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Abstract 
 

The focus of this work is the study of the buckling behaviour of a metal strip in a transverse flux 

induction heating process. In particular, a FEM model was developed in order to simulate the afore-

mentioned process. The thesis will present the step by step construction of the code. The model 

consists of a Multiphysics simulation: thermal and structural. The structural part is a combination of 

the ANSYS® buckling analyses: Eigenvalue linear buckling analysis and non-linear buckling 

analysis. As it was not possible to get an experimental validation of the results, the work focused on 

the parametrical analysis of the developed model. The purpose was to check the consistency as well 

as the physical accuracy of the results.  

The parametrical analysis dealt with the variation of several parameters, such as: strip length, 

applied forces, mechanical constraints, material properties, temperature field and strip thickness. 

In the end, the model proved to be a useful tool for the analysis of thermal buckling, particularly, in 

the frame of induction heating processes. This work could represent a small piece of a 360 degrees 

Multiphysics analysis of such processes.  
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Introduction 
Nowadays, the main industrial methods for the continuous heating and treatment of metal strips are 

gas-fired and electrical resistance furnaces. In this context, induction heating represents a valid 

alternative. Indeed, the traditional ways are time-consuming in terms of heating and preheating 

times, not energetically efficient and not flexible.  

Induction heating, both longitudinal flux heating (LFH) as well as transverse flux heating (TFH), 

makes possible to tackle all these issues; it allows to reach very high power densities, reducing the 

heating time, and it has an higher energy efficiency (up to 95%). 

Talking about flexibility, TFH gives the possibility to work with different strip dimensions and 

thicknesses by means of simple inductor geometry modifications. It is possible due to the process 

configuration; in TFH the inductor is open, as it is placed above and under the workpiece, and it is 

possible to freely operate on it in order to adapt it to any strip to heat or to treat.  

Conversely, it is important to underline also TFH issues. The main one is the difficulty to control 

the temperature homogeneity during the process. This leads to two important drawbacks: it can 

cause non-uniformity in the treatment of a metal piece, but it can also produce deformations, 

vibrations and thermal buckling during the process itself.  

The focus of this work will be set particularly upon the simulation of the buckling behaviour of a 

metal strip heated by means of TFH. The decision to investigate in this direction arose from both 

experimental and industrial evidences of instability during this kind of heating processes.  

Since the difficulty of a physical collection of data appears to be clear from the beginning, the 

chosen way to investigate was a finite element simulation of the phenomenon. The purpose during 

the creation of the numerical model was, more than to simulate the experimental evidences (which 

are too unstable), to create a buckling analysis tool which produces reasonable and consistent 

results. In particular, the effect of the variation of different parameters like boundary conditions, 

material properties and other model inputs will be considered. 

The FEM model developed could be useful to predict the effect of different parameters upon the 

buckling phenomenon. Another possible outcome of this simulation could also be to become part of 

a wider multi-physical simulation (i.e. by combining it with an electromagnetic simulation). 

In this way it would be possible to get a bigger frame of a transverse flux heating leading to a 

further optimization of the process. 

The investigation started with an ideal model which embodied the homogeneous heating of the 

strip. Later on, the temperature field resulting from an electro-magnetic analysis was implemented. 

The results obtained by these two simulations are comparable and stable. 
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Structure of the thesis 

 

This thesis will be divided in 4 chapters: 

- Chapter 1: Preliminary notions. In this chapter the whole necessary knowledge about 

transverse flux heating and thermal buckling will be provided. 

- Chapter 2: The FEM simulation. This chapter will be dedicated to the explanation of 

Multiphysics simulation and to the particular simulation tools used in this work. 

- Chapter 3: The numerical model. In this chapter the construction and development of the 

studied numerical model will be shown and explained. 

- Chapter 4: Parametrical Analysis. The effect of the variation of several physical 

parameters will be studied in this chapter. The results of this parametrical analysis will be 

shown as well. 

- Conclusions and perspectives. 
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1 Preliminary notions 
 

1.1 Induction heating principles 

 

Induction heating processes in industrial application, particularly in the frame of metal strips 

heating and treatment, are a more than valid alternative to conventional furnaces (i.e. gas-fired, 

electrical resistance, etc). The main advantages of induction heating could be summarised as it 

follows: 

 

- The heat is produced directly inside the workpiece, so that no heat transfer through a 

medium is required. 

- The possibility to reach high power densities. It implies quicker heating times. 

- High efficiency, in particular, dealing with high resistivity or ferromagnetic metals 

- The flexibility of the process. In terms of optimisation of the inductor geometry in order to 

improve the coupling with the workpiece. 

- Induction heating processes allow high repeatability. 

- It reduces the amount of CO2 emissions compared to other processes. 

- The overall energetical efficiency is higher than traditional processes. 

 

The induction heating process and its main components will be briefly described. The main 

component of the process is the coil or inductor and it is usually made of conductive materials. An 

electrical current flows inside the inductor generating a magnetic field. One of the current main 

parameters is the frequency, it is important to point out the huge role of this parameters in induction 

heating. The entity of frequencies used could really characterise the process; the use of very high 

frequencies is necessary in processes like surface treatments, while low frequencies are usually 

more used for through heating processes. 

The variation of current creates a variation of the magnetic field. The time variation of the magnetic 

flux generates an electromotive force that works as a voltage applied to the workpiece. This voltage 

generates currents inside the workpiece, which are called induced currents or eddy currents. These 

currents are responsible of the heating according to Joule’s effect.   

The uniformity of the heating depends directly upon the distribution of the induced currents. It is 

really hard to get a completely uniform currents distribution; the reasons behind that are the non-

uniformity of the magnetic field inside the inductor and the, so-called, skin effect. 
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According to the skin effect, the currents tend to distribute themselves inside the workpiece; in 

particular, the current density is higher on the external surface and presents an exponential decay 

toward the centre. It will be essential to keep that in mind while working with longitudinal flux 

induction heating.  

It is useful to define a certain penetration depth (1) of the eddy currents; it is a function both of the 

process (in terms of frequency) and of the material properties (in terms of resistivity and 

permeability).    

 

𝛿 =   (1) 

 

Where: 

- δ is the penetration depth; 

- ρ is the electrical resistivity;  

- μ is the magnetic permeability; 

- f is the frequency. 

 

 

1.2 Induction heating processes 

 

The two main techniques of induction heating are Longitudinal Flux Induction Heating (LFH) and 

Transverse Flux Induction Heating (TFH). Even if they both share the pros and cons explained in 

the previous chapter (§1.1), they also present some critical differences.  
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Before comparing these two technologies, a quick overview of them will be presented. 

In the more common Longitudinal Flux Heating (LFH), the workpiece is placed inside the inductor 

(usually a solenoid) and so immersed in a magnetic field that is parallel to the axis of the solenoid 

(see ‘Longitudinal Flux Heating’ in Figure 1.1). This configuration is characterized by the skin 

effect; the eddy currents flow in the cross-section of the workpiece with a certain penetration depth 

(1). LFH configuration allows, by means of a frequency variation, to carry out both surface- and 

through-heating. 

The limit of LFH could be the small value of the thickness of the workpiece. Due to the fact that the 

penetration depth decreases with higher frequencies, it becomes necessary to use really high 

frequency for the correct heating of a thin strip. The ratio between the penetration depth and the 

diameter/thickness of the workpiece must always be around 3,5. If this ratio is smaller, it is possible 

that the induced eddy currents cancel each other and so the proper heating of the strip is not 

feasible. This problem could be solved only by using extremely high frequency generators which 

are usually expensive. So, the main drawback in using this technology for metal strip heating would 

be the costs. However, by using the right frequency, LFH is still an efficient process. 

 

In the typical set-up for Transverse Flux Heating (TFH), instead, the workpiece passes through an 

open inductor which is, in the case of a metal strip, placed above and below it (‘Transverse Flux 

Heating’ in Figure 1). This inductor configuration allows to have a magnetic field perpendicular to 

the workpiece. In this way the induced currents flow on the surface of the workpiece and so the 

whole cross-section is invested by them; this is the reason why only through-heating of the 

workpieces can be reached. Due to this peculiarity, the process can be used for the treatment of 

workpieces with a large spectrum of thicknesses. 

In the case of TFH there is not any skin effect on the heated piece. So, not being necessary to get 

really high with frequencies to reduce the penetration depth, lower frequencies and so less 

Figure 1.1 – Comparison between LFH and TFH Figure 1.2 – Eddy currents path in TFH 
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expensive processes can be carried out.  

In contrast, TFH has also a few not negligible drawbacks; it is hard to achieve an uniform 

temperature distribution and some mechanical phenomena, as vibrations, deformations, noise, 

buckling, can occur during the heating process. 

