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Abstract

In recent years, the discovery of numerous exoplanets in multiple stellar systems

has made binaries one of the main topics in planet formation research. Despite

detecting approximately a dozen planets orbiting one star in close binary systems

in an S-type orbit, the standard model of planet formation is unlikely to explain

their formation. Investigating the evolution of disks in close binaries can provide

insight into the potential mechanisms involved in the formation of planets in such

systems. In this work, we aim to investigate how the presence of a secondary star in a

binary system affects the dynamics of the gas and dust that surrounds the primary

star. We use the γ Cephei binary star system as a reference model to simulate

and study these effects. We perform two-dimensional hydrodynamical simulations

using a modiőed version of the FARGO3D code to model disks in close binaries.

In particular, we study the evolution of gas and dust particles of different sizes

(100µm, 1mm, and 1cm) over several thousand years (up to 108 kyr), speciőcally

when the secondary star is at less perturbing conőgurations (the apocenter) and

highly perturbing conőgurations (the pericenter). Our simulation conőrms that

when the secondary star passes through the pericenter, these perturbations result in

the formation of two strong spiral arms within the disk structure. As it reaches the

apocenter, the tidal forces diminish, and the disk transitions towards axisymmetric

structures, damping the spiral arms. Additionally, we identiőed over-dense regions

within the spiral arms formed during the pericenter passage, where there could be

accelerated dust growth via coagulation leading to the formation of larger bodies

like pebbles and planetesimals. Furthermore, we compute the mass accretion rate

onto the primary star when the secondary star passes through the pericenter and

when it reaches the apocenter. We found that viscous mass accretion dominates at

the apocenter, leading to mass transfer onto the primary star. While at pericenter,

mass is dragged away by the spiral waves. However, further detailed simulations

and observations are necessary to fully comprehend the impact of these effects on

circumprimary disks and planet formation in close binaries.
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Chapter 1

Introduction

Sir Arthur C. Clark, best known for his Space Odyssey series, once said :

“Two possibilities exist: either we are alone in the universe or we are not. Both are

equally terrifying.”

This prospect has been a driving force for astronomers to study how planets are

formed and search for planets that potentially harbour life beyond our Solar System.

Since the discovery of extra-solar planets in the 1990s, various astronomical programs

have been focusing Sun-like stars, as our Sun is the only known star in the universe

that host the habitable planet. Recent studies indicates that about half of these

Sun-like stars exist in multiple systems with two or more stars (Raghavan et al.,

2010). This suggests that the conőguration of our Solar System cannot be used as

a prototype for other planetary systems present in the Universe.

In the past decade, there has been a gradual increase in the discovery of exo-

planets in binaries1 (e.g. Desidera and Barbieri, 2007; Mugrauer and Neuhäuser,

2009; Hatzes, 2016; Martin, 2018). Especially, the detection of exoplanets in bina-

ries of separation 20 AU have left us wondering how planets could have formed in

such close proximity. Even though the planet formation theory for the case of a

single central star is best explained by the łstandardž model via core-accretion (e.g.

Safronov, 1972; Mizuno, 1980; Pollack et al., 1996), it still leaves out large fraction

of multiple star systems, typically a binary system. Planet formation in binaries is

rather a complex process that occurs in series of stages (Haghighipour, 2011), each

of them are believed to be affected in different ways by the perturbations from the

stellar companion. This underlines the importance of studying the planet formation

in the binary environment.

1A detailed list of all planets in binary star systems can be found in: https://adg.univie.

ac.at/schwarz/bincat_binary.html
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2 1.1. Binary Stars

The primary objective of this study is to examine the evolution of circumprimary

disks within binary star systems using hydrodynamical simulations. The goal is to

investigate how the presence of a stellar companion can impact the dynamics of the

gas and dust surrounding the primary star during the initial phases of the planet

formation process.

This thesis is divided as follows. The remainder of Chapter 1 will outline binary

star systems, followed by an exploration of how a stellar companion in a close binary

system can affect the planet formation process. Additionally, it will present sources

that cause the dynamical evolution of planets in binaries, before discussing about

protoplanetary disks. Chapter 2 is dedicated to thoroughly presenting the theoretical

background of the protoplanetary disk. Chapter 3 will focus on the method used

in our simulations, explaining both codes and some important governing equations.

The results of our simulations will be discussed in Chapter 4, followed by conclusions

of the study in Chapter 5.

1.1 Binary Stars

A binary star is a system of two stars that are gravitationally bound to one another

and orbit a common center of gravity. We can generally classify binary stars in

two types of system: wide binaries where stars are bound gravitationally but evolve

mainly as single stars and close binaries where stars, with separation of around 20

AU, are able to affect each other’s course of evolution (also known as interacting

binaries Hilditch, 2001). In fact, exploring planets in binary star systems would

provide us an opportunity to investigate and validate theories regarding planet for-

mation in multiple stellar systems. Various studies relating to the planets in both

single and binary star systems have conőrmed that the occurrence rate of planets

in single star systems is similar to that of wide binaries (see Raghavan et al., 2006;

Bonavita and Desidera, 2007). This implies that the process of planet formation

in wide binaries is similar to that of a single-star system, as the presence of the

distant stellar companion does not seem to have a signiőcant impact on it. On the

other hand, there seems to be fewer but more massive planets orbiting binaries with

separations of less than 100 AU as compared to the single-system stars (see Eggen-

berger et al., 2007; Bonavita and Desidera, 2007; Duchêne, 2010). However, this

trend might vary with the increase in the discovery of exoplanets in close binaries.

There are various methods to identify binary stars. For instance, we can observe

them using the Doppler shift in the spectral lines caused by the binary motion or
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by astrometric technique to measure the wobbling of the light source around their

common barycenter or even through the observed periodic variation in luminosity

for an eclipsing binary.

1.1.1 Planets in binary systems

There are mainly two types of conőguration for planets in binary system: S-type

planets where they orbit only one star of the binary system (also known as circum-

primary or circumsecondary planets) and P-type planets where they orbit both stars

present in the system (also known as circumbinary planets) (see Figure 1.1).

Figure 1.1: General schematic representation of the S-type system (Haghighipour
and Kaltenegger, 2013) and P-type system (Kaltenegger and Haghighipour, 2013).

The increase in detection of exoplanets in multi-star systems have led to numer-

ous studies concerning the origin of P-type planets (e.g. Kley and Haghighipour,

2014; Bromley and Kenyon, 2015) as well as S-type planets (e.g. Haghighipour,

2006; Haghighipour and Raymond, 2007; Thebault et al., 2008, 2009). In addition,

Holman and Wiegert (1999) investigated the long term orbital stability of these

planets in binaries by deriving empirical relation for orbital stability as a function

of binary semi-major axis, mass ratio and eccentricity. In this thesis, we will solely

focus on the S-type planets orbiting in close binaries.

1.1.2 S-type planets

As mentioned earlier, the planet formation in close binary system is much more

challenging and vast. Until now, there has been several planets detected in a S-type
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orbit in a close binary system (ab ≲ 20 AU) such as γ Cephei (Campbell et al.,

1988; Hatzes et al., 2003), HD 41004 (Zucker et al., 2004), HD 196885 (Correia

et al., 2008) and α Centauri (Dumusque et al., 2012). The origin of planets in these

close binaries seems highly unlikely through the standard process of planet forma-

tion, as the presence of the nearby companion star would disrupt the environment

signiőcantly. Therefore, it is essential to develop comprehensive theory on planet

formation that accounts for all kinds of planetary system.

There are various ways in which a stellar companion in close binary can affect

the planet formation process. Firstly, the massive gaseous protoplanetary disc can

be tidally truncated by the companion star (Artymowicz and Lubow, 1994; Savonije

et al., 1994). The truncation radius of the disk depends on the viscosity of the disk,

mass ratio of the stars and the orbital eccentricity of the binary system. This disk

truncation due to tidal torques of the companion star can cause major problems

for the formation of planets in close binaries. One possible problem would be the

total mass present in the truncated disk might not be enough to form planets. In

addition, the viscous evolution are much faster in the truncated discs as compared

to the extended ones. As a consequence, these kind of disk are short-lived and

hence, there might not be enough time for a planet to form. However, for the

speciőc case of the γ Cephei system, Jang-Condell et al. (2008) found that there is

sufficient material left in the truncated disk to form a observed giant planet assuming

reasonable estimate for the disc’s accretion rate (greater than 10−7 M⊙ yr−1) and

low values of the viscosity parameters.

