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Introduction

Modular forms are classically defined as holomorphic functions on the complex upper half
plane H that satisfy some functional equations with respect to the action of the modular
group SL2(Z) and its subgroups Γ on H. Thanks to properties of periodicity a modular
form f of level Γ is naturally endowed with Fourier expansions

f =
∑

ngn0

anq
n

at the cusps of Γ, called q-expansions. With these premises the most naive reader may
think that modular forms are merely analytic objects that can be studied through means
of complex analysis. But they are indeed powerful tools in modern number theory. Histor-
ically, the coefficients of their q-expansions were discovered to encrypt beautiful numerical
identities and their popularity grew steadily over the past century as modular forms have
found their application in several different contexts. To mention one, modularity the-
orems, which in a certain sense imply that rational elliptic curves arise from modular
forms, are incarnations of the deep relation between these two objects which becomes
explicit when we attach to them L-functions and Galois representations.
Modular forms of a fixed level Γ over the complex numbers also have a geometric in-
terpretation as global differentials on the Riemann surface obtained by quotienting the
complex upper half plane by the action of the group Γ. This interpretation is of extreme
importance. On one hand it makes easier to study the properties of classical modular
forms. On the other it paves the way to the definition of modular forms over fields of
positive characteristic.
The aim of this work is to define modular forms modulo p and to present a result about
them adopting the two perspectives mentioned above. First we will deal with the case of
the full modular group and we will see modular forms only through their q-expansions.
Then we will focus on their geometric embodiment to generalize their characterization to
level N .
Chapter 1 presents the definition of modular forms as complex analytic objects and col-
lects some of the main results in the classical theory of modular forms which will be of
central importance to our purpose. In particular, in the first section we introduce modular
forms of full level and state a theorem about their structure of a graded C-algebra gener-
ated by the Eisenstein series Q and R of weight 4 and 6 respectively. We then generalize
the definition of modular forms to arbitrary congruence subgroups of the modular group.
In Chapter 2 we characterize modular forms modulo p of level 1 for p g 5 following
Swinnerton-Dyer’s construction in On l-adic representations and congruences for coef-
ficients of modular forms [17]. The associated graded algebra M̃ is the result of the
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reduction modulo p of the Fourier expansions of modular forms whose coefficients lie in
the ring Z(p). The action of the operator

¹ := q
d

dq

plays a fundamental role in this setting. Moreover elegant congruence relations between
the Bernoulli numbers imply that the reduction of the weight p−1 Eisenstein series Ep−1

is 1 and this is enough to describe the whole algebra of modular forms of full level. More
precisely, if we denote by Ã the homogeneous polynomial in Q and R that corresponds to
Ep−1 modulo p then

M̃ = Fp[Q,R]/(Ã− 1).

Furthermore M̃ inherits the structure of graded algebra. Its graded pieces are indexed by
Z/(p − 1)Z and multiplication by Ã naturally yields the notion of a filtration É for the
elements f of M̃ . Such a simple description seems to require nothing more than the few
tools we developed in the first Chapter of this work.
The aim of Chapter 3 and 4 is to extend it to the more general case of modular forms of
level N , for an integer N g 3. The complex analytic theory of modular forms ceases to
be enough for such an intent and we’re forced to use geometric means. In Chapter 3 we
give another, more intrinsic, definition of modular forms which arises from the geometry
of elliptic curves. Following the work of Katz they will either be functions on classes of
elliptic curves with additional data, or sections of line bundles over a universal curve. In
order to do so we also need to extend our notion of an elliptic curve over a field to the
more general one of an elliptic curve over a scheme. In this perspective an elliptic curve is
a morphism of schemes whose fibers parametrize genus one curves with a section, that is
to say a family of elliptic curves in the classical sense. After defining level structures for
elliptic curves, we will reach the notion of a universal elliptic curve E lying over a modular
curve Y (N), which represents the functor associating to a scheme the set of isomorphism
classes of elliptic curves carrying such extra information. As a result elliptic curves with
level N -structures can be obtain through pull-back from the universal elliptic curve

E

Y (N).

An invertible sheaf on the modular curve, denoted by É, naturally emerges from this
setting and represents the key to interpret geometric modular forms, as either functions
on pairs of elliptic curves over varying base schemes and level N -structures or equivalently
as global sections of the powers of É on the modular curve. As a result we can define
modular forms over any ring. In particular the graded algebra of modular forms modulo
p, denoted by R·

N , simply coincides with the one of modular forms over a field of positive
characteristic p and their q-expansions are defined as their evaluation at a particular curve
or, equivalently, in terms of the cusps of the modular curve.
Chapter 4 follows Katz’s argument in A result on modular forms in characteristic p [9]. As
in the full level case the only modular form whose q-expansion is 1 is the Hasse invariant
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denoted by A and its geometric description comes from the action of Fobenius on elliptic
curves. Again multiplication by A does not affect q-expansions and naturally determines
a filtration on the graded algebra of modular forms. As in Chapter 2 we will analyze the
behaviour of an operator on the ring of modular forms whose effect upon q-expansions is
q ddq . The construction of such an operator, denoted by A¹, represents the core of Chapter
4 and relies on the action of Frobenius on the first relative de Rham cohomology of E
over Y (N). In particular the image of such a map splits the Hodge filtration on the open
subset of the modular curve where the Hasse invariant is invertible. Here we can define
A¹ exploiting the action of a connection on the first relative de Rham cohomology and
working locally we extend such a definition to the whole modular curve. The central
theorem of this section is followed by some of its corollaries whose flavour recalls the
results presented at the end of Chapter 2 in the full level case.
The main body of this thesis is followed by three appendices. They are a collection of
several definitions, proofs and examples that the author of this work has found herself
useful in the understanding of the results of Chapter 3 and 4. Appendix A develops
in full generality some algebraic-geometric tools about cohomology of sheaves and de
Rham cohomology and includes some examples in the case of our interest. Appendix B
presents the Hodge filtration and the conjugate filtration that appear in Chapter 4. To
conclude in Appendix C we define the algebraic Gauss-Manin connection following the
exposition of Katz and Oda in [11]. This section includes an explicit computation by
Katz for the case of the universal elliptic curve and presents as well the definition of the
Kodaira-Spencer morphism. The two play a primary role in the construction of the ¹
operator of Chapter 4.
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Chapter 1

Classical theory of modular

forms over C

In this chapter we present the classical definitions and some of the results of the theory
of modular forms over C which will be useful in the rest of our work.

1.1 Modular forms of level 1

Let H = {z ∈ C,ℑ(z) > 0} be the complex upper half plane. We define the modular
group as

SL2(Z) =

{
µ =

(
a b

c d

)
| a, b, c, d ∈ Z, detµ = 1

}
.

Definition 1.1. Let f : H −→ C be an holomorphic function. We say that f is weakly

modular of weight k ∈ Z if for any µ =

(
a b

c d

)
∈ SL2(Z) and for any z ∈ H we have

f(µz) = (cz + d)kf(z).

We will often write f|k,µ to denote the weight k action of µ on f i.e.

f|k,µ(z) = (cz + d)−kf(z).

Then asking that f is weakly modular is equivalent to f|k,µ = f for all f ∈ SL2(Z).

Remark 1.1. We observe that if f ̸= 0 is weakly modular of weight k, then k is even.

Indeed let µ =

(
−1 0

0 −1

)
∈ SL2(Z), then f(µz) = f(z) = (−1)kf(z) for all z ∈ H. If k

is odd f(z) = −f(z) i.e. f(z) = 0 for any z ∈ H and this is a contradiction.

If f is weakly modular
f(z + 1) = f(Tz) = f(z)

where T =

(
1 1

0 1

)
hence f is periodic of period 1. The maps

z −→ e2Ãiz q −→
log q

2Ãi
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give us a bijection between the upper half plane and the punctured unit disk. It follows

that the function f̃(q) = f
(
log q
2Ãi

)
is periodic of period 2Ãi and admits a Fourier expansion

f̃(q) =
∑

n∈Z

anq
n.

Remark 1.2. We say that f is meromorphic at ∞ if f̃(q) =
∑

ng−n0
anq

n for an n0 > 0.

We say that f is holomorphic at ∞ if f̃(q) =
∑

ng0 anq
n. Moreover we say that f is

cuspidal if f is holomorphic at ∞ and a0 = 0.

Definition 1.2. Let f : H −→ C be an holomorphic function. We say that f is a modular
form of weight k and level 1 if f is a weakly modular form of weight k and it is holomorphic
at ∞.

From now on we will use the same notation for f and its expansion at ∞.
Let k g 0 be an even integer. We define the weight k Eisenstein series

Gk(z) =
∑

(m,n)∈Z2\{(0,0)}

1

(mz + n)k
.

For or k g 4 Gk is a modular form of weight k and level SL2(Z), which has Fourier
expansion given by:

Gk(z) =
·(1− k)

2
+
∑

ng1

Ãk−1(n)q
n

= −
Bk
2k

+
∑

ng1

Ãk−1(n)q
n

where Ãk−1(n) =
∑
d|n

dk−1.

Definition 1.3. The normalized Eisenstein series of weight k is

Ek(z) = −
2k

Bk
Gk(z) = 1−

2k

Bk

∑

ng1

Ãk−1(n)q
n.

For k = 2 the Eisensten series

G2(z) = 2·(2) +
∑

m ̸=0

∑

n∈Z

1

(mz + n)2

is not a modular form of weight 2 because it is not weakly modular of weight 2. In

particular one can prove that for µ = S =

(
1 0

0 −1

)
we have

E2(µz) = E2(−1/z) = z2E2(z) +
12

2Ãi
z. (1.1)
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Remark 1.3. Let us denote by Mk(C) the set of modular forms of weight k and level
SL2(Z) and let Sk(C) be the subset of cusp forms. They clearly form C-vector spaces.
Moreover it is easy to see that if f ∈Mk(C) and g ∈Mh(C), then gh ∈Mh+g(C). Then

M(C) =
⊕

kg1

Mk(C)

is a graded algebra and taking Fourier expansion at the cusp gives us an embedding

M(C) ↪→ CJqK

We now recall a technical result for weakly modular meromorphic functions.

Theorem 1.1 (The valence formula). Let f be a non zero meromorphic function on H
which is weakly modular of weight k. Then:

k

12
= ord∞f +

1

2
ordif +

1

3
ordÄf +

∑

É∈SL2(Z)\H

ordÉf. (1.2)

Proof. To prove this classical result we integrate f ′/f along the fundamental domain. For
the explicit computation see [12] Chapter 1, Theorem 2.1.

Definition 1.4. The Ramanujan’s ∆ function is ∆ = E3
4−E

2
6

123 .

The ∆ function is a cusp form of weight 12. As an immediate application of the
valence formula we have that it never vanishes in H. As a consequence multiplication by
∆

Mk(C) −→ Sk+12(C)

f −→ f∆

is an isomorphism of vector spaces. The valence formula also allows us to prove the
following result.

Corollary 1.1. The C-vector spaces Mk(C) and Sk(C) are finite dimensional for every
k. Moreover dimC(Mk(C)) = 0 if k < 0 or k is odd and

dimC(Mk) =

{
+k/12, if k = 2 mod 12,

+k/12,+ 1 otherwise.

Proof. If f is a modular form then f is holomorphic so all the numbers ordzf occurring
in the formula (1.2) must be positive. So it’s immediate that Mk(C) = 0 for k < 0.
Moreover applying again (1.2) we must have M2(C) = 0 = S2(C). If Mk(C) ̸= 0, the
linear map

Mk(C) −→ C

f =

∞∑

n=0

anq
n −→ a0
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has kernel Sk(C). So dimCMk(C) = dimC Sk(C) + 1 and the isomorphism above reduces
us to compute the dimension of dimC(Mk(C) for k f 10. Constant functions are clearly in
M0(C) so it is nonzero and we conclude that M0(C) = C. Assume now that 2 < k f 10.
If f ∈ Sk(C), f ̸= 0, we have ord∞f = 1 and +k/12, = 0 contradicting (1.2). So we must
have Sk(C) = 0 and Mk(C) = 1. To conclude

dimC(Mk(C) = dimC(Sk(C)) + 1 = dimC(Mk−12(C)) + 1

= dimC(Mk−24(C)) + 2

= ... = dimC(Mk−+k/12,12(C)) + +k/12,

and it equals +k/12, if k − +k/12,12 = 2 i.e. k = 2 mod 12, 1 + +k/12, otherwise.

Theorem 1.2. Any modular form f ∈ Mk(C) can be written as an isobaric polynomial
in E4 and E6 i.e. if f ∈Mk(C), then

f =
∑

4i+6j=k

ci,jE
i
4E

j
6

for some ci,j ∈ C. As a consequence we have the equality of graded algebras

M(C) = C [E4, E6] .

Proof. We prove that {Ei4E
j
6, 4i + 6j = k} is a set of generators for Mk(C). If k f 12,

the C-vector space Mk(C) has dimension 1. Then for k = 4 and k = 6 we must have
that E4 and E6 are a basis for M4(C) and M6(C) respectively. Moreover E2

4 and E4E6

are non zero modular forms of weight 8 and 10 respectively so they must be a basis for
Mk(C) for k = 8, 10. Let now k g 12 and f ∈ Mk(C). We choose a, b g 0 such that
4a + 6b = k. This is always possible. Indeed, k = 2m thus the condition 4a + 6b = k

equals 2a + 3b = m and such a and b can always be found by coprimality of 2 and 3.
Moreover from k g 12 we can assume a, b g 0. Then Ea4E

b
6 is a modular form of weight

k and f − a0(f)Ea4E
b
6 is a cusp form, namely

f − a0(f)E
a
4E

b
6 ∈ Sk(C).

Moreover
f − a0(f)E

a
4E

b
6

∆

is a modular form of weight k − 12. Using the inductive hypothesis we have

f = ∆


 ∑

4i+6j=k−12

ci,jE
i
4E

j
6


+ a0(f)E

a
4E

b
6

=
E3
4 − E

2
6

123


 ∑

4i+6j=k−12

ci,jE
i
4E

j
6


+ a0(f)E

a
4E

b
6

and we conclude that f can be written as an isobaric polynomial of degree k in E4 and
E6. To conclude that we get the whole graded ring of polynomials it suffices to check that
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E4 and E6 are algebraically independent. It is clear from the homogeneity property that
a non trivial relation among elements of distinct weight cannot exists. Hence if E4 and
E6 verify an algebraic relation, the monomials occurring in it must have the same weight.
In such a relation, if a power of E4 occurs we have

Em4 + E6P (E4, E6) = 0.

But E6(i) = 0 and E4(i) ̸= 0 so this cannot happen. Similarly pure powers of E6 cannot
occur. Hence E4 divides each monomial and cancelling E4 we obtain a relation of lower
degree, so we conclude by induction.

1.2 Modular forms of arbitrary level

Definition 1.5. Let N g 1 be an integer. The principal subgroup of level N is the kernel
of the natural map of reduction SL2(Z) ↠ SL2(Z/NZ), namely:

Γ(N) :=

{
µ ∈ SL2(Z), µ =

(
1 0

0 1

)
mod N

}
.

Definition 1.6. A subgroup Γ ¦ SL2(Z) is called a congruence subgroup if there exists
an N > 1 such that Γ(N) ¦ Γ.

The congruence subgroups we’re mainly interested into are Γ(N), Γ0(N) and Γ1(N)

where

Γ0(N) :=

{
µ =

(
a b

c d

)
∈ SL2(Z), c = 0 mod N

}

and

Γ1(N) :=

{
µ =

(
a b

c d

)
∈ SL2(Z), c = 0 mod N, a = d = 1 mod N

}
.

Definition 1.7. An holomorphic function f : H −→ C is a weakly modular form of
weight k and level Γ if

f(µz) = (cz + d)kf(z)

for all z ∈ H, for all µ =

(
a b

c d

)
∈ Γ.

Let P1(Q) = Q∪{∞}. Then SL2(Z) acts on P1(Q) transitively. Indeed by definition

µ∞ = lim
z→∞

az + b

cz + d
=
a

c

for any µ =

(
a b

c d

)
∈ SL2(Z). If we let a

c ∈ Q with a and c coprime then there exist

b,−d ∈ Z such that ad− bc = 1. Hence

µ =

(
a b

c d

)

9



is in SL2(Z) and µ∞ = a
c . As a consequence, given a

c and a′

c′ in Q, if we choose µ, µ′ ∈
SL2(Z) such that µ∞ = a

b and µ′∞ = a′

b′ then

(µ′ ◦ µ−1)
(
a

c

)
=
a′

c′
.

Moreover the stabilizer of the action of the modular group at ∞ is given by

StabSL2(Z)(∞) =

{(
1 b

0 1

)
,

(
−1 b

0 −1

)
, b ∈ Z

}
.

Definition 1.8. The set of cusps of Γ is given by Cusps(Γ) := Γ\P1(Q).

Let c = [t] be a cusp and let StabΓ(t) be the stabilizer of t ∈ Q through the action of
Γ. If we also have c = [t′], i.e. t′ = µt for some µ ∈ Γ, then StabΓ(t

′) = µStabΓ(t)µ
−1.

Moreover if t = µt∞ for some µt ∈ SL2(Z) we have StabΓ(t) = Γ ∩ µtStabSL2(Z)(∞)µ−1
t .

Hence it makes sense to define

Hc := StabSL2(Z)(∞) ∩ µ−1
t Γµt.

Remark 1.4. Let c = [t] be a cusp, then Hc is either the cyclic subgroup generated by(
1 hc
0 1

)
, or the one generated by

(
−1 hc
0 −1

)
, in which case we say that the cusp is

irregular, or the subgroup Z/2Z × Z generated by

(
−1 0

0 −1

)
and

(
1 hc
0 1

)
. Moreover

hc is the index of Hc in StabSL2(Z)(∞).

Definition 1.9. Let c ∈ Cusps(Γ), we call hc the width of the cusp.

We give the following proposition.

Proposition 1.1. Let Γ be a congruence subgroup of SL2(Z) and Γ its image in PSL2(Z).
Then ∑

c∈Cusps(Γ)

hc = [PSL2(Z) : Γ] = [SL2(Z) : {±Γ}]

Moreover if Γ ◁ PSL2(Z) then hc = hc′ for all hc, hc′ ∈ Cusps(Γ).

Proof. The proof of this proposition is a consequence of the following lemma:

Lemma 1.1. Let G be a group acting transitively on a set X and H f G a subgroup of
finite index. Let R be a set of representatives for H\X, then

∑

x∈R

[StabG(x) : StabH(x)] = [G : H].

Proof. We start noticing that we have an injection

StabH(x)\StabG(x) ↪→ H\G

10



with image H\StabG(x)H. Moreover, fixed x0 in X, we have a surjective map

H\G↠ H\X

Hg −→ Hgx0

whose fibers have cardinality [StabG(x) : StabH(x)]. Indeed since G acts transitively on
X, for any x ∈ X we can find gx ∈ G such that gxx0 = x and this gives surjectivity.
Furthermore, denoting by THx the fiber of Hx in H\X we have

THx = {Hg ∈ H\G : Hgx0 = Hx}

= {Hg′ ∈ H\G : Hg′gxx0 = Hx}

= {Hg′ ∈ H\G : Hg′x = Hx}

= H\HStabG(x) = StabH(x)\StabG(x)

To conclude, taking a set of representatives R we have

[G : H] =
∑

x∈R

|THx| =
∑

x∈R

[StabG(x) : StabH(x)].

We apply the lemma with X = P1(Q), G = PSL2(Z) and H = Γ. The last statement
is straight forward from the definition of Hc.

Remark 1.5. If Γ = Γ(N), for any cusp c we have hc = N and applying proposition 1.1.
we obtain that

N |Cusps(Γ(N))| = [PSL2(Z) : Γ(N)] =
1

2
|SL2(Z/NZ)|

hence

|Cusps(Γ(N))| =
N2

2

∏

p|N

(
1−

1

p2

)
.

Now let f be weakly modular of weight k and level Γ. Let c = [t] be a cusp and let
t = µt∞. Then fc = f|k,µt is invariant under the weight k action of Hc. Hence if we let

hc =

{
hc if c is regular,

2hc if c is irregular,

the group Hc contains

(
1 hc
0 1

)
thus fc is periodic of period hc. As before we consider

the function on the punctured disk f̃c(qc) obtained after the change of variable

qc = e
2πiz
hc .

If f̃c admits a meromorphic extension at zero we say that the function f is meromorphic
at the cusp c and in this case f̃c admits a Laurent expansion

f̃c =
∑

n∈Z

ac,nq
n
c .

If f̃c is holomorphic (respectively vanishes) at zero we say that f is holomorphic (respec-
tively vanishes) at c.
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Definition 1.10. A modular form of weight k and level Γ is a holomorphic function
f : H −→ C such that f is weakly modular of weight k and level Γ and holomorphic at
all cusps of Γ. Moreover we say that f is a cusp form if f vanishes at all cusps.
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Chapter 2

Algebraic structure of modular

forms modulo p of level 1

In this chapter we will give an algebraic representation of modular forms modulo p of
level 1 following [17]. The reader may acknowledge that such a description is effective but
naive and requires nothing more than the classical tools we developed in Chapter 1.

2.1 Preliminaries

Following Ramanujan’s notaion we set

P := E2 = 1− 12
∑

ng1

Ã1(n)q
n,

Q := E4 = 1 + 240
∑

ng1

Ã3(n)q
n,

R := E6 = 1− 504
∑

ng1

Ã5(n)q
n.

We moreover introduce the operator

¹ := q
d

dq
=

1

2Ãi

d

dz
.

Proposition 2.1. Let f be a modular form of weight k, then ∂f := 12¹f − kPf is a
modular form of weight k + 2.

Proof. Assume f ∈Mk(C) and µ =

(
a b

c d

)
∈ SL2(Z). We want to prove that

∂f(µz) = (cz + d)k+2∂f(z) i.e. ∂f|(k+2),µ(z) = ∂f(z).

We recall that the modular group is generated by the transformations

S : z −→ −1/z

T : z −→ z + 1

13



and the action above respects composition, namely

g|k,µ|k,µ′ = g|k,µµ′ .

So it suffices to prove invariance under the weight k + 2 action of T and S. Clearly

∂f(z + 1) = 12¹f(z + 1)− kP (z + 1)f(z + 1) = ∂f(z)

since ¹f(z + 1) = 1
2Ãi

d
dzf(z + 1) and f(z + 1) = f(z). From (1.1) we have

P (−1/z) = z2P (z) +
12

2Ãi
z.

Moreover
d

dz
f(−1/z) =

(
d

dz
f(−1/z)

)
1

z2
.

And f(−1/z) = zkf(z) yields

d

dz
f(−1/z) = kzk−1f(z) +

d

dz
f(z)zk.

Hence

¹f(−1/z) =
1

2Ãi
z2
(
kzk−1f(z) +

d

dz
f(z)zk

)
.

Then

∂f(−1/z) = 12¹f(−1/z)− kP (−1/z)f(−1/z)

=
12

2Ãi
z2
(
kzk−1f(z) +

d

dz
f(z)zk

)
− k
(
z2P (z) +

12

2Ãi
z
)
f(z)zk

= zk+2

(
¹f(z) +

12kf(z)

2Ãiz
− kf(z)P (z)−

12kf(z)

2Ãiz

)

= zk+2(¹f − kPf)(z).

Similarly one can prove that

12¹P − P 2 = −Q.

As a consequence

Proposition 2.2. We have

∂Q = −4R,

∂R = −6Q2.

14



Proof. By Proposition 2.1. we have that ∂Q ∈ M6(C) and the latter is a C-vector space
of dimension 1. So there exist ¼ ∈ C such that ∂Q = ¼R and

∂Q = 12¹Q− 4PQ

= 12q
d

dq

(
1 + 240

∑

ng1

Ã3(n)q
n

)
− 4

(
1− 12

∑

ng1

Ã1(n)q
n

)(
1 + 240

∑

ng1

Ã3(n)q
n

)

= −4 + 2016q + ... = ¼(1− 504q + ...)

yields ¼ = −4. Similarly ∂R ∈ M4(C) and the latter is a one dimensional vector space
over C generated by Q2, namely ∂R = ¼Q2. Then

∂R = 12¹R− 4PR

= 12q
d

dq

(
1− 504

∑

ng1

Ã5(n)q
n

)
− 6

(
1− 12

∑

ng1

Ã1(n)q
n

)(
1− 504

∑

ng1

Ã5(n)q
n

)

= −6− 2880q + ... = ¼(1 + 240q + ...)2

which yields ¼ = −6.

