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Introduction

In the present Thesis, a rigorous derivation of the Bogoliubov-Gross-Pitaevskii (BGP) equation, which
completely describes the dynamics of the condensed phase of a boson fluid at zero temperature [7], is
presented. It must be emphasized that this is a very active field of research, catalysed by recent exper-
imental advancements in the analysis of condensation for interacting bosons, and where fundamental
results on the mathematical side have been reached quite recently [13]. The problem is dealt within
the formalism of second quantization, first introduced by Bogoliubov [1], with an external trapping
potential working as a vessel, the well amplitude size ruling the large size limit of the system (at a
fixed density).

To begin with, in the First Chapter, the minimal necessary scaling hypotheses are discussed and
compared with both the theoretical and the experimental ones existing in the literature [8]. This is
relevant in a problem where the existence of an effective equation in the thermodynamic limit almost
always requires to let some physical parameters characterizing the system (e.g. the range of the two
body potential) to depend on the size of the latter.
Once determined the right scaling regime, one is left with a problem in dimensionless form where,
essentially, the dynamics of the boson quantum field is proven to be close, up to a small remainder
term whose norm is vanishing in the thermodynamic limit, to that of a problem where the two-body
potential is delta-like, multiplied by a coupling constant that is explicitly computed in terms of all
the parametres of the system (such as number density, two-body interaction, and so on). On the
other hand, the fundamental boson commutation rules satisfied by the rescaled quantum field are of
the semi-classical form, with a commutator that vanishes in the large size limit, as hypothesised by
Bogoliubov [1].

At this stage, by analogy with what has been done for the finite version of the problem, i.e. for
Bose-Hubbard models [14], in the Second Chapter we take the expectation of the quantum field
on a coherent state distributed according to a quantum invariant Gaussian thermal measure. Such
an expectation, or Wick symbol, defines the scalar field that satisfies the BGP equation in a suitable
infrared limit, as first conceived, to our knowledge, by Langer [3, 4]. The procedure requires the
introduction of a suitable ultraviolet cut-off regularisation of the field, in such a way that one first
works on a finite model, reducing the confrontation between operator and scalar dynamics to the
reconstruction of the scalar BGP equation à la Galerkin.
Finally, the convergence of the time-dependent Wick symbol defined above to the solution of the
scalar BGP equation, in measure norm, is proven; specifically, the bounding constant of the distance
is found to be depending linearly on time: such a dependence represents an improvement of the
existing estimates (displaying instead an exponential dependence [12]). Further, it is shown that such
constant goes to zero in the thermodynamic limit, thus ensuring the exact convergence to BGP scalar
dynamics at zero temperature, though a condition needs to be satisfied by the trapping potential.
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Conventions and notations

Hereby a series of conventions and notations used through all of the present work is presented.

1. The vector space Rd will be assumed equipped with the standard Lebesgue measure

ddx := dλd(x).

2. Given a measure space (X,σ, µ) with sigma-algebra σ and measure µ, we will denote as L2(X, dµ)
the space of complex-valued square-summable functions on X, that is

L2(X, dµ) :=
{
f : X → C : ‖f‖2µ :=

∫
X
|f |2 dµ < +∞

}
.

In particular, since by point 1. the measure on Rd is the standard one, we will denote L2(Rd, dλd)
simply as L2(Rd).

3. The above L2(Rd) admits as a dense subset the Schwartz space

S(Rd) :=
{
f ∈ C∞(Rd;C) : ∀α, β, ‖f‖α,β := sup

x∈Rd

∣∣∣∣∣xα1
1 · · ·x

αd
d

∂|β|f

∂xβ1
1 · · · ∂x

βd
d

(x)
∣∣∣∣∣ < +∞

}
.

The semi-norms ‖·‖α,β induce on S(Rd) a stronger topology than the standard norm one given by the
immersion in L2(Rd), so that its topological dual, the space of tempered distributions, i.e. the space
of linear continuous functionals on S(Rd), contains (L2(Rd))′ and is denoted S′(Rd).

4. We will use a natural system of units, by imposing the reduced Planck and Boltzmann constants
to satisfy

~ = 1 kb = 1.

5. For the QFT Hilbert space H, Dirac notation will be used, denoting vectors (kets), linear func-
tionals (bras) and their coupling (bracket) as

H 3 |ϕ〉 ∧ 〈χ| ∈ H′ ' H =⇒ 〈χ|ϕ〉 ∈ C.

Furthermore, to distinguish graphically between Wick symbols (intended as phase space functions)
and linear operators on H, the latter will be written in a boldfaced sans-serif fashion. For instance
the field operator and the order parametre (i.e. its coherent expectation) differ as

Ψ ψ := 〈α|Ψ |α〉 .

6. Given a generic Hilbert space H, we will indicate by

L(H) :=
{

A : D(A)→ H : D(A) ⊆ H, D(A) = H
}

the space of densely-defined linear operators over H.

vi



Chapter 1

Fundamental hypotheses and scaling

In this first chapter of the present work, a general class of systems of trapped bosons interacting
between themselves via a mean field Hartree-type potential v will be presented through the formalism
of second quantisation, instead of the quantum many-body setting employed, for instance, in [9] and
in [5].
Secondly, the relevant couplings of the aforementioned bosonic Quantum Field Theory (QFT) will be
introduced and their physical significance will be analysed.
Eventually, a scaling of the couplings of the theory will be devised via algebraic adimensionalisation
of the field operators and physical insight; this scaling will be employed to prove the convergence of
operator Hartree dynamics to the operator Bogoliubov-Gross-Pitaevskii (BGP) equation

i
∂Φ
∂τ

=
(

k + γΦ†Φ
)

Φ,

with k the (adimensionalised) single-particle Hamiltonian and γ the so called Gross-Pitaevskii coupling
constant, in the thermodynamic limit, amounting to N → ∞, ρ = N/V = const. given the boson
number N and volume V of the system.

1.1 Bosonic Quantum Field theory

In second quantisation, the information about a system of non-relativistic interacting spinless bosons
in dimension d is encoded in:

1. an Hilbert space H;

2. a strongly continuous unitary representation U on H of the Euclidean group1 E(d) for space
translations and rotations:

U : E(d)→ L(H) (c,R) 7−→ U(c,R) = exp (ic · P)U(0, R) U(c,R)−1 = U(c,R)†

3. a strongly continuous unitary R-representation of time translations, given by a densely defined
positive Hamiltonian H

V : R→ L(H) V(t) = exp (−itH);

4. an algebra of field operators indicised over spacetime {Ψ(t, x), (t, x) ∈ Rd+1} satisfying the the
equal time commutation relations (ETCR) and transforming covariantly under E(d)[

Ψ(t, x),Ψ†(t, y)
]

= δd(x− y) U(c,R)Ψ(t, x)U(c,R)† = Ψ(t, Rx+ c)

where δd is the d-dimensional Dirac delta distribution;
1This is the group of space isometries, given by the semi-direct product Rd o SO(d).

1



2 CHAPTER 1. FUNDAMENTAL HYPOTHESES AND SCALING

5. a unique state |Ω〉 ∈ H, called the vacuum of the theory, invariant under spacetime traslations:

H |Ω〉 = 0 ∧ U(c,R) |Ω〉 = |Ω〉 .

Remark. As suggested by the ETCRs at point 4 of the previous list, Ψ(x) is localised at x ∈ Rd;
more rigorously, Ψ is an operator valued tempered distribution, that is

Ψ ∈ S′(Rd)⊗ L(H) L(H) 3 Ψ(f ; t) =
∫
Rd
f̄(x)Ψ(t, x) ddx, (1.1)

for any smearing functions f in Schwartz2 space S(Rd), so that the ETCRs read[
Ψ(f ; t),Ψ†(g; t)

]
= 〈f, g〉L2(Rd) ∀f, g ∈ S(Rd).

In the following exposition, if not otherwise specified, in order to simplify the notation, we will commit
a slight abuse of notation by treating Ψ(t, x) as an operator on H.

1.2 Hartree Hamiltonian and normal mode decomposition

We will consider the following Hartree Hamiltonian of identical, spinless, non-relativistic, trapped,
interacting bosons of mass m:

H :=
∫
Rd

Ψ†(x)h(x)Ψ(x) ddx+ 1
2

∫
R2d

Ψ†(x)Ψ†(y)v(‖x− y‖)Ψ(y)Ψ(x) ddxddy, (1.2)

where
L(L2(Rd)) 3 h(x) := − 1

2m∇
2 + u(x)

is the single-particle Hamiltonian and u and v are, respectively, the trapping and the spherically-
symmetric interaction potential. The functional structure of these potentials will be expressed later
in the chapter on the basis of a few generic physical assumptions.
It is easy to check, with the help of the ETCRs, that the field operator satisfies the following Heisenberg
equation.

i
∂Ψ
∂t

= [Ψ,H] =
(

h + v ∗Ψ†Ψ
)

Ψ, (1.3)

where, as usual, ∗ denotes convolution.