Secondly, the presence of the secondary star in the system may raise the disk’s

temperature affecting the condensation of small grains present in the disk, which

eventually grows into larger pebbles and potentially kilometer-sized planetesimals.

Nelson (2000) demonstrated that, for an equal-mass binary with a separation of

50 AU, the temperature in the disk may remain above the threshold necessary

to facilitate grain condensation. This őndings were later conőrmed by Picogna

and Marzari (2013) through three-dimensional modeling of radiative disks. They

identiőed signiőcant heating of the disk due to the development of spiral shock wave

when the stars approach their pericenter, as well as mass transfer between the two

disk of the system (see Figure 1.2).

Additionally, the presence of a secondary star in an eccentric orbit can peri-

odically cause gravitational perturbation to the disk, leading the disk around the

primary star to also become eccentric (Kley and Nelson, 2008; Paardekooper et al.,

2008). As the disk eccentricity increases, the collision velocities between planetesi-
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Figure 1.2: Illustrating superőcial density on a logarithmic scale of a circumstellar
disk during the secondary star’s pericenter passage (Picogna and Marzari, 2013).

mals also increases (Müller and Kley, 2012) making the collisions more disruptive.

As a result, the planet formation through the planetesimal collisions would be par-

ticularly challenging. However, the presence of a gas disk can drastically change the

whole scenario. Marzari and Scholl (2000) showed that the gas drag force along with

the periodic perturbation by the companion star can greatly decrease the impact

velocities of planetesimals even when there is high orbital eccentricity.
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1.1.3 Dynamics of planets in binaries

In a binary star system, the gravitational inŕuence of the secondary star plays a

pivotal role in shaping not only the initial planet formation but also the subsequent

dynamic changes. The eventual őnal structure of the system heavily depends on

how the evolutionary paths of planets are altered by factors such as disk interac-

tions (Kley and Nelson, 2010), Mean Motion Resonances (MMR) between planets

and between planets and the secondary star (Deck et al., 2013; Mudryk and Wu,

2006), planet interactions causing scattering (Marzari et al., 2005), and the Kozai

mechanism (Naoz, 2016).

For planets in S-type orbits, revolving around one of the stars, the most critical

areas for planet formation are the outer regions. In these regions, the gravitational

pull of the second star might trigger signiőcant eccentricities, possibly leading to in-

stability due to resonance interactions. Additionally, if the planetary orbits are mis-

aligned, the secondary star could induce rapid Kozai oscillations, causing substantial

variations in eccentricity and inclination (Marzari and Thebault, 2019). While these

mechanisms can collectively or independently inŕuence the evolution of planetary

systems within binaries, secular perturbations (Michtchenko and Malhotra, 2004;

Libert and Henrard, 2005) and Mean Motion Resonances (MMR) play a signiőcant

role in establishing the outer boundary where a planet’s orbit remains stable within

an S-type conőguration. Conversely, the inner regions of the circumstellar disk offer

a more favorable environment for planet growth through the standard core-accretion

process, fostering subsequent stability in their orbital trajectories.

In P-type orbits, where planets orbit both stars, disruptions are more likely in

the inner regions near the central binary. In this conőguration, instability is expected

closer to the system’s center, with the safer zones for planet formation lying in the

outer regions of the encircling binary disk (Marzari and Thebault, 2019).

1.2 Protoplanetary disk

Stars are formed when a large rotating cloud consisting of cold and dense molecular

gas begins to collapse due to self-gravity. As a consequence of angular momen-

tum conservation in this rotational-collapse process, the molecular cloud cannot fall

spherically onto the star. Rather, the material surrounding the young star forms

a disk where planet forms known as protoplanetary disk. While some part of gas

and dust particles present in the disk spiral inward and accrete onto the protostar,

remaining material in the disk ends up growing into pebbles and planetesimals to
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form planets (Pollack et al., 1996). Since protoplanetary disk consist of materials

that is initially present in the interstellar medium, it is mainly composed of hydrogen

and helium (99% by mass) and 1% of dust (Bohlin et al., 1978).

The existence of the protoplanetary disk were discovered long ago by studying

the spectral energy distribution (SED) of young stellar objects (YSO). In addition

to the blackbody radiation emitted by the star, the heated dust present in the disk

contributes to an excess signal at long wavelengths (infrared excess). In particular,

the slope of the SEDs help us quantify the infrared excess by classifying YSOs

(Andre, 2000):

αIR =
dlog(λFλ)

dlog(λ)
(1.1)

YSOs are divided into four different classes based on the shape of their SEDs,

which depicts a distinct evolutionary stage of the protoplanetary disk (see Figure

1.3). These classes are often referred to as Class 0, Class I, Class II and Class III.
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Figure 1.3: A step-by-step observational evolutionary sequence outlining the for-
mation of a single star, starting from a prestellar cloud core and progressing to a
Class III Young Stellar Object (YSO), based on the shape of the SED (Andre, 2000).
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In addition, the infrared excess also helps in deducing the so called "transition

disks". These type of disks are primarily in an advanced evolutionary stage where

dust-depleted cavity develops in the central region of the disk. These disks have

mainly progressed to an advanced evolutionary stage, marked by the formation of a

cavity in the central area that lacks dust particles.

In the past decade, there has been a huge progress in observing protoplanetary

disks. The structures in protoplanetary disks around young stars have been spacially

resolved in optical and near-infrared wavelengths by the Spectro-Polarimetric High-

contrast Exoplanet REsearch (SPHERE) instrument (Beuzit et al., 2008) mounted

on ESO’s Very Large Telescope (VLT) located in Chile. In particular, gas and small

dust particles present in the disks are able to modify the light rays via scattering,

absorption and remission. With the help of this instrument, we are able to obtain

scattered light images from the surface of protoplanetary disks in infrared wave-

lengths. However, it can be very challenging to observe the structure of the disks at

optical and infrared wavelengths, as the central star also emits at the same wave-

length range. By applying two special techniques: the polarized differential imaging

technique (PDI, Kuhn et al., 2001; Apai et al., 2004) and the angular differential

imaging technique (ADI, Marois et al., 2006), the SPHERE instrument is able to get

rid of the incoming ŕux from the central star and őnally able to conduct a detailed

study of protoplanetary disk (see Figure 1.4).

Figure 1.4: SPHERE/IRDIS PDI (left) and ADI (right) images of HD 97048.
The disk structure is identiőed, with signal detected at the positions of the two
outermost rings found in the ADI image, as seen in the r2-scaled DPI image (Ginski
et al., 2016).
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Tiny particles of dust scatter light and also have the ability to absorb photons,

which results in heating of the particles in the disk. This heat is then emitted in

the form of millimeter and sub-millimeter wavelengths. The Atacama Large Mil-

limeter/submillimeter Array (ALMA) interferometer, situated in Chile, consisting

of 66 highly sensitive telescope dishes operating at wavelengths of 3.6 to 0.3 millime-

ters, now allows us to measure the emission of dust continuum, which can trace the

presence of dust particles in the disk’s mid-plane. With ALMA interferometer, it is

now possible to obtain large sample of high-resolution images of disks in different

stellar clusters and regions where stars are formed (see Figure 1.5). These images

are able to highlight key attributes such as gaps, spiral waves, and inner holes in the

disks. Additionally, ALMA has allowed us to make statistical estimates regarding

the proportion of stars possessing disks and their lifetimes.

Figure 1.5: 1.33 mm continuum images of the 40 Lupus disks detected in ALMA
Band 6 sample (Ansdell et al., 2018).
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Physics behind protoplanetary disks

Eventhough the observations presented in the previous section provides valuable

insight into potential planetary and protoplanetary environments, it is important

to note that it only offers a glimpse into the current state of these systems, and to

truly comprehend their development over time, it is necessary to rely on theoretical

frameworks that can help us understand the underlying processes and mechanisms

that drive their evolution.

In the following section, we will discuss about the theoretical concepts of proto-

planetary disks and the dynamics governing the evolution of gas and dust particles

which together lay the foundation for this thesis.