The main issue about the temperature homogeneity is the so-called edge effect. In TFH the shape of 

the inductor deeply affects the currents paths in the strip; in particular, the currents tend to reflect 

the shape of the inductor. If the coil is wider than the heated strip, the induced currents are not able 

to follow the inductor path and so they are “pushed” on the edge of the strip (Figure 1.2). This 

concentration of currents could provoke an overheating of the edges of the strip. The contrary is 

true as well; if the inductor is too small, compared to the strip width, there will be a lack of current 

density on the edges and so they will be underheated (Figure 1.3). This inhomogeneity in the 

transversal direction, in respect to the direction of motion of the strip, could be the possible main 

cause of the mechanical phenomena mentioned above.  

The most direct way to deal with temperature distribution is by optimizing the design of the 

inductor. This optimization can be developed in two ways: by modifying of the inductor shape 

and/or by parametrically studying the process variables. 

In both cases the main variables of the system to be considered are: 

- The conductor distance or pole pitch; 

- The dimensions of the conductor itself; 

- The air gap; 

The shape optimization can be carried out via FEM simulations having the temperature 

homogeneity as goal. This kind of electro-magnetic simulation must take into account the heated 

material properties as well. In particular, it is important to implement non-linear properties in order 

Figure 1.3 – Typical temperature profiles in TFH, according to the inductor width variation 
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to get more accurate results. The most outstanding obtained result was the reduction of the deviation 

from the target temperature from 15% to 3%, by means of an inductor shape modification. 

As far as it concerns the parametrical study of the process variables, the inductor can be further 

parametrized, as in Figure 1.4. Where: 

- x1 = conductors distance; 

- x2 = airgap length; 

- x3 = conductor length; 

- x4 = conductor height; 

- x5 = conductor thickness; 

- x6 = system frequency 

By parametrical study it means to identify an “objective function” of a vector that includes all these 

independent variables. In this case the goal of the process is to improve the efficiency of the 

coupling inductor-workpiece by means of modifications of the coil parameters.  

In both cases, it appears clear how the optimization of the shape design of the inductor has a 

remarkable effect upon the process efficiency and on the heating uniformity.  

 

1.3 Strip deformation in TFH 
 

In this section the effect of temperature gradients upon the strip deformation will be discussed. It is 

well known that the existence of a non-uniform temperature field in a metal piece or strip leads to 

thermal stresses. The entity of these stresses depends not only on the entity of the temperature 

Figure 1.5 – Strip different temperatures 

Figure 1.4 – Transverse-flux Induction heating system scheme 
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gradient, but also on materials’ properties such as Young modulus and coefficient of thermal 

expansion. See formula (2), where: 

- σ = thermal stress; 

- E = Young’s modulus; 

- α = coefficient of thermal expansion; 

- ΔT = temperature gradient. 

 

𝜎 = 𝐸𝛼(∆𝑇)  (2) 

 

In the frame of transverse-flux induction heating, the presence of thermal stresses becomes an issue 

once it provokes the deformation or the buckling of the strip.  

It is possible to schematize the TFH process as the simple heating of a strip from an initial 

temperature T0, in the input zone, to a final temperature TA, in the output zone (Figure 1.5). Among 

these two zones, input and output, as the temperature of the strip is constant, there will be no 

deformations. If the strip is free to deform, it will do it in the central/heating zone. This deformation 

will lead to stresses on the boundaries, as it is shown in Figure 1.6. 

Theoretically, this portion of the strip, the heating zone, will be more easily predisposed to 

buckling. This fact will be an important parameter for the qualitative evaluation of the buckling 

simulation that will be discussed later.   

Another important theoretical consideration regards the strip thickness; thinner strips would incur in 

buckling more easily than thicker ones. Furthermore, the buckling would not take place in strips 

thicker than a certain critical value. The entity of this threshold depends upon the characteristics of 

every single system.  

Another possible cause of the deformation/buckling of a thin strip could be vibrations. The origin of 

vibrations can be mechanical, as the result of the strip movement system itself, but it can also be 

magnetic. In transverse flux heating, in particular, the portion of material subjected to magnetic 

Figure 1.6 – Directions of the stresses and strains 
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forces is bigger than in LFH, so vibrations could be an issue. While on the subject, it should be 

acknowledged that, as vibrations are strictly related to the frequency, only by working at very low 

frequencies the phenomenon would be visible. 

 

1.4 Applications of TFH - Example 
 
The most common industrial application of TFH can be found in the metal industry. In particular, it 

is used for the annealing or for the heating of metal strips, usually as a part of a bigger in-line 

process.  

An interesting recent application of it can be found among DUETM process (Danieli Universal 

Endless). In this case, the induction heating station is devoted to the homogenization of the 

temperature of a metal strip between two subsequent milling stations. One of the main advantages 

of this technology, in comparison with the traditional ones (gas-fired and resistance furnaces), is the 

reduction of the physical occupied space. Furthermore, it is also a good example of versatility of the 

process as the company must deal with various strip thicknesses. 

 

1.5 Buckling Phenomenon 

 
Even though the phenomenon of buckling is yet to be well understood, it is nowadays a failure 

cause not to be neglected. The opposite is true: buckling must be taken into account in the designing 

Figure 1.7 – General vs Local Buckling 
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of structural pieces, processes, as well as of machineries and other final products.  

It is possible to classify two main buckling modes: general buckling and local buckling. The former 

is a distortion of the axis of the studied piece. Local buckling is, instead, the distortion of a 

component of the cross section without any axis distortion (Figure 1.7).  

It is possible to predict the incurrence of buckling in terms of the individuation of a critical stress 

value. The most direct method is the application of Euler’s equation; in equation (3) a generic 

formulation is given. 

 

𝜎 = 𝐸   (3) 

Where: 

- σcr is the critical Euler’s stress 

- E is the Young’s modulus 

- S is the slenderness of the component 

 

It appears clear from equation (3) that a high value of slenderness should be avoided. In the case of 

metal strips, it can be translated into avoiding, as much as possible, very small thicknesses. Usually, 

the critical stress value for buckling is lower than the yield limit of a certain material; that is the 

reason why it could be dangerous not to consider buckling failure. 

 

As it concerns thermal buckling, the cause of the phenomenon can be identified, with a certain 

degree of certainty, with the temperature gradients created in the workpiece. 

The temperature difference is not enough by itself; the other necessary factor would be the state of 

stress. The thermal expansion must be somehow restrained in order to get thermal buckling, if it is 

not, and the component is free to deform, the thermal stresses would not induce buckling but only 

the thermal expansion would occur.  

As an example, studying a heated steel strip in a continuous annealing furnace, the buckling 

happens as a combination of temperature distribution, line tension and friction between the strip and 

the rollers. The shape of the rollers, in an annealing furnace, might have an effect upon buckling as 

well; it has been studied how different roller shapes influence the deformation behavior of the metal 

strip, as they probably alter the state of stress of the metal strip.  
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2 The FEM Simulation 
 
The purpose of this chapter is to present a brief overview of Multiphysics simulations. Secondly, 

the tools, provided by the software ANSYS Mechanical APDL® (release 19.2), for performing a 

buckling analysis will be introduced. 

 

2.1 Multiphysics simulations 
 

The word Multiphysics commonly refers to the process of simulation of multiple coupled and 

interacting physical phenomena. This procedure is becoming increasingly spread in the field of 

computer aided engineering, virtual prototyping and product design. Even though the possibility to 

carry out Multiphysics simulation requires an increased computer capability, it might be more time 

and computationally efficient than coupling single simulations. The coupling of single simulations 

might bring to some new limitations in terms of stability, accuracy or robustness, more than it 

happens in the single simulations. This fact is mainly due to the conversion of data needed between 

different and independent simulations. 

Typically, a Multiphysics system is formed by different components characterised by its own 

principles (conservation and/or constitutive laws). A few examples could be the coupling of: 

- Radiation with hydrodynamics (RHD) 

- Electricity and magnetism with hydrodynamics (Magnetohydrodynamics - MHD)  

- Chemical reaction with transport (reactive transport) 

Many other combinations are feasible to simulate the interactions among structural mechanics, heat 

transfer, fluid flow, electromagnetics, etc… 

Historically, Multiphysics has been considered as a series of single-physics simulations; each one 

focused on a separate field of study (fluids, structural, thermal, electronics). Nowadays it is 

necessary to take into account the effect of different physical forces simultaneously; only this way 

allows to investigate and simulate real-world product failures and behaviours. The first step into 

Multiphysics has been to connect multiple simulations; this process has become during the years 

Figure 2.1 – Example of coupled heat transfer and thermal stress analysis 
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more efficient and accurate. The turning point has been the capability to transfer initial and 

boundary data between the different steps without losing fidelity and accuracy and, furthermore, 

without introducing new errors. It is possible to refer to this way of operating by sequential or one-

way coupling. In sequential coupling the so-called partitioned approach is applied; it means that the 

equation regarding the single physics are solved separately and then coupled suitably. 

