

DIPARTIMENTO
DI INGEGNERIA
DELL’INFORMAZIONE

INFORMATION ENGINEERING DEPARTMENT

MASTER’S DEGREE IN

ICT FOR INTERNET AND MULTIMEDIA

“A Study of Efficiency Improvement in Test Automation for Electronic

Invoicing Software Solutions”

Supervisor: Leonardo Badia

Candidate: Bilge Ozcanbaz

2008489

ACADEMIC YEAR 2021 – 2022

Graduation Date: 05 December 2022

Running head: Efficiency Improvement in Test Automation for Electronic Invoicing i

Efficiency Improvement in Test Automation for Electronic Invoicing ii

Thanks

 First, I would like to thank my family, who supported me on my decision and my second

family, Elif Altınbaş, Hilal Motçu and Beste İçten, for standing by me every minute despite the

2300 kilometers between us.

 I would like to thanks to my roommate Elif Bakar for encouraging me when I feel lost and

to Mattia Bolzonella for all the help with work and Italian life.

 I would like to thank all the friends and fellow students who have been part of this

adventure.

Furthermore, I would like to thank Fabio Canevarolo, my company tutor, who believed in

me and gave me the opportunity to grow. And to Claudio Mazzuco for supporting and comforting

me during the preparation of this thesis.

Finally, I would like to express my gratitude to Prof. Badia, supervisor of my thesis, for

the help and support provided to me during the writing of the work.

Padova, December 2022 Bilge Ozcanbaz

Efficiency Improvement in Test Automation for Electronic Invoicing iii

Efficiency Improvement in Test Automation for Electronic Invoicing iv

Abstract

As with the growing technical industries, number of software system has been implemented as

web-based applications. Some of these web applications are very complex and it is very difficult

to test such complex web applications. Automation testing uses automation tools to reduce human

intervention and repeatable tasks. In this paper we have designed and implemented automation

testing framework for testing web applications. This new automation testing framework has been

implemented using selenium RemoteWebDriver() tool instead of selenium WebDriver(). Using

this framework tester can easily write their test cases efficiently and in less time. This framework

is helpful to developer to analyze their code due to screen shot property of framework. In this thesis

I wanted to show you that RemoteWebDriver() is very easy to maintain and repair the test suite

for new release of the application using this framework. Due to the Results Section,

RemoteWebDriver() has better performance and 3 seconds faster than WebDriver().

Keywords: Test Improvement, Software Testing, Selenium IDE, Performance Evaluation

Efficiency Improvement in Test Automation for Electronic Invoicing v

Efficiency Improvement in Test Automation for Electronic Invoicing vi

Contents

Thanks ... ii

Abstract .. iv

List of Figures .. viii

List of Tables .. ix

1. Introduction ... 1

2. State of the Art ... 3

2.1. CPU Usage .. 8

3. Methodologies... 9

3.1. Development Tools ... 10

3.2. Theoretical Methodologies ..11

4. Test .. 17

4.1. Software Testing Process .. 17

4.2. Test Performance .. 20

5. Project ... 24

5.1. Description of Project ... 24

5.2. Task ... 24

5.3. WebDriver() vs RemoteWebDriver() .. 27

6. Results ... 31

Efficiency Improvement in Test Automation for Electronic Invoicing vii

6.1. Performance Test and CPU Usage .. 31

Conclusions ... 40

References ... 41

Efficiency Improvement in Test Automation for Electronic Invoicing viii

List of Figures

Figure 1 Selenium WebDriver() Architecture ... 6

Figure 2 Selenium RemoteWebDriver() Architecture .. 6

Figure 3 Vaadin Application Architecture ... 10

Figure 4 Leverage Continuous Integration ..11

Figure 5 Software Development Life Cycle Stages ...11

Figure 6 CI/CD Pipeline ... 12

Figure 7 Test-Driven Development Life Cycle ... 13

Figure 8 Agile Methodology ... 14

Figure 9 Scrum Life Cycle .. 15

Figure 10 Types of Tests and Hierarchy of Tests .. 17

Figure 11 Types of Software Testing .. 18

Figure 12 Types of Performance Testing .. 19

Figure 13 Test Pyramid ... 20

Figure 14 WebDriver() Hierarchy Diagram .. 27

Figure 15 Code of WebDriver() Capabilities .. 29

Figure 16 Code of createDriver(), openIC() and openICRWD() .. 30

Efficiency Improvement in Test Automation for Electronic Invoicing ix

List of Tables

Table 1 Class vs Interface [13] .. 5

Table 2 WebDriver() vs RemoteWebDriver() ... 7

Table 3 Slowest Test on Invoice Channel Tests .. 24

Table 4 Performance Test and CPU Usage of WebDriver() for AccettaFattura 32

Table 5 Performance Test and CPU Usage of RemoteWebDriver() for AccettaFattura 34

Table 6 Performance Test and CPU Usage of WebDriver() for CreaSoggettiProduttori 36

Table 7 Performance Test and CPU Usage of RemoteWebDriver() for CreaSoggettiProduttori . 37

Table 8 Execution Time of AccettaFattura for WebDriver() and RemoteWebDriver() in seconds

... 38

Table 9 Execution Time of CreaSoggettiProduttori for WebDriver() and RemoteWebDriver() in

seconds .. 38

Running head: Efficiency Improvement in Test Automation for Electronic Invoicing 1

1. Introduction

The aim of this project is to improve the software test performance by comparing

WebDriver() and RemoteWebDriver(). Selenium WebDriver() is a tool that allows you to

automatically create and operate some test steps of websites through your web browser. [1] And

Selenium RemoteWebDriver() is used to execute the browser automation suite on a remote

machine. In other words, RemoteWebDriver() is a class that implements the WebDriver() interface

on the remote server. [1]

Even though there are other methods that might slow the test process, since

RemoteWebDriver() is a class that implements a WebDriver() interface, it controls the node PC

over Grid [2] which means RemoteWebDriver() separates where the tests are running from where

the browser is and allows tests to be run with browsers that are not available on the current OS, it

could be much more efficient and faster to run the tests.

The problem, quite simply, is that testing is difficult, and only gets more difficult as

organizations look to drive automation at scale. Nowhere is this challenge more evident than in

organizations’ ongoing struggles with test quality. [3] Organizations must find ways to improve

test quality and speed. A major reason so many tests fail is they take far too long to run. The longer

it takes to run, the more likely it is to end with a failure. So, to ignore these failures we need to be

faster while testing.

This brings my thesis logic: making the tests of Invoice Channel® project is faster and

easier to implement. Invoice Channel®, is the software solution that automates the flow of

electronic invoicing with a “zero impact” approach, as, thanks to web services, it allows an easy

integration to third-party ERP systems [4].

Software testing is a critical stage of the software development life cycle. Today numerous

software applications are written as a web-based application that operates on an Internet Browser.

Software Testing is a method, which applies, running a software program/application and

uncovering all errors or bugs in that program/application so that the result will be defect-free

software. The quality of any software can only be known through means of testing (software

testing). [5]

The digitalization of invoice operations provides an excellent opportunity for companies

to lessen expenses, optimize organizational tasks, and improve efficiency and competitiveness.

Efficiency Improvement in Test Automation for Electronic Invoicing 2

Electronic Invoicing is a process regulated by Italian law that allows you to issue, receive, digitally

store, and exhibit tax documents electronically, ensuring that the content is immutable and

unalterable over time.

So, in this thesis I will explain firstly the current knowledge about WebDriver() and

RemoteWebDriver() on Chapter 2, then on Chapter 3, the methodologies of the technologies which

is used during the preparation of thesis, on Chapter 4 is the explanation of the theoretical part of

the test and importance of the software testing and finally on the Chapter 5 description of project,

the task, the results, and at the end conclusion.