2.1 Gaseous structure of the disk

Protoplanetary disks, the cradle of a future planetary system, are the by-product of

the star formation process. The structure of these gas-rich disks is quite complex,

and various physical processes are involved in different parts of the disk (see Figure

2.1). These disks can expand over a wide range of distances, with the outer edge

ranging from a few tens of AU to 100 AU or more, and the inner edge located as close

as few stellar radii. The lifetime of protoplanetary disks typically spans a few million

years, which corresponds to millions of dynamical timescales in the inner region and

thousands of dynamical timescales in the outer region of the disk, speciőcally at a

distance of 100 AU.

11



12 2.1. Gaseous structure of the disk

Figure 2.1: This general diagram depicts the structure of a protoplanetary disk
and its associated spatial scales. It shows the techniques that can resolve speciőc
scales, and also indicates the emission types corresponding to different parts of the
disk (Dullemond and Monnier, 2010).

2.1.1 Vertical structure

A vertical structure of the gas disk can be derived by őrst assuming that the total

disk mass, Mdisk is very small compared to the mass of the star, M⋆. This would

allow us to neglect the gravitational potential of the disk and solely focus on stellar

gravity. Secondly, we consider the disk to be vertically isothermal (i.e. the vertical

temperature proőle, T (z) is constant) and thin (i.e. the vertical thickness above the

mid-plane of the disk, z is a very small compared to the orbital radius, r). The

equilibrium structure is determined by the balance between vertical component of

the stellar gravity, gz and vertical pressure gradient in the gas,
1

ρ

dP

dz
(see Figure

2.2).

Therefore, we can write:

dP

dz
= −ρgz = −ρg sin θ (2.1)
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Figure 2.2: This diagram illustrates the geometry used to determine the vertical
hydrostatic equilibrium of a protoplanetary disk that is not inŕuenced signiőcantly
by its own gravitational forces. The equilibrium is maintained by the vertical com-
ponent of stellar gravity and the vertical pressure gradient (Armitage, 2020).

This implies,

cs
2
dρ

dz
= −ρ

GM⋆z

(r2 + z2)3/2
(2.2)

where, P = ρcs
2 with cs being the speed of sound.

For a thin disk z << r, gz ≃ Ω2
K where Ω2

K is the Keplerian orbital velocity at the

mid-plane of the disk. Then, the equation becomes

cs
2
dρ

dz
= −Ω2

Kρz (2.3)

Integrating above equation would give a Gaussian density proőle of the gas,

ρ(z) = ρ0 exp[−z2/2h2] (2.4)

where, h ≡ cs/ΩK is the vertical scale height and ρ0 =
1√
2π

Σ

h
is the gas density at

the mid-plane, with Σ being the gas surface density.

2.1.2 Radial structure

Protoplanetary disks are dynamic systems, and determining the surface gas-density

proőle of the disk in the radial direction requires an understanding of the transfer

of angular momentum, often referred to as viscosity (see Section 2.1.4), or through

direct observations of the disk.

Angular momentum transport occurs when two adjacent layers of gas in the

disk experience friction due to their relative motion. In the disk, the gas moves in
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a Keplerian motion around the central star, with the gas in the inner layer rotating

faster than the gas in the outer layer. This generates a viscous friction, which

causes the inner layer to slow down and the outer layer to speed up. This allows the

local parcels of gas in the inner layer to spiral toward the central star by reducing

its angular momentum, while the gas in the outer layer moves further away from

the central star by gaining its angular momentum. This internal redistribution of

angular momentum is not the only way how disk evolves; magnetic stresses can

also remove angular momentum, enabling matter to accrete, even without viscosity

(Blandford and Payne, 1982) or disk winds may also play a role in its evolution.

In this thesis, we focus on the evolution of the disk over long periods; hence, we

are only interested in the time evolution of the surface density.

2.1.3 Surface density evolution of the disk

We start by assuming the disk to be evolving slowly through the sequence of

axisymmetric-static2 structures. The evolution of gas surface density, Σ(r, t) can

be derived by considering the mass and angular momentum conservation equations

in cylindrical coordinates. The continuity equation that expresses mass conservation

is given by,

r
∂Σ

∂t
+

∂

∂r
(rΣvr) = 0 (2.5)

and, the azimuthal component for angular momentum conservation is expressed as,

r
∂

∂t
(r2ΩΣ) +

∂

∂r
(r2Ω · rΣvr) =

1

2π

∂G

∂r
(2.6)

Here, vr is the radial velocity of the gas (vr < 0 corresponds to inŕow towards the

star), Ω is the angular velocity of the gas and G is the torque exerted on the disk,

which can be expressed as,

G = 2πr · νΣrdΩ
dr

· r (2.7)

with ν being kinematic viscosity.

2A three-dimensional structure is deőned as žaxisymmetricž if its geometry, physical characteris-
tics and boundary conditions are independent of an azimuth coordinate, θ of a cylindrical reference
frame (r, θ, z), where z is the component axis of symmetry and r is the radial distance from z-axis.
This simpliőes the problem to a two-dimensional plane in the radial and vertical dimensions.
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The change in the angular momentum of a disk can be attributed to two factors:

őrstly, the change in the surface density due to radial ŕows, and secondly, the

difference in the amount of torque exerted on the disk by stresses at its inner and

outer edges. Solving the above two equations 2.5 and 2.6, we then obtain the

evolution of the gas surface density of the thin disk, and can be written as,

∂Σ

∂t
=

3

r

∂

∂r

[

r1/2
∂

∂r
(νΣr1/2)

]

(2.8)

And, the radial velocity of the gas in the presence of a viscosity can also be derived

as,

vr = − 3

Σ
√
r

∂

∂r
(Σν

√
r) (2.9)

Substituting x = 2
√
r and y = Σ

√
r in equation 2.8, we can obtain a diffusion

equation:

∂y

∂t
= D

∂2y

∂x2
(2.10)

with D being a diffusion constant such that,

D =
12ν

x2
(assuming a constant viscosity) (2.11)

We can then determine a timescale on which viscosity would smooth out surface

density gradients in a disk of size r:

tvisc =
x2

D
∼ r2

ν
(2.12)

known as viscous timescale, tvisc of the disk. An analytic solutions to the time-

dependent diffusive equation 2.5 can help us gain insight on how the gas surface

density varies with radius at different times for different forms of the viscosity (see

Figure 2.3).

2.1.4 Impact of the viscosity on disk evolution

The rate at which the disk evolves and its density distribution are both inŕuenced

by how angular momentum is transported within the disk. This transport is pri-

marily controlled by the viscosity of the disk, making it a crucial parameter in this
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(a) ν is constant. (b) ν ∝ r.

Figure 2.3: Variation of gas surface density with radius at different times for
different forms of viscosity (Armitage, 2020).

process. One possible mechanism for generating viscosity in a gas disk is through

the interaction between different molecules in the gas, which is known as molecular

viscosity, νm. Therefore, this type of viscosity generated via colliding molecules in

the gas disk is given by,

νm ∼ λvth (2.13)

where, vth is the thermal speed of the molecules and λ ∼ 1

nσ
is the mean-free path in

the gas, with n being the number density of molecules having collision cross-section

σ.

Considering the collision cross-section to be the size of a hydrogen molecule

(i.e. σ ∼ 2 × 10−15cm2) and under appropriate physical conditions at 10 AU (i.e.

vth = 0.5 kms−1, n = 1012 cm−3), we can estimate the molecular viscosity, νm to

be around 2.5× 107 cm2s−1 (adopted from Armitage, 2020). We can then infer the

viscous time scale to be:

tvisc ≃
r2

νm
= 3× 1013yr (2.14)

This time scale is much longer than the observed time scale for the disk evolution.

Therefore, molecular viscosity is not the mechanism responsible for the angular

momentum transport within disks.

Undoubtedly, we need another mechanism for the angular momentum transport

that can explain the observed disk lifetimes. Shakura and Sunyaev (1973) have put

forward the idea of turbulence playing the key role in providing viscosity for the

angular momentum transport. We can therefore express the turbulent viscosity, ν
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in terms of the sound speed, cs and disk scale-height, h as,

ν = αcsh (2.15)

where, the dimensionless parameter, α describes the amount of turbulence in the

disk, which may vary with different density and temperature proőle, as well as the

distribution of the gas within the disk.