2.2 Modular forms modulo p

From now on we assume p g 5. Let

O = Z(p) = Zp ∩Q = {a/b ∈ Q : p ̸ |b}.

We denote by Mk(O) the O-module of modular forms of weight k whose Fourier expan-
sions have coefficients in O, namely

Mk(O) =

{
f ∈Mk(C) : f =

∑

n

anq
n, an ∈ O

}

and set M(O) =
⊕

kg0Mk(O). We notice that Q,R ∈M(O) and in this way we have a
diagram:

M(C) C[Q,R]

M(O) O[Q,R].

Proposition 2.3. We have that M(O) = O[Q,R].

Proof. Let f ∈ M(O), i.e. f ∈ Mk(C) such that f =
∑

n anq
n with an ∈ O. Let

ϕ(Q,R) ∈ C[Q,R] such that ϕ(Q,R) = f . In the same style of Theorem 1.2. we prove
that ϕ(Q,R) ∈ O[Q,R] by induction on k. If k f 12, the vector space Mk(C) has
dimension 1. Indeed if k = 4, Q is a basis and f = ¼Q for some ¼ ∈ C. Hence f

has Fourier coefficients in O if and only if ¼Q has Fourier coefficients in O, if and only
if ¼ ∈ O, i.e. ϕ(Q,R) = ¼Q ∈ O[Q,R]. Similarly for k = 6, 8, 10 we have f = ¼R,
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f = ¼Q2, f = ¼QR respectively and we must have ¼ ∈ O. Assume that k g 12 and
f =

∑
n anq

n ∈Mk(O). Then f − a0QiRj with 4i+ 6j = k is a cusp form. Since a0 ∈ O
we have f − a0QiRj ∈ Sk(O). We recall that we have an isomorpshism

Mk(C) −→ Sk+12(C)

f −→ ∆f

induced by ∆. Notice that ∆ = Q3−R2

123 ∈ O[Q,R]. Hence f−a0Q
iRj

∆ ∈ Mk−12(O). But

then by the inductive hypothesis f−a0Q
iRj

∆ = È(Q,R) ∈ O[Q,R] which implies

f =
(
È(Q,R) + a0Q

iRj
)
∆

and the latter belongs to O[Q,R].

We now define modular forms modulo p as follows.

Definition 2.1. Let M̃k ¦ FpJqK be the Fp-vector space obtained by reducing modulo p

the coefficients of the modular forms in M(O), namely

M̃k := {f̃ =
∑

n

ãnq
n, f ∈Mk(O)}.

We define the Fp-algebra of modular forms modulo p to be

M̃ =
∑

kg0

M̃k.

We want to characterize the algebraic structure of M̃ . We have a diagram

M(O) O[Q,R]

M̃ Fp[Q,R].
È

Where the maps are induced by the reduction modulo p. The map È is clearly surjective
but it may not be injective: two modular forms in O[Q,R] may have the same q expansion
modulo p. Our aim is then to determine kerÈ.
To proceed with our argument we introduce the following notation. Let f ∈ M(O) be a
modular form such that (in terms of polynomials in Q and R) f = ϕ(Q,R) ∈ O[Q.R]. We
denote by f̃ the function obtained by reducing modulo p its Fourier coefficients. Moreover
we denote by ϕ̃(Q,R) ∈ Fp[Q,R] the corresponding isobaric polynomial modulo p. Then

f̃ = È(ϕ̃(Q,R)) =: ϕ̃(Q̃, R̃).

We state the following results about congruences between the Bernoulli numbers.

Theorem 2.1 (Von Staudt-Clausen). Let p be a prime. For all n > 0, we have

pB2n =

{
0 mod p if (p− 1) ̸ | 2n,

−1 mod p if (p− 1)| 2n.
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Corollary 2.1 (Kummer’s congruence). Suppose k g 1 and (p − 1) does not divide 2k.
The class of B2k

2k modulo p only depends on 2k mod (p− 1), i.e. if

2k = 2k′ mod (p− 1)

then
B2k

2k
=
B2k′

2k′
mod p.

Proof. For a proof of these classical results see [12] Chapter 10, sections 1 and 2.

Let us now consider the polynomials A,B ∈ C[Q,R] such that A(Q,R) = Ep−1 and
B(Q,R) = Ep+1. Then A,B ∈ O[Q,R]. Indeed

Ep−1 = 1−
2(p− 1)

Bp−1

∑

ng1

Ãp−2(n)q
n Ep+1 = 1 +

2(p+ 1)

Bp+1

∑

ng1

Ãp(n)q
n

From Corollary 2.1. we have that

p+ 1

Bp+1
=

2

B2

so 2(p+1)
Bp+1

∈ O. This shows that Ep+1 ∈ M(O) and B(Q,R) ∈ O[Q,R]. Similarly
pBp−1 = −1 mod p yields ordp(Bp−1) = −1 and

ordp

(
p− 1

Bp−1

)
= 1.

Then 2(p−1)
Bp−1

∈ O and A(Q,R) ∈ O[Q,R].

Remark 2.1. The observation above yields in particular that

Ẽp−1 = Ã(Q̃, R̃) = 1.

As a consequence (Ã − 1) ¦ kerÈ. This is enough to describe M̃ , indeed the following
theorem holds:

Theorem 2.2.

M̃ ∼= Fp[Q,R]/(Ã− 1).

In order to prove it we need a lemma.

Lemma 2.1. i) Ã(Q̃, R̃) = 1 and B̃(Q̃, R̃) = P̃ .

ii) ∂Ã(Q,R) = B̃(Q,R) and ∂B̃(Q,R) = QA(Q,R).

iii) Ã(Q,R) has no repeated factor and Ã and B̃ are coprime.
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Proof. i) From the observation above Ã(Q̃, R̃) = Ẽp−1 = 1. Moreover by Kummer’s
congruence

Bp+1

2(p+ 1)
=
B2

4
= −

1

12
mod p

and the fact that ap = a mod p yields Ãp(n) = Ã1(n) for all n g 1. We conclude
that

Ẽp+1 =

(
1− 12

∑

ng1

Ã(n)qn

)
mod p = P̃ .

ii) We have ¹Ã(Q̃, R̃) = 0 then ∂Ã(Q̃, R̃) = P̃ Ã(Q̃, R̃) = B̃(Q̃, R̃) i.e.

∂Ã(Q̃, R̃)− B̃(Q̃, R̃) = 0

in M̃p+1. Then ∂A(Q,R)−B(Q,R) ∈Mp+1(O) and all its coefficients are congruent
to zero modulo p. So we must have ∂A(Q,R) − B(Q,R) ∈ pO[Q,R] and thus
∂Ã− B̃ = 0 in Fp[Q,R]. Similarly

∂B̃(Q̃, R̃) = ∂P̃ = 12¹P̃ − P̃ 2 = Q̃ = Q̃Ã(Q̃, R̃)

that yields ∂B̃(Q̃, R̃)−Q̃Ã(Q̃, R̃) = 0 in M̃ . The modular form ∂B(Q,R)−A(Q,R)

has all its Fourier coefficients divisible by p, namely ∂B(Q,R)−A(Q,R) ∈ pO[Q,R]

so ∂B̃(Q,R)− Ã(Q,R) = 0 in Fp[Q,R].

iii) The irreducible elements of Fp[Q,R] are of the form Q, R and Q3 − ³R2. Assume
that Q3 − ³R2 is an irreducible factor of Ã(Q,R), namely

(Q3 − ³R2)n|Ã(Q,R)

for some ³ ∈ Fp. Assume that n > 1. We must have ³ ̸= 1 since Q3 − R2 has zero
constant factor in the Fourier expansion but A(Q,R) = Ep−1 has not. Then

∂(Q3 − ³R2) = 3Q2(−4R)− 2³R(−6Q2) = −12Q2R(1− ³) ̸= 0.

We now assume that n is the exact power of (Q3 − ³R2) dividing Ã(Q,R). Then
∂Ã(Q,R) = B̃(Q,R) is divided exactly by (Q3 − ³R2)n−1 since (Q3 − ³R2) and
∂(Q3 − ³R2) are coprime. But then ∂B̃(Q,R) = QÃ(Q,R) is divided exactly by
(Q3−³R2)n−2 i.e. (Q3−³R2)n−2 divides exactly Ã(Q,R) and this is a contradiction.
Similarly if Ã(Q,R) is divisible by Qn, we have ∂Q = −4R and it is coprime with
Q. Then ∂Ã = B̃ is divided exactly by Qn−1 and ∂B̃ = QÃ is divided exactly by
Qn−2 and this is again a contradiction. The case with Rn uses the same argument.
We conclude that Ã has no repeated factors. In particular all its factors appear
with multiplicity n = 1 so that they appear with multiplicity n = 0 in ∂Ã = B̃ .

Now we can prove the theorem.
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Proof. Let a be the kernel of È. Point i) of the lemma above shows that (Ã − 1) ¦ a.
We notice that a must be prime since M̃ ¦ FpJqK is an integral domain. Moreover we
cannot have that a is maximal. We would have otherwise that Fp[Q,R]/a is a field and a
finitely generated Fp-algebra. By Hilbert’s Nullstellensatz the extension Fp ¦ Fp[Q,R]/a
would be finite and Q̃ and R̃ algebraic over Fp hence constant. But we notice that
Q = 1 + 240

∑
ng1 Ã3(n)q

n and R = 1 − 504
∑

ng1 Ã5(n)q
n so if p ̸= 2, 3 at least one

of them has coefficient of q non zero modulo p. To conclude it is then enough to prove
that (Ã − 1) is prime or, equivalently, irreducible. Indeed we recall that Fp[Q,R] has
Krull dimension equal to 2 and the fact that a is not maximal implies the existence of
m ¦ Fp[Q,R] maximal such that a ¢ m. Assuming (Ã−1) irreducible we have a inclusion
of prime ideals

0 ¢ (Ã− 1) ¦ a ¢ m ¢ Fp[Q,R]

which yields (Ã− 1) = a .
To prove then that (Ã − 1) is irreducible we let ϕ̃(Q,R) ∈ Fp[Q,R] be an irreducible
proper factor of Ã− 1 in Fp[Q,R]. Then we can write

ϕ̃(Q,R) = 1 + ϕ̃1(Q,R) + ...+ ϕ̃n(Q,R)

where each of the ϕ̃i(Q,R) is isobaric of degree i and n < p−1. Let · be a primitive (p−1)-
th root of unity. We notice that Ã(·4Q, ·6R) = Ã(Q,R) since Ã is homogeneous of degree
p− 1. Then ϕ̃(·4Q, ·6R) is also a divisor of Ã(Q,R)− 1 and it is different from ϕ̃(Q,R),
hence coprime with it. So ϕ̃(Q,R)ϕ̃(·4Q, ·6R) divides Ã(Q,R)− 1. Then considering the
isobaric terms of highest degree we must have that ϕ̃n(Q,R)ϕ̃n(·4Q, ·6R) = ·nϕ̃n(Q,R)

2

divides Ã(Q,R) but this contradicts Lemma 2.1

Remark 2.2. We recall that the multiplication by Ep−1

f −→ fEp−1

gives us a chain of maps among the subspaces

Mk(C) −→Mk+p−1(C) −→Mk+2(p−1)(C) · · · −→Mk+n(p−1)(C) · · · .

Since f̃ Ã(Q̃, R̃) = f̃ the corresponding maps on M̃k are injective. Hence we have an
induced filtration

M̃k ¦ M̃k+p−1 ¦ M̃k+2(p−1) · · · ¦ M̃k+n(p−1) · · · .

We conclude that the structure of Mk(C) of a graded algebra induces a grading on M̃ with
values in Z/(p− 1)Z, namely:

M̃ =
⊕

³∈Z/(p−1)Z

∑

k=³ mod p

M̃k.

Remark 2.3. We remark that P̃ is by definition a modular form modulo p, namely
B̃(Q̃, R̃) = P̃ .
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We now let f̃ be a graded element in M̃ , i.e.

f̃ ∈
∑

k=³ mod p

M̃k

for some ³ ∈ Z/(p − 1)Z. By multiplying each summand by suitable powers of Ã(Q̃, R̃)
we can assume that f̃ ∈ M̃k for some k.

Definition 2.2. We define É(f̃) = k to be the filtration of f̃ .

In other words É(f̃) is the smallest integer k such that there exists a g ∈ Mk such
that g̃ = f̃ .

Proposition 2.4. i) Let k ∈ Z a positive integer and f ∈ Mk(O) with f = ϕ(Q,R)

for some ϕ(Q,R) ∈ O[Q,R]. Assume f̃ ̸= 0. Then É(f̃) < k if and only if Ã(Q,R)
divides ϕ̃(Q,R).

ii) Let f̃ be a graded element, then É(¹f̃) f É(f̃) + p+1 and equality holds if and only
if É(f̃) = 0 mod p.

Proof. i) One implication is clear. Assume that Ã(Q,R) divides ϕ̃(Q,R), namely
ϕ̃(Q,R) = Ã(Q,R)nÈ̃(Q,R), then

f̃ = ϕ̃(Q̃, R̃) = Ã(Q̃, R̃)nÈ̃(Q̃, R̃) = È̃(Q̃, R̃) = g̃

where g = È(Q,R) ∈ O[Q,R] is an isobaric polynomial of degree k′ = k− n(p− 1),
that is É(f) = k′. Conversely assume É(f) = k′ < k for some k′ = k mod (p− 1),
i.e. k = k′ + n(p − 1). Then f̃ = g̃ for g ∈ Mk′ . Let g = È(Q,R) as an isobaric
polynomial in Q and R, then

ϕ̃(Q̃, R̃) = È̃(Q̃, R̃) = È̃(Q̃, R̃)Ã(Q̃, R̃)n

in M̃k. Consider ϕ̃− È̃Ãn ∈ Fp[Q,R]. We have that ϕ(Q,R)− È(Q,R)A(Q,R)n is
in Mk(O) and it’s congruent to zero modulo p. So it must have all its coefficients
in pO. Hence ϕ̃(Q,R) − È̃(Q,R)Ã(Q,R)n = 0 in Fp[Q,R] and this allows us to
conclude.

ii) Assume that É(f̃) = k, i.e. f̃ ∈ M̃k and let f = ϕ(Q,R) ∈ M(O) be a modular
form of weight k that lifts it. We can write 12¹f̃ = Ã(Q̃, R̃)∂f̃ + kB̃(Q̃, R̃)f̃ and it
is in M̃k+p+1. Then we have É(¹f) f k + p + 1 and strict inequality holds if and
only if Ã divides Ã∂ϕ̃ + k̄B̃ϕ̃ in Fp[Q,R] by the point above. But we recall that
Ã and B̃ are coprime and the assumption É(f̃) = k implies that Ã(Q,R) does not
divide ϕ̃(Q,R). Hence Ã divides Ã∂ϕ̃+ k̄B̃ϕ̃ if and only if k̄ = k mod p = 0.

We conclude stating the following result for modular forms in characteristic p.

Proposition 2.5. Let f̃ , g̃ ∈ M̃k. Then f̃ = g̃ if and only if for each n f +k/12, the
coefficients of qn of f̃ and g̃ are equal.
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Proof. To prove the proposition we recall the following algorithm for the construction of
a basis for Sk.

Lemma 2.2. The space Sk(C) has a basis g1, g2, ..., gd where d = dimC(Sk(C)) such that
the gj’s lie in ZJqK and ai(gj) = 0 for i < j and aj(gj) = 1.

Proof. We notice that if a, b g 0, the modular forms gj = ∆jR2(d−j)+aQb for j = 1, ..., d

are in ZJqK since ∆, R and Q lie in ZJqK. We recall that

d =

{
+k/12, − 1 if k = 2 mod 12,

+k/12, if k ̸= 2 mod 12.

We notice that the gj ’s are cusp forms and we can choose a, b such that gj ∈ Sk(C).
Indeed, if k = 0 mod 12, then d = +k/12, with k = 12d, then we set a = b = 0 and
gj = ∆jR2(d−j) ∈ Sk(C). Now let k = c+n12 with 0 < c < 12. If c = 2 then d = n−1 and
we choose 4a+6b = 14 and for any j we have 12j+6(2(d−j))+6a+4b = 12n−12+14 = k,
i.e. gj ∈ Sk(C). Similarly for the remaining cases we have d = n and we choose a, b g 0

such that 4a + 6b = c (namely a = 1, b = 0 if c = 4, a = 0, b = 1 if c = 6, a = 2, b = 0 if
c = 8 and a = 1 = b if c = 10) and obtain that gj ∈ Sk(C). Furthermore we clearly have
ai(gj) = 0 for i < j and aj(gj) = 1. This also proves thar they’re linearly independent
over C and thus form a basis for Sk(C).

As a consequence if f ∈ Sk(C), then we can write f = ¼1g1 + ...+ ¼dgd with ¼i ∈ C.
Then ai(f) = ¼i for i = 1, ..., d i.e. f can be written as linear combination of the gi’s and
the coefficients are given by the first d Fourier coefficients of f .
We can now prove the proposition. Let f̃ , g̃ ∈ M̃k and assume that the coefficients of qn

of the two coincide for each n f +k/12,. Then the first +k/12, coefficients of f̃ − g̃ are
0. We take lifts for f, g ∈Mk(O) and it’s not restricting to assume f − g ∈ Sk(O). Then
ai(f − g) ∈ pO for i f +k/12, and notice that d = dimC(Sk(C)) f +k/12,. From the
lemma above we have f − g = a1(f − g)g1 + ... + ad(f − g)gd and taking the reduction
modulo p we conclude f̃ − g̃ = 0.
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Chapter 3

Katz’s modular forms

Our aim is to extend the definition of modular forms modulo p for arbitrary level N .
The classical theory of modular forms is no longer enough and we’re forced to approach
geometric tools. From now on modular forms will either be rules which associate to a
class of elliptic curves over a ring with an additional level structure an element of the base
ring or equivalently sections of a line bundle over the modular curve.

3.1 Modular curves and some motivations

Why to bother about a universal curve?
We have a natural action of Z2 on H×C as follows:

(H×C)× Z2 −→ H×C

((Ä, z), (n,m)) −→ (Ä, (z +mÄ + n)).

Let
Ã : (H×C)/Z2 −→ H

be the natural projection. Then the fiber of a point Ä ∈ H is given by the class of pairs
(Ä, z) such that two pairs (Ä, z) and (Ä, z′) are equal if and only if z = z′ mod (Z+ ÄZ),
Hence

Ã−1(Ä) ∼= C/Z+ ÄZ.

We denote ΛÄ := Z+ ÄZ. The complex torus C/ΛÄ is complex analytically equivalent to
an elliptic curve EÄ over C of equation1

Y 2 = X3 − g2(Ä)X + g3(Ä)

where

12(2Ãi)−4g2(Ä) = E4(Ä) = 1 + 240
∑

ng1

Ã3(n)q
n,

216(2Ãi)−6g4(Ä) = E6(Ä) = 1− 504
∑

ng1

Ã5(n)q
n.

1See [16] Chapter 6 for a complete argument.
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Letting the modular group SL2(Z) act on Ẽ := (H × C)/Z2 through the classical
action on H we obtain

Ã : SL2(Z)\Ẽ −→ SL2(Z)\H.

Recalling that two elliptic curves EÄ and EÄ ′ are isomorphic if and only if Ä ′ = µÄ for some
µ ∈ SL2(Z), we have that the fiber of a point SL2(Z)Ä corresponds to the isomorphism
class of the corresponding elliptic curve EÄ . Hence the map above parametrizes elliptic
curves over C up to isomorphism.
We can repeat the same argument with any subgroup Γ ¦ SL2(Z) of Chapter 1 and
obtain

Ã : Γ\Ẽ −→ Γ\H.

It turns out that Ã parametrizes elliptic curves with additional structure. In the case
Γ = Γ(N), we obtain classes of isomorphism of elliptic curves equipped with certain level
N -structures. If EÄ is a complex elliptic curve we consider the subgroup of N -torsion
points EÄ [N ] given by

0 −→
1

N
ΛÄ/ΛÄ −→ EÄ

[N ]
−→ EÄ .

A level N structure is an isomorphism

³N : (Z/NZ)2 −→ EÄ [N ]

and corresponds to the choice of a basis ³N (1, 0) = P , ³N (0, 1) = Q for EÄ [N ]. There is
a pairing 2

eN : EÄ [N ]× EÄ [N ] −→ µN

which can be computed as follows. We fix a basis for EÄ [N ], for istance É1 = 1
N +ΓÄ and

É2 =
Ä
N + ΓÄ and we let µ ∈M2(Z/NZ) be such that

(
P

Q

)
= µ

(
É1
É2

)
. We have

eN (P,Q) = e2Ãi det µ/N .

One can see that this does not depend on the choice of the basis and if P,Q are generators
of EÄ [N ] we have µ ∈ GL2(Z/NZ) hence eN (P,Q) is a primitive root of unity.
We then consider classes of isomorphism of elliptic curves EÄ with level N structure
determined by the N -torsion points P , Q of determinant eN (P,Q) = e2Ãi/N i.e. pairs of
the form (EÄ , (

1
N + ΛÄ ,

Ä
N + ΛÄ)) for Ä ∈ H. One can easily check that two such classes

[(EÄ , (
1
N + ΛÄ, ÄN + ΛÄ))] and [(EÄ ′ , (

1
N + ΛÄ ′, Ä

′

N + ΛÄ ′))] are equal if and only if

Γ(N)Ä ′ = Γ(N)Ä.

The group Y (Γ) = Γ\H can be seen as an Hausdorff topological space with the classical
quotient topology from C. It can be equipped with complex charts and thus inherits the
structure of a Riemann Surface 3. We define

X(Γ) = Γ\H ∪ P1(Q) = Y (Γ) ∪ Cusps(Γ).

2See [16] Chapter III.8 for the characterization of the Weil Pairing on elliptic curves over
arbitrary fields k and [10] Chapter 2.8 for a more general definition.

3See [3] Chapter 2.
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It is an Hausdorff, connected and compact Riemann Surface and thus corresponds to an
algebraic projective curve. Let

p : H −→ Y (Γ) ↪→ X(Γ)

be the natural map and let us denote by Ω1
X(Γ) the sheaf of C-linear (holomorphic)

differentials on the modular curve X(Γ). We have a correspondence between modular
forms of weight 2k and global sections of Ω1

X(Γ)

¹k. In particular if we let

É ∈ H0
(
X(Γ),Ω1

X(Γ)

¹k
)
,

then the pull-back p∗É defines a modular form of weight 2k and level Γ. Indeed let

x = ÄΓ = p(Ä) ∈ Y (Γ), then for any µ =

(
a b

c d

)
∈ Γ we have (p ◦ µ)(Ä) = p(Ä). Hence

µ∗p∗É = p∗É must hold. If p∗É = f(Ä)(dÄ)k then:

µ∗p∗É = f(µÄ)(dµ(Ä))k

= f(µÄ)

(
1

(cz + d)2

)k
(dÄ)k

= p∗É = f(Ä)(dÄ)k.

which yields f(µÄ) = (cz + d)2kf(Ä), i.e. f is weakly modular of weight 2k and level
Γ. Moreover the local charts around the cusps c = [t] ∈ Γ\P1(Q) are disjoint open
neighbourhoods which are homeomorphic to the unit disk through z −→ qc. If p∗É is
locally g(qc)d(qc), we can recover from g(qc) the q-expansion of f at the cusp c exactly
how we defined it in Chapter 1.
Coversely, repeating the argument backwards, for any modular form f : H −→ C, the
position

p∗É := f(Ä)(dÄ)k

defines a global section of Ω1
X(Γ)

¹k. Then we can identify modular forms of level N and

weight 2k with H0
(
X(Γ),Ω1

X(Γ)

¹k
)
.

To conclude our argument, we fix Γ = Γ(N) and we let E := Γ(N)\Ẽ, Y (N) := Y (Γ(N)).
We consider

E

Y (N).

