x + vr(~k) b†

r (~k)e
+ik·x

]∣∣∣∣∣
k0=E=

√
|~k|2+m2

, (A.8)

where m is the mass of the field χ, r denotes the two possible helicity states, u and v are respec-
tively the positive and negative energy solutions of the Dirac equation in Fourier space, and
k · x denotes the four-dimensional scalar product. From eq. (A.8), with the use of the anticom-
mutation rules valid for the creation and annihilation operators b and b†, we can check that, for
example, the Feynman rule associated to an interaction term containing the Lorentz bilinear
χΓAχ would bring to the matrix element

〈0| b(~k f )
(

χΓAχ
)

b†(~ki) |0〉 = 2 u(~k f )ΓAu(~ki) ,

where the factor 2 arises from the fact that, for a Majorana spinor, left and right components
are simply related by a complex conjugation as in eq. (A.5). This computation shows why we
have to insert a 1/2 factor in front of terms containing twice a given Majorana spinor field.

When computing the Feynman amplitude associated to a diagram containing Majorana
fermions, the easiest way to associate the correct spinor to the external legs is to write explicitly
the matrix element associated to that diagram. To show an example, we will derive the Feyn-
man amplitude associated to the process χ(p1)χ(p2)→ uR(k1)uR(k2), with an interaction given
by (χPRu)x(uPLχ)y, where the subscript x or y denotes the point of the spacetime in which the
fields must be computed. We must then calculate〈

uR(k1)uR(k2)
∣∣∣(χPRu

)
x

(
uPLχ

)
y

∣∣∣χ(p1)χ(p2)
〉

=
〈

0
∣∣∣c(k1)d(k2)

(
χPRu

)
x

(
uPLχ

)
y
b†(p1)b†(p2)

∣∣∣0〉 ,

where we denote by c and d the destruction operators for up and anti-up quarks, respectively.
From this equation it is clear that c(k1) must be contracted with u(y) and d(k2) with u(x),
while both χ(x) and χ(y) contain an operator b to be contracted with the creation operators b†.
Depending on whether we contract b†(p1) with χ(y) or χ(x), a minus sign arises in the second
case because of the anticommutation that must be imposed when switching two fermion fields
of the same type. Thus, the Feynman amplitude reads(

v(p2)PRv(k2)
)(

u(k1)PLu(p1)
)
−
(

v(p1)PRv(k2)
)(

u(k1)PLu(p2)
)

. (A.9)
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We conclude this section by quoting the formulæ for the sums, over the Majorana fermion
polarisation, of the associated spinors [48]. Indeed, because of eq. (A.5), the positive and neg-
ative energy solutions of the Dirac equation for a Majorana spinor are the conjugate of each
other: u = CvT, v = CuT. These formulæ imply that, together with the usual

∑
λ=1,2

u(λ)(p)u(λ)(p) = /p + M , ∑
λ=1,2

v(λ)(p)v(λ)(p) = /p + M , (A.10)

also the following equations hold:

∑
λ=1,2

u(λ)(p)vT
(λ)(p) = (/p + M)CT ,

∑
λ=1,2

v(λ)(p)uT
(λ)(p) = (/p−M)CT ,

∑
λ=1,2

uT
(λ)(p)v(λ)(p) = C−1(/p−M) ,

∑
λ=1,2

vT
(λ)(p)u(λ)(p) = C−1(/p + M) .

(A.11)



APPENDIX B

Thermally averaged cross section and relic density

In this appendix, we discuss a procedure to compute the thermally averaged cross section 〈σv〉,
and to deduce from it the relic abundance of DM today. We will obtain both an exact expression,
and an approximate result valid in the assumption of low temperature with respect to the dark
matter particle mass.

Throughout this appendix, we will keep the discussion more general, and we will derive
the equations for the process in which two identical particles of mass m annihilating into a
generic final state.