Sometimes the physics, that have to be coupled, present strong interactions that cannot be simulated 

sequentially. In this case, it becomes necessary to run concurrent simulations, implementing also the 

possibility to exchange data between them at specified time intervals. This more sophisticated 

analysis is called two-way co-simulation or direct coupling. Direct coupling is often a single matrix 

system wherein the equations concerning all the physics involved in the simulation are solved 

together. 

In order to better understand the distinction between these two types of Multiphysics, one example 

of thermal-structural coupling is provided in Figure 2.2. 

 

 

2.2 Buckling analysis in ASYS Mechanical APDL® 
   

In order to perform the thermal and structural analysis, ANSYS Mechanical APDL® (realease 19.2) 

was used. The software provides two main tools to perform buckling analyses: linear eigenvalue 

buckling analysis and non-linear buckling analysis. 

 

The first one is the quickest and easiest method; it provides the deformed shape and calculates the 

buckling factor. This factor is useful to estimate the critical buckling load as this value is given by 

Figure 2.2 – Schematization of one-way and two-way coupling in Multiphysics simulations. 
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the applied load multiplied for the buckling factor itself. The eigenvalue (or bifurcation point) 

calculated by the program matches the theoretical solution of Euler´s buckling equation. 

Concerning the critical stress value, results from the eigenvalue linear analysis are to be considered 

non-conservative; this tool does not take into account the presence of imperfections and 

nonlinearities typical of real-world structures. Even if the displacements obtained do not have 

physical meaning, they offer anyway a qualitative representation of the different buckling modes. 

The number of buckling modes taken into account in the analysis deeply affects the results. There is 

not any evidence about the meaning ANSYS® gives to the number of buckling modes. But it is 

plausible that it refers to the theoretical number of half waves, even if it is not to specify the 

direction of them. 

 

It is possible to get more realistic results using the non-linear buckling analysis. This tool consists 

of a static structural analysis where the load is applied incrementally and large displacements are 

allowed (command NLGEOM,ON). In order to obtain buckling using this method, some 

“imperfections” should be included in the model to trigger it. Possible imperfections could be 

geometrical defects or an out-of-plane load application. The implementation of such imperfections 

is a delicate step as it is not easy to determine either where to add an out-of-plane load or what 

defect to introduce in the geometry. A good compromise is to use the deformed shaped obtained 

with an eigenvalue linear analysis as starting geometry. It is possible to do so in ANSYS® 

(command UPGEOM); the software also offers the possibility to set a maximum displacement to be 

used for this operation. This is an important assumption in the model and the effect of that will be 

discussed later. 

 

In the studied case, thermal buckling was considered. A preliminary thermal analysis is carried out 

in order to determine the state of stress. The result from the thermal analysis is then used as the 

loading step for the buckling one. 

As a first stage of the work, an homogeneous heating zone has been considered. The next step was 

to use the thermal field resulting from a previous Electromagnetic/Thermal analysis instead. This 

combined analysis was previously carried out on the same inductor/workpiece system in order to 

define the best shape of the inductor to be used.  

 
2.2.1 The choice of the Element Type in the FEM analysis 
 
The preliminary eigenvalue linear analysis was carried out both with SOLID and SHELL elements. 

The two types of mesh produced similar results. But, as the analysis moved on to the non-linear 
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buckling, SHELL elements happened to be more stable and gave more realistic results. 

 

In order to perform a combined analysis (Thermal and Structural) two compatible elements, in 

terms of number of nodes per element (4 nodes), were used: SHELL157 (thermal) and 

SHELL181(structural). The first one presents two degrees of freedom: voltage and temperature. 

SHELL181 presents, instead, 6 degrees of freedom: displacement in x, y and z direction and 

rotation around axes x, y and z. SHELL157 may result useful once a preliminary electromagnetic 

analysis should be performed. 

 

For the thermal analysis it was considered also the element SHELL131, which is a pure thermal 

element. Since no significant differences were found (same deformed shape and stress distribution 

and maximum stress intensity difference equal to 3%) SHELL157 was chosen thanks to its higher 

versatility for combined analysis. Conversely, it could be useful to switch to the element SHELL131 

whenever a layered analysis is needed. 

 

For the analysis with solid element, SOLID70 (thermal) and SOLID5 (structural/buckling) were 

used. 

 
2.2.2 Solving Equations 
 
The shape functions associated to the elements used are listed below. 

 

𝑢 = (𝑢 (1 − 𝑠)(1 − 𝑡) + 𝑢 (1 + 𝑠)(1 − 𝑡) + 𝑢 (1 + 𝑠)(1 + 𝑡) + 𝑢 (1 − 𝑠)(1 + 𝑡))  (2) 

𝑣 = (𝑣 (1 − 𝑠) … (𝑎𝑛𝑎𝑙𝑜𝑔𝑜𝑢𝑠 𝑡𝑜 𝑢)        (3) 

𝑤 = (𝑤 (1 − 𝑠) … (𝑎𝑛𝑎𝑙𝑜𝑔𝑜𝑢𝑠 𝑡𝑜 𝑢)        (4) 

𝜃 = (𝜃 (1 − 𝑠) … (𝑎𝑛𝑎𝑙𝑜𝑔𝑜𝑢𝑠 𝑡𝑜 𝑢)        (5) 

𝜃 = (𝜃 (1 − 𝑠) … (𝑎𝑛𝑎𝑙𝑜𝑔𝑜𝑢𝑠 𝑡𝑜 𝑢)        (6) 

𝜃 = (𝜃 (1 − 𝑠) … (𝑎𝑛𝑎𝑙𝑜𝑔𝑜𝑢𝑠 𝑡𝑜 𝑢)        (7) 

 

𝑇 = (𝑇 (1 − 𝑠) … (𝑎𝑛𝑎𝑙𝑜𝑔𝑜𝑢𝑠 𝑡𝑜 𝑢)        (8) 

𝑉 = (𝑉 (1 − 𝑠) … (𝑎𝑛𝑎𝑙𝑜𝑔𝑜𝑢𝑠 𝑡𝑜 𝑢)        (9) 

𝜙 = (𝜙 (1 − 𝑠) … (𝑎𝑛𝑎𝑙𝑜𝑔𝑜𝑢𝑠 𝑡𝑜 𝑢)        (10) 
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The linear eigenvalue buckling analysis is based upon the calculation of the eigenvalue in the 

following equation (11). 

 

[𝐾][𝜙 ] = 𝜆 [𝑀][𝜙 ]  (11) 

 

Where K is the structural stiffness matrix, that includes the stress stiffness matrix for prestressed 

analysis, ϕ is the eigenvector, λ is the eigenvalue and M is the structural mass matrix. 

The eigenvalues can be calculated in ANSYS with two methods: 

–  The Block Lanczos Extraction method, which is preferable for large models and symmetric 

problems 

–  The Subspace Iteration Method, which uses the same solving algorithm as the Ansys 

Unsymmetric Method. These methods are indicated for solving models with unsymmetrical 

matrices.   

As far as it concerns the studied thermal buckling problem, the two methods provide almost 

identical results. These results are shown in Figure 2.3 (Block Lanczos Extraction Method) and 

Figure 2.4 (Subspace Iteration Method). The two pictures show the stress intensity resulting from a 

linear eigenvalue buckling analysis. In this case the number of buckling modes used was equal to 1.  

Figure 2.3 – Linear eigenvalue analysis with Block Lanczos extracting method; number of buckling mode: 1. 
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Figure 2.4 - Linear eigenvalue analysis with Substep Iteration extracting method; number of buckling mode: 1. 
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3 The numerical model 

 
3.1  General Description 

 
The process to be simulated is the transverse-flux induction heating of a metal strip. The numerical 

model simulates a continuous process: the metal strip moves through the inductor, as it would 

happen if the inductor is a step of a bigger in-line process (i.e. preheating before mechanical 

deformation). 

In order to simulate the described process an increasing temperature profile is applied to a 

rectangular strip with a certain thickness. In this way it was possible to simulate the temperature 

transient during time via a spatial distribution. As a first approximation an homogeneous heating 

has been considered; the heating zone is the portion of strip theoretically covered by the inductor. In 

the meantime, one end of the strip is maintained at room temperature and the other one at a fixed 

temperature, which can be varied. 

Afterwards, the temperature distribution resulting from an electro-thermal analysis was used. In 

order to do this, it was necessary to develop a code to interpolate the temperature field to make it fit 

with the model mesh. 

In order to carry out the analysis, the strip must be somehow fixed; multiple constraints’ 

configurations have been explored. Finding the best constraints’ configuration it is, indeed, one of 

the most delicate part of the simulation as it is hard to transpose the reality of the constrains into the 

numerical model. 

Figure 3.1 – KeyPoints scheme. 
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3.2 Model Construction 

This paragraph will follow the construction steps of the model; each step will be presented 

alongside with the code implemented.  