2.1.5 Mass accretion rate on the star

In a simple viscous disk, the rate at which the material in the inner regions of the

disk falls onto the central star due to the loss of angular momentum is known as

mass accretion rate on the star. To account for the angular momentum lost by the

accreting material, the disk must expand. Therefore, the evolution of the disk can

be predicted based on the rate of mass accretion and angular momentum transfer,

which is proportional to the viscosity of the disk.

We can derive a relation between the mass accretion rate to the viscosity value

in the disk by starting from the angular momentum conservation equation,

r
∂

∂t
(r2ΩΣ) +

∂

∂r
(r2Ω · rΣvr) =

1

2π

∂

∂r

(

2πr · νΣrdΩ
dr

· r
)

(2.16)

We can look for a steady-state solution to the above equation 2.16, where the local

superőcial density, Σ is assumed to be constant. For this, we set the time derivative

to zero, we get,

∂

∂r
(r2Ω · rΣvr) =

1

2π

∂

∂r

(

2πr · νΣrdΩ
dr

· r
)

(2.17)

From the deőnition of the mass accretion rate, Ṁ , we can write,

Ṁ = −2πrΣvr (2.18)

Inserting this expression in the equation 2.17 and integrating from the radius of the

star, r⋆ (assuming it to be the inner limit of the disk) to the radial distance, r, we

obtain,

−Ṁr2Ω = 2πνΣr3
dΩ

dr
+ constant (2.19)
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To specify constant, we set
dΩ

dr
= 0, as the viscous stress vanishes on the surface of

the star. we have,

constant = −Ṁr2⋆Ω(r⋆) (2.20)

Finally, the steady-state solution for the disk can be expressed as,

Ṁ

(

1−
√

r⋆
r

)

= 3πνΣ (2.21)

For the majority of the disk where r >> r⋆, the mass accretion rate on the star is

given by,

Ṁ = 3πνΣ (2.22)

Furthermore, there is a strong correlation between the mass of the central star

and the rate at which it accretes mass, with larger stars typically possessing more

massive disks experience a higher rate of mass accretion (see Figure 2.4).

Figure 2.4: The diagram illustrates how the mass accretion rate, Ṁacc varies with
the mass of the central object, M∗ in Taurus (left panel) and ρ Oph (right panel)
(Dullemond et al., 2006).

2.2 Dust dynamics of the disk

Let us now focus on the evolution of dust particles within the disks, which is quite

different from the evolution of the dominant gaseous component in the disk. Al-

though the disk consists of a small fraction of solid particles (about 1% of the total
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disk’s mass), it still has a signiőcant impact on the structure and evolution of proto-

planetary disks. We will therefore begin by describing the aerodynamical interaction

between the small dust particles and gas to understand how such particles evolve

vertically and radially within the protoplanetary disk.

2.2.1 Aerodynamical gas-dust interaction

While gas molecules can be affected by pressure gradients, dust particles are pri-

marily driven by the gravitational forces and the drag forces that result from their

aerodynamical interaction with the surrounding gas. We will start by deőning a

critical parameter that quantiőes the coupling between solid particles and gas, com-

monly referred to as the stopping time.

For a spherical solid particle with radius s having density ρm, the stopping time,

ts is given by,

ts ≡
m∆v

|Fdrag|
(2.23)

where, m is the mass of the particle moving with velocity v relative to the local

velocity of the gas and Fdrag is the magnitude of the aerodynamic drag force expe-

rienced by the solid particle. We now deőne a more meaningful parameter known

as dimensionless stopping time3, τs by multiplying ts by the local Keplerian angular

velocity, ΩK and is given by,

τs ≡ tsΩK (2.24)

The coupling between gas and dust particles can also be described in terms of

dimensionless stopping time by the Stokes number, St, which can be expressed as,

St =
τs
τed

(2.25)

where, τed is the characteristic turn-over timescale of eddies, which can be associ-

ated with turbulence in the disk. In simpler terms, large eddies with longer turn-

over times are linked with larger-scale turbulent motions, while smaller eddies with

shorter turn-over times represent smaller-scale turbulent ŕuctuations in the disk.

Thus, the turn-over time scales of eddies is valuable measure that contributes to

understanding the dynamics of turbulence within the disk.

3It explains how the stopping time and the orbital time at the particle’s position are related to
each other.
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In particular, we will consider two different regime when calculating the drag

force experienced by the solid particle:

Epstein regime: Solid particles are considered to be in this regime if they

are smaller than the mean-free path of gas molecules (λ) i.e. s < 9λ/4. In this

regime, gas acts as a group of collisionless molecules with Maxwellian velocity

distribution towards the dust. The drag force experienced by the solid particles

in this regime is known as Epstein drag and is given by,

Fdrag = −4π

3
ρgass

2vth∆v (2.26)

where, ρgas is the density and vth =

√

8kBT

πµmH

is the thermal speed of the

surrounding gas molecules.

Stokes regime: When particles reach a size signiőcantly larger than the

mean free path of gas molecules, their interaction with the gas can be de-

scribed using classical ŕuid concepts, and they are considered to be in the

Stokes regime. The drag experienced by the particles in this regime, also

known as Stokes drag, can be expressed as follows:

Fdrag = −CD

2
πs2ρgasvth∆v (2.27)

where, CD is the drag coefficient. It represents the level of resistance or drag

experienced by a particle moving through a gas or ŕuid. Speciőcally, a higher

drag coefficient indicates greater resistance to the motion of the solid particle,

resulting in a larger drag force acting on the object. The drag coefficient is

determined by various factors, including the shape and size of the particles.

Moreover, it can vary depending on the Reynolds number (Re), which is de-

őned as the ratio of inertial forces to viscous forces within a ŕuid ŕow. The

Reynolds number is expressed as follows:

Re =
2sv

νm
(2.28)

Based on the Reynolds number, Weidenschilling (1977) presents a relation to

classify ŕuid ŕow into further three different regimes:

1. Stokes I: CD ≃ 24Re−1, for Re < 1.
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2. Stokes II: CD ≃ 24Re−0.6, for 1 < Re < 800.

3. Stokes III: CD ≃ 0.44, for Re > 800.

2.2.2 Radial drift

As discussed earlier, the gas within the disk is partially supported against gravity by

an outward pressure gradient, causing it to orbit the central star at a sub-Keplerian

velocity. This differential velocity of the gas has signiőcant implications for the

radial distribution of the dust particles of different sizes present within the disk. We

will begin by assuming that there is no turbulence in the disk and that the feedback

of aerodynamic forces on the gas is negligible. To derive a general relation for the

rate of radial drift as a function of the stopping time, we consider the gas orbital

velocity to be:

vϕ,gas = vK(1− η)1/2 . (2.29)

where, the parameter η ∝ (h/r)2.

If vr and vϕ is the radial velocity and the azimuthal velocity of the particle

respectively, the equations of motion can be written as:

dvr
dt

=
v2ϕ
r

− Ω2

Kr −
1

ts
(vr − vr,gas) , (2.30)

d

dt
(rvϕ) = − r

ts
(vϕ − vϕ,gas) . (2.31)

The azimuthal equation 2.31 can be simpliőed by noting that the speciőc angular

momentum remains close to Keplerian. This implies that as the particle spiral

inward, it follows a series of orbits that are almost circular and nearly Keplerian in

nature. Therefore,

d

dt
(rvϕ) ≃ vr

d

dr
(rvK) =

1

2
vrvK . (2.32)

yielding,

vϕ − vϕ,gas ≃ −1

2

tsvrvK
r

. (2.33)

We now substitute for ΩK in the radial equation 2.30 using equation 2.29 and also
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neglect higher order terms, we get,

dvr
dt

= −η
v2K
r

+
2vK
r

(vϕ − vϕ,gas)−
1

ts
(vr − vr,gas) . (2.34)

Here, the term
dvr
dt

is negligible, so we omit it. Also, we replace (vϕ − vϕ,gas) using

equation 2.33, we obtain,

vr =
(r/vK)t

−1
s vr,gas − ηvK

(vK/r)ts + (r/vK)t−1
s

. (2.35)

Finally, the radial velocity of the particle in terms of the Stokes number is given by,

vr =
τ−1
s vr,gas − ηvK

τs + τ−1
s

. (2.36)

For a small dust particle that are tightly coupled to the gas (τs << 1), the radial

drift occurs at a speed,

vr ≃ vr,gas − ητsvK . (2.37)

The small dust particles, inŕuenced by strong aerodynamic coupling, are compelled

to orbit alongside the surrounding gas molecules at the same rotational speed. How-

ever, their velocity is slower than what is required to achieve a balance between cen-

trifugal force and gravity. As a result, the dust particles will gradually spiral inward

at their radial terminal velocity. Hence, these small dust particles experience radial

drift at a rate that is linear in the dimensionless stopping time.

