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Abstract

Website Fingerprinting (WF) attacks exploitNetwork SideChannels (NSCs) in order to obtain
user’s web activity, leak secrets or identify the requested web page. The means through which
amalicious user could exploit are, among all, packet timing, packet sizes and traffic shape, even
when the communication channel is encryptedor anonymized. Specifically, he gathers network
traffic generatedwhile a user accesses awebsite, and then exerts a series of techniques to discover
patterns of the network flow to infer the type of website the victim inquires. State-of-the-art
WF attacks have been shown to be effective even against privacy technologies that have as main
goal to protect and hide the identity of the users during their network activities (such as Tor,
VPNs). These threats are of particular concern since break the privacy, and the anonymity,
expected by users who employ such frameworks. With our proposal, we explore a newmethod
for improving the flaws that distinguish the principal defences that have been presented, while
stillmaintaining goodperformances againstWFattacks. The other defences suppose tomodify
the network protocol, pair each web page to a decoy one or demand too much bandwidth.

In this thesiswe present a traffic analysis attack forWF, that leverages a deep learning’smodel
called Convolutional Neural Networks (CNN), in both traditional and anonymity networks
(especially against Tor). With CNN, the attacker is able to identify individual pages in the
same website with more than 92% and 95% of accuracy, respectively for traditional and Tor
networks. Then, we propose a novel defence, named Divergent, which is capable of reducing
the impact of the attack. Our countermeasure lowers the confidence of the output of the adver-
sarial model, introducing only 23% of bandwidth overhead and almost 0% of time overhead
on average. Divergent is based on the idea of changing the traffic fingerprint strictly tight to a
resource upon each client’s request, leveraging randomness and dummy packets.
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1
Introduction

Privacy and confidentiality are two cutting-edge topics that depict our contemporary digital
age and for this reason researchers develop and improve cryptographic protocols day-by-day
[1, 2, 3, 4]. Unfortunately, the gap between the practical implementations of such protocols,
such as TLS, which is the de-facto standard for HTTPS, and the theoretical context in which
they are actually considered, opens the potential for side channel attacks. A side-channel attack
is a security exploit, which attempts to extract secrets, which are leaked by these particular side
channels, that are intrinsic in a system, or in a protocol, due to its implementation. For example,
Compagno A. et al. [5] exploit a keyboard acoustic eavesdropping attack, in order to extract
information coming from VoIP calls (especially, Skype) or Schuster R. et al. [6] managed to
recognize the video resources requested by a client, analyzing TCP packets over an encrypted
channel.

Traffic analysis attacks are a subset of NSC attacks and their effectiveness deeply depends
on both the classifier algorithm and the set of features employed. Previous offensives leverage,
mainly, hand-crafted features in order to represent the network traffic, and exploit classifiers
such as Support Vector Machine (SVM) [7], k-Nearest Neighbours (k-NN) [8] or random
forests [9]. With these classifiers the attacker is able to achieve 90% of accuracy. Later, in
2018, Sirinam P. et al. [10] propose a new classifier, which is based on the Deep Learning (DL)
model named Convolutional Neural Network (CNN). Thanks to this innovative approach,
DL outperforms traditional machine learning techniques, reaching more than 98% of accu-
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racy against Tor traffic without defence and 49.7% against one of the best proposed defence,
calledWalkie-Talkie [11].

Prior works have shown that there exist several efforts, which try to bypass such malicious
attempts [12, 13, 14, 15, 11]. WFdefences try to harden and hinder themain features exploited
by the attackers, including packet length and arrival time, using different techniques, such as
fake packets and delay. Despite the progress in lowering the performances of the adversarial,
these proposals introduce a lot of overhead, make strict assumptions on the client (such as she
must know in advance the characteristics of the resource she is asking for), or are not efficient
(e.g., besides the overhead, propose to pair each web-page with a fake one).

The main contribution of this thesis is to address such disadvantages. In order to do so, we
propose a novel bypass against a specific type of traffic analysis attack, called website finger-
printing. WF attacks allow a curious attacker, who controls a device in the same network of
the victim, to gain information about the encrypted resources transmitted by the server. Our
idea rests on continuously altering the traffic flow of the same resource requested by a client,
leveraging randomness and dummy packets.
The principal properties of our proposal are the following ones:

• Robust, since it is capable of bypassing website fingerprinting attacks, which leverage
timing and packet ordering, besides packet length;

• Efficient, as it is based on the idea of modifying the traffic flow of the same data upon
different client’s requests, and on exploiting, eventually, the payload of dummy packets,
it does reduce the overhead introduced;

• Ease of deployment, seeing as how our protocol does not impact web servers, the only
change is applied on the application layer.

The thesis is organized as following: in chapter 1 we give an introduction to the main sub-
jects of this work, including some references to side-channel attacks and someWF attacks and
defences. In the following chapter we analyze in depth WF attacks, how the Tor network is
structured and works and finally we briefly examine the general world of Deep Learning (DL)
and one of its models, namedConvolutional Neural Network (CNN). In chapter 3 we discuss
some of the WF defences that have been proposed, their main ideas and limitations. Chap-
ter 4 deals with our implementation of the adversarial attacker, namely the offensive CNN
model and the exploited features. Following, our defence is presented and deeply described,
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considering the overhead introduced, too. In chapter 6 we evaluate Divergent against our im-
plementation of the attacker. In chapter 7 we discuss some limitations and improvements that
can be taken into account in order to improve our proposal. Finally, in chapter 8 we conclude
the thesis.

3



4



2
Background

In this chapter we provide the fundamental notions of traffic analysis attacks, with a focus
on the website fingerprinting ones, followed by what the Tor network is and how it works.
Furthermore, we are going to discuss about the emerging and important field ofDeepLearning
and one of its development, resulting in CNNs.

2.1 Traffic analysis attacks

Similar to eavesdropping, traffic analysis attacks are passive and based on what the adversarial
is able to grasp from the network. However, differently from an active eavesdropping attack
(e.g., MiTM), in this kind of offensive the attacker doesn’t compromise data.
The website fingerprinting (WF) attack is a peculiar example of traffic analysis. Performed by
a local, passive eavesdropper, it aims to infer information about the content (i.e., the website
visited or the requested resource) of encrypted and/or anonymized connections, by observing
patterns of traffic data. Here, the attacker merely utilizes meta information, such as packet size
and direction or shape of traffic, without breaking the encryption mechanisms of the channel.
Typically, the WF problem is treated as a supervised classification problem, where the possible
classification categories are URLs, and network traffic traces, namely sequences of packet inter-
arrival times and packet lengths, are the observations. To deploy the attack, the adversary first
trains a classifier with network traffic traces collected from his own visits to a set of target web
pages he later wants to identify and link to users. Next, the attacker records and classifies user
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traffic and uses it to make a guess of the page, or data, that could have been accessed.
Before Panchenko et al. published a research [13] at the end of 2011, in which they were able
to achieve a good accuracy level with a WF attack against Tor, Tor was considered to be se-
cure against this threat. Since then, it has become an active field of research and several related
works showed the feasibility of theWF attack in Tor and against other mechanisms and infras-
tructures. For example, in 2017 Schuster R. et al. [6] published a paper in which they explored
an attack which was able to identify, from an encrypted flow of data, which streaming video a
targeted user was watching from specific services, due to the leakage of information caused by
theMPEG-DASHvideo standard, which has become the de-facto standard of video streaming
adopted by the major companies, such as YouTube or Netflix. One year later, Jiaxi G. et al.
[16] proposed a similar offensive.
Concerning in terms of WF attacks against Tor, on 2014 Wang et al. [8] proposed a new ap-
proach in order to notably improve the attacker’s performances, specifically, employing a k-
Nearest Neighbour classifier, which is also a supervised machine learning algorithm. This ML
algorithm takes as input k (number of neighbours) and the output-label is assigned on the basis
of a majority vote, i.e. the label that is most frequently represented around a given data point.
Note that the value k defines how many neighbors will be checked to determine the classifi-
cation of a specific query point. This has been one of the classifier with the highest accuracy
known [7], until 2018, when SirinamP. et al. [10] presented a new attack based onDeepLearn-
ing models (CNN architecture), which was able to attain over 98% of accuracy on Tor traffic
without defenses. Indeed, the implementation of our attack is based on a CNNmodel.

