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Introduction

In the recent years, the world has become more familiar with the term black hole. Although the allure
characterizing black holes is much older, in the last few years new results, such as the first observation
of gravitational waves from two merging supermassive black holes in 2016 [1], or, even more recently,
the first photo of a black hole, published just over three years ago, in 2019 [2], have brought up to the
general public the concept of black holes. But if these results allowed the uninitiated to get a little
more familiar with the concept of black holes, the same cannot be said regarding the initiated. Indeed,
the scientific community, and in particular the physics community, is (and has been) interested in
studying these peculiar objects, that are nothing but solutions to the classical Einstein equations from
General Relativity whose trademarks are a singularity shielded by event horizon(s), i.e. hypersurfaces
separating two regions that are causally disconnected: the inside of the horizon and the outside of it,
also because, among other reasons, black holes provide us with a nice proving ground where Quantum
Mechanics and General Relativity meet each other, giving us the possibility to test our theories that
should enable the two to meet with no drama.

One of such theories (actually, one of the most promising candidates) is String Theory, namely a
theory with strings as fundamental objects rather than particles. The theory was initially developed in
the sixties to model the force responsible for keeping the quarks bound inside protons and neutrons; i.e.,
the strong nuclear force. Among the things that inhibited String Theory to reach success in this field
was the presence of a massless, spin-two particle in the spectrum of the theory; something that did not
belong to the world of hadrons. However, gravitational waves are indeed characterized by helicity equal
to two, and the graviton, meaning the quantum of gravitation, is thought to be a massless, spin-two
particle. This was enough of a justification to take a closer look at String Theory as a theory able to
unify Quantum Mechanics and General Relativity. It was 1974.

Since then, String theory had its successes. For instance, and here we come back to black holes,
it is thanks to String Theory if we were able to produce the first counting of black holes microstates.
Basically, because of Bekenstein’s argument, it is known that black holes should carry some form of
entropy because, if this was not the case, the entropy carried by matter falling inside a black hole would
disappear behind the event horizon, thus violating the second principle of thermodynamics. Indeed,
Bekenstein argued that the entropy characterizing a black hole is proportional to the event horizon’s
area, which grows as energy falls inside the hole. But, thanks to Boltzmann’s formula, we know that
entropy is also associated with the number of microstates giving rise to the same macroscopic system
properties (that, in the case of black holes, are the mass, charge and angular momentum); unfortunately,
since General Relativity never deals with such microstates, but just with the macroscopic charges,
nobody knew how to construct them. It was in 1996, thanks to the work of Strominger and Vafa [3],
that the correct counting of a black hole’s microstates to reproduce the appropriate Bekenstein entropy
was performed in the framework of String Theory for a specific black hole solution.

Another issue String Theory has to deal with if it wants to be the definitive theory of quantum
gravity is the information paradox, namely a paradox highlighting an incompatibility between General
Relativity and Quantum Mechanics. The paradox was proposed by Hawking and stems from the fact
that black holes emit radiation that is perfectly thermal; i.e., it is the radiation a black body with
temperature equal to the Hawking temperature of the black hole would emit. As the emission process
goes on, the hole loses energy, thus shrinking in size. Eventually, the hole evaporates completely and,
assuming nothing is left behind in this process, this would lead to an evolution from a pure state to a
mixed one; something that is impossible in Quantum Mechanics. The main issue is that the radiation
cannot be in casual contact with the microstates of the black hole because of the event horizon; if the
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event horizon did not prohibit the transfer of information between the microstates and the radiation
the process of evaporation would be similar to any burning process, which does not violate Quantum
Mechanics. A possible solution to this incompatibility seems to arise from the so-called fuzzballs, i.e.
peculiar branes and strings configurations in String Theory with non-trivial, horizon-scale structures
proposed by Mathur [4] to model black holes microstates. In the two-charge fuzzball composed by a
vibrating string, each microstate corresponds to a different vibrational profile of the string, and the
metrics produced by two different microstates differ strongly inside a region having the correct surface
to produce the appropriate Bekenstein-Hawking entropy.

In this thesis we first aim at reviewing a method used to reproduce the supergravity metric for
peculiar two-charge fuzzballs (but that can actually be extended to three-charge ones) known as
supertubes; in particular, we will deal with the NS5-P and NS5-F1 fuzzballs. The idea is to start from
an appropriate WZW model with target space G having signature (10, 2), and reduce down to the (9, 1)
signature of the coset G/H by means of two (null) gauge transformations, with H being the gauge group.
The action obtained by integrating out the gauge fields is the one of a string on background-metric
given by the decoupling limit of the supertube one. The advantage gained in using this procedure is
that the String Theory on G is exactly solvable, hence containing corrections otherwise invisible to the
supergravity approximation, and, once we know how to construct the correct coset G/H, we could in
principle implement such corrections in the supergravity metric. On that note, this thesis moves the
first steps towards connecting the geodesics in G/H to the ones in G. However, the principal result of
this work is the study of the motion of massless probes in different supertube backgrounds, showing that
the radii of trajectories orbiting around the black holes depend on parameters characterizing the specific
microstate at study. One of the reasons why the study of geodesics is interesting, is that it gives the
opportunity of studying how fuzzballs influence the spacetime around them, thus understanding their
absorption properties, and how these relate with the absorption properties of GR black holes, which
capture everything falling inside the event horizon. The end goal of this is to hopefully understand
how the geometry is influenced once the whole ensemble of microstates is considered. With respect
to this, some results from the last chapter seem to suggest the idea that, once the average over the
microstate ensemble forming the given black hole is performed, the absorption properties of the different
microstates come together to reproduce the result we expect from typical General Relativity black
holes: absorption of light getting too close to the hole.

Outline of the thesis

Chapter 1 briefly introduces the concepts of hypersurfaces, killing vectors, killing and event horizons
and surface gravity, as well as how the conserved charges and currents are related to a given
Killing vector. We then move to the presentation of some standard black holes solutions in
General Relativity: the Schwarzschild, Reissner-Nordström and finally Kerr black holes. Following
the brief review of the above black hole solutions, is the section introducing the concept of black
hole temperature in the special case of a Schwarzschild solution, immediately followed by the
introduction of the Bekenstein entropy, still in the case of Schwarzschild black hole. Ending the
chapter, after the enunciation of the four laws of black holes mechanics and a simple derivation of
the Hawking radiation emitted by a 1 + 1 dimensional Schwarzschild black hole, is a qualitative
discussion on the information paradox.

Chapter 2 is dedicated to the review of the String Theory tools that we will need in the subsequent
chapters. In closer detail, the chapter starts off with the discussion of bosonic string, moving from
the Nambu-Goto action, Polyakov action with the appropriate gauge fixing rules and boundary
conditions, to the introduction of lightcone coordinates and the presentation of the mode expansion
for both closed and open strings. Then, the lightcone quantization is carried out, which then
enables us to spend a few words on the spectrum of bosonic string theory, again for both closed
and open strings; in this context, an argument based on the representation of the Lorentz group for
the choice of the spacetime dimensionality in which the bosonic string theory lives is given. The
next section is dedicated to Conformal Field Theory, defining what a conformal transformation is,
to then concentrate on two-dimensional Conformal Field Theories, summarizing the main results
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as the stress-energy tensor in a Conformal Field Theory, operator product expansion and how
this, together with the stress-energy tensor, is related to the transformation of a given operator
under a generic conformal transformation. The section then ends with the introduction of the
Virasoro algebra and a concise discussion on the relationship between operators and states. In
the next section we then review how the background fields such as a general metric gµν , B field
and dilaton are introduced in the string theory. The second-to-last section is dedicated to the
Ramond-Neveu-Schwarz strings and, in particular, to the unveiling of their (massless) spectrum,
thus introducing the spectrum of Type IIB and IIA theories, and the stable D-branes they contain.
Finally, the last section comprises a discussion on T and S duality.

Chapter 3 presents some D-branes configurations that possess the trademarks of black holes. The first
of such solutions examined is the four-charge black hole in Type IIA supergravity, made up of three
D2 branes and one D6 brane. In particular, we give the metric produced by such an arrangement
of branes, and also hint as to how this solution is similar to the extremal Reissner-Nordström
from Chapter 1. The next solution considered is the three-charge black hole made up of three
M2 branes, the eleven-dimensional counterpart to the D2 branes of the previous hole. On top
of giving the metric produced by the chosen branes arrangement, along with the asymptotic
behaviours as done for the four-charge solution, in this case we compute the Bekenstein-Hawking
entropy associated with the three-charge hole. After a chain of T and S dualities, a microscopic
counting of the degrees of freedom of the three-charge hole is carried out, showing that the
entropy emerging from this counting precisely reproduces the Bekenstein-Hawking one. Ending
the chapter we have a section reviewing the fuzzball proposal. Following the introduction of the
general idea in the NS5-P frame, and a chain of T and S dualities, is the explicit computation of
a fuzzball metric for a circular profile in the D1-D5 picture.

Chapter 4 begins with a review of Wess-Zumino-Witten models, as these will be needed in the rest of
the chapter. The following section is then dedicated to computing the supergravity metric for a
circular array of NS5 branes in the so-called decoupling limit for the NS5 branes, to then examine
how the (transverse) supergravity metric for such a brane configuration can be retrieved from a
gauged Wess-Zumino-Witten model, introducing the model and the two gauge groups that are
required to achieve such a result. This procedure, meaning the introduction of an appropriate
gauge transformation in a Wess-Zumino-Witten model, is then generalized to the case of NS5-P
supertube and, through a T duality, to the case of the NS5-F1 supertube. Concluding the chapter
is a brief discussion on the decoupling limit and how it modifies the asymptotics for the NS5-F1
supertube.

Chapter 5 deals with the motion of massless probes in some supergravity backgrounds already met in
preceding chapters, except for the elliptical NS5-F1 supertube. The main focus is the study of
null paths that get captured in closed trajectories around the supertubes, thus mimicking what a
physical black hole is mostly known for: trapping light. In this context, the main result is the
computation of how such trajectories depend on some microstates-determining parameters, in
particular in for case of the elliptical NS5-F1 supertube. Furthermore, we also move the first
steps in the direction of connecting the geodesics on G/H with the ones on G.
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Chapter 1

Black holes review

In this chapter we present a brief review of the black-hole-solutions to Einstein’s equations in four
dimensional General Relativity (GR), following quite closely the treatment from [5] and [6].

1.1 Preliminary concepts

Before diving into the review of some black hole solutions, let us review some preliminary concepts.

1.1.1 Killing vectors

In GR, if the metric gµν admits a vector Kµ satisfying the so-called Killing’s equation, i.e.

∇µKν +∇νKµ = ∇(µKν) = 0, (1.1)

we say that the vector Kµ, known as Killing vector, generates a symmetry of the metric. The
corresponding conserved charge for a particle moving along a geodesic Xµ(λ), with λ proper, is

Q = Kµ(X(λ))pµ(λ), (1.2)

where pµ(λ) = dXµ(λ)
dλ .

If a metric admits a timelike Killing vector near infinity the metric is said to be stationary ; in
this case we can find coordinates such that K = ∂t and the metric components do not depend on
t. Furthermore, if K is also orthogonal to a family of hypersurfaces, the metric is said to be static.
Finally, a metric (expressed in appropriate coordinates) having Killing vector K = ∂ϕ is said to be
axisymmetric.

1.1.2 Event and Killing horizons

Given a smooth function f(x) of the spacetime coordinates xµ, a hypersurface Σ is defined by requiring
f(x) = const on Σ. We then define the tangent vector v = vµ∂µ to Σ so that vµ∂µf = 0, since f is
constant along the hypersurface, and the normal vector ξ = gµν∂νf∂µ.

Using the above definitions, we can group hypersurfaces into three categories: timelike hypersurfaces,
if ξ · ξ > 0, spacelike hypersurfaces, if ξ · ξ < 0 and null hypersurfaces if ξ · ξ = 0.