Even when dealing with very large particles (τs >> 1) that have weak coupling to

the gas, they still experience inward radial drift at a rate that decreases linearly with

the stopping time. In this situation, the aerodynamic forces acts as a disturbances

to the orbital motion of the solid particle, which revolves around the central star at

a velocity close to the Keplerian speed. This velocity is faster than the motion of the

gas within the disk, causing the solid body to encounter a headwind that diminishes

its angular momentum. Consequently, the particle gradually drifts inward. Figure

2.5 shows the radial drift time scale, tdrift as a function of the dimensionless stopping

time.
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Figure 2.5: Particles in a disk migrate towards the center due to the interplay
of aerodynamic forces and the sub-Keplerian rotation of the gas. The diagram
demonstrates how the radial drift time scale, tdrift changes with respect to the
dimensionless stopping time, τs. The highest radial drift rate happens when τs is
equal to 1 (Armitage and Kley, 2019).

Drift in the turbulent disk

If there is turbulence within the disk, the radial drift of small particles can be

signiőcantly affected. However, large particles can still experience rapid inward drift,

as turbulence does not alter the mean sub-Keplerian ŕow responsible for their radial

motion. When modeling the radial transport of solids in a turbulent disk, three main

processes need to be considered: advection with the mean ŕow, radial drift due to

aerodynamic drag relative to the gas, and turbulent diffusion. Therefore, we begin

by writing the concentration of dust or trace gas (also known as a łcontaminantž)

as follows:

f =
Σd

Σ
, (2.38)

where, Σd is the surface density of the contaminant. The radial movement of the

contaminants can now be described by an advection-diffusion equation as,

∂Σd

∂t
+∇ · FT = 0 , (2.39)
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where, the total ŕux, FT can be divided into two parts: an advective ŕux that

describes the transport of particles with the mean ŕow of the disk and a diffusive

ŕux that ensures the even distribution of contaminants throughout the disk. For

f ≪ 1, we can assume that the diffusive properties of the disk depend only on the

gas surface density and ŕux can be expressed as,

FT = Σdv −DΣ∇
(

Σd

Σ

)

. (2.40)

where, v is the mean velocity of gas in the disk and D is the turbulent diffusion

coefficient. The diffusive term vanishes if the contaminant is constant. Combining

this ŕux expression with the continuity equation for the gaseous component, we

obtain an evolution equation for the contaminants as,

∂f

∂t
=

1

rΣ

∂

∂r

(

DrΣ
∂f

∂r

)

− vr
∂f

∂r
. (2.41)

2.2.3 Vertical settling

Aerodynamic drag on solid particles can also alter the vertical distribution of solid

particles within the protoplanetary disk. We begin by assuming there is no turbu-

lence in the disk. Let us now focus on the forces acting on a small particle of mass, m

at height, z above the mid-plane of a laminar disk. While the vertical component of

stellar gravity would cause solid particles not coupled to the gas to oscillate around

the mid-plane of the disk, the counteracting drag force dampens this motion, lead-

ing the particles to settle towards the disk’s mid-plane. We can express the vertical

component of stellar gravity, FG (downward force) and drag force, Fdrag in Epstein

regime (upward force) as follows:

|FG| = mΩ2

Kz . (2.42)

|Fdrag| =
4π

3
ρgass

2vthv . (2.43)

and, the resulting terminal settling velocity of the particle once the gravitational

force is balanced by drag force is given by,

vsettle =
ρm
ρgas

s

vth
Ω2

Kz . (2.44)
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Roughly estimating, for a 1 µm particle at z ∼ h at 1AU from a solar mass star

(ρ = 6 × 10−10 gcm−3, z = 3 × 1011 cm, vth = 105 cms−1) gives a settling speed

vsettle ∼ 0.06 cms−1 and the settling time given by,

tsettle =
z

|vsettle|
. (2.45)

is about 1.5× 105 yrs (adopted from Armitage, 2020). This result suggests that in

the absence of turbulence, the dust particles would settle towards the mid-plane of

the disk at a quicker rate.

Settling in the turbulent disk

The presence of turbulence in the disk disturbs small solid particles, preventing them

from settling in the mid-plane of the disk. If we consider dust ŕuid having density, ρd

as a trace species in the disk (
ρd
ρ

≪ 1) then it obeys an advection-diffusion equation:

∂ρd
∂t

= D
∂

∂z

[

ρ
∂

∂z

(

ρd
ρ

)]

+
∂

∂z
(Ω2

Ktsρdz) . (2.46)

We can obtain a steady-state solutions to this equation if we assume a very thin

layer of dust such that the density of gas is approximately constant across the dust

scale-height. In this situation, the dimensionless stopping time is independent of z

and we obtain,

ρd
ρ

=

(

ρd
ρ

)

z=0

exp

[

− z2

2h2
d

]

, (2.47)

where, hd, the scale-height of the vertical distribution of the dust concentration,
ρd
ρ

is given by,

hd =

√

D

Ω2
Kts

. (2.48)

If we assume the turbulent diffusivity is comparable to the turbulent viscosity, i.e

D ∼ ν, the ratio of the concentration scale height to the gas scale height can be

expressed as,

hd

h
≃
√

α

τs
. (2.49)
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Therefore, in order for solid particles to be highly concentrated towards the mid-

plane of the disk, the dimensionless stopping time must be signiőcantly larger than

α. This suggests that for any reasonable value of α, substantial particle growth is

necessary before settling occurs.



Chapter 3

The Model

In order to gain insights into the dynamics of circumprimary disks as well as other

protoplanetary disks, it is essential to employ numerical methods for simulating their

temporal evolution. This thesis utilizes the FARGO3D code (Benítez-Llambay and

Masset, 2016), which is the successor of the FARGO (Fast Advection in Rotating

Gaseous Objects) code initially developed by Masset (2000). As the name suggests,

the FARGO code utilizes a fast orbital advection algorithm that integrates the mo-

tion of gas and solid particles within an orbit. FARGO3D, an extended version

of FARGO, also incorporates orbital advection and focuses on describing the char-

acteristics of protoplanetary disks and their interactions with developing planets.

It is a versatile and adaptive code speciőcally designed to run efficiently on clus-

ters of CPUs or GPUs. FARGO3D solves the equations of hydrodynamics (HD) or

magnetohydrodynamics (MHD) on a mesh, which can be cartesian, cylindrical, or

spherical.

In this section, we will begin by examining the fundamental equations that

govern the code, followed by a brief overview of the numerical techniques employed

to solve these equations. Lastly, we will present the initial conőguration that has

been adopted for the simulation.

3.1 Overview of the FARGO3D code

As previously mentioned, FARGO3D is a computational tool that solves the equa-

tions of HD or MHD using an Eulerian mesh, which is a grid-based approach. It

is primarily designed to handle three-dimensional problems, but it can also be used

for one or two dimensions.