B.1 Main formulæ and general setup

The equation that controls the time evolution of the number density of a species taking into
account its interaction with other species and the expansion of the Universe is the Boltzmann
equation:

dn
dt

= −3Hn− 〈σv〉
(

n2 − n2
eq

)
, (B.1)

where n is the number density of a given species, g is the number of helicity states of the
particle, H is the Hubble parameter, and the equilibrium number density neq and the thermally
averaged cross section 〈σv〉 are defined1 as [8, 9]

neq = g
∫ d3 p

(2π)3 e−
E
T , (B.2)

〈σv〉 = 1
(neq)2

∫ d3 p1

(2π)32E1

∫ d3 p2

(2π)32E2
e−

E1+E2
T ·

·
(

∏
i

∫ d3ki

(2π)32E′i

)
(2π)4δ4(p1 + p2 −∑

i
ki)|M|2 ,

(B.3)

1In the formula for neq, we are assuming a vanishing chemical potential and we are neglecting the quantum
effects in the distribution function, i. e. we assume a Maxwell-Boltzmann distribution instead of the Fermi-Dirac or
Bose-Einstein distribution.
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88 B. Thermally averaged cross section and relic density

where T is the temperature of the species (which coincides with the one of the thermal bath as
long as this is in kinetic equilibrium with the other species), pi and Ei are the initial state mo-
menta and energies, ki and E′i the final ones, and |M|2 is the modulus squared of the Feynman
amplitude for the annihilation process2, with the sum over the final states and the sum (instead
of the average) over the initial ones.

We notice that the second line of eq. (B.3) is simply the (unpolarised) annihilation cross
section of the two incoming particles, times the flux factor and the number of initial states.
Thus we define

(σannF̃) =
(

∏
i

∫ d3ki

(2π)32E′i

)
(2π)4δ4(p1 + p2 −∑

i
ki)|M|2 , (B.4)

where F̃ for a final state of two particles is

F̃ = 4g2F = 4g2
√
(p1 · p2)2 −m4 = 4g2√s

√
s
4
−m2 = 2g2

√
s(s− 4m2) . (B.5)

We notice that (σannF̃) is a function of the only variable s.

B.2 Derivation of an exact formula for 〈σv〉
In this section, we will simplify the expression (B.3) into an exact expression containing only
one integral over the Mandelstam variable s.

The first step consists in multiplying eq. (B.3) by 1 =
∫

d4K δ4(K− p1 − p2):

〈σv〉 = 1
(2π)6

1
(neq)2

∫ d3 p1

2E1

∫ d3 p2

2E2
e−

E1+E2
T (σannF̃)

∫
d4K δ4(K− p1 − p2) =

=
1

(2π)6
1

(neq)2

∫
d4K e−

K0
T (σannF̃)

[∫ d3 p1

2E1

∫ d3 p2

2E2
δ4(K− p1 − p2)

]
.

The espression inside squared brackets can be computed explicitly: indeed, it depends only on
the four-vector Kµ and is a Lorentz scalar, thus it must be a function of K2. Moreover, being a
Lorentz scalar, it can be computed in any desired frame. We can evaluate it as follows:[∫ d3 p1

2E1

∫ d3 p2

2E2
δ4(K− p1 − p2)

]
=
∫ d3 p1

4E1E2
δ(K0 − E1 − E2)

∫
d3 p2 δ3(~K− ~p1 − ~p2) =

=
∫ 4π|~p1|2d|~p1|

4E1E2
δ(K0 − E1 − E2) .

The Dirac δ function can be evaluated by observing that in the center-of-mass (c.o.m.) frame
E1 = E2 is a function of the modulus of the momentum |~p1|; the argument of the δ function
vanishes for |~p1| =

√
K2/4−m2, and the derivative of the argument gives

δ(K0 − E1 − E2) = δ

(
|~p1| −

√
K2

4
−m2

)
1∣∣∣d(E1+E2)

d|~p1|

∣∣∣ = δ

(
|~p1| −

√
K2

4
−m2

)
1

|~p1|
(

1
E1

+ 1
E2

) =

= δ

(
|~p1| −

√
K2

4
−m2

)
E1E2

|~p1|(E1 + E2)
.