Event and Killing horizons are null hypersurfaces, so let us focus on the last case; let’s start with
event horizons. An event horizon is formally defined as the boundary of the causal past of future null
infinity, i.e. J−(I+), or, more intuitively, points “inside” the event horizon cannot communicate with
points at infinity. Looking at Figure 1.1, the gray region is J−(I+), while the inside of the horizon is
the white region.

If the tangent vector to the null hypersurface N is a Killing vector, N is addressed as Killing horizon
and, given a Killing horizon, we can always associate to it its surface gravity κ such that

∇µ(ξ · ξ) = −2κξµ on N . (1.3)

1
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I−

I+

i+

i−

i0

Singularity

Event horizon

Figure 1.1: Conformal diagram of an asymptotically flat metric containing a black hole. The event horizon
is represented by the dashed line, while the zigzag line is the singularity of the black hole. I± (i±) represent,
respectively, future and past null (timelike) infinity; finally i0 represent spacelike infinity. The gray region is
J−(I+), the white region is the inside of the horizon.

In terms of a scalar quantity, we can also write

κ2 = −1

2
∇µξν∇µξν on N . (1.4)

The reason why κ is addressed as “surface gravity” comes from considering a static, asymptotically flat
spacetime; here, indeed, κ is the acceleration of a static observer near the horizon, as measured by a
static observer at infinity.

We will later see that the surface gravity is also related to the Hawking temperature.

1.1.3 Conserved charges

We now review how to define charge, mass and spin in GR since these quantities characterize completely
a stationary black hole.

Electric charge is defined starting from Maxwell’s equations

∇νFνµ = −4πjµ, ∇[µFνρ] (1.5)

d⋆F = −4π⋆j, dF = 0. (1.6)

From the first relation of (1.6), we deduce that j is conserved (i.e. d⋆j = 0) hence, thanks to Stokes
theorem, we can define the electric charge on a spacelike hypersurface Σ as

Q =

∫︂
Σ
⋆j =

1

4π

∫︂
Σ
d⋆F =

1

4π

∫︂
∂Σ
⋆F. (1.7)

In four dimensions, introducing spherical coordinates on Σ, and indicating with S2
r the 2-sphere at fixed

radius r, we get

Q =
1

4π
lim
r→∞

∫︂
S2
r

⋆F. (1.8)

Other conserved charges are obtained starting from a Killing vector K, applying Bianchi’s identity
to said Killing vector and using Killing equation (1.1) as well as the definition of the Riemann tensor
[∇µ,∇ν ]V

ρ = RρσµνV σ. See [6] for further details. By this procedure we arrive at

⋆d⋆dK = 8πGj (1.9)

with

jµ = 2

(︃
Tµν −

1

2
gµνT

)︃
Kν . (1.10)

2
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The current j is conserved (as d⋆j = 0), hence we can obtain a conserved charge from its integration on
a hypersurface Σ as

QK = c

∫︂
Σ
⋆j =

c

8πG

∫︂
Σ
d⋆dK =

c

8πG

∫︂
∂Σ
⋆dK (1.11)

for some constant c; this is known as Komar integral.
Considering a stationary, asymptotically flat space, meaning a space for which a Killing vector

K = ∂t exists, we can define the Komar mass (or energy) as

MKomar = − 1

8πG
lim
r→∞

∫︂
S2
r

⋆dK. (1.12)

If the space is also axisymmetric, meaning if the space admits a Killing vector ˜︁K = ∂ϕ, with [ ˜︁K,K] = 0,
we can define the angular momentum

JKomar =
1

16πG
lim
r→∞

∫︂
S2
r

⋆d ˜︁K. (1.13)

1.2 Black holes in General Relativity

Now we move to presenting the most well-known black hole solutions to Einstein’s equations.
Starting from the action

ST =
1

16πG

∫︂
d4x

√
−gR+ SM , (1.14)

where the first term is the so-called Einstein-Hilbert action, with g being the determinant of the metric
gµν , and R being the Ricci scalar, we get, by the usual stationary-action principle, the famous Einstein’s
equation

Gµν = 8πGTµν . (1.15)

Here, Gµν is Einstein’s tensor defined as Gµν = Rµν − 1
2gµνR and Tµν is the energy-momentum tensor

of the matter fields defined by

Tµν = −2
1√
−g

δSM
δgµν

.

We now present the main black hole solutions to Einstein’s equations in 4d General Relativity
starting from the most famous of all: Schwarzschild’s solution.

1.2.1 Schwarzschild black hole

The spherically symmetric, vacuum solution of Einstein’s equations is the famous Schwarzschild metric;
in spherical coordinates {t, r, θ, ϕ} it is given by

ds2 = −
(︃
1− 2GM

r

)︃
dt2 +

(︃
1− 2GM

r

)︃−1

dr2 + r2dΩ2. (1.16)

The metric from (1.16) seems to possess two singularities: one at r = 0, and one at r = 2GM ≡ rs
where rs is known as Schwarzschild radius. Of the two, solely the former is a true singularity given that
the latter is just a coordinate one, as can be readily checked by computing the scalar curvature

R =
12r2s
r6

.

Actually, the surface at r = rs is the event horizon of the Schwarzschild black hole hence why, looking
again at Figure 1.1, which represent part of the conformal diagram for a Schwarzschild black hole,
once the purple line crosses the dashed line it cannot turn around and exit the horizon. Additionally,
given that the Schwarzschild metric, being stationary, has a Killing vector K = ∂t, and given that its
norm (equal to KµgµνK

ν = gtt) vanishes at r = rs, the event horizon is a Killing horizon as well. In
particular, the surface gravity is κ = 1

4GM .
Before moving on, we give a rule of thumb to determine the position of event horizons in stationary

metrics. The rule is this: just look at the values r∗ such that grr(r∗) = 0.
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1.2.2 Reissner-Nordström black hole

In the case where the energy momentum tensor from (1.15) is equal to the electromagnetic one, i.e.

Tµν = FµρF
ρ

ν − 1

4
gµνFρσF

ρσ,

with Fµν being the electromagnetic field strength, but we still have spherical symmetry, the most
general metric solving Einstein’s equations, now given by

Gµν = 8πG

(︃
FµρF

ρ
ν − 1

4
gµνFρσF

ρσ

)︃
,

is the Reissner-Nordström metric

ds2 = −∆dt2 +∆−1dr2 + r2dΩ2 with ∆ = 1− 2GM

r
+
G(Q2 + P 2)

r2
. (1.17)

In this case, we have that Q is the total electric charge of the black hole, while P is the total magnetic
one, which we will set to zero.

Using the rule of thumb from above, we see that the metric in (1.17) has event horizons where
∆(r) = 0, i.e. at

r = r± =MG±
√︁
M2G2 −GQ2 (1.18)

The condition for the existence of r± M2G ≥ Q2 generates three cases: non-extremal Reissner-Nordström
black hole, when M2G > Q2; extremal Reissner-Nordström black hole, when M2G = Q2 and finally
the case M2G < Q2. We will focus on the extremal case; for further details on all three cases see, for
instance, [5].

Setting M2G = Q2, r± end up coinciding, leading to a single event horizon and to the metric

ds2 = −
(︃
1− GM

r

)︃2

dt2 +

(︃
1− GM

r

)︃−2

dr2 + r2dΩ2. (1.19)

Now, changing coordinate from r to ρ = r −GM , we get

ds2 = −H−2(ρ)dt2 +H2(ρ)dρ2 + r2dΩ2, (1.20)

where
H = 1 +

GM

|x|
. (1.21)

It is possible to show that the only requirement on the function H to generate a metric of the form (1.20)
is to be such that ∆H = 0 with ∆ = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
; i.e. it should satisfy Laplace’s equation. This

means that the H(ρ) in (1.20) could also be given by superposing many solutions of the form (1.21)
resulting in

H = 1 +

N∑︂
i=1

GMi

|x− xi|
(1.22)

where at each point xi we have the insertion of Reissner-Nordström solution with mass Mi.
These kinds of solutions are only achievable in the extremal black hole case because the condition

GM2 = Q2 implies the balancing, in appropriate units, of gravitational and electric force so that the
black holes can form a stable configuration.

1.2.3 Kerr black hole

For this solution we are giving up spherical symmetry in favor of axial symmetry since we suppose the
black hole to be rotating with angular momentum J around a given axis. The metric takes the form

ds2 =−
(︃
1− 2GMr

ρ2

)︃
dt2 − 4GMar sin2 θ

ρ2
dtdϕ+

ρ2

∆
dr2

+ ρ2dθ2 +
sin2 θ

ρ2
(︁
(r2 + a2)2 − a2∆sin2 θ

)︁
dϕ2,

(1.23)
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r = 0

Stationary limit surface

Outer horizon

Inner horizon

Ergosphere

Figure 1.2: Near-horizon structure of Kerr’s metric. The gray region is the ergosphere. Inside it, no stationary
observer is allowed since t is spacelike there; specifically, you must move in the black hole’s rotation direction,
that is, ϕ’s direction. We then see both horizons and notice that the outer horizon coincides with the stationary
limit surface at the top and bottom of the ellipses (i.e. at θ = 0, π).

where ∆(r) = r2 − 2GMr + a2 and ρ2(r, θ) = r2 + a2 cos2 θ while a = J
M is the angular momentum per

unit of mass. The Kerr metric is both stationary, with K = ∂t, and axisymmetric, with ˜︁K = ∂ϕ, but is
not static, as K is not orthogonal to constant-t hypersurface.

The event horizons are again found via the rule given at the end of Section 1.2.1; this leads to
(restricting to GM > a)

r± = GM ±
√︁
G2M2 − a2. (1.24)

Now, as the norm of K = ∂t is different from zero at both r±, the two are not Killing horizons for K.
Actually, the radius at which K’s norm vanishes is given by the solution of the following equation

(r −GM)2 = G2M2 − a2 cos2 θ; (1.25)

One solution gives a surface sitting inside the inner horizon; we discard it. The other sits outside the
outer horizon (except at angles θ = 0, π where the two coincide) and goes under the name of stationary
limit surface because, inside it, no stationary observer is allowed since K becomes spacelike there. In
between the outer horizon and the stationary limit surface lays a region called ergosphere, see Figure 1.2.
Finally, using (1.2) with Killing vector ˜︁K for a freely falling photon, we get the angular velocity dϕ

dt of
the photon, as measured by a stationary observer; evaluating it then at r = r+, we find

ΩH =
a

r2+ + a2
. (1.26)

1.3 Black holes thermodynamics

1.3.1 Temperature

To define black hole’s temperature we start from the path integral

⟨f |e−
iH∆t

ℏ |i⟩ =

ϕ(tf )=φf∫︂
ϕ(ti)=φi

Dϕ e
i
ℏS[ϕ],

where ∆t = tf − ti and φi(f) is the initial (final) field configuration. After performing Wick’s rotation
t→ −iτ , we take the trace to obtain the partition function for a system at temperature T = ℏ

∆τ

Tr
(︂
e−

∆τH
ℏ

)︂
=

∫︂
dφ ⟨φ|e−

∆τH
ℏ |φ⟩ =

∫︂
dφ

ϕ(tf )=φ∫︂
ϕ(ti)=φ

Dϕ e−
SE[ϕ]

ℏ =

∫︂
Dϕ e−

SE[ϕ]

ℏ , (1.27)

with ϕ(τ) = ϕ(τ +∆τ) (i.e. bosonic field), and SE being the euclidean action.
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From this construction we learn that a system with a periodic (imaginary) time coordinate has an
equilibrium temperature equal to T ; with this knowledge we look at Schwarzschild’s metric (1.16) with
t = −iτ and ρ2

4rs
= r − rs

ds2E =
ρ2

4rrs
dτ2 +

r

rs
dρ2 + r2dΩ2 ≈ ρ2

4r2s
dτ2 + dρ2 + r2sdΩ

2 = dρ2 + ρ2d(τκ)2 + r2sdΩ
2, (1.28)

where in the second-to-last step we expanded for r ≈ rs and κ = 1
2rs

is Schwarzschild’s metric surface
gravity. Assigning periodic conditions to τκ, so as to reproduce R2 = dρ2+ρ2d(τκ)2, τ acquires periodic
conditions τ ∼ τ + 2π

κ , and thus, by the above argument, the black hole has equilibrium temperature

T =
ℏ
∆τ

=
ℏκ
2π
, (1.29)

where ℏκ
2π is known as Hawking temperature.