 

3.2.1 Model Geometry 
The main purpose in the construction of the geometry of the strip was to implement the possibility 

of quick and simple modification of it. This goal has been achieved via the construction of a 

parametric geometry. As the model is not complex, it is possible to write this parametric code 

directly inside ANSYS® environment.  

The geometry is based upon cartesian coordinates (x,y,z). In the studied case, the direction of 

motion of the strip, along the z axis, were chosen in order to be consistent to the results of previous 

electromagnetic-thermal coupled simulations that will be used later in the model.  

By the way, the choice of the axes can be arbitrary and, if needed, it is possible to rotate the 

geometry by simply changing the coordinates. 

The geometry was built by using KeyPoints (KPs) which are defined by a set of cartesian 

coordinates (xn,yn,zn). The position of these points relied upon the scheme shown in Figure 3.1. The 

values of the coordinates are simply determined as input data. 

/prep7 
/plopts,date,0 
emunit,mks 
eps=1.0E-08 
! Input Data 
x1=-400/1000 
x2=400/1000 
y0=0 
z1=-2000/1000 
z2=-200/1000 
z3=200/1000 
z4=2000/1000 
thk0=1.4/1000  
csys,0 
! Definition of the KeyPoints 
k,1,x1,y0,z1 
k,2,x1,y0,z2 
k,3,x1,y0,z3 
k,4,x1,y0,z4 
k,5,x2,y0,z4 
k,6,x2,y0,z3 
k,7,x2,y0,z2 
k,8,x2,y0,z1 
ksel,all 
kplot 
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The benchmark dimensions (‘Input Data’ in the code) are: 

–  Width = b = 800mm 

–  Length = 2,5*b = 2000mm 

–  Heating zone length = 400 mm 

–  Thickness = 1,4 mm (‘thk0’ in the code)  

The benchmark geometry scheme is shown in Figure 3.2. 

 

Figure 3.2 – Scheme of the model 
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Having defined the coordinates of the points, to build the solid 3D strip, lines and areas were 

attached to the KPs. The third dimension, the one defining the thickness of the strip does not need to 

be given as the other two dimensions (via KPs, lines and areas definition); it is implemented as a 

property of the shell elements that were used. So that the only input data needed is the value of the 

thickness itself (thk0). 

This fragment of code shows how lines and areas were created; the process is the simple connection 

between the already-defined KPs. The values nx1, nz1, nz2, nz3 are needed to define the number of 

! Definition of lines in the ‘x’ direction 
lstr,1,8 
lesize,all,,,nx1,nx1n 
lstr,2,7 
lesize,all,,,nx1,nx1n 
lstr,3,6 
lesize,all,,,nx1,nx1n 
lstr,4,5 
lesize,all,,,nx1,nx1n 
 
! Definition of lines in the ‘z’ direction 
lstr,1,2 
lesize,all,,,nz1,nz1n 
lstr,8,7 
lesize,all,,,nz1,nz1n 
 
lstr,2,3 
lesize,all,,,nz2,nz2n 
lstr,7,6 
lesize,all,,,nz2,nz2n 
 
lstr,3,4 
lesize,all,,,nz3,nz3n 
lstr,6,5 
lesize,all,,,nz3,nz3n 
 
lsel,all 
lplot 
 
! Definition of the areas 
a,1,2,7,8 
a,2,3,6,7 
a,3,4,5,6 
 
asel,all 
aplot 
 
asel,all 
aglue,all 
 
asel,all 
aplot 
 
finish 
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mesh elements per line. The meshing of the model will be discussed in §3.4. 

The model is a coupled thermal and structural analysis, but the same geometry can be used in both 

the single physics by simply resuming it between the different simulation steps.  

 

3.2.2 Attributes of the elements 
 

Once the geometry was created, attributes must be given to the elements constituting it. As 

attributes they are included: the mesh, the element type and the material properties. The procedure 

simply consists in assigning an identification number to the investigated areas and then associating 

/prep7 
csys,0 
 
! Selection of areas and attributes number assignment  
ksel,s,,,1,2 
ksel,a,,,7,8 
lslk,s,1 
asll,s,1 
aatt,201,1,201 
 
ksel,s,,,2,3 
ksel,a,,,6,7 
lslk,s,1 
asll,s,1 
aatt,202,1,202 
 
ksel,s,,,3,6 
lslk,s,1 
asll,s,1 
aatt,203,1,203 
 
asel,all 
aplot 
finish 

Figure 3.3 – Areas with assigned attributes number. 
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meshing and properties to that number.  

By doing this it would be also possible to implement, in the code, pieces/geometries that include 

parts made of different materials. That is the reason why the studied areas are differently designated 

between each other’s (Figure 3.3). 

In the next step the element type is assigned to each area; as it happened before, it is possible to 

assign different element types to different areas if needed. As far as it concerns the choice of 

elements for the studied model refer to §2.2.1. 

The fragment of code displayed here concerns the structural analysis elements; the element type 

chosen is the SHELL181, SHELL157 was used for the thermal analysis instead. The ‘keyopt’ 

command is used to defined elements properties in order to improve the model accuracy. As it was 

said talking about the model geometry (§3.2.1), thickness is simply an element parameter which is 

implemented in this phase. 

Concerning the meshing operations, for the studied model a mapped mesh was chosen. All the data 

about it are provided during the geometry construction phase (lines definition) as well as input data: 

/prep7 
SHPP,OFF 
! Element type assignment 
  et,201,shell181 
  et,202,shell181 
  et,203,shell181 
  r,1,thk0,thk0,thk0,thk0,, 
! Elements options definition 
keyopt,201,8,2 
keyopt,202,8,2 
keyopt,203,8,2 
keyopt,201,3,2 
keyopt,202,3,2 
keyopt,203,3,2 
! Mapped mesh implementation 
asel,s,mat,,201,203 
mshape,0,2d 
mshkey,1 
amesh,all 
esel,all 
eplot 
 
finish 

nx1=57 
nx1n=1 
nz1=60 
nz1n=0.25 
nz2=29 
nz2n=1 
nz3=60 
nz3n=4.25 
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The remaining attribute to be assigned is the material properties. The procedure is straightforward; 

the properties are simply defined and linked to the areas designation number. Similarly to what 

happened with meshing and element type, the material properties can be differentiated between 

different sections. The definition of material properties will be further discussed in §4 – 

Parametrical Analysis.  

The fragments of code regarding the properties are displayed below. In the order, the two parts refer 

to the properties needed for the thermal analysis and the ones for the structural analysis. Properties 

like thermal conductivity, specific heat and density are in common and displayed only in the first 

fragment. 

! Workpiece material: steel C455 
/prep7 
 
! Definition of thermal conductivity  
mptemp  
mptemp,1, 0, 20, 100, 200, 300, 400, 500, 20000 
mpdata,kxx,2,1, 16, 16, 18, 19.7, 21.3, 23.4, 24.7, 24.7 
 
! Definition of specific heat  
mp,c,2,500 
 
! Definition of density density  
mp,dens,2,7760 
 
  mpcopy,,2,201 
  mpcopy,,2,202 
  mpcopy,,2,203 
finish 

! Workpiece material: steel C455 
/prep7 
 
! Definition of Young's modulus 
mptemp 
mptemp,1, 0, 20, 200, 20000 
mpdata,ex,2,1, 2e+11, 2e+11, 1.88e+11, 1.88e+11 
 
! Definition of the Coefficient of Thermal Expansion 
mptemp 
mptemp,1, 0, 93, 100, 200, 300, 480, 200000 
mpdata,alpx,2,1, 10.6e-6, 10.6e-6, 10.9e-6, 11.5e-6, 11.7e-6, 12.0e-6, 
12.0e-6 
 
! Definition of Poisson’s ratio  
mp,prxy,2,0.30 
tnostress=20.0 
mp,reft,2,tnostress 
  mpcopy,,2,201 
  mpcopy,,2,202 
  mpcopy,,2,203 
finish 
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3.3 Model boundary conditions 
After the construction of the geometry and the definition of the elements attributes, it is necessary to 

define the boundary conditions of the model. In order to achieve this, two different environments 

were created; one regarding the thermal simulation and another regarding the structural one. 

 

3.3.1 Thermal environment 
 
Thermal environment means the temperature profile that has to be applied at the workpiece. 

Initially, the profile used was an homogeneous heating taking place in the central zone of the strip; 

In this way it was simulated the heating effect of an ideal inductor. In particular, the temperature is 

constant until the heating zone and it is equal to room temperature. The last sector of the strip is 

considered at a steady temperature. The value of this last temperature can be modified according to 

the treatment to be carried out or the material analyzed. 

In the code the thermal environment is formed of three main parts: 

 

1. Recalling of input data, geometry, meshing and material properties; 

2. Definition of the ANSYS® analysis type; 

3. Definition of the temperature profile. 

Figure 3.4 – Homogeneous temperature profile. 
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Afterwards, the third part was modified in order to get a more realistic temperature field than the 

homogeneous heating. The new profile comes from a previous Multiphysics analysis (EM and 

thermal). The results of this combined analysis are read and then interpolated; the interpolation 

happens to be a powerful tool as it allows to adapt the new temperature profile to any meshing. This 

feature makes it possible to recall the same profile even if the mesh of the new model is changed. 

