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Sommario

L’obiettivo del progetto è realizzare un emulatore di guida avversario da inserire in un conte-

sto di simulatori di guida, ovvero costruire uno strumento che basato su un Controllore Predittivo

per Modelli Non lineari (NMPC) renda possibile l’interazione tra un veicolo avversario e un

veicolo pilotato da un umano. A tal proposito inizialmente sarà considerato un singolo veicolo

virtuale sul tracciato per verificare la miglior configurazione del controllore.

Successivamente due veicoli saranno pilotati dallo stesso controllore in un contesto simulato.

In questo caso il modello interno del controllore comprenderà entrambi i veicoli, allo scopo di

predire anche il comportamento del veicolo umano in caso di sorpasso. Infatti la gestione del

sorpasso si rivelerà un fattore importante per descrivere la relazione tra i due veicoli.

In seguito un veicolo sarà controllato dal driver virtuale e l’altro avrà una traiettoria fissa prede-

terminata. Questa simulazione avrà come scopo quello di verificare la risposta del controllore

al comportamento inatteso del secondo veicolo.

Per concludere il controllore che realizza questo obbiettivo dovrà tenere conto di una configura-

zione variabile. Infatti la forma del tracciato e le condizioni iniziali dei due veicoli risulteranno

dei fattori determinanti per la loro interazione e la gestione del sorpasso su pista.
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Abstract

The goal of the project is to realize an adversarial driving emulator in a driving simulator

context. That is to build a tool that based on a Nonlinear Model Predictive Controller (NMPC)

makes possible the interaction between an adversarial vehicle and a human-driven vehicle. For

this purpose, initially a single virtual vehicle on the track will be considered to test the best

controller configuration.

Subsequently, two vehicles will be driven by the same controller in a simulated context. In

this case, the internal model of the controller includes both vehicles in order to also predict the

behaviour of the human vehicle in case of overtaking. In fact, the overtaking management will

prove to be an important factor in describing the relationship between the two vehicles.

Thereafter, one vehicle will be controlled by the virtual driver and the other will have a fixed

predetermined trajectory. This simulation will aim to verify the controller’s response to the

unexpected behaviour of the second vehicle.

To conclude, the controller that realizes this goal will have to take into account a variable

configuration. In fact, the shape of the track and the initial conditions for the two vehicles will

turn out to be determining factors for their interaction and the overtaking management on the

track.
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Chapter 1

Introduction

In recent years, ADAS (Various Advanced Driver Assistance Systems) were introduced in

commercial vehicles to manage simple driving tasks such as last-second crash prevention, semi-

autonomous parking and autonomous cruise control. However, more challenging situations

require more sophisticated control algorithms [21],[22]. In particular, for autonomous racing

applications Model Predictive Control (MPC) has been shown to be a reliable and efficient con-

trol technique for self-driving ground vehicles. In fact, MPC is able to handle a multi-variable

input-output systems (MIMO) subjected to physical and safety constraints and to states and

inputs constraints. [18]. The key feature of MPC is to determine a control sequence at the initial

time in order to optimize a cost function which represents the future behavior of the process to

be controlled over a prediction horizon. Then, the entire optimization procedure is repeated for

the next sampling istant [4].

Several implementations of the MPC and Nonlinear Model Predictive Controller (NMPC) tech-

niques can be found in the literature for autonomous driving applications. For example, [21]

developed a control system based on the NMPC formulation that aimed to achieve minimum-

time driving for a race car respecting boundaries of the track.

Another application of NMPC is related to an autonomous vehicle system subjected to wind

gusts and presented in [14]. In this case, a NMPC has been designed to stabilize the vehicle

along a double lane change maneuver. In addiction, the controller was able to stabilize the

vehicle up to wind gusts speed of 10</B.

Another NMPC implementation could be found in [3]. In this case, the controller was able to

drive an autonomous ground vehicle, which was successful on tracking the lane centerline while

avoiding obstacles collisions.

A NMPC based virtual driver has been proposed in [2], aiming at controlling a vehicle with

high performance driving. In particular, the autonomous vehicle driven by NMPC proved to be

effective for severe stability test at high velocity.

[17] describes a different autonomous driving scenario for race cars that is based on two different

control formulations. The first controller was called HRHC (Hierarchical Receding Horizon

Controller). It employed a two-level structure, consisting of a path planner and a nonlinear

model predictive controller (NMPC) for tracking. The second controller was MPCC (Model
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Predictive Contouring Controller), which combined both tasks in one nonlinear optimization

problem (NLP) following the ideas of contouring control. Both the two strategies were adopted

for the purpose of static obstacle avoidance, and the retrived results were compared. In particu-

lar, HRHC was not able to directly plan a path around all obstacles from the beginning. Thus, it

avoided the first three cars, without predicting how to overtake the next two cars. On the other

hand, MPCC planned the path around all obstacles before it even reached the first car due to its

long prediction horizon.

The objective of this thesis concerns the development of a control system based on a Nonlin-

ear Model Predictive Controller (NMPC) capable of behaving like an adversary in a simulated

driving context. More specifically, the controller’s task will be to manage a fully autonomous

virtual vehicle interacting with a human-driven vehicle over a simulated race scenario.

This project differs from the last exposed applications since two virtual vehicles will compete

each other in a race contest. Therefore, the obstacle is moving from the perspective of the faster

vehicle that has to surpass. This last will be called user vehicle, the other one will be named as

adversarial vehicle, which is the one that must deviate when overtaking occurs.

At the preliminary stage, it will be necessary that the controller is able to control a single vehicle

in an autonomous racing scenario. Next, this control system will be configured to drive simul-

taneously a pair of vehicles competing on the track. The final step will be to test the behaviour

of the NMPC system even in the case where user vehicle is not actually controlled by NMPC.

In fact, it has completely independent dynamics of those predicted by the NMPC controller.

The last scenario will show that the controller is able to react differently through the fully au-

tonomous vehicle (adversarial vehicle) depending on whether the vehicle with fixed dynamics

is perceived by the system. In a future perspective, and by taking into account the limitations

that will emerge, it will be possible to implement such a tool in a driving simulator in which

the NMPC controller can behave as an adversary with respect to a vehicle driven by a real person.

The structure of this thesis is the following:

• Chapter 2 introduces the model of the plant to be controlled. In other words, the vehicle

dynamics are defined for a bicycle model.

• Chapter 3 deals with the Nonlinear Model Predictive Controller (NMPC) adopted for this

project and implemented through MATMPC toolbox. In particular, the model dynamics

are taken into account in the Non Linear Programming Problem, which is solved by

NMPC.

• Chapter 4 defines the optimization problem arised from the previous Chapter. That is the

two vehicles problem, which is formulated by considering the system dynamics, the cost

function and particular inequality/equality constraints of the system.

• Chapter 5 presents single vehicle simulations over the entire Paul Ricard circuit. The re-

sults will be evaluated according to three different reference strategies. Then, a benchmark
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for the controller configuration will be retrived.

• Chapter 6 deals with manegement of two vehicles in the same driving simulation. The

problem will require to change the controller configuration because it depends on the

shape of the track and the initial vehicle conditions. Consequently, the problem will be

studied in different sections of the track, also altering the initial state of the system. In

particular, Paired departure and Delayed departure tests will be carried out on single

curves.

• Chapter 7 illustrates two vehicles simulations under framework of user vehicle fixed

trajectory. In other words, the fastest vehicle will have a fixed trajectory while the other

one is still actually driven by the controller. In this perspective, the previous simulations

will be repeated aiming to verify the controller’s response to the unexpected behaviour of

user vehicle.

• Chapter 8 describes the final results retrived from the entire thesis and possible future

developments.
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Chapter 2

Bicycle model

The vehicle model is very important since it is the plant controlled by a Nonlinear Model

Predictive Controller.

This Chapter discusses the reasons behind such model choice. Furthermore, the bicycle model

dynamics will be defined after listing all the work assumptions. Then, a spatial reformulation

of the state space model will be taken into account.

This model will be modified a bit in Chapter 4 since two vehicles will be considered.

2.1 Introduction and model choice

In literature many vehicle models can be found. There exists models that have 14 Degrees of

freedom (Dof) [11], [24]. 6 Dof are related to lateral, longitudinal and vertical motion along G,

H and I direction with roll, pitch and yaw angles. Then, 8 Dof are given by each wheel rotation

and vertical movement. These models are very complex and they take into account several

factors like load transfer, vertical dynamics, tire suspensions and each single wheel behaviour.

Instead, a simpler model can be the four wheels vehicles [13], [10] which considers 3 Dof for

CG (longitudinal, lateral and rotational movement around I axis) and 1 Dof for each wheel. In

any case, the simplest one is the bicycle model [22].

In particular, for this project a 3 Dof dynamic bicycle model is considered, instead of a

kinematic bicycle one. In fact, a kinematic bicycle model does not take into account the dynamics

and actual lateral forces affecting the vehicle [15]. For this reason, the wheels velocities are

directed exactly along their direction 1.

At high speeds, the assumption that the force vector of each wheel is in the direction of the

wheel is no longer valid. As a consequence, a dynamic bicycle model results more suitable for

the purpose of this thesis.

An important observation has to be clarified. In particular, it is considered a Nonlinear

bicycle model referred to a car and not to a motorcycle. In fact, the two left and right front

wheels of the car are represented by one single wheel at point A [19]. Similarly, the rear wheels

1This semplified model is suitable for urban driving applications like "stop-and-go" scenario [15]
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Figure 2.1: Bicycle model scheme

of the car are represented by one central rear wheel at point B (figure 2.1).

It is also possible to observe the steering angles for the front and rear wheels in the same image.

They are represented by X 5 and XA . Moreover, it is assumed that only the front wheel can turn

so that XA = 0◦.

Let the point C be the Center of Gravity (CG), then the distances from CG to the front and rear

axles are called 0 and 1.

The lateral distance of the car (defined as 2) is not considered for the dynamics of the model

even though this term will be important to define the lateral minimum distance between two

vehicles in Chapter 4.

Addictional assumptions have to be exposed before introducing the model dynamics. In partic-

ular, the cornering forces generated by the tires are taken into account with aerodynamic effects.

Instead, the load transfer, pitching and rolling effects and also the suspension system are not

assumed.

To conclude, a trade-off between accuracy of the model and computational complexity has to

be made [18]. In fact, on one hand assuming a more realistic model is good to get an accurate

prediction trajectory, but on the other hand a sufficiently small computational burden is required

to achieve a real-time feasibility.

2.2 Model dynamics

The vehicle has a planar motion so that three coordinates are necessary to describe the pose of

the vehicle CG with respect to the Absolute reference frame: [- . k]) . [- . ]) describes the

position of the car CG while the yaw angle k is related to its orientation.