Although the argument given above was specialized to Schwarzschild’s metric, and does indeed
seem “hand waving”, it is possible to reach the same conclusion by considering the radiation emitted by
black holes due particle-antiparticle pairs creation at the horizon. Indeed, Hawking showed in [7] that
the emitted radiation makes the black hole behave as if it was a hot body at temperature T = ℏκ

2π (we
will see this in a simplified scenario in Section 1.4).

1.3.2 Entropy

The entropy of black hole can be derived from the thermodynamic relation dE = TdS with E =M ,
the black hole’s mass. Again, considering Schwarzschild’s black hole, we have

dS

dM
=

1

T
=

2π

ℏκ
=

8πGM

ℏ
⇒ S =

πr2s
Gℏ

=
A

4Gℏ
, (1.30)

where A is the horizon’s area.
The idea that black holes should carry an entropy was first introduced by Bekenstein [8]; he argued

that since once matter has fallen inside a black hole it is inaccessible to an external observer, the
entropy the matter carried has either disappeared inside the black hole, thus violating the second law
of thermodynamics, or else it increased the black hole’s own entropy. Furthermore, he argued that
the black hole’s entropy should be proportional to the area of hole’s horizon, given that this cannot
decrease by Hawking’s area theorem [9], just as the entropy in thermodynamic’s second law.

1.3.3 Black holes mechanics

The analogies between thermodynamics and black holes do not end here, and indeed we can formulate
four laws of black hole’s mechanics [10].

Generalized second law. The sum of ordinary entropy outside a black hole and the total black hole
entropy never decreases.

Zeroth law. The surface gravity is constant over a Killing horizon. In this definition the surface gravity
plays the same role the temperature plays in the zeroth thermodynamic’s law, where the temperature
of a body at thermal equilibrium is constant in time.

First law. Two stationary black hole’s states, one with mass M , angular momentum J and charge Q,
and the other with mass M + dM , angular momentum J + dJ and charge Q+ dQ are related by

dM =
κ

8π
dA+ΩHdJ +ΦHdQ (1.31)

where A is the horizon’s area and ΦH is the electric potential.

Third law. It is impossible by any procedure, no matter how idealized, to reduce κ to zero by a finite
sequence of operations. This law mimics thermodynamic’s third law which states that for a thermal
system it is impossible to reach zero temperature in a finite number of steps.
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1.4 Hawking radiation

In this treatment we follow [11].
Consider once again Schwarzschild’s metric (1.16) and introduce what are known as null Kruskal

coordinates U and V such that

ds2 = −4rs
r
e−

r
rs dUdV + r2dΩ2

2 with UV = rs(rs − r)e
r
rs ,

U

V
= −e

r
rs . (1.32)

It is well known that the asymptotic observer, using the coordinates in (1.16) to describe the metric,
will not see an infalling one crossing the horizon, while the infalling observer crosses the horizon in a
finite proper time τ . Actually, the relation between the time t used by the asymptotic observer and the
proper time of the infalling one, is

dτ ∝ e−
t
rs dt.

Hence, a small interval in τ is perceived as a much longer time interval in t.
The discrepancy between the two time coordinates translates in different field expansions for the

asymptotic and infalling observer: the asymptotic one will expand any field in the t-frequency ω, whereas
the infalling in the τ -frequency ν. Furthermore, given the relation between t and τ , a given frequency
ω, detected by the asymptotic observer, will be much higher when measured using the ν frequency; just
a manifestation of red-shift. Because of this, given that the metric changes with characteristic time r−1

s ,
and that the energy modes in ν are very energetic, thanks to the adiabatic principle1, we can say to
high accuracy e−O(νrs) that these modes will not be excited; i.e. the infalling observer will not see them.

To make this reasoning more quantitative, consider reducing to a 1 + 1 dimensional Schwarzschild
metric by neglecting the dΩ2

2 factor in (1.16) thus obtaining

ds2 = −
(︃
1− rs

r

)︃
dt2 +

(︃
1− rs

r

)︃−1

dr2

= −−
(︃
1− rs

r

)︃
dudv

= −4rs
r
e−

r
rs dUdV.

(1.33)

Where

u = t− r∗ = −2rs ln

(︃
−U
rs

)︃
, v = t+ r∗ = 2rs ln

(︃
V

rs

)︃
with r∗ = r + rs ln(r − rs) (1.34)

are the null coordinates for the asymptotic observer.
Having solved the correct Klein-Gordon equation for a field ϕ, we can split it into a right-moving

(left-moving) field ϕR(L), where the right-moving component will be outgoing with respect to the black
hole and be a function of either u or U , while the left-moving one will be ingoing and be a function of
either v or V . We can then Fourier-expand ϕR as

ϕR =

∫︂ ∞

0

dν

2π
√
2ν

(︁
aνe

−iνU + a†νe
iνU
)︁
=

∫︂ ∞

0

dω

2π
√
2ω

(︁
bωe

−iωu + b†ωe
iωu
)︁
, (1.35)

where [aν , a
†
ν′ ] = 2πδ(ν − ν ′), [aν , aν′ ] = 0, [a†ν , a†ν′ ] = 0 and similarly for bω and b†ω.

It is possible to express bω in terms of aν and a†ν by means of the Bogoliubov coefficients

αων =

√︃
ω

ν

∫︂
du eiωu−iνU = 2rs

√︃
ω

ν
(rsν)

2irsωeπrsωΓ(−2irsω) (1.36)

βων =

√︃
ω

ν

∫︂
du eiωu+iνU = 2rs

√︃
ω

ν
(rsν)

2irsωe−πrsωΓ(−2irsω),

1The adiabatic principle tells us that if the Hamiltonian for a quantum system is changing slowly compared to the
spacing between levels, then the probability for the system to become excited is exponentially small.
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as
bω =

∫︂ ∞

0

dν

2π
(αωνaν + βωνa

†
ν). (1.37)

From here, exploiting the adiabatic principle to deduce aν |ψ⟩ = 0, we get

⟨ψ|b†ωbω′ |ψ⟩ =
∫︂
dν

2π

∫︂
dν ′

2π
β∗ωνβω′ν′ ⟨ψ|aνa†ν′ |ψ⟩ =

∫︂
dν

2π
β∗ωνβω′ν

(1.36)
=

√
ωω′4r2s(rsν)

2irs(ω′−ω)e−πrs(ω
′+ω)Γ∗(−2irsω)Γ(−2irsω

′)I,

(1.38)

where
I =

∫︂ ∞

0

dν

2πν
ν2irs(ω

′−ω) =
δ(ω′ − ω)

2rs
. (1.39)

Substituting (1.39) inside (1.38), and using

|Γ(iy)|2 = π

y sin(πy)
with y ∈ R,

we finally find

⟨ψ|b†ωbω′ |ψ⟩ = 2πδ(ω′ − ω)

e
ℏω
TH − 1

(1.40)

with TH being Hawking temperature (1.29).
Hence, even though the state |ψ⟩ is the vacuum for the infalling observer (aν |ψ⟩ = 0), and so he

sees empty space around him, the asymptotic observer sees the black hole producing radiation as a
hot body at temperature TH , the Hawking temperature of the black hole. This radiation is known as
Hawking radiation [9].

1.5 Information paradox

In this section we give a brief and qualitative description of the information paradox; for a more in-depth
look at [12].

The information paradox was introduced by Hawking in [13]; the idea at its basis is that when a
pair of particles is created by vacuum fluctuations near the horizon one of the two particles is generated
inside the horizon while the other escapes to infinity. Looking again at the discussion from the previous
section, it is possible to show that the particle inside the black hole has negative energy2 (see [11]
and references therein for the details), while the one escaping to infinity has positive energy, thus
preserving energy conservation: the black hole “eats” a particle of energy −E and “spits out” a particle
of energy E. The two particles are entangled, so as more and more pairs are created, the entanglement
entropy increases; e.g. consider having n EPR pairs and throwing one particle from each pair inside
a black hole. Since we started from a pure state (the sum of n EPR pairs) |ϕ⟩ with density matrix
ρi = |ϕ⟩ ⟨ϕ|, the entropy is initially Si = 0 and with entanglement entropy3 SE = n log 2; however, once
we have thrown in half of the particles, and the black hole has evaporated, what we are left with is
a mixed state with density matrix ρf given by the partial trace over the in fallen particles of ρi and
entropy Sf = −Tr(ρf log(ρf )). But this is exactly the definition of the entanglement entropy, and so
Sf ≡ SE = n log 2. This means that we started from a pure state ρi and ended up, after the black hole
has completely evaporated, with a mixed state ρf ; a clear violation of unitarity.

What makes this process different from any other burning (or evaporation) process is the presence
of the horizon and the hypothesis that beyond it only empty space resides, with all the matter being
concentrated at the singularity. Indeed, if you consider a burning coal, the radiation it emits is causally

2We do not need to worry about the negative energy: energy is the conserved charge of the appropriate Killing vector
that, outside the horizon, is timelike, while inside is spacelike; hence what was energy outside the horizon is momentum
inside it.

3Recall that the definition of entanglement entropy for a system made by two subsystems A and B with density matrix
ρAB , is SE = −Tr(ρA log(ρA)), where ρA = TrB ρAB and TrB is the partial trace over subsystem B. In particular, the
entanglement entropy of a single EPR pair is log 2.
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connected with the surface of the coal, thus “transporting information” away from the coal. This is
impossible in the case of the black hole, because everything inside the horizon is causally disconnected
from anything outside.

9



Chapter 2

String theory review

In this chapter we introduce the concepts that are needed in the subsequent material. Further details
on what follows can be found, for instance, in [11], [14] and [15], which are also the references we follow
in this chapter.

From here on ℏ = c = 1.

2.1 Bosonic string

Our aim is to study the motion of a string in a flat, D-dimensional manifold with metric given
by ηµν = diag(−1, 1, . . . , 1). Moving in time, the string sweeps a two-dimensional surface in the
D-dimensional Minkowski space we are considering; this surface, parametrized by two parameters, a
timelike one, τ , and a spacelike one, σ, is known as worldsheet and is given by functions Xµ(τ, σ). For
brevity’s sake, in the following, we are going to refer to both parameters by the condensed notation
σα = (τ, σ) with α = 0, 1.

In the brief review that follows, we will meet two kinds of strings: closed strings, for which σ ∈ [0, 2π)
and Xµ satisfy Xµ(τ, σ) = Xµ(τ, σ + 2π), and open strings, for which σ ∈ [0, π] with no periodic
boundary conditions on Xµ(τ, σ).

2.1.1 The Nambu-Goto action

The appropriate action to describe the motion of the string is Nambu-Goto’s one, a generalization
of Special Relativity’s single particle action. There, the single-particle action is proportional to the
worldline’s length, so, in the case of the string, we expect the appropriate action to be proportional to
the worldsheet’s area, and indeed so is the Nambu-Goto action. It is given by

SNG = −T
∫︂
d2σ
√︁
−det γ, (2.1)

where

γαβ =
∂Xµ

∂σα
∂Xν

∂σβ
ηµν (2.2)

is the metric induced on the worldsheet by the pull-back of Minkowski’s one. In the above (2.1) T
represents the string tension and is usually written as

T =
1

2πα′ =
1

2πl2s
(2.3)

where α′ is known as universal Regge slope that, having dimension of (length)2, is also renamed l2s , with
ls being the string length.
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Figure 2.1: Action of a Weyl transformation. It changes the lengths but not the angles. Image from [15].