2.2 Tor network

Tor (The Onion Router) is a free, open-source software launched on 2002 and it is considered
the most popular anonymization network, which has more than two million daily users [17].
One of Tor’s main goals is low-latency in different applications, such as web browsing.
In its default and standard version, Tor routes connections through virtual tunnels, called cir-
cuits, which typically consist of three onion routers (OR), also called nodes. In figure 2.1 we
can observe theGuard, theMiddle and the Exit nodes.
The traffic is encrypted in layers, namely like an onion, that is the client shares different symmet-
ric encryption keys with each OR on the circuit, encrypts the data with all keys consecutively,
and each OR decrypts its layer on the path.
In figure 2.2, the final cell is the result of the encryption of three different symmetric keys, and
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the final payload (theMessage in the figure) is in plaintext only once all the three decryption
mechanisms have been taken place, with their respective keys. Observe that the exit node peels
off the final layer ofTor’s encryption, and sends the fully decryptedpayload to the remote server
on the other end of the Tor circuit. Hopefully, the client and the server are using a further layer
of encryption so that not even the exit node can read their actual plaintext messages. But this
is Tor’s out of scope. This technique ensures that no relay on a path can know both the origin
and destination of a transmission at the same time.
The goal ofTor is to improve users’ privacy by hiding routing information and communication
content. However, Tor is not able to obscure the size, direction and timing of transmitted pack-
ets. Consequently, different peculiarities have been introduced in order to bypass side-channel
attacks, such as: packets are fixed-size (512-byte) and known as cells (in this way attacks that
fully exploit packets’ sizes are bypassed), furthermore a specific defence has been introduced
in Tor for misleadingWF attacks [18], which consists in using HTTP pipelinig, aiming at ran-
domizing the pipeline size as well as the order of requests. Despite this, Tor’s defence is not
successful in reducing the accuracy of such attacks [11]. For this reason, several new proposals
and research in finding new features to counterattack these offensives have been advanced.

Figure 2.1: Tor network with local eavesdropper
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Figure 2.2: Layered Tor cell

2.3 Deep Learning and CNNs

“Machine-learning technology powersmanyaspects ofmodern society“ [19]: this is howthe found-
ing father of convolutional networks [20], Yann LeCun, definesMachine Learning in a review
published by Nature. Indeed, Machine Learning is a field of Artificial Intelligence which, by
leveraging different models and mathematics, improved the state-of-art in various research ar-
eas, such as object detection and recognition, prediction of events, natural language processes,
but also of dissimilar domains, such as genomics (like DNA sequence classification) or eco-
nomics.
Deep Learning is a sub field of Machine Learning, and takes advantage of more complex and
abstractmodels. One of themain advantages ofDLoverML is that while the latter strongly de-
pends on how the programmer extract the features, used for training the model, the former in-
stead are good at capturing high- and low-level details, given the data. On the other hand, Deep
Learning programs require a vast amount of data and burdensome computing power: that is
why only recently it’s attained so much usability, thanks to the growth of high-performance
GPUs and development of big data.
Generally speaking, a deep learning model is inspired by the biological neural network of the
human brain, so it is composed by layered, hierarchical neurons, which do some computations
on their input and pass the result to the next layer. In figure 2.3 we can visualize an example of
a dense model, where each neuron of the previous layer is directly connected to all the neurons
of the following one (fully-connected), composed by up to 4 layers: the input layer, two hidden
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layers and the output one.
ConvolutionalNeuralNetworks (CNNs) are specializednetworks forprocessing grid-like struc-
tures, such as time-series data, images or videos, and are called in this way because theymake use
of amathematical operation called convolution, in place of the general matrixmultiplication, in
at least one of their layers [21]: convolution allows the network to have sparse interactions (less
computations and memory needed), shared parameters (reduce storage requirements) and to
be equivariant to translation (thanks to the convolution operator and it means that if the in-
put changes, the output changes in the same way; note that convolution is not equivariant to
rotation nor scale changes).

Figure 2.3: Example of fully‐connected Neural Network
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3
Related work

As WF attacks are gaining more and more relevance with the growing spread of privacy tech-
nologies and big-companies surveillance, a lot of researchers endeavour to hamper these threats
against user’s anonymity and privacy. In this chapter we are going to give an overview of some
of the suggested defences through the years, in order to contextualize our work.
One of the most traditional and effective characteristics that distinguish WF defences is to de-
lay packets, add padding and/or insert fake information. This cover traffic makes WF features
less unique, thus decreasing the rate of classification accuracy performed by the malicious user.
The very first defence to implement such strategies is the one of Dyer et al. [15], who con-
ducted a review of low level defenses operating on individual packets. Dyer evaluates defenses
using data released by Liberatore and Levine and Herrmann et al., who collected traffic from
website homepages on a single machine with caching disabled. Their defence, named BuFLO
(i.e., Buffered Fixed-Length Obfuscation), sends a constant stream of traffic at a fixed packet
size for a pre-set minimum amount of time.

Another type of approach is the one proposed byWright et al., who suggested the so-called
traffic morphing[14]. This defence randomly pads packets, so that their lengths look as if they
came from another distribution of packets, corresponding to another web page. This defence
is able to bypass attacks that rely on packet lengths only as a feature and do not consider other
features such as packet ordering. Indeed, later Wang et al. [8], exploiting the k-NN algorithm,
proved that this defence was not valid.
Luo et al. proposedHTTPOS (HTTPObfuscation) [22], which leverages features of theTCP
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andHTTPprotocols (particularly theHTTPRangeheader option) to affect packet size, object
size, pipelining behavior, packet timing and other properties (such as the window size). Wang
et al. [8] showed again that HTTPOS, as traffic morphing, has no effect on the final accuracy
of the attacker.

In the same work in which Wang T. et al. propose their attack based on k-NN, the authors
suggest a defence, which imposes to send a covering traffic sequence that is a supersequence1

of the real packet sequence.
Thereafter, Wang T. et al. present another research [11], where they report a new bypass,

namedWalkie-Talkie, such that the client and the server employ a half-duplex way of commu-
nication (i.e., the client sends a request only after the server has fulfilled all previous requests
and viceversa). In this way, the two peers send non-overlapping traffic of data. Moreover, they
leverage burst molding, which consists of simulating the loading of two pages, by sending the
supersequence of two burst sequences, which allows a much lower overhead than loading two
pages consecutively. As we can observe in figure 3.1, the traffic flow of page 1 is paired to a
decoy resource (page 2) and then, after the shift from full- to half-duplex communication, the
supersequence between the sequences of the two pages is sent by the server to the client. Note
that yellow squares stand for in-going cells, while the blue ones for out-going data.

