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Abstract

Our world is living a paradigm shift in technology policy, often referred to as the
Cyber-Physical Revolution or Industry 4.0.

Nowadays, Cyber-Physical Systems are ubiquitous in modern control engineering,
including automobiles, aircraft, building control systems, chemical plants, transporta-
tion systems, and so on. The interactions of the physical processes with the machines
that control them are becoming increasingly complex, and in a growing number of
situations either the model of the system is unavailable, or it is too difficult to de-
scribe accurately. Therefore, embedded computers need to learn the optimal way to
control the systems by the mere observation of data.

What seems the best approach to control these complex systems is often by dis-
cretizing the different variables, thus transforming the model into a combinatorial
problem on a finite-state automaton, which is called an abstraction of the real sys-
tem.

Until now, this approach, often referred to as abstraction-based control or symbolic
control, has not been proved useful beyond small academic examples.

In this project I aim to show the potential of this approach by implementing a novel
data-driven approach based on a probabilistic interpretation of the discretization
error.

I have developed a toolbox (github.com/davidedl-ucl/master-thesis) implement-
ing this kind of control with the aim of integrating it in the Dionysos software
(github.com/dionysos-dev).

With this software, I succeeded in efficiently solving problems for non-linear con-
trol systems such as a path planning for an autonomous vehicle and a cart-pole
balancing problem.

The long-term objective of this project is to improve the methods implemented in
my current software by employing a variable discretization of the state space and to
consider complex specifications such as LTL formulas.
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1
Introduction

Our world is living a paradigm shift in technology policy, often referred to as the
Cyber-Physical Revolution or Industry 4.0.

Nowadays, cyber-physical systems (CPSs) are ubiquitous in modern control en-
gineering, including automobiles, aircraft, building control systems, chemical plants,
transportation systems, and so on. The interactions of the physical processes with
the machines that control them are becoming increasingly complex, and in a growing
number of situations either the model of the system is unavailable, or it is too dif-
ficult to describe accurately. However, at the same time, modern electronic devices
can sense, process, and store a huge amount of data. Therefore, embedded computers
need to learn the optimal way to control the systems by the mere observation of data.

Moreover, many CPSs are safety critical or mission critical: it must ensure that
the system operates correctly meeting the satisfaction of safety or some desired spec-
ifications. Formal methods are known to provide essential tools for the design of
CPSs, as they give theoretical or rigorous mathematical proofs that the system works
correctly meeting the desired specification [1]. While the formal methods have been
originally developed in software engineering that aims at finding bugs or security vul-
nerabilities in the software, the methodologies have been recently recognized to be
useful in other applications, including the control design of CPSs. In particular, one
of the most successful methods that interface the formal methods and the control
design of CPSs is the so-called symbolic control, see, e.g., [[2]].

As a matter of fact, generalizing classical control techniques based on frequency
analysis or convex optimization to hybrid systems is challenging. In the literature,
some works achieve this for specific classes of hybrid systems but this is usually lim-
ited to systems for which the discrete part is not too complex. On the other hand,
symbolic control relies on the relation between the system and an automaton to lever-
age algorithms on graphs or hyper-graphs. In such approach, if the control system (or
part of it) is represented in a continuous-state (and input) space, a symbolic model
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for the system can be obtained by discretizing the different variables, thus trans-
forming the original model into a combinatorial problem on a finite-state automaton,
which is called an abstraction of the real system. Even though symbolic controllers
(also known as abstraction-based controllers) suffer from the curse of dimensionality,
their complexity is less affected by the complexity of the discrete part. Therefore,
the main objective of abstraction-based control is to design controllers for CPSs with
logic specifications.

This research project was conducted at the Université Catholique de Louvain
(UCLouvain) under the supervision of Prof. Raphaël Jungers while collaborating
to the development of the Dionysos software [1]. The software is part of the Euro-
pean Research Council (ERC) project Learning to Control – Smart and Data-Driven
Formal Methods for Cyber-Physical Systems Control (L2C). Therefore, my research
project was carried on by working in close contact with Prof. Jungers’s team (and
in particular with the Dionysos dev team) with the final aim of developing a toolbox
able to control non-linear systems via abstraction-based techniques. More specifi-
cally, Dionysos’s objective is to learn the optimal control CPSs from data, whether
harvested from the physical system or generated synthetically. The software will rely
on a novel methodology, combining the efficiency of several modern optimization,
control-theoretic, and machine-learning techniques with the theoretical power of the
abstraction approach. All the pieces of the architecture are chosen to foster black-box
and data-driven analysis, thereby matching rising and unresolved challenges.

This paper will be structured as follows:

• Firstly, I will introduce the most common abstraction-based strategies to design
a controller for non-linear systems with a continuous-state (and input) space;

• Then, I will present a novel way to obtain an abstraction using heuristics,
namely replacing the non-determinism resulting from the discretization by adding
probabilities on the transitions in order to build a probabilistic abstraction.

• Thus, I will describe the methods that I have employed in my software and its
structure.

• Finally, I will introduce the main examples on which I tested my toolbox and
present my experimental results.

13



2
The Typical Abstraction-Based
Control

As previously mentioned, abstraction-based control, a.k.a. symbolic control, can be
an effective approach for the control design of CPSs. CPSs are usually modeled as
hybrid systems and therefore present continuous state and input spaces. Roughly
speaking, those variables are discretized to obtain a symbolic model (abstraction)
based on the original (concrete) control system. The abstraction is constructed pre-
serving the behavior of the concrete system, therefore a symbolic controller is designed
based on the abstract system and then refined as a controller for the concrete system.

Abstraction-based control is known to be a powerful tool in the following three
ways:

• it allows us to synthesize controllers for general non-linear dynamical systems
(that may also present hybrid behavior) with state and input constraints;

• by constructing the symbolic model, we can take into account the constraints
that are imposed on the cyber part with regard to the digital platform, such as
a quantization effect;

• it allows us to synthesize controllers under various control specifications, includ-
ing safety, reachability, or more complex ones such as those expressed by linear
temporal logic formulas or automata on infinite strings. In particular tempo-
ral logics have well-defined syntax and semantics, which can be easily used to
specify complex behavior. It has been shown [3, 4] that it is possible to con-
vert an LTL formula into an equivalent automaton. Therefore, thanks to this,
the automaton could be combined with another one representing an abstract
system.