Remark. This equation may be thought as a non-linear deformation of the second-quantised Schrödinger
equation: indeed the latter describes non-interacting bosons in an external potential.

Although (1.3) may seem daunting in terms of integrability, it still admits a conserved charge, namely
the number operator.

Definition 1.1. The number operator N is defined as

N :=
∫
Rd

Ψ†(x)Ψ(x) ddx (1.4)

Proposition 1.1. The number operator is preserved by time evolution.

Ṅ(t) = −i [N(t),H] ≡ 0

2This is the space of rapidly decreasing complex-valued function in Rd; its topological dual is the space of tempered
distributions S′(Rd).



1.2. HARTREE HAMILTONIAN AND NORMAL MODE DECOMPOSITION 3

Proof. It suffices to notice that ETCRs imply, for all (t, x) ∈ Rd+1,[
N(t),Ψ†(t, x)

]
= Ψ†(t, x) ∧ [N(t),Ψ(t, x)] = −Ψ(t, x),

hence N commutes with any operator containing an equal number of Ψs and Ψ†s, in particular the
Hamiltonian H.

Remark. Indeed, N is the Nöther charge associated to the global U(1) internal symmetry of the
Hamiltonian

Ψ 7−→ eiαΨ.

As usual, we may expand the field operators in terms of an orthonormal basis of the single particle
Hilbert space L2(Rd): this would enable us to express the field algebra representation in terms of
another one. In particular we choose the normal mode decomposition, that permits us to diagonalise
the quadratic part of the Hamiltonian, and since it is physically meaningful.
Suppose h ∈ L(L2(Rd)) to have a completely discreet spectrum σ(h) ' Nd, meaning there exists a
bijective map

ω : Nd −→ σ(h) ⊂ R k := (k1, . . . , kd) 7−→ ωk

indicising single-particle energy eigenvalues. Let {φk}k∈Nd ⊂ L2(Rd) be the countable set of eigen-
functions of h, i.e.

hφk = ωkφk,

then the following statement holds.

Proposition 1.2. Consider the normal mode expansion

Ψ(t, x) =
∑
k

ak(t)φk(x) ak(t) =
∫
Rd
φ̄k(x)Ψ(t, x) ddx ≡ Ψ(φk; t); (1.5)

then, for any time, the operators ak(t) satisfy the canonical commutation relations (CCR) algebra

[ak(t), a†l (t)] = δkl [ak(t), al(t)] = [a†k(t), a
†
l (t)] = 0. (1.6)

Proof. Multiplying equation 1.5 by φ∗l (x) and integrating over space, we obtain∫
Rd

Ψ(t, x)φ̄l(x) ddx =
∑
k

ak(t)〈φl, φk〉 = al(t),

where the last passage involves the orthonormalcy of the basis. Now, we may compute

[ak(t), a†l (t)] =
∫
R2d

[Ψ(t, x),Ψ†(t, y)]φ̄k(x)φl(y) ddxddy = 〈φk, φl〉 = δkl,

using the ETCRs.

Note. The multi-index sum in the above Proposition should be understood as the conventional

∑
k

≡
∑
k∈Nd

:=
d∏
i=1

∞∑
ki=0

;

instead, we define, for future use (in particular, in the next chapter), the following norm on multi-
indices

|k| := max
i∈{1,...,d}

ki

so that the set of multi-indices having norm lesser than a positive integer Λ is an hypercube of side
Λ, with volume

Λ∑
k

1 ≡
∑

k : |k|<Λ
1 = Λd.
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This is better than the usual norm |k|std := k1 + · · ·+ kd, for which the same set is (isomorphic to) a
standard simplex, with a dimension-dependent combinatorial factor appearing in the volume.
Notice that both norms coincide for d = 1.

Remark. The physical interpretation of the CCR algebra operators is clear: a†k creates a bosonic
excitation in the k-th single-particle energy level, when applied to the QFT vacuum |Ω〉, and corre-
spondingly ak destroys it.
Further, the problem of defining an uncountable number of operators satisfying the ETCRs is reduced
to that of giving an Hilbert space representation of the CCR.

The Hamiltonian H, expressed in terms of Dirac operators a, has the following form,

H =
∑
k

ωka†kak + 1
2
∑
klmn

vklmna†ka†l aman, (1.7)

where the coefficients vklmn are defined as

vklmn :=
∫
R2d

v(‖x− y‖)φ̄k(x)φ̄l(y)φm(x)φn(y) ddxddy.

Remark. The coefficients vklmn carry information of both the two-body interaction v and the external
potential u, since they explicitly depend on the former and on the eigenfunctions of h, and, for H to
be self-adjoint, they satisfy the following relation.

v̄klmn = vmnkl

The number operator N is easily computed to be

N =
∑
k

a†kak, (1.8)

that is, the sum of the occupation numbers of each single-particle energy level.
Furthermore, Dirac operators satisfy the following Heisenberg equation.

iȧk(t) = i
dak
dt = ωkak +

∑
lmn

v(kl)mna†l aman, (1.9)

with v(kl)mn the symmetrised coefficient

v(kl)mn := vklmn + vlkmn
2 .

1.3 Scaling of the couplings

We would like to analyse the behaviour of the above formulated bosonic Hartree QFT when the
thermodynamic limit3 (N →∞, with fixed density ρ := N/V ) is taken; in particular, it will be shown
that the equations of motion (1.3) converge to the field operator equations for bosonic Bogoliubov-
Gross-Pitaevskii QFT.
In order to do so, we first need to explicit the couplings of the system, and then bind them to the
number of bosons N through a scaling procedure.

3Actually, N will be defined a fortiori, in the second Chapter, as the expectation value of the number operator N over
a certain (mixed) state %, i.e. N := tr N%.
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1.3.1 Couplings of the system

Definition 1.2 (Trap). We define the trapping potential u to be of the form

u(x) := ε0f(‖x‖ /L)

with f ∈ C2(R+) such that

f ′(0) = 0 f ′′(0) > 0 f(r) −→
r→∞

+∞.

Then ε0 is to be interpreted as the intensity of the trap, whereas L is the characteristic well length of
the system, allowing us to define the confinement volume V as

V = Ld.

Remark. The simplest example of trap to bear in mind is the isotropic harmonic one

f(r) = r2 =⇒ u(x) = 1
2mω

2(L)‖x‖2 = 1
2mL2 f(‖x‖ /L)

This is also of physical relevance because of the use of optical traps in the study and experiments
about ultracold trapped bosons (see [7] for a review of the theory of condensation of confined bosons).

Definition 1.3 (Interaction). The repulsive two-body interaction potential v is assumed to be of the
form

v(‖x− y‖) := ε1g(‖x− y‖ /r0)

with g : R+ → R+ such that

g(s) −→
s→∞

0 ∧ 0 6= g0 :=
∫
Rd
g(‖ξ‖) ddξ <∞.

Here, ε1 plays the role of interaction intensity, and r0 is the characteristic length of interaction.

Remark. A simple example is given by a finite range g, that is

g(s) = 0 ∀s > 1,

in which case r0 is interpreted as the finite range of interaction, and, denoting Bd the d-dimensional
ball of radius 1,

g0 =
∫
Bd
g(‖ξ‖) ddξ.

Then, assigning a scaling to these parametres corresponds to giving a set of functions

ε0(N) ε1(N) r0(N) or, equivalently ε0(L) ε1(L) r0(L)

obeying some constraints of geometrical or physical nature.

1.3.2 Adimensionalised QFT

In this section, we express all the relevant quantities in terms of dimensionless variables, in order to
give some constraints on the scaling of the parametres introduced above.
Recall the single-particle time independent Schrödinger equation

hφk(x) =
(
− 1

2m∇
2 + u(x)

)
φk(x) = ωkφk(x), (1.10)

and define the following dimensionless quantities:

ξ := x

L
k := h

ε0
εk := ωk

ε0
.
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Proposition 1.3. Provided h satisfies equation (1.10), the adimensionalised Hamiltonian k satisfies
the following eigenvalue problem:

kϕk(ξ) =
(
−µ

2

2 ∇
2
ξ + f(‖ξ‖)

)
ϕk(ξ) = εkϕk(ξ)

where
µ2 := 1

mε0L2 ∧ ϕk(ξ) := Ld/2φk(x).

Proof. The thesis is obtained by simply multiplying both sides of equation (1.10) by Ld/2/ε0 and
recalling the definition of u in terms of f .

In order to set the field algebra in dimensionless form, we further rescale time and creation operators
as follows,

τ := ε0t bk := ak√
N

keeping in mind that ~ = 1 and N = ρLd.

Proposition 1.4. The rescaled field operator is defined as

Φ(τ, ξ) :=
∑
k

bk(τ)ϕk(ξ) = 1
√
ρ

Ψ(t, x)

and obeys the following commutation relations

[Φ(τ, ξ),Φ†(τ, η)] = 1
N
δd(ξ − η) [bk, b†l ] = 1

N
δkl

Proof. From the definitions of ϕk and bk, it follows that

Φ(τ, ξ) :=
∑
k

bk(τ)ϕk(ξ) =

√
Ld

N

∑
k

ak(t)φk(x) = 1
√
ρ

Ψ(t, x).