Efficiency Improvement in Test Automation for Electronic Invoicing 3

2. State of the Art

In this section, I will explain what the problem is, why is it important and how the agile

methodology relates to the problem and the theoretical part of the thesis as what Selenium

WebDriver() is, Selenium RemoteWebDriver() and the differences between.

Software testing is a key component of software quality assurance and represents the

ultimate verification of specifications, design, and coding. Software testing is the process of testing

the functionality and correctness of software through execution. The importance and complexity

of software testing is reflected by the costs involved: 30% to 80% of the development costs are

reported to be related to testing and studies on release time indicate that most of the release time

is consumed by testing. The cost and time involved in testing can be managed through test

automation, where the execution of a test is performed by software instead of a human. [6]

In this aspect, software testing plays an important role in the software development

lifecycle and is very good at identifying process problems. To identify the problems and fix them,

the testing process must be as fast as it can be.

Whether some API calls are more energy intensive than others, and whether sequences of

API calls (patterns) are repeated frequently, causing anomalies in energy consumption. In this study,

we analyzed execution traces of 55 Android applications looking for the most performance-hungry

Android API calls. Here are the main results of this work.

1. GUI, image manipulation, and database related APIs consume the most power.

2. Using getters and setters when accessing inner class fields is energy intensive. This

result is consistent with previous work and constitutes a trade-off between information

hiding and power efficiency.

3. Updating application views and widgets consumes a lot of energy. [7]

In many software applications, the timeliness of monitoring information plays an important

role in system performance. The age of information is a performance metric describing the

freshness of updates and is of particular interest for remote sensing scenarios involving a high

number of nodes, as is expected to happen, e.g., in emergency scenarios or industrial applications

of the Internet of Things. [8] Age of Information (AoI) is a key performance indicator in mission-

critical and time-sensitive applications, including smart transportation, healthcare, remote surgery,

robotics cooperation, public safety, industrial process automation, to count a few. [9]

Efficiency Improvement in Test Automation for Electronic Invoicing 4

Throughout the software development lifecycle, measurement processes should be used

effectively to evaluate the quality, as well as the improvement and performance of the product.

Today, performance measurement has become a key feature in the development of successful

software engineering applications, and productivity. [10]

Organizations generally choose software-based development process tools in order to more

easily control comprehensive system developments. Agility is a need in a systematic service

engineering as well as a co-design of requirements and architectural artefacts. [11]

Agile software development methodologies gaining the attention in the field of software

engineering. Agile software development (ASD) has been in the software industry for years. Agile

methodologies are gaining traction in the field of software development. There, it is coordinated

to manage dynamic requirements, meet customer satisfaction, deliver products in a manner that

meets customer requirements, and achieve the required quality. [12]

Scrum is one such modern agile software development framework that is widely used and

known. Therefore, an important purpose of Scrum metrics is to help the software team and their

managers to monitor the business development process, as well as business quality, productivity,

predictability, the health of the product and the team. Scrum methodology consists of iterative and

incremental sprint structures, and software development roles with the target determined prior to

a sprint being started.

The Agile Methodologies and Scrum explained with more details on the section 3.2.

Theoretical Methodologies.

To have a better idea on the problem, firstly we need to know what an interface is and what

is a class so that we can compare WebDriver() Interface with RemoteWebDriver() class.

A class is a group of similar object types that share the same attributes and behavior. It also

defines the abstract properties of an object, including properties (its attributes, fields, or properties)

and behaviors (what the object can do, or methods, operations, or functions).

Like a class, an interface can have methods and variables, but the methods declared in

interface are by default abstract (only method signature, no body).

Efficiency Improvement in Test Automation for Electronic Invoicing 5

Class Interface

The ‘class’ keyword is used to create a class. The ‘interface’ keyword is used to create an

interface.

An object of a class can be created. An object of an interface cannot be created.

Class doesn’t support multiple inheritance. Interface supports multiple inheritance.

A class can inherit another class. An Interface cannot inherit a class.

A class can be inherited by another class using

the keyword ‘extends’.

An Interface can be inherited by a class using the

keyword ‘implements’ and it can be inherited by

another interface using the keyword ‘extends’.

A class can contain constructors. An Interface cannot contain constructors.

It cannot contain abstract methods. It consists of abstract methods only.

Table 1 Class vs Interface [13]

So, the class is used for object creation, encapsulation for fields, methods and interface is

used to create a structure for an entity. Depending on the application both classes and interfaces

has advantages and disadvantages. In our case the advantage of RemoteWebDriver() is running

the browser no matter where the tests are running gives us a big advantage. Because in this way

we can run our tests on local machines even though we do not have that browser.

WebDriver(): Selenium WebDriver() is a tool that allows you to automatically create and

operate some test steps of websites through your web browser. If you want to test the correct and

incorrect operation scenarios of the user registration page of your website, you can automate steps

such as opening the user registration page, filling the input fields on the page, and clicking the

button, with Selenium. In other words, it makes it easier for you to perform functional tests of your

application. In this way, by saving different scenarios, you can have Selenium do these scenarios

later instead of manually doing them yourself, and by examining the test results, you can say

"results are successful" or "some scenarios have problems". [14] The biggest purpose of the

development of WebDriver() is to help you maintain your test cases by seeing the changes made

during the change of a certain part of the content of dynamic websites without reloading the entire

page. The communication between clients and the server happens through a JSON wire protocol.

For instance: when a command is given to open a browser with a specific URL, all the necessary

information like the browser type, browser version, and the desired capabilities will be used to

Efficiency Improvement in Test Automation for Electronic Invoicing 6

create a JSON payload. The client will send this payload containing all the required information

through JSON wire protocol over the HTTP client. The server would then identify the type of

browser in which the command has to be executed and run the specified command on that browser.

Figure 1 Selenium WebDriver() Architecture

RemoteWebDriver(): Selenium RemoteWebDriver() is used to execute the browser

automation suite on a remote machine. In other words, RemoteWebDriver() is a class that

implements the WebDriver() interface on the remote server. The browser driver classes like

FirefoxDriver, ChromeDriver, InternetExplorerDriver, etc. extend the RemoteWebDriver() class.

RemoteWebDriver() is the class that makes our tests run on remote machines. This means, you

can run the test code on your machine, but the code execution will happen on another machine.

[15]

Figure 2 Selenium RemoteWebDriver() Architecture

The Difference Between Selenium Webdriver() and Selenium RemoteWebdriver():

Efficiency Improvement in Test Automation for Electronic Invoicing 7

Selenium RemoteWebdriver() Selenium WebDriver()

A class that implements a Webdriver()

interface.

An interface and to use this,

org.openqa.selenium.* package is required.

It has some extra methods which are

used for the implementation of the class.

It has a lesser number of methods as

compared to Remote WebDriver(), used for the

interface implementation.

It implements a WebDriver() interface WebDriver()object is a browser

In this, the object is used to manage the

browser which is present in the grid.

In this, many browsers are managed by

the WebDriver()object.

Controls the desired browser in the

node PC over Grid

WebDriver()object controls the web

browser

RemoteWebDriver() object

instantiation controls any browser in the node

PC, which is on Windows, Mac, Linux, etc.

platforms.

On instantiating the driver object, class

implementations will be launched

Contains additional methods for class

implementation

Comprises fewer methods for

implementing interfaces

To test this, the remote machine is

required.

It can be tested on the local machine.

Table 2 WebDriver() vs RemoteWebDriver()

When test cases are executed, the WebDriver() client libraries link with the browser drivers

directly. On the other hand, if one tries to execute tests remotely, the WebDriver() client libraries

communicate with the RemoteWebDriver() server. Then, the server links to either of the browser

drivers the WebDriver() client requests. As in our test cases, the WebDriver() is created based on

RemoteWebDriver() to use the RemoteWebDriver() when it is necessary but on the test classes

almost never it is used.