Figure 3.1: Idea Walkie‐Talkie

Supersequence and Walkie-Talkie are two mimicry defenses which share the same usability
issue: they require the client to have some information about web pages. Moreover, we believe

1in the Tor scenario, a packet flow can be considered as a sequence of−1’s and 1’s (as packets are cells); p is a
supersequence of q if there exists a set of deletions of−1 and 1 in p to make them equal (maintaining order)

12



that Walkie-Talkie could be besieged by an inference attack: a malicious user can infer the re-
quested resource, by analyzingmultiple subsequent requests from the client, and deducing the
information which is related to each other. For example, suppose a person has a singular dis-
ease; probably, she will look for symptoms (resourceA), before, and for the remedies (resource
B) then. Since inWalkie-Talkie to each real page is assigned a decoy one, suppose that resources
A and B are assigned to pages C and D, respectively. The attacker, after the interception and
examination of the network traffic, obtains as output of its attack that the client, in the first
request, could have looked for resources A or C, while in the second request for pages B or D.
Since A and B are correlated to each other, while C and D, very presumably, by construction,
are not, the intruder can understand what the client is asking, compromising her privacy.

In 2015 Juarez M. et al. proposedWebsite Traffic Fingerprinting Protection with Adaptive
Defense (WTF-PAD), a lightweightdefence againstWFattacks,which leverages adaptivepadding.
Adaptive padding is a padding strategy for low-latency that adds data only on those time inter-
val in traffic that are probabilistically unlikely to happen. Together with W-T, WTF-PAD was
considered the best defence which could be implemented in Tor. Indeed, WTF-PADmethod
can drop the accuracy of the k-NN attack from 92% to 17%, with 60% bandwidth overhead.
W-T, instead reduces the accuracy of WF attacks to 50%, with 31% bandwidth overhead and
34% latency overhead due to the use of half-duplex communication. But in 2018, with theDL
attack we mentioned before [10], Tor started to look for other proposes [23].

Recently, Gong J. andWang T. [24] (2020) suggested two novel defences, namely FRONT
and GLUE. The former works mainly during the so-called ‘front-trace‘ , which is the first few
seconds of a trace. Moreover, it adds dummy packets in a random way in both the directions,
exploiting a Rayleigh Distribution. GLUE, instead, is a new way of defending from WF at-
tacks, which is based on the ‘split decision‘ problem. GLUE then, inserts fake packets between
consecutive web page loads to obscure the distinction of the different loads.

In the same year, another protection against WF has been defined by De la Cadena W. [23].
Their defence, called ‘TrafficSliver‘, consists in introducing randomness not in the traffic flow,
but rather in the Tor routing algorithm. Their core idea is to distribute TCP traffic across dif-
ferent circuits built over several unique entries but shared middle and exit ORs (multipathing
approach).
It isworthmentioning theworkbyNithyanadR. [25] (2014), based onSSHtraffic, inwhich

they exploit clustering in order to generate a matrix that can convert a traffic flow to another
one. We will talk about it in chapter 7. In table 3.1 we sum up all the WF defences described
in this chapter, with a short description and the relative limitations.
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WFDefence Summary Limitations

BuFLO [15]
it modifies the traffic to make it look constant
rate bandwidth and time overhead

Decoy [13]

it loads a randomly chosen web page (background
page) simultaneously with the actually requested
one (camouflage) bandwidth and time overhead

Supersequence
[8]

it computes supersequences over sets of packet
sequences

bandwidth overhead & large
database of web page templates

Glove [25]
it generates offline a transformation matrix
which will be used to generate covert traffic

bandwidth overhead & large
database of web page templates

Walkie-Talkie
[11]

it employs a half-duplex communication and
burst molding (i.e., supersequence
between two web pages)

a priori knowledge,
inference attack &memory
overhead

traffic morph-
ing [14]

it maps packet sizes from one site
to a packet distribution drawn from another site

no effect on the accuracy of
more recent attacks [8]

HTTPOS [22]
it exploits TCP and HTTP features
such as HTTP range header

no effect on the accuracy of
more recent attacks [8]

FRONT [24]
it creates random noise at the beginning
of a page load both from the client and the server

accuracy of more recent attacks
remains high [23]

GLUE [24]

it adds dummy packets between consecutive
page loads to obscure separation of
different page loads

accuracy of more recent attacks
remains high [23]

WTF-PAD [26] it uses adaptive padding technique
no effect on the accuracy of
more recent attacks [10]

TrafficSliver
[23]

it introduces randomness into the Tor routing
algorithm (multipathing)

no protection against
local eavesdroppers

Divergent
it exploits randomness, binomial distribution
and dummy packets server resources analysis

Table 3.1: WF defences.
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4
Identifying resources using Neural Networks

In this chapter, we present how the attacker model is defined and which features are exploited
both in the traditional network and in Tor. Then, we deal with how we collected the data for
our WF attack and the way we employed it in order to extract the useful features to train the
offensivemodel. Finally, we explain the experiment in the anonymize setting and the difference
between the two frameworks.

4.1 Adversarial CNN-model

The CNNmodel we conceived for setting up the attack we discussed in section 2.1 is inspired
by the ones proposed in the state-of-the-art [27, 6, 10]. It is composed by:

• one input layer

• five convolutional layers;

• four dropout layers;

• one max-pooling layer;

• two dense layers

• one output layer.
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The activation functions exploited are: all but the first layer exploitsReLU, the first hidden
layer uses the Hyperbolic Tangent function (tanh) and the output layer softmax. These have
been chosen both empirically, but also because: ReLU, which is a linear function for positive
inputs, while it outputs 0 for negative input values, overcomes the vanishing gradient problem
(introduced by tanh), allowing models to learn faster and perform better and is the default
activationwhen developing convolutional neural networks; tanh introduces non-linearity and,
finally, softmax is widely applied for multi-class classification problems.

In figure 4.1 the model is plotted. Note that the final layer outputs as many values as the
number of total classes (num_classes) of the multi-class classification problem. This character-
istic comes from the softmax activation function. Specifically if the network is configured to
output a vector ofN values, whereN is the number of classes in the classification task, the soft-
max function is used to normalize the outputs, converting them fromweighted sumvalues into
probabilities that sum to one, so each element in the output-vector of the softmax function is
interpreted as the probability of membership for each class. The softmax function is defined
as following:
σ(z⃗)i = ezi∑K

j=1 e
zj for i = 1, 2, . . . ,K,

and takes as input a vector (z⃗) and normalizes it into a probability distribution, which consists
of the same dimension as the input. This output vector (also called confidence) will be useful
for our evaluation discussion in chapter 6.

Figure 4.1: Adversarial Convolutional Neural Network architecture

The main features for our adversarial DL model, in general, are the following ones:

• global size (i.e., summation over each packet’s size);

• size of each packet;

• inter-arrival time of two consecutive packets;
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• packet density (i.e., howmany packets are received within a time interval)

The way these features have been extracted and why these characteristics can be important
for the attacker are described in the following section 4.2.