On the other hand, the interpolation is the most time-consuming operation of the whole model.  

It is possible to explore different temperature fields, in terms of absolute value, using this second 

initial condition as well; the interpolated temperature profile can be scaled of a certain factor.  

The two temperature profiles used are displayed in Figure 3.4 (homogeneous heating) and Figure 

3.5 (inhomogeneous heating / interpolated profile). 

As the thermal stresses for the following structural simulation will be extracted from the 

temperature profile, the better the latter simulates the real conditions, the more accurate the 

simulation will be. The temperature gradient map can be an useful qualitative way to evaluate the 

temperature field; it would be expected to find a greater gradient that follows the geometry of the 

inductor coil. In the studied case an inductor with rounded shaped corners was simulated and the 

geometry can be easily noticed in the thermal gradient picture shown in Figure 3.7. 

 

Figure 3.5 – Inhomogeneous/Interpolated temperature profile. 
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The thermal environment code is presented below, divided in the three parts discussed before. 

1. Recalling of input data, geometry, meshing and material properties. 

2. Definition of the ANSYS® analysis type. 

Figure 3.6 – Thermal gradient map for the interpolated temperature field. 

/FILNAME,WHHH,1 
/config,nres,50000 
/PMETH,OFF 
boptn,numb,off    
 
/input,input_data,dat,subprog_input,,1 
/input,geometry_therm,dat,subprog,,1 
/input,attributes_therm,dat,subprog,,1 
/input,mesh_therm,dat,subprog,,1 
/input,prop_therm_1,dat,property,,1 
  
finish 

/solu 
esel,all 
nsel,all 
antype,trans 
toffst,273 
cnvtol,heat,1 
kbc,1 
trnopt,full 
autots,on 
esel,all 
nsel,all 
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3. Definition of the temperature profile. 

/assign,rst,WHHH,rth  
   /solu 
      antype,trans 
 
! Homogeneous heating along the ‘z’ axis implementation 
esel,s,mat,,202 
nsle 
nsel,r,loc,x,x1-eps,x1+eps 
nsel,r,loc,y,y0-eps,y0+eps 
 
*get,nnt,NODE,0,COUNT 
*dim,temp_z,ARRAY,nnt,6 
*dim,massivz,ARRAY,nnt,1 
*get,nmin,NODE,0,NUM,MIN 
 
*do,i,1,nnt 
   *get,Zcoor,node,nmin,LOC,z 
   *set,Zcoord,Zcoor 
   *vfill,massivz(i),DATA,Zcoord 
   *get,nmin,NODE,nmin,NXTH 
*enddo 
 
    *do,iii,1,nnt 
        *set,MMM,massivz(iii) 
        *set,kkk,iii 
        *set,jjjj,iii 
            *do,jjj,jjjj,nnt 
            *if,MMM,gt,massivz(jjj),then 
                 *set,MMM,massivz(jjj) 
                 *set,kkk,jjj 
             *endif 
             *enddo                 ! JJJ 
        *set,massivz(kkk),massivz(iii) 
        *set,massivz(iii),MMM 
 
        *set,temp_z(iii,1),massivz(iii) 
 
   *enddo 
 
 
delT=(tout-tin)/(nnt-1) 
 
   *do,iii,1,nnt 
      TTT=tin+delT*(iii-1)       
      *set,temp_z(iii,2),TTT 
   *enddo 
 
   *do,iii,1,nnt 
      nsel,s,loc,z,temp_z(iii,1)-eps,temp_z(iii,1)+eps 
      d,all,temp,temp_z(iii,2) 
   *enddo 
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The code regarding the interpolation can be found in the Appendix. 

 

3.3.2 Structural environment 
 

The structural environment is the set of mechanical constraints and boundary conditions that were 

applied to the model. The simulation of the movement and the behavior of a strip which, in real 

applications, can both be simply supported by rolls or pulled through the induction heating 

machine, it is not easy to be represented with the numerical model. 

The approach was to keep the structure as “free” as possible. The reason behind this decision is to 

try to simulate an extreme case, wherein the strip could buckle and deform more easily than in a 

possibly more constrained application. 

For this reason, the mechanical constrains are the following: 

–  The cold end of the strip is completely fixed (in 3 directions). 

–  The hot end of the strip is simply supported in the normal direction. 

In order to simulate the pulling of the strip, due - for instance - to a continuous process with coils at 

the end, in further simulations a force was applied in order to put tension in the strip. The results of 

this test will be later discussed in the parametrical analysis section. 

The codification of the mechanical constrains is rather simple and it can be seen in the following 

fragment of code; it presents both the boundary constraints as well as the applied force. The latter 

will be applied to one end of the strip while the other remains fixed like it was before. 

esel,s,mat,,201 
nsle 
d,all,temp,tin 
 
!esel,s,mat,,202 
!nsle 
!d,all,temp,200 
 
esel,s,mat,,203 
nsle 
d,all,temp,tout 
 
esel,all 
nsel,all 
 
timestep=1 
time,timestep 
 
solve 
 
finish 
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The benchmark constraints configuration is displayed in Figure 3.7. 

/config,nres,50000 
/PMETH,OFF               
boptn,numb,off    
/input,input_data,dat,subprog_input,,1 
/input,geometry_stress,dat,subprog,,1 
/input,attributes_stress,dat,subprog,,1 
/input,mesh_stress,dat,subprog,,1 
/input,prop_stress,dat,property,,1 
 
/PREP7 
 
allsel,all 
 
! Three direction constraining of the cold edge of the strip. 
ksel,s,,,1 
ksel,a,,,8 
lslk,s,1 
nsll,s,1 
d,all,ux 
d,all,uy 
d,all,uz 
 
! ‘y’ direction constraining of the hot edge of the strip and applied 
force application on the same spot. 
ksel,s,,,4 
ksel,a,,,5 
lslk,s,1 
nsll,s,1 
d,all,uy 
f,all,fz,1  
 
finish 

Figure 3.7 – Constraints scheme. 
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3.4 Model Meshing 
 
A mapped mesh was implemented in the model; the dimensions of the meshing elements are given 

as input data: 

The nx1 parameters sets the number of divisions in the ‘x’ direction, at the same time nz1, nz2 

and nz3 do the same in the ‘z’ direction and they are respectively referred to areas 201, 202 and 

203 (see §3.2.1 for areas definitions). The second parameter (nx1n, nz1n, nz2n, nz3n) sets the 

homogeneity of the mesh, whereas a value equal to one corresponds to an homogeneous mesh while 

having numbers smaller or greater than one creates a progressive mesh. By progressive it means 

that the meshing texture becomes finer towards one end of the investigated areas. In the studied 

case, the two externals areas present meshing elements that get smaller towards the central areas 

which is characterized by a fine mesh itself.  

nx1=57 
   nx1n=1 
 
nz1=60 
   nz1n=0.25 
nz2=29 
   nz2n=1 
nz3=60 
   nz3n=4.25 

Figure 3.8 – Progressive mesh. 
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Various meshing textures were tested in order to check the model stability as well as to reduce the 

computational cost. This process goal was to reduce the number of the mesh elements, firstly by 

increasing the texture dimensions and, secondly, by introducing the progressive mesh previously 

explained.  

The final choice was to use the progressive mapped mesh. In this way a greater attention is set upon 

the central section of the strip, as it is the most important because it represents the heating zone. It is 

the heating zone where, indeed, the biggest temperature field variations should be concentrated. The 

latter happens to be true within the studied model temperature gradients distribution as well (see 

Figure 3.6). The outcome of the progressive mesh can be seen in Figure 3.8.  

 

3.4.1 Model validation through mesh variation 
 
Different dimensions of the meshing elements have been tested; it is important that the model gives 

the same results, within a certain tolerance, with different meshing grades. By studying the effect of 

different mesh dimensions and textures, the purpose was to check the stability of the outcomes in 

order to choose the less time-consuming meshing. 

The model proved to be stable. Tests were made in two directions: dimension of the mesh elements 

and homogeneity of the mesh textures. The modification of both these parameters do not affect the 

results. 

The effect of the mesh refinement, both for the homogeneous heating as well as for the 

inhomogeneous heating, can be seen in Figure 3.9. In the figure, m indicates the dimension of the 

shortest side of one meshing tile. In particular, the smallest meshing elements are placed in the 

Figure 3.9 – Mesh refinement parametrical analysis. a,b,c) Homogeneous heating; d,e) Inhomogeneous heating. a,d) 
m=14mm; b,e) m=7mm; c) m=5mm. 
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central heating zone. As far as it concerns the mesh homogeneity, there is no relevant differences, in 

terms of outcomes, between using a progressive or a homogeneous mesh. Yet, the homogeneous 

mesh could become definitely more time-consuming while dealing with small elements.    