Efficiency Improvement in Test Automation for Electronic Invoicing 8

The differences of RemoteWebDriver() from WebDriver(), RemoteWebDriver() has

additional methods, and it can control the desired browser. My hypothesis is that since

RemoteWebDriver() separates where the tests are running from where the browser is and allows

tests to be run with browsers that are not available on the current OS, it could be much more

efficient and faster to run the tests.

I tested this hypothesis during this thesis and explained the results on Results section but

before explaining that I would like to explain core Methodologies of Software Development and

Testing to make it easier to understand.

2.1. CPU Usage

To better understand what differences made by switching from WebDriver() to

RemoteWebDriver() I also compared the CPU usage of each (see section Results).

The processor, also known as the central processing unit (CPU) is one of the most important

components inside any computer. The processor serves as the brain of the operation. It sends

instructions to all the other pieces of hardware in your device and is responsible for executing each

task.

Efficiency Improvement in Test Automation for Electronic Invoicing 9

3. Methodologies

In this section I will define the technical and theoretical methodologies which I used and

learned during the internship and writing of thesis.

Java EE: Java is an analytically typed object-oriented programming language, intended to

be independent as much as from the underlying platform thanks to a virtual machine system. Java

Enterprise Edition, or shorter JavaEE, is a wider version of the platform that involves many

beneficial properties for web programming.

Also, Java EE is a structure to build enterprise software and it encases not only web content

but also database, web services, queues, and so on. In Invoice Channel® it is used for both the

frontend and the backend part. [16]

SQL: Acronym for Structured Query Language, it is a language that standard to be used to

define and manage the data kept in a relational database. [17]

Spring: Spring is an open-source framework for applications to be developed on a Java

platform that deals with reverse of control and dependency injection. [18]

Selenium: Selenium is an open-source and free testing tool used to test web applications

on different platforms and browsers. Since it takes a lot of time to run the tests manually,

automating it will save us time. Selenium can be used to run tests automatically in line with the

given commands. [19]

Vaadin: Vaadin is a web framework for Rich Internet Applications (RIA) with a complex

widget accessibility from the web browser. It also "hides" from the developer the need to be

concerned about different browser behavior, mobile, tablet, and so on. It has server-side

architecture, which means most of the work on servers. AJAX technology works on the browser

side to ensure that user have a rich and interactive experience. On the client-side, Vaadin is built

on top and can be extended with Google Web Toolkit. Thanks to the infrastructure it offers, it

enables the creation of powerful, performance, and fast web software as if developing desktop

applications. With Vaadin it allows getting rid of many details about JavaScript and HTML. But

also, you can integrate many JavaScript libraries with Vaadin. [20]

Efficiency Improvement in Test Automation for Electronic Invoicing 10

Figure 3 Vaadin Application Architecture

3.1.Development Tools

Eclipse: Eclipse is a multi-platform, multi-language integrated development environment.

During the internship it was used for both unit testing and development. [21]

Tomcat: Apache Tomcat is an open-source implementation of the Java servlet, which

provides a software platform for running web applications developed in that language. [22]

Docker: Docker is a technology that provides virtualization and, is a software platform that

lets you quickly build, test, and deploy your applications. Docker takes the image of the last

installed versions of the software and makes them usable again as containers. [23]

Maven: Maven is a dependency management tool for Java-based projects. It uses a

construct called POM to describe the dependencies between the project and the various versions

of the required libraries and automatically downloads libraries and plugins from a shared repository.

It also manages the building of the project (compiling), the packaging (i.e.: WAR, EAR, JAR, and

so on), can automatically run unit tests, and the deployment phase on an application server. [24]

Bitbucket: Bitbucket is a tool developed by Atlassian which includes: a hosting service for

projects that use GIT for version control and a continuous delivery system. [25]

Jira: Jira is a tool developed by Atlassian for managing projects developed with agile

methodologies. In carrying out the internship it was used to manage the tickets in charge. [26]

Bamboo: Bamboo is a Continuous Integration tool. It allows us to create automatic version

management and continuous distribution models for software applications. It is written in Java

language and the Server version runs on Tomcat. [27]

Efficiency Improvement in Test Automation for Electronic Invoicing 11

Figure 4 Leverage Continuous Integration

3.2.Theoretical Methodologies

Software Development Life Cycle: Software Development Life Cycle is a path that covers

software from planning to development, testing, and end-of-life. [28] In this lifecycle model, at

the very beginning of the software development process, starting from the installation of a source

control repository where the team members will develop together, automatically sending the

developed application to dev/test/pilot environments, version management, preparation of test

reports, measuring code quality, performing code review operations, versioning of the data layer

and running tests, environment-based configuration management, preparation of process

management for production deployment and hotfix operations.

SDLC – Stages: We can generally classify the basic steps of the software life cycle as

"Planning, Analysis, Design, Implementation, Maintenance".

Figure 5 Software Development Life Cycle Stages

Efficiency Improvement in Test Automation for Electronic Invoicing 12

Benefits of SDLC: Properly done SDLC can allow for the highest level of management

control and documentation. Developers understand what they need to build and why. All parties

agree on the goal in advance and see a clear plan to achieve it. Everyone understands the costs and

resources required. [29]

 Continuous Integration / Continuous Development: Continuous Integration is the method

used to control the system is in working condition after some changes made on the code and that

changes causes no problem. Unit tests are used to uncover problems and breaks. With continuous

integration, it is ensured that a working version is always created because of the work done on the

code by the programmers. The changes made are part of a new structure so, errors in the tests mean

that the change made breaks the system. In this case, all programmers are informed, and the error

is eliminated as soon as possible.

Figure 6 CI/CD Pipeline

Continuous delivery is a natural extension of continuous integration. Continuous delivery

is the automatic way to throw a successful build into an environment. There is a slight difference

between delivery and distribution. Delivery is done manually, while distribution is automatic. If

continuous delivery is properly implemented, customers will have a standardized testing structure.

CI/CD Principles:

• Designing the system to support periodic releases

• Apply test-driven while developing code.

• Test your system often.

• Always have a separated team for the quality and steady progress of the software.

Efficiency Improvement in Test Automation for Electronic Invoicing 13

Test-Driven Development: Test-Driven Development (TDD) is a technique that argues that

after determining which codes will be written for what purpose within the project, first the tests

and then the code should be written accordingly. The advantages of the TDD approach are faster

feedback, higher acceptance rate, lower project scope and over-engineering, customer-centric and

iterative processes, and modular, flexible, and maintainable code. [30]

TDD approach consists of 5 stages:

• Think and create a test case.

• Make sure the programmer test fails before developing the unit.

• Build the unit and pass the programmer test.

• Ensure all programmer tests pass, along with prebuilt ones.

• Scan all units with your latest development and refactor them at necessary points.

[30]

Figure 7 Test-Driven Development Life Cycle

Agile: The first foundations of this method are based on the software development

processes at IBM in 1957 by William Royce. The Agile Method was introduced by E.A. Edmonds

in an article titled "Software Development for Compatible Systems" in 1974. In 2001, 17 people

known in the software world came together and after 2 days of work, they published the "Agile

Software Principles" together with the "Agile Software Development Manifesto". [31]

 The Agile method is a method that divides the main project into subprojects, which ensures

that we always have minimum-featured software running and is a special approach to project

management used in software development. This method helps teams respond to the

Efficiency Improvement in Test Automation for Electronic Invoicing 14

unpredictability of software development processes. It uses incremental, iterative work sequences,

commonly known as sprints.