[G H]) is assumed as the body frame coordinates attached to the bicycle CG, then it can be

applied the Newton’s second law for the motion along H axis:

< 0H = �H 5 + �HA (2.1)

where 0H is the inertial acceleration along the H axis, and �H 5 , �HA are the lateral forces in
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the vehicle frame of the front and rear wheel. Addictionally, two acceleration terms contribute

the overall acceleration 0H. Namely, the centripetal acceleration and the linear one along the

H axis so that: 0H = ¥H + ¤G ¤k. By substituting this relation in the previous equation, it can be

obtained the following relation:

< ¥H = −< ¤G ¤k + �H 5 + �HA (2.2)

Similar considerations for the G axis can be made to get the acceleration expression. However,

due to the fact that both 0G and X 5 will be the inputs of the system2, then the resulting motion

along the G axis is given by:

< ¥G = < ¤H ¤k + �G 5 + < 0G − �
3
G (2.3)

In particular, �GA is not considered since 0G is the control input of the longitudinal acceler-

ation. Instead, the centripetal acceleration term has an opposite sign with respect to eq (2.2).

Moreover from [12], the drag force depends on the frontal surface area of the car, the air density

and the drag coefficients according to the following expression:

�3G =
d

2
�3;>=6 �3;>=6 ¤G2 (2.4)

Concerning to the angular acceleraton, it can be applied the Principle of conservation of

angular momentum:

�I ¥k = 0 �H 5 − 1 �HA (2.5)

By expressing all the previous equations with respect to the linear and angular accelerations,

the continuous time bicycle model, which describes the planar motion, can be retrived:

¥G = ¤H ¤k −
�3G

<
+

1

<
�G 5 + 0G

¥H = −¤G ¤k +
1

<
(�H 5 + �HA)

¥k =
1

�I
(0 �H 5 − 1 �HA)

(2.6)

Taking into account figure 2.2, the forces of each wheel in vehicle frame are:




�G 5 = −2 �2 5 B8=(X 5 )

�H 5 = 2 �2 5 2>B(X 5 )

�HA = 2 �2A

(2.7)

From eq (2.7), the forces consider a factor of 2. This is the consequence given by the fact

that the two frontal wheels of the car are merged in just one single frontal wheel, and the same

happens for the rear wheel (Sec 2.1). Moreover, in eq (2.7), the second input of the system is

2In Chapter 4 the 1BC order derivatives of both 0G and X 5 will be considered as control inputs.
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Figure 2.2: Longitudinal and lateral forces applied to the wheels

present. It is the steering angle X 5 of the frontal wheel (the only one that can turn).

Another important observation is that only the lateral forces of the tires �28 are considered.

However, instead of computing them through the nonlinear Pacejka tire model (and a possible

implementation is available in [16]), they are obtained through the following relation:

�28 = −�U8U8 ∀8 = 5 , A (2.8)

where �U8 are the cornering stiffness coefficients which represent the slopes around the origins

of the Pacejka functions. In fact, as reported in [20], they are evaluated as:



�U8 = �� �

� =
 HU

� �+b

(2.9)

In which it is possible to observe that � is the stiffness factor, C is the shape factor and D is the

peak factor. In any case, the cornering stiffness coefficients can be approximated as: �U8 ≃  HU .

Besides, the side slip angles of the wheels U8 are computed by the following equations:

EG 5 = ¤G

EH 5 = ¤H + 0 ¤k

EGA = ¤G

EHA = ¤H − 1 ¤k

U 5 = 0C0=2 (EH 5 2>B(X 5 ) − EG 5 B8=(X 5 ), EH 5 B8=(X 5 ) + EG 5 2>B(X 5 ))

UA = 0C0=2 (EHA , EGA )

(2.10)

To be precise, the cornering forces are proportional to the slip angles U8 if they are small.

So that eq (2.8) is valid only in this case. In general, as said in [23], a sigmoid function can

approximate the cornering forces computed by the Pacejka tire model. This is done because
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Pacejka tire model considers several parameters. In particular, the lateral forces on the wheels

are described by eq (2.11).

5H
B0C
8

= � +
 − �

1 + 4G?(−��28)
∀8 = 5 , A (2.11)

where � is the lower asyptote,  is the upper asyptote and � is the growth rate.

In this way, the logistic functions result very similar to those of Pacejka model (figure 2.3). In

particular, there are three distinct phases: linear, transient and saturation. In the linear phase,

the lateral friction forces are linearly dependent on the slip angles. This occurs for sideslip

angle values less than 4◦. In the next phase, the transient function is non linear and the forces

reach their maximum values. The maximum lateral forces are between the static tire forces:

[−` �I; +` �I]. The last phase is a saturation phase, in which the cornering forces do not

grow.
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Figure 2.3: Cornering forces modeled by logistic functions w.r.t. Pacejka model ones

To conclude, the dynamics of the bicycle model are computed as:

¥k =
2

�I
(0 �2 5 2>B(X 5 ) − 1 �2A )

¥H = −¤G ¤k +
2

<
(�2 5 2>B(X 5 ) + �2A )

¥G = ¤H ¤k −
�3

<
+

2

<
(−�2 5 B8=(X 5 )) + 0G

(2.12)

Table 2.1 illustrates some parameters about the model.
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Parameter Value

a 1.5064 [<]

b 1.2336 [<]

c 0.8422 [<]

m 1.5543 · 103 [:6]

�I 2.1994 · 103 [:6 · <2]

Table 2.1: Model parameters

2.3 Spatial reformulation of the system dynamics

As reported in [18], it is possible to allow the controller some freedom to choose the maximum

speed. Therefore, a spatial reformulation is adopted for the system dynamics. In other words, eq

(2.12), which describes the center of mass motion, will no longer depend on the time variable

but by the arc lenght B. This quantity describes the relation between the actual pose of the

vehicle CG: [-.k]) and its projection along the reference cuve f: [-B.BkB]
) . This concept is

represented in figure 2.4.

Figure 2.4: Spatial reformulation for bicycle model

In this way the tracking errors of the vehicle with respect to the reference are defined as:




4k = k − kB

4H = ±



- − -B

. − .B




2

(2.13)

These errors are referred to the vehicle direction and the lateral distance with respect to the

road reference. In particular, if 4H > 0 then the car is on the left side otherwise it is on the right.
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Moreover, by taking into account the previous figure, the speed along the reference trajectory is

computed as:

¤B =
3B

3C
= d ¤kB =

d EB

d − 4H
(2.14)

where EB = ¤G 2>B(4k) − ¤H B8=(4k) and the curvature is defined as: : = d−1. Thus, the dynamics

of eq (2.13) are computed as:



¤4k = ¤k − : ¤B

¤4H = ¤G B8=(4k) + ¤H 2>B(4k)
(2.15)

Drawing inspiration from the procedure developed in [18], [6], [2], it is possible to express

the vehicle dynamics with respect to a space formulation instead of a time one. Considering as

state vector b = [ ¤G ¤H ¤k ¤4k ¤4H]
) , then its derivative with respect to the arc length B is obtained by

using the chain rule:

b′ =
3b

3B
=
3b

3C

3C

3B
=
3b

3C

1

¤B
=

¤b

¤B
(2.16)
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Chapter 3

NMPC implemented in MATMPC toolbox

In this Chapter the fast Nonlinear Model Predictive Controller (NMPC) adopted for this project

will be described. It was developed and well presented in Yutao Chen Ph.D. thesis [4]. Addic-

tionally NMPC was realized in Matlab language, resulting in MATMPC open source toolbox

which is available at [5]. Moreover, it is designed to facilitate modelling controller design and

simulation for a wide class of NMPC applications [6].

The following sections will deal with the Non Linear Optimization Problem (NLP) which is

solved by this controller. Then, NLP will be formulated starting from a parametrization of

the Optimal Control Problem (OCP) and a 1BC order necessary condition of optimality will be

exposed.

To solve NLP, a Sequential Quadratic Programming (SQP) algorithm will be described. It con-

sists to solve a series of Quadratic Programming Problems (QPs). In fact, QP will be obtained

from a local quadratic approximation of NLP. Hence, QP can be solved iteratively (according to

SQP algorithm) or through a Real-Time iteration scheme. Its solutions will be used to update

those of NLP, according to a globalization strategy.

3.1 Nonlinear Model Predictive Control

A breaf introduction to Model Predictive Control (MPC) is presented in this section since a fast

Nonlinear Model Predictive Controller (NMPC) is implemented in this project.

As cited in [4]: ”MPC is an advanced computer control algorithm that exploits process models

and constraints with the power of optimization. The key feature of MPC is to determine a control

sequence at time C0 in order to optimize a cost function representing the future behavior of the

controlled process over a prediction horizon [C0, C 5 ]. However, only the first control input is

forwarded to the plant and the optimization procedure is repeated at the next sampling instant.

As a result, MPC refers to a control strategy that solves a sequence of optimization problems

on-online (when system is running), with respect to the latest state measurement of the plant”.

Thus MPC, as reported in [1], also refered to as moving horizon control. In fact, the first part of

the input signal is implemented untill new measurements become available. Based on the new

information, the OCP is solved again and the whole procedure is repeated.
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NMPC refers to MPC exploiting nonlinear plant models. In fact, by capturing the nonlinear

behaviours of plants, NMPC can ensure better control performance. However, the main issue

consists in solving the optimization problems within a real-time restriction. This is due to the

fact that it is very hard to solve at each sampling istant, a Nonlinear Optimal Control Problem

(OCP) respecting states, controls and safety constraints.

Figure 3.1 shows the building blocks of MPC.

Figure 3.1: A building block of MPC

Some key characteristics and properties of NMPC could be exposed:

• NMPC allows the direct use of nonlinear state space models for prediction.

• NMPC allows the explicit consideration of state and input constraints.

• In NMPC a specified performance criteria is minimized on-line.

• In NMPC the predicted behaviour is in general different from the closed loop one.

• For several NMPC applications, real-time feasibility is necessary.

• To perform the prediction, the system states must be measured or estimated.

3.2 From OCP to NLP

The Nonlinear Programming Problem (NLP), which is solved by NMPC, comes from a dis-

cretization of the Optimal Control Problem (OCP).

Considering a non linear plant referred to the 1BC order system of Ordinary Differential Equations

(ODE):

¤G(C) = 5 (C, G(C), D(C); ?) (3.1)

where G ∈ R=G , D ∈ R=D and ? ∈ R=? are rispectively the plant states, controls and parameter

variables. Then, starting with an initial condition G(0) = Ĝ0 and given a control trajectory D(C),

eq (3.1) is an Initial Value Problem (IVP). Moreover the existence of an unique solution G(C)
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over the time interval C ∈ [C0, C 5 ] is guaranteed by the Picard’s Existence theorem 1.