Before concluding this section, we would like to clarify to the reader why a CNN is one of
the most efficient model to leverage for such attacks, giving an example: CNN are the state-
of-the-art deep learning infrastructure for dealing with, among all, images (which have a grid-
like structure). Images are nothing more than a matrix of pixels, whose values are different
depending on the pixels’ color. A packet sequence can be interpreted, indeed, as an image, in
which each rowcontains the features’ value, and if the features’ arrays are different indimension,
pad them with worthless quantities.

4.2 Data collection & features exploited

In the scenariowith traditional network,we implemented a setting inwhich a client can request
10 different videos to a server and the server responds with the corresponding resources. In the
meanwhile, an attacker, who is in the same LAN of the client, intercepts the traffic of packets
coming from the client to the server and vice versa. Since the channel of communication built
between the client and the server is encrypted, the adversarial is not able to decrypt and get
acquainted of the payload inside the packets: so he relies on side-channel features, which are
present in the communication packets by construction. Side-channel attacks which are only
based on the general concept of size can be bypassed in different and efficient ways [27, 11]. So,
in order to implement an adversarialmodel, which is able to take advantage of the peculiar char-
acteristics which compose the traffic flow, at least other features need to be taken into account.
Especially, as we can see in table 4.1, for each session we considered: the total amount of pack-
ets exchanged (in byte), the size of each packet, the inter-arrival time between two packets
and finally the packet density, which represents the quantity of information exchanged dur-
ing a certain period of time.
The first two features are based on the dimensions of the transferred data. These can be helpful,
above all, in scenarios inwhich no countermeasures againstWF attacks are considered, orwhen
a defense is implemented, but this does not completely remove the size as a helpful feature for
the attack to be executed (note that themajority of the suggested proposals does not completely
remove the benefit of this feature since it requires a lot of overhead in order to completely by-
pass it [14]). The third and the fourth features are useful for the adversarial CNN model in
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order to consider also the network architecture’s specifics, which compose the devices between
the client and the server.

Feature Description

Total size
It counts the total number of exchanged bytes
during the connection

Packet size It counts the byte-size of each packet

Inter-arrival time
It represents the time interval that is
between two consecutive packets

Packet density
It counts the number of packets that are
transmitted during a fixed time interval

Table 4.1: Exploited features in the traditional network setting and relative description.

Feature Description

Packet direction It defines if the packet is incoming or outgoing

Packet arrival-time It represents the arrival time of each packet

Table 4.2: Exploited features in the Tor network setting and relative description.

As regards the Tor setting, we take advantage of the dataset1 made available by Wang T.
(2021). In Tor we recall that each packet, named cell, is fixed-size and prior work has shown
that, for this reason, we can consider this type of traffic flow as a sequence of−1’s and 1’s (where
the sign represents the direction of the data), without losing accuracy in the attack [10]. Note
that, in the previous scenario, the values of the sizes of real packets help to improve the efficacy
of the villain’s aim. Besides this difference, since the dataset is composed by the arrival-time of
each cell, rather than inter-arrival times, we opted for the former. Furthermore, in this setting
we take into account the direction of the packets, too. In table 4.2 we represent them.

1The dataset for the Tor setting is reachable through the following link: https://www.cs.sfu.ca/
~taowang/wf/
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5
Our proposal - Divergent

Our proposal’s aim is to reduce the amount of time and bandwidth overhead (treated in depth
in 5.3) introduced by the defence, keeping a high level of effectiveness. Moreover, some state-
of-the-arts introduce spikes on the traffic flow [12] [11]. This could be a problem, since if we
think that a potential user is surfing more websites contemporaneously, and we hypothesize
that each of these sites/servers implement such measures, then the device of the client could
be flooded by these network traffic’s spikes (for example, imagine a student who is watching a
video-lecture and at the same time playing LoL).

In this chapter we define the attacker model, both in traditional and anonymized networks.
Then, we specifically describe how Divergent works and its main characteristics. Finally, we
illustrate the impact of randomness in the general world of cybersecurity and, specifically, of
our work.

5.1 Threat model

In this work we examine two distinguished threat scenarios: the first one considers a client and
a server communicating through a traditional network. In this setting, our threat model con-
siders a client-victim that requests resources to aweb-server, over an encrypted connection (e.g.,
exploiting the TLS protocol).
We assume that the adversary is passive and local to the client, so he can directly observe the
victim’s traffic and knows the client’s identity, as well as he is hard to detect, since he never tries
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to modify the client’s packet sequence or inject packets, as a passive eavesdropper. In order to
do so, he has complete access to the device he exploits, so can gain, among all, root privileges
(needed for capturing raw packets with whichever tool, such as tcpdump [28] or Wireshark
[29]). The adversary cannot break standard cryptography (e.g., if the client-victim and the
server employ the TLS protocol in order to communicate, the attacker cannot read the plain-
text, unless he knows the necessary secrets), impersonate nor compromise the target. Finally,
the attacker’s aim is to identify the resource the victim is asking for.
An adversary who is able to determine the resources the users is requesting is a significant pri-
vacy threat, which could be exploited, for example, by an attacker in order to steal sensitive
information, such as the disease a user has, or by a government for mass surveillance.

The second scenario is similar to the previous one, except that the client surfs the net using
anonymization technologies (particularly, in our workwe focus onTor and all its implemented
features), that is, the client connects to the Internet through one or more proxies.
The current design of Tor’s network assumes the absence of a global adversary that is able

to monitor both ends of the communication, i.e., entry, and exit guards, denying in this way
anonymity. Indeed, in the analysis of the security of the onion router provided by Syverson, et
al. [30], the probability that an adversary owns either the first or the last node on the circuit
is the same and equal to : (the number of compromised nodes (c)) / (the total active nodes in
the system (n)). Therefore, an adversary that is able to compromise the first and the last nodes
on the route might exist with probability = c2 /n2. In addition to this, these probabilities are
only valid for a certain interval of time, as routes are dynamic, whichmeans that after a specific
amount of time, it will be automatically torn down (except for the guard node) and another
path will be established for future activities.

Consequently, in our model the attacker can, at most, compromise the guard node of the
victim. As the attacker is local to the client, he knows the victim’s identity but not the server
she is talking to, nor the web page (or the resource) she is visiting. Note that we assume at
least one proxy cannot be threaten by the attacker, otherwise previous work showed that if the
adversary controls both the end-points of amulti-proxied connection than he can compromise
the entire privacy of the victim [30]. Before the client could connect to the network and send
requests, she must goes through a preliminary phase and create the circuit of relays, as we have
already mentioned in section 2.2. The non-endangered nodes’ aim is to protect the victim and
her privacy.

In figure 5.1 we represent the threat models in the two distinct scenarios.
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(a) System model scenario in a traditional network

(b) System model scenario in a Tor network

Figure 5.1: System models in the two different scenarios

In general, the attacker’s strategy is the following one: the attacker collects packet traces from
several web pages that he is interested inmonitoring. Then, he observes packet traces generated
by the victim during her web browsing, and compares these traces with the ones he collected
by performing supervised classification.

For the sake of completeness, observe that the majority of normal-users still don’t use very
frequently, in general, technologies like proxies orTor in order to accomplish their regular tasks;
indeed, less than 1/3 of users all over the world employ VPNs every day [31] and roughly 2
million users access the Tor platform daily [17] and considering that almost 5 billion people
use the internet every day [32], less than 0.05% of people surf the net exploiting Tor day-to-
day.