Ã

The discussion above suggests us to extend our definition of an elliptic curve over a certain
field k to a notion of elliptic curve over a scheme. It will be a morphism of schemes whose
fibers are elliptic curves in the classical sense. Then E/Y (N) is going to be an elliptic
curve and its fibers elliptic curves with level N structure. In a naive way modular forms
of weight 2k, not necessarily holomorphic at the cusps, are elements of

H0
(
Y (N),Ω1

Y (N)

¹k
)

25



and holomorphic modular forms of weight 2k are sections in H0
(
X(N),Ω1

X(N)

¹k
)
.

Finally let ÉE/Y (N) = Ã∗Ω
1
E/Y (N). The Kodaira-Spencer isomorphism (Appendix C.3)

tells us that
Ω1
Y (N)

¹k ∼= É¹2k
E/Y (N)

.

All in all, it makes then sense to define modular forms of weight 2k and level N as

H0
(
Y (N), É¹2k

E/Y (N)

)
.

Our aim is to generalize the argument above to a scheme Y (N) over Z[1/N ]. To do
so we will translate our problem in the formalism of moduli spaces.

3.2 Arithmetic moduli of elliptic curves: an overview

The results of the following section are in [10]. Many of them are presented without a
proof. Indeed, the above mentioned topic constitutes an entire branch unto itself and
going into details would make us stray from our purpose. We give the definition of an
N -structure and state a representability theorem in the category Ell. At the end of it we
will have the notion of a universal curve in the sense that any elliptic curve with level N
structure can be seen as a pullback of it.

In this section we will denote by S a scheme and by E/S an elliptic curve over S as
follows.

Definition 3.1. An elliptic curve is a proper, smooth morphism of schemes together with
a section which we denote O

E

S

whose fibers are connected curves of genus one.

This means that for any s ∈ S, if we denote by k(s) = OS,s/mS,s the residue field at
s and by Es the curve obtained by pullback

Es E

Spec(k(s)) S

p

then Es/k(s) is an elliptic curve in the usual sense.

Remark 3.1. The scheme E/S has a unique structure of a commutative group scheme.
In [10] Theorem 2.1.2 Katz and Mazur give a detailed proof of this fact reducing to the
well known case of an elliptic curve over a field k. Moreover, as in the case of elliptic
curves over a field, one can define the map [N ] of multiplication by N over a group scheme
(see [15] Remark 3.4).
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It is important to recall the following crucial fact about the N -torsion of an elliptic
curve.

Theorem 3.1. Let N g 1 be an integer. Let S be a scheme over Z[1/N ], i.e. N is
invertible in S. Let E[N ] be the kernel of the multiplication by N morphism:

[N ] : E −→ E.

Then E[N ] is a finite étale subgroup scheme over S which is locally on S isomorphic to
the constant group scheme (Z/NZ)2S.

Proof. A whole detailed proof can be found in [10] Chapter 2.3. We will sketch the main
steps here, since they are an interesting reduction to the case of elliptic curves over an
algebraically closed field. In the latter situation the statement above is a classical result,
whose proof can be found in [16] Chapter III. Zariski locally on S, E is given by a smooth
Weirstrass cubic in P2

S with origin (0, 0, 1) (see [10] section 2.2). So we may suppose that
S is the open set in

Spec(Z[a1, a2, a3, a4, a6])

over which the generalised Weirstrass cubic

X2 + a1XY + a3Y = X3 + a2X
2 + a4X + a6

is smooth. Then S is regular and E, being smooth over S, is regular. We check that
[N ] is finite flat and fiber by fiber étale and this yields that [N ] is finite étale . Finite
morphisms of regular schemes of the same dimension are automatically flat, so to prove
that [N ] is finite and flat it suffices to prove that it is finite. Since E is proper over S,
any S-morphism of E is proper so it is enough to check it has finite fibers and this can be
checked geometric fiber by geometric fiber. We’re reduced to show that [N ] : E −→ E is
finite when E is an elliptic curve over an algebraically closed field k. But any morphism
between proper smooth connected curves over k is either constant or finite. In particular
the map induced by [N ] on differentials is multiplication by N so [N ] is non constant
thus finite and étale. This shows that [N ] is finite étale over S. To conclude that E[N ]

is isomorphic to (Z/NZ)2S , since with our reduction S is normal and connected, it is
enough to check it at a geometric point and it is again the case of an elliptic curve over
an algebraically closed field.

Definition 3.2. Let S be a scheme and E/S an elliptic curve. A (naive) Γ(N)-structure
on E is a group schemes isomorphism

³ : (Z/NZ× Z/NZ)S
∼
−→ E[N ].

We now define the category of elliptic curves in the sense of Definition 3.1.

Definition 3.3 (The category Ell). The category of elliptic curves is given by the following
data.
Objects are elliptic curves over variable base schemes

E

S.

p
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Morphisms are commutative squares of the form

E′ E

S′ S

p′ p

f

where the induced morphism E′−→E ×S S
′ is an isomorphism of elliptic curves.

If we consider only schemes over Spec(Z[1/N ]) we will denote the corresponding sub-
category by EllZ[1/N ].

Definition 3.4 (Moduli problem). A contravariant functor P : Ell −→ Set is a moduli
problem for elliptic cuves. Given E/S ∈ Ell an element of P(E/S) is called a level P
structure over S.

The reader might guess that we’re interested in the following moduli problem:

Definition 3.5. For N g 3 the level N moduli problem is

Γ(N) : EllZ[1/N ] −→ Set

E/S −→ {level N structures E[N ] ∼= (Z/NZ)2S}.

The moduli problem P is said to be representable if it is representable as a functor
from Ell. This means that there exists an elliptic curve over a scheme

E

M(P)

and a functorial isomorphism

HomEll(E/S,E/M(P)) ∼= P(E/S).

Remark 3.2. If the moduli problem P is representable, the scheme M(P) represents
the functor on the category of schemes Sch which associate to a scheme S the set of
isomorphism classes of pairs (E/S, ³) with E an elliptic curve over S and ³ ∈ P(E/S)
a level P-structure.

We give now some definitions.

Definition 3.6 (Relative representabe moduli problem). The moduli problem P is said
to be relatively representable over Ell if for every E/S ∈ Ell the functor

Sch/S −→ Set

T −→ P(ET /T )

is representable by a scheme PE/S.
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Definition 3.7 (Rigid moduli problem). A moduli problem P is called rigid if for any
elliptic curve E/S and any level P structure ³ ∈ P(E/S) on E/S the pair (E/S, ³) has
no non trivial automorphism.

Definition 3.8. Let P be a property of morphisms of schemes. A moduli problem P is
said to be of type P over Ell if it is relatively representable and for any E/S the morphism
of schemes

PE/S

S

has property P .

Remark 3.3. The level N moduli problem is relatively representable and étale over Ell

(see [10] Theorem 3.6.0). More generally Katz and Mazur show that if C/S is a smooth
commutative group scheme of relative dimension 1 and A is a fixed finite abelian group,
then the functor on Sch/S which sends any scheme T over S to Homgr(A,C(T )) is rep-
resentable by an S-scheme of finite presentatiom. It follows that the sub-functor that
sends a scheme T over S to the set of A-structures on CT /T is representable by a closed
subscheme of such a scheme. For more details about this see [10] 1.6.

It turns out that the level N moduli problem is also rigid.

Proposition 3.1 (Rigidity of level N structures). Let f : E −→ E be an automorphism
of an elliptic curve E over a connected scheme S. Let N g 3 and E[N ] the kernel of the
multiplication by N map. If f induces the identity on E[N ] then f = 1.

Proof. We recall 4 that for any f ∈ End(E) we have its dual isogeny f̂ ∈ End(E). They
satisfy

f ◦ f̂ = f̂ ◦ f = [deg f ].

The trace of f is defined as the integer tr(f) = f + f̂ . We need an auxiliary lemma.

Lemma 3.1. If f : E −→ E is an S-morphism of an elliptic curve, then

i) Inside the ring End(E), f is a root of the Z-polynomial:

X2 − tr(f)X + deg f.

ii) We have the inequality
tr(f)2 f 4 deg f.

Proof. The first statement is clear from

f2 − (f + f̂)f + f̂f = 0.

The second holds if and only if

tr(f)2 − 4 deg f f 0

4See [16] Chapter III.
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if and only if the polynomial
X2 − tr(f)X + deg f

takes only positive values for real values of X. This is equivalent to having

n2 − tr(f)n+ deg f g 0

for n ∈ Z ¦ End(E) that is deg(n− f) g 0 which allows us to conclude.

Back to our case, assume that f fixes E[N ]. Then f − 1 kills E[N ] so it factors
through N , namely f = 1 + g[N ] for some g ∈ End(E). Hence tr(f) = 2 + Ntr(g) and
deg(f) = 1+tr(g)N +deg(g)N2. But f ∈ Aut(E) so deg f = 1 and Ntr(g) = −N2 deg g.
From part ii) of the lemma we have tr(g)2 f 4 and thus |N deg g| f 2, which yields for
N g 3 that deg g < 1. So we must have deg g = 0 and f = 1.

Rigidity of the level N problem will play a primary role in our discussion. It is indeed
the key to representability.

Theorem 3.2. A relatively representable moduli problem P which is also affine over Ell is
representable if and only if it’s rigid. If moreover it is étale over Ell then it is represented
by a smooth affine curve over Z.

Proof. This result is non trivial. See [10] Chapter 4.7.

From now on we will consider schemes S over Z[1/N ]. We can finally state our main
result:

Proposition 3.2. For N g 3 the level N moduli problem

Γ(N) : EllZ[1/N ] −→ Set

E/S −→ {level N structures E[N ] ∼= (Z/NZ)2}

is representable. In particular the associated functor on SchZ[1/N ] is represented by a
smooth affine curve YN over Z[1/N ].

Proof. The proposition follows from Theorem 3.2., Remark 3.3. and Proposition 3.1.

Remark 3.4. If we consider elliptic curves over S = Spec(C) we recover the classical
definition of modular curve. Following the argument of Section 3.1, elliptic curves over
C with level N-structure are parametrized by

YN :=
⊔

µ∈SL2(Z/NZ)\GL2(Z/NZ)

Γ(N)\H.

Here each connected component Y (N) := Γ(N)\H represents the moduli problem over
EllC of isomorphism classes of pairs (EÄ , (P,Q)) where EÄ is an elliptic curve and (P,Q)

is a level N-structure of determinant · i.e. a basis for the N-th torsion subgroup of pairing
eN (P,Q) = · for · a primitive root of 1.

30



Let ·N vary between the primitive N -th roots of 1. Let us consider YN as a curve over
Z[1/N, ·N ] under base extension. Since the setting in the complex case of Remark 3.1. is
obtained by base change Z[1/N ] −→ C it’s not surprising that the curve YN turns out to
be disjoint union of ϕ(N) affine irreducible (all isomorphic) curves over Z[1/N, ·N ]. We
denote each irreducible component by Y (N). We have then a universal pair

(E/Y (N), ³univ)

that represents the moduli problem in EllZ[1/N,·N ] of level N -structures of pairing ·N .
In particular Y (N) represents the functor on Sch/Z[1/N, ·N ] which associates to each
scheme S the set of pairs (E/S, ³N ) of elliptic curves over S with level N -structures of
pairing ·N .

Remark 3.5. We will work over an algebraically closed field K of positive characteristic
p and with an integer N g 3 coprime with p. We will consider only affine schemes over
the base field K. Fixed a primitive N-th root of unity ·N , the Γ(N) moduli problem
of determinant ·N is representable in the category EllK by a pair (EK/Y (N)K , ³univ).
Such an object is simply obtained after base extension from the pair (E/Y (N), ³univ) in
the category EllZ[1/N,·N ].

Definition 3.9. We refer to the object

(E, ³univ)

Y (N)

Ã as the universal elliptic curve.

3.3 Katz’s modular forms

We are now ready to give the definition of modular forms. We recall again the definition
of an elliptic curve over a scheme.

Definition 3.10. Let S be a scheme. An elliptic curve E over S is a smooth proper
morphism p : E −→ S whose geometric fibers are connected curves of genus 1 with a
section e : S −→ E.

We denote by ÉE/S the sheaf p∗Ω1
E/S = R0p∗Ω

1
E/S . Such a sheaf is a line bundle and

its formation is compatible with base change, i.e. if we have a pullback square:

ES′ E

S′ S

p

g

then ÉES′/S′ = g∗ÉE/S .

Definition 3.11 (Modular forms of level 1). A modular form of weight k ∈ Z and level
1 is a rule f which assigns to each elliptic curve E over any scheme S a section f(E/S)

of (ÉE/S)
¹k over S such that:

i) f(E/S) depends only on the S-isomorphism class of the elliptic curve E.
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ii) The formation of f(E/S) commutes with arbitrary base change. Hence if we have
g : S′ −→ S and

ES′ E

S′ S

p

g

then f(ES′/S′) = g∗(f(E/S)).

We denote by M(Z, 1, k) the Z-module of such modular forms of weight k. If we
consider elliptic curves defined over a ring R it makes sense to give the following equivalent
definition:

Definition 3.12. A modular form f of weight k is a rule which assigns to each pair
(E/R, ÉE/R) consisting of an elliptic curve E over a ring R, together with a basis ÉE/R of
H0(Spec(R), ÉE/R), i.e. a nowhere vanishing section of Ω1

E/R, an element f(E/R, ÉE/R)
of R such that

i) f(E/R, ÉE/R) depends only on the isomorphism class of the pair (E, ÉE/R).

ii) f is homogeneous of degree −k in the second variable, namely for any ¼ ∈ R∗ we
have f(E/R, ¼ÉE/R) = ¼−kf(E/R, ÉE/R).

iii) The formation of E/R commutes with arbitrary extension of scalars u : R −→ R′,
namely f(ER′/R′, ÉER′/R′) = u(f(E/R, ÉE/R)).

The correspondence between the two definitions is given by the formula

f(E/Spec(R)) = f(E/R, ÉE/R)É
¹k
E/R

.

Remark 3.6. The position above makes sense. Let S = Spec(R) and let É be a nowhere

vanishing differential for E/R i.e. a global basis for Ω1
E/S. We have p∗Ω1

E/S = ˜Γ(E,Ω1
E/S

)

and thus É¹k
E/S

= (p∗Ω
1
E/S)

¹k = ( ˜Γ(E,Ω1
E/S

))¹k = 5 ˜Γ(E,Ω1
E/S

)¹k hence

H0(S, É¹k
E/S

) = (p∗Ω
1
E/S)

¹k(S) = (Ω1
E/S(E))

¹k = RÉ¹k.

Remark 3.7. If in the definition above we consider only schemes S or rings R lying
over R0 and only change of base given by R0-morphisms, we obtain the notion of modular
forms of weight k and level 1 defined over R0, whose R0-module we denote by M(R0, 1, k).

Remark 3.8. If we consider R0 = C then any elliptic curve over C is of the form
E(Λ) = C/Λ for some lattice Λ ¦ C and we have a correspondence

SL2(Z)\H←→ {Λ ¦ C}/C∗.

5Here we use that on a scheme X = Spec(R) if we have coherent OX modules M̃ and Ñ ,

then M̃ ¹OX
Ñ ∼= ˜M ¹OX

N .
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It’s an easy exercise to check that we recover the classical notion of modular forms of
weight k and level SL2(Z). Indeed, let ΛÄ1 = Z+ Ä1Z and ΛÄ2 = Z+ Ä2Z. We recall that
maps between complex tori are of the form

C/ΛÄ2 −→ C/ΛÄ1
z −→ ³z

form some ³ ∈ C such that ³ΛÄ2 ¦ ΛÄ1. In particular the elliptic curves C/ΛÄ1 and
C/ΛÄ2 are isomorphic if and only if there exists ³ ∈ C∗ such that

ΛÄ1 = ³ΛÄ2

or equivalently if and only if, from the correspondence above, we have

Ä2 = µÄ1

for µ =

(
a b

c d

)
∈ SL2(Z) and ³ = cÄ1 + d .

Let É2 = dz be the canonical invariant differential on C/ΛÄ2 then É1 = d(³z) = ³dz is
an invariant differential on C/ΛÄ1. Let f be a modular form in the sense of Definition
3.12. Regarding f as a function of Ä i.e. f(Ä) = f(C/ΛÄ , É), we have

f(µÄ1) = f(Ä2) = f(C/ΛÄ2 , É2) = f(C/ΛÄ1 , ³
−1É1)

= ³kf(C/ΛÄ1 , É1) = (cz + d)kf(Ä1).

Remark 3.9 (The Tate curve). In the classical theory of modular forms we require a
modular form f(Ä) to be holomorphic at ∞. This means that the Laurent series around
zero of f̃(q) = f (log q/2Ãi), 0 < |q| < 1, lies in CJqK. Our aim is to interpret the q-
expansion of f in the perspective above as the value of such a rule f at a particular elliptic
curve. To do so we will follow Katz’s exposition in [8] Appendix 1.2. In particular, let
Ä ∈ H and consider the associated elliptic curve EÄ = C/Z+ ÄZ. Taking the exponential
gives us a complex analytic isomorphism

C/Z+ ÄZ −→ C∗/qZ

z −→ t = e2Ãiz

where q = e2ÃiÄ and qZ is the multiplicative subgroup of C∗ generated by q. In particular
the canonical differential dz is sent to 2Ãidtt . So asking that the q-expansion of f lies in
CJqK is equivalent to asking that

f(C∗/qZ, dt/t) ∈ CJqK.

Let us find an equation for the curve above. The elliptic curve EÄ = C/ΛÄ given by the
lattice Z+ ÄZ with differential dz is described by the Weirstrass equation

Y 2 = X3 − g2(Ä)X + g3(Ä) (3.1)
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where

12(2Ãi)−4g2(Ä) = E4(Ä) = 1 + 240
∑

ng1

Ã3(n)q
n,

216(2Ãi)−6g3(Ä) = E6(Ä) = 1− 504
∑

ng1

Ã5(n)q
n.

The canonical differential corresponds to dX
Y . The isomorphism is as usual given by the

Weirstrass ℘-function

C/ΛÄ −→ EÄ

z + ΛÄ −→ (℘(z, Ä), ℘′(z, Ä))

ΛÄ −→ O.

Through the change of variable q = e2ÃiÄ we may see the coefficients of (3.1) as lying in
C((q)). In particular the equation above defines an elliptic curve over Z[1/6]((q)). To get
rid of the denominators in (3.1) we make the change of variables

1

(2Ãi)2
x −→ x+

1

12
1

(2Ãi)3
y −→ x+ 2y

Then we get the equation

Y 2 +XY = X3 + a4(q)X + a6(q) (3.2)

where

a4(q) = −5
∑

ng1

Ã3(n)q
n,

a6(q) =
∑

ng1

−5Ã3(n)− 7Ã5(n)

12
qn.

One can easily see that a4(q) and a6(q) lie in Z((q)). Hence this last equation defines an
elliptic curve with coefficients in Z((q)) whose canonical differential is Écan = dX

2Y+X . The
Tate curve Tate(q) is the curve over Z((q)) defined by (3.2) whose restriction to Z[1/6]((q))
is given by (3.1). Doing a little algebra and summing up we have the following result.

Proposition 3.3. We have a complex analytic isomorphism

C∗/qZ −→ Tate(q)

t −→ (X(t, q), Y (t, q))

where

X(t, q) =
∑

n∈Z

qnt

(1− qnt)2
− 2
∑

ng1

qn

1− qn

Y (t, q) =
∑

n∈Z

(qnt)2

(1− qnt)3
+
∑

ng1

qn

1− qn

(3.3)
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Moreover the discriminant and j-invariant of the Tate curve are given by the formulas

∆(q) = q
∏

ng1

(1− qn)24 ∈ Z[[q]]

j(q) =
1

q
+ 744 + 196884q + . . .

Proof. See Theorem 1.1 of [15] Chapter 5.

Let us now fix a base ring R0. The pair (Tate(q), Écan) can be seen through base
change as an elliptic curve over Z((q))¹Z R0 i.e

Tate(q)R0
Tate(q)

Spec(Z((q))¹Z R0) Spec(Z((q)))

Spec(R0) Spec(Z)

and we can evaluate any modular form of weight k and level 1 defined over R0 at it in
order to define:

Definition 3.13. The q-expansion of a modular form f of level 1 is the finite-tailed
Laurent series

f(Tate(q)R0
, Écan) ∈ Z((q))¹Z R0.

Definition 3.14. We say that f is holomorphic at∞ if its q-expansion lies in ZJqK¹ZR0.

3.4 Modular forms of level N

Definition 3.15. A modular form of weight k and level N is a rule f which assigns to
each pair (E/S, ³N ) where E is an elliptic curve over S and ³N a level N structure a
section f(E/S, ³N ) of É¹k

E/S
such that

i) f(E/S, ³N ) depends only on the isomorphism class of (E/S, ³N ).

ii) The formation of f commutes with arbitrary base change, i.e. if g : S′ −→ S is a
morphism of schemes and ES′/S′ is the elliptic curve obtained by pullback

ES′ E

S′ S

p

g

then f(ES′/S′, ³′
N ) = g∗(f(E/S, ³N )).

If we consider elliptic curves over affine schemes, we have the equivalent definition:
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Definition 3.16. A modular form of weight k and level N is a rule f which assigns to each
triple (E/R, ÉE/R, ³N ), consisting of an elliptic curve over a ring R together with a base
ÉE/R of H0(Spec(R), ÉE/R) and a level N structure ³N , an element f(E/R, ÉE/R, ³N ) ∈
R such that:

i) f(E/R, ÉE/R, ³N ) depends only on the isomorphism class of (E/R, ÉE/R, ³N ).

ii) The formation of f commutes with arbitrary base change, i.e. for any g : R −→ R′

we have f(ER′/R′, ÉER′/R′ , ³N
′) = g(f(E/R, ÉE/R, ³N )).

ii) f is homogenous of degree −k in the second variable, namely for any ¼ ∈ R∗,
f(E/R, ¼ÉE/R, ³N ) = ¼−kf(E/R, ÉE/R, ³N )

Similarly if we consider only schemes or rings lying over a fixed ring R0, we obtain
modular forms of weight k and level N defined over a ring R0. The R0-module of all such
is denoted by M(R0, N, k).
We now assume that N is invertible in R0 and that R0 contains a primitive N -th root of
1, ·N . We consider the pair (Tate(q), Écan) consisting of the Tate curve over Z((q)) and
its canonical differential. Then a level N -structure is given by the choice of a basis for the
N -torsion subgroup. Through the isomorphism Tate(q) ∼= C∗/qZ the points in Tate(q)[N ]

are given by
·N

iqj/N 0 f i, j f N − 1.

Plugging the values for t in (3.3) we see that they have coordinates in ZJq1/N K¹ZZ
[
1
N , ·N

]

and the non constant q-coefficients of their coordinates lie in Z[·N ]. Hence for any level N
structure ³N of the Tate curve, i.e. any choice of a basis for Tate(q)[N ], we may consider
the triple

(Tate(q1/N ), Écan, ³N )

over Z((q1/N )) ¹Z Z[1/N, ·N ]. Let us denote by (Tate(q1/N )R0
, Écan, ³N ) the Tate curve

over Z((q1/N ))¹ZR0 obtained by base change equipped with its canonical differential and
the level N structure above. We give the following definition:

Definition 3.17. The q-expansions of a modular form f of level N over R0 are the finitely
many, finite-tailed, Laurent series:

f(Tate(q1/N )R0
, Écan, ³N ) ∈ Z((q1/N ))¹Z R0

for ³N varying among all level N structures.

Definition 3.18. A modular form of level N defined over a ring R0 is said to be holo-
morphic if it has all its q-expansions in ZJq1/N K ¹Z R0[1/N, ·N ]. If R0 itself contains
1/N and ·N this is equivalent to asking that all its q-expansions lie in ZJq1/N K¹Z R0.

Now we consider a base ring R0 which contains 1/N and ·N a primitive N -th root
of unity. Our aim is indeed to work over the algebraically closed field K of positive
characteristic of Remark 3.5. We want to give a description of the ring M(R0, N, k) of
modular forms of weight k over R0 in terms of the universal elliptic curve with level N -
structure ER0

/Y (N)R0
. For the sake of simplicity we will forget about the ground ring
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and we will denote by E/Y (N) the universal elliptic curve and ÉE/Y (N) = Ã∗Ω
1
E/Y (N)

the associated line bundle on Y (N) over any base ring (keeping in mind that everything
works well under base change) . The scheme Y (N) is a smooth affine curve over R0 and
represents the functor

Sch/R0 −→ Set

S −→ {(E/S, ³N ), ³N a level N -structure of pairing ·N}.