NMPC requires to solve an Optimal Control Problem (OCP) at each sampling istant, taking

also into account the dynamics of the nonlinear plant (3.1). Therefore lets define the OCP

problem as:

min
G(C),D(C)

∫ C 5

C0

q(C, G(C), D(C); ?) 3C +Φ(G(C 5 ))

B.C. G(C0) = Ĝ0,

¤G(C) = 5 (C, G(C), D(C); ?), ∀C ∈ [C0, C 5 ],

A (G(C), D(C); ?) ≤ 0, ∀C ∈ [C0, C 5 ],

; (G(C 5 )) ≤ 0

(3.2)

where q and Φ are the optimization objectives. A is the path constraint which includes also states

and inputs constraints while ; refers to the boundary conditions.

To summarize, given an initial state measurement Ĝ0, then an optimal solution trajectory

(G>?C (C), D>?C (C)) (defined in the prediction horizon [C0, C 5 ]) could be computed by solving

OCP (3.2).

In order to solve OCP (3.2), many kind of methods can be applied. Essentially there exist

three bigger families: Dynamic Programming, Indirect methods and Direct methods. The last

ones are widely used in Non Linear Model Predictive Control (NMPC) applications even though

they require to satisfy the 1BC order necessary condition of optimality for OCP. This condition

will be exposed in Sec 3.3.

MATMPC toolbox adopts a Direct method which consists to perform a finite dimensional

parametrization of the continuous time OCP (3.2). To achieve this feature, Multiple shooting

technique is implented in order to obtain a discretization version of the OCP, which is called

Non Linear Programming Problem (NLP). So that the NLP can be solved by state of art numeric

solvers.

The Multiple shooting approach consists to divide the time interval [C0, C 5 ] into N intervals

[C: , C:+1] ∀: = 0, 1..., # − 1 in such a way the control trajectory is parametrized through a piece

wise costant representation:

D(C) = D: ∀C ∈ [C: , C:+1] (3.3)

Instead the states are evaluated on the time grid points C: as:

G: (C: ) = G: ∀: = 0, 1..., # − 1 (3.4)

Moreover G: is called shooting point and it is the initial condition for the next Initial Value

Problem (IVP) of type:

1if 5 (C, G(C), D(C)) is lipschitz continuous in G(C), D(C) and continuous in C then ∃ an unic solution of the IVP
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¤G: (C) = 5 (C, G: (C), D: (C); ?), G: (C: ) = G: ∀C ∈ [C: , C:+1] (3.5)

So that the dynamic constraint of the OCP becomes:

G:+1 = Ξ: (C: , G: , D: ; ?) ∀: = 0, 1..., # − 1 (3.6)

Where Ξ: is the integration operator that solves the IVP (3.5) and returns the solution at the

next grid point C:+1.

Also the path constraint is parametrized on the discrete time points as:

A (G: , D: ; ?) ≤ 0 ∀: = 0, 1..., # − 1 (3.7)

While the optimization objective of the OCP could be approximated using a discrete sum:

#−1∑
:=0

∫ C:+1

C:

q(C: , G: , D: ; ?) 3C +Φ(G# ) ≈

#−1∑
:=0

q(C: , G: , D: ; ?) +Φ(G# ) (3.8)

In particular, MATMPC considers a cost function which is defined by a linear sum of

quadratic terms:

1

2

#−1∑
:=0

| |ℎ(G: , D: ) − ℎ
:
A4 5 | |

2
,:

+
1

2
| |ℎ# (G# ) − ℎ

#
A4 5 | |

2
,#

(3.9)

Finally, given the previous parametrizations for states, controls, equality and inequality

constraints, then the Non Linear Programming Problem (NLP) is formulated:

min
G: ,D:

1

2

#−1∑
:=0

| |ℎ(G: , D: ) − ℎ
:
A4 5 | |

2
,:

+
1

2
| |ℎ# (G# ) − ℎ

#
A4 5 | |

2
,#

B.C. G0 = Ĝ0,

G:+1 = Ξ: (C: , G: , D: ; ?), ∀: = 0, 1, . . . , # − 1,

A (G: , D: ; ?) ≤ 0 ∀: = 0, 1, . . . , # − 1,

; (G# ) ≤ 0

(3.10)

where

x =
[
G⊤

0
, G⊤

1
, . . . , G⊤#

]⊤
,

u =
[
D⊤

0
, D⊤

1
, . . . , D⊤#−1

]⊤ (3.11)

are the discrete states and controls variables. While ℎ and ℎ# are the objective functions whose

definition will be discussed in Chapter 4.
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3.3 Optimality Condition and NLP features

For completeness, the Karush-Kuhn-Tucker (KKT) 1BC order necessary condition for optimality

of NLP (3.10) have to be expressed. This is quite important since an optimality check of the

retrived solution is required for Sequential Quadratic Programming (SQP) algorithm.

As said by Yutao Chen Ph.D. thesis (see [4], pp. 18-19), it is considered the following compact

formulation of the NLP (3.10):

min
I
0(I)

B.C. 1(I) = 0

2(I) ≤ 0

(3.12)

where I =
[
I⊤

0
, I⊤

1
, . . . , I⊤

#−1
, G⊤
#

]⊤
∈ R=I with I: =

[
G⊤
:
, D⊤

:

]⊤
∈ R=G+=D ∀: = 0, 1..., # − 1.

Instead the equality and the inequality constraints take the form:

1(I) =



Ĝ0 − G0

Ξ0(C0, G0, D0; ?) − G1

. . .

Ξ#−1(C#−1, G#−1, D#−1; ?) − G#



∈ R=1 2(I) =



A (G0, D0; ?)

. . .

A (G#−1, D#−1; ?)

; (G# )



∈ R=2 (3.13)

Assuming I∗ ∈ R=I be a local minimizer of (3.12), there exist KKT multipliers _∗ ∈ R=1 ,

`∗ ∈ R=2 corresponding to the constraints 1(I) = 0 and 2(I) ≤ 0 respectively, such that the

following conditions are satisfied:

1. Stationarity condition: ∇IL(I∗, _∗, `∗) = ∇I0(I
∗) + ∇I1(I

∗)⊤_∗ + ∇I2(I
∗)⊤`∗ = 0

2. Primal feasibility: 1(I∗) = 0 and 2(I∗) ≤ 0

3. Dual feasibility: `∗ ≥ 0

4. Complementary slackness: `∗
:
2: (I

∗) = 0 ∀: = 0, 1, . . . , =2

The optimal primal and dual solution is the KKT point: H∗ =
[
I∗⊤, _∗⊤, `∗⊤

]⊤
.

In MATMPC, it is exploited the boundaries function ; and the path constraint A, in such away

it is more clear the boundary conditions both for states and controls. Meaning that NLP (3.10)

is rewritten as:
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min
G: ,D:

1

2

#−1∑
:=0

3: (ℎ(G: , D: ) − ℎ
:
A4 5 ),:

+
1

2
3# (ℎ# (G# ) − ℎ

#
A4 5 ),#

B.C. 0 = G0 − Ĝ0,

0 = G:+1 − Ξ: (G: , D: ), : = 0, 1, . . . , # − 1,

G: ≤ G: ≤ G: , : = 0, 1, . . . , #,

D: ≤ D: ≤ D: , : = 0, 1, . . . , # − 1,

A : ≤ A: (G: , D: ) ≤ A : , : = 0, 1, . . . , # − 1,

A# ≤ A# (G# ) ≤ A# ,

(3.14)

where ℎ : R=G × R=D → R=H , ℎ# : R=G → R=H# are vector functions of state and control (G, D),

with corresponding references ℎ:
A4 5

and ℎ#
A4 5

. Note that ℎ, ℎ# can be nonlinear and nonconvex.

The outer objective functions 3 : R=H → R, 3# : R=H# → R are assumed convex, e.g. linear

sum or quadratic. ,: ,,# are weights for each term in 3 for stage : . Ĝ0 is the measurement of

the current state. The function A (G: , D: ) : R=G × R=D → R=2 and A# (G# ) : R=G → R=2# can be

linear or nonlinear, with lower and upper bound A : , A : . Ξ: (G: , D: ), as said before, solves IVP

(3.5) and returns the next grid point.

The formulation of NLP (3.14) presents the following features:

• An initial guess is required to solve NLP (3.10) over the entire prediction horizon [C0, C 5 ].

• The resulting NLP is numerically stable even if the model dynamics (3.1) is unstable as

proved in [4], pp.62-65.

• There exist many types of software which solves both the IVP (3.6) and the subproblems

araised from NLP (3.10) (in fact, NLP is usually reformulated as a Quadratic Problem). In

particular, for this project, a numeric integrator called Runge Kutta of 4Cℎ order is adopted

(whose implementation is discussed in [4], p.103) to solve (3.6). Concerning to (3.10),

MATMPC toolbox considers two possible approaches. The first one is the SQP algorithm

while the second one consits in RTI scheme. Both them will be presented in Sec 3.4.

• Since MATMPC realizes this NMPC controller, there is no need to redesign it. Moreover

it can be used for controlling different kind of plants depending on the application.

For this project, the automotive application is related to develop a NMPC based adversarial

driver for driving simulators. Additional details for this problem formulation will be taken

into account in Chapter 4.

3.4 Sequential Quadratic Programming algorithm

A Sequential Quadratic Programming (SQP) algorithm solves NLP (3.14) iteratively by using

a local quadratic approximation of the objective and linearized constraints at each iteration.
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However, for this project, it will be considered a Real Time Iteration scheme as in [6]. The

reasonings are concerned to real time feasibility. Therefore, a suboptimal solution will be

computed by using a fast NMPC algorithm. In fact, at the 8Cℎ sampling istant, RTI performs only

one SQP iteration to solve NLP.