Furthermore, the commutation relations for bk are obtained by their definition and by CCRs, while

[Φ(τ, ξ),Φ†(τ, η)] = Ld

N
[Ψ(t, x),Ψ†(t, y)] = Ld

N
δd(L(ξ − η)) = 1

N
δd(ξ − η)

where in the second passage we used ETCRs and in the last one the scaling property of the Dirac
distribution was employed.

Remark. In the large N limit the field algebra is trivialised, i.e. all commutators vanish, a fact
already pointed out, and employed, by N. Bogoliubov in [1].

The dimensionless field definition suggests the rescaling for the Hamiltonian written below.

K := H
Nε0

Proposition 1.5. The rescaled Hamiltonian has explicit form

K =
∫
Rd

Φ†(ξ)k(ξ)Φ(ξ) ddξ + N

2ε0

∫
R2d

v(L ‖ξ − η‖)Φ†(ξ)Φ†(η)Φ(η)Φ(ξ) ddξddη

and the field equations read
i
∂Φ
∂τ

= N [Φ,K]
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Proof. The first term in the Hamiltonian is computed as

1
Nε0

∫
Rd

Ψ†(x)h(x)Ψ(x)Ld ddξ =
∫
Rd

Φ†(ξ)k(ξ)Φ(ξ) ddξ;

the second one is similarly found by noting that

N

2N2ε0
Ψ†(x)Ψ†(y)Ψ(y)Ψ(x)L2d ddξddη = N

2ε0
Φ†(ξ)Φ†(η)Φ(η)Φ(ξ) ddξddη.

As for time evolution,
i
∂Φ
∂τ

= i
√
ρε0

∂Ψ
∂t

= 1
√
ρε0

[Ψ,H] = N [Φ,K],

where in the second passage the equations of motion of Ψ were used.

Using the commutation relations in Proposition 1.4, the equations of motion of Φ are explicitly com-
puted to be

i
∂Φ
∂τ

(τ, ξ) = N [Φ,K] =
(

k + Nε1
ε0

∫
Rd
g

(
L

r0
‖ξ − η‖

)
Φ†(τ, η)Φ(τ, η) ddη

)
Φ(τ, ξ) (1.11)

Changing variable λ(η) := L(η − ξ)/r0, and omitting time for simplicity, the second term in the
parenthesis becomes

Nε1
ε0

∫
Rd
g

(
L

r0
‖ξ − η‖

)
Φ†(η)Φ(η) ddη =

(
ε1
ε0
ρg0r

d
0

)
Φ†Φ(ξ) + (1.12)

+
(
ε1
ε0
ρg0r

d
0

)∫
Rd
g(‖λ‖)

[
Φ†(ξ + r0λ/L)Φ(ξ + r0λ/L)− Φ†(ξ)Φ(ξ)

]
ddλ (1.13)

1.3.3 Scaling of the couplings and convergence to BGP

Definition 1.4. The dimensionless Gross-Pitaevskii constant is defined as

γ := ε1
ε0
ρg0r

d
0 .

Proposition 1.6. Suppose γ to be constant, r0 to be of sublinear growth in L, and g to be of range
1; then (1.13) vanishes in the thermodynamic limit L→∞.

Proof. From hypotheses
r0(L)/L −→

L→∞
0,

hence the integrand behaves as

Φ†Φ(ξ + r0λ/L)− Φ†Φ(ξ) ∼
L→∞

r0
L

d(Φ†Φ)ξ(λ) = r0
L
λ · ∇(Φ†Φ)(ξ).

Overestimating g by its sup over Bd, we obtain the estimate below.∥∥∥∥∫
Rd
g(‖λ‖)

[
Φ†Φ(ξ + r0λ/L)− Φ†Φ(ξ)

]
ddλ

∥∥∥∥
op
≤ (1.14)

≤
∫
Rd
g(‖λ‖)

∥∥∥Φ†Φ(ξ + r0λ/L)− Φ†Φ(ξ)
∥∥∥
op

ddλ ∼ (1.15)

∼ r0
L

sup
Bd

g

∫
Rd

∥∥∥λ · ∇(Φ†Φ)(ξ)
∥∥∥
op

ddλ −→
L→∞

0. (1.16)

In the previous calculation, ‖·‖op denotes the Frobenius norm on the space L(H) of operators defined
on the QFT Hilbert space H, and more rigorously the entire estimate should be done with a suitable
smearing of Φ†Φ with a function f in S(Rd) or in C∞c (Rd) as illustrated in Equation (1.1).
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We now have obtained two relevant constraints by which we will enact the scaling of the couplings ε0,
ε1, and r0 of our theory. Indeed, for the previous Proposition to be valid and to ensure the stability
of the single-particle Schrödinger equation, we require the following quantities to be constants.

µ2 = 1
mε0(L)L2 γ = ε1(L)

ε0(L)ρg0r
d
0(L) (1.17)

The first one immediately implies that

ε0(L) = 1
mµ2L2 ∝ L

−2 ∝ N−2/d. (1.18)

Remark. Equation (1.18) implies that in the N →∞ limit the trap vanishes; secondly, it shows that
the dependence ε0 ∝ L−2 is a general dependence of the trapping potential intensity, not a peculiarity
of the harmonic one.

Physically, we expect the intensity of the interaction potential to be independent of N , hence by
requiring

ε1(L) ≡ ε1 (1.19)
the second constraint gives the following scaling for the interaction range,

r0(L) =
(

γ

mρµ2ε1g0
L−2

)1/d
∝ L−2/d ∝ N−2/d2 (1.20)

and, for fixed ε1, the behavior of the scaling of the couple (r0,ε0) for different dimensions is graphically
represented in Figure 1.1.

Remark (I). Notice that the requirements of Proposition 1.6 are met by this scaling choice, r0 being
of sublinear growth in L.

Remark (II). Although it might seem a bit unsettling that the range of interaction vanishes in the
L→∞ limit, there is a nice intuitive explanation: any Fluid Dynamics model should in principle be
obtained by carrying out a statistical average of the underlying microscopic theory on a mesoscopic
scale, a procedure that leaves only a few relevant physical variables (viscosity, pressure, etc.); in our
case, instead, we obtain an hydrodynamic equation, namely the BGP one, via a scaling procedure,
hence, since there is no mesoscopic scale and all the information about the boson-boson interaction
must be encoded in the intensity γ, the only way to integrate out r0 is to make it vanish.

Remark (III). For a rather thorough discussion of the various possible scaling hypotheses and their
relevance in the obtainment of BGP as an effective equation in the thermodynamic limit, we refer the
interested reader to the systematic work by A. Michelangeli in [8] and [9].

A direct consequence of Proposition 1.6 is the following Theorem.

Theorem 1.1. The Hartree equation of motion for the dimensionless field operator Φ reduces, in the
thermodynamic limit, to the operator Bogoliubov-Gross-Pitaevskii (BGP) equation.

i
∂Φ
∂τ

=
(

k + γΦ†Φ
)

Φ (1.21)

Proof. It is sufficient to enforce the above mentioned scaling of the couplings in compliance to the
hypotheses of Proposition 1.6.

Remark. Although we have obtained an important result, namely that a large class of systems enters
the BGP regime in the thermodynamic limit, we would like to show that, following Bogoliubov’s
approach in [1], actually the dynamics may be encoded in a yet-to-be-determined scalar field ψ obeying
the scalar BGP equation

i
∂ψ

∂t
=
(

k + γ|ψ|2
)
ψ =

(
− µ

2

2m∇
2 + f + γ|ψ|2

)
ψ.

The determination of ψ and proof of the above claim is the subject of the next Chapter.
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Figure 1.1: Couplings’ qualitative flow ε0 = rd
0 (from top-right to bottom-left) in the thermodynamic limit for

dimensions d of physical interest: 1 (red), 2 (green) and 3 (blue). The origin (quantum BGP) is an infrared
fixed point.
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Chapter 2

Convergence to scalar BGP

2.1 UV regularisation
Let us recall from the previous Chapter the time evolution equations obeyed by the normal modes ak
of the field operator Ψ,

ȧk = −iωkak − i
∑
lmn

v(kl)mna†l aman; (2.1)

this is an infinite system of countably many strongly coupled operator differential equations.