Hence any elliptic curve (E/S, ³) over the base ring R0 with level structure ³ of determi-
nant ·N is determined by base a change g : S −→ Y (N) through the pullback

(E,³) (E, ³univ)

S Y (N).

Ã

g

For any modular form f its value f(E/S, ³) in H0(S, É¹k
E/S

) is uniquely determined by

f(E/S, ³) = g∗f(E/Y (N), ³univ)

by definition. Then it is natural to give the following equivalent definition.

Definition 3.19. A modular form of weight k and level N over R0 is a section in

H0(Y (N), É¹k
E/Y (N)

).

In our argument of Section 3.1. we arrived to the definition of holomorphic modular
forms as sections of differentials on the compactified modular curve X(N). To conclude
this section we want to present a curve which will do the same job in the general case
following sections 1.4 and 1.5 of [8]. As usual, many of the statements won’t be proved
here as they’re beyond the scope of this work. First we give a remark.

Remark 3.10. If we let N = 1 we consider the moduli problem in Ell that sends any
elliptic curve E/S to its isomorphism class. It’s not surprising that such a moduli problem
is not representable. Indeed, it’s clearly not rigid and Theorem 3.2. does not apply. So
our setting over C

(H×C)/Z2

SL2(Z)\H

where the modular curve Y (1) := SL2(Z)\H parametrizes elliptic curves up to isomor-
phism does not give us an elliptic curve over C. Anyway let us consider the j-function

j(Ä) =
1278g2(Ä)

3

∆(Ä)
=

1278g2(Ä)
3

g2(Ä)3 − 27g3(Ä)2

which is a weakly modular function of weight zero, meromorphic at∞. In terms of Katz’s
modular forms, it is the rule which sends any elliptic curve EÄ over C to its j-invariant.
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It’s an easy application of the valence formula to check that it is surjective (indeed the
surjectivity of j hides behind the reason why any elliptic curve over C is of the form EÄ ,
see [3] or [16]). Hence it gives us a complex analytic isomorphism

Y (1)
j
−→ C ∼= A1

C.

We have then morphisms of Riemann surfaces (thus of schemes over C)

Γ(N)\H ↠ SL2(Z)\H = A1
C ↪→ P1

C.

And the compactified modular curve X(N) := Γ(N)\(H ∪ P1(Q)) was build ad hoc to fit
in the commutative diagram

Y (N) X(N)

Y (1) ∼= A1
C P1

C.

Now we go back to the general case of SchZ[1/N,·N ] and consider the smooth affine
curve Y (N). As in the complex case, there is a finite and flat morphism of schemes
Y (N) −→ A1

Z[1/N,·N ] and the last one embeds naturally into P1
Z[1/N,·N ].

Definition 3.20. The modular curve X(N) over Z[1/N, ·N ] is the normalization of the
projective line P1

Z[1/N,·N ] in Y (N).

Then X(N) comes equipped with a natural factorization of

Y (N)→ A1
Z[1/N,·N ] ↪→ P1

Z[1/N,·N ]

trough Y (N) ↪→ X(N). Moreover the modular curve X(N) is a smooth proper curve
over Z[1/N, ·N ] and the set

X(N) \ Y (N)

is (not surprisingly) a disjoint union of sections. We call such sections the cusps of X(N),
which we will keep denoting by Cusps(Γ(N)) or equivalently Cusps(N).

Remark 3.11. The cusps of X(N) are in correspondence with the set of isomorphism
classes of the level N-structures of the Tate curve. This means the following fact. The
completion of X(N) along each cusp is isomorphic to SpecZ[1/N ][·N ]((q)). If we consider
in this context the universal elliptic curve

(E, ³univ)

Y (N) X(N)

Ã

then the inverse image of (E, ³univ) over (the spectrum of) Z[1/N ][·N ]((q)) (viewed as a
punctured disc around the cusp) is isomorphic to the inverse image over Z[1/N ][·N ]((q))

of the Tate curve with a level N structure that will correspond to that cusp. For a complete
discussion of the topic see [10] Chapter 8.

38



Furthermore

Remark 3.12. There is a canonical way to extend ÉE/Y (N) to a unique invertible sheaf É
on X(N) whose restriction to Y (N) is ÉE/Y (N). Such a sheaf is of formation compatible
with base change and its sections over the completion Z[1/N ][·N ]((q)) at each cusp are
precisely the Z[1/N ][·N ]((q)) multiples of the canonical differential of the Tate curve. For
the explicit construction see [10] Chapter 10.13.

Back to the setting of our base ring R0 which contains 1/N and ·N , we can characterize
holomorphy of modular forms as follows. A modular form f ∈ H0(Y (N)R0

, ÉE/Y (N)) is
holomorphic at ∞ if it extends to a global section of É. All in all, holomorphic modular
forms of weight k and level N are sections in

H0 (X(N)R0
, É) .

3.5 The Hasse Invariant and the action of Frobenius

From now on we will work in positive characteristic p.

Definition 3.21. Let S be a scheme over Fp. The absolute Frobenius is the morphism
of schemes Fabs on S which corresponds to the identity on topological spaces ad whose
map on structure rings F#

abs : OS −→ OS is induced by the Frobenius endomorphism i.e.
F#
abs(x) = xp for every section of OS on an open of S.

Let Ã : X −→ S be a smooth morphism of schemes, S a smooth scheme over Fp. The
absolute Frobenius yields a commutative diagram

X X

S S.

Fabs

Ã Ã

Fabs

Clearly Fabs : X −→ X is not a morphism of S-schemes. We define X(p) to be the smooth
scheme over S obtained by taking the fiber product in the diagram

X(p) X

S S.

Ã

Ã(p) Ã

Fabs

More concretely, we assume that Ã is finite and S = Spec(R) for an Fp-algebra R. Then
X is locally the spectrum of a finitely generated R-algebra A = R[X]/(fi, i ∈ I). As a
consequence X(p) is locally SpecA(p) with A(p) = A¹Fabs

R = R[X]/(f
(p)
i , i ∈ I) where if

f =
∑

I aIX
I then f (p) =

∑
I a

p
IX

I . The natural morphism Ã is the map on structure
sheaves OX −→ OX(p) induced by A −→ A(p), f −→ f (p).

By the universal property of the fiber product X(p) fits in a commutative diagram

X X(p) X

S S

Fr

Ã

Fabs

Ã

Ã(p) Ã

Fabs
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where Ã ◦ Fr = Fabs is the absolute Frobenius.

Definition 3.22. The map Fr : X −→ X(p) is called the relative Frobenius.

The relative Frobenius is a morphism of ringed spaces (Fr, Fr#) with map on structure
sheaves Fr# : OX(p) −→ Fr∗OX . In the setting above the relative Frobenius is the map
induced by Fr#

Spec(A)
: A(p) −→ A that sends f ¹ 1 = f (p) ∈ A¹Fabs

R in fp, i.e.

R[X]/(f
(p)
i , i ∈I) −→ R[X]/(fi, i ∈ I)

X −→ Xp.

The Frobenius maps allow us to define an important invariant for elliptic curves which
turns out to be a modular form in the sense of Katz.

Let E/R be an elliptic curve over a Fp-algebra R. The absolute Frobenius

E E

Spec(R) Spec(R)

Fabs

Ã Ã

Fabs

induces a map on cohomologies:

F ∗
abs := R1Ã∗F

#
abs : R

1Ã∗OE −→ R1Ã∗OE .

In other words, if [f ] ̸= 0 spans H1(E,OE) as an R-module, the Frobenius map induces
a well defined map H1(E,OE) −→ H1(E,OE) , [f ] −→ [fp] and taking the associated
sheaves we conclude

R1Ã∗OE = ˜H1(E,OE) −→ R1Ã∗OE = ˜H1(E,OE).

We let now ¸ be a generator of H1(E,OE) as an R-module, dual to the nowhere vanishing
differential É ∈ Ω1

E/R(E). Then F ∗
abs(¸) = A(E/R, É)¸ for some A(E/R, É) ∈ R.

We define:

Definition 3.23. The Hasse invariant A is the rule which associates to (E/R, É) the
value A(E/R, É) such that F ∗

abs(¸) = A(E/R, É)¸.

An equivalent description comes from the relative Frobenius

E E(p) E

Spec(R) Spec(R).

Fabs

Ã

Fr Ã

Ã(p) Ã

Fabs

We pick a basis ¸ for R1Ã∗OE that is a section in H1(E,OE), dual to the nowhere
vanishing differential É and we denote by ¸(p) the corresponding basis of R1Ã∗OE(p) ,
obtained by base change through Fabs. In terms of global sections we pick the basis of
H1(E(p),OE(p)) = H1(E,OE)

(p) given by ¸(p) = Ã∗(¸). Let Fr∗ be the map induced by
the relative Frobenius on cohomologies, then F ∗

abs(¸) = Fr∗(¸(p)) = A(E/R, É)¸.
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Proposition 3.4. The Hasse invariant is a modular form over Fp of weight p− 1.

Proof. It sufficies to check that A(E/R, ¼É) = ¼−(p−1)A(E/R, É) for ¼ ∈ R∗. The dual
of ¼É is ¼−1¸. Hence F ∗

abs(¼
−1¸) = A(E/R, ¼É)¼−1¸. Thus

A(E/R, ¼É)¼−1¸ = F ∗
abs(¼

−1¸) = ¼−pF ∗
abs(¸) = ¼−pA(E/R, É)¸.

Proposition 3.5. The Hasse invariant has q-expansions equal to 1 i.e. if we consider the
pair (Tate(q)Fp

, Écan) of the Tate curve over Fp((q)) with its canonical differential, then

A(Tate(q)Fp
, Écan) = 1.

Proof. We would like to prove that, fixed a basis ¸ for H1(Tate(q)Fp
,OTate(q)Fp

) we have

F ∗
abs(¸) = ¸.

By Serre’s duality H1(Tate(q)Fp
,OTate(q)Fp

) is dual to the Fp((q))-vector space

H0
(
Tate(q)Fp

,Ω1
Tate(q)Fp/Fp((q))

)
.

The sheaf of differentials Ω1
Tate(q)Fp/Fp((q))

is in turn dual to the Fp((q))-linear derivations

DerFp((q))(OTate(q)Fp
). So we may take as basis ¸ of H1(Tate(q)Fp

,OTate(q)Fp
) the dual basis

to Écan, the no-where vanishing invariant differential for Tate(q)Fp
. We denote by

D : OTate(q)Fp
−→ OTate(q)Fp

the dual derivation to Écan, then the action induced by Frobenius is

D
Fr∗
−→ Dp = 6D ◦D ◦ ... ◦D.

We consider the formal completion of the Tate curve along the identity section and we
compute the action of the Frobenius restricting to T̂ate(q)Fp

, recalling that we have an

isomorphism T̂ate(q) = Ĝm. We complete the multiplicative scheme along the identity
section i.e. along the closed subscheme of ideal (t−1) and we denote by X = t−1 the local
parameter at it. Then the invariant (with respect to the formal group law) differential is
given by dX

X+1 . Hence the dual derivation to it is D = (X+1) d
dX . To conclude it suffices to

check that Dp = D. But one easily sees that D(X) = X+1, D2(X) = D(X+1) = X+1

and iterating Dp(X) = X + 1 = D(X) hence Dp = D.

Remark 3.13. Notice that by definition A is a modular form of full level. Hence given a
triple (E/R, ÉE/R, ³) of an elliptic curve E/R over Fp with differential ÉE/R and level N
structure, we can forget about the last one, i.e. A(E/R, ÉE/R, ³) = A(E/R, ÉE/R). Then
Proposition 3.5. yields that for any level N-structure ³N of the Tate curve Tate(q1/N )

over F((q1/N )) we have
A(Tate(q1/N )Fp

, Écan, ³N ) = 1.

6Notice that since charK = p the map Dp is actually a derivation.
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It’s important to mention that another description of the Hasse invariant comes from
the dual isogeny of the relative Frobenius. We sketch it in the next remark.

Remark 3.14. Let E/R be an elliptic curve over an Fp-algebra R and let Fr : E −→ E(p)

be the relative Frobenius. We denote by

V : E(p) −→ E

its dual, the Verschiebung map. We recall the following fact about elliptic curves over a
field E/k where k is algebraically closed of positive characteristic p. A proof can be found
in [16] Chapter 4. If we denote by [pn] : E −→ E the multiplication by pn map, then only
one of the following cases can occur:

1. For all n > 0 the n-th iterate Verschiebung map V n is inseparable and its kernel is
trivial. As a consequence [pn] is bijective for any n and E[pn] is trivial. In this case
we say that E/k is supersingular.

2. For all n > 0 the n-th iterate Verschiebung map V n is separable and its kernel is
not trivial, in particular E[pn] ∼= Z/pnZ. We say that E/k is ordinary.

Moreover we say that an elliptic curve E/R over the field K of characteristic p is
ordinary if each of its fiber is. Then we conclude that E/R is ordinary if and only if the
Verschiebung V : E(p) −→ E is étale or equivalently if and only if the map induced on
tangent spaces tg(V ) is an isomorphism, since any of these property holds if and only if
it holds fiberwise. By Serre’s duality H1(E,OE) is dual to H0(E,ΩE/R) thus it can be
identified with HomOE

(Ω1
E/S ,OE). The action of Verschiebung on the latter corresponds

to the one of Frobenius on H1(E,OE). In particular E/R is ordinary if and only if the
Hasse invariant A(E/R, É) is non zero in R.

We now fix an algebraically closed field K of characteristic p, and an integer N g 3

such that (N, p) = 1. We return to the description of A as a global section on the modular
scheme Y (N)K = Y (N) in order to give an important result about the zeroes of the Hasse
invariant.

Remark 3.15. Assume p > 2. Deuring computes the Hasse invariant for an elliptic
curve in Legendre form

Y 2 = X(X − 1)(X − ¼) ¼ ̸= 0, 1

over an algebraically closed field of characteristic p. It corresponds to the polynomial

A(¼) =

m∑

i=0

(
m

i

)2

¼i

where m = (p − 1)/2. Such a description turns out to be very useful. Igusa in [5]
uses it to count the number of supersingular elliptic curves over a given field of positive
characteristic. In particular he shows that A(¼) satisfies a certain differential equation
hence it must have simple zeroes. A detailed argument can be found in Theorem 4.1 in
[16].
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Proposition 3.6. The zeroes of A are simple.

Proof. All the q-expansions of A are equal to 1, so zeroes of A are (closed) points in Y (N).
Let E/Y (N) be the universal elliptic curve over K. Let x ∈ Y (N) be a zero of A.
We will give two proofs of the fact that x is a simple zero. The first one is for p > 2

and uses Remark 3.15. In particular it relies on the fact that every elliptic curve over a
scheme where 2 is invertible admits locally a Legendre form (see [10] section 2.2). We
may restrict to an affine open neighborhood of x and assume that Y (N) is the spectrum
of a ring R and E is locally the curve

Y 2 = X(X − 1)(X − ¼)

for ¼ ∈ R, ¼ ̸= 0, 1. Since Y (N) is a smooth curve over K, we may assume that R
is the coordinate ring of a smooth affine curve over K and it’s thus a local K-algebra,
in particular a DV R with residue field K. Moreover the Hasse invariant is the section
A(¼) ∈ R given by the polynomial of Remark 3.15. The assumption ¼ ̸= 0 implies that ¼
never vanishes on the curve. If we denote by ¼(x) ∈ K the image of ¼ in the residue field
at x, then ¼− ¼(x) has order exactly one at x, so it’s a uniformizer at x . If ordx(A) g 2

we would have that (¼−¼(x))2 divides A(¼) and this contradict the fact that the Deuring
polynomial has simple zeroes.
The second proof works more generally and exploits the universal property of the modular
curve. Let us denote by OY (N),x the local ring at x and mY (N),x its maximal ideal. We
are under the assumption that A vanishes at x. This means that if

A(E/Y (N)) = A(E/Y (N), É)Ép−1

is the global section on Y (N) corresponding to the Hasse invariant then

A(E/Y (N), É)x ∈ mY (N),x

where B := A(E/Y (N), É)x is the image of A(E/Y (N), É) in OY (N),x. We want to prove
that B ̸∈ m2

Y (N),x. Let E := E ×Y (N) S where S = Spec
(
OY (N),x

)
and assume that

B ∈ m2
x. Let R = OY (N),x/m

2
Y (N),x, then R is a local K-algebra with residue field K.

Moreover let ER = E¹OY (N),x
R the elliptic curve obtained by base change OY (N),x ↠ R

ER E E

Spec(R) S Y (N).

As B ∈ mY (N),x the curve E0 = ER ¹R K = E ¹OY (N),x
K is supersingular and ER is

obtained by base change K ↪→ R from E0 i.e. ER = E0 ¹K R

ER E0

Spec(R) Spec(K).
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We obtain two morphisms defining ER through pullback from E. The first is determined
by the base change OY (N),x ↠ R and the second by

OY (N),x ↠ R↠ K ↪→ R.

These two are different because R is not a field, so they correspond to level structures ³1
and ³2 on ER respectively . We call φ : R↠ K ↪→ R. We have then a cartesian diagram

(ER, ³2) (ER, ³1)

Spec(R) Spec(R).
Specφ

We may iteratively define ³3, ³4,..., ³n by pulling back

(E2, ³2)

Spec(R)

by Spec(φ). Indeed, we observe that φ◦φ = φ and on the top row we keep obtaining ER,
but the level structures must be different since φ is not the identity. The isomorphism
ER ∼= ER of the top row permutes the level structures, so for n large enough we must get
³n = ³1. But this contradicts the universal property of E/Y (N), since the maps from
Spec(R) to Y (N) are different.

We conclude this section computing the action of Frobenius on the first relative de
Rham cohomology of the Tate curve Tate(q)K over K((q)).

Remark 3.16. Since the formation of cohomology and of Frobenius commutes with base
change, we can work with Tate(q)Fp

over Fp((q)). The natural map of reduction modulo p

Zp((q)) ↠ Fp((q))

allows us to obtain Tate(q)Fp
by base change from Tate(q)Zp

. This means that we have a
pullback diagram

Tate(q)Fp
Tate(q)Zp

Spec(Fp((q))) Spec(Zp((q))).

We may write Tate(q)Fp
= Tate(q)Zp

¹ Fp((q)). Moreover by functoriality of cohomology

H1
dR(Tate(q)Fp

/Fp((q))) ∼= H1
dR(Tate(q)Zp

/Zp((q)))¹ Fp((q)).

There exists a lift of the relative Frobenius in characteristic zero

F : Tate(q)Zp
−→ Tate(q)′Zp

.

More precisely the following lemma holds.
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Lemma 3.2. Let R0 be a discrete valuation ring of residue field K of characteristic p and
generic characteristic zero, R an R0-algebra and E/R an elliptic curve. Let E ¹ R/pR
denote the elliptic curve over the K-algebra R/pR obtained by base change through the
canonical map of reduction. Let Fr : E ¹ R/pR −→ (E ¹ R/pR)(p) be the Frobenius
isogeny. Assume E ¹R/pR is ordinary. Then we can lift Fr to an isogeny F : E −→ E′

such that
E E′

E ¹R/pR (E ¹R/pR)(p)

F

Fr

commutes.

Proof. This lemma is a consequence of a more general result about the canonical subgroup
of an elliptic curve by Lubin and Katz. We will sketch a proof in the case of our interest,
for a detailed argument see [8] Chapter 3. Under our assumption the Verschiebung isogeny

V : (E ¹R/pR)(p) −→ E ¹R/pR

is seperable and its kernel is a finite flat subgroup scheme, étale over R/pR. By Hensel’s
lemma we can lift it to a subgroup scheme of E, say H1 such that H1 ¹ R/pR = kerV .
Taking its Cartier dual we obtain a subgroup scheme H of E and we consider the unique
isogeny of kernel H

E
F
−→ E′ = E/H.

Then H ¹R/pR is the kernel of Frobenius and we conclude.

We work in characteristic zero. Such F induces a morphism on cohomologies

H1
dR(Tate

′(q)Zp
/Zp((q))) H1

dR(Tate(q)Zp
/Zp((q)))

(
H1
dR(Tate(q)Zp

/Zp((q)))¹ Fp((q))
)(p)

H1
dR(Tate(q)Zp

/Zp((q)))¹ Fp((q)).

F ∗

Fr∗

We use now functoriality of the Gauss-Manin connection. If we denote by φ the map on
differentials induced by Frobenius we have

H1
dR(E

′/R) H1
dR(E

′/R)¹ Ω1
R

H1
dR(E/R) H1

dR(E/R)¹ Ω1
R.

∇

F ∗ F ∗¹φ

∇

Let us fix the basis {Écan, ¸can} of H1
dR(Tate(q)Zp

/Zp((q))) where ¸can = ∇( ddq )(Écan).
We remark that such a choice gives us a basis compatible with the Hodge filtration (see
Appendix C). Let {É(p)

can, ¸
(p)
can} be the basis of

H1
dR(Tate(q)

(p)
Fp
/Fp((q))) = H1

dR(Tate(q)Fp
/Fp((q)))(p)
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obtained by base change through the reduction modulo p and Fabs. Moreover we fix the
basis {É′

can, ¸
′
can} in characteristic zero corresponding to É(p)

can and ¸(p)can. Then

∇(Écan) = ∇

(
d

dq

)
(Écan)¹

dq

q
= ¸can ¹

dq

q
.

We have
F ∗(É′

can) = pÉcan.

And

∇(F ∗(É′
can)) = ∇(pÉcan) = p∇(Écan) = p

(
¸can ¹

dq

q

)
.

On the other hand

(F ∗ ¹ φ)(∇(É′
can)) = F ∗(¸′can)¹

dqp

qp
= F ∗(¸′can)¹ p

dq

q
.

By functoriality ∇ ◦ F ∗ = (F ∗ ¹ φ) ◦ ∇ and thus

p¸can ¹
dq

q
= F ∗(¸′can)¹ p

dq

q

which implies F ∗(¸′can) = ¸can. By base change we conclude

Fr∗(É
(p)
can) = 0,

F r∗(¸
(p)
can) = ¸can.
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Chapter 4

A result on modular forms in

characteristic p

In this chapter we will prove a result on modular forms for levelN in positive characteristic
p following Katz [9]. As in the full level case the Hasse invariant A is the only modular
form whose q-expansion equals 1 and the multiplication by A does not affect q-expansions.
On the wave of Chapter 2 we will define the filtration of a modular form of level N and
we will build an operator A¹ acting on modular forms whose effect on q-expansion is q ddq ,
in order to get a statement analogous to Proposition 2.4. for modular forms of level N .

4.1 The general setting

Throughout all this chapter we fix an algebraically closed field K of prime characteristic
p and an integer N g 3 prime to p. Let · be a primitive N -th root of unity. The moduli
problem in EllK which associates to each elliptic curve E/B where B is a K-algebra the
set of level N -structures of determinant · is representable. Let

(E, ³univ)

Y (N)

Ã

be the object in EllK representing it. Then Y (N) is a smooth affine irreducible curve over
K. Let us set

É := ÉE/Y (N) = Ã∗Ω
1
E/Y (N).

The graded ring of (not necessarily holomorphic at the cusps) modular forms is

R•
N =

⊕

k∈Z

H0
(
Y (N), É¹k

)
.

Let B be any K-algebra. Let f be a modular form of weight k, i.e.

f = f(E/Y (N), ³univ)É
¹k.
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For any triple (E/B, ÉE/B, ³) of an elliptic curve E over B, a basis ÉE/B for ÉE/B and
a level N structure ³ on E/B we denote by

f(E/B, ÉE/B, ³) ∈ B

its value at it. Moreover we can consider the Tate curve over B = K((q1/N )), which we
will denote by Tate(q) to have a lighter notation, with its canonical differential Écan. By
evaluating f at the level N structure ³0 of determinant · we obtain the q-expansion at
the corresponding cusp which we denote

f³0(q) := f(Tate(q), Écan, ³0).

Let A ∈ Rp−1
N be the Hasse invariant of Chapter 3.5. Then

Proposition 4.1. All the q-expansions of the Hasse invariant are identically 1.

Proof. It has been proved in Proposition 3.5

Furthermore

Proposition 4.2. Taking q-expansions at each cusp determines ring homomorphisms:

R•
N −→ K((q1/N ))

R•
N,holo −→ KJq1/N K

whose kernel is exactly (A− 1).