At iteration 8, given the initial trajectory (x8, u8), NLP (3.14) is linearized and resulted in the

following Quadratic programming (QP) problem:

min
Δx,Δu

#−1∑
:=0

©
«
1

2


ΔG:

ΔD:



⊤ 
&8
:

(8
:

(8
⊤

:
'8
:



ΔG:

ΔD:


+


68G:

68D:



⊤ 
ΔG:

ΔD:


ª®®
¬
+

1

2
ΔG⊤#&

8
#ΔG# + 68

⊤

G#
ΔG#

B.C. ΔG0 = Ĝ0 − G0,

ΔG:+1 = �8:ΔG: + �
8
:ΔD: + 0

8
: , : = 0, . . . , # − 1

G: − G
8
: ≤ ΔG: ≤ G: − G

8
: , : = 1, . . . , #

D: − D
8
: ≤ ΔD: ≤ D: − D

8
: , : = 0, . . . , # − 1

28: ≤ �
8
:ΔG: + �

8
:ΔD: ≤ 2

8
: , : = 0, . . . , # − 1

2= − 2
8
# ≤ �8#ΔG# ≤ 2= − 2

8
# ,

(3.15)

where

Δx = x − x
8,

Δu = u − u
8

(3.16)

and

&8: =
m (38)2

m2G:
, (8: =

m (38)2

mG:mD:
, '8: =

m (38)2

m2D:
, &8# =

m (38
#
)2

m2G#

68G: =
m38

mG:
, 68D: =

m38

mD:
, 68G# =

m38
#

mG#
,

�8: =
mΞ:

mG:
, �8: =

mΞ:

mD:
, 08: = Ξ(G8: , D

8
: ) − G

8
:+1
,

�8: =
mA:

mG:
, �8: =

mA:

mD:
, �8# =

mA#

mG#
,

28: = A : − A: (G
8
: , D

8
: ), 28: = A : − A: (G

8
: , D

8
: ),

28# = A# − A# (G
8
# ), 28# = A# − A# (G

8
# )

(3.17)

The Hessian matrices&: , (: , ': can be approximated by Gauss-Newton (GN) method when

NLP (3.14) has a least square cost function. To be more precise, only the 1BC order derivatives

for the objective function are considered:

�8: =


&8
:

(8
:

(8
⊤

:
'8
:


=

m38

m (G: , D: )

⊤
m38

m (G: , D: )
(3.18)

Then, a state of art solver High Performance Interior Point Method (HPIPM) is adopted to

get the solution of QP (3.15). This HPIPM state-of-art solver was developed by Gianluca Frison
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and well presented in [9] while the open-source toolbox is available in [8].

Once that the primal solutions are computed: (Δx
8∗ ,Δu

8∗), then they can be used to update

the solution of NLP (3.14) through the following relations:

x
8+1

= x
8 + U8Δx

8∗ , u
8+1

= u
8 + U8Δu

8∗ , (3.19)

Adictionally, Real-Time Iteration scheme considers a full Newton step about U8 = 1.

3.5 MATMPC

The following figure, better summarizes what exposed till now. In particular how NMPC is

implemented in Matlab code, resulting in MATMPC open-source package.

Figure 3.2: Structure of MATMPC

First of all the model is defined in a continuous time fashion through CasAdi language. Then,

a spatial reformulation for the system dynamics is done.

The discretization of OCP is performed via Multiple Shooting technique so that the NLP (3.14)

is obtained. During this parametrization, an Explicit Runge Kutta numeric integrator of the 4Cℎ

order is employed.

Furthermore, a solver preparation phase is implemented in MATMPC. Indeed, once that all

ingredients for QP problem are ready (after performing a local quadratic approximation of the

NLP), options are required for the specific solver. For this project, these settings are referred to

a no condensed QP problem.

Regarding to get the solution of the subproblem, an High Performance Interior Point Method

(HPIPM) solver is used.

Globalization strategy are adopted in order to update the solution of NLP (3.14) via eq (3.19).

In particular, the step lenght U8 could be either computed by implementing a line search algo-

rithm or by considering a Real Time Iteration (RTI) scheme. Since a real time restriction is

important for this project, a suboptimal solution could be computed by terminating the SQP

iteration early before convergence is achieved. For RTI approach, it is sufficient to use only one

iteration with a full Newton step of U = 1 .

The optimality check is not taken into account for RTI approach since the solutions are subop-

timal. On contrary, for SQP algorithm, the optimality check is required. This means that the

KKT point must satisfy the 1BC order necessary condition of optimality, well exposed in Sec 3.3.



Chapter 4

Two vehicles problem

The purpose of this Chapter is to define all the quantities of NLP which refers to both two

vehicles problem (Sec 4.1) and single vehicle problem (Sec 4.3). In fact, all the terms that define

the optimization problem are quite important for the next Chapaters. In particular, the single

vehicle problem will be dealt in Chapter 5. Then, the competition between two vehicles will be

addressed and the overtaking manegement will be performed in Chapters 6 and 7.

4.1 NLP for two vehicles

From Chapter 3, the following NLP is considered:

min
G: ,D:

1

2

#−1∑
:=0

3: (ℎ(G: , D: ) − ℎ
:
A4 5 ),:

+
1

2
3# (ℎ# (G# ) − ℎ

#
A4 5 ),#

B.C. 0 = G0 − Ĝ0,

0 = G:+1 − Ξ: (G: , D: ), : = 0, 1, . . . , # − 1,

G: ≤ G: ≤ G: , : = 0, 1, . . . , #,

D: ≤ D: ≤ D: , : = 0, 1, . . . , # − 1,

A : ≤ A: (G: , D: ) ≤ A : , : = 0, 1, . . . , # − 1,

A# ≤ A# (G# ) ≤ A# ,

(4.1)

where each term was explained in Sec 3.3.

Recall that the decision variables can be written in the compact form as:

x =
[
G⊤

0
, G⊤

1
, . . . , G⊤#

]⊤
,

u =
[
D⊤

0
, D⊤

1
, . . . , D⊤#−1

]⊤ (4.2)

The states and controls are defined by evaluating a single stage ::

G: =
[
¤G1, ¤H1, ¤k1 4k1

, 4H1
, X 5 1, 0G1, C1, ¤G2, ¤H2, ¤k2 4k2

, 4H2
, X 5 2, 0G2, C2

]⊤
, (4.3)

D: =
[
¤X 5 1, ¤0G1, nH1

, n61
¤X 5 2, ¤0G2, nH2

, n62

]⊤
(4.4)



22 CHAPTER 4. TWO VEHICLES PROBLEM

where the quantities ∗1 and ∗2 are referred to the first and to the second vehicle respectively. In

particular, the vehicles velocities, the tracking errors, the steering angles of the frontal wheels,

the longitudinal accelerations and the time variables are considered as state variables.

Notably, eq (4.4) presents ¤X 5 8 and ¤0G8 ∀8 = 1, 2 in order to modify the smoothness of inputs

at will. In other words, the derivative of the steering angle of the front wheels is needed to

reduce the effects of the vehicle sway. The derivative of longitudinal acceleration improves the

regularity of acceleration/braking.

Some slack variables are considered as controls and they impact on the general constraint defi-

nition (eq (4.13)).

Regarding to the system dynamics, it will be formulated with respect to the independent

variable B (space traveled along the curve) instead of the time one:

G′(B) =
¤G(C)

¤B

Then, this relation is referred to the equality constraint:

G:+1 = Ξ: (G: , D: ), : = 0, 1, . . . , # − 1

since the entire OCP problem was discretized (through Multiple shooting technique) obtaining

NLP (4.1). Moreover, the integration done with respect to the space allows to define the time

within the system. Therefore, the initial time variable (def 4.3) can be used to make vehicles

pass at the same point on the track at different time instants.

The cost function defines the values that the solver will attempt to minimize by solving

the optimization problem. Ideally, the objective function can be defined only for the lap time.

Unfortunately, this is not possible because there are many other factors that are representative

for the actual behaviour of the vehicles. The inclusion of these elements, allows the solver to

avoid unrobust and particularly vibrant behaviours from a numerical point of view. In other

words, the regularization of the vehicle behavior is a very important factor that has to be taken

into account.

The cost function is defined from the difference between the predicted values and the relative

references. In particular, it is defined for each shooting point:

3: (G: , D: ) =
1

2
(ℎ(G: , D: ) − ℎ

:
A4 5 )

) ·,: · (ℎ(G: , D: ) − ℎ
:
A4 5 ) (4.5)

and for the final state:

3: (G# , D# ) =
1

2
(ℎ# (G# ) − ℎ

#
A4 5 )

) ·,# · (ℎ# (G# ) − ℎ
#
A4 5 ) (4.6)

It is important to say that the cost function depends on the specific type of reference. In particular,

three different strategies are proposed to describe the reference errors (lateral error distance and

direction error of the vehicles with respect to a reference trajectory) which have a significant
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impact on performance. In fact, it will be seen that the inclusion of the tracking errors in the

cost functions will prove to be a decisive factor in evaluating numerical robustness.

The first strategy is to consider no tracking errors reference. Indeed, the vehicle can be forced

to stay within the road limits (eq (4.17)) so that the controller minimizes the lap time (also the

other quantities) without taking into account the reference errors. Therefore, for the No tracking

errors reference strategy, the vectors ℎ(G: , D: ) and ℎ# (G# ) are defined as:

ℎ(G: , D: ) =
[
C1, ¤X 5 1, ¤0G1, nH1

, n61
, C2, ¤X 5 2, ¤0G2, nH2

, n62

]⊤
(4.7)

ℎ# (G# ) = [C1# , C2# ]
⊤ (4.8)

while the reference vectors are ℎ:
A4 5

= 0 and ℎ#
A4 5

= 0 according to the proper dimension.

Observing that in eq (4.7) to minimize: ¤X 5 8, ¤0G8, nH8, n68 allows the solver to improve the

regularity of the solution. For example, it is important to minimize ¤X 5 8 of the frontal wheels

to avoid harsh steering. Another important element is ¤0G8. This term should be minimized to

prevent the vehicle from suddenly accelerating or decelerating.

Nevertheless, to define a reference trajectory also for the tracking errors can facilitate the

solver to find the optimal solution. In the sense that if the solver will try to minimize also the

tracking errors related to a reference trajectory, then this action can improve the regularity of

the vehicle behaviour. For this reason, two reference trajectories are considered. Namely, a

Centerline reference and a Curve Cutting reference.

Regarding to the strategy that considers a Centerline trajectory, the cost function predictive

vectors are:

ℎ(G: , D: ) =
[
4H1
, 4k1

+ U1, C1, ¤X 5 1, ¤0G1, nH1
, n61

, 4H2
, 4k2

+ U1, C2, ¤X 5 2, ¤0G2, nH2
, n62

]⊤
(4.9)

ℎ# (G# ) =
[
4H1#

, 4k1#
+ U1, C1# , 4H2#

, 4k2#
+ U2, C2# ,

]⊤
(4.10)

where U1 and U2 are the vehicles slips1. They are taken into account with 4k8 in the cost functions

in order to improve the regularity of the vehicle directions.

Instead, the reference vectors are ℎ:
A4 5

= 0 and ℎ#
A4 5

= 0 (with same dimension of the previous

ℎ(G: , D: ) and ℎ# (G# )).