Figure 8 Agile Methodology

The founding principles of this methodology are described in the Agile Manifesto and can

be summarized in four key points:

• individuals and interactions: organization and autonomous motivation are

important, as are personal interactions, for example, sharing the same place of

development.

• working software: a product that works is more useful and better accepted than

paper documents presented to buyers during meetings.

• collaboration with buyers: interaction with customers is extremely important as the

requirements cannot be fully identified at the beginning of the software

development cycle.

• responsiveness to change requirements may vary during construction so it is

essential to provide quick responses to change and continuous development.

The Agile Project Management manifesto and principles are based on quick and easy

responses to changing conditions. In this context, each of the Agile Project Management

methodologies has a cycle that repeats at regular intervals (minimum once every two weeks). This

model does not allow changes during the project. Scope, time, and resources are determined from

the very beginning of the project; While the project is in progress, it is not left out of the

determination. Since the project boundaries are determined strictly, it ensures that the project is

completed quickly without any distraction. The tasks of the team involved in the project are

specific and everyone concentrates only on their own task. Thus, it ensures the stable progress of

Efficiency Improvement in Test Automation for Electronic Invoicing 15

the project. The project is delivered to the customer on the specified date. Agile is used to manage

complex software processes and it breaks the whole; follows an iterative method. It enables you

to reach the target with regular feedback and planning. Communication and teamwork are very

important.

Scrum is a progressive framework to predictability and controlling risk. It is founded on 3

basic principles below:

• Transparency: The progress of the project, problems, and developments should be

visible to everyone.

• Check: The progress of the project is checked regularly.

• Adaptation: The project should be able to adapt to the changes that can be made.

[32]

Figure 9 Scrum Life Cycle

Scrum Team: It consists of the Product Owner, Development Team, and Scrum Master. The

team organizes itself. Thus, teams that are in harmony within themselves get more successful

results. Scrum's team model is designed to optimize flexibility, creativity, and efficiency. Monthly

meetings are required for work in the sprint backlog. These jobs are expected to be done in one

sprint. So even though we call it monthly meetings, Sprints can be 1-2 weeks and at the end of

each one there’s a retrospective review. Daily standing Scrum meetings are held in which each one

Efficiency Improvement in Test Automation for Electronic Invoicing 16

explains the work done the previous day, the work they intend to do during the day and any

obstacles and difficulties encountered. The latter, if necessary, will be studied separately to make

sure it goes on schedule. These meetings usually last 15 minutes.

Efficiency Improvement in Test Automation for Electronic Invoicing 17

4. Test

Testing is the process of experimenting or evaluating a system, either manually or

automatically, to verify that it meets specified requirements or to identify differences between

expected and observed results. Software testing, on the other hand, covers the dynamically

performed verification activities to meet the expected behavior of software from an infinite number

of work areas, with a limited number of appropriately selected tests. [33]

Figure 10 Types of Tests and Hierarchy of Tests

4.1. Software Testing Process

In general, software projects are developed by the following: analysis => design => coding

=> testing => product processes. Although all processes follow each other in this way, the testing

process never waits for the coding process to end. An ideal software testing process should be

analysis => design => test preparation process => coding => dynamic testing process => test

termination => product.

There are two main classifications of software testing: functional and non-functional.

Functional testing is about testing how a product works. Performing a functional test entail

checking and testing every single function of the software to ensure you get the expected results.

Non-functional testing is about testing non-functional aspects of software for usability,

performance, security, reliability, and more. This test is performed after functional testing. Non-

Efficiency Improvement in Test Automation for Electronic Invoicing 18

functional testing does not focus on whether the software works, it focuses on how well it works.

[34]

Figure 11 Types of Software Testing

Functional Testing is a type of test that verifies whether each function of the application

we are testing is working in accordance with the given requirements. It checks the results of a

given set of data by comparing them to a set of results. Functional tests are not concerned with

intermediate results or side effects. They are only result oriented.

Unit Testing is the first stage of the dynamic testing process; it also constitutes the most

important stage of this process in terms of early detection and correction of errors. In this micro-

scale test, special functions, or code modules (functions, data structures, objects, etc.) are tested.

This testing is done by programmers, not testers, and it is necessary to know the details of the

program code and its internal design. It is quite a difficult test if the application code is not in a

very well-designed architecture.

Integration Testing is to test whether different components of an application work

together in harmony. They can be in the form of components, modules, standalone applications,

and client/server applications. This type of testing is especially applied in testing client/server

applications and distributed systems.

In addition, the process of constantly testing the application as new functional elements or

program modules is called "Incremental Complementary Testing". Tests performed by testers

and/or programmers.

Regression Testing is used to control the changes made to the code running live. These

changes may be a new function, bug fix, or performance improvement. Regression tests are usually

Efficiency Improvement in Test Automation for Electronic Invoicing 19

performed when changes are in their final stages and before the new version of the software is

released. The primary purpose of regression tests is to check those critical areas of the application

still work as expected. [35]

Non-Functional Tests are a type of test in which non-functional features of the application

are tested. The aim is to determine whether the system is ready or not. The quality characteristics

of the components or the system are tested. It is as important as functional testing in the quality

and correct operation of the software. For example, how many users can use the system at the same

time, is the system secure enough, and whether the system is tested to answer such questions. [36]

Performance Testing determines the system's expectation of the best possible (optimal)

performance under a given infrastructure configuration. The purpose of performance testing is not

to find faults, but to eliminate performance bottlenecks and measure the quality characteristics of

the system. Performance testing mainly focuses on the following specific features of a software.

These; speed, stability, and scalability. [37]

Figure 12 Types of Performance Testing

Test Pyramid is the road to a successful software project is through a successful testing

process. One of the best ways to do this is the Test Pyramid. The Test Pyramid refers to the different

test tiers related to the classification of tests in terms of scope and size.

Efficiency Improvement in Test Automation for Electronic Invoicing 20

Figure 13 Test Pyramid

The lower portion of the pyramid is more automated, making those tests faster. The top of

the pyramid is for slower and more manual test scenarios. The higher you go on the pyramid, the

fewer the tests.

Mike Cohn, who came up with the concept, made the classification as unit, service, and

interface. Unit tests are the units of code that make up the service, tests written for its parts. Service

tests are API-level tests. Interface tests are tests written on the user interface. [38]

The key to the test pyramid is to write lots of small and fast unit tests and write some more

coarse-grained tests and very few high-level tests that test your application from end to end.

4.2. Test Performance

When we say performance, we mean more than one thing, so the word performance is an

umbrella name for many different quality criteria clustered around “speed”. Test Automation is an

important step of Continuous Deployment. Automation reduces bug fix costs by testing early and

often testing principles. Automation projects also increase quality and reliability. But test execution

duration problem comes up with the benefits of the automated test. So, for performance

improvement we should look at the below criteria:

● End-user response time: It is the system's response time for the actions of the end-user

while using the system. It is the factor that interests the end-user the most and bothers him

when it is long and disrupts the rhythm of work. This is what is meant most of the time

when "the system is slow", but it can have very different reasons. The primary objective of

performance improvement studies is to reduce the end-user response time to reasonable

levels and to provide acceptable end-user performance on average. [39]

Efficiency Improvement in Test Automation for Electronic Invoicing 21

● Scalability: It refers to how the behavior of the application changes under increasing load.