Before proving the claim we give an auxiliary lemma.

Lemma 4.1. Let X be a proper, smooth, irreducible curve over K. Let L be an ample
line bundle on X. Let

S =
⊕

ng0

H0(X,L¹n).

Let s be a section in Γ(X,L¹k) for some k, coprime with charK. If s has at least one
simple zero, then s− 1 generates a prime ideal in S.

Remark 4.1. We recall that L ample yields that X is quasi-compact and the opens Xs′

where s′ trivializes L for s′ homogeneous in S such that Xs′ is affine form a basis for
the topology on X. Moreover the natural map X −→ Proj(S) is an open immersion with
dense image. Since X is proper we obtain an isomorphism

X ∼= Proj(S).

Proof. We recall the following lemma in Hartshorne 5.14 [4]:

Lemma 4.2 (Harthshorne 5.14). Let X be a scheme, L an invertible sheaf on X and
F a quasi coherent sheaf on X. Let f ∈ Γ(X,L) and Xf the open set of points where
fx ̸∈ mxLx. Suppose furthermore that X has a finite covering by affine subsets Ui such
that L|Ui

is free for each i and such that Ui ∩ Uj is quasi compact for each i, j. For every
section t ∈ Γ(Xf ,F) there exists n > 0 such that the section fn|Xs

t ∈ Γ(Xf ,F ¹ L
¹n)

extends to a global section of F ¹ L¹n.
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We recall that s trivializes L¹k on Xs i.e. L¹k
|Xs

∼= OX |Xs
s|Xs

, thus L¹n is trivial on
Xs for every n. Restriction gives maps Γ(X,L¹n) −→ Γ(Xs,L

¹n). Moreover sending
s−n ∈ Ss to s¹−n

|Xs
we have a natural ring homomorphism

Ss −→
⊕

n∈Z

Γ(Xs,L
¹n).

Choosing the basis of Remark 4.1. above we are under the assumption of Lemma 4.2.
(indeed Xs ∩Xs′ = Xss′ for global sections s and s′, which is affine) and we may apply it
with F = OX and conclude that the map above is an isomorphism.
We want to prove that s − 1 generates a prime ideal in S, checking that the subset
Z = V (s − 1) ¦ Spec(S) is irreducible. We notice that V (s − 1) can be seen in the
spectrum of S[1/s] = Ss since x ∈ V (s − 1) holds if and only if (s − 1) ∈ x and in
particular we must have s ̸∈ x i.e. the image of x is a prime in the localization Ss. We

may then see Z as a closed subset of Spec

(⊕
n∈Z

Γ(Xs,L
¹n)

)
through the isomorphism

above. We fix an affine open subset U = SpecA ¦ Xs. Then L is trivial on U i.e. L|U is
free generated by some T ∈ L(U) and since L¹k

|U
∼= OXs

s|Xs
we must have s|Xs

= uT k for
some u ∈ A×. Then ⊕

n∈Z

Γ(U,L¹n
|U

) =
⊕

n∈Z

ATn = A[T, T−1].

And Z corresponds to V (T ku− 1) = V ¦ Spec(A[T, T−1]) i.e.

V = Spec
(
A[T, T−1]/(uT k − 1)

)
.

Notice that since k is invertible in K we obtain that Z is étale over U = Spec(A), hence
over Xs. Moreover X is normal, hence Xs is normal and Z is normal. We would like to
prove that Z is connected since for normal schemes it’s equivalent to being irreducible. The
open Xs ¦ X is irreducible so covering it by affines U of the form above they must have
non empty intersection. As a consequence the corresponding affine opens of Z above them
must have non empty intersection. So it suffices to prove that Spec

(
A[T, T−1]/(uT k − 1)

)

is connected, in particular we only have to check that the generic fiber is connected. Indeed

if Z
f
−→ X is an étale morphism, assume f−1(¸) is connected where ¸ is the generic point

of X. If Z is not connected i.e. Z = U1 ∪ U2 with Ui disjoint opens, then, since f−1(¸)

is connected, we must have f−1(¸) ¦ U1 or f−1(¸) ¦ U2. Assume f−1(¸) ¦ U1 and
U2 ̸= ∅, then {¸} ∩ f(U2) = ∅ and f(U2) is a non empty open since étale maps are open,
contradicting the fact that {¸} is dense in X.
Let F = FracA = OX,¸ be the local ring at the generic point, we check that

Spec
(
F [T, T−1]/(uT k − 1)

)
∼= Spec

(
F [z]/(zk − u)

)

is irreducible, proving that zk − u is irreducible in F [z]. Let x ∈ X be a simple zero of
s. Let OX,x be the local ring at x, with maximal ideal mX,x, then under our assumption
OX,x is a DV R and we can see F as the field of fractions of OX.x. Then sx ∈ mX,x \m

2
X,x

and under the isomorphisms above u is a uniformizer. We conclude that the polynomial
zk − u is irreducible by Eisenstein’s criterion.
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We can now prove Proposition 4.2.

Proof. We keep denoting by É the natural extension to X(N) of the invertible sheaf É
on Y (N). Such a sheaf is an ample line bundle on X(N), since the associated divisor has
positive degree. Indeed the Kodaira-Spencer mapping extends to an isomorphism

É¹2 ∼= Ω1
X(N)ïCusps(N)ð.

Hence

deg(É¹2) = deg(Ω1
X(N)ïCusps(N)ð) = 2g− 2+ |Cusps(N)| = 2g− 2+

N2

2

∏

p|N

(
1−

1

p2

)
.

Where g is the genus of the curve X(N) and the number of cusps follows from Remark
1.5. Since g g 0 and N g 3 the quantity above is always positive, so É¹2 is ample hence
É is ample.
Thanks to Remark 4.1. we have

X(N) ∼= Proj

(⊕

ng0

H0(X(N), É¹n)

)
.

Moreover if n < 0 we have deg(É¹n) = n degÉ < 0 i.e. the divisor of É has negative
degree hence H0(X(N), É¹n) = 0. As a consequence we may write

⊕

ng0

H0
(
X(N), É¹n

)
=
⊕

n∈Z

H0
(
X(N), É¹n

)
= R•

N,holo.

Then the ring R•
N,holo has Krull dimension 2, since X(N) is a projective curve. Let us fix

any level N structure ³0 of the Tate curve. We denote by È the morphism

R•
N,holo −→ KJq1/N K

f −→ f(Tate(q), Écan, ³0)

obtained taking q-expansions at ³0 of homogeneous elements f ∈ R•
N,holo. Then kerÈ is

a prime ideal since the image of È embeds in an integral domain. Moreover kerÈ cannot
be maximal. Indeed, let ∆ be the modular discriminant, then

È(∆) = ∆(Tate(q), Écan, ³0) = q1/N + . . .

hence q1/NKJq1/N K ¦ imÈ ¦ KJq1/N K has dimension al least one and kerÈ has codimen-
sion at least 1. We deduce that there exists m maximal such that kerÈ ¦ m. Clearly
kerÈ contains (A − 1) and since the zeroes of A are simple, we apply Lemma 4.1. and
conclude that (A− 1) is prime. We have a chain of prime ideals:

0 ¢ (A− 1) ¦ kerÈ ¢ m ¢ R•
N,holo

and we conclude that the equality (A− 1) = kerÈ must hold.
To conclude, also the map

R•
N

È
−→ K((q))
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induced by taking q-expansions at ³0 of non necessarily holomorphic modular forms has
kernel exactly (A − 1). Indeed, such a kernel clearly contains (A − 1). Let f ∈ R•

N and
assume that È(f) = 0. Up to multiplying each homogeneous term of f by powers of
A we may assume that f is homogeneous i.e. f ∈ H0(Y (N), É¹k) for some k. Then
È(f) = f³0(q). If f is not holomorphic at all cusps, then f must have poles at them of
finite order. Assume that r is the maximum of them, then f∆r is an holomorphic modular
form and, taking q-expansion at ³0, (f∆r)(Tate(q), É, ³0) = f³0(q)∆³0(q) = 0. It follows
that A− 1 divides ∆rf in R•

N,holo i.e. ∆rf = (A− 1)g. Since ∆ never vanishes on Y (N)

hence it’s invertible in R•
N we conclude f = (A− 1)g∆−r ∈ (A− 1).

Remark 4.2. In the conclusion of the proof above we used the fact that the modular
discriminant ∆ is a cusp form, in particular it has a simple zero at each cusp. Indeed,
let E/B be any elliptic curve over K. Then E admits locally a Weirstrass form. If p g 2

we have for example

Y 2 = 4X3 − g4(E/B, É)X + g6(E/B, É)

where X,Y are sections in OE such that É = dX
Y . Note that we must have

X(E/B, ¼É) = ¼−2X(E/B, É),

Y (E/B, ¼É) = ¼−3Y (E/B, É),

g4(E/B, ¼É) = ¼−4g4(E/B, É),

g6(E/B, ¼É) = ¼−6g6(E/B, É).

The discriminant of an elliptic curve is invariant under isomorphism and non zero. In
the case above it can be defined as

∆(E/B, É) =
g4(E/B, É)

3 − g6(E/B, É)
2

12

Then it’s clear that it is homogeneous of degree −12 in É. We can define ∆ to be the
rule which associates to (E/B, É) such a discriminant and we obtain a modular form of
weight 12. Moreover by Remark 3.6 we have

∆(Tate(q), Écan, ³0) = q1/N
∏

ng1

(
1− qn/N

)24
.

for any level N structure ³0 of the Tate curve, i.e. ∆ is a cusp form.

As a consequence, as in the level 1 case, multiplication by A does not effect q-
expansions. We give the following definition:

Definition 4.1. A form f ∈ RkN is said to be of exact filtration k if it is not divisible by
A in R•

N , or equivalently, if there is no form f ′ ∈ Rk
′

N of weight k′ < k which, at some
cusp, has the same q-expansion of f .
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4.2 The main theorem and its corollaries

Theorem 4.1. 1. There exists a derivation A¹ : R•
N −→ R•+p+1

N which increases
degrees by p+ 1 and whose effect upon each q-expansion is q ddq , namely

(A¹f)a0(q) = q
d

dq
(fa0(q))

for any f ∈ R•
N , a0 a level N structure.

2. If f ∈ RkN has exact filtration k and p does not divide k, then A¹f has exact filtration
k + p+ 1 and in particular A¹f ̸= 0.

3. If f ∈ RpkN and A¹f = 0 then f = gp for a unique g ∈ RkN .

Before proving the theorem we list and prove its corollaries.

Corollary 4.1. (1) The operator A¹ maps the subring of holomorphic forms to the ideal
of cusp forms.

(2) If f is non zero and holomorphic of weight 1 f k f p− 2 then f has exact filtration
k.

(3) If 1 f k f p− 2 the map A¹ : RkN,holo −→ Rk+p+1
N,holo is injective.

(4) If f is non-zero and holomorphic of weight p − 1 and vanishes at some cusp, then
f has exact filtration p− 1.

(5) (Determination of ker(A¹)). If f ∈ RkN has A¹f = 0 we can uniquely write f = Argp

with 0 f r f p− 1, r + k = 0 mod p and g ∈ RlN with pl + r(p− 1) = k.

(6) In (5) above, if f is holomorphic (respectively a cusp form) so is g.

Proof. (1) It is clear looking at q-expansions.

(2) Assume f has not exact filtration k, then f = Ag for some g holomorphic of weight
k − (p− 1) < 0. Then g is holomorphic of negative weight, hence g = 0.

(3) Assume f ∈ RkN is non zero with 1 f k f p− 2. By point (2) f has exact filtration
k. By part 2. of the theorem we must have A¹f ̸= 0.

(4) Let f ∈ Rp−1
N,holo, f ̸= 0 and f vanishes at some cusp. Assume f has not filtration

p−1, hence f = gA for some form g of weight k′ = k−(p−1) = (p−1)−(p−1) = 0.
Hence g is holomorphic of weight zero, i.e. g is a section in H0(X(N),OX(N)) = K.
But then g is constant. Moreover f vanishes at some cusp and the q-expasion of A
at all cusps is 1, so we must have g = 0 hence f = 0 and this is a contradiction.

(5) If k = 0 mod p i.e. r = 0 we’re in case 3. of Theorem 4.1. To prove the statement
we use induction on r. Assume r > 1, then k ̸= 0 mod p. But A¹f = 0 so by part
2. of the main theorem f has not exact filtration k, i.e. there exists h ∈ Rk−p+1

N

such that f = Ah. Moreover k+r = 0 mod p yields (k−p+1)+(r−1) = 0 mod p
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and since f and h must have the same q-expansion we have A¹(h) = 0. So we may
apply the inductive hypothesis to h and get h = Ar−1gp for some g ∈ RlN such that
lp+ (r − 1)(p− 1) = k + 1− p. Hence f = Ah = Argp with pl + r(p− 1) = k.

(6) It is clear looking at q-expansions.

4.3 A derivation for the ring of modular forms

We begin the construction of the operator ¹. We consider the relative Frobenius

E E(p) E

Y (N) Y (N).

Ã

Fr

Fabs

Ã

Ã(p) Ã

Fabs

It induces a morphism on the first de Rham cohomology:

Fr∗ : H1
dR(E

(p)/Y (N)) −→ H1
dR(E/Y (N))

as follows. The associated map on structure sheaves Fr# : OE(p) −→ Fr∗OE extends to

Fr# : Ω•
E(p)/Y (N) −→ Fr∗Ω

•
E/Y (N)

and taking the functor R1Ã
(p)
∗ we get

R1Ã
(p)
∗ Fr# : R1Ã

(p)
∗ Ω•

E(p)/Y (N) −→ R1Ã
(p)
∗ Fr∗Ω

•
E/Y (N) = R1Ã∗Ω

•
E/Y (N).

Let U be its image as a sheaf on Y (N) .

Lemma 4.3. U and H1
dR(E/Y (N))/U are locally free OY (N)-modules of rank 1.

Proof. We have the Hodge filtration (Appendix B.2)

0 −→ Ã
(p)
∗ Ω1

E(p)/Y (N) −→ H1
dR(E

(p)/Y (N)) −→ R1Ã
(p)
∗ OE(p) −→ 0.

We can then see Ã
(p)
∗ Ω1

E(p)/Y (N)
= ÉE(p)/Y (N) as a subsheaf of H1

dR(E
(p)/Y (N)). In

particular the restriction of Frobenius to it is zero. Let us check it locally. Assume that
Y (N) is Spec(B), for a K-algebra B. Then E is locally Spec(A) with

A = B[X, Y ]/(f(X, Y ))

a finitely generated B-algebra. It follows that E(p) is locally Spec(A(p)) where

A(p) = A¹Fabs
B ∼= B[X, Y ]/(f (p)(X, Y )).
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The relative Frobenius on the structure sheaves Fr# : OE(p) −→ Fr∗OE acts locally as

A(p) Fr
#

−→ A

a¹Fabs
1 −→ ap.

We also have that Ã∗Ω1
E/Y (N) is locally Ω1

A/B as a B-module. Hence Ã(p)∗ Ω1
E(p)/Y (N)

corre-

sponds to Ω1
A(p)/B

= Ω1
A/B ¹Fabs

B as a B-module. As a consequence the Frobenius acts

locally as Ω1
A(p)/B

Fr∗
−→ Ω1

A/B sending da¹ 1 to dap = pap−1da = 0.

Then Fr∗ kills Ã(p)∗ Ω1
E(p)/Y (N)

and factors through the quotient

H1
dR(E

(p)/Y (N))/Ã
(p)
∗ Ω1

E(p)/Y (N)
∼= R1Ã

(p)
∗ OE(p) .

Here it induces the inclusion map in the conjugate filtration (Appendix B.3)

0 −→ R1Ã
(p)
∗ OE(p) −→ H1

dR(E/Y (N)) −→ Ã
(p)
∗ Ω1

E(p)/Y (N) −→ 0.

Hence U ∼= R1Ã
(p)
∗ OE(p) and H1

dR(E/Y (N))/U ∼= Ã
(p)
∗ Ω1

E(p)/Y (N)
and we conclude since

both are locally free sheaves of rank 1.

Lemma 4.4. The open subset Y (N)Hasse ¦ Y (N) where the Hasse invariant is invertible
is the largest open set where U splits the Hodge filtration i.e.

H1
dR(E/Y (N)) ∼= É · U .

Proof. Let us work locally on Y (N). Let U ¦ Y (N) be an open such that both É, R1Ã∗OE

and U are free of rank 1. We pick a local basis {É,¸} of H1
dR(E/Y (N)) compatible with

the Hodge filtration. This means that É is a local basis for É and ¸ projects to the
dual basis ¸ to É of R1Ã∗OE. Similarly we choose by base change through the absolute
Frobenius the local basis {É(p),¸(p)} for H1

dR(E
(p)/Y (N)). Then Fr∗(É(p)) = 0 and

Fr∗(¸(p)) = BÉ + A¸.

Moreover Fr∗(¸(p)) = F ∗
abs(¸)

1. Projecting to R1Ã∗OE, we have that by definition F ∗
abs(¸)

is sent to A(Ã−1(U)/U, É)¸ and in the notation above Fr∗(¸(p)) projects to A¸ in R1Ã∗OE.
Hence the coefficient A is exactly the Hasse invariant A = A(Ã−1(U)/U, É). A matrix for
Fr∗ on U is given by (

0 B

0 A

)

and U is locally generated byBÉ+A¸. Then É andBÉ+A¸ span the wholeH1
dR(E/Y (N))

on U if and only if A is invertible, i.e. U ¦ Y (N)Hasse.

Remark 4.3. Notice that since U is locally free of rank 1 and we chose an open U such
that U is free isomorphic to OY (N), we must have that A and B in the proof above don’t
vanish at the same points, i.e. B does not vanish at the zeroes of A.

1Here we denote by F ∗

abs the map induced by the absolute Frobenius on the relative de Rham
cohomology.
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We can now begin the construction of ¹. We have the splitting

É · U = H1
dR(E/Y (N)).

Taking symmetric powers

SymkH1
dR(E/Y (N)) = É¹k ·

(
U ¹ É¹(k−1)

)
· · · · · U¹k.

The Gauss-Manin connection (Appendix C) extends to a connection

∇ : SymkH1
dR(E/Y (N)) −→ SymkH1

dR(E/Y (N))¹ Ω1
Y (N).

We consider the composition of maps:

É¹k SymkH1
dR(E/Y (N))

SymkH1
dR(E/Y (N))¹ Ω1

Y (N)

SymkH1
dR(E/Y (N))¹ É¹2 É¹(k+2) · · · ·

É¹k+2

∇

KS

where the third arrow is the Kodaira-Spencer isomorphism in Appendix C.4. Taking
global sections we get

¹ : H0(Y (N)Hasse, É¹k) −→ H0(Y (N)Hasse, É¹k+2).

Proposition 4.3. The effect of ¹ on q-expansions is q ddq .

Proof. Let f ∈ RkN and consider the triple (Tate(q), Écan, ³0), where ³0 is a level N -
structure on Tate(q)/K((q1/N )). The q-expansion of f at the corresponding cusp is

f³0(q) = f(Tate(q), Écan, ³0) ∈ K((q1/N )).

Let f³0(q)É
¹k
can be the corresponding section in H0(K((q1/N )), É¹k

can). Since all the arrows
above commute with base change, to conclude it suffices to check that ¹(f³0(q)É

¹k
can)

corresponds to (q ddqf³0(q))É
¹k+2
can . We fix a basis of H1

dR(Tate(q)/K((q1/N ))) compatible
withe the Hodge filtration i.e. {Écan, ¸can} such that the projection of ¸can to É−1

can is a
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dual basis to Écan. Thanks to Lemma C.2 we can set ¸can = ∇(q ddq )(Écan). By Remark
C.2. we can compute

∇(f³0(q)É
¹k
can) = ∇

(
q
d

dq

)
(f³0(q)É

¹k
can)¹

dq

q

=

(
q
d

dq
f³0(q)É

¹k
can + kf³0(q)É

¹k−1
can ∇

(
q
d

dq

)
(Écan)

)
¹
dq

q
.

With the choices above the image of the relative Frobenius U is spanned by∇
(
q ddq

)
(Écan).

Indeed by Remark 3.15. Fr∗ kills É(p)
can and Fr∗(¸(p)can) = ¸can. Hence applying the Kodaira-

Spencer morphism and projecting modulo U we obtain

¹(f³0(q)É
¹k
can) = q

d

dq
f³0(q)É

¹k
can ¹ É

¹2
can = q

d

dq
f³0(q)É

¹k+2
can .

To conclude part 1) of the main theorem we state the following proposition:

Proposition 4.4. There exists an operator A¹ : RkN −→ Rk+p+1
N such that

H0(Y (N)Hasse, É¹k) H0(Y (N)Hasse, É¹k+2) H0(Y (N)Hasse, É¹k+p+1)

H0(Y (N), É¹k) H0(Y (N), É¹k+p+1).

¹ A

A¹

Proof. We compute a local expression for A¹ on Y (N)Hasse and we prove that it can be
extended to Y (N). As above we work locally and restrict to an open U ¦ Y (N)Hasse

such that É, R1Ã∗OE and U are free of rank 1. We fix a basis É for É. Let À be
the corresponding local basis of Ω1

Y (N) through the Kodaira-Spencer isomorphism. Let
D ∈ Derk(OY (N)) be the dual derivation to À. Define É′ = ∇(D)(É). Then {É, É′} is a
local basis of H1

dR(E/Y (N)) compatible with the Hodge filtration2 i.e. the projection of
É′ on É¹−1 is a basis of R1Ã∗OE dual to É. As in the proof of Lemma 4.4. after these
choices, U is generated by

AÉ−1 +BÉ.

Moreover we fix a basis u of U such that the projection of u on É¹−1 is dual to É. Hence
u = ¼(AÉ′ +BÉ) such that ¼AÉ′ is dual to É. This yields ¼ = A−1 and

u = É′ +
B

A
É.

Let f ∈ H0(Y (N)Hasse, É¹k). Assume that locally f = f1É
¹k. We find a local expression

for ¹(f) computing ¹(f1É¹k).

∇(f1É
¹k) = ∇(D)(f1É

¹k)¹ À

= D(f1)É
¹k ¹ À + kf1É

¹k−1∇(D)(É)¹ À.

2Let us denote by ω−1 the dual basis of ω−1 to ω. We have ∇(ω) = ∇(D)(ω) ¹ ξ and the
composition of arrows defining the Kodaira-Spencer map gives us ω → ∇(D)(ω)¹ ξ ↠ ω−1 ¹ ξ.
Projecting ∇(D)(ω) is sent to ω−1.
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Applying the Kodaira-Spencer isomorphism we get:

D(f1)É
¹k+2 + kf1É

¹k+1 ¹∇(D)(É) = D(f1)É
¹k+2 + kf1É

¹k+1 ¹

(
−
B

A
É + u

)
.

And projecting modulo U

¹(f1É
¹k) = D(f1)É

¹k+2 − k
B

A
f1É

¹k+2.

Hence multiplying by AÉ¹p−1 we obtain

A¹(f) = (AD(f1)− kBf1)É
¹k+p+1.

The local definition of A¹ works everywhere and we may extend it to Y (N).

We observe that we have defined A¹ for H0(Y (N), É¹k) for k g 0. To conclude, we
extend the definition to RkN for negative k. Let f ∈ H0(Y (N), É¹k) for k < 0. By Remark
4.2. we define

A¹(f) :=
A¹(f∆pr)

∆pr
for r >> 0.

4.4 Conclusion

We now prove part 2. and 3. of the main theorem.

Proof. 1. Assume that f ∈ RkN has exact filtration k. Then f is not divisible by A,
hence for some zero x ∈ Y (N) of A, the order of f at x is strictly smaller than
the vanishing order of A at x. Fix an open neighbourhood of x as in the proof of
Proposition 4.4. Then we can write locally f = f1É

¹k and

A¹f = (AD(f1)− kf1B)É¹k+p+1.

Under our assumption f1 is not divisible by A and by Remark 4.3. B does not
vanish at x. Hence if p does not divide k

ordx(AD(f1)− kf1B) = ordx(f) < ordx(A)

which yields that A does not divide A¹(f) i.e. A¹(f) has exact filtration k + p+ 1.

2. Let f ∈ RpkN such that A¹f = 0. We fix an open subset of U as above and write
f = f1É

pk. Then
A¹f = AD(f1)É

p+k+1 = 0.