14



Roughly speaking, an abstraction-based feedback system usually works as follows:

1. first, the state of the real system is estimated

2. then, the state of the real system (concrete state) is mapped into a symbolic
one (abstract state) thanks to an existing relation between the systems

3. then, a symbolic controller is derived based solely on the abstraction

4. finally, the output of the abstract controller is refined into an input for the
concrete system.

plant

quantizer

state

symbolic controller

map

symbolic control input

abstract
state

refined input

abstract part

abstraction-based controller

Figure 2.1: Basic abstraction-based feedback control scheme

The mapping procedure from a real to a symbolic state usually consists of a
quantization, however, behavioural relationships, such as the concept of approximate
(bi-)simulation relation [5], are used to relate the behaviours of the original control
system and its symbolic model. Moreover, in order to obtain abstractions and rela-
tions with formal guarantees, a mathematical description of the system is required.

Most of the times, the computation of abstractions is essentially reduced to the
over-approximation of the reachable sets of the original system, i.e., the computation
of a bounding set, encompassing the attainable states, from each particular cell1. A
large number of over-approximation methods have been proposed, e.g. [6], [7], [8].

1A set of concrete states (usually consisting of a hyper-interval) that map to the same symbolic
state
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However, there is a trade-off between computing a high precision over-approximation
of the reachable set, leading to a less conservative abstraction, and the computation
time. A method proposed in [4] is based on the computation of a growth-bound
function, which is a bound on the discretization error based on continuity arguments.
While this function has the advantage of being a local estimate and of depending on
the input used, it can also be very conservative. It requires narrow bounds on the
partial derivatives on an a-priori enclosure of the trajectory. Moreover, it provides
an over-approximation component-wise, which can in some situations lead to a bad
approximation as shown in Fig. 2.2.

𝑥 𝑠

Figure 2.2: Classical abstraction approach. In this example an autonomous
system with a 2-dimensional state-space is partitioned into cells (Fig. a).

The cell containing the concrete state x transitions to the pink-colored part.
However, due to a component-wise over-approximation, the reachable state

space is considered as the grey hyper-rectangle. Therefore, in Fig. b, we
can notice that the corresponding symbolic state s has a larger amount of

successors compared to an abstraction obtained with an exact-computation
of the reachable set, leading to a high degree of conservatism.
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3
The Data-Driven Approach

3.1 Preliminaries
The interactions of the physical processes with the machines that control them are
becoming increasingly complex, and in a growing number of situations either the
model of the system is unavailable or it is too difficult to describe accurately. In
view of thee specificities, one needs to learn how to control the systems by the mere
observation of data.

3.1.1 Systems
Among the many different mathematical models used to describe dynamical phenom-
ena we are especially interested in models with states belonging to finite sets, infinite
sets, and combinations thereof. By a finite-state system we mean a system described
by finitely many states (a.k.a. symbolic). We also consider infinite-state systems de-
scribed by difference or differential equations with solutions evolving in infinite sets
such as Rn.

The notion of transition system [5] allows us to describe the concrete dynamical
system and its symbolic abstraction in a unified framework. Hybrid systems, combin-
ing aspects o finite-state and infinite-state systems, consist of another class of systems
that can still be described by this notion.

Definition 3.1.1 (Transition system)
A transition system (or simply a system) S is a sextuple (X, X0, U,→, Y, H) con-
sisting of:

• a set of states X;

• a set of initial states X0 ⊆ X;
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• a set of inputs U ;

• a transition relation →⊆ X × U ×X;

• a set of outputs Y ;

• an output map H : X → Y .

The evolution of a system is captured by the transition relation. We will denote
a transition (x, u, x′) ∈→ as x

u−→ x′. For such a transition, state x′ is called a
u-successor, or simply successor, of state x. Similarly, x is called a u-predecessor, or
predecessor, of state x′. Note that, since→⊆ X×U×X is a relation, for any state and
any input u ∈ U there may be: no u-successors, one u-successor, or many u-successors.
For conciseness, we denote the set of u-successors of a state x by Postu(x).

Definition 3.1.2 (Finite system)
A transition system is said to be finite (or symbolic), if sets X and U are finite.

Definition 3.1.3 (Deterministic system)
A transition system is said to be deterministic, if there exists at most one u-
successor of x, for any x ∈ X and u ∈ U

Moreover, in this project we will study only simple systems, namely the state is
directly measurable and it coincides with the output of the system.

Definition 3.1.4 (Simple system)
A transition system is said to be simple if X = Y , H = id, and all states are
admissible as initial states, i.e., X = X0

3.1.2 Controllers
Definition 3.1.5 (Control policy)

A control policy (or controller) for the transition system (X, X0, U,→, Y, H) is a
pair (X0

C , C) consisting of:

• a set of initial states X0
C ;

• a control law C : X≤N → U that takes a finite state sequence x(0), x(1), . . . , x(k)
and outputs a control u(k) for all time k ∈ N.1

1Given N ∈ N>0 and a metric space X, X≤N denotes the set of finite sequences of elements of
X with length bounded by N
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In this project we will consider only static controllers, namely the control input
depends solely on the current state.

Definition 3.1.6 (Static control policy)
A static controller (X0

C , C) is a control policy such that the control law C : X → U
takes the current state x(k) and outputs a control u(k).

3.1.3 Relations
As previously mentioned, in order to couple the behavior of two systems we need to
resort to some notion of relation.

Given a relationR ⊆ X1×X2 and x1 ∈ X1 we defineR (x1) = {x2 ∈ X2 | (x1, x2) ∈ R}.
Similarly, for x2 ∈ X2 we define R−1 (x2) = {x1 ∈ X1 | (x1, x2) ∈ R}.