The two main factors affecting scalability are the growing number of live users and the

growing amount of data. Systems with poor scalability also have a poor end-user response

time. But this situation does not always occur, sometimes it becomes more visible at certain

times. This is entirely since the system load is constantly changing. In performance

improvement efforts, scalability is considered a second priority, keeping end-user response

time within reasonable limits. [40]

● Memory footprint: It is the memory usage of the application. It usually occurs as a memory

leak and is the factor that most affects the scalability of enterprise applications. As memory

leaks cause the garbage collection mechanism to be activated frequently and for long

periods of time in Java-developed applications, and this activity consumes serious

resources, it ultimately affects the end-user response time negatively. If memory usage is

not improved, it will eventually eliminate scalability altogether and make systems need to

be rebooted frequently. It is difficult to achieve healthy scalability in performance

improvement studies without addressing memory usage or optimizing garbage collection

activity. [41]

● Throughput: The amount of work produced by the application in each time. Especially for

mass printing, invoicing, image processing, data transfer, etc. It becomes much more

important with jobs because it's how many of those jobs are done in each time, rather than

printing a report or generating a subscriber's invoice. Therefore, often this criterion is of a

conflicting nature with the end-user response time. For example, a system that generates a

subscriber's invoice in 10 seconds may not satisfy the end-user with this performance. But

the same system produces 1,000,000 invoices per hour in batches, performing parallel

processing in the back, and this can be a perfectly acceptable throughput. Studies to

increase the work produced in performance improvement studies may be required

depending on the nature of the application. [42]

● Startup time: This is the time from when the application is first started until it is ready to

respond to user requests. This criterion is most important for client-side applications. For

example, as end-users, we are increasingly paying attention to how long it takes for a word

processor on your personal machine to be ready for use after clicking its icon. Therefore,

for example, we replace the mechanical hard disks that we have been using for years, with

Efficiency Improvement in Test Automation for Electronic Invoicing 22

SSDs that are much faster. However, the fact that the applications on the server (server)

side stand up in 15-20 minutes, for example, may not always be seen as a problem. For this

reason, this criterion is generally not considered a priority in performance improvement

studies. [43]

We can follow the steps below to make improvements in a software system with poor

performance:

1. Identifying and listing performance problems

2. Measuring the performance of each problem and determining the improvement target,

3. prioritizing problems,

4. Addressing the highest priority problem

5. Identifying and working on the points of the problem that require improvement,

6. Measuring improved performance

7. Repeating the 5th and 6th items until the performance target is met,

8. Continuing from point 4.

9. With such a process, we can determine where we have come from, as well as increase the

possibility of making value-added improvements.

To achieve target performance criteria using the process described above, three different

solutions are used:

● Code change: It is to replace the code snippets that are problematic in terms of performance

with more efficient ones. Finding a solution with changes to the code is often the fastest

found and the fastest improvement. Such code changes can be both algorithmic and

language based. But the impact of such changes is often minor.

● Architectural change: It is the organizational changes to be made in the sub-parts of the

software system. Common code changes often translate into architectural change.

Architectural changes are both costly and provide a much better improvement rate. If a

system that does not use cache starts to use the cache, or for example, setting up partitions

in the database, etc. software architecture changes are among the most frequent

improvement studies. Architectural changes do not always occur as code changes, such as

improving hardware infrastructure to have faster CPUs or high RAM, arranging network

infrastructure, or strengthening clients are such architectural improvements.

Efficiency Improvement in Test Automation for Electronic Invoicing 23

● JVM tuning: Observing the behavior of the JVM, which is the runtime mechanism of Java,

and arranging it to meet the needs of the system. JVM tuning work, in general, is the

regulation of the parameters that the JVM receives while standing up. These parameters

are memory, garbage collector, JIT, etc. It is about topics and usually comes with serious

innovations with each new Java SE release. For this purpose, the JVM(s) are observed at

runtime, most of the time the parameters are brought to the optimum point with a set-

observe-change cycle. JVM tuning should be done especially in the real environment,

before going live, and it should be repeated at certain intervals. [44]

Efficiency Improvement in Test Automation for Electronic Invoicing 24

5. Project

5.1. Description of Project

During my internship my supervisor, and my team leader expected me to make some

improvements on tests, try to find some ways to make the tests faster, or find what might be making

the test slower and how to discard these parts.

To do that firstly I examine the test runs to see which tests are slow. And I made a list which

you can see below:

Test Case Name Test Name Average Duration

006 – GO LIVE ProfiloOperazione 8 minutes

008–CP – CONFIGURAZIONE SPCicloPassivo 56 minutes

008–CP – CONFIGURAZIONE CapAdminCP 8 minutes

010 – CP – RICEZIONE FTP AccettaFattura 10 minutes

011 – CP – RICEZIONE WS AccettaFatturaWS 8 minutes

012 – WEB SERVICE TestWebService 11 minutes

013 - WEB SERVICE 2 TestPushSynchronousRem

oteItem

8 minutes

013 - WEB SERVICE 2 TestSetSoggettoProduttore 4 minutes

014 – 2000 ORGANIZATION InserisciSP 74 minutes

018 – INTEGRAZIONE CON WS LA CronConservazioneWS 17 minutes

019–WIZARD ANAGRAFICHE WizardAnagrafiche 16 minutes

021–CP–TEST CONSERVAZİONE ConfConservazioneCP 8 minutes

Table 3 Slowest Test on Invoice Channel Tests

 Accordingly, to the Table 3, some tests are taking enormous amount of time and as the test

team leader informed me some of those tests are not finished and for now normal that they are

taking this much of time.

5.2. Task

My task for this project was to improve the test performance, because Invoice Channel®

is a big project and involves too many test cases and it is very important to run this test as fast and

as affective we can. So firstly, I made a list of the tests running for more than 2 minutes in the

Efficiency Improvement in Test Automation for Electronic Invoicing 25

specific part of the project Invoice Channel® which you can see the list on Table 1. To see the

execution times of the test I used Bamboo results. Every night the whole Invoice Channel® tests

are ran by automatically on Bamboo, so I checked last 10-night runs and listed all the testes that

are taking more than 2 minutes. Out of 121 test cases, 12 tests were almost taking 10 minutes to

run. After that, I analyzed why might these tests take so long to run and what’s the common thing

for them. I made a document which the document was containing lists for every class that might

be causing the slowness.

With all the analyzes I made I have shared the document with my team leader. And after

discussing with him, we have decided to work on a specific test class because that test class was

involving both WebDriver() and Thread.Sleep() which are the most common things on the test that

might be making the tests slower.

The test case that we decided to work on is called “AccettaFattura” which essentially it

enters as admin. It enters the details of the passive invoice and reads the producer. It logs out and

logs in with the User_ALIASsp user as the admin user which is have the possibility to approve the

invoice received. I approve the invoice and shows a text that it can't be done again. The support

files are copied from a bamboo folder to the \tifnvl6ic1\ic\ic\ftp\DatiDaSdITest folder. The .enc

extension is also added to the copied file so that the crontab can act on the file. A media can contain

multiple invoices. Invoices are identified by the invoice number. These are taken from the CSV

file mediaNfatt.csv which contains the relationship between the media file name and its invoice

numbers. The AccettaFattura class contains two methods:

One is called “a00VerificaPresenzaSchedulazione()” which verifies if the crontab

(scheduling of processes) is present; without this crontab, the invoice will never be loaded.

Specifically:

 - Opens a Chrome browser and logs in as administrator

 - Navigates to the process menu & opens the form

 - Searches for a scheduled process with the command SDI_FOLDER_SCAN (scan a

folder on the FS and fetch invoices from there).

 - If no such process exits with failure

 - Search if this process is marked as active, if not mark it as active

 - If there is no crash so far, the test is considered a success.

Efficiency Improvement in Test Automation for Electronic Invoicing 26

The other is called “a01CicloPassivo()” which in essence waits for some invoice to be

received which received means importing the invoice from the file to invoicechannel, put in the

database, and associated to an SP.

 - Initially simulated what a user will do outside Invoice Channel®: move some "invoice

files" into the folder "scanned" by the process described in the previous method

 - Subsequently waits for the process to "pass by grab the invoice from the folder and import

it into IC” For the system to scan the file the tests wait 1,5 minutes with Thread.Sleep(90000).