And this can happen if and only if D(f1) = 0 where we chose D to be a local
basis for Derk(Y (N)). We recall that Y (N) is an affine smooth curve over K,
which is algebraically closed, hence perfect. Hence OY (N)(U) is locally a finitely
generated K-algebra of Krull dimension 1, that is, of the form K[X, Y ]/(g(X, Y ))

and the derivation D kills f1. Hence D(f1) = 0 yields that f1 = gp1 for a unique
g1 ∈ OY (N)(U). Hence locally

f = gp1É
¹pk = (g1É

¹k)p.
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We may cover Y (N) by open subsets U of this form. By uniqueness the sections
(g1É

¹k)p must coincide on intersections. As a consequence they glue to a unique
g ∈ H0(Y (N), É¹k) which verifies f = gp.
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Appendix A

Cohomology of sheaves and de

Rham Cohomology

A.1 Cohomology of sheaves

We introduce cohomology for a sheaf on a topological space X.

Proposition A.1. Let (X,OX) be a ringed space. The category ModOX
of sheaves of

OX-modules has enough injectives.

Proof. Let F be an OX module. The stalk Fx is a OX,x-module. The category of modules
over a ring has enough injectives, so for any x we have an embedding Fx −→ Ix with
Ix an injective OX,x-module. Consider the one point ringed space {x} with sheaf Ix and
j : {x} −→ X the inclusion. Then we define

I =
∏

x∈X

j∗Ix

where j∗ is the direct image functor, namely j∗Ix(U) = Ix if x ∈ U , j∗Ix(U) = 0

otherwise, for any U ¦ X. For any sheaf of OX -modules we have

HomOX
(G, j∗Ix) ∼= HomOX.x

(Gx, Ix).

Indeed to any morphism of sheaves ϕ we can associate the induced morphism on the
stalks at x. Conversely, given an OX,x-linear map fx : Gx −→ Ix, we define the morphism
f = (fU )U¦X where fU : G(U) −→ j∗Ix(U) is such that: fU (s) = fx(sx) if x ∈ U for a
section s in G(U), fU : G(U) −→ 0 otherwise. The two are clearly inverse to each other.
Hence

HomOX
(F , I) ∼=

∏

x∈X

HomOX
(F , j∗Ix) ∼=

∏

x∈X

HomOX,x
(Fx, Ix).

Then the embeddings Fx −→ Ix give us a morphism F −→ I which is clearly injective.
To conclude I is injective, indeed

HomOX
(−, I) ∼=

∏

x∈X

HomOX,x
(−, Ix)

is exact since HomOX,x
(−, Ix) is exact.
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Corollary A.1. Let X be a topological space. The category of abelian sheaves Ab(X) has
enough injectives.

Proof. We consider the ringed space (X,OX) where OX is the constant sheaf associated
to Z, then ModOX

= Ab(X).

Now it makes sense to give the following definition.

Definition A.1. Let X be a topological space and Γ(X,−) : Ab(X) −→ Ab the global
section functor. The cohomology functors Hi(X,−) are defined as the right derived func-
tors of Γ(X,−), namely Hi(X,−) := RiΓ(X,−). For any abelian sheaf F , Hi(X,F) are
the cohomology groups of F .

Cohomology of a sheaf F can be computed using flasque resolutions.

Lemma A.1. Let (X,OX) be a ringed space. Any injective OX-module is flasque.

Proof. Let V ¦ U be open subsets of X. We have an inclusion of OX -modules

0 −→ OX |V −→ OX |U

where OX |U is the sheaf of rings on an open U obtained by the restriction of OX at U ,
extended to zero outside U . Applying HomOX

(−, I), we have an exact sequence

HomOX
(OX |U , I) −→ HomOX

(OX |V , I) −→ 0.

To conclude we have HomOX
(OX |U , I)

∼= I(U). Indeed to any section s ∈ I(U) we
associate the morphism OX |U −→ I defined as follows. For any W open in U , the map
OX(W ) −→ I(W ) is the unique OX(W )-linear map sending 1 to s|W . Conversely, any
morphism OX |U −→ I, gives a OX(U)-linear map to I(U), uniquely determined by a
section in I(U). Hence we have that I(U) −→ I(V ) −→ 0.

Proposition A.2. Let F be a flasque sheaf on X, then Hi(X,F) = 0 for all i g 1.

Proof. We prove it by induction on i. Let I be an injective object such that F embeds
into I. Then we have a short exact sequence 0 −→ F −→ I −→ G −→ 0 where the sheaf
G is flasque. Moreover we have the exact sequence of global sections

0 −→ Γ(X,F) −→ Γ(X, I) −→ Γ(X,G) −→ 0

which proves the statement for i = 0. The long exact sequence of cohomology together
with the fact that Hi(X, I) = 0 for i > 0 yields

· · · −→ 0 −→ Hi(X,G) −→ Hi+1(X,F) −→ 0 · · ·

Using the inductive hypotesis we haveHi(X,G) = 0 and we concludeHi+1(X,F) = 0.

Remark A.1. This proves that any flasque sheaf is acyclic hence we can compute coho-
mology using flasque resolutions.
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A.2 Čech cohomology

Let X be a topological space and let U = {Ui}i∈I be an open covering of X. For any
finite indexes i0 . . . ip ∈ I we denote Ui0 ∩ · · · ∩ Uip = Ui0...ip . Let F be an abelian sheaf
on X. We build the Čech complex as follows: for each p g 0

Cp(U ,F) =
∏

i0<···<ip

F(Ui0...ip)

dp : Cp(U ,F) −→ Cp+1(U ,F)

³ −→ dp(³)

where

(dp(³))i0...ip+1 =

p+1∑

k=0

(−1)k³i0...îk...ip+1 |Ui0...ip+1

.

Here the hat on the index means that we cancel it from the string.

Definition A.2. Let X be a topological space and U be an open covering of X. We define
the p-th Čech cohomology group

Ȟp(U ,F) = Hp(C•(F ,U)).

Lemma A.2. For any X, U ,F as above Ȟ0(U ,F) = Γ(X,F ).

Proof. Let

d0 : C0(U ,F) =
∏

i∈I

F (Ui) −→ C1(U ,F) =
∏

i,j

F(Ui ∩ Uj)

(xi)i∈I −→ (xj |Uij
− xi|Uij

)i,j .

Then Ȟ0(U ,F) = H0(C•(U ,F)) = ker d0 and by the properties of sheaves

0 −→ F (X) −→
∏

i∈I

F (Ui) −→
∏

i,j

F(Ui ∩ Uj)

is exact hence F (X) = Γ(X,F) = ker d0.

Definition A.3. Let X be a topological space. For any open U ¦ X we let f : U −→ X

be the inclusion map. We construct a complex of sheaves C•(U ,F) on X as follows: we
fix an open covering U of X and for each p g 0 we let

Cp(U ,F) =
∏

i0<···<ip

f∗(F|Ui0...ip
) and d : Cp(U ,F) −→ Cp+1(U ,F)

where d acts on sections as described above. Then clearly Γ(X, Cp(U ,F)) = Cp(U ,F)

Lemma A.3. For any sheaf of abelian groups F on X, the complex C•(U ,F) is a reso-
lution of F i.e. we have natural maps such that

0 −→ F
ε
−→ C0(U ,F) −→ C1(U ,F) −→ ... (A.1)

is exact.
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Proof. We build ε : F −→
∏

i∈I f∗(F|Ui
) considering F −→ f∗F|Ui

for any i and taking
the direct product. The exactess of the first step follows from the sheaf axioms for F .
Indeed for any V ¦ X we have that

0 −→ F(V ) −→
∏

i∈I

f∗F|Ui
(V ) =

∏

i∈I

F(V ∩Ui) −→
∏

i,j∈I

f∗F|Ui∩Uj
(V ) =

∏

i,j∈I

F(V ∩Ui∩Uj)

is exact since V ∩ Ui is an open cover for V . To show the exactness of the complex we
check it on stalks. Let x ∈ X, x ∈ Uj for some j. For each p g 1 we build

kpx : Cp(U ,F)x −→ C
p−1(U ,F)x

as follows. Any ³x ∈ C
p(U ,F)x is the class of an element ³ ∈ Cp(U ,F)(V ) for an open

x ∈ V . We may assume V ¦ Uj . We let (kp(³))i0...ip−1 = ³ji0...ip−1 . Notice that it makes
sense since ³ ∈

∏
|I|=pF(UI ∩ V ) and Ui0...ip−1 ∩ V = Ui0...ip−1 ∩ Uj ∩ V = Uji0...ip−1 ∩ V .

One has ³x = kp+1
x dpx³x + dp−1

x kpx³x. Indeed

(kp+1dp³)i0...ip = (dp³)ji0...ip = ³i0...ip |Ui0...ip

+

p∑

l=0

(−1)l+1³ji0...îl...ip |Ui0...ip

,

(dp−1kp³)i0...ip =

p∑

l=0

(−1)l(kp(³))i0...îl...ip |Ui0...ip

=

p∑

l=0

(−1)l³ji0...îl...ip |Ui0...ip

.

Summing the two and restricting to Ui0...ip ∩ V we obtain ³. As a consequence we get
equality on stalks. The complex of stalks is nullhomotopic and we conclude that it has
zero cohomology groups i.e. it is exact.

Proposition A.3. Let X be a topological space and F a flasque sheaf on X, U an open
covering of F . Then Ȟp(U ,F) = 0 for p > 0.

Proof. Let us consider the resolution above 0 −→ F −→ C0(U ,F) −→ C1(U ,F) −→ . . .

then Ci(U ,F) =
∏

UI
f∗F|UI

is flasque (F|UI
is flasque, f∗ preserves flasque sheaves and

product of flasque is flasque). So we can compute the usual cohomology groups using this
resolution. We know Hi(X,F) = 0 for i > 0 since F is flasque. Taking global sections
we obtain the Čech complex

0 −→ F (X) −→ Γ(X, C0(U ,F)) −→ Γ(X, C1(U ,F)) −→ . . .

and taking cohomologies we recover Ȟi(U ,F). But

Hi(Γ(X, C•(U ,F))) = RiΓ(X,F) = Hi(X,F) = 0

for i > 0 then Ȟi(U ,F) = 0.

Proposition A.4. Let X be a topological space and F a sheaf on X, U an open covering
of X. For every p g 0 we have a natural map:

Ȟp(U ,F) −→ Hp(X,F).
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Proof. Let 0 −→ F −→ I• be an injective resolution for F and 0 −→ F −→ C•(X,F)

the resolution above. Using injectivity we build a morphism of complexes

ϕ• : C•(U ,F) −→ I•

as follows. Since I0 is injective we have the existence of ϕ0 such that

F C0(U ,F)

I0
ϕ0

commutes. Similarly let

K0 = ker
(
C1(U ,F) −→ C2(U ,F)

)
∼= im

(
C0(U ,F) −→ C1(U ,F)

)
.

Applying the universal property of cokernels we obtain ϕ̃1 such that

F C0(U ,F) K0

I0 I1.

ϕ0 ϕ̃1

Moreover injectivity of I1 yields the existence of ϕ̃1 such that

K0 C1(U ,F)

I1

ϕ̃1

ϕ1

.

commutes. Applying iteratively the argument above we build ϕi : Ci(U ,F) −→ Ii.
Taking global sections and cohomology we conclude

Hi(Γ(X, C•(U ,F))) = Ȟi(U ,F)
Hi(Γ(X,ϕ•))
−→ Hi(Γ(X, I•)) = Hi(X,F).

Theorem A.1. Let X be a noetherian, separated scheme. Let U be a finite affine cover
of X and F a quasi coherent sheaf on X. Then for any p g 0

Ȟp(U ,F) ∼= Hp(X,F).

Proof. For p = 0 we have Ȟ0(U ,F) = Γ(X,F) = H0(X,F). For the general case, we
embed F into a flasque sheaf G and get a short exact sequence of quasi-coherent sheaves

0 −→ F −→ G −→ R −→ 0.

Since F is quasi-coherent and Ui0...ip is affine we obtain for any index I = i0 . . . ip that

0 −→ F(UI) −→ G(UI) −→ R(UI) −→ 0.
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is exact. As a consequence we have a short exact sequence of complexes

0 −→ C•(U ,F) −→ C•(U ,G) −→ C•(U ,R) −→ 0.

Taking cohomologies, recalling that G flasque implies Ȟp(U ,G) = 0 for p g 1, we have

0 −→ Ȟ0(U ,F) −→ Ȟ0(U ,G) −→ Ȟ0(U ,R) −→ Ȟ1(U ,F) −→ 0

and
Ȟp−1(U ,R) ∼= Ȟp(U ,F).

Hence

0 Ȟ0(U ,F) Ȟ0(U ,G) Ȟ0(U ,R) Ȟ1(U ,F) 0

0 H0(U ,F) H0(U ,G) H0(U ,R) H1(U ,F) 0

which yields
Ȟ1(U ,F) ∼= H1(U ,F).

We conclude by induction on p, using that Ȟp−1(U ,R) ∼= Ȟp(U ,F) and the fact that R
is quasi-coherent.

Remark A.2. If X is affine we easily conclude thanks to Theorem A.1 that for any quasi
coherent OX-module F on X

Hi(X,F) = 0

since we may compute Čech cohomology choosing as affine cover U = {X}. Hence any
quasi coherent sheaf on an affine scheme is acyclic.
Moreover let X be any noetherian, separated scheme. For any affine open Ui we denote
by f : Ui ↪→ X the corresponding immersion. It is an affine morphism so f∗ is exact.
Then F|Ui

is quasi coherent on an affine scheme and hence acyclic. We conclude that also
f∗F|Ui

is acyclic on X. Then
∏

I f∗F|UI
is acyclic and (A.1) is an acyclic resolution of

F .

A.3 An explicit computation for elliptic curves

Sheaf cohomology for quasi-coherent sheaves over quasi-compact and separated schemes
can be computed using Čech cohomology. We will give an explicit example in the case of
an elliptic curve over a field.
Let k be a field. For simplicity we assume k = k and chark ̸= 2, 3. Let E/k be an elliptic
curve. Then we may assume

E = Proj
(
k[X, Y, Z]/(Y 2Z −X3 − aXZ2 − bZ3)

)
.

We recall that Ω1
E/k is a locally free sheaf of rank 1. In the affine open {Z ̸= 0} E is

locally
Spec

(
k[X, Y ]/(Y 2 −X3 − aX − b)

)
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and a basis is given by É = dX
Y . We notice that Y 2 = X3 + aX + b yields

2Y dY = dX(3X2 + a)

hence:
dX

Y
=

2dY

3X2 + a

and 3X2 + a ̸= 0 if Y = 0 since X3 + aX + b has no multiple roots. Hence we may write

H0(E,Ω1
E/k) =

dX

Y
k.

Moreover we recall that H0(E,OE) = OE(E) = k. Let us fix P ̸= Q ∈ E distinct points.
If we set U = E \{P} and V = E \{Q} then U = {U, V } is an affine cover for the elliptic
curve. The associated Čech complex is

OE(U)·OE(V )
d0
−→ OE(U ∩ V )

(fU , fV ) −→ fV |U∩V
− fU |U∩V

.

Then it is clear that Hn(E,OE) = 0 for all n g 2. So we’re only left to determine

H1(E,OE) =
OE(U ∩ V )

imd0

where imd0 = {fUV ∈ OE(U ∩ V ), fUV = fV |U∩V
− fU |U∩V

}. We recall the following
result.

Theorem A.2 (Riemann-Roch). Let D =
∑

P nPP be a divisor on E and for any open
U ¦ E let

LD(U) = {f ∈ k(E) : ordP (f) g −nP , P ∈ U}

and let l(D) = dimk(H
0(E,LD)). If D > 0

l(D) = degD.

Proof. For a proof and a more general statement see [4] Chapter 4.

Now we notice that if D = (P ) then l(D) = 1 and since 1 ∈ LD(E) we must have
L(P )(E) = k i.e. there are no regular functions on E with only one pole.
Moreover let us consider D = (P ) + (Q). If f ∈ LD(E) then ordP (f) g 1, ordQ(f) g 1

and ordR(f) g 0 for R ̸= P,Q. But l(D) = 2 yields the existence of f ∈ LD(E) \ k. So f
has at least one pole and we conclude by the observation above that ordP f = ordQf = −1.
Then LD(E) = k · fk and moreover 1, f ∈ OE(U ∩ V ).

Proposition A.5. We have that

H1(E,OE) = [f ]k.

In particular H1(E,OE) is a one dimensional k-vector space.

65



Proof. By definition H1(E,OE) =
OE(U∩V )

{fU |U∩V
−fV |U∩V

}
. We claim that [1] = 0 and [f ] ̸= 0.

Indeed, 1|U∩V
∈ OE(U ∩ V ) and 1|U∩V

= (1|V )|U∩V
− (0|U )|U∩V

so it is clearly in imd0.
Moreover [f ] ̸= 0. Assume f = fU |U∩V

− fV |U∩V
for fU ∈ OE(U) and fV ∈ OE(V ).

Notice ordQ(fU ) g 0 and ordP (fV ) g 0. Hence

−1 = ordP (f) = ordP (fU |U∩V
− fV |U∩V

) = ordP (fU )

and fU is a regular function on E \ {P} which has a simple pole at P and we conclude
that it must then be constant. Similarly

−1 = ordQ(f) = ordQ(fU |U∩V
− fV |U∩V

) = ordQ(fV )

hence fV is regular on E \ {Q} and has a simple pole at Q, then it must be constant. So
f is constant and this is a contradiction. Thus we have [f ]k ¦ H1(E,OE). To conclude
we check that equality holds. We consider multiple cases:

i) Let [g] ∈ H1(E,OE), g ∈ OE(U ∩ V ). Suppose ordP g = −1 = ordQg. Then
g ∈ LD(E) hence g = 1 · a+ f · b. We conclude that

[g] = [1]a+ [f ]b = [f ]b ∈ [f ]k.

ii) Let g ∈ OE(U ∩ V ). Suppose ordP g f −2 and ordQg g 0. Then we claim that
[g] = 0. Indeed since g is holomorphic at Q we have that g is regular on U = E\{P}.
Hence g = (g|U )|U∩V

− (0|V )|U∩V
∈ imd0 i.e. [g] = 0.

iii) Let g ∈ OE(U ∩ V ). Suppose ordpg = −2 and ordQg = −1. Let T be a uniformizer
at P . Then

gP =
a

T 2
+
b

T
+ . . .

for some a, b ∈ k. Let D′ = 2(P ). By Theorem A.2.

dimk(H
0(E,LD′)) = degD′ = 2.

So there exists a non constant h ∈ H0(E,LD′), namely ordPh g −2 and ordRh g 0

for R ̸= P . Moreover we must have ordPh = −2 otherwise h would be constant.
Hence

hP =
c

T 2
+
d

T
+ . . .

with c ̸= 0. We also have that h is regular on U i.e. h|U ∈ OE(U). We set
g1 = g +

(
−a
c

)
h|U∩V

then g1 = g +
(
−a
c

)
h|U∩V

− 0 = g +
(
−a
c

)
h|U∩V

− 0|V |U∩V
i.e.

[g1] = [g]. Furthermore

g1P = gP +
(−a
c

)
hP =

a

T 2
+
b

T
+ · · · −

a

c

c

T 2
−
a

c

d

T
+ . . .

namely ordP (g1) g −1 and ordQ(g1) = −1 since g has a pole of order 1 at Q and
h is regular at Q. This yields g1 ∈ H0(E,LD) and g1 = ³ · 1 + ´ · f . We conclude
[g1] = [g] = ´[f ] ∈ [f ]k for ´ ∈ k.
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iv) Let g ∈ OE(U∩V ) and suppose ordP g = −n and ordQg = −1. We use induction on
n. The case n = 2 has been proved above. Assume n > 2 and consider the divisor
n(P ). Then dimk(H

0(E,Ln(P ))) = n. Notice that dimkH
0(E,L(n−1)(P ))) = n− 1

and L(n−1)(P ) ¢ Ln(P ) hence there exists h ∈ Ln(P ) \L(n−1)(P ). Then we must have
ordPh = −n and ordRh g 0 for R ̸= P . Let

hP =
c

Tn
+

d

Tn−1
+ . . .

for c ̸= 0 in k and

gP =
a

Tn
+

b

Tn−1
+ . . .

Notice that h is regular on E \ {P} = U . We set

g1 = g −
a

c
h|U∩V

.

Then g1 = g − a
ch|U∩V

− (0|V )|U∩V
namely [g1] = [g]. Moreover

g1P =
a

Tn
+

b

Tn−1
+ · · · −

a

c

c

Tn
+ . . .

i.e. ordP g1 g −(n− 1) and ordQg1 = ordQg = −1 since h is holomorphic at Q. By
the inductive hypothesis [g] = [g1] ∈ [f ]k.

v) Finally let ordP g = −n and ordQg = −m. We use induction on m. If m = 1 it’s
the case above. Assume m > 1. As above we consider m(Q) and apply Riemann-
Roch Theorem to it. We find h ∈ H0(E,Lm(Q)) \ H

0(E,L(m−1)(Q)) and we must
have that ordQh = −m and h is regular elsewhere, namely h ∈ OE(V ). We fix a
uniformizer at Q and we write

hQ =
c

Tm
+

d

Tm−1
+ . . .

and
gQ =

a

Tm
+

b

Tm−1
+ . . .

and we set g1 = g − a
ch|U∩V

− (0|U )|U∩V
. Then [g] = [g1] and g1 has a pole of order

−n at P since h is holomorphic in V and g has a pole of order −n at P . Moreover
ordQg1 g −(m− 1). We use the inductive hypothesis to conclude [g] = [g1] ∈ [f ]k.

Remark A.3. Through our computation we found that

dimkH
1(E,OE) = 1 = dimkH

0(E,Ω1
E/k).

Indeed the two are dual by Serre’s duality.
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A.4 Higher direct image

We go back to our more general setting and give the following definition.

Definition A.4. Let f : X −→ Y be a continuous map of topological spaces. The higher
direct image functor Rif∗ : Ab(X) −→ Ab(Y ) is defined as the right derived functor of
the direct image functor f∗ : Ab(X) −→ Ab(Y ).

Proposition A.6. For each i g 0 and each F ∈ Ab(X) , Rif∗(F) is the sheaf associated
to the pre-sheaf

V −→ Hi(f−1(V ),F|f−1(V )
)

on Y .

Proof. Let us denote by Hi(X,F) such a sheaf. Then

Hi(X,−) : Ab(X) −→ Ab(Y )

form a ¶-functor. For i = 0 we have

H0(X,F)(V ) = H0(f−1(V ),F|f−1(V )
) = f∗F(V )

for any V i.e. H0(X,−) = f∗ by definition. Moreover the Rif∗’s are the right derived
functors of f∗. Let I ∈ Ab(X) be injective . For any open V , we have that I|f−1(V )

is

injective in Ab(f−1(V )) so Hi(f−1(V ), I|f−1(V )
) = Hi(X, I)(V ) = 0 for i g 1. Hence

Hi(X, I) = 0. Then Hi(X,−) is a universal ¶-functor such that H0(X,−) ∼= f∗. We
conclude that Hi(X,−) = Rif∗ must hold.

Proposition A.7. Let X be a Noetherian scheme, f : X −→ Y a morphism of schemes,
Y = Spec(A) affine. Let F be a quasi coherent OX-module on X, then

Rif∗F = ˜Hi(X,F).

Proof. Under our assumption f∗F is quasi-coherent, in particular since Y is affine we must

have f∗F = ˜Γ(Y, f∗F) = Γ̃(X,F) so the claim is true for i = 0. Moreover the ˜Hi(X,−)’s
form a ¶-functor. Any quasi coherent sheaf embeds into a flasque, quasi coherent sheaf
and cohomology vanishes for it. Then the right hand side is an effeceable ¶-functor, thus

it is universal and we must have Rif∗F = ˜Hi(X,F).

To conclude this section we state the following result.

Proposition A.8 (Projection formula). Let f : X −→ Y be a morphism of ringed spaces.
Let F be an OX module and let ε be a locally free OY -module of finite rank. Then

Rif∗ (F ¹OX
f∗ε) ∼= Rif∗ (F)¹OY

ε.