The most common relation between systems used in abstraction-based control is
the one of alternating simulation relation[5].

Definition 3.1.7 (Alternating Simulation Relation)
Let S1 and S2 be systems with Y1 = Y2. A relation R ⊆ X1×X2 is an alternating
simulation relation from S1 to S2 if the following three conditions are satisfied:

1. for every x10 ∈ X1,0 there exists x20 ∈ X2,0 with (x10, x20) ∈ R;

2. for every (x1, x2) ∈ R we have H1 (x1) = H2 (x2);

3. for every (x1, x2) ∈ R and for every u1 ∈ U1 (x1) there exists u2 ∈ U2 (x2)
such that for every x′

2 ∈ Postu2 (x2) there exists x′
1 ∈ Postu1 (x1) satisfying

(x′
1, x′

2) ∈ R.

Definition 3.1.8 (Alternating Simulation)
Given two systems S1 and S2 with Y1 = Y2, we say that S1 is alternatingly simu-
lated by S2 or that S2 alternatingly simulates S1, denoted by S1 ⪯AS S2, if there
exists an alternating simulation relation (Def. 3.1.7) from S1 to S2.
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3.2 A Basic Data-Driven Approach
Suppose we aim to control a simple continuous-state discrete-time system

S1 = (X1, X1,0, U1,→1, Y1, H1)
where

X1 ⊆ RN , X1,0 = {x0}, U1 ⊆ RM ,
(x, u, x′) ∈→ ⇐⇒ x′ = F (x),

Y1 = X1, H1 = id

(3.1)

Moreover assume X and U bounded. For simplicity, we can also consider them to
be hyper-intervals.

The abstraction is constructed as follows:

1. First, we need to partition the domains. Therefore, X1 and U1 are divided into
smaller hyper-rectangles of the same length, called cells.

2. Then a symbolic domain X2 is constructed by mapping each cell X1,i of X1 into
an element x2,i of X2. The same is done with X1,0, thus obtaining a symbolic
set X2,0, and U1 to construct the abstract domain U2.
By doing so, we have defined the maps

RX (x) .= x2,i ∀ x ∈ X1,i (3.2)

RU (u) .= u2,j ∀ u ∈ U1,j (3.3)
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Figure 3.1: Concrete-to-abstract domain mapping (and vice-versa).
An example of a 2-dimensional state space X1 divided into cells

X1,i, each of which is related to a symbolic state x2,i according to
the map RX . Another map R†

X maps each symbol into the center
of the corresponding cell.

3. Once constructed the domains we need to define a transition relation
→2 ⊆ X2 × U2 ×X2.
We call xc,i the center of the hyper-rectangle X1,i and uc,j the center of the
hyper-rectangle U1,j, thus we can define the maps

R†
X (x) .= xc,i ∀ x s.t. x = RX(xc,i) (3.4)

R†
U (u) .= uc,j ∀ u s.t. u = RU(uc,j) (3.5)

Then we construct the transition relation →2:

∀ (xc,i, uc,j, x′
1) ∈→1, (3.6)

(x2, u2, x′
2) ∈→2 ⇐⇒ {x2 = RX (xc,i) , u2 = RU (uc,j) , x′

2 = RX (x′
1)}

4. Finally, we can define the abstraction as

S2 = (X2, X2,0, U2,→1, Y2, H2) where
Y2 = Y1 and H2 = R†

X

(3.7)
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𝒖𝒄,𝟏

𝒖𝒄,𝟐

𝒖𝟐,𝟏

𝒖𝟐,𝟐

Figure 3.2: Construction of the abstract transitions. For each
discretized input (uc,1 and uc,2 in the figure) the red state xc,i

transition to two states in different cells. Those transitions
xc,i

uc,1−→ x′ and xc,i
uc,2−→ x′′ are used to construct two analog ones of

the symbolic system.

Roughly speaking, in this four steps we have discretized the state and input spaces.
We have associated a symbolic state to the center of each cell, which can now be seen
as discrete states and inputs. Moreover, we can notice that the behavior of each
abstract state corresponds to the one of the center of the corresponding cell.

At this point, since the inputs u ∈ U are defined by the controller, we can re-
strict the behavior of the original system to the one that accepts only the inputs
corresponding to the ones of the symbolic model. We define the discrete input set as

U ′
1 = {u1 | u1 = RU (u2)∀u2 ∈ U2} (3.8)

Therefore, it is straightforward to notice that the system

S ′
1 = (X1, X1,0, U ′

1,→1, Y1, H1) (3.9)

is alternatingly simulated (see Def. 4.1.1) by S1.
Furthermore, since all transitions of S2 have a correspondent one in S ′

1, it holds
that S2 ⪯AS S ′

1 and therefore S2 ⪯AS S1. However, the converse does not necessarily
hold.

As mentioned in Section 2, a mathematical description of the system is required to
derive formal guarantees on the behavior of the closed-loop symbolic controller. For
this reason, few works attempted to implement data-driven abstraction-based con-
trollers. Nevertheless, some of them succeeded to derive some probabilistic bounds.
In [9], the authors proposed a data-driven approach based on a black-box model to
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construct an abstraction relying on the notion of PAC approximate alternating sim-
ulation relation. The state space is uniformly discretized into cells and each of them
is mapped into a state of the symbolic model. Transitions in the abstraction are
computed by simulating trajectories starting in a cell. In contrast to the classical
approach, this technique does not suffer from the conservatism resulting from the
over-approximation of the reachable set (see Fig. 3.3). However, this method does
not provide strong guarantees of correctness for the original problem but PAC bounds
since some behaviors of the original system may not be simulated by the probabilistic
abstraction.

Ξ

Ξ’

ξ

ξ’1

ξ’3

ξ’2

ξ’4 ξ’5

ξ’6

Figure 3.3: Data-driven abstraction approach based on multiple samplings
per cell. In this example an autonomous system with a 2-dimensional
state-space is partitioned into cells (Fig. a). Multiple trajectories are

simulated for each cell in order to estimate the reachable set. The states
represented by black points in Ξ transition to the red ones contained in Ξ′

(i.e., the actual image of Ξ). As can be observed by comparing this figure
with Fig. 2.2, the successors of xi are only 6, compared to the 12 of Fig.
2.2 (where the abstraction is computed with a model-based approach).