We regularise these relations by inserting an ultra-violet (UV) cut-off Λ ∈ N, requiring the sum to run
only on multi-indices of norm lesser than Λ; then, employing the short-hand already introduced in a
Note on Proposition 1.2, namely

Λ∑
k

≡
∑

k : |k|<Λ

we obtain the following finite system of equations

ȧk,Λ = −iωkak,Λ − i
Λ∑
lmn

v(kl)mna†l,Λam,Λan,Λ ∀k : |k| < Λ. (2.2)

This is equivalent to UV truncating the normal modes expansion of the bosonic fields as

Ψ(t, x) =
∑
k

ak(t)φk(x) =⇒ ΨΛ(t, x) =
Λ∑
k

ak,Λ(t)φk(x)

with corresponding number operator

NΛ =
Λ∑
k

a†k,Λak,Λ

and Hamiltonian

HΛ =
Λ∑
k

ωka†k,Λak,Λ + 1
2

Λ∑
klmn

vklmna†k,Λa†l,Λam,Λan,Λ.

Remark. Since the notation becomes heavy, the subscript Λ on the operators ak,Λ, marking these
latter operators as satisfying the finite system of equations (2.2), will not be carried in the following
Sections. Still, to remind us of the presence of the cut-off, all other relevant quantities will maintain
the subscript.

The objective of regularising the system being achieved, we would like to reduce it to a set of ordinary
differential equations: this will be done by the use of coherent states.

Definition 2.1. A QFT coherent state |α〉 ∈ H is a (possibly generalised) state that is eigenvector
of all of the creation operators.

ak |α〉 = αk |α〉 ∀k 〈α| a†k = 〈α| ᾱk (2.3)

11
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Remark. This is simply a generalisation of the harmonic oscillator coherent states employed in
Quantum Mechanics.

Remark. To our knowledge, Langer in [3] and [4] was the first to utilise these states in the topic of
Bose-Einstein condensation and superfluids.

Consequently, following Langer, by taking the quantum expectation over |α〉 of equations 2.2 and
denoting by

ak(t;α) := 〈α| ak(t) |α〉

the expectation value of ak(t) (recall that we are in Heisenberg picture), we obtain the following
Cauchy problem

ȧk(t) = −iωkak(t)− i
Λ∑
lmn

v(kl)mn 〈α| a†l (t)am(t)an(t) |α〉 ∧ ak(0;α) = αk

which would correspond to the scalar version of the Hartree equation, if not for the failure of the
operator product to map onto the pointwise one, the latter being commutative.
Hence, in the next Section, we proceed to formalise Langer’s intuition by using Wick Deformation
Quantisation.

2.2 Wick star product

Definition 2.2 (Coherent phase space). The vector space CΛd , equipped with linear coordinates

α = (αk)|k|<Λ,

will be called coherent phase space, since its points constitute coherent state eigenvalues of the UV-
regularised QFT.

Example. For d = 2 and Λ = 2, we obtain the coherent phase space C4 with complex coordinates

α = (α(0,0), α(0,1), α(1,0), α(1,1)).

Remark. Coherent phase space is actually just the UV-truncated Fock space of the QFT; indeed, in
the UV limit Λ→∞ we obtain

CNd α = (αk)k∈Nd

which is exactly the Fock space expressed in terms of the coherent state basis instead of the usual
occupation number one.

Proposition 2.1. Coherent phase space has a natural Kahler structure, given by the canonical form

Ω = i
Λ∑
k

dαk ∧ dᾱk

and corresponding Poisson structure specified by the Poisson bivector

Π = −i
Λ∑
k

∂

∂αk
∧ ∂

∂ᾱk
= −i

Λ∑
k

(
∂

∂αk
⊗ ∂

∂ᾱk
− ∂

∂ᾱk
⊗ ∂

∂αk

)

Proof. It is a standard computation to show that Π satisfies Schouten’s identity, so it is a genuine
Poisson tensor. Then, since Π has maximal rank, Ω is the symplectic form obtained by lowering the
indices of Π.
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Definition 2.3. We will denote the space of formal power series in α, ᾱ as

PΛ(α, ᾱ) :=

c(α, ᾱ) =
Λ∑
ij

∑
nm

cij,nmᾱ
n
i α

m
j

 .
Definition 2.4. The space of formal power series in terms of a, a† will be indicated with

PΛ(a, a†) :=

c(a, a†) =
Λ∑
ij

∑
nm

cij,nma†i
namj

 .
Remark. These definitions should be read in terms of multi-indices; for instance

αni =
d∏

k=0
αnkik .

Then, we are able to set a correspondence between these two spaces through Wick’s quantisation map.

Proposition 2.2. The map

W : PΛ(α, ᾱ)→ PΛ(a, a†) f 7−→W[f ]

characterised by the following properties:

1. W[1] = 1H;

2. linearity, that is W[af + bg] = aW[f ] + bW[g] for all f, g ∈ PΛ(α, ᾱ) and for all a, b ∈ C;

3. normal form compatibility, i.e. W[ᾱni αmj ] = W[αmj ᾱni ] = a†i namj ;

is a linear isomorphism and is called (in the deformation quantisation jargon) Wick’s quantisation
prescription.
Its inverse is given by the quantum expectation over coherent states, that is

W−1 = D = 〈 | · | 〉 : PΛ(a, a†)→ PΛ(α, ᾱ) F 7−→ D[F] = 〈 |F | 〉

such that
D[F(a, a†)](α, ᾱ) = 〈α|F(a, a†) |α〉 ,

and it is named dequantisation map.

Proof. The well-posedness and invertibility of W are manifest by the requirements 1-2-3 of the Propo-
sition.
Furthermore,

〈α| a†i
namj |α〉 = ᾱni α

m
j

hence
D ≡W−1 = 〈 | · | 〉

by linearity of the quantum expectation and uniqueness of the inverse.

Remark (I). Essentially, W sends polynomials into polynomial operators expressed in normal form
via the prescription α→ a, ᾱ→ a†.

Remark (II). Although in the present work polynomials will mostly suffice to achieve the desired
results, for an analysis of more general algebras of observables over which to define the Wick map, in
the sense of strict deformation quantisation, we invite the interested reader to refer to [10].

Example. The normal form specification is important, since, using the CCRs,

W[|αk|2] = a†kak W[|αk|2 + 1] = a†kak + 1 = aka†k.
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Definition 2.5. W[f ] is called quantisation of the function f ∈ PΛ(α, ᾱ) and will be denoted by the
sans-serif

f := W[f ].
On the other hand, W−1[F] is named Wick symbol of the operator F and it will be expressed with the
corresponding serif -ed letter

F := W−1[F].
We can now list some properties of the Wick mapping.
Lemma. For any x ∈ R, for any F ∈ PΛ(a, a†)

exakF(a, a†)e−xak = F(a, a† + xek)

e−xa†
kF(a, a†)exa†

k = F(a + xek, a†)
where ek represent the unit vector in the k-th direction.
Proof. Since the transformation is linear and F can be developed in terms of a†i namj , we ought to prove
the thesis for these.
Then, the problem may be reduced to

exaka†i
namj e−xak = δik

(
exaka†ie

−xak
)n

amj .

Deriving with respect to x, and using CCRs, we get
d

dxe
xaka†ke

−xak = exak [ak, a†k]e
−xak ≡ 1.

Direct integration provides
exaka†ke

−xak = ak + x

whence
exaka†i

namj e−xak = δik
(

a†k + x
)n

amj .

As for the second identity, it is obtained from the first by the substitution a†k → ak and x→ −x.

Remark. We have just proved a special case of the more general Baker-Campbell-Hausdorff (BCH)
formula.
Combining the previous Lemma with the Wick map, we arrive to the following Corollary.
Corollary. F ∈ PΛ(a, a†) and its Wick symbol F ∈ PΛ(α, ᾱ) are subject to the equalities below.

〈α| exakF(a, a†) |α〉 = exαkF (α, ᾱ+ xek)

〈α|F(a, a†)exa†
k |α〉 = exᾱkF (α+ xek, ᾱ)

Proof. It is sufficient to apply the previous Lemma, taking into account that

e−xak |α〉 = e−xαk |α〉 ∧ 〈α| e−xa†j = 〈α| e−xᾱj

by coherent state definition.

Finally, deriving with respect to x and putting x = 0, a series of relations between phase space
derivation and operator multiplication are obtained:

〈α| akF(a, a†) |α〉 =
(
αk + ∂

∂ᾱk

)
F (α, ᾱ) (2.4)

〈α|F(a, a†)a†k |α〉 =
(
ᾱk + ∂

∂αk

)
F (α, ᾱ) (2.5)

∂f

∂αk
(α, ᾱ) = 〈α| [ak, f(a, a†)] |α〉 (2.6)

∂f

∂ᾱk
(α, ᾱ) = 〈α| [f(a, a†), a†k] |α〉 (2.7)

These latest identities permit us to define a non-commutative product on coherent phase space, and
to confront it with the usual pointwise commutative one.
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Proposition 2.3. Let us define the following star product:

? : PΛ(α, ᾱ)× PΛ(α, ᾱ)→ PΛ(α, ᾱ) (f, g) 7−→ f ? g

f ? g := W−1[W[f ]W[g]];

then: ∀a, b ∈ C, ∀f, g, h ∈ PΛ(α, ᾱ)

1. ? is linear: (af + bg) ? h = af ? h+ bg ? h;

2. ? is associative: f ? (g ? h) = (f ? g) ? h = f ? g ? h;

3. ? is in general non-commutative;

Furthermore, defining the Wick parenthesis as the phase space counterpart of the commutator divided
by the imaginary unit i,

{{·, ·}} : PΛ(α, ᾱ)→ PΛ(α, ᾱ) (f, g) 7−→ {{f, g}} := −i(f ? g − g ? f)

the following properties can be stated: ∀a, b ∈ C, ∀f, g, h ∈ PΛ(α, ᾱ)

1. linearity: {{af + bg, h}} = a{{f, h}}+ b{{g, h}};

2. skew-symmetry: {{f, g}} = −{{g, f}};

3. ?-Leibniz property: {{f, g ? h}} = {{f, g}} ? h+ g ? {{f, h}};

4. Jacobi identity: {{f, {{g, h}}}}+ {{h, {{f, g}}}}+ {{g, {{h, f}}}} = 0;

Proof. These properties descend from the ones enjoyed by the operator product and the commutator
through the Wick quantisation map.