2.1.2 The Polyakov action

Due to the presence of the square root in the Nambu-Goto action, it is difficult to quantize it. Fortunately,
there is an equivalent action, the Polyakov action, that can be quantized with path integral techniques;
this is given by

S = − 1

4πα′

∫︂
d2σ

√
−ggαβ∂αXµ∂βX

νηµν , (2.4)

where gαβ is a new field. Its equations of motion are polynomial, hence their solutions are easy to find
and are given by

gαβ = 2f(τ, σ)∂αX · ∂βX with f(τ, σ) = (gρσ∂ρX · ∂σX)−1; (2.5)

that is, gαβ differs from γαβ by the f factor. Even though this may seem to hinder the equivalence
between Nambu-Goto’s and Polyakov’s action, inserting this solution in (2.4) we have a factor f coming
from

√
−g and a factor f−1 from gαβ , hence the two simplify and the f drops out completely from the

Polyakov action, that thus results equivalent to the Nambu-Goto one. This is not accidental because
Polyakov’s action enjoys, on top of the usual Poincaré and reparametrization symmetry, a new kind of
symmetry that goes under the name of Weyl symmetry. Its action is to send

gαβ(σ) → Ω2(σ)gαβ(σ),

for any given1 Ω2(σ). The action of such (gauge, since it depends on σ) symmetry is to leave the angles
unchanged while, at the same time, locally changing the distances between points; see Figure 2.1 for a
cartoon.

2.1.3 Gauge fixing

Using the two gauge symmetries possessed by Polyakov’s action (namely reparametrization and Weyl
symmetry), we can turn gαβ into the flat metric2 ηαβ = diag(−1, 1) and, inserting this metric in (2.4),
and computing the equations of motion for Xµ, we get

∂α(
√
−ggαβ∂βXµ)

⃓⃓⃓
gαβ=ηαβ

= 0 ⇒ ∂α∂αX
µ = 0. (2.6)

The equations of motion for the gαβ in (2.5), now that we have fixed gαβ through gauge fixing, become
constraints to be satisfied. Actually, since they are obtained from the variation of the action with
respect to the metric, they also give (something proportional to) the stress-energy tensor Tαβ that, in
the flat-metric gauge, is given by

Tαβ = ∂αX
µ∂βXµ −

1

2
ηαβX

µXµ, (2.7)

and that, in light of (2.5), must satisfy Tαβ = 0. These constraints translate into (here and in the
following Ẋ ≡ ∂τX and X ′ ≡ ∂σX)

T01 = Ẋ ·X ′ = 0

T00 = T11 =
1

2
(Ẋ

2
+X ′2) = 0.

(2.8)

1Here (and in the following) we write f(σ) to indicate f(τ, σ).
2This is only possible if there is no topological obstruction.
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2.1.4 Boundary conditions

When we vary Polyakov’s action in the flat metric gauge, i.e. when we vary the action

S = − 1

4πα′

∫︂
d2σ∂αX · ∂αX, (2.9)

with respect to Xµ to obtain their equation of motion, we get the boundary term

− 1

2πα′

∫︂
dτ
(︁
X ′
µδX

µ
⃓⃓
σ=π

−X ′
µδX

µ
⃓⃓
σ=0

)︁
.

(Note that we specialized to the case of open strings because, in the case of closed strings, thanks to
the periodic boundary conditions3 Xµ(τ, σ) = Xµ(τ, σ + 2π), that must be satisfied by the δXµs as
well, the boundary term vanishes automatically). This term vanishes in two cases

1. Neumann boundary conditions. In this case we require that the momentum’s component normal
to the worldsheet’s boundary vanishes, namely

∂σX
µ = 0 at σ = 0, π. (2.10)

2. Dirichlet boundary conditions. In this case we require that the string’s ends stay fixed at some
point, meaning

Xµ(τ, 0) = Xµ
0 and Xµ(τ, π) = Xµ

π (2.11)

Let’s now consider Dirichlet boundary conditions for some coordinates and Neumann for the others,
i.e.4

∂σX
a = 0 for a = 0, . . . , p

XI = cI for I = p+ 1, . . . , D
(2.12)

These conditions break the Lorentz group SO(1, D − 1) → SO(1, p) × SO(D − p − 1) (and indeed,
because of this, Dirichlet boundary conditions have not been so popular among physicist for a period of
time), but at the same time generate a special hypersurface: the one on which the endpoints of the
string are fixed. This hypersurface is usually referred to as Dp-brane (or simply D-brane), where D
stands for Dirichlet, while p is the number of spatial dimensions of the brane.

As a final remark, we will not consider the case where Dirichlet boundary conditions are applied to
X0 as this would give birth to something called instantons.

2.1.5 Lightcone coordinates and modes expansion

We can now solve the equations of motion for Xµ (2.6) by introducing the so-called lightcone coordinates
σ± = τ ± σ in which the worldsheet metric is ds2 = −dσ+dσ−. In these coordinates X’s equations of
motion read ∂+∂−Xµ = 0 and admit the general solution

Xµ(τ, σ) = Xµ
L(σ

+) +Xµ
R(σ

−)

where R stands for right-moving while L stands for left-moving. Using this form for the Xµ fields, plus
the newly introduced lightcone coordinates, we can express the constraints (2.8) as

(∂+X
µ)2 = (∂−X

µ)2 = 0, (2.13)

where
∂−X

µ = ∂−X
µ
R and ∂+X

µ = ∂+X
µ
L .

Furthermore, we can express the left- and right- component fields in terms of Fourier modes. Let us
split the discussion on Fourier modes into the closed and open string cases; we first focus on the case of
closed strings.

3In the case of closed strings the boundary term would be − 1
2πα′

∫︁
dτ

(︁
X ′
µδX

µ
⃓⃓
σ=2π

−X ′
µδX

µ
⃓⃓
σ=0

)︁
.

4In comparison to (2.11), here we have XI
0 = XI

π

12



2.1. Bosonic string 2. String theory review

Closed strings

In this case, the two components admit the mode expansion given by

Xµ
R(σ

−) =
1

2
xµ +

1

2
α′pµσ− + i

√︃
α′

2

∑︂
n̸=0

1

n
αµne

−inσ−
,

Xµ
L(σ

+) =
1

2
xµ +

1

2
α′pµσ+ + i

√︃
α′

2

∑︂
n̸=0

1

n
α̃µne

−inσ+
,

(2.14)

where xµ is the center-of-mass position and pµ is the string’s total momentum. Because of the term
linear in sigma in both Xµ

R and Xµ
L , only the sum of them satisfies the closed-string periodic boundary

conditions. Moreover, the reality condition for Xµ translates into

αµn = (αµ−n)
∗ and α̃µn = (α̃µ−n)

∗. (2.15)

In terms of Fourier modes, the constraints (2.13) become

(∂−X)2 =
α′

2

∑︂
m,p

αm · αpe−i(m+p)σ−
=
α′

2

∑︂
m,n

αm · αn−me−inσ
− ≡ α′

∑︂
n

Lne
−inσ−

, (2.16)

where we introduced the mode αµ0 ≡
√︂

α′

2 p
µ and the Virasoro generators

Ln ≡ 1

2

∑︂
m

αn−m · αm. (2.17)

The same discussion applies to the modes α̃µn for which we have α̃µ0 ≡ αµ0 and

L̃n =
1

2

∑︂
m

α̃n−m · α̃m.

Open strings

In the case of open strings, the mode expansion of the right- and left- components is given by

Xµ
R(σ

−) =
1

2
xµ + α′pµσ− + i

√︃
α′

2

∑︂
n̸=0

1

n
αµne

−inσ−
,

Xµ
L(σ

+) =
1

2
xµ + α′pµσ+ + i

√︃
α′

2

∑︂
n̸=0

1

n
α̃µne

−inσ+
,

(2.18)

where the missing factor of 1
2 in front of pµ compared to (2.14) is to retain the definition of pµ as the

string’s spacetime momentum when σ ∈ [0, π].
Thanks to either Neumann’s or Dirichlet’s boundary conditions we only have one set of oscillator

modes. Indeed, to meet Neumann’s boundary conditions ∂σXa = 0 at σ = 0, π, the Fourier modes
must be such that

αan = α̃an

while, for Dirichlet’s boundary conditions XI = cI , we must require that

xI = cI , pI = 0, αIn = −α̃In.

For open strings the zero mode is αµ0 =
√
2α′pµ

13



2.1. Bosonic string 2. String theory review

2.1.6 Lightcone gauge quantization

Having a gauge theory in our hands, and wishing to quantize it, we could follow different strategies:
either quantize the theory with all its gauge freedom kept intact, to then impose the constraints dictated
by gauge fixing directly on the physical states of the theory (this is what is done in Gubta-Bleuler
quantization of QED); or determine the physical states at the classical level by imposing all constraints
to then quantize just the physical degrees of freedom. This latter option is the one we will choose for
the time being, and it goes under the name of lightcone quantization. There is also a third possibility:
BRST quantization. We initially focus on the closed-string case to later quote the results for open
strings as well.

In Section 2.1.3 we fixed the gauge freedom by setting the worldsheet metric equal to ηαβ ; however
this is not the end of the story. Indeed, since we have two gauge transformation in our gauge-shed, we
could always design a coordinate change σ → σ̃(σ) such that

ηαβ → Ω2(σ)ηαβ, (2.19)

and then reabsorb the Ω2(σ) with a Weyl transformation. In terms of lightcone coordinates, wherein
the worldsheet metric takes the form ds2 = −dσ+dσ−, the transformations realizing (2.19) are simply
those for which

σ+ → σ̃+(σ+) and σ− → σ̃−(σ−); (2.20)

hence these represent the residual gauge freedom we have yet to fix. It turns out that the best way to
fix this residual gauge freedom is to choose spacetime coordinates “adapted” to the lightcone ones used
in the worldsheet. These are given by

X± =
1√
2

(︁
X0 ±XD−1

)︁
(2.21)

while leaving the other D−2 fields untouched; in these, the spacetime Minkowski metric then transforms
into

ds2 = −2dX+dX− +
D−2∑︂
i=1

dXidXi. (2.22)

We can now use the freedom from (2.20), and thus at the same time fixing once and for all the
gauge freedom, by choosing coordinates in which the solution to the equations of motions for X+ =
X+

L (σ+) +X+
R (σ−) such that

X+
L =

1

2
x+ +

1

2
α′p+σ+ and X+

R =
1

2
x+ +

1

2
α′p+σ− ⇒ X+ = x+ + α′p+τ. (2.23)

Solving for X− is particularly easy in the lightcone gauge and using the ansatz X− = X−
L (σ+) +

X−
R (σ+): it suffices to employ the constraints (2.13) and the solution for X+ (2.23) to get

∂+X
−
L =

1

α′p+

D−2∑︂
i=1

∂+X
i∂+X

i and ∂−X
−
R =

1

α′p+

D−2∑︂
i=1

∂−X
i∂−X

i, (2.24)

which, in terms of the mode expansion (2.14), implies

α−
n =

1√
2α′p+

+∞∑︂
m=−∞

D−2∑︂
i=2

αin−mα
i
m and

α′p−

2
=

1

2p+

D−2∑︂
i=1

(︃
1

2
α′pipi +

∑︂
n̸=0

αinα
i
−n

)︃
(2.25)

and similarly for the α̃−
n modes. This means that, up to an integration constant represented by x− in

the mode expansion of X−, we can fully determine X− starting from the fields in the i = 1, . . . , D − 2
transverse directions. Employing that the momentum p− can be determined both in terms of the modes
α and α̃, the classical mass of the string is

M2 = −pµpµ =
4

α′

D−2∑︂
i=1

∑︂
n>0

αi−nα
i
n =

4

α′

D−2∑︂
i=1

∑︂
n>0

α̃i−nα̃
i
n. (2.26)

14



2.1. Bosonic string 2. String theory review

To summarize, the physical solution is parametrized in terms of 2(D − 2) transverse oscillators
modes αin and α̃in, along with the other parameters xi, pi, p+ and x−.

Now, we quantize the physical degrees of freedom; to do this we must impose the commutation
relations

[xi, pi] = iδij , [x−, p+] = −i, [αin, α
j
m] = [α̃in, α̃

j
m] = nδijδn+m,0. (2.27)

From these relations, we see that the oscillator modes αin and αi−n have (up to a renormalization such
as αin → n−1/2αin) the same commutation relations a pair of creation and annihilation operators would
have if we took αin to be the annihilation operator for n > 0 and the creation one for n < 0.