In the same vein, the authors of [10] also proposed a method to provide a PAC
bound on a reachability control problem by computing bounds on transitions with
a desired confidence level based on scenario-based approach methods. Work [11]
proposed to use Gaussian process (GP) regression [12] and abstraction to compute
a strategy that maximizes the probability of satisfying an LTL formula [13] of a
partially-known stochastic system from a given data set. In [14], the authors have
proposed a procedure to compute bounds on the probability of satisfying a specifi-
cation for the particular class of mixed monotone stochastic systems. In both cases,
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the resulting abstract system is nondeterministic, even though the original system is
deterministic, due to the uncertain location of the continuous state in a cell.

Moreover, without assumptions on a system behavior that are usually derived
with the knowledge of a model, it is not possible to derive tight deterministic bounds
on the system behavior. Indeed even if a huge amount of trajectories are simulated
for each cell, some of them leading to different regions of the state space might not
be simulated. A graphical demonstration of this phenomenon is shown in Fig. 3.4.
If none of the trajectories starting from the small blue region are simulated, the
abstraction (Fig. 3.4 (a)) does not alternatingly simulate the original system (Fig.
3.4 (b)).

Ξ
ξ

Figure 3.4: In this example a symbolic abstraction is constructed as in Fig.
3.3. From this example is possible to see how only a small part of the cell
(in blue) transitions to a cell different from the others. This can lead to

non-determinism even if the cell behavior is quasi-deterministic. Moreover,
if none of the points in the blue region is simulated the abstraction (right)

is not an alternating simulation of the concrete system (left).
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3.3 A Data-Driven Probabilistic Abstraction
As previously mentioned, abstractions allow us to synthesize controllers for gen-
eral nonlinear dynamical systems taking into account different constraints of cyber-
physical systems. However, in a growing number of situations either the model of
the system is unavailable, or it is too difficult to describe accurately, therefore, a
data-driven approach is the only sensible solution to effectively control these systems.
In this subsection I propose an approach to leverage the information coming from
heuristics in order to decrease the conservatism inherent with discretization. To be
more specific, I will present a Monte-Carlo approach based on a probabilistic interpre-
tation of the abstraction error leading to the construction of a probabilistic Markov
Decision Process [15].

𝑢𝑐,2

𝑢𝑐,1

𝑥(1) 𝑥(2)

𝑥(3) 𝑥(4)

0.5

0.25

0.25

0.5
0.25

Figure 3.5: Construction of a probabilistic abstraction via
Monte-Carlo methods. In the concrete system (left) M = 4 points
x(i) are sampled from the pink cell and their trajectories simulated
for each discrete input (uc,1, uc,2). The corresponding transitions

are mapped in the abstraction (right). To each transition is
assigned a probability proportional to the number of points that

transition to the corresponding cell.

Suppose to be working in the same framework described in Sec. 3.2, i.e., wanting
to control a simple transition system S1 defined as in (3.1). Similarly of the procedure
presented in Sec. 3.2, the state and space is partitioned into cells and each of them is
mapped to a symbolic state. Then, we sample k samples per cell and simulate their
trajectories for each discrete input. Finally we construct the abstraction so that each
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state-input pair (x, u) transitions to a state x′ with a probability proportional to the
number of points that map to the corresponding cell. These probabilities have no real
meaning with respect to the concrete dynamics but can be used as a proxy for the
non-determinism caused by the discretization. This procedure is presented in detail
in the Algorithm 1 and a graphical intuition is shown in Fig. 3.5.

Algorithm 1 Construction of a Monte-Carlo Probabilistic Abstraction
Input:
Concrete system S1 = (X1, X1,0, U1,→1, Y1, H1) as in (3.1)
(with X1, X1,0, and U1 hyper-intervals)
Outputs:
Abstract system S2 = (X2, X2,0, U2,→2, Y2, H2)
Domain relations RX : X1 → X2 and RU : U1 → U2

Inverse domain relations R†
X : X2 → X1 and R†

U : U2 → U1

Probability map P : X2 × U2 ×X2 → [0, 1]

Partition X1 and U1 into hyper-rectangles of the same length ({X1,i}i=1...m

and {U1,j}j=i...n respectively, with m and n finite)a

X2 ← {x2,i, for i = 1, 2, . . . , m}
for all x ∈ X1 do

if ∃ i s.t. x ∈ X1,i then
RX(x)← x2,i

end if
end for
X2,0 ← {x2,i | X1,i ⊆ X1,0}
U2 ← {u2,j, for j = 1, 2, . . . , n}
for all u ∈ U1 do

if ∃ j s.t. u ∈ U1,j then
RU(u)← u2,i

end if
end for

aAssume also that X1,0 corresponds exactly to the union of some cells X1,i
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Algorithm 1 (cont’d)
for i ∈ {1, 2, . . . , n} do

xc,i ← center of the cell X1,i

x̃ = RX(xc,i)
R†

X(x̃)← xc,i

end for
for j ∈ {1, 2, . . . , m} do

uc,i ← center of the cell U1,i

ũ = RU(uc,i)
R†

U(ũ)← uc,i

end for
for i ∈ {1, 2, . . . , n} do

Select the number of samples K

Select a distribution pi such that ∀ x ∈ X, pi(x) > 0 ⇐⇒ x ∈ X1,i

for j ∈ {1, 2 . . . , m} do
Draw K samples x(1), . . . , x(K) from X1,i according to the
distribution pi, and compute the uc,j -successors x(1) ′, . . . , x(K) ′

for k ∈ {1, 2 . . . , K} do
Define →2 (x2,i, u2,j) as{︂
x2,i ∈ X2 | ∃k ∈ {1, . . . , K} s.t x(k) ′ ∈ X1,i

}︂
end for
for all (x2,i, u2,j, x′) ∈→2 do

Define P→2 (x2,i, u2,j,2 x′) equal to the amount of times x′ occurs

in
{︂
x(1) ′, . . . , x(K) ′

}︂
divided by K

end for
end for

end for
Y2 ← Y1

H2 ← R†
X

S2 ← (X2, X2,0, U2,→2, Y2, H2)
return S2,RX , RU , R†

X , R†
U



3.4 Controller Refinement
Once the abstraction has been constructed and we have defined the maps R the
symbolic model, a control policy 3.1.5 must to be designed in order to control the
symbolic model according to the given specifications.