Proof. For i = 0 we recover the projection formula for the direct image functor f∗ and
locally free modules (see [4] Chapter 5). For the general case, we use the fact that ε and
f∗ε are locally free hence flat so the associated tensor functors −¹OY

ε and −¹OX
f∗ε are
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exact and thus commute with cohomology. Given an injective resolution 0 −→ F −→ I•

for F , we have that 0 −→ F ¹OX
f∗ε −→ I• ¹OX

f∗ε is an injective resolution for
F ¹OX

f∗ε. Applying f∗ and taking cohomology

Rif∗(F ¹OX
f∗ε) = Hi(f∗(I

• ¹OX
f∗ε)).

The projection formula for f∗ yields

Hi(f∗(I
• ¹OX

f∗ε)) = Hi(f∗I
• ¹OY

ε) = Hi(f∗I
•)¹OY

ε = Rif∗ (F)¹OY
ε.

A.5 Hypercohomology and de Rham cohomology

In this section we define hypercohomology and give a way to compute it. We start with
a general definition.

Definition A.5. Le A be an abelian category that has enough injectives. A right Cartan-
Eilenberg resolution I•,• of a cochain complex A• is an upper half plane double complex
of injective objects Ip,q with an augmentation map ϵ : A• −→ I•,0

...
...

...
...

I0,1 I1,1 . . . Ip,1 Ip+1,1 . . .

I0,0 I1,0 . . . Ip,0 Ip+1,0 . . .

A0 A1 . . . Ap Ap+1 . . .

¶0,1 ¶1,1

¶0,0 ¶1,0 ¶p,0 ¶p+1,0

ϵ0

¶0A

ϵ1

¶pA

ϵp ϵp+1

such that

1. If Ap = 0 then Ip,• = 0.

2. The maps on coboundary and cohomology

Bp(ϵ) : Bp(A•) −→ Bp(I•, ¶•)

Hp(ϵ) : Hp(A•) −→ Hp(I•, ¶•)

are injective resolutions for Bp(A•) and Hp(A•).

Remark A.4. Here by Bp(I•, ¶•) we mean the cochain complex where the q-th term is
Bp(I•,q) = im

(
¶p−1,q : Ip−1,q −→ Ip,q

)
. We denote by Zp(I•, ¶•) the cochain complex

where the q-th term is Zp(I•,q) = ker
(
¶p,q : Ip,q −→ Ip+1,q

)
. Hence Hp(I•, ¶•) is the

complex whose q-th term is Hp(I•, ¶q) = Zp(I•,q)/Bp(I•,q). Under these assumptions

εp : Ap −→ Ip,•

is an injective resolution.
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Definition A.6. Let F : A −→ B be a left exact functor and assume that A has enough
injectives. If A• is a cochain complex in A and A• −→ I•,• a Cartan-Eilenberg resolution.
We define

RiF (A•) = Hi(Tot·(F (I•,•))

where Tot·(F (I•,•)) is the total complex associated to F (I•,•). Then

RiF : Ch(A) −→ B

are the right-hyperderived functors of F .

In the case of sheaves we give the following definition.

Definition A.7. Let X be a topological space and let F• be a complex of sheaves on X.
The hypercohomology Hi(X,F•) is defined as

RiΓ(X,F•).

This generalizes sheaf cohomology to complexes of sheaves. If I• is a bounded below
complex of injective sheaves then Hi(X, I•) = Hi(Γ(X, I•)).

We now give a construction using Čech cohomology. Let X be a quasi-compact and
separated scheme over a field k. Assume that we have a complex of quasi coherent OX -
modules:

S• : S0
d0
−→ S1

d1
−→ S2

d2
−→ · · ·

We choose a finite affine cover U = {Ui}i=0,...,n of X. For any i we have the Čech complex

C•(U ,Si) : C0(U ,Si)
d0
−→ C1(U ,Si)

d1
−→ . . . .

By Remark A.2. it is an acyclic resolution for Si.
Moreover di : Si −→ Si+1 induces maps:

Cj(U ,Si) =
∏

I¦{0,...,n} |I|=j+1

Si(UI)

∏
I d

i
UI−→ Cj(U ,Si+1) =

∏

I¦{0,...,n} |I|=j+1

Si+1(UI)

which we will keep denoting by di for simplicity. Taking sections we obtain the double
complex

...
...

...
...

C2(U ,S0) C2(U ,S1) . . . C2(U ,Si) C2(U ,Si+1) . . .

C1(U ,S0) C1(U ,S1) . . . C1(U ,Si) C1(U ,Si+1) . . .

C0(U ,S0) C0(U ,S1) . . . C0(U ,Si) C0(U ,Si+1) . . .

¶2

d0

¶2

d1 di

¶2 ¶2

di+1

¶1

d0

¶1

d1

¶1

di

¶1

di+1

¶0

d0

¶0

d1 di

¶0 ¶0

di+1
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where each square

Cj+1(U ,Si) Cj+1(U ,Si+1)

Cj(U ,Si) Cj(U ,Si+1)

di

¶j

di

¶j

commutes. We denote such a double complex by C•(U ,S•). Taking the total complex
associated to it we have

Tn(U ,S•) =
⊕

p+q=n

Cp(U ,Sq)
Dn

−→ Tn+1(U ,S•) =
⊕

p+q=n+1

Cp(U ,Sq)

where
(Dn(c))³,´ = d´−1c³,´−1 + (−1)³−1¶³−1c³−1,´.

The i-th hypercohomology is

Hi(U ,S•) = kerDi/imDi−1.

Definition A.8. Let X be a quasi-compact, separated, smooth scheme over k. The De
Rham complex Ω•

X/k is the complex:

OX
d
−→ Ω1

X/k
d
−→ Ω2

X/k −→ · · ·

where ΩiX/k =
∧i

Ω1
X/k.

Definition A.9. The de Rham i-th cohomology of X is defined as the i-th hypercohomolgy
of the de Rham complex i.e.

Hi
dR(X) = Hi(X,Ω•

X/k).

Now we see another explicit computation in the case of an elliptic curve following the
construction above. Let E/k be an elliptic curve. As in the previuos section we fix points
P ̸= Q ∈ E and affine open subsets U = E \{P} and V = E \{Q} such that U = {U, V }.
The associated de Rham complex is

OE
d
−→ Ω1

E/k.

Indeed ΩiE/k = 0 for i g 2 because the sheaf of differentials is locally free of rank 1. The
double complex is given by

C1(U ,OE) = OE(U ∩ V ) C1(U ,Ω1
E/k) = Ω1

E/k(U ∩ V )

C0(U ,OE) = OE(U)·OE(V ) C0(U ,Ω1
E/k) = Ω1

E/k(U)· Ω1
E/k(V ).

d

d

¶0 ¶0

And the total complex is

T 0(E,Ω•
E/k)

D0

−→ T 1(E,Ω•
E/k)

D1

−→ T 2(E,Ω•
E/k)
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where

T 0(E,Ω•
E/k) = OE(U)·OE(V ),

T 1(E,Ω•
E/k) = OE(U ∩ V )·

(
Ω1
E/k(U)· Ω1

E/k(V )
)
,

T 2(E,Ω•
E/k) = Ω1

E/k(U ∩ V ).

The maps are defined as

D0(fU , fV ) = (fV |U∩V
− fU |U∩V

, dfU , dfV ),

D1(fUV , ÉU , ÉV ) = dfUV + ÉV |U∩V
− ÉU |U∩V

.

Hence

H0
dR(E) = kerD0

= {(fU , fV ) ∈ OE(U)·OE(V ) : fU |U∩V
= fV |U∩V

, dfU = dfV = 0}

= OE(E)

= k

and H1
dR(E) = kerD1/imD0 where

kerD1 = {(fUV , ÉU , ÉV ) : dfUV = ÉU |U∩V
− ÉV |U∩V

},

imD0 = {(fV |U∩V
− fU |U∩V

, dfU , dfV ), (fU , fV ) ∈ OE(U)·OE(V )}.

Lemma A.4. We have a k-linear injective map

ϕ : H0(E,Ω1
E/k) −→ H1

dR(E)

É −→ [(0, É|U , É|V )].

.

Proof. To begin (0, É|U , É|V ) is a cocycle since (É|U )|U∩V
− (É|V )|U∩V

= 0. Assume that
ϕ(É) = 0. Then É|U = dfU and É|V = dfV for some fU ∈ OE(U) and fV ∈ OE(V ) such
that fV |U∩V

− fU |U∩V
= 0. Then fU and fV glue to an f ∈ OE(E) = k. The fact that

É = df = 0 allows us to conclude.

Proposition A.9. We have a short exact sequence

0 −→ H0(E,Ω1
E/k)

ϕ
−→ H1

dR(E)
È
−→ H1(E,OE) −→ 0

where È([(fUV , ÉU , ÉV )]) = [fUV ].

Proof. We have already checked that ϕ is injective. Now we check that È is well defined.
Let ((fU )|U∩V

− (fV )|U∩V
, dfU , dfV ) be in imD0 i.e. its class in the de Rham cohomology

is trivial. Then it is sent to the class of (fU )|U∩V
− (fV )|U∩V

in H1(E,OE) which is clearly
zero.
Moreover È(ϕ(É)) = ([0, É|U , É|V ]) = 0 so it’s immediate that È◦ϕ = 0. On the other hand
let [(fUV , ÉU , ÉV )] in H1

dR(E) be such that fUV = (fV )|U∩V
− (fU )|U∩V

for fV ∈ OE(V )
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and fU ∈ OE(U). Then [(fUV , ÉU , ÉV )− (fUV , dfU , dfV )] = [(0, ÉU −dfU , ÉV −dfV )] = ³.
We clearly have [(fUV , ÉU , ÉV )] = ³ and

(ÉU − dfU )|U∩V
− (ÉV − dfV )|U∩V

= (ÉU )|U∩V
− (ÉV )|U∩V

+ (dfV )|U∩V
− (dfU )|U∩V

= (ÉU )|U∩V
− (ÉV )|U∩V

+ dfUV = 0

since (fUV , ÉU , ÉV ) is a cocycle.
To conclude we prove that È is surjective. We first assume that P = O the origin point
of the elliptic curve. Assume that E is locally given by

Y 2 = X3 + aX + b

and that É = dX
Y is the nowhere vanishing differential. Let ¸ = X dX

Y . We notice that
¸ has order −2 at P and no residue. Moreover let f ∈ OE(U ∩ V ) such that [f ] ̸= 0 in
H1(E,OE), namely ordP f = ordQf = −1. Then

fP =
µ

T
+ . . .

with µ ̸= 0. We let ¸1 = ¸ + 1
µdf . Then ¸1 is regular at P , hence on E \ {Q} i.e. ¸1 ∈

Ω1
E/k(V ). We set ÉU = ¸|U ∈ Ω1

E/k(U) and ÉV = ¸1|V ∈ Ω1
E/k(V ) and fUV = 1

µf|U∩V
.

Then (ÉU )|U∩V
− (ÉV )|U∩V

= 1
µdf|U∩V

= dfUV . This proves that (fUV , ÉU , ÉV ) is a cocycle
and we may call ¶ = [(fUV , ÉU , ÉV )] ∈ H1

dR(E). Then È(¶) = [fUV ] is a generator for
H1(E,OE) and we conclude that È is surjective.
If P ̸= O we use Riemann-Roch theorem. We let [f ] ∈ H1(E,OE) non zero, namely
ordP f = −1 = ordQf . We have l(2(P )) = 2 = l(2(Q)) so we find fU ∈ H

0(E,L2(P )) \ k

and fV ∈ H0(E,L2(Q)) \ k. We must have ordP fU = −2 = ordQfV otherwise they
would be constant and fU ∈ OE(U) and fV ∈ OE(V ). Let É be the canonical nowhere
vanishing differential, we set ÉU = fUÉ|U ∈ Ω1

E/k(U) and ÉV = fV É|V ∈ Ω1
E/k(V ).

Then ³ = (fUÉ|U )|U∩V
− (fV É|V )|U∩V

∈ Ω1
E/k(U ∩ V ). Moreover df ∈ Ω1

E/k(U ∩ V )

has a double pole at P and Q and Ω1
E/k(U ∩ V ) is a OE(U ∩ V )-module of rank 1.

Hence ³ = gdf for some g ∈ OE(U ∩ V ). Taking orders at P and Q, we must have
ordP g = 0 = ordQg. Hence g is holomorphic on E and thus must be constant. It cannot
be zero otherwise ³ would be zero. Then d(gf) = gdf = ³ = ÉU |U∩V

−ÉV |U∩V
is a cocycle.

Hence È([(gf, ÉU , ÉV )]) = [gf ] = g[f ] a generator for H1(E,OE). We conclude that È is
surjective.

Corollary A.2. dimk(H
1
dR(E)) = 2 and [É],[¶] above are generators.

Remark A.5. The exact sequence above is called the Hodge filtration. We proved that it
holds in the case of an elliptic curve over a field k. In the next section we will see how it
appears from a more general setting. In particular we will analyze the case of curves over
a field of positive characteristic.

In [8] A1.2.3 Katz shows that the first de Rham cohomology of an elliptic curve E/R
is nothing other than the module of differentials on E/R having at worst double poles at
the identity section ∞. In our case the argument goes as follows.
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Remark A.6. Let E/k be an elliptic curve over a field k and assume char(k) ̸= 2, 3. Let
OE(∞) := L(∞) be the sheaf of holomorphic functions with at worst one simple pole at
∞. Let Ω1

E(2∞) = Ω1
E ¹k L(2∞)

1. The inclusion of complexes

OE(∞) Ω1
E(2∞)

OE Ω1
E

is a quasi-isomorphism. Taking hypercohomology one finds that

H1
dR(E/k) = H1(E,Ω•

E) = H1(E,Ω•
E(2∞)).

Using Čech cohomology one easily sees that H1(E,OE(∞)) = 0 = H1(E,Ω1
E(2∞)) and

also
H1(E,Ω•

E(2∞)) = coker
(
OE(∞)(E)

d
−→ Ω1

E(2∞)(E)
)
.

By Riemann-Roch Theorem OE(∞)(E) = H0(E,L(∞)) = k hence d is the zero map. We
conclude

H1
dR(E/k)

∼= H0(E,Ω1
E(2∞)).

Again by Riemann-Roch H0(E,Ω1
E(2∞)) has dimension 2. Clearly the holomorphic

differential dX
Y is in H0(E,Ω1

E(2∞)). Moreover X dX
Y is a section in Ω1

E(2∞) and has
exactly a double pole at ∞. The two must be a basis.

Remark A.7. The pair

É :=
dX

Y
¸ := X

dX

Y

is a basis for H1
dR(E/k) through the identification of H1

dR(E/k) with global differentials
having at worst double pole at ∞. 2

To conclude we go back to the general case and give the definition of the sheaf of
relative de Rham cohomology .

Definition A.10. Let Ã : X −→ S be a smooth k-morphism of smooth k-schemes. The
relative de Rham cohomology of X/S is the sheaf on S

Hi
dR(X/S) = RiÃ∗(Ω

•
X/S).

1Notice that for any f ∈ OE(∞) the differential df has a double pole at∞ hence is in Ω1

E(2∞).
2Notice that such a characterization could have been easily deduced by the explicit compu-

tation above.
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Appendix B

The Hodge filtration and the

conjugate filtration

The aim of this section is to introduce the Hodge filtration and the conjugate filtration
for a smooth curve X/S over a field of positive characteristic K. This is the setting of
Lemma 4.3 in Chapter 4.

B.1 Some results about spectral sequences

We first recall some general facts about spectral sequences.

Definition B.1. Let A be an abelian category. A spectral sequence starting at page a is a
collection of objects {Ep,qr }rga, p,q∈Z and morphisms dp,qr : Ep,qr −→ Ep+r,q−r+1

r such that

1. dp+r,q−r+1
r ◦ dp,qr = 0.

2. Ep,qr+1
∼= ker dp,qr /imdp−r,q+r−1

r

We denote by {Ep,qr , dp,qr }p,q∈Z the r-th page of the spectral sequence.

A spectral sequence is bounded if for each n and r there are only finitely many nonzero
terms of total degree n in E•,•

r . If this is the case, for any fixed p, q the sequence {Ep,qr }rga
stabilizes. We denote Ep,q∞ = Ep,qr for r >> 0. Moreover if r0 is such that

Ep,qr0 = Ep,qr+1 = · · · = Ep,q∞

for all p, q we say that the spectral sequence degenerates at page r0.

Definition B.2. We say that a bounded spectral sequence {Ep,qr }rga, p,q∈Z converges to a
complex H• = {Hn}n∈Z if there exists a filtration F •H• of H•, i.e. for any q

F •Hq : · · · ¦ F p+1Hq ¦ F pHq ¦ . . .

such that F pHp+q/F p+1Hp+q ∼= Ep,q∞ . We denote Ep,qr =⇒ Hp+q.
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Let now (C•, d•) be a cochain complex in A with bounded filtration F •C• that is

0 ¦ · · · ¦ F p+1Cq ¦ F pCq ¦ · · · ¦ F 0Cq = Cq

such that dq : F pCq −→ F pCq+1 for all p, q. We denote by grp(C•) the complex of graded
pieces

grp(Ci) = F pCi/F p+1Ci

Remark B.1. The fitration on C• naturally induces a filtration on cohomology F •Hq(C•)

namely
F pHq(C•) = im (Hq(F pC•) −→ Hq(C•)) .

Moreover if the filtration on C• is bounded also the filtration F •Hq(C•) is bounded since
F pC• = 0 implies F pHq(C•) = 0 by definition for all q.

Theorem B.1 (Covergence). Let F •C• be a bounded filtration of a cochain complex C•.
Then it naturally determines a spectral sequence with

Ep,q0 := F pCp+q/F p+1Cp+q,

Ep,q1 := Hp+q(grpC•),

Ep,q∞ := grpHp+q(C•).

We write
Ep,q1 := Hp+q(grpC•) =⇒ Hp+q(C•).

Moreover page 1 maps

dp,q1 : Hp+q(grp) −→ Hp+q+1(grp+1(C•))

are the connecting maps on cohomology rising from

0 −→ grp+1C• −→ F pC•/F p+2C• −→ grpC• −→ 0.

Proof. See Theorem 5.4.1 and Theorem 5.5.1 of [18].

Remark B.2. Let A be an abelian category with enough injectives and A ∈ A an object of
finite filtration F •A. We can construct from below a filtered injective resolution A −→ I•

such that F •A −→ F •I• is an injective resolution.

Proposition B.1. Let A ∈ A and F •A as above. Let T : A −→ B be an additive left
exact functor. There is a convergent spectral sequence such that

Ep,q1 = Rp+qT (grpA) =⇒ Rp+qT (A)

with page one maps

dp,q1 : Rp+qT (grpA) −→ Rp+q+1T (grp+1A)

being the connecting maps of the functors Rp+qT for the exact sequence

0 −→ grp+1A −→ F pA/F p+2A −→ grpA −→ 0.
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Proof. Thanks to Remark B.2. we may fix a filtered injective resolution A −→ I• such
that F pI• is an injective resolution of F pA for any p. Applying T and recalling that it is
left exact we get

0 TA TI0 TI1 · · ·

0 TF 1A TF 1I0 TF 1I1 · · ·

0 TF 2A TF 2I0 TF 2I1 · · ·

...
...

...

Hence TF •I• is a bounded filtration of TI•. We apply the convergence theorem with
C• := TI• and F pC• := TF pI•. We obtain

Ep,q1 = Hp+q(grpTI•) =⇒ Hp+q(TI•) = Rp+qTA.

Moreover we have short exact sequences:

0 F p+1Iq F pIq grpIq 0

which split since F p+1Iq is injective, hence grpIq is injective for any q since direct sum-
mand of an injective object. Then

grpA −→ grpI•

is an injective resolution for grpA. We conclude

Rp+qT (grpA) = Hp+q(TgrpI•) = Hp+q(grpTI•).

Remark B.3. We will deal with the case of a cochain complex C• in Chg0(A) and the
functor R0T : Chg0(A) −→ B. Recalling that RiT are the left derived functors of R0T ,
the proposition above yields a spectral sequence:

Ep,q1 = Rp+qT (grpC•) =⇒ Rp+qT (C•)

B.2 The Hodge filtration for the de Rham complex

We will follow Katz’s argument in [7]. Given a complex C• in an abelian variety A there
is a natural way to define a filtration on it.

We construct the Hodge filtration F •C•:

F p(Cq) =

{
0 if q < p,

Cq if q g p.
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We have that grpC• = F p(C•)/F p+1(C•) = Cp[−p] is the complex consisting in the object
Cp in degree p and zero elsewhere. Then Rp+qT (grpC•) = RqT (Cp) and convergence
yields a spectral sequence:

E1
p,q := RqT (Cp) =⇒ Rp+qT (C•).

Let now X
Ã
−→ S be a smooth scheme over a field k. We denote by Ω•

X the de Rham
complex of X and Ω•

X/S the de Rham complex of relative differentials. We apply the
construction above to Ω•

X with T = Γ(X,−) and we get

E1
p,q := RqΓ(X,ΩpX) = Hq(X,ΩpX) =⇒ Rp+qΓ(X,Ω•

X) = Hp+q
dR (X).

Applying the construction above to Ω•
X/S and T = Ã∗ we have

Ep,q1 := RqÃ∗(Ω
p
X/S

) =⇒ Rp+qÃ∗(Ω
•
X/S) = Hp+q

dR (X/S). (B.1)

Definition B.3. We call (B.1) the Hogde-de Rham spectral sequence.

Let now X/S be a smooth curve over a field k. By an argument of Deligne and Illusie
in [2] we have that (B.1) degenerates at page 1. Convergence tells us that we have a
filtration on the relative de Rham cohomology F •Hq

dR(X/S) such that

grpHp+q
dR (X/S) = E1

p,q.

Remark B.4. Let p + q = 1. The first two terms of the above filtration appear in the
exact sequence

0 −→ F 1H1
dR(X/S) −→ F 0H1

dR(X/S) −→ gr0H1
dR(X/S) −→ 0.

For a curve we have Ω2
X/S = 0 hence

F 2Ω•
X/S = 0.

By Remark B.1. we also have

F 2H1
dR(X/S) = F 2RÃ∗(Ω•

X/S) = 0

hence
F 1H1

dR(X/S) = gr1H1
dR(X/S)

Rewriting the sequence above we get the Hodge-de Rham short exact sequence:

0 −→ R0Ã∗(Ω
1
X/S) −→ H1

dR(X/S) −→ R1Ã∗(OX) −→ 0.

Furthermore we have another natural ascending filtration on a complex C•. The
canonical filtration (see 2.2.2 [7]) is defined as

ÄfpC
q =





Cq if q < p,

ker(dq : Cq −→ Cq+1) if q = p,

0 if q > p.
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To obtain a descending filtration we set F pC• = Äf−pC
•. The graded pieces of F are

grpC• = H−p(C•)[p] and convergence yields

E1
p,q := Rp+qT (H−p(C•)[p]) = R2p+qT (H−p(C•)) =⇒ Rp+qT (C•)

with page 1 maps R2p+qT (H−p(C•)) −→ R2p+2+qT (H−p−1(C•)). Replacing (p, q) by
(−q, p+ 2q) we obtain a spectral sequence starting at page 2

E2
p,q := RpT (Hq(C•)) =⇒ Rp+qT (C•).

Again we consider X/S smooth schemes over a field k. We apply the construction above
to the relative de Rham complex Ω•

X/S in order to get:

E2
p,q := RpÃ∗(H

q(Ω•
X/S)) =⇒ Hp+q

dR (X/S). (B.2)

B.3 The conjugate filtration

Let Ã : X −→ S be a smooth morphism of schemes, S a smooth scheme over a field
k. Moreover we assume that k has positive characteristic p. The absolute Frobenius
Fabs : S −→ S, which on sections corresponds to raising to the p-th power, and the
relative Frobenius X −→ X(p) fit in a commutative diagram

X X(p) X

S S

Fabs

Fr

Ã

Ã

Ã(p) Ã

Fabs

where Ã ◦ Fr = Fabs is the absolute Frobenius on X (see Chapter 3.5).
The following theorem holds:

Theorem B.2 (Cartier). Let X/S be smooth morphisms over a field of positive charac-
teristic p. There exists a unique morphism of OX(p)-algebras

C−1 :
⊕

i

ΩiX(p)/S −→
⊕

i

Hi(Fr∗Ω
•
X/S)

such that
C−1 : Ω1

X(p)/S −→ H1(Fr∗Ω
•
X/S)

sends a section x ¹ 1 of Ω1
X(p)/S

on an open of X(p) to [xp−1dx]. Moreover C−1 is an
isomorphism.