2If there are more than one annihilation channels, a sum over the possible processes is understood in eq. (B.3).
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By observing that in the c.o.m. frame we have ~K = 0, E1 + E2 = K0 =
√

K2 where K2 is the
modulus of the 4-vector Kµ, we get[∫ d3 p1

2E1

∫ d3 p2

2E2
δ4(K− p1 − p2)

]
=

π√
K2

∫
|~p1|d|~p1|δ

(
|~p1| −

√
K2

4
−m2

)
= π

√
K2/4−m2
√

K2
.

We are now left with an integral in d4K of a quantity that depends only on K0, K2 = s. In
order to switch to those integration variables, we split

∫
d4K = 4π

∫
dK0

∫
|~K|2d|~K|, and we

perform a change of integration variables into (K0, K2 = (K0)2 − |~K|2). The Jacobian of this
transformation gives ∣∣∣∣∣∂(K0, |~K|)

∂(K0, K2)

∣∣∣∣∣ =
∣∣∣∣∣1

K0

|~K|
0 − 1

2|~K|

∣∣∣∣∣ = − 1
2|~K|

.

The domain of integration is given by K0 ∈ [
√

K2,+∞], K2 ∈ [4m2,+∞]. We have then

〈σv〉 = 1
(2π)6

1
(neq)2 2π2

∫ ∞

4m2
X

dK2

√
K2/4−m2
√

K2
(σannF̃)

∫ ∞
√

K2

√
(K0)2 − K2 e−

K0
T dK0 .

The last integral can be computed analytically: by introducing y = K0/
√

K2, it becomes

K2
∫ ∞

1

√
y2 − 1 e−y

√
K2

T dy = K2 T√
K2

K1(
√

K2/T) ,

where Ki(y) is the modified Bessel function of order i (for their definition, see ref. [62]).
We now denote K2 by s. We have obtained

〈σv〉 = 1
(2π)6

1
(neq)2 2π2T

∫ ∞

4m2
X

ds
√

s/4−m2(σannF̃)K1(
√

s/T) .

For the remainder of this section, we will substitute the flux factor F̃ by its value (eq. (B.5))
in the case of a two-particles annihilation, to simplify the final expression. We then compute
explicitly neq (eq. B.2):

neq = g
∫ d3 p

(2π)3 e−
E
T =

g
2π2

∫ ∞

m
dE e−

E
T E
√

E2 −m2 = (y ≡ E/m)

=
g

2π2 m3
∫ ∞

1
dy e−y m

T y
√

y2 − 1 =
g

2π2 m3 T
m

K2(m/T) .
(B.6)

By defining x = m/T, we get the final expression for 〈σv〉 (in agreement with [63])

〈σv〉 = x
8m5

1
(K2(x))2

∫ ∞

4m2
σann
√

s(s− 4m2)K1(x
√

s/m)ds . (B.7)

This expression can be easily computed numerically, once m, σann(s) and x are fixed.

B.3 Approximate formula for 〈σv〉
In this section, an approximate formula for 〈σv〉 in the low temperature limit will be given.
This expression will depend on the coefficients of the expansion of (σannF̃) in the low velocity
limit. Indeed, (σannF̃) is a function of s, which in turn can be expanded in powers of the module
v of the relative 3-velocity between the colliding particles.
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The easiest way to derive the expansion of s in terms of the relative speed v = |~v1 − ~v2|
between two colliding identical particles is to calculate s (which is a Lorentz invariant) in
the c.o.m. frame, where the four-momenta of the two particles are pµ

1 = (E, 0, 0, p), pµ
2 =

(E, 0, 0,−p): then, s = (p1 + p2)2 = 4E2, where E is the energy of each particle in the c.o.m. frame.
In the non-relativistic limit, E ≈ m + m(v∗)2/2, where v∗ is the speed of each particle in this
frame, and is given by v∗ = v1− vc.o.m. = v1− (v1 + v2)/2 = v/2. Eventually, E ≈ m(1+ v2/8)
and

s = m2(4 + v2) +O(v4) (B.8)

Therefore, the low velocity expansion of (σannF̃)(s) will only contain even powers of v:

(σannF̃) ≈ a + bv2 , (B.9)

where a, b are adimensional quantities.
We are going now to expand the integrand in eq. (B.7) in powers of v until the second

leading order, in the limit of low temperatures (which corresponds to x → ∞), which is an
acceptable approximation since x f = m/Tfreeze out ranges between 20 and 25. We perform then
the change of variables v =

√
s− 4m2/m, whose differential gives

ds = 2m
√

s− 4m2dv ;

by reinserting the flux factor F (eq. (B.5)), the integral in eq. (B.7) reads∫ ∞

0

1
2g2 (σannF̃) · (m2v2)K1(x

√
4 + v2)2m dv .