Remark. The equipment of coherent phase space CΛd with (?, {{·, ·}}) turns PΛ(α, ᾱ) into a ?-Poisson
algebra; therefore, it would be interesting and insightful to confront it with the standard Poisson
structure given by (·, {·, ·}) and illustrated in Proposition 2.1.

Explicitly computing the action of ? with the aid of equations (2.4-2.5), it is easy to check that

αnk ? g(α, ᾱ) =
(
αk + ∂

∂ᾱk

)n
g(α, ᾱ)

f(α, ᾱ) ? ᾱmk =
(
ᾱk + ∂

∂αk

)m
f(α, ᾱ)

so that
f ? g (α, ᾱ) = f

(
α+ ∂

∂ᾱ
, ᾱ

)
g (α, ᾱ) = g

(
α, ᾱ+ ∂

∂α

)
f (α, ᾱ) (2.8)

for all f, g in PΛ(α, ᾱ).
Expanding equation (2.8), we obtain, denoting by O(∂2) terms containing derivatives of at least order
2,

f ? g =
∞∑
n=0

Λ∑
k1,...,kn

1
n!

∂nf

∂αk1 · · · ∂αkn
∂ng

∂ᾱk1 · · · ∂ᾱkn
= fg +

Λ∑
k

∂f

∂αk

∂g

∂ᾱk
+ O(∂2)

which shows that ?may be seen as an algebraic deformation of the point-wise product between coherent
phase space functions.
Subsequently, Wick’s parenthesis shall be understood as an algebraic deformation (see [10]) of the
Poisson parenthesis: indeed,

{{f, g}} := f ? g − g ? f
i

= −i
∞∑
n=0

1
n!

Λ∑
k1,...,kn

∂nf

∂αk1 · · · ∂αkn
∂ng

∂ᾱk1 · · · ∂ᾱkn
− ∂nf

∂ᾱk1 · · · ∂ᾱkn
∂ng

∂αk1 · · · ∂αkn
,

(2.9)



16 CHAPTER 2. CONVERGENCE TO SCALAR BGP

so that

{{f, g}} = {f, g}+ O(∂2) {f, g} := Π(df, dg) = −i
Λ∑
k

∂f

∂αk

∂g

∂ᾱk
− ∂f

∂ᾱk

∂g

∂αk

with the canonical Poisson tensor Π as defined in Proposition 2.1.
We now possess the principal tools needed to transport the operator dynamics onto coherent phase
space.

2.3 Gaussian thermal measure on coherent phase space
Bogoliubov, in [1], assumed a field expansion of the type

Ψ = ψ1H + Θ

with ψ representing the superfluid order parametre, i.e the condensate wave-function, and Θ the
normal fluid excitation field. Surely, since in the thermodynamical limit the only relevant state ought
to be the ground one, it is reasonable to expect our yet-to-be-defined order parametre ψΛ to be the
vacuum expectation value of Ψ for N →∞; instead, for finite N , we do not have any definite clue to
what should the microscopic state be.
One physically reasonable way to approach the problem is to introduce a heat reservoir to fix the
system at a temperature T = β−1 much smaller than the critical one Tc, and then devise a scaling of
β as a function of N so that

lim
N→∞

β(N) = +∞.

This is physically significant, since all condensation experiments are performed at very small but finite
temperatures.
Then, a reasonable candidate for the state over which to average ΨΛ is the Gibbs equilibrium mixed
state

e−βHΛ
d
dte
−βHΛ = −i[HΛ, e

−βHΛ ] ≡ 0.

However, this state is not easily transportable over coherent phase space, hence we should search for
an approximation; the easiest way to find one is to truncate the Hamiltonian to its quadratic (i.e. non
self-interacting) part,

H0,Λ =
Λ∑
k

ωka†kak e−βH0,Λ ,

but this results in a non-stationary state, since [H0,Λ,HΛ] 6= 0.
Recalling Proposition 1.1, we have that NΛ is a Nöther charge, so we can build a Gibbsian equilibrium
state as

%Λ := exp(−βω0NΛ)/ tr(exp(−βω0NΛ)) d
dt%Λ = −i[HΛ, %Λ] ≡ 0, (2.10)

with ω0 the single-particle ground state energy.

Remark (I). Physically, this mixed state is obtained by filling with the same fraction of bosons each
single-particle energy level φk satisfying

φk : |k| < Λ.

Remark (II). In principle, we could use any other quantum invariant measure, and, although we will
stick to %Λ, an analysis of these other possibilities is contained in [16].

Lemma. Consider a one dimensional harmonic oscillator with number operator N = a†a, then for
any λ in R, and any operator F(a†, a) we have that

tr(Fe−λN)
tr(e−λN) = eλ − 1

π

∫
C
〈α|F |α〉 e−(eλ−1)|α|2 dαdᾱ.
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Proof. Computing the trace over number eigenstates and inserting a Dirac completeness in terms of
coherent states

1H =
∫
C

dβdβ̄
π

|β〉〈β| ∧ 〈n|β〉 = e−|β|
2/2 β

n

√
n!

we obtain
∞∑
n=0
〈n|Fe−λN |n〉 =

∫
C

dβdβ̄
π

∞∑
n=0
〈n|F |β〉 〈β|n〉e−λn =

∫
C

dβdβ̄
π

∞∑
n=0
〈n|F |β〉 e−|β|2/2 (β̄e−λ)n√

n!
(2.11)

Now, it can be recognised that
∞∑
n=0
〈n| ee−2λ|β|2/2e−e

−2λ|β|2/2 (β̄e−λ)n√
n!

=
〈
e−λβ

∣∣∣
so that

tr(Fe−λN) =
∫
C

dβdβ̄
π

e−(1−e−2λ)|β|2/2〈e−λβ|F |β〉 = eλ
∫
C

dαdᾱ
π

e− sinh(λ)|α2|〈e−λ/2α|F|eλ/2α〉 (2.12)

where in the last passage we changed integration variable to α = e−λ/2β. Coherent states are not
orthogonal, they satisfy the following normalisation:

〈γ|η〉 = e−(|γ|2+|η|2−2γ̄η)/2 =⇒ 〈γ|γ〉 = 1.

Consequently, we may write

〈e−λ/2α|F|eλ/2α〉 = e−(eλ+e−λ−2)|α|2/2F (e−λ/2ᾱ, eλ/2α)

where F should be understood as the non-diagonal Wick symbol of F. But F (e−λ/2ᾱ, eλ/2α) contains
terms such as

(e−λ/2ᾱ)n(eλ/2α)m = e(m−n)λ/2|α|n+mei arg(α)(n−m)

and only the last factor contributes to the angle integration contained in |α| d|α|d(arg(α)): specifically
this leads to δmn, which collapses the non-diagonal Wick symbol onto the ordinary one. Hence we
obtain

tr(Fe−λN) = eλ
∫
C

dαdᾱ
π

e(eλ−1)|α|2 〈α|F |α〉 . (2.13)

The thesis is achieved by directly computing

tr(e−λN) = eλ
∫
C

dαdᾱ
π

e(eλ−1)|α|2 = eλ

eλ − 1
and taking the fraction.

Remark. An combinatorically insightful explanation of the transformation λ→ eλ−1 in the context
of normal ordering : · : of the exponential

e−λa†a = :e−(eλ−1)a†a :

in terms of Stirling numbers and Bell polynomials, and in the spirit of Wick’s theorem, is contained
in [11].

Proposition 2.4. Tracing an operator F ∈ L(H) against %Λ is equivalent to averaging its Wick symbol
F over coherent space with respect to a normalised gaussian measure µΛ, that is

〈F〉%Λ = tr(Fe−βω0NΛ)
tr(e−βω0NΛ) =

∫
CΛd

F (α, ᾱ) dµΛ(α) (2.14)

with

dµΛ(α) = 1
Z

Λ∏
k

exp [−B(β)|αk|2] dαkdᾱk Z =
∫
CΛd

Λ∏
k

e−B(β)|αk|2 dαkdᾱk =
(

π

B(β)

)Λd

where B is the Planckian factor B(β) = eβω0 − 1.
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Proof. The thesis is a direct consequence of the previous Lemma, provided that λ = βω0, since

e−βω0NΛ =
Λ∏
k

e−βω0a†
k

ak

and the k-th exponential acts on the corresponding term of the coherent state

|α〉 = |α0〉 ⊗ · · · ⊗ |αk〉 ⊗ · · · |αkmax〉

where kmax := max|k|<Λ k.