Therefore, first the specifications for the concrete system have to be translated
as abstract ones. In order to do so, we must rely on the relations RX : X1 → X2,
R†

X : X2 → X1, RU : U1 → U2, R†
U : U2 → U1 previously defined.

A typical specification is the reachability of a target set X1,f ⊆ X1 by performing
the minimum number of steps. The analog abstract problem can be defined simply
by mapping the elements of X1,f to symbolic states ∈ X2 according to the map RX ,
thus obtaining an abstract target set X2,f .

Once defined the abstract specifications, a policy can be designed by employing
suitable state-of-the-art algorithms to control the specific transition system. The
algorithms employed in this project are presented in the next section (Sec. 4).

Algorithm 2 Control Policy Refinement
Inputs:
Concrete system S1 = (X1, X1,0, U1,→1, Y1, H1)
Abstract system S2 = (X2, X2,0, U2,→2, Y2, H2)
Abstract static control law C2 : X2 → U2

State relation RX : X1 → X2

Input relation R†
U : U2 → X1

Outputs:
Concrete static control law C1 : X1 → U1

for all x1 ∈ X1 do
x2 ← RX(x)
u2 ← C2(x2)
u1 ← R†

U(u2)
C1(x1)← u1

end for
return C1
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4
Control Policy Design

4.1 Abstractions as Markov Decision Processes
As previously mentioned, the abstract transition systems introduced in Sections 3.2
and 5.2.2 can be actually be translated to Markov Decision Processes [16] in order to
implement state-of-the-art dynamic programming algorithms[17, 18].

Definition 4.1.1 (Markov Decision Process)
A Finite-Horizon Markov Decision Process (MDP) is a 4-tuple (S, A, P, r, R),
where:

• S is a finite set of states

• A is a finite set of actions

• P : S×A×S → [0, 1] is the probability that action a ∈ A in state s ∈ S at time t
will lead to state s′ at time t+1, namely, P (s, a, s′) = P {st+1 = s′ | st = s, at = a}

• r : S × A× S → R is the reward function

• R : S → R is the final reward function

With a slight abuse of notation we define

r(s, a) .= Es′ {r(s, a, s′) | (s, a)} =
∑︂
s′

[r(s, a, s′) P (s, a, s′)] (4.1)

Given this definition of Markov Decision Process we can observe that by defining
the reward functions r and R we can construct one MDP starting from the symbolic
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model (S2 as obtained in Alg. 1).

To be specific:

• S ← X2

• A← U2

• P ← P

The same holds for the basic data-driven abstraction S2 obtained in Sec. 3.2.
Since the transition system is deterministic order to obtain a probability map we
simply compute

P (s, a, s′) = P {st+1 = s′ | st = s, at = a} = 1 (4.2)

4.2 Reachability problem
Defining the reward functions allows us to solve different kind of problems such as
safety and reachability.

This project will be focused mainly on solving reachability problems, namely,
reaching a state s ∈ T ⊆ S in the minimum amount of time.

In order to solve this problem we set:

• r(s, a, s′) = −ε ∀(s, a, s′) ∈ S × A× S with ε > 0

• R(s) = L ∀s ∈ T with L >> ε

• R(s) = 0 ∀s ∈ S ∖ T

4.3 MDP control algorithms
In order to design a symbolic controller for the abstraction we have translated the
problem to the control of a Markov Decision Process.

With respect to the two abstraction proposed, we have come up with two dis-
tinct Markov Decision Processes. The one derived with the basic approach is indeed
deterministic (see Eq. 4.2) while the other present stochastic behavior.

For this reason many algorithms suitable for a deterministic system are not ap-
plicable to a probabilistic control process.

Controlling a deterministic MDP with the rewards presented in Sec. 4.2 is equiv-
alent to solve a shortest path problem where all the edges have the same weights,
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therefore we can employ a Dijkstra’s-like algorithm [18, 19]. The dynamic program-
ming algorithm performs a backward propagation starting from the target sets until it
visits all the reachable sets and select the action leading to the shortest path for each
visited state. This algorithm – that we will call Backward Induction1– is presented
below 3.

Algorithm 3 Backward Induction
Inputs:
S set of states
A set of actions
T set of target states
Outputs
W : S → R ∪ {−∞, +∞} ▷ steps to reach T
Control policy C : S → A

for all s ∈ S ∖ T do
W (s)←∞

end for
for all s ∈ T do

W (s)← 0
end for
Q← T ▷ set of visited states
for all s′ ∈ Q do

for all s ∈ Prev(s′) ∖ Q do a

W (s) ∈ mina∈A {W (Posta(s) + 1)}
C(s) ∈ arg mina∈A {W (Posta(s))}

end for
end for
return W, C

aWith Prev(s′) we indicate all the predecessors of s′, namely, all s ∈ S s.t. ∃a ∈ A s.t.
P (s, a, s′) > 0

1In the Reinforcement Learning community this name is often used as a synonym of Value
Iteration, nevertheless in this project I will make a distinction between this two.
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A backpropagation algorithm as 3 cannot be applied to a probabilistic MDP since
multiple edges exits from each node and optimal trajectories may loop. However, in
this scenario we can apply state-of-the-art algorithms (usually coming from Model-
Based Reinforcement Learning [20]) such as Value Iteration [16–18], Policy Iteration
[17, 18], and variants thereof.

In this project, we will rely solely on value-based algorithms since the value func-
tion can provide important information as it will be explained later on.