5.2 Our countermeasure: Divergent

The solution we propose is the same for the two different types of networks (i.e., traditional
and anonymizing), so we are going to describe it with the traditional setting as background.
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The server, after having created a secure channel with the client, sends to her a secret, random
number x. So, supposing that both the peers agree on theTLS protocol and share the necessary
secrets and information (e.g., cipher specifics, certificates, session keys, …), immediately after
the last TLS message, the server transmits, encrypted, x .The value x represents the number
of packets that the server has to send to the client, before delivering a burst of dummy pack-
ets. Moreover, since we noticed that transmitting only one dummy after x real packets does
not decrease the attacker’s performances, we opted to send 1 or more dummies per burst. The
number of dummies sent in the burst is equal to y, it is randomly generated and nextwe explain
why the server does not need to deliver this parameter to the client. The idea of inserting such
dummypackets is to create a different traffic flow, w.r.t. the original one, in order to disrupt the
adversarial model, so that it is less capable of recognising a stream associated to a resource from
another one. Furthermore, since x and y are randomly generated, the packet-stream changes
each time a new request is performed.
The quantities assigned to x first and y, during the communication, are fundamental for a
twofold reason: the first one is the overhead stuck in, while the latter is the effectiveness of
the defence. With regard to the overhead introduced, if y is too big (that is, if a lot of dummies
are sent per burst) or x is too small (i.e., the server sends fake packets after a small number of
real packets), then a lot of futile data is introduced. On the other hand, suppose that the server
contains only two resources (A and B) that can be sent to users, andA is way bigger in size than
the other one. Then, the traffic fingerprinting associated to A is very dissimilar to the one of B
(if we think, for example, on the number of packets transmitted, the time that it takes to send
it whole, etc.). So, the values x and y’s, adjusted for the resource B, must be smaller and bigger,
respectively, than the ones associated to A. In this way the attacker’s model will have more dif-
ficulties in distinguishing the data, as the traffic shape of B resembles more the flow of a bigger
resource, that is the A’s one, and vice versa.
We sample x and y, as we reported in the pseudocode of Divergent of Algorithm 5.1, exploiting
the binomial distribution1. Specifically, a resource which is bigger will be assigned to a Prob-
ability Mass Function (PMF) which, probabilistically speaking, will add less packets, with re-
spect to a resource which is smaller. To do this, we leveraged the n parameter of the binomial
distribution, whose value varies among 36 at most, and 3 at least. We decided to choose the
binomial distribution in order to obtain the values of x and y, because there is possibility that

1Remark that a binomial distribution Bin(n, p) is a discrete probability distribution, defined by two param-
eters, n and p, which set the number of times the experiment is repeated and the probability of success for each
time, respectively.
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the network fingerprinting associated to a small resource appears to be the one of very big data,
but at the same time of medium-size resource, too, prioritizing values that do not introduce
too much expenses. Indeed, as we can observe in figure 5.2, by construction of the binomial
mass function, the numbers sampled in the distribution on the top 5.2a (where n = 20) are,
with more probability, bigger than the ones of the distribution below 5.2b (n = 12), but it
could happen (less frequently) that this does not hold. Observe that themore we approach the
values near the mean of the binomial distribution (where its mean is equal to n ∗ p), the more
they are likely to be sampled.

Note that, while x remains fixed throughout the whole transmission of the resource, the
burst’s size (i.e., y’s value) can change for each burst of dummies (next the reason why will
become more clear). To clarify, in figure 5.3 on the right, we can observe that the server, after
sharing the needed data for building a TLS channel with the client, sends the secret number x.
In this specific setting, x is equal to 2. Then, at first, the client receives one dummy packet after
getting x = 2 ‘real‘ packets; then, she receives two dummies, after obtaining packets 3 and 4.
So we can see that y is equal to 1 in the first burst, and to 2 then.

The receiver, in order to recognize if she got a dummy packet or real data, can rely on the
x value. However, it is commonly known that, in whichever network, a packet not always is
able to reach the other counterpart. So, in order to bypass this problem, when the server has
to send fake data, it inserts the ‘dummy‘ writing at the beginning of the payload. The x value
then, comes in handy for adding redundancy to the transmission protocol.

As we mentioned before, the quantity x, once sampled, remains constant throughout the
whole TCP connection, while the number of dummy data sent per burst can change. The
reason why x remains invariable is not immediate, so we start giving an example: suppose that
the server has to send the smallest resource r1 to a client. We remark that the aim of Divergent
is to create a traffic flow which is not unique to each resource, but that puzzle the adversarial
model. Since r1 is the smallest, as we observed before, the server will sample a little x, and de-
pending on its value, the cover traffic associated to r1 could be similar to the one of the second
smallest resource r2 in the server, or of a bigger one. If, instead, the x values changed, the cover
traffic could be associated to both a mixture of the traffic flow of r2 and of bigger ones, which
can create another unique fingerprint of r1, leading to a not efficient defence. Therefore, x is
invariable for: lowering the computation of the server (since the server does not need to contin-
uously sample x), not introducing too many perturbations in the transmission, and, if needed,
for removing “dummy“ from the payload of the dummy packets.
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(a) Binomial distribution with parameters n = 20 and p = 0.5

(b) Binomial distribution with parameters n = 12 and p = 0.5

Figure 5.2: Plot of two binomial distributions

For what concerns y, we defined it so that it can change value per burst of dummy packets. In-
deed, y changes because if it remained constant during the whole TCP connection, the server
would send burst of dummies of same size (e.g., if y = 3, then each burst is composed by 3
dummies), which could be noted by the attacker, unless the defence didn’t leverage the timing
of sending each dummy packets, but this would introduce time delay. Therefore, the size of
each spike of dummy packets changes mostly to disrupt the adversarial, since the traffic finger-
print changes continuously and with more preponderance.
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Figure 5.3: Example scenarios without (left) and with (right) Divergent

In order to decrease the bandwidth overhead, we decided to insert, in some dummies’ pay-
load, the output of the xor operation between the last packet received before the dummy pack-
ets with a following one. So, considering figure 5.3, the payload of the dummy packet in the
first burst could contain (see section 5.3) the output of the xor operator of the 2nd packet’s
payload with the payload of the 3rd one. The selection of the packets which contain help-
ful data is per-burst (i.e., if a dummy packet does not have useful data in the payload, all the
dummies of the burst won’t have it, and vice versa) and there is 50% of probability that the im-
mediately next burst of packets contains the payload of the following informationwhich needs
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(a) Dummy with Random payload

(b) Dummy with XORed payload

Figure 5.4: Construction of dummy packet with random (top) and xored (bottom) payload

to be sent. One may think: “why don’t the server introduce xored payload in all the dummy
packets?“. The answer is plain: to introduce another level of uncertainty in the transmission of
the resource. Another legitimate doubt could be: “why do you insert a xored payload, and not
directly the needed data?“. The response is that by xoring packets, we introduce another small
level of uncertainty to the attacker, given by the fact that, if the two xored packets are different
in size, than we need another dummy for containing the remaining result. But this does not
happen always, only when the following, real, packet is bigger than the real previous one.
The server, for the purpose of making the client recognising which dummies holds useful data
or not, appends to the dummy’s data section the “dummy_payload“ writing.
In figure 5.4 we represented the construction of the two different typologies of dummy pack-
ets. To sum up, once a client receives a packet: if the packet’s payload starts with “dummy“ (as
represented in figure 5.4a), then she knows she received a packet with useless data, so discards
it; if she gets a packet, whose data section begins with “dummy_payload“ (as in figure 5.4b),
then the packet is kept; otherwise the client received a normal packet.