Obtaining the on-shell condition (2.26) starting from the definition of p− in terms of the oscillator
modes in (2.25) (and similarly in terms of α̃), is a tad more challenging since now the modes are
operators satisfying non-trivial commutation relation. The usual definition for a product of operators is
to use the normal ordering that, in this case, produces a term that was not there at the classical level
(we indicate the normal ordering by : :)

M2 =
4

α′

(︄
D−2∑︂
i=1

∑︂
n>0

:αi−nα
i
n: +

(D − 2)

2

∑︂
n>0

n

)︄
=

4

α′

(︄
D−2∑︂
i=1

∑︂
n>0

:α̃i−nα̃
i
n: +

(D − 2)

2

∑︂
n>0

n

)︄
, (2.28)

or, in terms of the number operators of the harmonic oscillator (to be precise, these are not the number
operators because the oscillators modes are not normalized to be creation and annihilation operators)

N =
D−2∑︂
i=1

∑︂
n>0

αi−nα
i
n and ˜︁N =

D−2∑︂
i=1

∑︂
n>0

α̃i−nα̃
i
n, (2.29)

as

M2 =
4

α′

(︄
N +

D − 2

2

∑︂
n>0

n

)︄
=

4

α′

(︄ ˜︁N +
D − 2

2

∑︂
n>0

n

)︄
. (2.30)

The new term, namely the divergent sum
∑︁

n>0 n, can be seen to be equal to −1/12, hence we have

M2 =
4

α′

(︃
N − D − 2

24

)︃
=

4

α′

(︃ ˜︁N − D − 2

24

)︃
. (2.31)

This last condition, along with all the other forms of it, is also known as level matching condition, the
reason being that it requires the same excitations number in both the right- and left- moving oscillators.
Through this condition we can determine the spectrum of the theory; but before doing this a few results
about the open string case.

Suppose the ends of the open string are confined on a Dp brane, hence we will have Neumann
boundary conditions for Xa with a = 0, . . . , p and Dirichlet ones for the remaining components XI

with I = p+ 1, . . . , D. As we already saw in Section 2.1.5, this implies that xI and pI are already fixed;
so the non-trivial quantization is necessary just for xa, pa and αµn. In this case the lightcone coordinates
are chosen as

X± =
1√
2

(︁
X0 ±Xp

)︁
. (2.32)

The quantization now follows the same procedure as for closed strings. Another difference emerges once
we arrive at the mass-shell condition which reads

M2 =
1

α′

(︄
p−1∑︂
i=1

∑︂
n>0

αi−nα
i
n +

D−1∑︂
i=p+1

∑︂
n>0

αi−nα
i
n − a

)︄
(2.33)

with a = D−2
2 .

Now, back to the spectrum of closed strings.

2.1.7 String spectrum

The foundation of the Hilbert space is the vacuum state |0; p⟩, where 0 refers to the lack of stringy
excitations, and p is the momentum operator’s eigenvalue.
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The Tachyon

The first excited state is the one in which no oscillator is excited, resulting in N = 0 = ˜︁N and with
a negative mass that can be read off of (2.31). This state is known as tachyon. It is a problem for
bosonic string theory that will actually get resolved once fermions are introduced.

The first excited state

The next level is for N = ˜︁N = 1, which means acting with one creation operator αj−1 and, because of
the level-matching condition, with an α̃i−1 operator as well. The (D − 2)2 states we obtain are

α̃i−1α
j
−1 |0; p⟩ (2.34)

having mass

M2 =
4

α′

(︃
1− D − 2

24

)︃
. (2.35)

The problematic aspect of these states is how to precisely fit them into some representation of the
full Lorentz group SO(1, D − 1), because the operators αi and α̃i both sit in the vector representation
of SO(D − 2) and, from Wigner’s classification of representations of the Poincaré group, we know
that massive particles, whose momentum can be set to be pµ = (p, 0, . . . , 0), transform under the
group of spatial rotations SO(D − 1) while massless particles, whose momentum can be set to be
pµ = (p, 0, . . . , 0, p), sit in a representation of SO(D− 2). There is no way of fitting the (D− 2)2 states
into a representation of SO(D − 1), so our only hope if we want to fit these states in representation of
the Lorentz group is for them to be massless which then, looking at (2.35), occurs only if

D = 26; (2.36)

this is the critical dimension. Only a spacetime with this dimension will preserve Lorentz symmetry.
The states (2.34) then fill out a 24⊗ 24 representation of SO(24) that can be decomposed into three
irreducible representations

traceless symmetric ⊕ antisymmetric ⊕ singlet=(trace) (2.37)

The tensors associated with each of these three representations are then a symmetric tensor Gµν(X),
being the field of the graviton, an antisymmetric tensor Bµν(X), known as Kalb-Ramon field and a
scalar field Φ(X) known as dilaton.

Higher excited states

We just mention that once D = 26 has been selected, it is actually possible to show that all higher
excited states fit into SO(D − 1) representations; i.e. they represent massive particles.

Open strings’ spectrum

For open strings as well, the choice of D = 26 suffices to maintain Lorentz invariance intact; and the
similarities do not end here. Indeed, the lowest-lying state, i.e. the one for which

N =

p−1∑︂
i=1

∑︂
n>0

αi−nα
i
n +

D−1∑︂
i=p+1

∑︂
n>0

αi−nα
i
n (2.38)

is equal to zero, is again a tachyon, meaning a state with negative mass. Instead, the first excited states
for N = 1 are massless and can either

• be generated by the application of αa−1 for a = 1, . . . , p− 1 to |0; p⟩. These states are the quanta
of a spin-1, massless gauge-field Aa living on the brane;

• be generated by the application of αI−1 for I = p+ 1, . . . , D − 1 to |0; p⟩. For each I these are
the states of a scalar field ϕI living on the brane and can be interpreted as representing the
oscillations of the brane in the I directions.
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2.2. Conformal Field Theory 2. String theory review

2.2 Conformal Field Theory

In this section we continue studying the worldsheet theory using (and introducing) techniques from
two-dimensional Conformal Field Theory (CFT for short). As usual, we will give a quite concise
treatment of the matter, referring the reader to the references mentioned at the beginning of the chapter
for a more in-depth discussion on what is about to follow.

2.2.1 Conformal transformations

For starters, with conformal transformation it is intended a transformation leaving the angles unchanged
while, at the same, altering the length of things. For this to be the case, the transformation σα → σ̃α(σ)
must act on the metric as

gµν(σ) → Ω2(σ)gµν(σ). (2.39)

A CFT then is nothing more than a field theory that is invariant under conformal transformations.
Since we will deal with the worldsheet theory, this means that we will restrict to the case of

two-dimensional CFT. Furthermore, in the context of worldsheet theory, we will restrict ourselves to
the case in which the worldsheet metric has euclidean signature, corresponding to choosing worldsheet
coordinates (σ1, σ2) = (σ1, iσ0), that are later used to define the complex coordinates

z = σ1 + iσ2 and z̄ = σ1 − iσ2. (2.40)

In terms of z and z̄, we define the holomorphic derivatives

∂z ≡ ∂ =
1

2
(∂1 − i∂2) and ∂z̄ ≡ ∂̄ =

1

2
(∂1 + i∂2) (2.41)

and the components of vectors

V z = V 1 + iV 2, V z̄ = V 1 − iV 2, Vz =
1

2
(V 1 − iV 2), Vz̄ =

1

2
(V 1 + iV 2) (2.42)

where the indices are raised and lowered with the metric

gzz̄ = gz̄z =
1

2
, gzz = gz̄z̄ = 0; gzz̄ = gz̄z = 2, gzz = gz̄z̄ = 0 (2.43)

meaning that the line element consequently being equal to

ds2 = (dσ1)2 + (dσ2)2 = dzdz̄. (2.44)

Using these definitions the volume element is d2z = 2dσ1dσ2, implying that the delta function in the
complex coordinates, giving

∫︁
d2δ(z, z̄) = 1, and the one in the σ coordinates, giving

∫︁
dσ1dσ2δ(σ) = 1

are related to one another by a factor 2.
Looking again at (2.44), and comparing it to (2.39), i.e. the general change of the metric under

a conformal transformation, we notice that such transformation is realized by coordinate changes
such that z → f(z) and equally for z̄; meaning that, in terms of complex coordinates, the conformal
transformations are those generated by holomorphic (and antiholomorphic) functions. Looking at
infinitesimal (anti)holomorphic coordinate transformations, it is possible to show that their generators
are

ℓn = −zn+1∂ and ℓ̄n = −z̄n+1∂̄ (2.45)

and that they satisfy the algebra

[ℓm, ℓn] = (m− n)ℓm+n and [ℓ̄m, ℓ̄n] = (m− n)ℓ̄m+n, (2.46)

while [ℓm, ℓ̄n] = 0.
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2.2.2 Stress-energy tensor in classical CFT

In a CFT, the stress-energy tensor Tαβ , that we define in the following way,

Tαβ = −4πα′
√
g

δS

δgαβ
(2.47)

has the important property of being traceless as a consequence of the action’s invariance under a scale
transformation. In complex coordinates, the tracelessness condition reads Tzz̄ = Tz̄z = 0; and combining
this with the conservation equation ∂αTαβ = 0 gives

∂Tz̄z̄ = 0 ⇒ Tz̄z̄ ≡ T̄ (z̄) and ∂̄Tzz = 0 ⇒ Tzz ≡ T (z) (2.48)

meaning that T (z) (T̄ (z̄)) is a holomorphic (antiholomorphic) function.
Actually, the stress-energy tensors enters the conserved currents generated by general holomorphic

and antiholomorphic coordinate transformations. Indeed, considering a given infinitesimal coordinate
change such as z′ = z + ϵ(z) and z̄′ = z̄ + ϵ̄(z̄) it is possible to show that the conserved currents
correlated with these transformations are

δz =ϵ(z) and δz̄ = 0 : Jz = 0, J z̄ = T (z)ϵ(z);

δz̄ =ϵ̄(z̄) and δz = 0 : J̄
z
= T̄ (z̄)ϵ̄(z̄), J̄

z̄
= 0,

(2.49)

thus J is holomorphic and J̄ is antiholomorphic.

2.2.3 Operator Product Expansion

In CFT the word field (or local operator) refers to any local combination we can write down; so if a
theory contains a scalar field ϕ(z, z̄), then ϕ itself will be a field, along with all of its derivatives, and
combinations of them. Even eϕ will be a field. Furthermore, fields in CFTs are characterized by their
weights h and h̃, meaning numbers determining the transformation properties of a given field ϕ under
z → w(z) and its antiholomorphic counterpart as

ϕ(z, z̄) →
(︃
∂w

∂z

)︃h(︃∂w̄
∂z̄

)︃h̃
ϕ(w, w̄). (2.50)

But how does an operator transform under a generic conformal transformation? To answer this
question, we must look at operator product expansion, or OPE for short. Denoting all the operators of a
CFT with Oi, where i labels all said operators, the OPE tells us that we can expand the time-ordered
product of fields ⟨Oi(z, z̄)Oj(w, w̄) . . . ⟩ as

⟨Oi(z, z̄)Oj(w, w̄) . . . ⟩ =
∑︂
k

Cki,j(z − w, z̄ − w̄)⟨Ok(w, w̄) . . . ⟩, (2.51)

where the . . . represent any other operator insertion with the only requirement that these operators
must not be as close to Oi and Oj as these two are to each other. As z → w, singular terms emerge
from the OPE; these will be the interesting feature of OPEs because they dictate how a given field
transforms under a conformal transformation. To see this, we first recall the result of Ward identities,
which can be obtained starting from the path integral formulation of the time-ordered correlation
function. Inside the path integral we can perform the field redefinition ϕ→ ϕ′ = ϕ+ ϵ(σ)ϕ through a
symmetry wherein we promote the parameter of the symmetry, here indicated by ϵ, to a function of
the spacetime coordinates, here indicated by σ. Since this is just a renaming of dummy integration
variable, the variation of the path integral under such renaming must vanish. Then, keeping just the
linear terms in ϵ, where ϵ has support just in the vicinity of the insertion point of the operator O1(σ1)
among all others in the correlation function, allows us to obtain

− 1

2π

∫︂
ϵ
∂α⟨Jα(σ)O1(σ1) . . . ⟩ = ⟨δO1(σ1) . . . ⟩, (2.52)
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where
∫︁
ϵ stands for an integral over the region where ϵ is non-zero. From this, selecting just the class of

conformal transformations, the conserved current in (2.52) is either holomorphic or antiholomorphic,
hence the integral on the non-zero ϵ region picks up just the residue; meaning

i

2π

∮︂
dz Jz(z)O1(σ1) = − Res

z=z0
[JzO1]. (2.53)

In terms of OPE, this means that the OPE between Jz and O1 will contain the singular term producing
such a residue. Furthermore, using the Ward identities, we see that the variation of the operator O1

under the change δz = ϵ(z) is

δO1(σ1) = −Res[Jz(z)O1(σ1)] = −Res[ϵ(z)T (z)O1(σ1)] (2.54)

and similarly for the change δz̄ = ϵ̄(z̄)

δO1(σ1) = −Res[J̄ z̄(z̄)O1(σ1)] = −Res[ϵ̄(z̄)T̄ (z̄)O1(σ1)]. (2.55)

In the end, all of this means that knowing the OPE between the stress-energy tensor and a given
operator equals being capable of computing the transformation properties of said operator under
conformal symmetry. In particular, a field having conformal weights (h, h̃) has the following OPE with
T and T̄

T (z)O(w, w̄) = · · ·+ h
O(w, w̄)

(z − w)2
+
∂O(w, w̄)

z − w
+ . . .