Proof. See [6] Theorem 7.2.

The Cartier isomorphism induces isomorphisms:

ΩiX(p)/S
∼= Hi(Fr∗Ω

•
X/S).
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We can rewrite the terms of the spectral sequence at (B.2) noticing that Ã∗ = Ã
(p)
∗ Fr∗:

RaÃ∗(H
b(Ω•

X/S)) = RaÃ
(p)
∗ Fr∗(H

b(Ω•
X/S)) =

1RaÃ
(p)
∗ (Hb(Fr∗Ω

•
X/S))

∼= RaÃ
(p)
∗ (ΩbX(p)/S).

And we obtain
Ea,b2 = RaÃ

(p)
∗ (ΩbX(p)/S) =⇒ Ha+b

dR (X/S). (B.3)

Definition B.4. We call (B.3) the conjugate spectral sequence.

Moreover by a proof of Katz (see [7](2.3.2.3)) the spectral sequence (B.3) degenerates
at page 2. To conclude, we may use the same kind of argument of the previous section
to get a filtration on the relative de Rham cohomology. We obtain the conjugate short
exact sequence:

0 −→ R1Ã
(p)
∗ (OX(p)/S) −→ H1

dR(X/S) −→ R0Ã
(p)
∗ (Ω1

X(p)/S) −→ 0.

1Here we used the fact that Fr∗ commutes with cohomology since the direct image functor
of an affine morphism is an exact functor in the category of quasi coherent sheaves.
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Appendix C

The Gauss-Manin connection

C.1 Connections

Let S be a smooth scheme over a field k and let ε be a quasi coherent sheaf of OS-modules.

Definition C.1. A connection on ε is an homomorphism Ä of abelian sheaves:

Ä : ε −→ Ω1
S/k ¹OS

ε

such that Ä(fe) = df ¹ e+ fÄ(e) for any section f and e of OS and ε respectively on an
open of S.

Remark C.1. A connection gives rise to homomorphisms of abelian sheaves

Äi : Ω
i
S/k ¹OS

ε −→ Ωi+1
S/k
¹OS

ε

Äi(É ¹ e) = dÉ ¹ e+ (−1)iÉ ' Ä(e)

where É ' Ä(e) denotes the image of É ¹ Ä(e) under the canonical map

ΩiS/k ¹OS
Ω1
S/k ¹OS

ε −→ Ωi+1
S/k
¹OS

ε

É ¹ Ä ¹ e −→ É ' Ä ¹ e.

Definition C.2. The curvature K of the connection Ä is the OS-linear map

K = Ä1 ◦ Ä : ε −→ Ω2
S/k ¹OS

ε.

We notice that
(Äi+1 ◦ Äi)(É ¹ e) = É 'K(e)

holds for any section É of ΩiS/k and e of ε on an open subset of S.

Definition C.3. The connection Ä is called integrable if K = 0 or, equivalently, if Ä gives
rise to a complex Ω•

S/k ¹OS
ε

ε −→ Ω1
S/k ¹OS

ε −→ Ω2
S/k ¹OS

ε −→ . . .

called the de Rham complex of Ä.
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Remark C.2. A connection Ä on ε yields an OS-linear mapping:

Derk(OS) −→ Endk(ε)

which sends any k-linear derivation D of OS to

Ä(D) : ε
Ä
−→ Ω1

S/k¹OS

D¹1
−→ OS ¹OS

ε ∼= ε

where we identify D with the associated morphism ÈD : Ω1
S/k −→ OS through the corre-

spondence

HomOS
(Ω1

S/k,OS)
∼= Derk(OS)

ÈD −→ D = ÈD ◦ d.

Then one easily verifies that

Ä(D)(fe) = D(f)e+ fÄ(D)(e).

C.2 Another filtration on the de Rham complex

Let S be a smooth affine scheme over a field k and let Ã : X −→ S be a smooth morphism
of schemes. We have an exact sequence:

0 −→ Ã∗Ωp
S/k
−→ Ωp

X/k
−→ Ωp

X/S
−→ 0

which is split exact since all of them are locally free OX -modules. Then we may see
Ã∗Ωp

S/k
↪→ Ωp

X/k
and consider the natural map

Ã∗Ωp
S/k
¹OX

Ωq−p
X/k
−→ ΩqX

coming from Ωp
X/k
¹OX

Ωq−p
X/k
−→ Ωq

X/k
.

Definition C.4. We define the Koszul filtration F •Ω•
X

F pΩq
X/k

:= im
(
Ã∗Ωp

S/k
¹OX

Ωq−p
X/k
−→ Ωq

X/k

)
(C.1)

where ΩiX/k = 0 for i < 0.

The graded pieces of the filtration are

grpΩ•
X/k = Ã∗Ωp

S/k
¹OX

Ω•−p
X/S

.

We consider the functor

T := R0Ã∗ : Ch
g0(Sh/X) −→ Sh/S

and apply Proposition B.1 to T with A = Ω•
X and F iA = F iΩ•

X in order to have

Ep,q1 = Rp+qÃ∗(Ã
∗Ωp

S/k
¹OX

Ω•−p
X/S

) =⇒ Rp+qÃ∗Ω
•
X .
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Using the projection formula:

Rp+qÃ∗(Ã
∗Ωp

S/k
¹OX

Ω•−p
X/S

) = Ωp
S/k
¹OS

Rp+qÃ∗(Ω
•−p
X/S

)

= Ωp
S/k
¹OS

RqÃ∗(Ω
•
X/S)

= Ωp
S/k
¹OS

Hq
dR(X/S).

We get the complex:

Hq
dR(X/S)

d0,q1−→ Ω1
S/k ¹OS

Hq
dR(X/S) −→ Ω2

S/k ¹OS
Hq
dR(X/S) −→ . . .

It looks like the de Rham complex of a connection, in particular if d0,q1 is a connection we
get integrability for free.

Remark C.3. Back to our general setting of spectral sequences, we give the following
construction. Suppose that for page r = a we are given a bigraded product:

Ep,qr × E
p′,q′

r −→ Ep+p
′,q+q′

r (C.2)

such that the differential dr satisfies the Leibnitz relation:

dp+p
′,q+q′

r (xx′) = dp,qr (x)x′ + (−1)pxdp
′q′

r (x′) (C.3)

for any x ∈ Ep,qa , x′ ∈ Ep
′,q′

a . Then the product of two cocycles (respectively coboundaries)
is again a cocycle (respectively a coboundary). We can extend the product to cohomology
and by induction we have a product as in (C.2) such that (C.3) holds for every r g a. We
shall call this a multiplicative structure on the spectral sequence.
Now let (C•, d•) be a complex equipped with a bigraded product, namely

Cp × Cq −→ Cp+q

such that the differentials satisfy Leibnitz rule. Assume that C• is endowed with a bounded
filtration F •C• which is multiplicative i.e.

F pCq × F p
′

Cq
′

−→ F p+p
′

Cq+q
′

.

Then Ep,q0 = F pCq/F p+1Cq inherits the product structure

Ep,q0 × E
p′,q′

0 −→ Ep+p
′,q+q′

0

and the spectral sequence has a multiplicative structure.

The de Rham complex is equipped with the exterior product

Ωp
S/k
¹ Ωq

S/k
−→ Ωp+q

S/k

É ¹ Ä −→ É ' Ä

and the canonical differential maps dS/k : Ω
p+q
S/k
−→ Ωp+q+1

S/k
satisfy

dS/k(É ' Ä) = dS/k(É) ' Ä + (−1)pÉ ' dS/k(Ä).
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The filtration (C.1) is multiplicative. By Remark C.3. the spectral sequence Ep,qr has
multiplicative structure and the page 1 maps satisfy Leibnitz rule. For q = 0 we have
that E•,0

1 is the complex Ω•
S/k¹H

0
dR(X/S) with differential maps dS/k¹1 and we may see

the de Rham complex as a subcomplex of it. We have the product Ei,01 × E
0,q
1 −→ Ei,q1 .

Then for any section É and e of ΩiS/k and Hq
dR(X/S) respectively on an open of S

di,q1 (É · e) = di,01 (É) · e+ (−1)iÉ · d0,q1 (e) = dS/k(É)¹ 1 · e+ (−1)iÉ · d0,q1 (e).

We conclude that d0,q1 : Hq
dR(X/S) −→ Ω1

S/k ¹H
q
dR(X/S) is a connection on the sheaf of

relative de Rham cohomology.

Definition C.5. We call

∇ := d0,q1 : Hq
dR(X/S) −→ Ω1

S/k ¹H
q
dR(X/S)

the Gauss-Manin connection.

Moreover for p = 0 we have the induced product E0,q
1 × E

0,q′

1 −→ Eq+q
′

1 i.e.

Hq
dR(X/S)×H

q′

dR(X/S) −→ Hq+q′

dR (X/S)

and the map d0,q1 verifies

d0,q+q
′

1 (e · e′) = d0,q1 (e) · e′ + (−1)qe · d0,q
′

1 (e′)

for any e ∈ Hq
dR(X/S) and e′ ∈ Hq′

dR(X/S). We say that the Gauss-Manin connection is
compatible with the cup product.

Remark C.4. As explained above the Gauss-Manin connection gives a map from Derk(OS)

to Endk(H
q
dR(X/S)) that sends a k-linear derivation D of OS to ∇(D) where

∇(D) : Hq
dR(X/S) −→ Ω1

S/k ¹OS
Hq
dR(X/S)

D¹1
−→ Os ¹OS

Hq
dR(X/S)

∼= Hq
dR(X/S).

By the observation above we have

∇(D)(e · e′) = ∇(D)(e)e′ + e∇(D)(e′)

∇(D)(f) = D(f)

for any section e, e′ and f of Hq
dR(X/S), H

q′

dR(X/S) and OS respectively. This shows
that ∇(D) extends the k-derivation D to the sheaf Hq

dR(E/S).

C.3 A computation for the universal elliptic curve

In this section we compute the Gauss-Manin connection for E/Y (N) over the complex
numbers C following [8] A.1.3.
First we need to recall some preliminary facts about integrable connections over C. Let

X
f
−→ S be a smooth proper family of connected varieties over C. We identify X with

Xan and we may restrict to the case of S affine.
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Remark C.5. We have a well defined functor from the category of quasi coherent locally
free OS-modules endowed with an integrable connection and the category of local systems
of finite dimensional vector spaces on San. Such a functor sends any pair (ε,∇) of a
quasi-coherent locally free sheaf and a connection ∇ to the germs of horizontal sections
ε∇ of the connection. It is an equivalence of categories. Indeed in the other direction
we have the functor which sends any local system (locally constant sheaf) L to the pair
(L ¹C OS , 1¹ d).

We recall that we have an analytic connection on S defined as follows. For every s ∈ S
the fiber Xs is a connected complex variety. By Poincaré lemma the sequence

0 −→ C −→ Ω1
Xs
−→ Ω2

Xs
−→ . . .

is exact, i.e. Ω•
Xs

is a resolution for the costant sheaf C. Hence we have a quasi-
isomorphism of complexes

Ω1
Xs

Ω2
Xs

· · ·

C 0 · · ·

and taking hypercohomology

Hi(Xs,Ω
•
X)
∼= Hi(Xs,C).

So we can compute the first de Rham cohomology as

H1
dR(Xs/C) = H1(Xs,C). (C.4)

Letting s vary in S the complex vector spaces H1
dR(Xs/C) describe the relative the Rham

cohomology H1
dR(X/S) and the H1(Xs,C)’s determine a locally constant OS-module

R1f∗C. The isomorphism (C.4) on fibers yields an isomorphims of OS-modules

H1
dR(X/S) = R1f∗C¹C OS .

Hence we may see the natural connection 1¹ d that arises from the local system R1f∗C
as a connection on the relative de Rham cohomology. Such a connection coincides exactly
with the Gauss-Manin connection defined algebraically in the previous section. Indeed:

Proposition C.1. The canonical morphism of sheaves

Rqf∗C = R1f∗Ω
•
X −→ R1f∗Ω

•
X/S

is an isomorphism between the source and the germs of horizontal sections for the Gauss-
Manin connection (R1f∗Ω

•
X/S)

∇.

Proof. As in the section above, we consider the Koszul filtration of Ω1
X and the corre-

sponding spectral sequence

Ep,q1 = ΩpS ¹OS
Rqf∗Ω

•
X/S =⇒ Rp+qf∗Ω

•
X .
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The Gauss-Manin connection is defined as ∇ = d0,q1 . Since Rqf∗Ω
•
X/S is quasi coherent

and locally free we must have by Remark C.5.

Rqf∗Ω
•
X/S
∼= (Rqf∗Ω

•
X/S)

∇ ¹C OS .

So we may rewrite
Ep,q1 = ΩpS ¹C (Rqf∗Ω

•
X/S)

∇

and d0,q1 = 1¹d. Furthermore, since (Rqf∗Ω
•
X/S)

∇ is locally constant, hence flat, we may
write the page two of the spectral sequence as

Ep.q2 = Hp(Ω•
S)¹C (Rqf∗Ω

•
X/S)

∇.

Moreover by Poincaré Lemma we have

Hp(Ω•
S) = Rp(Γ(X,C)) =

{
C if p=0,

0 otherwise.

Hence

Ep.q2 =

{
(Rqf∗Ω

•
X/S)

∇ if p=0,

0 otherwise.

This shows that the spectral sequence degenerates at page 2 and allows us to conclude
that

Rqf∗Ω
•
X = E0,q

∞ = E0,q
2 = (Rqf∗Ω

•
X/S)

∇.

We can now begin the computation of the Gauss-Manin connection for E/Y (N) over
C. We recall that the modular curve Y (N) = Γ(N)\H parametrizes classes of isomor-
phism of elliptic curves EÄ for Ä ∈ Y (N) where EÄ = C/ΛÄ , ΛÄ = Z + ÄZ. More
concretely we may see E as the family of elliptic curves described locally affine by

Y 2 = 4X3 − g2(Ä)X − g3(Ä) Ä ∈ Y (N)

hence as an elliptic curve over R where R is the ring of holomorphic functions of Γ(N)\H.
The global differentials on Y (N) are just given by RdÄ . Our aim is to compute the action
of ∇( ddÄ ) on the first de Rham cohomology. We work on fibers to choose a basis for the
first de Rham cohomology. For any Ä we choose a basis for H1

dR(EÄ/C) = H1(EÄ ,C) as
follows. We have a perfect pairing

H1(EÄ ,C)×H1(EÄ ,C) −→ C

(É, µ) −→

∫

µ

É

which allows us to identify H1
dR(EÄ/C) with the dual of H1(EÄ ,C) which is the C-vector

space generated by the paths

µ1(Ä) := [0, Ä ],

µ2(Ä) := [0, 1].
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Moreover we have an alternate perfect pairing

H1
dR(EÄ/C)×H1

dR(EÄ/C) −→ C

which realizes
H1
dR(EÄ/C) = H1

dR(EÄ/C)( ∼= H1(EÄ ,C).

Hence we choose a basis for H1
dR(EÄ/C) which we keep denoting for simplicity µ1(Ä), µ2(Ä)

such that
∫
µi(Ä)

À = ïµi(Ä), Àð for every À ∈ H1
dR(EÄ/C).

On the other hand we fix the canonical basis (see Remark A.7.) given by

É(Ä) =
dX

Y
= dz

¸(Ä) = X
dX

Y
= ℘(z, Ä)dz

We want to express it in terms of µ1(Ä) and µ2(Ä). We denote the associated periods by
Éi(Ä) =

∫
µi(Ä)

É(Ä) and ¸i(Ä) =
∫
µi(Ä)

¸(Ä) respectively. Then we must have

É(Ä) = É1(Ä)µ2(Ä)− É2(Ä)µ1(Ä)

¸(Ä) = ¸1(Ä)µ2(Ä)− ¸2(Ä)µ1(Ä).

As Ä varies in Γ(N)\H, H1(EÄ ,C) determines the local system H1
dR(E/Y (N))∇, so the

sections µ1 and µ2 obtained by the varying of Ä are horizontal for the Gauss-Manin con-
nection. Varying Ä we also obtain the basis É,¸ in H1

dR(E/R). Such a basis is compatible
with the Hodge filtration i.e. the choice of É and ¸ determines an isomorphism

H1
dR(E/R) −→ ÉE/R ¹ É

−1
E/R

and ¸ projects to a basis of É−1
E/Y (N)

dual to É 1. Expressing it in terms of µ1, µ2 we have

É = É1µ2 − É2µ1,

¸ = ¸1µ2 − ¸2µ1.

Inverting the relation using the period relation of Legendre 2

¸1É1 − ¸2É1 = 2Ãi

we obtain

2Ãi

(
µ1
µ2

)
=

(
−¸2 É2
−¸1 É1

)(
É

¸

)
.

Now we apply ∇
(
d
dÄ

)
, recalling that it annihilates µ1 and µ2. Denoting d

dÄ by ′ we get

0 =

(
−¸′2 É′

2

−¸′1 É′
1

)(
É

¸

)
+

(
−¸2 É2
−¸1 É1

)(
∇
(
d
dÄ

)
(É)

∇
(
d
dÄ

)
(¸)

)

1See [8] A1.2.5.
2Wait for Remark C.6. for a proof.
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and inverting again
(
∇
(
d
dÄ

)
(É)

∇
(
d
dÄ

)
(¸)

)
= −

1

2Ãi

(
É1 −É2
¸1 −¸2

)(
−¸′2 É′

2

−¸′1 É′
1

)(
É

¸

)

= −
1

2Ãi

(
É2¸

′
1 − É1¸

′
2 É1É

′
2 − É2É

′
1

¸′1¸2 − ¸1¸
′
2 É′

2¸1 − ¸2É
′
1

)(
É

¸

)
.

We may explicitly compute É1(Ä) = Ä and É2(Ä) = 1 and Legendre’s relation becomes
¸1 − Ä¸2 = 2Ãi which implies ¸′1 − Ä¸

′
2 = ¸2 and ¸′1¸2 − ¸1¸

′
2 = ¸22 − 2Ãi¸2. All in all, we

can write (
∇
(
d
dÄ

)
(É)

∇
(
d
dÄ

)
(¸)

)
= −

1

2Ãi

(
¸2 −1

¸22 − 2Ãi¸2 −¸2

)(
É

¸

)
.

Lemma C.1.

¸2(Ä) = −
∑

(n,m) ̸=(0,0)

1

(mÄ + n)2
= −

Ã

3
E2(Ä)

Proof. We recall that ¸2(Ä) = ℘(z, Ä)dz. The Weirstrass ℘ function satisfies −℘(z, Ä) =
· ′(z, Ä) where ·(z, Ä) is the Weistrass · function defined as

·(z) =
1

z
+

∑

(m,n) ̸=(0,0)

1

z −mÄ − n
+

1

mÄ + n
+

z

(mÄ + n)2

which is an absolutely convergent sum so we can change the order of summation. With a
direct computation we have

¸2(Ä) =

∫

µ2(Ä)

℘(z, Ä)dz =

∫ 1

0

−· ′(z, Ä)dz =

∫ z+1

z

−· ′(z, Ä)dz = ·(Ä, z)− ·(Ä, z + 1)

And rearranging the terms in the sum we get the desired result 3.

Remark C.6. In the style of the proof above one also sees that

¸1 = −
∑

(n,m) ̸=(0,0)

Ä

(mÄ + n)2

hence ¸2(−1/Ä) = Ä¸1(Ä). With this in mind Legendre’s relation is equivalent to

¸2(−1/Ä) = Ä2¸2(Ä) + 2ÃiÄ

that is nothing more than (1.1)

E2(−1/Ä) = Ä2E2(Ä)−
6iÄ

Ã
.

To conclude
(
∇
(
d
dÄ

)
(É)

∇
(
d
dÄ

)
(¸)

)
=

1

2Ãi

(
Ã2

3 E2(Ä) 1
Ã4

9 E2(Ä)−
12
2ÃiE

′
2(Ä) −

Ã
3E2(Ä)

)
.

3See [8] A.1.33.
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Finally, through the change of variable q = e2ÃiÄ we obtain the Tate curve over C((q)).
We choose the canonical basis for H1

dR(Tate(q)/C((q))) determined by Écan = dt
t = 2Ãiz =

2ÃiÉ. Then the dual ¸can is going to be 1
2Ãi¸. We have

∇(¹)

(
É

¸

)
=

1

2Ãi

(
∇Ä (É)

∇Ä (¸)

)
=

(
−P
12

−1
4Ã2

Ã2

36 (P
2 − 12¹P ) P

12

)(
É

¸

)

and in terms of Écan and ¸can

∇(¹)

(
Écan
¸can

)
=

(
−P
12 1

P 2−12¹P
144

P
12

)(
Écan
¸can

)
. (C.5)

C.4 The Kodaira-Spencer morphism

In our discussion we let K be a field and E an elliptic curve over a smooth affine scheme
S over K. Let us denote ÉE/S = Ã∗(Ω

1
E/S).

By Serre’s duality the invertible sheaves R0Ã∗(Ω
1
E/S) and R1Ã∗(OE) are dual to each

other. We denote the further by É¹−1
E/S

and we rewrite the Hodge filtration on the relative
the Rham cohomology as

0 −→ ÉE/S −→ H1
dR(E/S) −→ É¹−1

E/S
−→ 0.

The Gauss Manin connection induces a mapping

ÉE/S ↪→ H1
dR(E/S)

∇
−→ Ω1

S ¹OS
H1
dR(E/S) ↠ Ω1

S ¹OS
É¹−1
E/S

where the last arrow is the projection modulo ÉE/Y (N).

Remark C.7. The above map ϕ : ÉE/S −→ Ω1
S ¹OS

É¹−1
E/S

is OS- linear. Indeed for any
section É and a of ÉE/S and OS respectively on an open of S we have

ϕ(aÉ) = [∇(aÉ)] = [da¹ É + a∇(É)] = a[∇(É)] = ϕ(É)

where by the square bracket we denote the image of sections through the projection modulo
Ω1
S ¹OS

ÉE/S.

Definition C.6. The map ϕ induces an OS-linear morphism

KS : É¹2
E/S
−→ Ω1

S

which we call the Kodaira-Spencer morphism.

Let us fix N g 3 an integer. Let Tate(q) be the Tate curve over K((q1/N )) and let Écan
be its canonical differential.

Lemma C.2. The image of É¹2
can under the Kodaira-Spencer morphism is dq

q .

89



Proof. The Kodaira-Spencer morphism É¹2
can −→ Ω1

K((q1/N ))
is induced by the mapping

Écan H1
dR(Tate(q)/K((q1/N )))

H1
dR(Tate(q)/K((q1/N )))¹ Ω1

K((q1/N ))
É¹−1
can ¹ ΩK((q1/N )).

∇

Let Écan, ¸can be a basis of H1
dR(Tate(q)/K((q1/N ))) such that ¸can projects to the dual

basis to Écan of É¹−1
can i.e.

¸can mod Écan = É−1
can.

To conclude it is sufficient to show that the composition of arrows above sends Écan to

É−1
can¹

dq
q . Let q ddq be the derivation dual to dq

q . Then we can recover ∇(É) from ∇
(
q ddq

)

(Remark C.4) by ∇(É) = ∇
(
q ddq

)
(É) ¹ dq

q . By the computation of section 3 of this

appendix we have ∇
(
q ddq

)
(É) = ¸can −

P
12Écan. Hence

∇(É) = ∇

(
q
d

dq

)
(É)¹

dq

q
=

(
¸can −

P

12
Écan

)
¹
dq

q

and projecting on R1Ã∗OTate(q) we obtain that Écan is sent to É−1
can¹

dq
q . Hence we conclude

that KS(É¹2
can) =

dq
q .

Remark C.8. The computation above shows that the Kodaira-Spencer map sends a basis
of É¹2

can to a generator of Ω1
K((q1/N ))

. In particular KS is an isomorphism. Indeed all
the maps in the definition of KS commute with base change and any elliptic curve E/S
over the base field K (with level N-structure) can be obtained through pullback from the
universal elliptic curve E/Y (N). This allows us to conclude that the Kodaira-Spencer
morphism is an isomorphism for elliptic curves.
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