The last strategy is referred to consider a Curve cutting trajectory so that the inner objective

vectors are equal to the previous ones while the reference vectors are defined as:

ℎ:A4 5 =
[
4HA4 5 , 4kA4 5 , 0, 0, 0, 0, 0, 4HA4 5 , 4kA4 5 , 0, 0, 0, 0, 0

]⊤
(4.11)

ℎ#A4 5 =
[
4HA4 5 #

, 4kA4 5 #
, 0, 4HA4 5 #

, 4kA4 5 #
, 0
]⊤

(4.12)

The quantities 4HA4 5 , 4HA4 5 #
, 4kA4 5 #

and 4kA4 5 #
are referred to the Curve cutting trajectory,

1U 9 = 0C0=2( ¤H 9 , ¤G 9 ) ∀ 9 = 1, 2
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which is based on the curvature computation.

The general constraint function is defined as:

A: (G: , D: ) =



4H1
+ nH1

(
¥G4GC,1
6 `G

)2 + (
¥H4GC,1
6 `H

)2 + n61

4H2
+ nH2

(
¥G4GC,2
6 `G

)2 + (
¥H4GC,2
6 `H

)2 + n62√
(3;>=6)2 + (3;0C)2

4k1
+ U1

4k2
+ U2



(4.13)

while A# (G# ) is not defined.

The general constraint takes into account the path constraints related to the vehicle distances

from references and the vehicle direction errors (with vehicle slips). The elements 4H8 + nH8

define the limits of the track in which vehicles are supposed to run. Due to the presence of the

slack variables nH8, these constraints can be violated (in fact, they are called soft constraints).

The second and the fourth constraint of A: (G: , D: ) are acceleration constraints inspired by the

typical grip ellipsoid induced by the tire dynamics.

Finally, the constraint

√
(3;>=6)2 + (3;0C)2 is referred to the relative distance between vehicles.

In particular, the longitudinal and lateral distances are calculated as follows:

3;>=6 = |C1 − C2 |
¤G1 + ¤G2

2
,

3;0C = |4H1
− 4H2

|

(4.14)
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4.2 Controller setup

The controller setup for this automotive application is described in this section. In particular,

MATMPC options are defined through Table 4.1.

A sparse QP solver is used because one rule-of-thumb is that the sparse formulation is faster

for large values of N (number of shooting points) while the dense one is suitable for problems

with small values of N [7]. In fact, a long prediction horizon � = # )B = 400 < is taken into

account because both vehicles reach very high velocities.

To conclude, a nonuniform grid is adopted for Multiple Shooting technique in order to reduce

the number of computational points i.e. A = 140.

Selected module

Integrator Explicit Runge Kutta 4

Condensing Non

QP Solver HPIPM

Globalization Real-Time Iteration

Sampling space )B = 1 [<]

Shooting interval )BC = )B

No. of shooting points # = 400

No. of input move blocks A = 140

Table 4.1: MATMPC options

Regarding to the initial conditions, an initial longitudinal velocity of ¤G1 = ¤G2 = 50 </B2 and a

position with respect to the Centerline reference of 4H1
= 2 <, 4H2

= −2 < are considered. Thus,

the first vehicle (named as user vehicle) starts on the left side from the Centerline reference.

Instead, the second vehicle (called adversarial vehicle) is positioned on the right side.

Instead, if the Curve Cutting reference is taken into account, then the initial values of tracking

errors will be different for each test.

In general, the other quantities for both G0 and D0 are set to zero. Sometimes also the vehicle

initial time istants will be set differently (this will turn out for Delayed departure tests in Chapters

6 and 7)

In NLP (4.1), the constraints on states are intrinsic to the problem. They allow to determine

when the problem is infeasible. In particular, the angles of the front tires cannot be greater than

30◦ while the longitudinal acceleration cannot exceed 5 6.
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G: =



−c/6

−5

−c/6

−5



≤



X 5 1

0G1

X 5 2

0G2



≤ G: =



c/6

5

c/6

5



(4.15)

Constraints on inputs have the dual function of helping the solver by narrowing the set

of possible solutions and preventing drastic changes in the inputs. These constraints are not

physiological but if left too wide, they can cause instability in the solution 2.

D: =
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−20
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−20

−20



≤ D: =
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n62
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20
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0

20
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(4.16)

Finally the general constraint bounds are defined as:

A : =



−3.5

0

−3.5

0

3<8=

−c/2

−c/2



≤ A: (G: , D: ) =



4H1
+ nH1

(
¥G4GC,1
6 `G

)2 + (
¥H4GC,1
6 `H

)2 + n61

4H2
+ nH2

(
¥G4GC,2
6 `G

)2 + (
¥H4GC,2
6 `H

)2 + n62√
(3;>=6)2 + (3;0C)2

4k1
+ U1

4k2
+ U2



≤ A : =



3.5

`2

3.5

`2

1000

c/2

c/2



(4.17)

In particular, the constraints related to the errors are selected arbitrary while the others are

intrinsic of the problem 3.

Observe in eq (4.17) that the vehicles crash distance constraint cannot be violeted and the

2The limits for ¤X 5 8
are evaluated in [A03/B] and the bounds of ¤0G8 are expressed in 9.81 [</B3].

34H8 + nH8 is evaluated in [<] while 4k8
+U8 are expressed in [A03]. The relative distance constraint is measured

in [<] while the others are adimensional.
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minimum value is computed as:

3<8= =
√
(0 + 1)2 + (22)2 + 3033 (4.18)

where the parameters 0, 1, 2 are those of the vehicle dimensions4 while the term 3033 plays the

role of an additional distance constant to ensure collision avoidance.

Taking into account NLP (4.1), the weigths matrices of the objective function are defined as

follows 5:

,: = 3806 (@4H1
, @4k1

, @C1 , @ ¤X 5 1
, @ ¤0G1

, @nH1
, @n61

, @4H2
, @4k2

, @C2 , @ ¤X 5 2
, @ ¤0G2

, @nH2
, @n62

) (4.19)

,# = 3806 (@4H1#
, @4k1#

, @C1# , @4H2#
, @4k2#

, @C2# ) (4.20)

,: and ,# are important since they allow to control properly the two vehicles simultane-

ously. Thus, if one weight takes on a very high value, then the related variable will be minimized

even more.

An example of calibration is provided by Table 6.2.

This concludes the controller setup for two vehicles in order to solve the Nonlinear Programming

Problem introduced in Sec 4.1. All the tests related to the race between these vehicles will be

evaluated in Chapter 6 and 7.

4.3 NLP for single vehicle

If a single vehicle behaviour is taken into account, then the formulation of NLP (4.1) should be

reformulated with respect to different kind of states, controls, cost function and general constraint.

In particular, the states become:

G: =
[
¤G, ¤H, ¤k 4k , 4H, X 5 , 0G , C

]⊤
(4.21)

while the controls are:

D: =
[
¤X 5 , ¤0G , nH, n6

]⊤
. (4.22)

As a consequence it follows that:

ℎ(G: , D: ) =
[
4H, 4k , C, ¤X 5 , ¤0G , nH, n6

]⊤
(4.23)

4In the bicycle model the lateral distance between the wheel and the center of mass is 2 = 0. So in 3<8=

definition, the quantity about 2 2 plays the role of minimum lateral distance between the bicycles CGs.

5In case of No tracking errors weigths reference strategy, both ,: and ,# do not consider the weights of

tracking errors.
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ℎ# (G# ) =
[
4H# , 4k# , C#

]⊤
(4.24)

A: (G: , D: ) =



4H + nH

(
¥G4GC
6 `G

)2 + (
¥H4GC
6 `H

)2 + n6

4k + U


(4.25)

with the proper states, controls and general constraint bounds (equal to the previous ones but

referred to a single vehicle).

Notably, eq (4.25) doesn’t take into account the relative distance between vehicles since there is

only one car to control.

Concerning to the controller setup, Table 4.1 can be applied again with weights matrices

defined as:

,: = 3806 (@4H , @4k , @C , @ ¤X 5
, @ ¤0G , @nH , @n6) (4.26)

,# = 3806 (@4H# , @4k# , @C # ) (4.27)

All the single vehicle simulations will be presented in Chapter 5.



Chapter 5

Simulations with a single vehicle

The objective of this thesis is to provide an NMPC-based tool to emulate a controller that

interacts with human.

This Chapter aims to define a benchmark for the NMPC controller configuration. In particular,

to identify a starting calibration for a single vehicle which can be adopted also for the two

vehicles scenario.

The inclusion of 4H, 4k , 4H# and 4k# in the cost functions is an important factor that is carefully

considered within this thesis project. For such purpose, in the previous Chapter three different

strategies are described in details for the reference errors that are named as: No tracking errors

reference, Centerline reference and Curve cutting reference.

To determine which strategy will be better than the others, two important characteristics will be

evaluated. Namely, the minimization of the lap time and the numerical robustness of the system.

Consequently, these three scenarios will be tested for a single vehicle on the Paul Ricard circuit

(figure 5.1).

Figure 5.1: Paul Ricard circuit
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Table 5.1 describes the specific calibration of the weights for the single vehicle with respect

to the three reference strategies. Instead, Table 5.2 presents some additional parameters and

results obtained from each simulation.

Reference strategy Centerline Curve Cut-

ting

No tracking

errors ref

Weight Numeric values

@4H 4 · 10−2 10−2 −

@4k 4 · 10−2 10−2 −

@C 5 · 10−1 5 · 10−1 1 · 10−1

@ ¤X 5
102 102 1 · 102

@ ¤0G 5 · 10−2 5 · 10−2 1 · 10−1

@nH 2 · 101 2 · 101 3 · 103

@n6 1 · 102 1 · 102 2 · 101

@4H# 3 · 102 5 · 101 −

@4k# 102 5 · 101 −

@C # 102 101 1 · 10−1

Table 5.1: Controller calibration for a Single vehicle

Reference strategy Centerline Curve Cut-

ting

No tracking

errors ref

Parameters Numeric values

Average CPT [<B]: 10.3947 9.8167 17.81

Maximum CPT [<B] 43.7391 45.741 46.7307

Maneuver Time [B] 119.6643 118.6931 120.4514

Max speed [</B] 104.8493 105.4278 103.3584

Table 5.2: Results for each reference strategy

The No tracking errors reference strategy is very sensitive to the variation on weights in the

sense that a small variation of the weights leads to fail the simulation.

Conversely, the algorithm results more robust when using references (Curve Cutting and Center-

line). This is proved by the fact that if @C ,@ ¤X 5
, @ ¤0G , @nH , @n6 and @C # are changed, then simulation

of a single vehicle correctly works. Instead, if a small perturbation is performed for @4H , @4k ,

@4H# and @4k# , then the controller provides a trajectory whose maneuvering time turns out to

be similar to the previous one.