Algorithm 4 Value Iteration
Inputs:
S set of states
A set of actions
T terminal states
P : S × A× S → [0, 1] probability map
r : S × A× S → R transition rewards
R : S → R terminal rewards
θ > 0 threshold
Outputs
V : S → R ∪ {−∞, +∞} ▷ steps to reach T
Control policy C : S → A

for all s ∈ T do
V +(s)← V (s)← 0

end for
while ∆ < θ do

for all s ∈ S ∖ T do
V +(s)← maxa∈A

∑︁
s′ {P (s, a, s′) [r(s, a, s′) + V (s′) + R(s′)]}

C(s)← arg maxa∈A
∑︁

s′ {P (s, a, s′) [r(s, a, s′) + V (s′) + R(s′)]}
∆← max (∆, |V +(s)− V (s)|)

end for
V ← V +

end while
return V +, C
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5
Julia Implementation

5.1 Overview and objectives
This research project was conducted while collaborating to the development of the
Dionysos software [1]. The software has the final aim of developing a toolbox able
to control non-linear systems via abstraction-based techniques. More specifically,
Dionysos’s objective is to learn the optimal control CPSs from data, whether harvested
from the physical system or generated synthetically.

The software has been developed using the Julia Programming Language [21].
Julia has been chosen mainly because of its high performances and its reproducibil-
ity. Indeed, Julia programs compile to efficient native code for multiple platforms via
LLVM. Moreover, reproducible environments make it possible to recreate the same
Julia environment every time, across platforms, with pre-built binaries.

Until now, data-driven abstraction-based controllers have not been proved useful
to control high-dimensional non-linear systems except small theoretic examples.

As a matter of fact, the classical abstraction method [22] suffers from having to
compute the abstraction on the complete state space. In [23] the authors propose
to adapt the size of the abstraction gradually but uniformly over the whole state
space. While [24] propose to co-design the abstraction and the controller guided by
the optimal control problem in order to reduce the computed part of the abstraction.

This project aims to show the potential of this approach deriving a symbolic model
based on a probabilistic interpretation of the abstraction error.

Constructing an abstraction requires simulating the system a significant num-
ber of times, which usually consists of a small number of simple operations. If so,
parallelizing these computations could dramatically improve the effectiveness of this
approach. Indeed, parallel computing has become one of the most effective tools to
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speed up many algorithms, and the evolution of computer architectures towards a
higher number of cores can only confirm the effectiveness of this method.

Therefore, the Julia toolbox developed for this thesis [25], I also aim to build
the foundation for a final software implementing a new agile approach to build the
abstraction, while parallelizing most operations and complying with temporal logic
constraints.

A smart dynamic way to build the abstraction can be combined with the approach
described described in Sec. 5.2.2 in order to cope with the curse of dimensionality. An
initial abstraction could be built offline, and then modified online while computing
the control policy. Possible methods include refining certain regions of the state space,
building the abstraction "lazily", sampling a variable number of points for each cell,
dynamically considering more or fewer possible inputs, etc. In particular my software
has been developed with the future intent to use an adaptive discretization of the
state-space. The abstraction could be refined both based on local measures, such as
the entropy of each node or the value function, and non-local factors, such as the
variance of the system behavior among close cells, the likelihood for the feedback
system to end up in each state (especially when the initial or target sets are known),
or trying to understand if changing the abstraction in a specific region can influence
the value function also on other areas of the state-space.

5.2 Structure
In this subsection I will discuss the main features of my Julia toolbox [25] while giving
an overview on its structure and implementation.

The whole software has been implemented from scratch, namely only relying on
packages of the Base Julia library plus some to handle vectors efficiently and plot
figures (StaticArrays.jl [26] and Plots.jl [27]).

The main module (named Dionysos) has been divided into 6 sub-modules, each of
them dealing with an aspect of abstraction based-control (plus one with utils). Those
are:

• Domain

• Map

• System

• Relation
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• Control

• Simulation

• Utils

5.2.1 The Domain Implementation
This module contains the function to define domains, namely, both contiuous and
symbolic domains X1, X2, U1, U2 (as in Sec. ).

In particular the file nested_domain.jl contains the methods to discretize a con-
tinuous bounded space into cells.

Roughly speaking, these nested domains consist of a variable-step grid imple-
mented in a "nested" way (see Fig. 5.1). For example if we decide to use a uniform
discretization of the space, each cell of the grid is marked as 1 if it’s “inside” the
domain (green-colored), 0 if it’s not (e.g. there is an obstacle, red-colored) or -1
if it’s “refined” (yellow-colored). By refined we mean that inside the domain it is
stored another domain (e.g., see orange arrow). This domain itself presents the same
properties of its "parent" and each of its cells can be additionally refined.

This implementation is very versatile. For example, it allows to remove an obstacle
that has arbitrary bounds (e.g., see the black arrow in Fig. 5.1). Moreover it also
takes into account that some dimensions may be periodic.

It is also very efficient since it is implemented with Julia Dictionaries. For example,
finding in which cell a certain coordinate x lies has linear complexity with respect to
the depth of the nested domain, O(depth).

Figure 5.1: Nested domain
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5.2.2 The Map Module
The Map module is used to relate one domain to another, in particular it maps a
continuous domain to a symbolic one as the maps RX ,RU ,R†

X ,RU† in Sec. . Also
this module mainly rely on the use of dictionaries.

5.2.3 The System Module
The System module contains the methods to implement both continuous-state dy-
namic systems both symbolic ones by relying on the Domain module.

In particular, probabilistic transition systems are implemented as automata where
each node store information about its predecessors and successors and the transition
probabilities.

5.2.4 The Relation Module
This module contains the methods responsible of creating a symbolic model starting
from a continuous-state system following a similar procedure to the one described in
Algorithm 1. For this reason this module relies on the previous ones and relates a
concrete to an abstract system and vice-versa.

Constructing an abstraction requires simulating the system a significant number
of times, thus these operations are parallelized on different threads which improves
the effectiveness of the algorithm.