 

3.5 Main Settings: number of buckling modes and geometrical factor 
 

The model presents a big number of settings to operate with. Two of them were identified as the 

most important independent ones as they can deeply influence the results: the number of buckling 

modes and the geometrical factor (for the geometry updating) 

The first one controls the number of buckling modes to be calculated and extracted. Different 

numbers of buckling modes give different distributions on the stress, as well as different maximum 

stress and deformation.  

In the frame of an ideal procedure, the number of buckling modes should be chosen in order to 

emulate the real behaviour of any studied workpiece. However, in the case of TFH buckling, the 

experimental reality is unstable; so, it is not possible to apply this ideal procedure. Instead, the 

leading idea was to choose a number of modes which allows the strip to buckle rather freely in 

multiple directions. It was found that three or four buckling modes could be a good compromise. 

Commonly, structural linear buckling analyses produce results such as: one or only a few main 

buckling modes, which are the ones appreciable in reality, plus many negligible ones, which are 

Figure 3.10 – Deformed shape for the linear buckling analysis with 1 buckling mode 
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more unlikely to occur. For this reason, it is usually recommended, once the number of main 

buckling mode is found, to extract some more modes.  

This way it is possible to check that the identified main mode is really the principal, extracting the 

others negligible ones will not change the results of the simulation. 

As far as this work experience with FEM simulations is concerned, it is unlikely to be true while 

Figure 3.11 - Deformed shape for the linear buckling analysis with 6 buckling modes 

Figure 3.12 - Deformed shape for the linear buckling analysis with 10 buckling modes 
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dealing with structural loads, but it is no more using thermal loads. In the studied case, by 

increasing the number of extracted buckling modes, the only appreciable result is a bigger 

complexity of the solution reached.  

The effect upon results of the number of buckling modes can be seen in Figure 3.10 (one buckling 

mode), Figure 3.11 (six buckling modes) and Figure 3.12 (ten buckling modes). 

 The second main setting is the choice of the geometrical factor used for the updating of the 

geometry between the linear and the non-linear buckling analysis. As it was explained in §2.2, the 

deformed shaped resulting from the linear analysis is used as initial condition for the non-linear 

analysis. This starting deformation is only qualitative, so it is necessary to set a maximum value of 

deformation in order to scale the problem.  

It is important to introduce this kind of imperfection in the model in order to get the buckling. But if 

the initial deformation is too big, the result is no more realistic or neither reliable. On the other 

hand, if the chosen value is too small the non-linear buckling analysis does not work properly, or it 

does not work at all. 

The effect of the geometrical factor is displayed in Figure 3.13. The command in the code (‘Solving 

Script’ in Appendix) is UPGEOM and the following numerical input is the value of the maximum 

deformation in meters. 

Figure 3.13 – UPGEOM factor effect upon deformation and stress intensity field. a) UPGEOM = 0.01; b) UPGEOM = 
0.1; c) UPGEOM = 1; d) UPGEOM = 2; 
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4 Parametrical Analysis 
 
The phenomenon of buckling is not easy to study or evaluate, as it can depend on a large number of 

different factors. The main purpose, in the parametrical analysis of the model, was to check if the 

program reacts properly to any change of boundary conditions and/or input data. 

In order to accomplish the goals of this work, the variation of the following parameters has been 

studied: 

 

–  Length of the strip 

–  Applied force 

–  Mechanical constraints 

–  Material properties 

–  Temperature 

–  Thickness 

 

All these parameters were firstly analyzed for the homogeneous heating case and later for the 

interpolated temperature field. Overall, the two cases gave similar results. The main considered 

Figure 4.1 – Stress intensity distribution. 
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outcomes are the stress intensity distribution and the displacement perpendicular to the motion 

direction of the strip. The first one is important in order to quantify the stresses that can cause 

buckling, the latter is the most important displacement to control. In a transverse flux heating 

configuration, the gap between the inductor and the workpiece can be little and it is a critical 

parameter in the coupling between the two. Any displacement that alters the distance between 

inductor and workpiece might have risky drawbacks; by modifying the air-gap the specific power 

can change as well, changing the temperature distribution alongside with it. Furthermore, if the 

displacement is too big, it is possible that the inductor and the strip get in contact. This event can 

cause a discharge in the workpiece that can lead to the interruption of the process and the discard of 

the workpiece as well. See Figure 4.1 and Figure 4.2 for stress intensity distribution and y-direction 

displacements respectively.  These figures could be considered as the benchmark results.   

 

4.1 Length Parameter 

Starting from the benchmark length of the strip (2,5 times the width), it was increased to 5 times the 

width. The main aim in doing so was to check if the behaviour of the strip remains coherent: both in 

terms of the qualitative stress intensity distribution and in terms of the maximum stress value. 

Figure 4.3 – Length variation parametrical analysis, homogeneous heating case. a) Length = 2.5*b; b) Length = 3*b; 
c) Length = 5*b. 

Figure 4.2 – Strip deformed shaped (a) and y-direction displacements (b). 



42 
 

The model proved to be stable as it does not present big qualitative/quantitative differences between 

the different lengths tested. Furthermore, the most important aspect is that the biggest stress 

intensity remains in the central part of the strip and does not move towards the ends. It could be a 

sign that the mechanical restrains are not affecting the results. 

Even though the non-homogeneous heating shows a little difference passing to a longer strip, the 

result can be still considered stable.  The results of the homogeneous and inhomogeneous heating 

case are displayed, respectively, in Figure 4.3 and Figure 4.4. 

Figure 4.4 – Length variation parametrical analysis, inhomogeneous heating case. a) Length = 2.5*b; c) Length = 5*b. 

Figure 4.5 – Applied force variation parametrical analysis. a) F=10N; b) F=300N; c) F=850N; d) F=2000N. 
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4.2 Applied Force Parameter 

In order to simulate the behaviour of the metal strip in a real transverse flux induction heating 

process, the workpiece must be set in tension. This is what commonly happens in a line process 

where the strip is pulled through different process stations. 

The model, both in the homogeneous and in the non-homogeneous case, reacts to the variations of 

the amount of force applied. 

The force is applied at the hot end of the strip to the whole ending section. By increasing the value 

of the force, different stress distributions and intensity are achieved. In particular, it is possible to 

notice that after a certain amount the stress distribution starts to interest all the strip and not only the 

heating zone. A possible interpretation of this phenomenon could be that the homogeneous tension 

applied to the whole strip becomes more relevant than the stresses caused by the buckling 

phenomenon. Figure 4.5 shows the effect of an increasing applied force upon the stress intensity 

distribution. 

 

4.3 Mechanical Constraints Parameter 

The modification of the mechanical constraints proved to be a delicate parameter to deal with. The 

model works well with the standard configuration, presented in §3.3.2. Only a few other 

configurations proved to work. 

One other constraints test was carried, it concerned the possibility of fixing a portion of the strip and 

not only the ending sections. By “fixing” it means preventing a portion of material to move in the 

orthogonal direction. It can work as a simulation of the clamping of the workpiece. 

The results show that the stress intensity increases by increasing the fixed zone; this is an expected 
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Figure 4.6 – Maximum stress intensity over percentage of strip fixed. 
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effect because, by adding stronger constraints the strip stiffness should increase consequently. The 

effect upon the stress intensity distribution is not evident until really wide fixed zone (70% - 90%). 

The stress intensity maximum absolute value is stable until big percentages of strip fixed. It can be 

interpreted as an irrelevance of this kind of constrains, that can be said because high percentages of 

fixing are unrealistic. The evolution of the stress intensity distribution can be seen in Figure 4.7. 

  

4.4 Material Properties Parameter 

In this section, the effect of different material properties upon the model has been investigated. This 

investigation developed in two directions: testing different materials as well as testing the 

introduction of more temperature dependent properties. Talking about the latter, in the first phase 

only temperature dependent conductivity and specific heat were used. In a second phase also 

temperature dependent elastic modulus and coefficient of thermal expansion were implemented. 

The results are straightforward: the model easily adapts to these different inputs giving results 

which coherently change with the different tested material. 

During the initial phase, the homogeneous heating simulation, generic steel properties were used. 

They are collected in Table 4.1 and Figure 4.8. 

Material Property Value 

Young’s Modulus 2 GPa 

Poisson’s Ratio 0.3 

Density 7800 kg/m3 

Coefficient of Thermal Expansion 11.9·10-6 1/°C 

Table 4.1 – Material properties of generic steel. 

In order to get a better comparison between the homogeneous heating simulation and the non-

homogeneous one, the same properties were used in both cases. Once the interpolated, non-

homogeneous temperature field proved to give reasonable results, the material properties of the 

stainless steel, previously used in an experimental setup, were implemented. This choice was taken 

in order to set the possibility of future comparisons between the numerical results and experimental 

Figure 4.7 – Variation of the stress intensity distribution according to the percentage of fixed strip. 
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evidences.  