5.1. SINGLE VEHICLE TEST WITH CURVE CUTTING STRATEGY 31

For example, considering Curve Cutting reference, if the following weigths are imposed:

@4H = 10−1, @4k = 10−1, @4H# = 102, @4k# = 102,

then the lap time is 118.7302 B.

From Table 5.2, the smallest lap time is related to the Curve Cutting reference so that this

strategy proved to be the best one. For this reason, the benchmark for the NMPC controller is

defined by adopting the Curve Cutting strategy weigths. In addiction, the vehicle simulation

path under Curve Cutting is presented in the following section. Instead, the other two cases are

reported in the Appendix A.1.

5.1 Single vehicle test with Curve cutting strategy

Figures 5.2 and 5.3 show the vehicle trajectory on Paul Ricard circuit.

Given that an high value for the time weigth @C and a small value for the longitudinal acceleration

weigth @ ¤0G are imposed, then the vehicle goes slightly off the track during some curves. In

particular, during the fast curve (called Courbe de Signes curve and located at 3700 <), the

errors take the worst values due to high speed (figure 5.3).

In these figures the car is plotted at each 0.5 B and it is colored differently for each time istant.

Figure 5.2: Simulation Path under Curve cutting reference
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Figure 5.3: Simulation Path and tracking errors under Curve cutting reference



Chapter 6

Simulations with two vehicles

The purpose of the project is to build a NMPC system that allows to drive a vehicle that behaves

like an opponent in a driving simulation context. To achieve this goal, it is necessary to realize

a controller that allows the management of two vehicles within the same control system. This

fact will be addressed and described in this Chapter.

For sake of clarity I recall that the first vehicle is named user vehicle because it will represent

the vehicle that will have to be driven by the human. The second one is called adversarial

vehicle since it will be the one actually driven by the controller.

Before dealing with the main part of the Chapter, a remark has to be made: the NLP (4.1) is

solved by adopting the controller setup imposed in Sec 4.2.

At the preliminary stage, the controller was analyzed with a single vehicle to establish a

benchmark for the controller calibration (Chapter 5). The second phase must involve structuring

the controller for two vehicles, which can be realized from that benchmark configuration.

Therefore, this Chapter will deal with the competition between two virtual vehicles (driven by

the same NMPC controller) on the Paul Ricard circuit.

The overtaking management will become a fundamental element in describing the interaction

between these vehicles. It will be found that overtaking depends on many factors including: the

shape of the road, the initial position of the vehicles relative to the curve and the initial state of

the model. For these reasons, to use a single calibration will not be possible to ensure overtaking

in any situation. Therefore, the benchmark calibration will work only for the Paired departure

test developed on the entire circuit. In this particular situation user vehicle will depart at the

same time istant of the adversarial vehicle one. Then, user vehicle will surpass adversarial

vehicle during the first straight section. After that, both vehicles will complete the track. This

simulation will be described in Sec 6.1.

Sec 6.2 will focus on single curves tests where the calibration of Table 5.1 will not work anymore.

Moreover, both Paired departure tests and Delayed departure tests will be taken into account

for each curve and in general, they will require different calibrations. To be more specific, the

Delayed departure tests are referred to the cases where user vehicle starts later than adversarial

33
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vehicle. In this latter circumstances the race will be more challenging since it is desired that

user vehicle overtakes adversarial vehicle within the end of the curve.

In conclusion, all these tests will be performed to prove that the development of the desired

tool is very difficult. In fact, the overtaking manegement will have to be handled appropriately.

This is because, as already argued, the competition between two virtual vehicles will have to

take into account a variable calibration for the controller depending on the specific case. Some

overtaking considerations will be presented in Sec 6.3.

6.1 Paired departure test on Paul Ricard circuit

In this section the Paired departure test is considered. For this scenario, both the vehicles start

their maneuver at the same initial time istant.

To accomplish this simulation, the benchmark defined in the previous Chapter can be adopted.

Thus, the same calibration of the single vehicle (the one related to Curve Cutting reference) can be

assigned to both user vehicle and adversarial vehicle. To be more specific, only the time weigths

are different so that the time weight of the second vehicle is reduced: @C1 = 5·10−1 > @C2 = 5·10−2.

This relation allows the cost function to minimize the lap time of the first vehicle more than the

second one. This is reflected in Table 6.1 and user vehicle is able to surpass adversarial vehicle

within the first 80 < (figure 6.1a).

The choice of small tracking errors weigths allows both vehicles to move away from the reference

to accomplish overtaking otherwise they would have been forced to follow the reference.

It is also necessary to add that user vehicle will be highlighted with a "black dot" applyed to

its Center of Gravity (for each image related to the simulation path). This is done in order to

discriminate its path from the adversarial vehicle one.

Test type Paired departure test

Reference strategy Curve Cutting

Parameters Numeric values

Average CPT [<B]: 31.9414

Maximum CPT [<B] 168.6339

user vehicle maneuver time [B] 119.4682

adversarial vehicle maneuver

time [B]

124.1292

user vehicle max speed [</B] 105.1201

adversarial vehicle max speed

[</B]

104.3369

Table 6.1: Performances about Paired departure test

Figures 6.1 and 6.2 show the simulation results. In particular, the overtaking (figure 6.1a),
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the negative gap time ΔC which shows a time advantage for user vehicle (figure 6.1b), two critical

curves (figures 6.1c and 6.1d), the reference errors (figures 6.1e, 6.1f) and the side slip angles

of the wheels (figures 6.2a and 6.2b).

As for single vehicle test, also in this case the vehicle paths are plotted at each 0.5 B and they

are colored differently for each time istant.

(a) Overtaking phase
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Figure 6.1: Results of Paired departure test with Curve Cutting strategy
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(a) Slips of the 1BC bicycle
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Figure 6.2: Results of Paired departure test with Curve Cutting strategy

The reason why both vehicles go out from Courbe de Signes curve (figure 6.1c) is related to

the high values of the slip angles. In fact, the vehicles slip too much due to high speeds like in

the single vehicle simulation. This happens because the user vehicle trajectory was originally

optimized (in Chapter 5) in order to minimize the maneauver time. This causes vehicle velocities

bigger than 100 </B (Table 6.1) in the proximity of this curve.

It is desired that the vehicles have similar trajectories outside the overtaking zone. The tracking

errors values have to be considered to study this phenomenon. Indeed, taking into account 4H8

and 4k8 ∀8 = 1, 2 (figures 6.1e and 6.1f) there are only two curves which are crossed wrongly.

The first one is Courbe de Signes curve (the 8Cℎ one) for the reasons described above. Instead,

user vehicle crosses Beausset curve (the 9Cℎ one reported in figure 6.1d) externally with respect

to adversarial vehicle since it goes faster. This last situation proves that if one vehicle is much

faster than the other, it will surely have a very different path.

The entire simulation path is reported in the Appendix A.2 for compliteness and in general, the

two vehicles have a very similar path (except for the two situations described earlier).
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6.2 Single curve tests

The result described in the previous section is related to a simple case of interest. In particular,

the overtaking took place at the beginning of the competition along the first straight section

of the road. In general, the previous calibration is not suitable to accomplish an overtaking,

especially when vehicles are crossing a curve. The motivations have already been described

at the beginning of the Chapter. In particular, the shape of the track affects the problem of

managing the two vehicles. Therefore, different calibrations have to be selected for different

sections of the circuit to solve the problem. In general, a good calibration must have a low

tracking error weigths. This implies that vehicles can move away from the reference trajectory

to accomplish the overtaking. But on the other hands these weights should not be too small to

avoid off-road scenarios 1. Regarding to the time weigths and the acceleration ones, they should

be adjusted based on making a vehicle faster or slower. In general, it is preferable to keep an

equal acceleration profile and change only the time weigths. In fact, from the perspective of a

realistic scenario, the two vehicles should accelerate/brake smoothly and similarly.

This section deals with single curves tests where both vehicles can compete in a very

particular situation. The aim is to accomplish the overtaking maneuver along three different

curves. They are named first Chicane (1BC and 2=3 curve), L’Ecole (7Cℎ curve) and Beausset (9Cℎ

curve). For each one of them, both Paired departure and Delayed departure tests will be carried

out, respectively in Sec 6.2.1, Sec 6.2.2, Sec 6.2.3.

Table 6.2 reports a possible calibration which considers small values for @4H8 , @4k8
, high values

for @4H8# , @4k8#
and @C1 > @C2. This leads to have an overtaking in most cases. To be more

specific, this calibration allows the controller to accomplish the overtaking for all the Paired

departure tests. In delay 0.5 s test, user vehicle is still able to surpass adversarial vehicle in all

the curves, except when crossing L’Ecole curve. This happens due to the shape of this specific

curve and its length. In fact, even if @C1 is increased and @C2 is reduced, the controller is not able

to drive user vehicle to surpass adversarial vehicle neither in delay 0.5 s test, nor in delay 1s

test.

Instead, this calibration has to be properly modified for the first Chicane and Beausset curves to

achieve the overtaking in delay 1s test. This proves again that the shape of these curves impacts

on vehicles performances.

1Recall that the road limits are not hard constraints but soft constraints as described by the general constraint

definition (4.13)
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Curve type first Chicane L’Ecole Beausset

Weight Numeric values

@4H1
5 · 10−2

@4k1
5 · 10−2

@C1 5 · 10−1

@ ¤X 5 1
102

@ ¤0G1
5 · 10−1

@nH1
102

@n61
101

@4H1#
5 · 102

@4k1#
5 · 102

@C1# 5 · 101

@4H2
5 · 10−2

@4k2
5 · 10−2

@C2 5 · 10−3

@ ¤X 5 2
102

@ ¤0G2
5 · 10−1

@nH2
102

@n62
10

@4H2#
5 · 102

@4k2#
5 · 102

@C2# 5

Table 6.2: Controller calibration for Paired departure tests on single curves
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6.2.1 First Chicane curve

Starting from the Paired departure test on the first Chicane curve, the user vehicle can overtake

the adversarial one by cutting it off internally during the first curve (figure 6.3b). This happens

since the first vehicle has a bigger @C1 weight and it is initially located internally with respect to

the curve.

An important phenomenon comes out during this test. In fact, the slower vehicle knows that user

vehicle is going faster and has to win. So it moves externally during the first curve in order to

satisfy the constraint about the vehicles relative distance. After that, adversarial vehicle follows

user vehicle according to the tracking errors reported in figures 6.3c and 6.3d.
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Figure 6.3: Results of Paired departure test on the first Chicane curve
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Then Delay 0.5 s test is performed on the same curve. As previously said, user vehicle is

supposed to pass away adversarial vehicle even with a disadvantage about the initial time istant.