Proposition 2.5. The following identities hold: for any k

〈a†kak〉%Λ =
∫
CΛd
|αk|2 dµΛ(α) = 1

B
〈(a†k)

2a2
k〉%Λ =

∫
CΛd
|αk|4 dµΛ(α) = 2

B2 .

More in general, for any σ ≥ 0 ∫
CΛd
|αk|σ dµΛ(α) = 1

Bσ/2 Γ
(
σ

2 + 1
)
,

where Γ : R+ → R+ is the (unextended) Euler Gamma function, defined as

Γ(x) :=
∫ ∞

0
tx−1e−t dt.

In particular, all these averages are k-indipendent.

Proof. Since mixed terms are not present in the measure, the integrals over coherent phase space reduce
to the k-th coordinate subspace C; then, by expressing in polar coordinates αk(u, ϑ) = ueiϑ/

√
B, we

find ∫
CΛd
|αk|σ dµΛ(α) = B−σ/2

∫ ∞
0

2uσ+1e−u
2 du = B−σ/2Γ

(
σ

2 + 1
)
.

The first two identities are a consequence of the above one, since Γ(2) = 1 and Γ(3) = 2.

Definition 2.6. The above Proposition permits to define a fortiori the number N of bosons in the
system as the average of the number operator.

N := 〈NΛ〉%Λ =
Λ∑
k

∫
CΛd
|αk|2 dµ(α) = Λd

B
. (2.15)

Remark (I). This definition should be assumed as an implicit constraint on the relevant scaling
behaviours of Λ and B

N 7−→ (Λ(N), B(N)) : Λd(N)
B(N)

!= N

It should be noted that Λd needs to be of super-linear growth in N , since we are interested in the low
temperature and high number of bosons (1� B,N) regime.

Remark (II). Given the previous results and observations, and recalling that the weak (i.e. distribu-
tional) zero-variance limit of a normalised gaussian is a Dirac distribution, it is reckoned that in the
thermodynamic limit

S′ − lim
N→∞

dµΛ(N)(α(Λ)) = “δ[α]Dα”

with Dα some functional measure on coherent field space and δ a functional generalisation of the
Dirac delta distribution. Subsequently, as hypothesised by Bogoliubov in [1], the finite temperature
average "converges" to the (Fock) vacuum expectation value.

“ lim
β(N)→∞

tr (FΛ(N)e
−β(N)ω0NΛ(N)) =

∫
F [α, ᾱ]δ[α]Dα = F [0] = tr (F |0〉〈0|) = 〈0|F |0〉 ”
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2.4 Identification and dynamics of the order parametre
Definition 2.7. The superfluid order parametre ψΛ is defined to be the Wick symbol of the field
operator

ψΛ(t, x) := W−1[ΨΛ(t, x)].

Since ΨΛ(t, x) =
∑Λ
k ak(t)φk(x), we find that the condensate wavefunction admits a normal modes

expansion in terms of the Wick symbols of the annihilation operators ak(t).

ψΛ(t, x) =
Λ∑
k

ak(t)φk(x) ak(t) := W−1[ak(t)] ak(0;α) = αk

We ought to confront ψΛ with a (regularised) scalar field σΛ built out of the low energy normal modes
of the scalar Hartree equation, that is

σΛ =
Λ∑
k

ck(t)φk(x)

ċk = −i∂HΛ
∂ck

= {ck, HΛ} = −iωkck − i
Λ∑
lmn

v(kl)mnc̄lcmcn ∧ ck(0;α) = αk

with

HΛ(α, ᾱ) = W−1[HΛ](α, ᾱ) =
Λ∑
k

ωk|αk|2 + 1
2

Λ∑
klmn

vklmnᾱkᾱlαmαn.

Our goal is to show that there is a time-uniform estimate in a suitable norm topology∥∥∥ψΛ(N)(t, ·)− σΛ(N)(t, ·)
∥∥∥ ≤ CN |t|,

with convergence for all times in the thermodynamic limit, that is CN −→
N→∞

0.

We will consider the norm ‖·‖d,µ defined on L2(Rd×CΛd , ddxdµΛ), the latter space being isomorphic
to the tensor product of standard single-particle Hilbert space and (a generalisation of) Bargmann
(see [2]) space L2(Rd, ddx)⊗ L2(CΛd , dµ); then

‖ψΛ(t)− σΛ(t)‖2d,µ =
Λ∑
k,k′

∫
Rd
φ̄kφk′(x) ddx

∫
CΛd

(āk(t)− c̄k(t))(ak′(t)− ck′(t)) dµΛ (2.16)

Since 〈φk, φk′〉d = δkk′

‖ψΛ(t)− σΛ(t)‖2d,µ =
Λ∑
k

‖ak(t)− ck(t)‖2µ (2.17)

Hence, for finite N , in order to estimate the deviation of operatorial dynamics from the effective scalar
one, it is sufficient to estimate the deviation of the corresponding normal modes. In order to do this,
we first need to write explicitly the equations of motion for the Wick symbols ak.

Proposition 2.6. ak satisfies the following Cauchy problem

ȧk = (L0 + L1)ak ∧ ak(0) = αk (2.18)

where L0 := {·, HΛ} is the Lie derivative along the Hamiltonian flow associated to HΛ (which is exactly
the scalar dynamics) and

L1 = 1
2i

Λ∑
ij

∂2H

∂ᾱi∂ᾱj

∂2

∂αi∂αj
− ∂2H

∂αi∂αj

∂2

∂ᾱi∂ᾱj
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Proof. By definition of Wick symbol, the operator Heisenberg equation

ȧk(t) = −i[ak(t),HΛ(t)] ak(0) = ak

is mapped to
ȧk(t) = {{ak(t), HΛ(t)}} ak(0) = αk.

Since HΛ is a constant of motion, i.e. {{HΛ, HΛ}} = 0, we can evaluate it at t = 0; then, recalling the
explicit form of the Wick parenthesis as expressed in equation (2.9), we obtain

ȧk(t) = {{ak(t), HΛ}} = {ak(t), HΛ}+ 1
2i

Λ∑
ij

∂2H

∂ᾱi∂ᾱj

∂2ak(t)
∂αi∂αj

− ∂2H

∂αi∂αj

∂2ak(t)
∂ᾱi∂ᾱj

exactly, since {{·, HΛ}} does not contain O(∂3) terms because HΛ is a polynomial of degree 2 in α and
in ᾱ. The identification of L0 and L1 is now straight-forward.

Remark. L1 is precisely the deviation term from the scalar dynamics, and we notice that it is due
to the self-interaction part of the Hamiltonian. Secondly, it should be noted that, to permit such a
decomposition, the Hamiltonian structure of the equations of motion is crucial.

Definition 2.8. Let us denote the normal mode deviation function as

δk(t) := ak(t)− ck(t).

Proposition 2.7. The deviation term satisfies the equations of motion below:

δ̇k = L0δk + L1ak ∧ δk(0) = ak(0)− ck(0) = 0;

furthermore, it can be implicitly computed to be

δk(t) =
∫ t

0
e(t−s)L0L1ak (s) ds

Proof. Since ċk = {ck, HΛ} = L0ck and since the Lie derivative L0 is linear, it is clear that

δ̇k = ȧk − ċk = L0(ak − ck) + L1ak = L0δk + L1ak.

Let us now introduce an auxiliary function

ηk(t) := e−tL0δk(t) =⇒ η̇k(t) = e−tL0L1ak (t) ηk(0) = 0,

then
ηk(t) =

∫ t

0
e−sL0L1ak (s) ds =⇒ δk(t) = etL0ηk(t)

whence the thesis.

Note. esL0 is just a useful way of denoting the pull-back operation through the Hamiltonian flow
ΦHΛ . Indeed, define

ΦHΛ := R× CΛd (t, α) 7−→ Φt
HΛ

(α)

as the ODE flow associated to the set of equations

ċk = {ck, HΛ} ∧ ck(0) = αk =⇒ c(t) = Φt
HΛ

(α)

then
esL0f = (Φs

HΛ
)∗f := f ◦ Φs

HΛ

Remark. The above integration is implicit, since we do not know the function t 7→ ak(t).
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We can now compute an estimate for the L2(CΛd , dµΛ)-norm of δk, but first we need to bear in mind
the following Proposition.