 - After that, it opens IC in the browser

 - Goes to “ciclo passivo invoice form” because the test is for the passive invoices.

 - Searches the invoice-by-invoice number “Fattura Numero”

 - If there is not an invoice with that number then the test fails, if there are goes on to the

next step

 - if I got here, it means the invoice is imported so as the next step it needs an operation to

finalize the import (protocollazione)

 - Presses to the "protocolla button"

 - It logs out and logs in back with the user associated with that invoice (this is a user that

can "approve" the invoice)

 - Process to the to approve the invoice (menu ricerche)

 - If the user sees the newly accepted invoice, then it is a success, if not then the test has

failed.

To improve the performance of the test I decided to chance WebDriver() with

RemoteWebDriver() as the reasons explained on the section 4.2.1.

After seeing the results of the AccettaFattura, we have decided to apply

RemoteWebDriver() to another class which is not slow but also can be faster. The class is called

“CreaSoggettiProduttori” which with root user it reads the csv soggettoProduttore and creates all

the subject producers present in the file. In this class we have only one method called

a00TestCreaSoggettiProduttori().

Primarily, the a00TestCreaSoggettiProduttori() method first opens the login page and logs

in as root user. Then in order, from the menu it clicks to ‘Amministrazione’, opens the ‘Soggetto

Produttore’ and starts creating new subject producers with the information taken from csv file.

Efficiency Improvement in Test Automation for Electronic Invoicing 27

5.3. WebDriver() vs RemoteWebDriver()

As can be seen in Figure 14, WebDriver() is an interface and RemoteWebDriver() is a class

that implements WebDriver() interface.

Figure 14 WebDriver() Hierarchy Diagram

Selenium WebDriver() allows controlling web browsers using different language bindings

such as Java, JavaScript, Python, C#, or Ruby. In end-to-end tests, the Selenium WebDriver()

Application Programming Interface (API) calls are typically embedded in test cases using a unit

testing framework. [45]

Selenium WebDriver() supports multiple web browsers and support for Ajax applications.

The main goal of the selenium WebDriver() is to improve support for modern web application

testing problems. [46]

The RemoteWebDriver() class implements the WebDriver interface to execute test scripts

through the RemoteWebDriver() server on a remote machine.

When test cases are executed, the WebDriver() client libraries link with the browser drivers

directly. On the other hand, if one tries to execute tests remotely, the WebDriver()client libraries

communicate with the RemoteWebDriver() server. Then, the server links to either of the browser

drivers the WebDriver() client requests. As in our test cases, the WebDriver() is created based on

RemoteWebDriver() to use the RemoteWebDriver() when it is necessary but on the test classes

almost never it is used.

https://www.selenium.dev/documentation/webdriver/remote_webdriver/

Efficiency Improvement in Test Automation for Electronic Invoicing 28

RemoteWebDriver() class contains additional methods that are not declared by the

interface WebDriver(). Such as “getSessionId()”, executeAsyncScript(java.lang.String script,

java.lang.Object... args) which executes an asynchronous piece of JavaScript in the context of the

currently selected frame or window; removeVirtualAuthenticator(VirtualAuthenticator

authenticator) which Removes a previously added virtual authenticator.

RemoteWebDriver() Code and Explanation:

To create the RemoteWebDriver() we need to set some capabilities and to do that I used

the similar capabilities that when the first time how the project build WebDriver() is using but this

time I created a RemoteWebDriver(). I created a new method called “RemoteWebDriver()

createDriver()” on BaseChrome() class which returns a RemoteWebDriver() when it is called.

BaseChrome() class is to control the Chrome operations like setUp() to set the capabilities

and details about driver, openIC() to open the login page of Invoice Channel, and

verificaPopupErrore(..) to verify the popup errors. To the BaseChrome() class I added two methods

to reach the RemoteWebDriver() from every class that extends the BaseChrome() class. These two

methods are “openICRWD(RemoteWebDriver() driver)” which calls the RemoteWebDriver()

driver that we should create at the other method as I created “createDriver()”.

In createDriver() I set all the elements that are needed to create the RemoteWebDriver().

To do so I first put all the requirements into a ‘HashMap<String, Object>’ and then I created an

instance of ChromeOptions, then I can use the 'setCapability()' method for setting ChromeDriver-

specific capabilities and pass the ChromeOptions object into the RemoteWebDriver() constructor.

Lastly, I used DesiredCapabilities Class to set the capabilities for RemoteWebDriver(); which

DesiredCapabilities Class is used to define basic test requirements such as operating systems,

browser combinations, browser versions, etc. within Selenium test scripts.

Efficiency Improvement in Test Automation for Electronic Invoicing 29

Figure 15 Code of WebDriver() Capabilities

To call the RemoteWebDriver() to open a Chrome from every class that we wanted to use,

I also added a method called “openICRWD(RemoteWebDriver driver)” which calls the driver from

“RemoteWebDriver createDriver()”.

Efficiency Improvement in Test Automation for Electronic Invoicing 30

Figure 16 Code of createDriver(), openIC() and openICRWD()

Accordingly, to the code on Figure 16 above, I can call RemoteWebDriver() from any other

class that extends BaseChrome() and apply the methods.

Efficiency Improvement in Test Automation for Electronic Invoicing 31

6. Results

To show the results of this task I used the open-source JDK Mission Control (JMC) tool

which is a production-time profiling and diagnostics tool. [47] It includes tools to monitor and

manage your Java application with a very small performance overhead. JMC consists of the

following client applications and plug-ins:

- JVM Browser shows running Java applications and their JVMs.

- JMX Console is a mechanism for monitoring and managing JVMs. It connects to a running

JVM, collects, displays its characteristics in real-time, and enables you to change some of

its runtime properties through Managed Beans (MBeans). You can also create rules that

trigger certain events (for example, send an e-mail if the CPU usage by the application

reaches 90 percent).

- Flight Recorder (JFR) is a tool for collecting diagnostic and profiling data about a running

Java application. It is integrated into the JVM and causes a very small performance

overhead, so it can be used in production environments. JFR continuously saves large

amounts of data about the running applications. This profiling information includes thread

samples, lock profiles, and garbage collection details. JFR presents diagnostic information

in logically grouped tables and charts. It enables you to select the range of time and level

of detail necessary to focus on the problem. Data collected by JFR can be essential when

contacting Oracle support to help diagnose issues with your Java application. [47]

6.1. Performance Test and CPU Usage

The better the CPU, the more tasks you can simultaneously perform without a hitch so, I

measure the performance of my test using Flight Recorder. With Flight Recorder I recorded CPU

Usage while running the same test class with WebDriver() and then with RemoteWebDriver(). You

can see the result of the performance test as a graphic:

Efficiency Improvement in Test Automation for Electronic Invoicing 32

Performance Test of WebDriver() CPU Usage

15,3%

16,4%

24,3%

8,18% GC Phase

Pause

6,6%

Table 4 Performance Test and CPU Usage of WebDriver() for AccettaFattura

Efficiency Improvement in Test Automation for Electronic Invoicing 33

Thence the Table 4 at run number 4 there is GC Phase Pause which means there is a

Garbage Collection at that run. Garbage Collection is the process of looking at heap memory,

identifying which objects are in use and which are not, and deleting the unused objects. ava

application issues with garbage collections can be diagnosed using JFR and it is automatic. With

the Garbage Collection the CPU Usage will be at the minimum. That is why we are seeing a

decrease in CPU Usage at run number 4 and 5.

And then, I have run the same test case called AccettaFattura for RemoteWebDriver().