In the simultaneous limit x → ∞, v→ 0, the modified Bessel function can be expanded as

K1(x
√

4 + v2) ≈
x→∞

e−x
√

4+v2
[√

π

2
1

√
x 4
√

4 + v2
+O(x−3/2)

]
≈

≈
v→0

e−2xe−v2 x
4

√
π

2
1√
x

[
1− 1

16
v2
]
+O(x−3/2, v4) .

We can now use eq. (B.9), and rewrite the integral in eq. (B.7) as (we understand in the following
formula factors up to O(x−3/2, v6))

m3

g2

√
π

2
e−2x
√

x

∫ ∞

0
(a+ bv2)v2

(
1− 1

16
v2
)

e−v2 x
4 dv ≈ m3

g2

√
π

2
e−2x
√

x

∫ ∞

0

[
av2 +

(
b− a

16

)
v4
]

e−v2 x
4 dv .

After these simplifications, we can explicitly calculate the integrals with the formulæ∫ ∞

0
y2ne−y2

dy =

√
π

2

∣∣∣∣( dn

dαn
1√
a

)
α=1

∣∣∣∣ =⇒
∫ ∞

0
y2e−y2

dy =

√
π

4
,

∫ ∞

0
y4e−y2

dy =
3
√

π

8
.

The result of the integration is

π

g2 m3 e−2x

x2

(
a +

3(16b− a)
8x

)
.

We are now left with the evaluation of the prefactor in eq. (B.7) in the limit x → ∞: by
expanding the Bessel function we get

x
8m5

1
(K2(x))2 ≈x→∞

x
8m5

1
π
2x e−2x =

x2e2x

4πm5 ,
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which gives the final result

〈σv〉 ≈ 1
4g2m2

(
a +

3(16b− a)
8x

)
. (B.10)

It will be useful in the following to denote

〈σv〉 ≈ σ0 +
σ2

x
, σ0 =

a
4g2m2 , σ2 =

a
4g2m2

3(16b− a)
8a

= σ0

(
6b
a
− 3

8

)
. (B.11)

B.4 Approximate solution of the Boltzmann equation

In this section, we will derive an approximate solution to the Boltzmann equation.
We can rewrite eq. (B.1) by defining the yield Y = n/sent (and Yeq = neq/sent), where sent

is the entropy density, in order to get the evolution of the number of particles in a comoving
volume. The entropy density is dominated by the contribution of relativistic particles, then
with a very good approximation

sent =
2π2

45
g∗ST3 ,

where g∗S is given by

g∗S = ∑
bosons

gi

(
Ti

T

)3

+
7
8 ∑

fermions
gi

(
Ti

T

)3

, (B.12)

summed over all the relativistic particles in the Universe.
We can then change the functional dependence on the time t into a dependence on the tem-

perature T by using the relation between time and temperature during the radiation dominated
era [9], and then we introduce x = m/T. The result is the following form of the Boltzmann
equation:

dY
dx

= − x〈σv〉sent

H(m)

(
Y2 −Y2

eq

)
. (B.13)

We want not to derive an approximate value for the final yield Y∞ after the freeze out. To
this aim, we introduce the approximation of low temperature (indeed, x f ranges between 20
and 25 for our models), in which eq. (B.10) shows that we can write

x〈σv〉sent

H(m)
≈ 1

x2

(
λ0 + λ2

1
x

)
, λ0 = σ0

(
x sent

H(m)

)
x=1

, λ2 = σ2

(
x sent

H(m)

)
x=1

. (B.14)