Proposition 2.8. The gaussian measure µΛ is invariant under the scalar flow, that is

dµ(Φt
HΛ

(α)) = dµ(α)

for all α ∈ CΛd, for all times t.
Furthermore, averages with respect to µ are invariant under the full quantum evolution: for all t ∈ R,
for all F ∈ PΛ(a, a†) ∫

CΛd
〈α|F(a(t), a†(t)) |α〉 dµ(α) =

∫
CΛd
〈α|F(a, a†) |α〉 dµ(α)

Proof. Denoting by NΛ the Wick symbol of NΛ, the measure, interpreted as a volume form on coherent
phase space, can be written as

dµ(α) = Z−1e−BNΛ(α,ᾱ)
Λ∑
k

dαk ∧ dᾱk

Since {NΛ, HΛ} ≡ 0, we obtain

dµ(Φt
HΛ

(α)) = Z−1e−BNΛ(α,ᾱ)
Λ∑
k

d(Φt
HΛ

(α))k ∧ d(Φ̄t
HΛ

(α))k = det(d(Φt
HΛ

)α) dµ(α) = dµ(α)

because det(d(Φt
HΛ

)α) = 1, since ΦHΛ is a one-parametre group of symplectomorphisms (i.e. canonical
transformations).
The second result follows by recalling the definition of µ with respect to the Wick map.∫

CΛd
〈α|F(a(t), a†(t)) |α〉 dµ(α) = tr(F(a(t), a†(t))%Λ) = tr(eitHΛF(a, a†)e−itHΛ%Λ) = tr(F(a, a†)%Λ)

where in the last passage cyclicity of the trace and [HΛ, %Λ] = 0 were employed.

Proposition 2.9. The norm of the deviation δk satisfies the following upper bound.

‖δk(t)‖2µ ≤
(∫ t

0

√∫
CΛd
|L1ak(s)|2 dµ ds

)2

(2.19)

Proof. By Proposition 2.7,

‖δk(t)‖2µ =
∫
CΛd

∫
[0,t]2

e(t−s)L0L1ak (s)e(t−u)L0L1ak (u) dsdudµΛ

For fixed times s, u, employing the Cauchy-Schwarz inequality in L2(CΛd , dµΛ) the previous expression
becomes

‖δk(t)‖2µ ≤
∫

[0,t]2

∥∥∥e(t−s)L0L1ak (s)
∥∥∥
µ

∥∥∥e(t−u)L0L1ak (u)
∥∥∥
µ

dsdu.

However, since by Proposition 2.8 the measure µΛ is invariant under the scalar flow, we have that∥∥∥e(t−s)L0L1ak (s)
∥∥∥
µ

= ‖L1ak (s)‖µ

hence
‖δk(t)‖2µ ≤

∫
[0,t]2
‖L1ak (s)‖µ ‖L1ak (u)‖µ dsdu =

(∫ t

0
‖L1ak (s)‖µ ds

)2

because each norm is t-independent.

Remark. This is the most general result we can make out without an explicit computation. The
next sub-section will be dedicated to the computation of this norm as a function of the parametres
and variables of the system.
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2.4.1 Computation of ‖L1aq (s)‖µ
In Proposition 2.6 we determined

L1aq(s) = 1
2i

Λ∑
ij

∂2H

∂ᾱi∂ᾱj

∂2aq(s)
∂αi∂αj

− ∂2H

∂αi∂αj

∂2aq(s)
∂ᾱi∂ᾱj

;

therefore taking into account the explicit expression of HΛ and employing equations (2.6-2.7) to
transform the second derivatives of aq(s) into coherent expectations of commutators, through simple
algebraic manipulations we may write

L1aq(s) = − i2

Λ∑
klmn

v(kl)(mn)(αmαn 〈α| aq(s)a†ka†l |α〉 − 2ᾱkαmαn 〈α| aq(s)a†l |α〉−

− ᾱkᾱl 〈α| amanaq(s) |α〉+ 2ᾱkᾱlαm 〈α| anaq(s) |α〉) (2.20)

Lemma. The following inequalities are true.√
〈α| aiaja†ia

†
j |α〉 ≤ 2 + 2|αi|+ 2|αj |+ |αiαj |√
〈α| aia†i |α〉 ≤ 1 + |αi|

Proof. The inequalities are obtained by using the CCRs to bring the as to the right and by sublinearity
of the square root function,√
〈α| aiaja†ia

†
j |α〉 =

√
〈α| 1 + δij + a†iai + a†jaj + 2δija†iai + a†ia

†
jaiaj |α〉 ≤ 2 + 2|αi|+ 2|αj |+ |αiαj |√

〈α| aia†i |α〉 =
√
〈α| a†iai + 1 |α〉 ≤ 1 + |αi|

bearing in mind that ai = ai(0).

Proposition 2.10. The squared-module of L1aq(s) may be estimated from above by the product of a
time-dependent Wick symbol and a time-independent polynomial.

|L1aq(s)|2 ≤ 〈α| aq(s)a†q(s) |α〉 (p(α, ᾱ))2,

with p : CΛd → R+ defined as

p(α, ᾱ) := 3
Λ∑

klmn

|v(kl)(mn)|(|αkαlαmαn|+ |αkαlαm|+ |αkαmαn|+ |αkαl|+ |αmαn|).

Proof. Employing the following form of the triangular inequality,

|z + w|2 ≤ (|z|+ |w|)2 ∀z, w ∈ C,

and taking into account equation 2.20, we obtain

|L1aq(s)|2 ≤


Λ∑

klmn

|v(kl)(mn)|
2

[
|αmαn|| 〈α| aq(s)a†ka†l |α〉 |+ 2|αkαmαn|| 〈α| aq(s)a†l |α〉 |+

+|αkαl| |〈α| amanaq(s) |α〉|+ 2|αkαlαm| |〈α| anaq(s) |α〉|
]}2

Using the Cauchy-Schwarz inequality and the previous Lemma for the first two summands,∣∣∣〈α| aq(s)a†ka†l |α〉
∣∣∣ ≤ √〈α| aq(s)a†q(s) |α〉

√
〈α| akala†ka†l |α〉 ≤

√
〈α| aq(s)a†q(s) |α〉(2+2|αk|+2|αl|+|αkαl|)
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∣∣∣〈α| aq(s)a†l |α〉
∣∣∣ ≤ √〈α| aq(s)a†q(s) |α〉

√
〈α| ala†l |α〉 ≤

√
〈α| aq(s)a†q(s) |α〉 (1 + |αl|)

obtaining analogous expressions for the third and fourth one, and taking into account index symmetri-
sation, eventually we are lead to

|L1aq(s)|2 ≤ 〈α| aq(s)a†q(s) |α〉


Λ∑

klmn

|v(kl)(mn)|
[
|αkαlαmαn|+ 3|αkαlαm|+

+3|αkαmαn|+ 2|αkαl|+ 2|αmαn|
]}2

.

Overestimating each of the constant factors multiplying the polynomial summands with 3, the state-
ment is proven.

Proposition 2.11. The norm ‖L1aq(s)‖µ is actually estimated by a q and s independent quantity.

‖L1aq(s)‖µ ≤

 Λ∑
klmn

3π
2 |v(kl)(mn)|

(B−1 + O(B−2)
)

Proof. Due to the previous Proposition, it is clear that

‖L1aq(s)‖2µ ≤
∫
CΛd
〈α| aq(s)a†q(s) |α〉 p2(α) dµ(α) ≤

≤
√∫

CΛd

∣∣∣〈α| aq(s)a†q(s) |α〉
∣∣∣2 dµ(α)

∥∥∥p2
∥∥∥
µ
≤

≤
√∫

CΛd
〈α| aq(s)a†q(s)aq(s)a†q(s) |α〉 dµ(α)

∥∥∥p2
∥∥∥
µ

=

=
√∫

CΛd
〈α| aqa†qaqa†q |α〉dµ(α)

∥∥∥p2
∥∥∥
µ

where in the second passage Cauchy-Schwarz inequality with respect to µΛ, and in the last one the
invariance of the measure under the full quantum evolution, were used. Notice that time-independence
is already manifest.
Let us compute separately the two factors.∫

CΛd
〈α| aqa†qaqa†q |α〉dµ(α) =

∫
CΛd
〈α| 1 + 3a†qaq + a†q2a2

q |α〉dµ(α) =
∫
CΛd

1 + 3|αq|2 + |αq|4 dµ(α)

Recalling the results in Proposition 2.5, coherent phase space average gives∫
CΛd
〈α| aqa†qaqa†q |α〉 dµ(α) = 1 + 3

B
+ 2
B2 ,

making q independence also manifest.
Meanwhile,

∥∥∥p2
∥∥∥2

µ
=
∫
CΛd


Λ∑

klmn

3|v(kl)(mn)|
[
|αkαlαmαn|+ |αkαlαm|+ |αkαmαn|+ |αkαl|+ |αmαn|

]
4

dµ(α)

Since the averaging over coherent phase space cancels any information about the averaged index, and
each integrated index contributes with a weight∫

CΛd
|αk| dµ(α) =

√
π

4B ,
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the above norm results in ∥∥∥p2
∥∥∥2

µ
=

 Λ∑
klmn

3|v(kl)(mn)|

4

g

( 1
B

)
with g some polynomial of degree 8 in B−1. We are interested in the high B, i.e. low temperature,
regime, hence we may approximate g with its lowest order monomial,

g(B−1) = 16
(
π

4B

)8/2
+ O(B−5) =

(
π

2B

)4
+ O(B−5).