27



28 3.1. Overview of the FARGO3D code

3.1.1 Governing equations

The governing equations solved by the FARGO3D code depend on whether it is used

for HD or MHD simulations. In this work, we will not address MHD equations as we

will not be conducting MHD simulation. We will therefore begin with the continuity

equation that describes the conservation of mass in the system and is given by,

∂Σ

∂t
+∇ · (Σv⃗) = 0 , (3.1)

where, Σ is the surface density and v⃗ is the velocity of the ŕuid with respect to the

mesh. The Navier-Stokes equation (momentum equation) reads,

Σ

(

∂v⃗

∂t
+v⃗ ·∇v⃗

)

= −∇P+∇·T⃗+F⃗ext−Σ

[

2Ω⃗×v⃗+Ω⃗×(Ω⃗×r⃗)+
˙⃗
Ω×r⃗

]

, (3.2)

where, P is the pressure, F⃗ext is any external force and the őnal term takes into

consideration the potential rotation of the mesh in the vertical axis. The third term

incorporates the stress tensor, T⃗ , which represents the internal forces within the

ŕuid and is expressed as follows:

T⃗ = Σν

[

∇v⃗ + (∇v⃗)T − 2

3
(∇ · v⃗)I⃗

]

, (3.3)

with ν being the kinematic viscosity and I⃗ being the unit tensor of same rank as

the tensor ∇v⃗. For the energy equation, we employ a non-conservative form that

utilizes the volumetric internal energy, e and is written as,

∂e

∂t
+∇ · (ev⃗) = −P∇ · v⃗ , (3.4)

In addition, the pressure, P is deőned using the ideal gas law:

P = RΣT = (γ − 1)e , (3.5)

where, γ is the adiabatic index, T is the temperature in the midplane of the disk

and R =
kB
µmu

is the universal gas constant with kB being the Boltzmann constant,

µ the mean molecular weight and mu the uniőed atomic mass unit. The adiabatic
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sound speed cs within the disk is given by,

cs =

√

γ
P

Σ
=

√
γcs,iso , (3.6)

where, cs,iso =

√

P

Σ
is the isothermal sound speed. Furthermore, the vertical scale-

height, H reads,

H =
cs,iso
ΩK

=
cs√
γvK

r = hr , (3.7)

where, ΩK is the Keplerian angular velocity and h the aspect ratio.

3.1.2 Numerical methods

FARGO3D follows a similar approach to the ZEUS code (Stone and Norman, 1992),

where the ŕuid quantities such as density, internal energy are typically stored at

the cell centers. However, the velocities are staggered on the faces of the cells (see

Figure 3.1). This arrangement simpliőes the calculation of mass, momentum, and

speciőc energy ŕuxes along the cell edges.

Figure 3.1: A schematic diagram of a cell in FARGO3D (Benítez-Llambay and
Masset, 2016).

In particular, FARGO3D solves the hydrodynamical equations using the opera-

tor splitting and upwind techniques. Figure 3.2 shows a ŕow chart of the operations
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performed in FARGO3D. Since we will not be considering the magnetic őeld in this

work, we will not address boxes 8, 10, and 11 (see Figure 3.2). We will therefore

begin by describing the operator splitting technique that is used to split the HD

equations into a source and transport step (boxes 7 and 12 in Figure 3.2).

Figure 3.2: A ŕow chart depicting the sequential operations carried out in
FARGO3D during a full update. The boxes with a blue background are exclu-
sive to the MHD case. These corresponding substeps are executed solely when the
code is compiled for MHD (Benítez-Llambay and Masset, 2016).

Let us deőne a equation such that,

∂U

∂t
+ A(U) = 0, U(0) = U0 . (3.8)

where, A(U) is a function that can be separated as A(U) = A1(U1)+A2(U2). Then,

its solution can be obtained from the linear combination of the following equations:
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∂U1

∂t
+ A1(U1) = 0 , (3.9)

∂U2

∂t
+ A2(U2) = 0 . (3.10)

We can now approximate solutions to a differential equation using őnite dif-

ference scheme, which involves dividing the equation 3.8 into a grid and replacing

derivatives with numerical differences between nearby points. For instance,

U1 − U0

∆t
= −A1(U0) , (3.11)

U2 − U1

∆t
= −A2(U1) . (3.12)

We can write the general form of the differential equation in hydrodynamics as,

∂Q

∂t
+∇ · (Qv⃗) = S(Q, v⃗, t) (3.13)

where, Q can be any vectorial quantity (such as a momentum component) and S

are source terms of Q (like a body force). We can now split equation 3.13 into two

partial equations using operator splitting technique and can be written as,

Source step:
∂Q

∂t
= S(Q, v⃗, t) (3.14)

Transport step:
∂Q

∂t
+∇ · (Qv⃗) = 0 (3.15)

A transport step involves a series of routines that solves equation 3.15 on the mesh

for any given quantity Q. On the other hand, during the source step, all factors

that are not included in the transport step need to be taken into account in solving

equation 3.14.

In particular, the source step can be linked with the centrifugal force, the pres-

sure gradient, the body forces and the work done by pressure forces. Following the
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procedure described by Stone and Norman (1992), the source step can be divided

into three sub-steps:

Sub-step 1: It is responsible for updating the velocity őeld by pressure gra-

dients and gravitational forces.

Sub-step 2: Here, an aritiőcial viscosity is added along with the heating

term.

Sub-step 3: If the energy equation 3.4 is calculated, the workdone by pres-

sure forces is included.

In the transport step, we start solving equation 3.15 by expressing it in the integral

form using the divergence theorem as,

∂

∂t

∫ ∫ ∫

V

QdV +

∫ ∫

∂V

Qv⃗ · dS⃗ = 0 , (3.16)

assuming that the control volume V is independent of time. This means that the

change in Q within a control volume V is solely due to its ŕux across the boundary

∂V . For multidimensional advection, the transport step is broken down into several

one-dimensional problems using őnite difference, each updating a portion of the őeld

with the corresponding ŕuxes, as,

[

Qn+a
ijk −Qn

ijk

]

V = −∆t

[

FXi+1/2jk − FXi−1/2jk

]n+1/2

, (3.17)

[

Qn+b
ijk −Qn+a

ijk

]

V = −∆t

[

FY ij+1/2k − FY ij−1/2k

]n+1/2

, (3.18)

[

Qn+1

ijk −Qn+b
ijk

]

V = −∆t

[

FZijk+1/2 − FZijk−1/2

]n+1/2

, (3.19)

where V is the volume of the cell and F is the ŕux of Q across the faces of the

cubic cell. The subscripts (i, j, k) and superscripts (n + a, n + b) represents the

position of the cell in the grid and intermediate stages of Q respectively. Here, the

ŕux evaluation is done using an upwind method to determine the value of Q∗ at the

center of the face at a half time step. The ŕux calculation is simpliőed by considering
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the staggering of the velocity őeld and is given by,

FX
n+1/2
i+1/2 = vXi+1/2

[

Q∗x
i+1/2

]n+1/2

Si+1/2 , (3.20)

where, Q∗ is the interpolated value of the cell centered quantity Q onto the face

i+ 1/2, at the middle of the time step and the subscript X represent the direction

normal to the face along which the ŕux is evaluated. It is obtained through a zone-

wise linear reconstruction technique that utilizes van Leer’s slopes (Van Leer, 1977)

in most of the sub-steps (with one exception). During the uniform residual step of

orbital advection, which will be discussed later, a zone-wise parabolic reconstruction

method known as the Piece-wise Parabolic Advection (PPA) algorithm is employed.

This approach is similar to the one used in the PLUTO code (Mignone et al., 2012).

Furthermore, the interpolated values of density, energy and momenta are evaluated

at half time step using van Leer’s slope. This sub-step corresponds to the box 12b

of Figure 3.2.

For transporting momenta-like quantities on a staggered mesh, two versions of

each momentum is deőned: the left and right momenta, which can be expressed as:

Π−

i = ρivi−1/2 (3.21)

Π+

i = ρivi+1/2 , (3.22)

Equations 3.21 and 3.22 relate to the product of the cell-centered density, ρi and

the left interface value of velocity, vi−1/2, for the left momenta, as well as the right

interface value of velocity, vi+1/2, for the right momenta. These momenta are treated

as cell-centered quantities during the transport process and are evaluated at the

beginning of the transport sub steps, which corresponds to cell 12a of Figure 3.2.

After completing the transport sub steps, the new velocity is determined based on

the updated momenta and density as follows:

vn+1

i−1/2 =
Π+

i−1

n+1
+Π−

i
n+1

ρn+1

i−1 + ρn+1

i

. (3.23)

This transformation corresponds to box 12d of Figure 3.2. In the case of Carte-
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sian coordinates, equations 49 and 50 are applied as stated. However, for different

geometries, these equations are adjusted according to Table 3.1.

Table 3.1: Quantities transported in X, Y and Z for different geometries.