The chemical composition and the material properties of this stainless steel are shown in Table 4.2, 

Table 4.3 and Figure 4.9.  

Element Percentage 

C 0.05% 

Cr 14.0% 

Ni 7.0% 

Cu 0.7% 

Ti 0.4% 

Table 4.2 – Stainless Steel composition. 

 

Material Property Value 

Young’s Modulus at 20°C 2.00 GPa 

Young’s Modulus at 200°C 1.88 GPa 

Specific Heat 500 J/kg·K 

Poisson’s Ratio 0.30 

Density 7760 kg/m3 

Table 4.3 – Material Properties of the Stainless Steel. 

Figure 4.9 – Charts of thermal conductivity and specific heat of a generic steel. 

Figure 4.8 – Charts of Stainless Steel thermal conductivity and coefficient of thermal expansion. 
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4.5 Temperature Parameter 

 
The effect of temperature upon the buckling behaviour was analysed both for the homogeneous 

heating as well as for the interpolated temperature field. In the first case the low temperature was 

fixed and equal to room temperature, while the final temperature has been increased. In the second 

case the totality of the temperature profile has been scaled of a certain factor. The model behaves 

well according to the temperature variation: both the maximum stress intensity and the deformation 

amplitude increase alongside the temperature. 

The meaning of “displacement amplitude” is the maximum distance in the orthogonal direction 

between the lowest and the highest point of the deformed shape. The displacement amplitude is 

displayed in Figure 4.10, it corresponds to the value of the distance between the points marked as 

MX and MN. 

Concerning the results, it is necessary to point out that both the behaviours of stresses and 

displacements are coherent with the increase of temperature. Towards the lowest temperatures it 

seems the model tends to a critical value both concerning stresses and displacements. A possible 

explanation of this phenomenon is that the thermal buckling is not triggered working at low 

temperatures. So, the critical minimum value of stress can be attributed only to the thermal stresses 

caused by thermal expansion. The absolute value of those is probably not high enough to cause the 

Figure 4.10 – Displacement Amplitude. 
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buckling; the deformation of the strip, both elastic and/or, in the worst scenario, plastic, caused by 

the buckling might be the cause of the maximum stress intensity rise once a certain temperature is 

reached. 

In contrast, concerning the displacement amplitude, the critical value displayed might be due to the 

initial status of the strip. It is an already deformed shape that comes from geometry update 

performed after the linear buckling analysis. In particular, the amount of displacement shown by the 

second graph could depend upon the geometrical factor used. In all these simulations this factor was 

set to a maximum deformation of 0,01, which is exactly the critical value.  

The behaviours of stress intensity and displacement amplitude according to temperature variations 

are shown respectively in Figure 4.11 and Figure 4.12. In both the charts, each point has been 

calculated with a different temperature profile; the value of the temperature taken into account is the 
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Figure 4.11 – Maximum stress intensity behaviour according to the temperature variation. 
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maximum of each profile. 

The qualitative behaviour of the stress intensities is harder to interpret; nonetheless, the results stay 

consistent in terms of the concentration of the stress that mostly lays  in the central portion of the 

strip, particularly, while dealing with average or high temperatures (c and d in Figure 4.13). These 

will be the most useful results as those are the temperatures used in real applications. The evolution 

of the stress intensity according to the temperature variation is displayed in Figure 4.13. 

 

4.6 Thickness Parameter 

The relationship between the buckling behaviour and the thickness is the most outstanding. As the 

graph shows, the displacement amplitude presents a clear buckling/non-buckling separation. It is 

physically adequate to imagine a major buckling for small thicknesses and an absence (or negligible 

entity) of buckling for bigger thicknesses.  Figure 4.14 clearly shows the switch between buckling 

Figure 4.13 – Stress intensity distribution results with different temperature profiles.  

Maximum temperatures: a) ~58°C; b) ~129°C; c) ~515°C; d) ~1030°C. 
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occurrence and buckling non-occurrence at a thickness value between 5 and 10 millimeters. This 

value depends upon the geometry and the constraints of each model; it must not be intended as an 

absolute critical value. In the chart, the small group of values in the top left corner concerns 

thickness below 1mm. Even though the results follow the trend of the curve, the simulation proves 

not to be stable for such small thickness.   
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Conclusions and Perspectives 
 

A numerical model for the buckling analysis concerning the behaviour of a transverse-flux heated 

strip has been developed. The model proved to be consistent through the various parametrical 

analyses. Consistency has always been the main goal of this work, so, the achieving of it can be 

considered as the main outcome.  

It is important to point out that this is not a ‘final’ result.  The buckling analysis described in this 

work should be collocated in the bigger frame of a more spread investigation upon the transverse-

flux induction heating process. As it stands, the model could also be included in a Multiphysics 

simulation; keeping as main objective of it the optimization of the TFH process. The possible 

workflow could be to perform first a coupled electro-magnetic and thermal simulation and then, as 

it has been done, to use the thermal results as starting point of the buckling analysis. The latter can 

both work as a final check of a process or, on the other hand, as a goal function in designing 

operations. 

As far as it concerns future developments, there is the possibility of improvements of the model in 

two directions: a numerical improvement and a non-numerical one. By numerical improvement, it 

means to further develop the FEM simulation in order to get a more precise and efficient one. The 

non-numerical developments could be the integrations of the numerical results with experimental 

evidences. 

 

Numerical Improvement of the Model 

 
The possible further numerical developments of the model could be: 

- In terms of applicability, it could be useful to prove the model stability in dealing both with 

different workpiece geometries as well as with different temperature field geometries.  

- The implementation of a ‘buckling goal function’. In this way the simulation procedure 

will work in the other direction; it would start from a deformed shape or a stress intensity 

distribution to arrive to the necessary temperature field to obtain them. For instance, it 

would be interesting to have the possibility to set a certain amount of tolerable out of plane 

displacement and, starting from it, to calculate the amount of stress that would cause it and 

then the temperature field responsible of it. Later, a proper inductor which produces that 

specific temperature field could be designed. 

- As it appears clear that the main actor in the buckling occurrence is the inhomogeneity of 
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the temperature profile, the most important aspect to work on is the inductor shape. In 

particular, it would be useful to develop a changing-shape inductor. The temperature 

gradient distribution strictly follows the inductor shape (Figure A); by changing the 

geometry it would be possible to adapt the gradient in order to get any desired temperature 

profile. In would also be possible to adapt the inductor shape to any workpiece shape. This 

development is surely feasible inside a FEM simulation, in contrast, the feasibility of a real 

set-up of a moving inductor should be carefully studied. 

- In order to further check the consistency of the results of the buckling analysis in 

ANSYS®, it would be advisable to carry out the same simulation, or a similar one, in other 

simulation environments. 

 

Non-numerical Developments 

 
As it stands, the simulation discussed in this work is solely numerical. The validation of the 

numerical results could only be carried out through the integration of them with experimental 

evidences. In the studied case any measurement would be complicate due to the instability and the 

temperatures of the real process.  

Until now the displacement results have only be compared to an estimation of the real deformation. 

If it would became possible to get the real value of it, a different simulation could be developed; in 

this case the imperfection that had to be introduced to perform the non-linear buckling analysis 

would be the deformed shape (resulting from the linear buckling analysis) no more. It would be 

possible to introduce it as a geometric imperfection the experimentally measured deformation.  

One possible way to deal with the problem of measurements could be to use optical systems. 

Another non-numerical development could be the investigation of the effect of the changing of the 

Figure A – Thermal gradient 
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mechanical constrains. In a certain measure, the way the strip is moved and constrained must 

influence the occurrence of buckling. Before performing the change of boundary condition via FEM 

simulations, the mechanical constrains should be studied and understood in a real experimental set 

up. In the implemented code presented the constraints have been the main unknown boundary 

condition. It would be useful to run some experimental test with straightforward configurations. 