Then, putting together all the separate calculations

‖L1aq(s)‖µ ≤

 Λ∑
klmn

3π
2 |v(kl)(mn)|

 (B−1 + O(B−2))

which is the thesis.

2.5 Assessment of the convergence to scalar BGP
Now that we have established an estimate for ‖L1a‖µ (multi-index and time are omitted due to their
irrelevance), we may compute the distance in norm between the full (operatorial) quantum dynamics,
and the effective (scalar) one in terms of normal modes.
In particular, by combining the results of Propositions 2.9 and 2.11, we find ‖ak(t)− ck(t)‖µ to satisfy
the following relation:

‖ak(t)− ck(t)‖µ =: ‖δk(t)‖µ ≤ ‖L1a‖µ |t| ≤ bN,Λ,B|t| (2.21)

with the time-independent constant bN,Λ,B (reinstating all dependences) equal to

bN,Λ,B =

 Λ∑
klmn

3π
2 |v(kl)(mn)(N)|

( 1
B

+ O(B−2)
)

However, N , Λ and B := eβω0 − 1 are not independent, since they must satisfy the constraints

B(N) −→
N→∞

∞ Λd

B(N) = N.

A nice way to fulfill these requirements is to devise a scaling scheme for Λ as a function of N . In
particular, for both these conditions to be contemporarily verified, any map such that

N 7−→ Λ(N) lim
N→∞

N

Λd(N) = 0

is a viable candidate. Therefore, we may write the control constant as

bN =

Λ(N)∑
klmn

3π
2 |v(kl)(mn)(N)|

( N

Λd(N) + O

(
N2

Λ2d

))
;

we observe that the N depedence of bN is rather complex, and, in order to analyse its asymptotic
behaviour, we need to simplify this expression.

Proposition 2.12. The summands in the expression of bN may be written by explicitating the N
dependence as

vklmn = ε1g0

(
r0
L

)d
v′klmn + O

((
r0
L

)d+1
)

where v′klmn are the interaction-independent dimensionless coefficients

v′klmn =
∫
Rd
ϕ̄kϕ̄lϕmϕn (ξ) ddξ ϕk(ξ) = Ld/2φk(x/L)
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Proof. Let us recall the definition of vklmn:

vklmn =
∫
R2d

v(‖x− y‖)φ̄k(x)φ̄l(y)φm(x)φn(y) ddx ddy v(‖x‖) = ε1g(‖x‖ /r0),

with ε1 constant and g a range one positive function with integral g0. Adimensionalising, we find that

vklmn = ε1

∫
R2d

g(L ‖ξ − η‖ /r0)ϕ̄k(ξ)ϕ̄l(η)ϕm(ξ)ϕn(η) ddξ ddη =

= ε1

(
r0
L

)d ∫
Rd×Bd

g(‖λ‖)ϕ̄kϕm (ξ) ϕ̄lϕn (ξ + r0λ/L) ddξ ddλ

where in the last passage the change of variable

η(λ) = ξ + r0
L
λ

was performed. Since r0(L) ∝ L−2/d, we can expand the integrand in powers of r0/L and integrate in
λ the zero order term to obtain the thesis.

Consequently, the superfluid order parametre ψN ≡ ψΛ(N) deviates in L2(Rd×CΛd(N))-norm from the
regularised Gross-Pitaevskii field σN uniformly in time, since, from equation 2.17,

‖ψN (t)− σN (t)‖d,µ =

√√√√√Λ(N)∑
k

‖ak(t)− ck(t)‖2µ ≤ CN |t| (2.22)

with the control constant CN expressed in terms of N as

CN = Λd/2(N)bN = 3π
2 ε1g0

N

Λd/2(N)

(
r0
L

)d Λ(N)∑
klmn

v′klmn.

However, we can arrange CN in a nicer form by recalling that

ε1g0r
d
0
N

Ld
= ε0γ ε−1

0 = mµ2L2 ρ = N

Ld

where γ is the adimensional Gross-Pitaevskii constant as defined in Definition 1.4 and µ is the parame-
tre appearing in the dimensionless form of the single-particle Schrödinger equation discussed in Propo-
sition 1.3.
Hence, CN simplifies to

CN = 3π
2m

ρ2/dγ

µ2
1

Λd/2(N)N2/d

Λ(N)∑
klmn

v′klmn. (2.23)

We would like to give some sufficient condition to obtain the convergence

ψN (t)− σN (t) L2
−→
N→∞

0 ∀t ∈ R.

This is equivalent to an asymptotic analysis of CN ; since N appears in the sum only through Λ, let
us suppose that

Λ(N)∑
klmn

v′klmn = O(Λdν(N)) ν ∈ R,

and impose super-linear growth on N 7→ Λd(N) through the ansatz

Λd(N) = N1+ε ε > 0,

then the following proposition holds.
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Proposition 2.13. Assuming the notation assumed above, consider the following three mutually ex-
clusive cases:

a. mild divergence: ν ≤ 1
2 ;

b. intermediate divergence: 1
2 < ν < 1

2 + 2
d ;

c. strong divergence: ν ≥ 1
2 + 2

d ;

then

1. if a. is true,
CN −→

N→∞
0 ∀ε > 0;

2. if b. holds,

CN −→
N→∞

0 ∀ε : 0 < ε <
4− d(2ν − 1)
d(2ν − 1) ;

3. if c. is true,
CN −→

N→∞
+∞ ∀ε > 0.

Proof. For ν ≤ 1/2, Λ is ininfluent in the asymptotic limit, hence the result is evident.
For the second case, let us assume ν > 1/2; then

CN ∼ N [(2ν−1)(1+ε)d−4]/2d −→ 0 ⇐⇒ ε <
4− d(2ν − 1)
d(2ν − 1) ;

for such a condition to be compatible with ε > 0, we need to require

4− d(2ν − 1)
d(2ν − 1) > 0 =⇒ ν <

1
2 + 2

d
.

From this computation, the third statement also follows.

Remark (I). Since ε, i.e. the scaling of Λ, is a degree of freedom we did not fix yet, if the trapping
potential satisfies either a. or b. of the previous Proposition, then we can always devise Λ(N) such
that we have convergence to the Gross-Pitaevskii regime.

Remark (II). This Proposition ought to be interpreted as a working hypothesis, due to the fact that,
in general, it is difficult to extract, from a qualitative knowledge of the single-particle Hamiltonian,
the eigenfunction map

k 7−→ ϕk,

much harder than obtaining qualitative informations on the eigenvalue map

k 7−→ ωk.

Thus, a further investigation of the validity of the hypotheses for typical traps needs to be conducted.

Finally, consider the full Bogoliubov-Gross-Pitaevskii field σ, such that its dimensionless form, in
analogy to the procedure to prove Theorem 1.1,

ς(τ, ξ) := 1
√
ρ
σ(t, x) τ = ε0(L)t = t

mµ2L2 ξ = x

L

satisfies the scalar BGP equation

i
∂ς

∂τ
=
(

k + γ|ς|2
)
ς =

(
−µ

2

2 ∇
2
ξ + f(ξ) + γ|ς|2

)
ς, (2.24)
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and denote by P<Λ the orthogonal projector on the space spanned by the normal modes carrying
energy ωk, with |k| < Λ; then, the really needed norm estimate is, for any N ,∥∥∥ψΛ(N)(t)− P<Λ(N)σ(t)

∥∥∥
d,µ
.

Although this may seem difficult at first, we can actually use the triangular inequality to calculate

‖ψΛ(t)− P<Λσ(t)‖d,µ = ‖ψΛ(t)− σΛ(t) + σΛ(t)− P<Λσ(t)‖d,µ ≤
≤‖ψΛ(t)− σΛ(t)‖d,µ + ‖σΛ(t)− P<Λσ(t)‖d,µ ≤ CN |t|+ ‖σΛ(t)− P<Λσ(t)‖d,µ

(2.25)

thus reducing the problem of convergence, in the infra-red (IR) thermodynamic limit, of operator
dynamics to scalar BGP as an effective equation, to a case of à la Galerkin reconstruction of a partial
differential equation (PDE), since

‖σΛ(t)− P<Λσ(t)‖d,µ
does not carry any information on the quantum system (namely, the order parametre); rather it
estimates the error committed by regularising through the Galerkin UV cut-off Λ the full scalar BGP
equation.
This peculiarly PDE-oriented problem of reconstruction bounds has been extensively studied in the
mathematical analysis literature: for instance, we refer to [6] for the study of the analogous case for
Korteweg-de Vries (KdV) equation.
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