T̄ (z̄)O(w, w̄) = · · ·+ h̃
O(w, w̄)

(z̄ − w̄)2
+
∂O(w, w̄)

z̄ − w̄
+ . . .

(2.56)

For a primary operator O the dots in the above formulas would only contain regular terms.

2.2.4 CFT and Polyakov action

Using the definition (2.47) on the Polyakov action from (2.9) with no minus sign in front of it due to
the Euclidean signature of the metric and for a single scalar field X, we find the complex-coordinates
stress-energy tensor to be

T = − 1

α′ :∂X∂X:≡ − 1

α′ limz→w

(︁
∂X(z)∂X(w)− ⟨∂X(z)∂X(w)⟩

)︁
, (2.57)

where the normal order removes the singular terms, and a similar definition holds for T̄ where ∂ → ∂̄.
Knowing that the OPE between ∂X(z) and ∂X(w) is (from now on we just write the non-singular
pieces of the OPEs)

∂X(z)∂X(w) = −α
′

2

1

(z − w)2
, (2.58)

it is possible to show, by means of the definition of primary operator and Wick theorem, that

• The field ∂X is a primary operator of weights h = 1 and h̃ = 0;

• The field :eikX : has weights h = h̃ = α′k2

4 .

Computing the OPE of the stress-energy tensor with itself reveals T is not a primary field, the
reason being that the OPE has a singular term ∼ (z − w)−4; indeed,

T (z)T (w) =
1/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
. (2.59)

The issue goes deeper, as this is not just a property of the stress-energy tensor coming from the Polyakov
action, but is a general property. In fact, by dimensional reasoning, it is possible to show that in any
CFT

T (z)T (w) =
c/2

(z − w)4
+

2T (w)

(z − w)2
+

∂T (w)

(z − w)
(2.60)

where c is known as central charge (the central charge for the antiholomorphic component T̄ is c̃).
Comparing (2.59) and (2.60), one concludes that for a single scalar field c = c̃ = 1; for D scalar fields
Xµ instead c = c̃ = D.
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2.2.5 Virasoro algebra

The complex plane can be parametrized by z = e−iw where w = σ1 + iσ2 parametrizes a cylinder for
σ1 ∈ [0, 2π] and σ2 ∈ R. In the complex plane, since T and T̄ are holomorphic and antiholomorphic
respectively, they can be expanded in Laurent series as

T (z) =
∞∑︂

m=−∞

Lm
zm+2

and T̄ (z̄) =
∞∑︂

m=−∞

L̃m
z̄m+2

(2.61)

with the modes Lm and L̃m that can be computed, starting from the T and T̄ respectively, by contour
integrals encircling the origin as

Lm =
1

2πi

∮︂
dz

z
zm+2T (z) and L̃m =

1

2πi

∮︂
dz̄

z̄
z̄m+2T̄ (z̄). (2.62)

Actually, starting from these definitions, the commutator between Lm and Ln may be computed from

[Lm, Ln] =

(︄∮︂
dz

2πi

∮︂
dw

2πi
−
∮︂

dw

2πi

∮︂
dz

2πi

)︄
zm+1wn+1T (z)T (w) (2.63)

and adequately modifying the contours to find

[Lm, Ln] =

∮︂
dw

2πi

∮︂
w

dz

2πi
zm+1wn+1T (z)T (w) (2.64)

that, employing the use of the TT OPE, yields

[Lm, Ln] = (m− n)Lm+n +
c

12
m(m2 − 1)δm+n,0. (2.65)

This is known as Virasoro algebra.
To build a representation of the Virasoro algebra we start from a state |ψ⟩ eigenvector of both L0

and L̃0 with eigenvalue h and h̃ respectively. The state Ln |ψ⟩ will then be an L0-eigenvector with
eigenvalue (h− n); thus Ln acts as a raising operator for n < 0 and a lowering one for n > 0. For the
spectrum to be bounded from below, there must be some states that are annihilated by all Ln and L̃n
for n positive. States satisfying this requirement are known as primary states or highest weight states.
Acting on primary states with raising operators will a tower of so-called descendants states; the whole
set of such states forms a Verma module.

Furthermore, requiring the Hamiltonian to be Hermitian, reflects on the stress-energy tensor modes
as Ln = L†

−n; this in turns enables us to deduce that the eigenvalue h must be non-negative i.e., h ≥ 0,
while the central charge c must be positive.

2.2.6 Operators and states

The map between the cylinder parametrized by the coordinate w where now σ2 ≤ 0, and the unit disk
given by e−iw, permits the setting up of an isomorphism between operators and states. In essence,
specifying an initial state on the cylinder for σ2 → −∞, maps to specifying the fields’ configuration at
the point z = 0, effectively defining an operator at the origin; namely, the so-called vertex operator. We
are not going to go into the details about this, so we just cite two of the most relevant examples of
such isomorphism which are the identity operator to vacuum correspondence i.e., 1 ↔ |0; 0⟩, and the
:eik·X(0,0):↔ |0; k⟩ correspondence. Using this correspondence, it can be showed that the action of L0

(L̃0) on the state |O⟩ corresponding to a given primary operator O of weight (h, h̃) is such that

L0 |O⟩ = h |O⟩ and L̃0 |O⟩ = h̃ |O⟩ (2.66)

Lm |O⟩ = L̃m |O⟩ = 0 for m > 0; (2.67)

hence the state |O⟩ is a highest weight state.
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2.3 Background fields

Up to this point the metric in the D-dimensional manifold where the motion of the string takes place
has been flat; i.e., it has been ηµν . The generalization to the string theory on non-flat metric passes by
the action

Sg =
1

4πα′

∫︂
M
d2z

√
hhαβgµν(X)∂αX

µ∂βX
ν (2.68)

where now hαβ is the worldsheet metric, while gµν is the metric in the D-dimensional manifold. In
this context, the metric gµν is said to be a background field ; and it is not the only such field we can
introduce. Indeed, we can also introduce the two-form gauge field Bµν , known as B field, by means of
the action

SB =
1

4πα′

∫︂
M
d2z ϵαβBµν(X)∂αX

µ∂βX
ν ; (2.69)

keep in mind though that a B field can only be introduced in theories of oriented, bosonic strings.
Finally, the last background field we mention is the dilaton Φ, introduced through the action

SΦ =
1

4π

∫︂
M
d2z

√
hΦ(X)R(2)(h) (2.70)

with R(2)(h) is the scalar curvature of the two-dimensional string worldvolume computed from the
worldsheet metric hαβ . This last field plays a crucial role in defining the string perturbation expansion,
as can be more easily seen in the case of constant dilaton where the action (2.70) turns out to be
proportional to the Euler characteristic χ(M) (the proportionality factor being the constant value of
the dilaton).

2.4 Ramond-Neveu-Schwarz strings

In this section we will briefly review how fermions are added to the action of bosonic string theories in
the Ramond-Neveu-Schwarz (RNS) formalism and their effect on the spectrum of said theories. We
will skip most of the technical discussion on supersymmetry because, at the end of the day, we will
not need any of it in what follows. The interested reader may want to read the references cited at the
beginning of the chapter.

2.4.1 Adding fermions

In this formalism the addition of fermions simply amounts to the introduction of the fields ψµ(σ) which
are two-components spinors on the worldsheet and vectors under the D-dimensional Lorentz group,
while at same time satisfying (classically) Grassmann statistics {ψµ, ψν} = 0. Introducing these fields
in the Polyakov action (2.9) yields

S = − 1

4πα′

∫︂
d2σ

(︁
∂αXµ∂

αXµ + ψ̄
µ
γα∂αψµ

)︁
(2.71)

where γα for α = 0, 1 are the two-dimensional Dirac matrices

γ0 =

(︃
0 −1
1 0

)︃
and γ1 =

(︃
0 1
1 0

)︃
satisfying {γα, γβ} = 2ηαβ. (2.72)

The two components ψµA for A = ∓, being real, form the Majorana spinor ψµ given by

ψµ =

(︃
ψµ−
ψµ+

)︃
; (2.73)

and in terms of them the fermionic part of the action (2.71) is given by (we use lightcone coordinates,
so ∂+ ≡ ∂σ+ and similarly for the − and note as well that ψ̄ = ψ†iγ0)

Sf =
i

2πα′

∫︂
d2σ

(︁
ψ−∂+ψ− + ψ+∂−ψ+

)︁
. (2.74)
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The action (2.71) enjoys a global symmetry exchanging the Xµ bosonic field and the ψµ fermionic
field; this symmetry is known as supersymmetry. A nice way to implement supersymmetry in the action
for X and ψ is to move to superspace, namely a space where two additional Grassmann coordinates θA
are added on top of the two worldsheet coordinates σ. In this framework, the conformal symmetry
gets generalized to what is known as superconformal symmetry and using the generalization of the
Virasoro constraints, it is possible to show that for superstring theories, meaning string theories with
supersymmetry added to them, the critical dimension changes from D = 26 to D = 10.

2.4.2 Boundary conditions and spectrum

Once we start solving the equations of motion for the ψµ field, we find that, similarly to what happened
for the Xµ field, we must impose some boundary conditions. We will split the discussion for open and
closed strings.

Open strings

Setting ψµ+|σ=0 = ψµ−|σ=0, we find that at the other end of string, for σ = π, we have either

• ψµ+|σ=π = ψµ−|σ=π. These are known as Ramond (or R) boundary conditions and give rise, through
the mode expansion of the field, to spacetime fermions;

• ψµ+|σ=π = −ψµ−|σ=π. These are known as Neveu-Schwarz (or NS) boundary conditions and give
rise, again through the mode expansion of the field, to spacetime bosons.

Once the theory has been quantized with the help of the lightcone gauge, the first few states in the
spectrum of the NS sector are a tachyonic spacetime scalar as ground state and an eight-dimensional,
massless spacetime vector of SO(8), where 8 is the number of transverse directions. Higher excited
states correspond to massive vector bosons. Instead, in the R sector, the ground state is made up
of either a positive or negative parity Majorana-Weyl spinor, while higher excited states are massive
spacetime spinors.

As of now, the spectrum is not supersymmetric, and it contains a tachyon. To fix these issues there
exist a procedure known as GSO projection which, as the name suggests, projects out certain states.
Even though we are not going to get into the specifics of the GSO projection, allow us to mention
that thorough this procedure the tachyon from the NS sector gets eliminated and that, once either the
positive or negative chirality ground state from the R sector has been chosen, the resulting spectrum of
the open RNS string is supersymmetric, i.e. it exhibits the same number of spacetime fermionic and
bosonic degrees of freedom.