Performance Test of RemoteWebDriver() CPU Usage

6,25%

9,76%

5,31%

Efficiency Improvement in Test Automation for Electronic Invoicing 34

4,79%

9,89%

Table 5 Performance Test and CPU Usage of RemoteWebDriver() for AccettaFattura

By comparing Tables 4 and 5, CPU Usage is higher for WebDriver() than

RemoteWebDriver(). This shows us that the WebDriver makes the computer busier than

RemoteWebDriver() does. This means we can do several things together while running the

RemoteWebDriver() but if we try it with WebDriver(), we might cause trouble to the computer.

High CPU usage is often the cause of bad performance. Your computer may be affected by this

problem if you’re experiencing long loading times, crashes, or freezes.

CPU Usage is an important point for a developer who writes tests and runs them. The

developer must be fast to test the code she/he wrote and imply changes faster and easier way so if

every time when she/he runs the test if the computer crashes or freezes she/he cannot do the job

efficiently. So, CPU Usage is a very important aspect to analyze and consider.

To have a clear idea how the RemoteWebDriver() and WebDriver() is affecting CPU Usage,

I run the ‘CreaSoggettiProduttori’ test as I did for ‘AccettaFattura’, separately five times each.

Efficiency Improvement in Test Automation for Electronic Invoicing 35

Performance Test of WebDriver() CPU Usage

22,9%

18,4%

17,2%

15,7%

Efficiency Improvement in Test Automation for Electronic Invoicing 36

17,4%

Table 6 Performance Test and CPU Usage of WebDriver() for CreaSoggettiProduttori

And, for RemoteWebDriver() I have run CreaSoggettiProduttori for 5 times in a row.

Performance Test of RemoteWebDriver() CPU Usage

11,5%

9,31%

Efficiency Improvement in Test Automation for Electronic Invoicing 37

10,6%

8,8%

15,2%

Table 7 Performance Test and CPU Usage of RemoteWebDriver() for CreaSoggettiProduttori

Inevitably, from the comparation of Table 6 and Table 7 also for CreaSoggettiProduttori

class the CPU Usage is higher for WebDriver. This is a strong support for my hypothesis but also

since I want to make the tests faster, I also wanted to examine the execution time. To show what

is the difference between WebDriver and RemoteWebDriver() for execution time, I have run the

test separately with WebDriver and RemoteWebDriver() on Eclipse and insert it into the Table 8

below.

Efficiency Improvement in Test Automation for Electronic Invoicing 38

WebDriver() RemoteWebDriver()

13.605 9.994

13.351 10.476

13.109 10.209

13.373 10.06

13.324 10.638

Table 8 Execution Time of AccettaFattura for WebDriver() and RemoteWebDriver() in seconds

In consequence of the Table 8, RemoteWebDriver()’s execution time is lower than

WebDriver(). This result shows us that we can earn much more time every time when we run the

tests. Because if we think that one test gains 3 seconds, we have 110 tests and overall, this means

we can gain 330 seconds which makes the test process almost 5 minutes faster.

This amount of time makes test developer test their tests faster. To prove that again we

apply the RemoteWebDriver() to another class which does not need to be improved as

implementation time, due to the Table 9 below still effective. As I did with ‘AccettaFattura’ I did

the same Eclipse execution time experiment with ‘CreaSoggettiProduttori’.

WebDriver() RemoteWebDriver()

11.826 8.171

11.730 8.772

11.437 7.959

11.623 8.002

11.319 8.095

Table 9 Execution Time of CreaSoggettiProduttori for WebDriver() and RemoteWebDriver() in seconds

Efficiency Improvement in Test Automation for Electronic Invoicing 39

On account of the Table 9 again ‘CreaSoggettiProduttori’ has very accurate results when we run

with RemoteWebDriver() and WebDriver(). And, as with ‘AccettaFattura’ RemoteWebDriver()

saves around 3 seconds, and this is again a very good result which even for a class that does not

need to be improved for execution time.

Even though the original ‘CreaSoggettiProduttori’ is not taking too much time since it is

working with the browser and windows in the browser for the future it’s very useful to make any

test faster as we can.

Efficiency Improvement in Test Automation for Electronic Invoicing 40

Conclusions

 Especially for big projects, performance and implementation time are important,

which these applications can be used by any user at the same time. The Invoice Channel project is

that kind of project and the company should guarantee to its clients that the system will not break.

To do that, as a test team, we need to test faster and more cleverly and that’s where I step in; during

my internship, I had the task which is finding the most time-consuming and performance-lowering

parts of the test cases and find a way to improve those points.

CPU Usage is an important point for a developer who writes tests and runs them. The

developer must be fast to test the code she/he wrote and imply changes faster and easier way so if

every time when she/he runs the test if the computer crashes or freezes she/he cannot do the job

efficiently. So, CPU Usage is a very important aspect to analyze and consider.

Other than the CPU Usage, the execution time of the tests is very important for this project.

One of the easiest ways to measure performance is to check the time taken by each method.

After examining the current test cases that are constantly running on Bamboo, I prepared a

document to show which tests are slow and then I examine why those tests are slow, and what the

common parts are of those tests.

Henceforward of the Table 8 and Table 9 on results, with changing WebDriver() to

RemoteWebDriver() we can gain approximately 5 minutes in the testing process which means

when some tests failed, we can re-run them faster. And that was our motive in the first place; to be

able to run the test much faster so if we face a mistake, we can try to fix it and re-run it to see if it

is fixed.

With this thesis I manage to improve the test execution time making a test case faster than

before with changing the WebDriver() to RemoteWebDriver() which is easy to apply to current

test cases. Also, minimizing the CPU Usage is very important for developers. As conclusion, this

thesis approved its hypothesis with real life experiments.

Efficiency Improvement in Test Automation for Electronic Invoicing 41

References

[1] E. Vila, G. Novakova, and D. Todorova. 2017. "Automation Testing Framework for Web

Applications with Selenium WebDriver: Opportunities and Threats". In Proceedings of the

International Conference on Advances in Image Processing (ICAIP 2017). Association for

Computing Machinery, New York, NY, USA, 144–150.

https://doi.org/10.1145/3133264.3133300

[2] Carl Cocchiaro, Unmesh Gundecha, "Learn Selenium", Bringham, UK: Packt Publishing

Ltd., 2019.

[3] P. Tripathy, K. Naik, "Software Testing and Quality Assurance: Theory and Practice", New

Jersey: John Wiley & Sons, p. 634, 2011.

[4] Ifin Sistemi, "Invoice Channel® per le Fatture Elettroniche", "Invoice Channel for Electronic

Invoices", 2011. [Online]. Available: https://ifin.it/.

[5] M. Sharma, & R. Angmo, "Web based automation testing and tools". International Journal

of Computer Science and Information Technologies, 5(1), 908-912, 2014.

[6] K. Wiklund, S. Eldh, D. Sundmark, K. Lundqvist, "Impediments for software test

automation: A systematic literature review. Software Testing", Verification and Reliability,

27(8), e1639, 2017.

[7] M. Linares-Vásquez, Bavota, G., Bernal-Cárdenas, C., Oliveto, R., Di Penta, M.,

Poshyvanyk, D., "Mining energy-greedy api usage patterns in android apps: an emprical

Efficiency Improvement in Test Automation for Electronic Invoicing 42

study," in Proceedings of the 11th Working Conference on Mining Software Repositories.,

New York, NY, USA, 2014.

[8] L. Badia, A. Munari, "A game theoretic approach to age of information in modern random

access systems". In 2021 IEEE Globecom Workshops (GC Wkshps) (pp. 1-6). IEEE, 2021.

[9] E. Gindullina, L. Badia, and D. Gündüz, Gindullina, "Age-of-information with information

source diversity in an energy harvesting system". IEEE Transactions on Green

Communications and Networking, 5(3), 1529-1540, 2021.