With this defense, by construction, no spikes are introduced in the communication between
two peers, and less overhead is introduced, thanks to the information eventually carried by the
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packets in the burst.
The pseudocode of algorithm 5.1 specifies how practically, and technically, Divergent works:
from line 1 − 6 the server samples x and then sends it to the client. Next, the server defines
an index (i.e., i_random_dum), which counts when it is necessary to send the burst of packets,
and starts to read the the first byte of data. The while-loop of line 9 continues until there is
data that should be sent. If the server enters in the first if-statement of line 11, it means that it is
sending real data, otherwise it enters in the else-body of line 16 (i.e., the index for sending dum-
mies is equal to x). Inside the else, the server computes the size of the burst (i.e., num_burst)
and if the burst of packets will be useless or not (i.e., the boolean has_payload_dummy). In-
side the for-loop of line 19, the server sends dummy packets with xored or random payload,
based on the value of has_payload_dummy. After having sent all the dummy packets, resets
i_random_dum’s quantity and starts from the beginning of the while-loop.

5.3 BandwidthOverhead and Time Overhead

Themain ideas of proposing a defence are (1)bypassing the considered attack(s) and (2) impact
as less as possible the efficiency of the infrastructure we are trying to protect. Two parameters
that are fundamental in order to understand if a proposal can be a good one, are bandwidth
and time overheads.
Bandwidth overhead can be defined as the number of dummy byte inserted in the traffic flow
by the defence, dividedby the transmittedbytes of the same resourcewithout the defence, times
100.
Time overhead, instead, is the extra amount of time required to transmit a requested data,
divided by the original amount of time of the same information sent. It is important to notice
that a large time overhead worsen the client’s experience, as the client needs to wait longer to
load web pages.
In our work, the time overhead is increased by the following features: sampling and sending x,
sampling y and the xoring operation. Moreover, the delay overhead depends on: if the burst of
dummy packets does not contain a useful payload and the application data, in the server, is not
ready, than there is no added delay, otherwise the delay increases of the needed time for sending
the burst of cover packets (transmission time). On the other hand, if the burst is with the xor
of the real payload, then it halves time delay introduced by dummies without payload andwith
data ready to be sent. In table 5.1we sumup the four different cases and if the table cell contains
“X“, then no time delay is inserted, vice versa with the “✓“ symbol. The scenario in which the
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Algorithm 5.1 Pseudocode Divergent
Require: client c and server s established an encrypted channel.
1: ▷Computation of x.
2: x← 0
3: while x = 0
4: x← Bin(n, p = 0.5) {n depends on r’s size.}
5: end while
6: s sends x to c
7: i_random_dum← 0 {used to count when sending burst of dummy pkts.}
8: data← read_file(r,MTU)
9: while data
10: ▷ Enter in the if-body if we have not reached x.
11: if i_random_dum < x
12: i_random_dum← i_random_dum+ 1
13: s sends data to c
14: data← read_file(r,MTU)
15: ▷ Else, send burst of dummies with/out payload.
16: else
17: num_burst ← Bin(n, p = 0.5) {nr. of consecutive dummies to send. It must be

> 0. n depends on r.}
18: has_payload_dummy← Bin(n = 1, p = 0.5) {Bernoulli trial.}
19: for i = 0 to num_burst
20: len_dummy ← Bin(n = MTU ∗ 2, p = 0.5) {length of dummy packet. Must

be≤MTU.}
21: ▷ If enter in the if-body, senddummywith payload, which is the xor of the last ’real’

packet sent, with the following one. Otherwise, send dummy with junk payload.
22: if has_payload_dummy
23: next_data← read_file(r, len_dummy)
24: xor_payload← data⊕ next_data
25: dummy_pkt← ”dummy_payload”+xor_payload
26: s sends dummy_pkt to c
27: else
28: ▷ Generate random payload with length len_dummy to append to dummy

packet.
29: dummy_pkt← ”dummy”+random_pay
30: s sends dummy_pkt to c
31: end if
32: i← i+ 1
33: end for
34: i_random_dum← 0
35: end if
36: i_random_dum← 0
37: data← read_file(r,MTU)
38: end while
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application data is not ready and the next bust of dummies is obviously not possible.

Dummyw/ payload Dummyw/out payload
App data ready X ✓

App data not ready not possible X

Table 5.1: Different scenarios for time overhead

Employing our PC and Python as programming language (since our project is mainly based
on it), numerically speaking we obtained the following timing (on average):

• the time for sampling a number from a binomial PMF is 3.1us;

• the time for performing a xor operation is 0.357us;

• finally, the overall time bandwidth, as we mentioned before, depends also on the trans-
mission time. Supposing we are in a very poor scenario, where the MTU is equal to
512Byte (cell size in Tor) and bitrate is less than 1.5Mb/s, then we obtained a final time
overhead of 0.65%, as result of the two just computed timings, summed to the transmis-
sion time for sending packets.

To make things more clear, suppose that: the number of dummy packets which contain
payload is defined as dpay, the number of bursts of dummies in the whole transmission is nburst,
the number of dummy packets without payload is dfake, the original amount of time to send
the data without defence is toriginal and the timings for xoring, sampling and transmitting are
respectively txor, tsampl and ttx. Then, the mathematical expression we employed to compute
such overhead is the following one:

time_overhead =
(toriginal + dpay ∗ txor + nburst ∗ tsampl + dfake ∗ ttx)− toriginal

toriginal
∗ 100 (5.1)

=
dpay ∗ txor + nburst ∗ tsampl + dfake ∗ ttx

toriginal
∗ 100 (5.2)

≈
dfake ∗ ttx
toriginal

∗ 100 (5.3)

Note that the amount of delay inserted byDivergent is very low, since: the xor operation and
sampling times are negligible (even if we took into account their values in the computation of
the overhead). That is why time_overhead can be approximated as we can see in equation 5.3.
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As well, the transmission times for sending dummies without payload is, in general, quite irrel-
evant with respect to all the packets in the transmission.

As regards the bandwidth overhead, Divergent leverages packets’ distribution and size: the
idea of injecting dummy packets with xored payload (with 50% of probability per burst) al-
lowed us to reduce the initial overhead from 50% to 23% on average. In table 5.2 we reported
the time and the bandwidth overhead of the main defences. Considering that the work of
Wang T. et al. [11] (Walkie-Talkie) was one of the candidate defence to be implemented in Tor
[10] has 31% of bandwidth overhead, Divergent improves the efficiency of one of the main
proposals.

WFDefence BWOH TOH

BuFLO [15] 145% 180%
Decoy [13] 100% 39%
Supersequence [8] 222% 112%
WT-PAD [26] 64% 0%
W-T [11] 31% 34%
Divergent 23% 0.65%

Table 5.2: Bandwidth (BWOH) and Time (TOH) Overhead of some of the WF defences.