Closed strings

In this case the field ψµ splits into right- and left-moving modes. The boundary conditions read
ψµ±(σ) = ±ψµ±(σ+2π), hence amounting to imposing either periodic (R) or antiperiodic (NS) boundary
conditions, independently on both right and left moving components. This again divides the discussion
into two subclasses (we indicate with A-B the case in which A boundary conditions have been imposed
on the right-moving modes, while B on the left-moving ones)

• R-R or NS-NS. In this case we end up with spacetime bosons;

• R-NS or NS-R. In this case we end up with spacetime fermions.

For the analysis of the spectrum we must consider four sectors: R-R, NS-R, R-NS and NS-NS.
Depending on whether the chirality of the R sector’s ground state is the same for the left- and right-
moving R sector, two different theories may be obtained: Type IIB theory if the chiralities are the
same, and Type IIA theory if they are not. The massless spectrum of the two theories are as such

• Type IIB theory
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– NS-NS sector: it contains a scalar (the dilaton), an antisymmetric two-form gauge field (the
B field) and a symmetric, traceless rank-two tensor, the graviton;

– NS-R and R-NS sectors: each of these contains a spin 3
2 gravitino and a spin 1

2 fermion, the
dilatino. Being this type IIB theory, both the NS-R and R-NS gravitinos and dilatinos have
the same chiralities;

– R-R sector: it contains a scalar gauge field, a two-form gauge field and a four-form gauge
field with self-dual field strength.

• Type IIA theory

– NS-NS sector: same as before;

– NS-R and R-NS sectors: same as before but with opposite chiralities between the gravitinos
and dilatinos coming from the two sectors;

– R-R sector: it contains a one-form gauge field and a three-form gauge field.

These are just the massless spectra of the two Type II theories obtained by ignoring the higher energy
excitations. When one limits to just the massless spectrum he is working in the supergravity limit where
just the interaction between massless degrees of freedom are present. Because of this, the theories
possessing the above spectrum are known as Type IIB and Type IIA supergravity. Similarly to what
occurs in electromagnetism, where the gauge field Aµ couples to the electron, i.e. a particle with a
one-dimensional worldvolume and charge equal to e, in the case of the Type II supergravity theories,
the gauge fields from the R-R sector couple to extended objects having worldvolumes of appropriate
dimension. These extended objects are nothing but Dp-branes, that will in turn couple to a p+ 1 form
Ap+1. The branes that couple to such gauge fields via actions such as

Sint = µp

∫︂
Ap+1 =

µp
(p+ 1)!

∫︂
dp+1σ Aµ1...µp+1

∂xµ1

∂σ0
. . .

∂xµp+1

∂σp
, (2.75)

are the only ones, among the many with different dimension that in principle we could implement in the
theory, to be stable, thanks to the associated charge (µp in the above action) regulating the coupling to
the gauge field. The (electric) charge µp of the Dp-brane is computed as the flux of ⋆F , where F = dA,
through S8−p via the surface integral

µp =

∫︂
S8−p

⋆Fp+2, (2.76)

where S8−p is the dimensionally-correct sphere to surround a p brane in a 10-dimensional Lorentzian
spacetime; namely the spacetime where both Type IIB and IIA supergravity theories live. Actually,
thanks to the electromagnetic duality, the field strength Fp+2 will generate a magnetic charge associated
to the magnetic-dual of the previous Dp-brane via a similar surface integral to the one in (2.76) (modulo
the Hodge star and the sphere that will now be Sp+2, as this is the correct dimension to surround a
D(6− p)-brane, that is indeed the magnetic dual to a Dp-brane for D = 10).

Furthermore, since the two supergravity theories contain another gauge field, the antisymmetric
rank-2 tensor from the NS-NS sector, they will both contain a one-dimensional object that couples
electrically to it, and which we will indicate with F1 and is simply a fundamental string, and a
five-dimensional object that couples magnetically to it, which will be addressed as NS5-brane.

Summing up, in IIB supergravity we have Dp-branes with p = −1, 1, 3, 5, 7 while in IIA we have
p = 0, 2, 4, 6 plus the F1 and NS5 that belong to both. The D(−1)-brane in IIB is D-instanton, an
object localized in time which makes sense in the Euclideanized theory.

2.5 Dualities

We now give a brief definition of both T and S duality since they will be employed in later chapters; let
us start with T duality.
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2.5.1 T duality

This duality is the one relating a theory with one dimension compactified on a circle of radius R to
the one compactified on a circle of radius ˜︁R = α′

R . The first consequence of acting with T duality on a
compact direction is that it interchanges Type IIA and IIB theories, as it changes the chirality of the
states, that is indeed the differentiating factor between the two theories. This immediately generalizes
to the fact that an even number of T dualities will keep you in the same theory you started from, be it
IIA of IIB, while an odd number will cause you to jump from one to the other. T duality also influences
momentum charges and winding numbers, since taking the reciprocal of the radius R will transform a
momentum charge along the circle of radius R into a winding number on the circle of radius ˜︁R and vice
versa. Moreover, T duality interchanges Neumann and Dirichlet boundary conditions, meaning that if
an open string had Neumann boundary conditions along the compact direction along which T duality
acts, it will have Dirichlet boundary conditions along the T -dual compact direction, and vice versa.
Conversely, boundary conditions along directions unaffected by the T duality stay the same. Given the
correlation between boundary conditions and D-branes, the exchange between Neumann and Dirichlet
boundary conditions will change the dimensionality of the Dp-brane on which the open string ends.
In fact, if the T duality is performed along one of the p directions, the brane in the T -dual world will
be a D(p− 1)-brane; on the other hand, if the direction along which the T duality acts is not among
the p along which the Dp-brane extends, the brane in the T -dual world will be a D(p+ 1)-brane. In
the midst of this, we need to keep in mind that we can only perform T duality along directions that
are compact. Finally, T duality also affects the dilaton, that gets shifted in such a way that the string
coupling constant becomes

g̃s =

√
α′gs
R

. (2.77)

2.5.2 S duality

While the former T duality was a duality affecting both IIA and IIB theories, S duality acts just on
Type IIB supergravity. Its action is to exchange B field from the NS-NS sector with the two form
gauge field from the R-R sector; usually called C2 field in the literature. In doing this, branes that were
charged electrically under the B field will become charged electrically under the C2 field, meaning that
the F1 and D1 branes gets exchanged: what was before a D1 brane becomes a F1 brane and vice versa.
A similar thing occurs naturally to the D5 and NS5 branes, that gets exchanged as well under S duality.
Conversely, the C4 field, namely the four-form gauge field from the NS-NS sector, remains unchanged
under S duality, so the same applies to the D3 brane; finally, we will not mention what goes on with
the D7 brane under S duality as it would require a much more involved discussion. The last crucial
effect that S duality has is to change the sign of the dilaton, mapping Φ to −Φ, thereby changing the
string coupling constant from gs to 1

gs
, and hence relating theories with strong and weak couplings.
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Chapter 3

D-branes and black holes

As we have seen in the preceding chapter, Supergravity is a regime of string theory in which we focus
just on the massless excitations of the strings. In this chapter we will focus on black holes metrics
emerging from selected D-branes arrangement. We will also review the fuzzball proposal, putting
forward a hypothesis regarding the structure of the microstates. In particular, we will concentrate on
the NS1-P picture, and the D1-D5 picture, the two being connected by a chain of T and S dualities, as
we will later see.

3.1 D-branes solutions

Consider the case of a D2-brane in type IIA supergravity along the 0, 1, and 2 directions. The metric
and dilaton are given by [16]

ds2 = H−1/2(−dx20 + dx21 + dx22) +H1/2(dx23 + · · ·+ dx29), eϕ = H1/4, C012 = H−1, (3.1)

where H can be thought as a Maxwell potential in the transverse R7 = dx23+ · · ·+ dx29 where, according
to supergravity’s equations of motion, it must obey Laplace equation

∆7H = ρD2 (3.2)

with ρD2 being the source that, for a stack of ND2 branes at the origin of the transverse space, is given
by ρD2 = ND2δ(r7). In this case, the solution to (3.2) is given by

H = 1 +
ND2

r5
(3.3)

and, with this solution, the metric (3.1) presents a naked singularity at r = 0 (as can be checked by
computing the C-field’s energy 1

4!FµνρσF
µνρσ).

3.2 Black holes from D-branes

As we will now see, by properly choosing the D-branes’ configuration we can produce solutions that
exhibit the trademark of GR’s black holes: a singularity shielded by a horizon. To do this, we will
focus on supersymmetric black holes, i.e. solutions whose mass M is equal to their charge Q, as in this
case multicenter solution are possible thanks to the perfect balancing of gravitational attraction and
electrostatic repulsion. This is the same discussion we already met in Section 1.2.2 and, as in that case,
for M = Q the solution is said to be extremal.

3.2.1 Four charge black hole

We begin the analysis by considering four branes in IIA supergravity: three D2 branes and one D6
brane positioned as indicated in Table 3.1, where a number signals that the given brane extends along
that direction, while a “−” signals that the brane is smeared along that particular direction (so, the
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Table 3.1: Placement of branes in the four-charges black hole. The “−” indicates a direction along which the
brane is smeared while a number indicates a direction along which the brane extends.

D21 0 1 2 − − − −
D22 0 − − 3 4 − −
D23 0 − − − − 5 6
D64 0 1 2 3 4 5 6

first D2 brane extends along x1 and x2 while it is smeared along x3, x4, x5 and x6). Thanks to the
smearing, all branes behave as points in the x7, x8 and x9 directions, hence the warp factors Hi (with
i = 1, . . . , 4 labelling the branes) are given by

∆3Hi = 0 ⇒ Hi = 1 +
Qi
r

(3.4)

with r being the radius in the space spanned by x7, x8 and x9. Now, writing down the metric for this
system amounts to inserting the correct powers of the functions Hi in front of each coefficient. The rule
to do this is simply to multiply the coefficient dx2j by H−1/2

i if the ith-brane’s worldvolume extends

along the xj-direction, and to multiply by H1/2
i if it does not. By means of this rule, we find

ds2 = − 1√
H1H2H3H4

dt2 +
√︁
H1H2H3H4(dx

2
7 + dx28 + dx29)+

+

√︃
H2H3

H1H4
(dx21 + dx22) +

√︃
H1H3

H2H4
(dx23 + dx24) +

√︃
H1H2

H3H4
(dx25 + dx26).

(3.5)

As r → ∞, the metric above approaches four dimensional, flat Minkowski spacetime plus a six-torus
coming from the compactification of x1, . . . x6, i.e.

ds2 = −dt2 + dx27 + dx28 + dx29 + ds2T 6 .

Instead, as r → 0, the metric approaches

ds2 = − r2

R2
dt2 +

R2

r2
(dx27 + dx28 + dx29) +

√︄
Q2Q3

Q1Q4
(dx21 + dx22)

+

√︄
Q1Q3

Q3Q4
(dx23 + dx24) +

√︄
Q1Q2

Q3Q4
(dx25 + dx26)

= − r2

R2
dt2 +

R2

r2
dr2⏞ ⏟⏟ ⏞

AdS2

+R2dΩ2
2⏞ ⏟⏟ ⏞

S2

+ ds2T 6⏞⏟⏟⏞
T 6

(3.6)

where we introduced the length scale R2 =
√
Q1Q2Q3Q4 for dimensional reasons and, in the last step,

we employed spherical coordinates for R3. As highlighted in (3.6), the metric has an AdS2 × S2 × T 6

structure1 and, furthermore, possesses a horizon at r = 0 as gtt = 0 there. From the two asymptotic
behaviors it is possible to infer that this solution, known as four-charge black hole, really is a black hole
in four dimensions.

The last statement is reinforced by comparing the extremal Reissner-Nordström metric (1.20), i.e.

ds2 = −
(︃
1− Q

ρ

)︃2

dt2 +

(︃
1− Q

ρ

)︃−2

dρ2 + ρ2dΩ2,

1To better see the AdS structure, substitute z = L2

r
in the AdS2 metric ds2 = L2

z2
(−dt2 + dz2) and set L ≡ R.
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Table 3.2: Configuration of the M2 branes for the three charge black hole. As before, the “−” indicates a
direction along which the brane is smeared while a number indicates a direction along which the brane extends.