They have to be replicated in the model to validate the numerical results by comparing them with 

the experimental ones. By straightforward configuration it means to set physical constraints easily 

transformable in boundary conditions in the code. For instance, a non-moving and completely fixed 

strip could be used as a benchmark test.   
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Appendix 
 

Thermal Environment Script 

 

! Resuming the thermal environment 

resume,environment_therm_1,db 

  

   /assign,rst,WHHH,rth  

/view,1,8,-7,-3 

/ang,1,-35 

 

! Calling the interpolation program 

/input,out_xyzT_new,dat,Subprog 

   /solu 

      antype,trans 

esel,all 

nsel,all 

timestep=1 

time,timestep 

 

solve 

finish 

 

! Saving the new interpolated field to quickly resume it 

afterwards 

SAVE,Interpolation,db,,all 

 

Interpolation Program 
 

/prep7 

 

*DIM,datanum1,,1 

*VREAD,datanum1(1),out_xyzT_old,dat,,,,,, 
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(2x,F15.0) 

 

nntold=datanum1(1) 

 

*DIM,xyzTold,ARRAY,nntold,4 

*VREAD,xyzTold(1,1),out_xyzT_old,dat,,JIK,4,nntold,,1 

(2x,F12.8,2x,F12.8,2x,F12.8,2x,F12.8) 

 

finish 

 

/prep7 

 

esel,s,mat,,201,203 

nsle 

 

*GET,nntnew,NODE,0,COUNT 

*DIM,xyzTnew,ARRAY,nntnew,4 

 

*GET,nmin,NODE,0,NUM,MIN 

*do,I,1,nntnew 

   *GET,Xcoor,node,nmin,LOC,x 

   *GET,Ycoor,node,nmin,LOC,y 

   *GET,Zcoor,node,nmin,LOC,z 

   *VFILL,xyzTnew(I,1),DATA,Xcoor 

   *VFILL,xyzTnew(I,2),DATA,Ycoor 

   *VFILL,xyzTnew(I,3),DATA,Zcoor 

   dxyzmin=1000.0 

      *do,II,1,nntold 

         dx=abs(Xcoor)-xyzTold(II,1) 

         dz=Zcoor-xyzTold(II,3) 

         dxyz=dx*dx+dz*dz 

            *if,dxyz,lt,dxyzmin,then 

            dxyzmin=dxyz 

            *VFILL,xyzTnew(I,4),DATA,xyzTold(II,4) 

            *endif 
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      *enddo 

d,nmin,temp,xyzTnew(I,4) 

*GET,nmin,NODE,nmin,NXTH 

*enddo 

 

/output,out_xyzT_new,dat 

 

*VWRITE,nntnew 

 (2x,F15.0) 

 

*VWRITE,xyzTnew(1,1),xyzTnew(1,2),xyzTnew(1,3),xyzTnew(1,4) 

(2x,F12.8,2x,F12.8,2x,F12.8,2x,F12.8) 

 

/output 

 

finish 

 

Solving Script 

 

/clear 
 
! Resuming the database containing the temperature field 
interpolation, as well as model geometry, meshing, properties and 
input data 
resume,Interpolation,db  
 
!File Renaming 
/COPY,'WHHH','rth','','WHHHS','rth',''  
/clear 
/FILNAME,WHHHS,1 
 
! Resuming the database containing mechanical constraints and 
applied forces 
resume,environment_stress,db 
 
! Linear Buckling Analysis 
! Mechanical pre-analysis 
/assign,rst,WHHHS,rth  
/solu 
antype,stat 
pstres,on 
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esel,s,mat,,201,203 
nsle 
ldread,temp,last,,,,WHHHS,rth 
 
esel,all 
nsel,all 
 
solve 
finish 
 
! Eigenvalue Analysis 
/solu 
antype,buckle 
bucopt,lanb,4 
mxpand,4,,,yes 
solve 
finish 
 
! Results saving 
/COPY,'WHHHS','rth','','BUCK','rst','' 
/FILNAME,BUCK,1 
 
 
! Geometry Update 
/PREP7 
upgeom,0.01,,,BUCK,RST 
finish 
 
! Nonlinear Buckling Analysis 
/solu 
antype,static 
nlgeom,on 
!arclen,on 
!nropt,full,,off 
lnsrch,on 
autots,on 
pred,off 
time,1 
nsubst,10,, 
rescontrol,define,all,1 
outres,all,all 
 
esel,all 
nsle,all 
 
solve 
 
finish 
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Summary in italian 
 

Questa tesi è stata svolta in collaborazione con l’ateneo di Hannover (Leibniz Universität) presso lo 

Institut für Elektroprozesstechnik (ETP). Lo scopo del lavoro è l’indagine e l’analisi del 

comportamento di una lastra metallica all’interno di un processo di riscaldamento per induzione a 

flusso trasverso. In particolare, l’attenzione è stata posta sul fenomeno di buckling termico che si 

verifica durante tale processo. Durante una prima fase, si è cercato di riprodurre il fenomeno tramite 

simulazione FEM; in seguito è stata effettuata un’analisi parametrica al fine di ricercare la 

possibilità di prevedere, controllare e/o limitare l’avvento del suddetto buckling. Per quanto 

concerne le simulazioni ad elementi finiti, il software che è stato utilizzato è ANSYS Mechanical 

APDL®.  

La tesi si configura in cinque capitoli: 

- Capitolo 1: nozioni preliminari; 

- Capitolo 2: simulazioni multi-fisiche; 

- Capitolo 3: il modello numerico; 

- Capitolo 4: l’analisi parametrica; 

- Conclusioni e prospettive. 

Il primo capitolo riassume il lavoro di studio e comprensione del fenomeno del buckling termico 

nella fattispecie del processo studiato. Per quanto riguarda il riscaldamento per induzione a flusso 

trasverso è stata individuata, come più probabile causa del fenomeno, la distribuzione non 

omogenea della temperatura nella lastra riscaldata. Il metodo più diretto ed efficace per ottimizzare 

l’omogeneità di riscaldamento è la modifica del design dell’induttore utilizzato. Dal momento che 

la sostituzione di quest’ultimo non è stata possibile nel caso analizzato, il lavoro è proseguito nella 

direzione di studiare l’effetto, sull’entità del buckling e/o sulla sua presenza, della variazione degli 

altri parametri di processo. 

Lo studio parametrico sopra citato è stato condotto tramite simulazioni ad elementi finiti multi-

fisiche. Il secondo capitolo verte propriamente su questa tipologia di simulazioni numeriche e sugli 

strumenti adottati nel caso specifico.  Il modello sviluppato utilizza come punto di partenza i 

risultati di una simulazione combinata (elettromagnetica e termica); il profilo termico di partenza 

viene letto ed interpolato e, successivamente, convertito in un campo di stress termici. A loro volta, 

quest’ultimi divengono la condizione iniziale dell’analisi strutturale di buckling.  

I due principali strumenti per effettuare tale analisi messi a disposizione dal software ANSYS® 

sono: l’Analisi lineare di buckling agli autovalori e l’Analisi non-lineare di buckling. Un risultato 

della prima, che si rivelerà utile successivamente nello studio, è rappresentato dalla deformazione 
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qualitativa della lastra. I valori di sforzi e deformazioni prodotti dalla Analisi non-lineare di 

buckling, invece, hanno significato fisico. Questo tipo di analisi necessita, tuttavia, 

dell’introduzione di un’imperfezione nel modello affinché il fenomeno di buckling possa 

svilupparsi. L’imperfezione scelta a tal fine è stata la geometria deformata, generata dall’Analisi 

lineare di buckling agli autovalori. Questa deformazione viene utilizzata a meno di un fattore 

geometrico di scala per l’aggiornamento della geometria. 

Il terzo capitolo illustra la procedura di costruzione del modello numerico in ogni sua parte. Sono 

inoltre riportati i frammenti di codici relativi ai singoli passi della costruzione, in modo particolare: 

- Costruzione della geometria; 

- Definizione degli attributi degli elementi della mesh; 

- Definizione delle condizioni al contorno termiche (profilo di temperatura); 

- Definizione delle condizioni al contorno strutturali (vincoli meccanici); 

- Definizione e validazione della texture per il meshing; 

- Definizione dei parametri indipendenti della simulazione: numero di modalità di buckling e 

fattore geometrico di scala per l’aggiornamento della geometria. 

Il quarto capitolo contiene l’analisi parametrica, la quale rappresenta il nucleo centrale del lavoro di 

tesi. In questa sezione viene indagato l’effetto che la variazione di diversi parametri di processo ha 

sui risultati ottenuti. Nello specifico, è stata analizzata la variazione dei seguenti parametri fisici: 

lunghezza della lastra, forze applicate alla lastra, vincoli meccanici, proprietà dei materiali, 

temperatura applicata e spessore della lastra.  

Nel complesso, i risultati ottenuti rispecchiano un comportamento fisicamente verosimile del 

modello sviluppato. Il codice scritto si candida quindi a diventare un utile strumento di analisi 

nell’ambito dello studio del fenomeno del buckling termico. 

Come è riportato nel capitolo conclusivo (Conclusioni e Prospettive), i risultati del lavoro svolto 

devono essere inquadrati come un tassello all’interno di un mosaico più ampio che consta di 

un’analisi completa del processo di riscaldamento ad induzione. Questa analisi potrebbe essere 

condotta tramite una simulazione multi-fisica che copra gli ambiti elettromagnetico, termico e 

strutturale.  

Un necessario futuro sviluppo di questo lavoro di tesi sarebbe la validazione sperimentale dei 

risultati ottenuti. Tale processo risulta essere, tuttavia, particolarmente complicato a causa delle 

difficoltà di misura di sforzi e/o deformazioni nel processo studiato. Difficoltà, quest’ultime, dovute 

alla stabilità del processo e alla temperatura di lavoro.  

 