Geometry X-momentum Y-momentum Z-momentum
Cartesian ρvx ρvy ρvz

Shearing sheet ρ(vx + 2Ωfy) ρvy ρvz
Cylindrical ρ(rvϕ + r2Ωf ) ρvr ρvz
Spherical ρ(rvϕsinθ + r2sin2θΩf ) ρvr ρrvθ

During the transport step, the angular momentum is conserved to machine ac-

curacy and satisőes shock jump conditions, even in the presence of a rotating frame

and artiőcial viscosity. In addition, the code accurately captures the production of

vortensity when a ŕuid passes through a shock (Lin and Papaloizou, 2010). The

Courant-Friedrichs-Levy (CFL) condition, also known as the Courant condition,

imposes a limit on the integration time step (∆t) over which a full cycle of hydro-

dynamical sub-steps is performed to maintain stability. In simpler terms, it states

that information or changes in the system cannot propagate across more than one

cell per time step. Following Stone and Norman (1992), the maximum time step

allowed is,

∆t = Cmin

{(

∑

i

∆t−2

i

)−1/2}

. (3.24)

where, C is called the Courant number. Typically, the value of C is set to 0.44,

which is considered a favorable balance between computational speed and stability

when dealing with the test problems. Moreover, the different ∆t values are as-

sociated with distinct processes such as propagation of sound waves, ŕuid motion,

viscosity and resistivity. These processes individually impose limitations on the time

step. To address the issue of large nearly uniform azimuthal velocities limiting the

time step in the transport step, FARGO3D adopts an orbital advection technique.

This technique decomposes the azimuthal velocity into a large, uniform component

and a smaller residual component, operating within a nearly corotating frame for

each cell ring. The fractional uniform advection is then performed using Piecewise

Parabolic Advection, a higher-order interpolation method. Additionally, to enable

data synchronization and boundary conditions, an extra layer of ghost or buffer

zones is introduced outside the mesh. By utilizing the orbital advection algorithm,

which includes circular permutation of indices and conservative updates based on
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azimuthal ŕuxes, FARGO3D ensures the high-accuracy conservation of the őelds in

the simulation.

Additionally, the FARGO3D code is capable of simulating planetary systems by

incorporating point-like masses that interact with the surrounding gas. It employs

the őfth-order Cash-Karp method (Cash and Karp, 1990), a őxed time step Runge-

Kutta integration scheme based on the CFL condition. For planetary systems with-

out close encounters, the Cash-Karp method provides sufficient accuracy. However,

in cases where more precision is required, the code allows for sub-cycling the plane-

tary integration using an adaptive time step decoupled from the CFL condition. The

force exerted by the gas on the planets is calculated once per hydrodynamical time

step and is utilized to update the planetary velocities. The update of the planetary

positions and velocities occurs in cell 5a of Figure 3.2.

3.2 Initial conditions

To study the evolution of the gas and dust in circumprimary disk in the presence of

a secondary star, we conducted simulations using the new version of the FARGO3D

code (Benítez-Llambay et al., 2019). This code has been speciőcally designed to

handle the momentum transfer between the gas and each dust species individually,

while neglecting interactions among different dust species. Our focus lies in simulat-

ing the dynamics of gas and multiple dust species in the linear drag regime, where

the dominant drag mechanism is Epstein drag. The drag force experienced by each

dust species is given by,

Fdrag = −ρd
ΩK

τs
(vdust − vgas) , (3.25)

with ρd being the dust density, τs the Stokes number of the particle and ΩK the

Keplerian frequency of the gas molecules. The drag coefficient in the above equation

3.25 is included into τs. In order to incorporate the diffusion of the dust species

within the gas molecules, a new term is added to the continuity equation (Morőll

and Völk, 1984), as,

∂ρd
∂t

= ∇·
(

Dρ∇ρd
ρ

)

, (3.26)

where, ρ = ρd + ρg with ρg being the gas density and D the diffusion coefficient,

which is considered to be same for all dust species. The initial version of the code
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utilized constant values for Stokes numbers, represented as τs, in equation 3.26.

However, the code has been modiőed to enable the individual selection of the dust

species based on particle size, rather than relying on a őxed Stokes number.

3.2.1 The disk setup

For our simulations we constructed a standard reference model using the physi-

cal parameter of the γ Cephei system. We consider that there is no gravitational

feedback from the disk onto the stars and neglect the gravitational back-reaction

from the disks onto the binary stars. To model the circumprimary disk, we assume

that the entire system consisting of the main star, its surrounding disk, and the

secondary star is aligned in a single plane. Therefore, the code solves the hydro-

dynamical equations using polar coordinate system (r, ϕ) centered on the primary

star, with the disk residing in the z = 0 plane. Additionally, the orbit of the binary

is integrated with a őfth-order Runge-Kutta method.

The disk extends from 0.4 to 12 AU and is divided into a grid consisting of

512 elements in the radial direction and 1024 elements in the azimuthal direction,

resulting in a total of 524, 288 cells. We employ a power law: T ∝ r−1 to determine

the initial temperature distribution of the disk, which leads to a constant aspect

ratio (h) of 0.03. Similarly, for the initial surface density distribution of the gas

disk, we consider the power law:

Σ(r) = Σ0

(

r0
r

)

(3.27)

where, Σ0 = 760 g/cm2 is the gas surface density at r0 = 1 AU . In our simulation,

we include three separate groups of dust species with particle sizes of 100 µm, 1

mm, and 1 cm. Each of these dust species has an initial dust-to-gas mass ratio of

0.0033, so that the overall dust-to-gas mass ratio adds up to 0.01. In this model, we

adopt a constant value of kinematic viscosity, ν, to be 10−5. Finally, the physical

and numerical parameters of our model are summarized in Table 3.2.
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Table 3.2: Physical and numerical parameters of our model

Parameter Value
Mass of the primary star 1.3 M⊙

Mass of the secondary star 0.286 M⊙

Semi-major axis (a) 20 AU
Eccentricity (e) 0.4

Orbital period (P ) 78.85 yrs
α3 0.01

Aspect ratio (h) 0.03
Cylindrical mesh (Nr ×Nϕ) 512× 1024

Total number of time step (Ntot) 100000000
Time step length (∆t) 0.314159265359

Time step between output (Ninterm) 1000
Uniform kinematic viscosity (ν) 10−5

Damping Zone 1.15
Characteristic time for damping (τdamp) 0.3

Inner radius (Rin) 0.4 AU
Outer radius (Rout) 12.0 AU

Dust-to-gas mass ratio (ϵ) 0.0033

3α is a dimensionless quantity referred to as the Shakura-Sunyaev α parameter. It quantiőes
the effectiveness of turbulence-induced angular momentum transfer (Shakura and Sunyaev, 1973).
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Chapter 4

Results and Discussion

In this particular study, we delve into the intriguing evolution of gas and various

dust species (100µm, 1mm, and 1cm) within the circumprimary disk of the γ Cephei

system, with a focus on two distinct orbital conőgurations of the secondary star.

Firstly, we explore the highly perturbing conőguration when the secondary star

is at the pericenter, and secondly, we investigate the less perturbing conőguration

when it reaches the apocenter. In these two conőgurations, we investigate how the

surface density of the disk evolves with time and compute the mass accretion rate,

a critical parameter governing the evolution of the protoplanetary disk and planet

formation. To achieve this, we employ the FARGO3D code, as discussed in the

previous section 3.1, to conduct a detailed simulation (starting from 0 kyr to 108

kyr) using the parameters presented in Table 3.2. In this chapter, we present and

discuss the results obtained from these simulations.

4.1 Surface density evolution

We start by analysing the surface density evolution of three types of dust species

(100µm, 1mm, and 1cm) followed by the gas evolution as a function of radius and

time.

4.1.1 Dust and gas evolution

Figure 4.1 and 4.2 show the one-dimensional density proőles of the gas and dust

particles at different times, illustrating their variations depending on the orbital

conőguration of the secondary star.
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Figure 4.1: The őgure displays one-dimensional density proőle of gas and three
differently-sized dust particles at subsequent times when the secondary star passes
through the pericenter.

Figure 4.2: The őgure displays one-dimensional density proőle of gas and three
differently-sized dust particles at subsequent times when the secondary star reaches
the apocenter.
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In Figure 4.3 and 4.4, the two-dimensional density distribution of three different

dust species (100µm,1mm, 1cm) is presented at subsequent times, speciőcally during

the secondary star’s pericenter and apocenter passages, respectively.

Figure 4.3: The őgure illustrates two-dimensional density evolution of the three
differently-sized dust particles as a function of time and radius when the secondary
star passes through the pericenter. We note two distinct spiral arms induced due to
intense tidal forces from the secondary star.