The previous ,: and ,# matrices allow the controller to achieve the goal. In fact, the gap

between @C1 and @C2 is sufficiently big. As a consequence, the overtaking takes place during the

end of the second curve. In particular, the first vehicle cuts internally, while the second one

moves externally in order to let user vehicle win (figures 6.4a and 6.4b). Figures 6.4c and 6.4d

present high tracking errors since a low tracking errors weigths are adopted.
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Figure 6.4: Results of Delay 0.5 s test on the first Chicane curve



6.2. SINGLE CURVE TESTS 41

Since in the previous scenario the overtaking took place at the end of the curve, for Delay 1

s test is necessary to anticipate it. Therefore, a different calibration is considered. Specifically,

the control weigths nH1
and nH2

are increased and also the time weigths are modified. The

first ones impact on general constraint lateral errors performances. The second ones allow to

change the gap time between vehicles by increasing the speed for user vehicle and by reducing

the velocity for adversarial vehicle. Therefore, the overtaking is anticipated at 216 < (picture

6.5a). User vehicle cuts again internally the second curve while adversarial one turns externally.
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Figure 6.5: Results of Delay 1 s test on the first Chicane curve

To conclude, Table 6.3 reports the first Chicane curve results of these three tests. Observe

that the vehicles maneuver times of Delayed departure tests take into account the user vehicle

starting time of C0 = 0.5 B and C0 = 1 B.
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Test type Paired departure Delay 0.5 s Delay 1 s

Reference strategy Curve cutting

Parameters Numeric values

Average CPT [<B]: 32.6556 31.1221 32.6643

Maximum CPT [<B] 52.2583 48.6123 58.704

user vehicle maneuver time [B] 9.7357 10.6074 10.3649

adv. vehicle maneuver time [B] 12.3277 10.6799 11.1716

user vehicle max speed [</B] 50 50 50

adv. vehicle max speed [</B] 50 50 50

Table 6.3: Performances about the first Chicane curve tests
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6.2.2 L’Ecole curve

L’Ecole curve refers to the end of the 6Cℎ and the 7Cℎ curves of the Paul Ricard circuit.

The same previous simulations with two vehicles are repeated. In particular, the user vehicle

surpasses adversarial vehicle by cutting it off inside the 7Cℎ curve during the Paired departure

test (figure 6.6b). This result is obtained by using Table 6.2 weights.

Figure 6.6a shows that adversarial vehicle has an advantage during the departure phase. In fact,

it is initially positioned internally with respect to the 6Cℎ curve. Moreover ΔC > 0 till the first

100 < (figure 6.6c). Then adversarial vehicle decelerates in the proximity of the 7Cℎ curve to

leave sufficient space maneuver for the overtaking.

Additional information about the relative distance between vehicles (that must be always bigger

than 3<8=) and the tracking errors are shown in figures 6.6d, 6.7a and 6.7b.
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Figure 6.6: Results of Paired departure test on L’Ecole curve
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Figure 6.7: Results of Paired departure test on L’Ecole curve

For both delay 0.5 s and delay 1 s tests, user vehicle is not able to win the competition

(figure 6.8). The reasons are related to the path length (about just 300 <) and to the curve

structure. In fact, as previously mentioned, adversarial vehicle has already an advantage about

the departure since it is located internally with respect to the 6Cℎ curve. Consequently, the shape

of the curve, the length of simulation path and the initial positions of vehicles have a significant

impact for overtaking manegement. In fact, even if @C1 is increased and @C2 is decreased, then

the overtaking cannot be accomplished.
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Figure 6.8: Results of Delayed departure tests on L’Ecole curve

Table 6.4 reports more informations about L’Ecole curve tests. As usual, the first vehicle

maneuver time considers also the initial time disadvantage for Delayed departure tests.
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Test type Paired departure Delay 0.5 s Delay 1 s

Reference strategy Curve cutting

Parameters Numeric values

Average CPT [<B]: 30.485 32.9637 29.3896

Maximum CPT [<B] 72.0689 89.5459 66.016

user vehicle maneuver time [B] 6.477 7.0415 7.4564

adv. vehicle maneuver time [B] 7.2646 6.7946 6.9664

user vehicle max speed [</B] 50 50 50

adv. vehicle max speed [</B] 50 50 50

Table 6.4: Performances about L’Ecole curve tests

6.2.3 Beausset curve

Table 6.2 can also be applied to Beausset curve (the 9Cℎ one of the circuit).

For the Paired departure test, this approach guarantees the user vehicle victory since it surpasses

the adversarial one during the first straight stretch of road (figure 6.9b). But since it reaches

an higher speed before the curve, then its 4H1
value becomes bigger than 4H2

. Meaning that

the controller almost lost its capability to keep the first car within the road limits (figure 6.9a).

Instead the second vehicle enters slowly, thus it crosses the curve more softly.

Figures 6.10a, 6.10b, 6.10c and 6.10d show respectively the gap time ΔC , the relative distance

and the tracking errors.
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Figure 6.9: Results of Paired departure test on Beausset curve
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Figure 6.10: Results of Paired departure test on Beausset curve
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Concerning to Delayed departure tests, the previous calibration has to be changed. In fact,

to avoid outroad scenarios, two possibilities are available. The first one is to modify the tracking

error weights so that both vehicles trust on the reference a bit more than before. The second

possibility consists to modify the time weigths. The first choice is adopted to achieve the

desired result for Delay 0.5 s test. This strategy causes a slight increment of the first vehicle

maneuver time (Table 6.5) and a reduction of the reference errors (figures 6.11c and 6.11d). As

a consequence, the overtaking is accomplished at 350 < (figures 6.11a and 6.11b) where user

vehicle surpasses internally adversarial vehicle.

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20

230

240

250

260

270

280

290

300

310

(a) Overtaking for delay 0.5 s test

0 100 200 300 400 500 600 700

-0.6

-0.4

-0.2

0

0.2

0.4

(b) ΔC for delay 0.5 s test

0 100 200 300 400 500 600 700

-8

-6

-4

-2

0

2

4

6

8

10

(c) 4H8 ∀8 = 1, 2 for delay 0.5 s test

0 100 200 300 400 500 600 700

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(d) 4k8
∀8 = 1, 2 for delay 0.5 s test

Figure 6.11: Results of Delay 0.5 s test on Beausset curve
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Delay 1 s test is performed by increasing the gap between the time weights to make the

overtaking manegement possible. In particular, the first vehicle surpasses the second one at 370

< (figures 6.12a 6.12b). In this latter case, the vehicles have similar lateral errors to the Paired

departure test (figures 6.12c and 6.12d).
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Figure 6.12: Results of Delay 1 s tests on Beausset curve

Test type Paired departure Delay 0.5 s Delay 1 s

Reference strategy Curve cutting

Parameters Numeric values

Average CPT [<B]: 28.9143 29.2132 29.0886

Maximum CPT [<B] 54.7951 53.6551 55.1383

user vehicle maneuver time [B] 16.1139 16.6396 17.0544

adv. vehicle maneuver time [B] 18.7336 17.1901 18.5243

user vehicle max speed [</B] 56.372 55.4222 56.0827

adv. vehicle max speed [</B] 50 53.7742 50

Table 6.5: Performances about Beausset curve tests
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6.3 Overtaking considerations

The analysis of overtaking deserves a brief description. In fact, the overtaking manegement rap-

resents the interaction between user vehicle and adversarial vehicle. This phenomenon depends

on several elements. One determining factor is the shape of the road. In fact, it is much more

simple to achieve overtaking on a straight stretch than on a curve.

For example, the Paired departure test developed on the entire circuit (Sec 6.1) is very different

from the first Chicane curve one (Sec 6.2.1). In fact, in the former case the vehicles start with a

specific initial speeds and positions (see G0 definition in Sec 4.2). Then, both vehicles increase

their speeds in the straight section where user vehicle immediately performs the overtaking.

Succesively, they enter on the first curve according to well defined trajectories (computed by

the NMPC controller). In particular, at that location, they are one behind the other and the state

value is very different from G0 of the Paired departure test on the first Chicane curve. In fact, for

this test the dynamics of the system is computed differently by the controller. This is because

they start paired and they have different tracking errors from those calculated by the controller

in the previous case. Also the velocities that they take on that curve is different and this fact

impacts on performances.

The vehicle initial conditions are another important element. In fact, if they are changed, then

the controller calibration has to be modify. In particular, the calibration reported in Table 6.2

does not achieve the vehicles manegement in all the cases, especially for Delayed departure tests

(which consider different G0 value than Paired departure ones). Those tests are harder to solve

than Paired departure ones. The reason is that in the second case, if the vehicles initial relative

distance is bigger than 3<8=, and one vehicle is faster than the other, then the overtaking starts

immediately (even with higher errors weights). Instead, the first case is much more challenging

because the high-performing vehicle (user vehicle) is positioned behind the other one and must

achieve it. Sometimes it can be useful to make user vehicle even faster and adversarial vehicle

even slower.

Finally, also the vehicles initial positions impact on the overtaking manegement. For example,

on L’Ecole curve user vehicle is initially positioned externally with respect to the curve. This

proved to be a major disadvantage for Delayed departure tests, since the faster vehicle was not

able to achieve the goal. Perhaps, if the simulation path had been longer, then it would have

been successful. But in any case, it would not have been able to surpass adversarial vehicle by

the end of the curve.
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Chapter 7

Fixed trajectory simulations

In the previous Chapter, both vehicles are driven by the Nonlinear Model Predictive Controller

(NMPC) and in general, a different calibration is required to manage the vehicle behaviours.

The purpose of this Chapter is related to test the developed NMPC controller, as it acts as

an adversary to another vehicle that it cannot control (because it simulates an human driven

vehicle). In other words, during the previous simulations, the vehicles predictive trajectories

were provided by the same controller online. Now, the competition can be implemented by

considering a predetermined fixed trajectory for the first vehicle. Namely, all the data related to

the dynamics of the user vehicle are loaded in a new simulation scenario. Then, if the calibration

of user vehicle is manually changed, then the NMPC controller could see a different evolution

of the system with respect to what it had computed.

For example, if @C1, @4H1
and @4k1

are increased 1, then the controller tries to reduce the maneuver

time and the tracking errors, but this ineffective since it can not control the first vehicle. In

fact, during the simulation the controller has to deal with an autonomous user vehicle (whose

trajectory is fixed) which is slower and less precise with respect to what the controller expected.

In this case, MATMPC could properly control only the second vehicle, i.e. to avoid collisions

and to possibly allow the overtaking. On contrary, if @C1, @4H1
and @4k1

are reduced, then the

controller will see that the first vehicle will be faster and will trust on the reference more than

what the controller predicted. As a consequence, the overtaking could be either postponed or

anticipated along the simulation path. Moreover, the overtaking can be performed in a different

way depending on the adversarial vehicle trajectory.