5.4 Importance of randomness

Aswe have seen throughout our proposal, Divergent heavily depends on the generation of ran-
domnumbers, such as the secret value x, which defines howoften dummypacketsmust be sent,
or has_payload_dummy, defined in line 18 of 5.1, which is a boolean variable and determines
if the next burst of dummies will contain junk data as payload or the xor of real payload. If an
attacker was able to understand the values assigned to these variables, he could re-construct the
traffic flow without the defence, use this reconstruction as input-test to his adversarial model
and get the resource requested by the victim with way higher confidence. For this reason, we
introduce some of the main concepts about PRNGs and clarify how relevant randomness is.
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First and foremost, randomnumbers are typically sourcedby twokinds of randomnumber gen-
erators: True RandomNumber Generators (TRNGs) and Pseudo-RandomNumber Genera-
tors (PRNGs). Generally speaking, the former exploit as entropy sources physical phenomena
(such as thermal noise or photoelectric effect), while the latter leverage deterministic algorithms
and, in computers, use the attached hardware to harvest entropy like movement on the mouse
pointer, keys typed on the keyboard, and disk and/or network I/O. However, true RNGs on
their own are often expensive and can be subject to gradual decline over time. For these reasons,
most of mechanisms and infrastructures rely on a PRNG.
A PRNGmust be secure against both external and internal attacks. The attacker is assumed

to be aware of the code of the generator, and might know the entropy used for refreshing the
generator’s state. Nowwe introduce the basic security requirements, which a generator should
satisfy [33]:

• Pseudorandomness: the generator’s output looks random (independent and identically
distributed values, i.e., i.i.d.) to an outside observer;

• Forward security: an adversary who learns the internal state of the generator at a specific
time cannot learn anything about previous outputs of the generator;

• Backward security: an adversary who learns the state of the generator at a specific time
does not learn anything about future outputs of the generator, provided that sufficient
entropy is used to refresh the generator’s state.

In our work, we ran our experiments in an OS based on the Linux kernel. This kernel
presents an its own, software-based, pseudo-random number generator (denoted ad LRNG).
In Linux, everything is considered as a file, and the device files /dev/random and /dev/urandom
are the main interfaces to the crypto PRNGwhich can reliably generate random bits. The ker-
nel maintains an entropy pool which is used to store random data generated from events like
inter-keypress timings, inter-interrupt timings, etc. etc. Themain differences between the two
special files is that /dev/random is typically blocked if the amount of available entropy is less
than the requested. On the contrary, the /dev/urandom is never blocked, even if the PRNG
seed is not fully initialized with entropy since boot. Note that, starting from 2020, the Linux
kernel 5.6 /dev/random only blocks when the PRNG hasn’t been initialized. Once initialized,
the /dev/random and /dev/urandom behave the same [34] [35].

InDivergent, it’s particularly important that the values returned from theBinomial distribu-
tions are as more i.i.d. as possible. Remark that a Binomial of parameters n and p outputs the
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Figure 5.5: Bernoulli distribution implemented in our PC

number of successes inn independent Bernoulli trials. To this aim, we tested that our Bernoulli
function gives as output the losses, 0, and the successes, 1, equal in number. In figure 5.5, we
can observe a result of this experiment, run 1000 times and we observe that it approximates a
uniform distribution. Notice that themore we increment the size, the tighter it is to a uniform
distribution function, i.e., asymptotically tends to be uniform.
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6
Performance evaluation

In this chapter we evaluate the performances obtained by the attack we described in section
5.1, against traffic data without Divergent and with the defence in place, in both the settings in
which client and server employ a traditional network or the Tor infrastructure.

6.1 Evaluation setup

For our experiment we needed to implement both the attack and the defence. The attacker
model, which is aCNN, has been built using Python, in particularwith theTensorFlow library
[36], coupled with Keras [37] as a front-end interface. The reasons why we chose TensorFlow
as the framework are multiple, such as: simplicity, well known by the research community and
if pairedwith theGoogleColab environment [38] it allows free access toGoogleCloud’sGPUs,
speeding up the training and test processes.
The data we used for running our experiment is composed by 10 different videos, which have
been made available by J. Lokoc, B. Münzer, K. Schoeffmann, M. Del Fabro, M. J. Primus, T.
Skopal, and J. Lánský [39].
We collected the data for the attacker in the traditional setting by implementing a web server
and a web client with Python. Both peers communicate through the localhost interface. While
the victimand the server senddata to eachother, themalicious user intercepts the trafficpackets
using tcpdump. For each video, we created 100 instances, sowe ended upwith 1000 data inside
the dataset. The dataset, in order to train and test the offensive model, has been split in the
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following way: the training set is composed by 60% of the whole data, 30% composes the
validation set and the remaining data is the test set1.

As regards the hardware setup we used an ASUS laptop, the VivoBook S, characterised by
and Intel Core I7-8550U with base frequency 1.80GHz. The GPU is a GeForce MX130 one,
with 4 GB.

6.2 Evaluation metrics

We assume that the user is limited to request a fixed set of videos, and the attacker knows this
set and can train his classifier on it. The success of the attacker is measured as the ratio of the
number of correctly classified traces to the total number of traces (Pcorrect/N). This ratio is also
named as the attack’s accuracy. Pcorrect is the total number of correct predictions, whileN is the
total number of instances in the test set. A correct prediction is defined as the output of the
classifier, which matches the label of the resource to which the test trace belongs.

6.3 Results

In the setting where a traditional network is employed, we use 10 distinct videos as data. The
accuracy obtained by the malicious user with traffic without any defence against WF attacks is
equal to 92.86%, while with Divergent it decreases to 49%. It can be seen still as a good accu-
racy obtained, but the main advantage of the defence is that the adversarial model’s confidence
is very low. This means that, even if the output is correct, the model has a lot of “indecision“
on it. Remark that a machine learning model, in general, for a multi-class classification prob-
lem, assigns to each input a class with a confidence value and, finally, it outputs the label with
the highest certainty (the summation of all the confidences, of each input, must be equal to 1).
As we can see on table 6.1, where we reported the results of the arrays of confidences obtained
by the attacker for true positives outputs only, all the confidences are less than 50%, and even
worse for videos 2 and 5, where the confidence is less than 16%. Observe instead how theCNN
is uncertain between videos 7 and 4 in the 3rd row of the table: 49.8% against 44.3%. These
results directly explain that, even if the attacker model makes a good prediction, it is not sure
about its output, and this is exactly what a WF defence should behave: insert uncertainty in
certainty.

1We leave the link to our code and data: https://github.com/francevarotz98/Divergent
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For what concerns the Tor settings, we remark that we employed another type of data (by
Wang T. et al.). In this setting, the final score of the adversarial user without protection is 95%,
while it drops off to 29% with the defence. We note that our defence works better in the Tor
scenario. We deem it’s due to the fact that the data in the previous setting has been taken in a
localhost scenario, so the (inter-)arrival times are very tiny. In this way, even if we add dummy
packets, the DL model is not as obstructed as for the data of Wang T., because the attacker is
able to detect and distinguish the dummy packets, due to the fact that sampling y’s values takes
one order of magnitude than without such computation (as we have seen in section 5.3).