The numerical value of (x sent/H(m))x=1 is [9](
x sent

H(m)

)
x=1

= 0.264
g∗S√

g∗
MPm ,

where g∗ is the number of relativistic degrees of freedom, given by

g∗S = ∑
bosons

gi

(
Ti

T

)4

+
7
8 ∑

fermions
gi

(
Ti

T

)4

, (B.15)

summed over all the relativistic particles in the Universe. Notice the difference with respect
to eq. (B.12), where the exponent of the temperatures is 3; thus, until when all the relativistic
particles share the same temperature, g∗ = g∗S; after the decoupling of neutrinos around T =
0.5 MeV, their temperature has been different from the one of photons, thus today g∗ 6= g∗S.
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For the temperature regime that will be of interest to us (between 1000 GeV and 10 GeV), g∗s is
around 100 [9].

Returning back to the Boltzmann equation, it is useful to capture the approximate behaviour
during the freeze out to rewrite it in terms of the distance ∆ of Y from the equilibrium yield
Yeq, ∆ = Y−Yeq. The differential equation for ∆, after the definitions of eq. (B.14), reads

∆′ = −Y′eq −
1
x2

(
λ0 +

λ2

x

)
∆(2Yeq + ∆) . (B.16)

At early times, Y follows Yeq, thus ∆, ∆′ can be neglected with respect to Y:

∆ ≈ −
Y′eq

2Yeq

x2

λ0 +
λ2
x

≈ x2

2
(

λ0 +
λ2
x

) , (B.17)

where we used Y′eq ≈ −Yeq, that is valid in non-relativistic regime since

Yeq(x) = 0.145
g

g∗S
x3/2e−x ≡ αx3/2e−x =⇒

Y′eq

Yeq
=

3
2x
− 1 ≈ −1 .

For times after the freeze out, Yeq is negligible and ∆ ≈ Y, then eq. (B.16) gives

∆′ ≈ −

(
λ0 +

λ2
x

)
x2 ∆2 , =⇒ − 1

∆

∣∣∣∣∞
x f

=

(
λ0

x
+

λ2

2x2

)∣∣∣∣∞
x f

,

Y∞ = ∆∞ =
x f

2
(

λ0 +
λ2
2x f

) . (B.18)

From this formula, one can finally obtain the approximate value of the asymptotic relic abun-
dance ΩDMh2, where h = H/(100 km/s/Mpc), in terms of σ0, σ2 (B.11):

ΩDMh2 ≈ 1.07 · 10−9 x f
√

g∗MP

(
σ0 +

σ2
2x f

) . (B.19)

We need now to estimate x f : we could define it as the time in which ∆(x f ) reaches of the
same order of Yeq(x f ), say ∆(x f ) = cYeq(x f ) with c of order unity. Then we can simplify
eq. (B.17) into

∆(x f ) ≈ −Y′eq

x2
f

λ0 +
λ2
x f

1
(2 + c)Yeq

≈
x2

f(
λ0 +

λ2
x f

)
(2 + c)

.

From this equation, we can rewrite the condition ∆(x f ) = cYeq(x f ) as

x2
f(

λ0 +
λ2
x f

)
(2 + c)

= cαx3/2
f e−x f =⇒ ex f x1/2

f =
(

λ0 +
λ2

x f

)
αc(2 + c) ,

x f +
1
2

ln x f = ln
[(

λ0 +
λ2

x f

)
αc(2 + c)

]
.

In first approximation, the solution to the previous equation is simply x f = ln[λ0αc(2 + c)]; a
better approximation is obtained by replacing this value into the last equation. As a last step, a
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definition of c which gives a good fit to the exact numeric solution of the Boltzmann equation
is c(2 + c) = 1 [9]; this gives the final result

x f ≈ ln(λ0α)− 1
2

ln[ln(λ0α)] + ln
[

1 +
λ2

λ0

1
ln(λ0α)

]
, (B.20)

where we recall that

λ0α = 0.038
g
√

g∗
MPm ·

(
a

4g2m2

)
,

λ2

λ0
=

3(16b− a)
8a
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