5.2.5 The Control Module
This module contains the methods to design control policies for the systems (thus
relies on the System module). In particular it implements the algorithms 3 and 4
presented in Sec. 4.

The execution of the Value Iteration algorithm is parallelized on multiple threads,
while it is not possible to do the same with the Backward Induction.

5.2.6 The Simulation Module
This module finally combines everything together and simulates a system given a
controller. In particular if only an abstract control policy is given it also refines the
controller in order to suite the concrete system as presented in Sec. 3.4 (Alg. 2).
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6
Examples

In this section, I present some examples that I used to demonstrate the practicality
of my approach on control problems for non-linear systems.

The simulations are runned on a CPU AMD Ryzen 7 4700U (8 cores running at
2GHz) with a RAM of 16 GB.

Both examples are expressed as continuous-time models with a measurement noise,
namely with a function is given. More specifically

ẋ ∈ f(x, u) + W (6.1)

where
f : X × U → Rn, X ⊆ Rn, U ⊆ Rm and W ⊆ Rn

In order to obtain its discretized version F we employ a 4th-order Runge-Kutta
method (RK4)[28].

6.1 Path planning for an autonomous vehicle
We consider an autonomous vehicle whose dynamics are given by the bicycle model
in [29]. More concretely, f : R3 × U → R3 is given by

f (x, (u1, u2)) =

⎛⎜⎝ u1 cos (α + x3) cos(α)−1

u1 sin (α + x3) cos(α)−1

u1 tan (u2)

⎞⎟⎠ (6.2)

with U = [−1, 1]× [−1, 1] and α = arctan (tan (u2) /2). Here, (x1, x2) is the position
and x3 is the orientation of the vehicle in the 2-dimensional plane. The control inputs
u1 and u2 are the rear wheel velocity and the steering angle.
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The concrete control problem is formulated with respect to the concrete system
of Eq. 6.2. The control objective is to enforce the reaching of the rectangle [9, 9.6]×
[0.2, 0.8] on the vehicle which is situated in a maze of dimension [0, 10]× [0, 10] (see
Fig. 6.1) starting from any point of the domain.

The system is discretized with a time-step τ = 0.3. The input space is partitioned
with a step of [0.4, 0.5]. The state space is partitioned with a step of [0.4, 0.4, π/5].
However, it can be noticed that the discretization of the state domain into cells is not
necessary uniform. Indeed the obstacles and the target set are considered with their
exact dimensions. This discretization leads to 6680 symbolic states.

We construct the abstraction using K samples per cell uniformly distributed and
the simulations are started on the opposite site of the maze with respect to the target
set, namely in x0 = [0.2, 0.2, 0.0].

During the computation of the policy it has been considered that if a state x̃ of
the abstract system has a non-zero probability of hitting an obstacle or going out of
bounds that state is considered as "prohibited". Combining this aspect with the def-
inition of PAC approximate alternating simulation relation [9] previously mentioned,
a PAC-bound can be derived in order to obtain a probabilistic guarantee that the
system will not end up in a prohibited state.

First, the system has been simulated considering a single sample per cell (i.e.,
K = 1) and therefore relying on Backward Induction. The resulting controller is not
able to reach the target set since the reachable set of each cell are too small with
respect to the actual ones. The controller almost always leads the system to a pro-
hibited state or to end up in an infinite loop. Indeed, as previously mentioned, this
data-driven approach does not provide formal guarantees on the correctness of the
resulting controller since the abstraction does not alternatingly simulate the original
system. The computation of this deterministic abstraction takes 6s and the controller
design 0.1 s. The result is shown in Fig. 6.1.

The second experiment has been conducted by considering a probabilistic automa-
ton with K = 8. However, even this approach does not provide formal guarantees
and since the simulated trajectories are probably not enough the resulting controller
is still not sufficient to bring the system from x0 to xf ∈ T = [9, 9.6]× [0.2, 0.8]× R.

Nevertheless K = 8 can be a sufficient number of samples for this problem if we
try also to simulate some trajectories starting from points on the border of each cell.
In fact, if we consider as prohibited the cells which borders may lead the state into
an obstacle we are able to solve the task as shown in Fig. 6.2. With this procedure
the allowed states are now 6572 (compared to the previous 6680). The computation
of the abstraction takes 6 s and the control policy design 15 s. The result is shown in
Fig. 6.1, where the target is reached in 66.3 s.
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Figure 6.1: Path planning for an autonomous vehicle: basic data-driven
abstraction (K = 1). This is a 2D projection of the 3D domain. The black

square is the starting point, the red rectangles are the obstacles of the
maze, while the green square is the target set.

Fig. 6.3 shows the result of the experiment when sampling 3 points per dimension
(per cell), i.e., K = 27. The computation of the abstraction takes 14s and the control
policy design 22 s. The target is reached in 57.6 s.

The resulting controller is also very robust to noise. In fact, if we consider a
white Gaussian noise on the measurements with standard deviation equal to σ =
(0.1, 0.1, π/20) (namely σ is equal to the 25% of an average cell) the controller reaches
the target set in 58.2 seconds.

The same system with a similar problem has been used as an example also in
[30]. There the authors derive formal guarantees on the system behavior by using a
model-based approach. Even though their approach guarantees the correctness of the
refined controller by computing a Lyapunov function and relying on the definition of
approximate alternating simulation relation[5], their abstraction takes 13509 seconds
to compute (compared with the 14 seconds of Fig. 6.3) and the controller synthesis
535. They ran their simulation on a CPU Intel Core Duo @ 2.4GHz.
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Figure 6.2: Path planning for an autonomous vehicle: basic data-driven
abstraction with K = 8. The cells which borders may lead the state into an

obstacle have been avoided.The target is reached in 66.3 s.

Figure 6.3: Path planning for an autonomous vehicle: basic data-driven
abstraction with K = 27. The target is reached in 57.6 s.

40



6.2 Cart-pole balancing problem
The second system considered comes from a widely common example among the
Reinforcement Learning community, namely, the cart-pole (a.k.a. inverted pendulum
on a cart). Its model is represented in Fig. 6.4 with its linearized equations in Eq.
6.3.