Taking into account the results about single curves tests (described in Sec 6.2), those simulations

will be repeated under framework of fixed trajectories applied to user vehicle.

In the following sections, only those simulations that show a very different overtaking maneuver

along the curve will be described. For example, l’Ecole curve tests will not be considered

because the results are very similar to those reported in Sec 6.2.2. This happens since the

curve shape, the curve length and the initial locations of vehicles have significantly impacted on

overtaking manegement. As a consequence, even forcing the first vehicle to be faster, it could

not overcome adversarial vehicle under Delayed departure tests.

1Sec 4.2 describes some possible values of weigths bounds
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Concerning to Paired departure tests, they are not even reported because the overtaking takes

place in the same previous locations 2. This happens because user vehicle has already a time

advantage when the competition starts. Conversely, Delayed departure tests show a very different

evolution of the system for adversarial vehicle (the one that is actually controlled by MATMPC).

Moreover, with respect to the original tests, the anticipation and postponement of the overtaking

is much more visible.

7.1 First Chicane curve

Starting from the first Chicane curve, Delay 0.5 s test shows that if @C1 is reduced with respect to

the original case (no matter if it is bigger or smaller than @C2), then the overcoming happens at

238 < instead of 250 < (figures 7.1a and 6.4a). In particular, the controller detects the presence

of user vehicle, which is going faster than what it predicted. So adversarial vehicle moves to

the left earlier. It remains externally to let user vehicle to complete the overtaking by cutting

the curve internally. Instead, if @C1 is increased then the overtaking happens later than before, at

270 < (figure 7.1b).

Delay 0.5 s test is repeated according to a similar procedure. This time, @4H1
and @4k1

weigths are

reduced so that another different competition is carried out (figure 7.1b). In fact, the overtaking

is anticipated at 213< along the second curve, where the controller drives adversarial vehicle so

that it turns externally. In this way, it allows user vehicle to complete the desired maneuver. In

this situation, the controller detects that the first vehicle follows the Curve Cutting reference more

than what it expected, and this result confirms that the overtaking is not ensured by having only

a bigger speed. In fact, also the manner in which the curve is crossed impacts on performances.

If the procedure is repeated with bigger @4H1
and @4k1

weigths, then the overtaking is a bit

postponed (figure 7.2b).
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Figure 7.1: Results of Delay 0.5 s test on Chicane curve

2Since they are Paired departure tests the overtaking cannot be anticipated since user vehicle immediately starts

to surpass. Regarding to postponed overtakings, they happened a few meters later than the original ones.
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Figure 7.2: Results of Delay 0.5 s test on Chicane curve

Recall that the original calibration was changed to ensure overtaking in Delay 1 s test on the

same curve (see Sec 6.2.1). So that user vehicle surpassed adversarial vehicle at 216 <.

As for Delay 0.5 s test, also Delay 1 s test is carried out with a fixed trajectory for user vehicle.

Again, different calibrations of the tracking errors and the lap time lead to have a different ad-

versarial vehicle paths. Each result is reported in figures 7.3a, 7.3b, 7.4a and 7.4b. Rispectively,

the overtaking is anticipated for the first case, postponed for the second and third cases. For the

last case, it is carried out similarly as in the original one. Notably figures 7.3b and 7.4a present

a different adversarial vehicle maneuver where it moves in the opposite direction with respect

to the original case.
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Figure 7.3: Results of Delay 1 s test on Chicane curve
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Figure 7.4: Results of Delay 1 s test on Chicane curve

7.2 Beausset curve

Reffering to original Delayed departure tests on Beausset curve (Sec 6.2.3), the entire previous

procedure is repeated.

Considering delay 0.5 s test and modifying the weigths, two cases turn out to be very different

from the original ones. Figure 7.5a presents no overtaking when @C1 is increased and tracking

errors weigths are reduced. In particular, the controller forces an higher adversarial vehicle

speed because it believes that user vehicle is too slow. So that the second vehicle finishes its

maneuver with 16.5775 B versus the first vehicle one of 16.6396 B.

The second case takes into account the opposite calibration (figure 7.5a). As a consequence,

user vehicle is faster with respect to what the controller planned and the overtaking is anticipated

at 184 < (figure 7.5b). To accomplish such maneuver, the second vehicle changes its direction

to leave sufficient space for user vehicle.
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Figure 7.5: Results of Delay 0.5 s test on Beausset curve
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Regarding to Delay 1 s test, the most different scenarios with respect to the original ones are

reported in figures 7.6a, 7.6b, 7.6c and 7.6d. In particular if @C1 is reduced then the overtaking is

anticipated at 336 <. In the opposite scenario it is postponed a bit (at 380 <). Also the tracking

errors weights are important. In fact, if they are increased then user vehicle may not be able to

overcome adversarial vehicle. In particular, if it is too slow from the controller point of view

(@C1 bigger), it fails to overtake. Otherwise, the overtaking is possible, but it takes place much

later 477 <.
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Figure 7.6: Results of Delay 1 s test on Beausset curve
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Chapter 8

Conclusion

The purpose of the project is to realize a tool based on a NMPC controller that behaves like an

adversary to user vehicle. To achieve this goal many steps were performed, which will be briefly

described below.

First of all the dynamics of the vehicle were modeled as those of the bicycle model [15], [19].

This model choice was made by taking into account both accuracy and the computational com-

plexity required to solve the problem. In other words, the simplest vehicle model was adopted

because during some tests the controller had to handle two vehicles at the same time.

The second step concerned the NMPC controller setup. NMPC aims to solve a well defined

optimization problem that takes into account several factors. In particular, they are the model

dynamics, the system constraints, the references and the cost function, which represents the

future behaviour of the entire system that the solver attempts to minimize.

Given the complexity of the problem, in the first stage the analysis was performed for a single

vehicle to test the best controller configuration. A benchmark configuration was found for the

controller, which was able to properly control a single vehicle, i.e. to minimize the lap time and

to ensure numerical robustness.

Then, two virtual vehicles were driven simultaneously by the same controller. At this point, the

system proved to be a very complex problem to solve. In fact, the previous calibration was able

to control the vehicles only under a Paired departure test conditions. As a consequence, the

problem of making a controller that behaves like an opponent in the driving simulator cannot be

solved by using a single calibration. It is precisely for this reason that the management of two

vehicles was analyzed in very specific cases. In particular, by taking into account different curves

and by considering different kind of tests depending on the initial conditions of the vehicles, i.e.

intial time istants and initial positions with respect to the curve.

Finally, the previous tests were repeated with a fixed trajectories that aimed to verify the con-

troller’s response to the unexpected behaviour of user vehicle. In particular, to simulate a real

behaviour of a human-driven vehicle, user vehicle had a fixed predetermined trajectory. As a

consequence, the controller could only act on adversarial vehicle. In this way, NMPC behaved

like an opponent in a driving simulation. Performances changed significantly if the trajectory

calculated by the controller was very different from that of the user vehicle. In particular, the
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overtaking resulted anticipated, postponed and sometimes dealt with a different way with respect

to the original simulations. For example, if @C1 is reduced, then the controller detected a vehicle

which was faster than what it planned. So the controller was forced to move adversarial vehicle

earlier to avoid collision. Even the modification of tracking error weights gave different results

from the original simulation tests. Thus, not only the speed but even the way a vehicle entered

on a curve could greatly influence the adversarial vehicle maneuver (which was actually driven

by the controller). As a result, the overtaking was handled differently from the original case.

In conclusion, the realization of an adversarial driver is very complex. The vehicles ma-

negement has to take into account a variable configuration of the controller for any different

section of the circuit. In fact, a single calibration cannot achieve the goal for any possible

scenario. However, a good calibration strategy can be described as a starting point for ad-

dressing the problem in any situation. In particular, the tracking errors weigths have to be

set sufficiently small. In this way both vehicles are able to move away from the reference

in order to perform the overtaking. Moreover, also the time and the acceleration weigths have

to be selected carefully. In fact, they allow to command a vehicle to be even faster or even slower.

In a future perspective, a possible solution to the problem is to analyze the behavior of

vehicles in each individual sector of the track to ensure an overtaking.

Another future development could be referred to a different model plant. In particular, a four

wheels vehicle with 7 dof can be taken into account [24],[18], with a Pacejka tire model [16]

before analyzing more complex models. Moreover, this model could represent the behaviour of

an autonomous driving simulator better than bicycle model. On the other hand, the four wheels

vehicle model is not too complex as the 14 dof models. In particular, the possibility to solve

the Nonlinear Programming Problem (NLP) with this model type could still satisfy a real time

feasibility. In fact, even with two bicycle models, the computational burden is not too high

(about 30 <B on average).

An additional development could be the cost function modification that represents the future be-

haviour of the process to be controlled. In the first instance, an accelerating/breaking coefficient

V could be used as input [2] instead of a longitudinal acceleration term. Also the lateral error

distance of each steering wheel from the reference could be taken into account. Consequently,

the general constraint should consider the bounds of these errors.

Another possibility to solve the problem is to focus on SQP algorithm to solve the NLP problem

without RTI scheme. This will lead to neglect a real time property, but it could be useful to

approach an optimal solution instead of a suboptimal one.



Appendix A

Additional Tests

A.1 Additional single vehicle tests

In this section only the tests related to the single vehicle maneuver are carried out after setting

NMPC controller properly (see Sec 4.3). In particular, the simulations of Centerline and No

tracking errors reference strategies will be reported.

A.1.1 Centerline reference strategy

Figures A.1 and A.2 show the simulation path of the single vehicle Centerline strategy. The

maneuver results similar to the Curve Cutting one. In fact, the same calibration is adopted with

small tracking errors weights and by selecting a very high value for the time weight. However,

the resulting maneuver time is bigger than the Curve Cutting one.

Figure A.1: Simulation of a single vehicle with Centerline strategy
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Figure A.2: Simulation of a single vehicle with Centerline strategy
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A.1.2 No tracking errors reference strategy

As mentioned in Chapter 5, due to the lack of numerical robustness, the same Curve Cutting

weigths: @C , @ ¤X 5
, @ ¤0G , @nH @n6 and @C # cannot be adopted also for this strategy. Thus, the

following path is 2 B longer than the Curve Cutting one. This result is reported in figures A.3

and A.4.

Figure A.3: Simulation of a single vehicle with No tracking errors reference strategy
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Figure A.4: Simulation of a single vehicle with No tracking errors reference strategy
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A.2 Paired departure for two vehicles

Referring to Sec 6.1, the simulation paths on the entire circuit of two vehicles for Paired departure

test are exposed in this section.

Figure A.5: Simulation of two vehicles with Curve cutting strategy
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Figure A.6: Simulation of two vehicles with Curve cutting strategy
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