Upon observing these őgures, a clear trend emerges: when the secondary com-

panion is at the pericenter, the protoplanetary disk is signiőcantly perturbed as it

experiences intense tidal forces. This perturbation gives rise to two prominent and

strong spiral arms within the disk structure. As time progresses and the secondary

star moves toward the apocenter, the tidal forces weaken, and the disk transitions

towards an axisymmetric conőguration, damping the spiral arms. Similar trend is

observed in the case of the evolution of the gas surface density. Figure 4.5 illus-

trates the two-dimensional density distribution of gas at different times when the

secondary companion passes through the pericenter and reaches the apocenter.

Another interesting thing to note is the presence of over-dense regions within

the spiral arms. Within these regions, dust particles have a higher probability of

colliding and sticking together due to their increased concentration. These collisions

facilitate coagulation, where smaller dust grains merge to form larger aggregates,
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Figure 4.4: The őgure illustrates two-dimensional density evolution of the three
differently-sized dust particles as a function of time and radius when the secondary
star reaches the apocenter. We notice that the spiral arms observed during the
pericenter passage of the secondary star dampens out, creating an axisymmetric
structure.

creating a favorable environment for the process of accelerated dust growth into

larger bodies such as pebbles and planetesimals.
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Figure 4.5: The őgure shows two-dimensional density evolution of the gas as a
function of time and radius when the secondary star passes through the pericenter
(P) and reaches the apocenter (A).
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4.2 Mass-accretion rate onto the star

While computing the mass accretion rate onto the primary star, we only consider

the disk from 2 to 7 AU to be reliable. Within 2 AU, there is the formation of the

so-called elliptical hole when simulating binaries. In particular, when gas particles

in a disk are on elliptic orbits and pass through the pericenter, they may also cross

the inner edge of the grid and become lost. This process leads to the formation of

a central elliptic region of low density (Marzari et al., 2009). In addition, we only

take into account the gas distribution when considering the mass-accretion rate, as

the mass of the gas is 100 times that of the dust particles.

Figure 4.6 and 4.7 present the mass-accretion rate onto the primary star at dif-

ferent times when the secondary star is at the pericenter and apocenter, respectively.

The left panel of both őgures shows the incoming mass (blue line) and the outgoing

mass (red line) moving toward and away from the primary star, respectively. The

right panel portrays the total mass-accretion rate on the star (green line), depending

on the orbital conőguration of the secondary star.

Figure 4.6: Left panel: The őgure displays the mass-accretion rate towards (blue
line) and away (red line) from the primary star at the secondary star’s pericenter
passage. Right panel: The őgure illustrates the net mass-accretion rate onto the
primary star at the pericenter.
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Figure 4.7: Left panel: The őgure displays the mass-accretion rate towards (blue
line) and away (red line) from the primary star at the secondary star’s apocenter
passage. Right panel: It illustrates the net mass-accretion rate onto the primary
star at the apocenter.

We obtain the total mass-accretion rate to be 1.224 × 10−6 Msun/yr at 79kyr

and 9.231 × 10−7 Msun/yr at 104kyr when the secondary star passes through the

pericenter. Additionally, when the star reaches the apocenter, we obtain the total

mass-accretion rate to be −1.408×10−7 Msun/yr at 81kyr and 1.729×10−7 Msun/yr

at 106kyr.

Furthermore, we can notice from the Figure 4.6 that when the secondary star

passes through the pericenter, the total mass-accretion rate increases at around 4.5

to 5.5 AU. This clearly indicates that the mass is dragged away by the spiral waves

(see Figure 4.5). And, when the secondary star is at the apocenter, the viscous mass

accretion dominates, leading mass to the primary star.

Moreover, the drag forces from the spiral waves could be strong enough to open

a gap in the disk at the pericenter, which, in turn, can signiőcantly affect the disk’s

dynamics. Additionally, these spiral waves could possibly redistribute the material

in the disk, moving it from the inner to the outer regions. This redistribution has

the potential to alter the distribution of material available for planet formation

and, consequently, inŕuence the formation and evolution of planets. Furthermore,

the viscous mass accretion that dominates at the apocenter has the potential to
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generate radiation that heats and ionizes the disk, leading to photoevaporation and

mass loss. The combination of the drag forces from spiral waves at the pericenter

and viscous accretion dominating at the apocenter can also lead to disk truncation,

leaving less material for planets to form.

However, we need to carry out further detailed simulations and observations

to fully comprehend the impact of these effects on circumprimary disks and planet

formation in close binaries.

4.2.1 Weighted mass-accretion rate

We also performed calculations involving the mass-accretion rate, considering the

mass of the local ring, to gain valuable insights into the speciőc region of the circum-

primary disk. This rate refers to the rate at which material accumulates or accretes

onto a particular region or ring within the larger system, while taking into account

the mass distribution within that ring. Moreover, protoplanetary disks often dis-

play intricate structures like gaps and rings, leading to variations in the accretion

process at different radial distances. By incorporating the mass of the local ring,

the mass-accretion rate allows us to resolve such variations, where the accretion rate

may be either higher or lower than the global disk average rate, facilitating a more

detailed and localized analysis of the accretion process.

Figure 4.8 shows the mass-accretion rate weighted with the mass of the local

ring at different times, both when the secondary star is at the pericenter and when

it reaches the apocenter, respectively. In Figure 4.8, we can observe negative values

dominating for weighted mass-accretion rate at around 4.5 to 5.5 AU during the

secondary star’s pericenter passage. This indicates that material is getting accreted

onto a local ring at around 4.5 to 5.5 AU. This clearly agrees with the trend observed

in the case of the total mass-accretion rate at both the pericenter and apocenter

passage of secondary star.
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Figure 4.8: The őgure illustrates the mass accretion rate weighted with the mass
of the local ring as a function of time and radius at the secondary star’s pericenter
passage (left column) and apocenter passage (right column).
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Chapter 5

Conclusion and Outlook

Despite the detection of dozen of planets in close binaries, how did those planets form

in such close proximity is still an open question to discuss. The planet formation

process in binaries is believed to occur in series of complex stages, each of these

stages can be altered differently by the presence of the secondary star.

Our research presents a signiőcant advancement in the understanding of early

stage planet formation within the circumprimary disk of close binaries. Through

comprehensive hydrodynamical simulations, we have identiőed crucial patterns in

the evolution of the disk dynamics, driven by the presence of the secondary star.

At the pericenter of the secondary star, intense tidal forces induce notable pertur-

bations, resulting in the emergence of two distinct and strong spiral waves within

the disk. As the secondary star proceeds towards the apocenter, the diminishing

tidal effects prompt the disk to transition into an axisymmetric state, causing the

gradual damping of the spiral arms.

Of particular importance is the observed over-dense regions within the spiral

arms formed during the pericenter passage. This enhanced concentration of dust

particles fosters their collisions and cohesion, promoting coagulation of smaller grains

into larger aggregates. This process provides favorable environment for the acceler-

ated dust growth, eventually leading to the formation of pebbles and planetesimals.

Moreover, we obtained the total mass-accretion rate to be 1.224×10−6 Msun/yr

at 79kyr and 9.231×10−7 Msun/yr at 104kyr when the secondary star passes through

the pericenter and at the apocenter, we obtained the total mass-accretion rate to be

−1.408× 10−7 Msun/yr at 81kyr and 1.729× 10−7 Msun/yr at 106kyr.

Notably, our analysis of the mass-accretion rate onto the primary star reveals

intriguing insights into mass transfer mechanisms. During the secondary star’s peri-

center passage, the spiral waves efficiently drag mass away from the disk, resulting
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in mass loss. Conversely, during the apocenter passage, viscous mass accretion dom-

inates, driving mass onto the primary star. Remarkably, these accretion patterns

align closely with regions where spiral waves are observed, indicating a clear corre-

lation between disk perturbations and mass accretion.

Our research signiőcantly contributes to the broader understanding of planet

formation in binary star systems. The intricate interplay between stellar companions

and circumprimary disks during the early stages of planet formation emerges as a

critical factor in shaping planetary architectures. These őndings provide valuable

insights into the complexities of planetary system evolution and pave the way for

further exploration and reőnement of theoretical models.

In summary, our investigation sheds light on the intriguing interactions between

binary systems and the planet formation process. By uncovering the mechanisms

that govern this interplay, our research contributes to the ongoing quest for a deeper

understanding of planetary system formation across the cosmos.
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