F

θ

y

Figure 6.4: Cart-pole model

θ̈ =
g sin θ + cos θ

[︃
−F −mlθ̇

2 sin θ+
mc+m

]︃
l

[︂
4
3 −

m cos2 θ
mc+m

]︂
ÿ =

F + ml
[︂
θ̇

2 sin θ − θ̈ cos θ
]︂

mc + m

(6.3)

where

• g = 9.81 is the gravity acceleration

• m = 0.1 is the mass at the end of the pole

• mc = 1.0 is the cart mass
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• l = 0.5 is the pole length

• F is the input force

• θ is the pole angular position

• y is the cart position

Therefore this problem will be represented with the 4D state

x =

⎛⎜⎜⎜⎝
y

θ · 180/π
ẏ

θ̇ · 180/π

⎞⎟⎟⎟⎠ (6.4)

and

u = F

10 (6.5)

The control problem consists in bringing the cart-pole in a vertical position in the
center y domain (i.e., θ = 0, y = 0) by applying a control input u = ±1.

The domain has been considered as [−4, 4]× [−30, 30]× [−6, 6]× [−4 · 180/π, 4 ·
180/π].

The target set is y ∈ [−0.2, 0.2], θ ∈ [−1.5 · 180/π, 1.5 · 180/π].

The system has been controlled using the probabilistic Monte-Carlo abstraction
with K = 16. The system has been discretized with a time-step τ = 0.04, while the
state space has been partitioned into cells of dimension [0.4, 3 ·180/π, 0.6, 0.4 ·180/pi].
This leads on defining a total of 144806 symbolic states.

The abstraction takes 24 seconds to construct, while the controller synthesis is
performed in 50. The refined controller is always able to reach the target when
starting from state not too close to the border of the domain. An example of a
trajectory starting from y = −2.5, θ = −10 · 180/pi is shown in Fig. 6.5
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Figure 6.5: Cart-pole balancing problem: Monte-Carlo probabilistic
abstraction with K = 16. The angular position θ is shown in deg on the

vertical dimension, while the horizontal dimension represents the position y.
A trajectory starts from y = −2.5, θ = −10 · 180/pi and reaches the target

is in 1.96 s.

Also the basic data-driven approach has been tried in order to solve this reacha-
bility problem. Nevertheless it achieves almost satisfactory results only with a very
dense grid. A simpler problem has been defined in order to derive a controller in a
relatively small amount of time. Namely the dimension of the y domain has been
reduced and since state space has been partitioned in smaller cells also the simula-
tion time-step has been reduced. More specifically, the following changes have been
applied

• y ∈ [−1.2, 1.2]

• each cell dimension is half of the previous one, namely, [0.2, 1.5 · 180/π, 0.4, 0.2 ·
180/pi]

• τ = 0.02

The abstraction takes 303 seconds to construct, while the controller synthesis is
performed in 38. However, as shown in Fig. 6.6, even with this denser grid the refined
controller is not able to successfully reach the target.
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Figure 6.6: Cart-pole balancing problem: basic data-driven abstraction
abstraction (K = 1). The angular position θ is shown in deg on the vertical

dimension, while the horizontal dimension represents the position y. A
trajectory starts from y = −1.0, θ = 0 but is not able to reach the target.
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7
Conclusions

The main objective of this project was to show the potential of abstraction-base
controllers approach by implementing a novel data-driven approach based on a prob-
abilistic interpretation of the discretization error.

Moreover this research project was conducted while collaborating to the develop-
ment of the Dionysos software [1] at UCLouvain. Therefore, my research project was
carried on by working in close contact with Prof. Jungers’s team (and in particular
with the Dionysos dev team) with the aim of developing a toolbox able to control
non-linear systems via abstraction-based techniques.

In this paper I have presented the main advantages and limits of abstraction-based
controllers. Firstly, I introduced the most common abstraction-based strategies re-
lying on a mathematical description of the system. Secondly, I presented the most
significant data-driven attempts to control non-linear systems. Then, I explained the
procedure to derive a basic data-driven abstraction and afterwards proposed a novel
technique to obtain a probabilistic symbolic abstraction relying solely on heuristics.
Finally, I gave an overview on the implementation of my software which implemented
these strategies and presented some examples validating the benefits of this approach.

Based on what was presented throughout this paper, we can state that abstraction-
based control is a powerful tool that allows us to synthesize controllers for general
non-linear dynamical systems. Moreover this systems can also present hybrid behavior
and the symbolic controller can also take into account of state and input constraints,
as well as constraints that are imposed on the cyber part of the cyber-physical system.
Moreover it allows us to synthesize controllers under various control specifications, in-
cluding safety, reachability, or more complex ones such as those expressed by temporal
logic formulas or automata on infinite strings [3].

Nevertheless the classical symbolic control [5] relies on a uniform partition of the
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state space and on an over approximation of the reachable sets. For these reasons, this
approach is typically model-based and scales poorly with respect to the number of
dimensions. In this project we have shown the effectiveness of a data-driven approach
and tried to cope with the curse of dimensionality by parallelizing the computation
of the abstraction and the synthesis of the control policy. Nevertheless, the strategies
presented could be improved by employing an adaptive discretization of the state
space as well as adapting the number of samples per cell, building the abstraction
lazily, dynamically considering more or fewer inputs, etc. In particular the state-space
partition could be refined by considering both local measures, such as the entropy
of each node and the value function, and non-local factors like the variance of the
system behavior among close cells and the likelihood for the feedback system to end
up in each state.

However, as explained in Sec. 3, this approach does not provide formal guarantees.
A possible direction to cope with this issue is to combine this strategy with other
formal methods in order to improve their performances while keeping the formal
guarantees.

Nevertheless, despite these limitations, in Sec. 6 we demonstrated how this
method is more effective compared to the classical one in term of performances.
Moreover, by translating the notion of PAC approximate alternating simulation rela-
tion [9] to our Monte-Carlo method we can derive probabilistic bound on the system
behavior.
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