Figure 6.1 represents the confusionmatrix of the results of theTor settingwe justmentioned,
and shows the difference of performances of the attacker model between Tor data without Di-
vergent (on the left) and Tor data with Divergent applied (on the right). A confusion matrix is
a visual tool, whose usage is to portray the quality of the output of a classifier. It works as fol-
lows: the x-axis represents the labels that the model has assigned to the input (Predicted label),
while the y-axis stands for the actual input’s class (True label). Therefore, the higher the values
on the diagonal of the matrix, the better the classifier works. As we can see from the figure,
the matrix on the left is almost diagonal2. Indeed, as we obtained only 5% of mis-classification
without the defence, only few videos have been not correctly classified: for example, video 0
has been wrongly predicted once as video 1 and once as video 4, while the adversarial classifier
always recognizes video 9.

The matrix on the right, instead, has a lot of scattered values. This means that, thanks to
Divergent, a lot of data are mis-classified by the adversarial model, as desired. For example,
video 3 is alwaysmis-classified: 11 times out of 17 as video 2, and the remaining 6 times as video
6. Note that the mis-classification, in general, is not symmetric; that is, if video j is classified as
video i most of times (with i ̸= j), it does not mean that the same happens for video i. This
characteristic is typical of WF mimicry defences, such as W-T, where each web page is strictly
associated to a fake one. In Divergent, instead, it is a matter of clustering the resources inside
the web server: we talk about this in the next chapter.

2A matrix is diagonal if and only if it is both upper- and lower-triangular, i.e., the entries outside the main
diagonal are all zero
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Table 6.1: Output probabilities of the adversarial CNN model against five different videos with Divergent

Figure 6.1: Comparison confusion matrices without Divergent (left) and with defence (right)
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7
Discussion & future work

The results that we obtained show that deep learning approach is a powerful tool for WF at-
tacks. However, defended traffic proves that Divergent provides a significant circumvention
against the described offensives, saving bandwidth, and time, over other proposed defences.
These results also bring to light a potential weakness in current defence methodologies. As
regardsWalkie-Talkie, the mainmenace is the inference threat, due to the fact that only one de-
coy page is associated to a real web resource, besides the considerable issue that the client must
know a priori information about the resources to be loaded. In Divergent, instead, we tried to
leverage the traffic shape, so that more and more resources appear to have the same network
fingerprinting. To this aim, some possible improvements can be applied to the defence.

• Clustering. A plausible problem we can face is the following one: suppose that a client
requests a very small resource-video (e.g., 10kB in size), and inside the web-server there
exist videos which are way bigger (e.g., 1GB). Of course, by simply introducing some
’noise’ inside the transmission (that is, burst of dummy packets), we cannot decrease the
performances of the adversarial model, unless we introduce a lot of overhead. A possi-
ble approach to bypass such hindrance is that, generally speaking, resources in the web
server are clustered with other ones, so that elements in the same cluster will have a sim-
ilar traffic flow, once they are requested. We thought on two different ways to cluster.
The first one, the more explicit, is by exploiting real machine learning algorithms, such
as k-means++, that aims to partition n observations into k clusters, in which each ob-
servation belongs to the cluster with the nearest mean (also called centroid), serving as
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a prototype of the cluster. In this case, the ’observations’ can be the actual resources or
the traffic flow tight to the resource. Another possiblemean, is by exploiting the state-of-
the-art adversarial model, and its softmax activation function. In this way we can obtain
the confidence of the output model (like we did and represented in table 6.1); so, videos
with very similar traffic flow, will receive a similar confidence score as result of the soft-
max function, and will be placed in the same cluster. After clustering, similar resources
will, probabilistically speaking, be assigned to similar traffic flows, e.g., by employing
similar parameters in the binomial distributions (see Algorithm 5.1), when they must
be sent to the client. In this way, the attacker, even if he could be able to grasp the right
cluster, he will have less confidence in order to recognize the specific resource requested
by the client.
For example, as we can see in the confusion matrix on the right of the plot 6.1, video 1
(the smallest one) and video 4 (the biggest one), have fewmis-classifications with respect
to all the others, due to what we just explained. In particular, in order to not introduce
too much overhead, we assigned to video 1 a distribution that does not insert too many
dummy packets. At the same time, we paired video 4 with video 2 (the second biggest
resource), so that the model will have uncertainties on which video the victim is receiv-
ing (note again the non-symmetric property that we mentioned in section 6.3). All the
other videos have been clustered by size-similarity. Therefore, we proved that by analyz-
ing a good strategy for clustering the resources, we may further improve our defence.
This idea of clustering data is similar to a work made by Nithyanand R., Cai X. and
Johnson R. [25], in which they propose Glove, an SSH-based defence that consists of
two different phases. During the first phase, called training phase, the different net-
work traces are collected, clustered according to their network-level features and finally
a transformation matrix is generated. This matrix can convert one traffic distribution
into another one, and it’s exploited in the second phase, named defending phase.

• Optimization. As we discussed in chapter 5.2, the values assigned to x and y are funda-
mental for the overhead introduced in the communication. Moreover, they depend on
the binomial PMF, which in turn relies on the size of the resource that the server is trans-
mitting. The values that we assigned to the parameters of the binomial distribution are
empirical, based on a specific analysis of the 10 videos we had as a sample. We tried to
select the videos such that covered corner-stone scenarios, too, such as a very big and a
very small resource as compared to all the other videos, and a heterogeneous setting.
A possible way to improve Divergent, and make it more general, would be an extension
of the previous improvement (clustering): based on the clustering and on the silhouette
score, compute x and y that reduce at most the overhead. The silhouette score is a metric
used to compute how good the resources have been clustered by a certain algorithm. Its
value belongs to the interval [−1, 1], and the bigger it is, the better the clustering has been
performed. With this metric, we can understand howmuch the data inside the clusters
are (dis-)similar and in this way opt to use small or significant values of the parameter n
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of the binomial distribution.
In addition, we discuss about the possibility of computing the different values of y’s dur-
ing a pre-phase, instead of at runtime, in order to reduce the obstruction to the Quality
of Experience (QoE), given by cost operation of sampling.

• Open-world scenario. In our work we supposed that the victim is only able to request
specific resources and the attacker knows all of them. This type of setting is named as
close-world scenario. A more realistic background instead supposes that the victim can
ask for whichever data and the attacker, due to the huge amount that composes the web,
monitors only specific web resources and all the others are labeled as unmonitored. In
order to comprehend if the defence could be deployed also in a real-world scenario, an
analysis in the context should be carried out. At the same time, we argue that the closed-
world scenario is more convenient for an attacker, so we are confident that Divergent
can work in this setting, too.
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8
Conclusion

In this work we propose an innovative possible way to implement and apply a defence against
traffic analysis, specifically the website fingerprinting ones. Although a significant amount of
previous proposals has investigated the topic of preventingwebsite identification attacks, some
enhancements are still needed in terms, above all, of overhead and QoE of the user. Some ap-
proaches, even if are very efficient against the attacks, introduce too much useless data in the
communication, others instead assume difficult-to-realize suppositions. The approach that we
take into consideration, instead, ensures that a good defence efficiency can be achieved, while
still keeping low the overhead. We accomplish this through the use of randomness, which al-
lows to continuously change the traffic fingerprinting associated to each particular data1, dis-
tinct probability mass functions per resource and, possibly, clustering. Moreover, our method
does not need to introduce decoy pages in the server, increasing the wastefulness of memory
server-side, nor that the client knows in advance the characteristics of the future loading web
pages.

1That is the reason why we decided to name our defence Divergent, as different transmissions of the same
resource diverge from each other
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