[10] N. Tekin, M. Kosa, M. Yilmaz, P. Clarke, & V. Garousi, "Visualization, monitoring and

control techniques for use in scrum software development: an analytic hierarchy process

approach". In European Conference on Software Process Improvement (pp. 45-57). Springer,

Cham, 2020.

[11] T. Usländer, & T. Batz, "Agile service engineering in the industrial Internet of Things".

Future Internet, 10(10), 100, 2018.

[12] A. A. Albarqi, R. Qureshi, "The proposed L-Scrumban methodology to improve the

efficiency of agile software development". International Journal of Information Engineering

and Electronic Business, 11(3), 23. 2018.

[13] R. Alur, P. Černý, P. Madhusudan, & W. Nam, "Synthesis of interface specifications for Java

classes". In Proceedings of the 32nd ACM SIGPLAN-SIGACT symposium on Principles of

programming languages (pp. 98-109), 2005.

[14] P. Ramya, V. Sindhura, & P. V. Sagar, "Testing using selenium web driver". In 2017 Second

International Conference on Electrical, Computer and Communication Technologies

(ICECCT) (pp. 1-7). IEEE, 2017.

Efficiency Improvement in Test Automation for Electronic Invoicing 43

[15] U. Gundecha, & C. Cocchiaro, "Learn Selenium: Build data-driven test frameworks for

mobile and web applications with Selenium Web Driver 3". Packt Publishing Ltd, 2019.

[16] E. Jendrock, R. Cervera-Navarro,I. Evans, K. Haase, & W. Markito, "The Java EE 7 Tutorial:

Volume 1". Addison-Wesley Professional.2014.

[17] M. Stonebraker, "SQL databases v. NoSQL databases". Communications of the ACM, 53(4),

10-11. 2010.

[18] J. Arthur, & S. Azadegan, "Spring Framework for rapid open source J2EE Web Application

Development: A case study". In Sixth International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel/Distributed Computing and First ACIS

International Workshop on Self-Assembling Wireless Network (pp. 90-95). IEEE, 2005.

[19] J. P. R. dos Santos, K. P. da Silva, B. P. G. Gonçalves, J. S. de Souza Pinheiro, J. M. L. de

Oliveira, & D. B. de Alencar, "Selenium as a free tool to test for java web application".

International Journal of Advanced Engineering Research and Science, 7(4). 2020.

[20] M. Grönroos, "Book of vaadin". Helsinki: Vaadin Ltd, Lulu. com. 2012.

[21] N. Devillard, "The eclipse software". The messenger, 87, 19-20. 1997.

[22] A. Vukotic, & J. Goodwill, "Apache tomcat 7", (p. 293). New York: Apress, 2011.

[23] T. Combe, A. Martin, & R. Di Pietro, "To docker or not to docker: A security perspective".

IEEE Cloud Computing, 3(5), 54-62, 2016.

[24] B. Varanasi, "Introducing Maven: A Build Tool for Today's Java Developers", Apress, 2019.

[25] R. M. Carlson, "Atlassian: Analysis and strategic recommendation", 2017.

Efficiency Improvement in Test Automation for Electronic Invoicing 44

[26] J. Fisher, D. Koning, A. P. Ludwigsen, "Utilizing Atlassian JIRA for large-scale software

development management" (No. LLNL-CONF-644176). Lawrence Livermore National

Lab.(LLNL), Livermore, CA (United States). 2013.

[27] S. M. Mohammad, "Continuous Integration and Automation". International Journal of

Creative Research Thoughts (IJCRT), ISSN, 2320-2882. 2016.

[28] S. E. Seker, "Yazılım geliştirme modelleri ve sistem/yazılım yaşam döngüsü", "Software

development models and system/software lifecycle", YBS Ansiklopedi, 2(3), 18-29, 2015.

[29] T. Jindal, "Importance of Testing in SDLC". International Journal of Engineering and

Applied Computer Science (IJEACS), 1(02), 54-56, 2016.

[30] F. Shull, G. Melnik, B. Turhan, L. Layman, M. Diep, & H. Erdogmus, "What do we know

about test-driven development?". IEEE software, 27(6), 16-19, 2010.

[31] David Cohen, Mikael Lindvall, Patricia Costa, "An Introduction to Agile Methods," in

Marvin V. Zelkowitz, College Park, MD, Fraunhofer Center for Experimental Software

Engineering , 2004, pp. 2-63.

[32] Hron, Michal, and Nikolaus Obwegeser, "Scrum in practice: an overview of Scrum

adaptations", 2018.

[33] F. YÜCALAR, E. BORANDAĞ, "Yazılım Projelerinde Kalitenin Arttırılması",TMMi.

AURUM Journal of Engineering Systems and Architecture, 3(2), 143-152, 2019.

[34] M. Fewster, & D. Graham, "Software test automation", (pp. 211-219). Reading: Addison-

Wesley, 1999.

[35] A. A. Omar, F. A. Muhammed, "A survey of software functional testing methods". ACM

SIGSOFT Software Engineering Notes, 16(2), 75-82, 1991.

Efficiency Improvement in Test Automation for Electronic Invoicing 45

[36] W. Afzal, R. Torkar and R. Feldt, "A Systematic Mapping Study on Non-Functional Search-

based Software Testing". In SEKE (Vol. 8, pp. 488-493). 2008.

[37] D. Nevedrov, "Using jmeter to performance test web services". Published on dev2dev, 1-11,

2006.

[38] G. J. Myers, C. Sandler, & T. Badgett, "The art of software testing". John Wiley & Sons,

2011.

[39] C. K. Sheemar, L. Badia, and S. Tomasin, "Game-theoretic mode scheduling for dynamic

TDD in 5G systems," IEEE Communications Letters, vol. 25, no. 7, pp. 2425-2429, 2021.

[40] D. Atienza, J.M. Mendias, S. Mamagkakis, D. Soudris, and F. Catthoor, "Systematic dynamic

memory management design methodology for reduced memory footprint," ACM Trans.

Design Autom. Elec. Syst. (TODAES), vol. 11, no. 2, pp. 465-489, 2008.

[41] L. Prospero, R. Costa, and L. Badia, "Resource sharing in the Internet of things and selfish

behaviors of the agents," IEEE Trans. Circ. Syst. II, vol. 68, no. 12, pp. 3488-3492, 2021.

[42] E. Gindullina, L. Badia, and X. Vilajosana, "Energy modeling and adaptive sampling

algorithms for energy‐harvesting powered nodes with sampling rate limitations," Trans.

Emerg. Telecommun. Technologies, vol. 31, no. 3, p.e3754, 2020.

[43] E. J. Weyuker, F. I. Vokolos, "Performance testing of software systems". In Proceedings of

the 1st International Workshop on Software and Performance (pp. 80-87). 1998.

[44] Elaine J. Weyuker, Filippos I. Vokolos, "Performance Testing of Software Systems," in In

Proceedings of the 1st International Workshop on Software and Performance, 1998.

Efficiency Improvement in Test Automation for Electronic Invoicing 46

[45] B. García, C. D. Kloos, C. Alario-Hoyos, M. Munoz-Organero, "Selenium-Jupiter: A JUnit

5 extension for Selenium WebDriver,," in Journal of Systems and Software, vol. 189, July,

2022.

[46] S. Gojare, R. Joshi, D. Gaigaware, "Analysis and Design of Selenium WebDriver

Automation Testing," in 2nd International Symposium on Big Data and Cloud Computing

(ISBCC’15), 50, 341-346, 2015.

[47] H. Yang, "jmc - Java Mission Control," in Java Tools Tutorials - Herong's Tutorial Examples,

HerongYang. com, pp. 290-296, 2020.