M21 0 1 2 − − − −
M22 0 − − 3 4 − −
M23 0 − − − − 5 6

and the (3.5) with Qi = Q ∀i, r substituted by ρ − Q and neglecting the T 6 metric. With these
substitutions indeed we obtain

ds2 = −
(︃
1 +

Q

r

)︃−2

dt2 +

(︃
1 +

Q

r

)︃2

dr2 +

(︃
1 +

Q

r

)︃2

r2dΩ2
2

= −
(︃
1− Q

ρ

)︃2

dt2 +

(︃
1− Q

ρ

)︃−2

dρ2 + ρ2dΩ2
2.

(3.7)

3.2.2 Three charge black hole

In this subsection we move to eleven dimensions, instead of the ten used up to this point, to analyze
the system formed by three M2 branes, the eleven dimensional respective of D2 branes. The branes’
configuration considered here is presented in Table 3.2; as before, a number indicates the direction
along which the brane’s worldvolume extends, while a “−” indicates a direction along which the brane
is smeared.

The convention used to write the metric generated by this configuration of branes is again similar
to the one used for the four-charge black hole: multiply the metric components by a factor H−2/3 if
the brane’s worldvolume extends along that direction; multiply instead by a factor H1/3 if the brane’s
worldvolume is orthogonal to that direction. Furthermore, we compactify the x1, . . . x6 directions into a
T 6. Consequently, the metric for the three-charge black hole is

ds2 =− (H1H2H3)
−2/3dt2 + (H1H2H3)

1/3(dx27 + dx28 + dx29 + dx210)

+
(H2H3)

1/3

H
2/3
1

(dx21 + dx22) +
(H1H3)

1/3

H
2/3
2

(dx23 + dx24) +
(H1H2)

1/3

H
2/3
3

(dx25 + dx26)
(3.8)

with Hi = 1 + Qi
r2

for i = 1, 2, 3 and r being the radius in the space spanned by x7, . . . , x10.
As r → ∞, (3.8) approaches a five dimensional Minkowski space times a constant-radii six-torus.

As r → 0 instead, (3.8) approaches

ds2 = − r4

R4
dt2 +

R2

r2
dr2 +R2dΩ2

3 + ds2T 6 , (3.9)

where we introduced spherical coordinates such that dx27 + · · · + dx210 = dr2 + r2dΩ2
3 and R2 =

(Q1Q2Q3)
1/3. Again, this has a AdS2 × S3 × T 6 structure2and, from the two asymptotic limits, we can

infer that the metric describes a black hole in five dimensions; this black hole is known as three-charge
black hole.

3.3 Entropy: from macro to micro

3.3.1 The macro

As already stated in Section 1.3.2, the entropy of a black hole is given by (c = ℏ = kB = 1) S = AH
4GN

where AH is the area of the horizon and GN = (2π)D−3(lP)
D−2/(16π) is Newton’s constant in D

2This time, to see the AdS structure, start from ds2 = L2

z2
(−dt2 + dz2) and substitute z = R2

2r2
setting L ≡ R

2
.

27



3.3. Entropy: from macro to micro 3. D-branes and black holes

Table 3.3: Map via T and S dualities from the D2-D2-F1 system (obtained from the M2-M2-M2 system by
compactifying the x6 direction) to the F1-NS5-P system. Ti represents here a T duality along the xi direction,
while S an S duality. F1 represent the fundamental string, NS5 its magnetic dual and P the momentum charge.

D2 0 1 2 − − −
D2 0 − − 3 4 −
F1 0 − − − − 5

T1 T2 T5−−−−−→
D1 0 − − − − 5
D5 0 1 2 3 4 5
P 0 − − − − 5

S−→
F1 0 − − − − 5
NS5 0 1 2 3 4 5
P 0 − − − − 5

dimensions. Starting from this definition, the Bekenstein-Hawking entropy for the three charge black
hole (Ni is the number of the i-th M2 brane) is

S = 2π
√︁
N1N2N3 (3.10)

since

AH =

∫︂
S3

√
gS3

∫︂
T 6

√
gT 6 = 2π2

√︁
Q1Q2Q3

∫︂
T 6

dx1 . . . dx6 = 2π2
√︁
Q1Q2Q3

6∏︂
i=1

(2πLi), (3.11)

with Li being the radius of the circle into which xi is compactified, and the charges Qi being related to
the i-th brane’s numbers Ni by

Q1 =
N1(lP)

6

L3L4L5L6
, Q2 =

N2(lP)
6

L1L2L5L6
, Q3 =

N3(lP)
6

L1L2L3L4
. (3.12)

The last relations are obtained from (we specialize to the case N1) the integration over Σ = S3 × T 4
3...6,

i.e. the surface surrounding the M21 brane, of the magnetic field strength F̃ 7 = ⋆11F having non-zero
component equal to (F̃ 7)3456θϕψ =

√
−gϵ3456θϕψ012rg00g11g22grrF012r, with F012r = ∂rH

−1
1 and θ, ϕ

and ψ being the angles parametrizing S3. Altogether, this means that (we use the metric (3.8) with
r → 0)

(2πlP)
6N1 =

∫︂
Σ
F̃ 7 =

∫︂
T 4
3...6×S3

dΩ3dx
3 . . . dx62Q1 = (2π2)(2π)4L3L4L5L62Q1 ⇒ Q1 =

N1(lP)
6

L3L4L5L6
. (3.13)

Since the end result (3.10) depends solely on the number of branes, and not on their nature, the
application to the system under consideration (i.e. the three-charge black hole) of any combination
of T and S duality does not change the value of the entropy; even if the branes responsible for the
entropy are not the same. Taking advantage of this feature, which essentially boils down to the
solution being supersymmetric, it is possible to map the three charge black hole formed by three
M2 branes with metric (3.8) into a three-charge black hole in IIB supergravity by compactifying the
M2-branes-black-hole’s x6 direction, applying three T dualities (one along x1 direction, one along x2

and one along x5), and, finally, acting with an S duality; see Table 3.3. The result is the F1-NS5-P
system, that is formed by N1 fundamental strings (indicated by F1), N5 NS5 branes and Np momentum
charges (indicated by P). The metric for this solution is given by [4]

ds2 = H−1
1 (−dt2 + dy2 +K(dt+ dy)2) +H5

4∑︂
i=1

dxidxi +

4∑︂
a=1

dzadza (3.14)

H1 = 1 +
Q1

r2
, H5 = 1 +

Q5

r2
, K =

Qp

r2
, e2ϕ =

H5

H1
(3.15)

where Q1 is the charge of the F1 branes, Q5 the one of the NS5 branes and Qp is the momentum
charge; ϕ is the dilaton. As a consequence of the arguments given in the preceding paragraph, the
Bekenstein-Hawking entropy of this black hole is given by S = 2π

√︁
N1N5Np.

Now, it is possible to obtain the same entropy from the count of the string’s microscopic degrees of
freedom; this is the focus of the next section.
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3.3. Entropy: from macro to micro 3. D-branes and black holes

3.3.2 The micro

From classical Thermodynamics we know that the entropy of a system is related to the microscopic
degrees of freedom by the famous Boltzmann formula (we reinstate kB just in this formula)

S = kB logN (3.16)

where N is the number of different microscopic configurations resulting in the same macroscopic state.
So, given the different-from-zero entropy that the above D-branes configurations posses, we would
like to interpret this entropy in terms of configurations of microscopic degrees of freedom. Thanks to
String Theory this is possible, and we will show this by firstly setting N5 = 0, i.e. by focussing on the
two-charge case F1-P; we will later extend the result to the three-charge case.

We begin by joining together all the N1 strings into a single string wounding N1 times around the
S1 circle along the y-direction, with the Np momentum charges generating (transverse) waves travelling
along the multiply-wound string. In this picture the different microscopic degrees of freedom are due to
different partitioning of the momentum charges between the numerous harmonics. Indeed, indicating
with R the y-coordinate circle’s radius, the total momentum on the string is given by

P =
Np

R
(3.17)

because of the string’s wave function’s periodicity in the y coordinate. At the same time, a harmonic
with wave number k travelling along the string, and responsible for the momentum of said string, will
carry momentum equal to

pk =
2πk

LT
=

2πk

2πN1R
; (3.18)

summing the momentum charges due to all the harmonics should give the total momentum (3.17), i.e.∑︂
m

nmkm
N1R

=
Np

R
⇔

∑︂
m

nmkm = NpN1 (3.19)

where nm is the number of harmonics km present on the string. The number of different combinations
of km and nm leading to N1Np is our N .

To compute S, we are going to treat the harmonics as a 1-dimensional gas of massless quanta
confined on the string of length LT and, taking into account the fact that for a mode k the bosonic and
fermionic partition functions are given, respectively, by

ZB
k =

∞∑︂
mk=0

e−βmkek =
1

1− eβek
and ZF

k =
1∑︂

mk=0

e−βmkek = 1 + eβek , (3.20)

with ek = pk being the k’s mode energy, we can write the logarithm of the total partition function Z as
the sum of logZB and logZF both obtained by approximating the sum over k by an integral over ek
leading to

logZ = logZB + logZF =
LT

2π

(︃
−
∫︂ ∞

0
dek log(1− eβek) +

∫︂ ∞

0
dek log(1 + eβek)

)︃
=
LT

2π

(︃
π2

6β
+

π2

12β

)︃
=
πLT

4β
.

(3.21)

The last result is valid for one bosonic and one fermionic degree of freedom; having 8 of each we just
need to multiply by 8. The entropy is now given by (E = −∂β logZ)

S = logZ + βE = 2π
√︁

2N1Np. (3.22)

Extending the result (3.22) to the three charge case is a matter of convincing oneself, via the aid
of dualities, that the winding number N1 transforms into the “effective winding number” N1N5. The
dualities we are alluding to are those connecting the F1(N1)-P(Np) system to the NS5(N1)-F1(Np)
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3.4. The structure of the microstates: fuzzballs 3. D-branes and black holes

one, where we indicated the number of each charge between the braces; for the details concerning the
dualities see [4]. Indeed, through this chain of dualities, the discussion on the partitioning of the Np
momentum charges on the harmonics translates into the division of each Np F1 string into N1 pieces,
for a grand total of N1Np pieces of strings that have to be merged together to construct the full string.
The different ways in which the pieces can be glued together give rise to the entropy in the F1-NS5
picture. Putting this into mathematical language gives us the right-hand-side of (3.19) where now km
is the winding number of the nm pieces of strings. It turns out that, once we add to the F1-NS5 system
(now with charges N1 and N5 respectively) Np P charges, the leading order contribution to the entropy
comes from the partitioning of these Np units of momentum onto the N1N5-times wound string. The
number of such partitioning is known to be equal to N ≈ exp

(︁
2π
√︁

c
6N1N5

)︁
, where c is the sum of

bosonic and fermionic degrees of freedom, now equal to 6. Plugging these numbers in we get

S = logN = 2π
√︁
N1N5Np (3.23)

that is exactly equal to (3.10) with N2 = N5 and N3 = Np.

3.4 The structure of the microstates: fuzzballs

In the previous section we have seen that String Theory enables us to count the microstates of a black
hole, and that this counting perfectly reproduces the Bekenstein-Hawking entropy. What we are still
missing at the moment is the knowledge about how these microstates look like; i.e., what is their
structure. A possible solution to this problem comes from the fuzzball proposal that we are now going
to briefly review. This will also shed new light onto a puzzling fact: taking N5 = 0 in (3.23) yields zero,
meaning that the Bekenstein-Hawking entropy of a two-charge black hole is zero despite having seen
that the microscopic entropy is not zero, see (3.22). So, to look into the structure of the microstates of
the two-charge black hole, we are going to critically analyze the metric produced by a representative of
such class of solutions.

The metric for the F1-P black hole could be obtained by setting Q5 to zero in (3.14). That would
give us (u = t+ y, v = t− y)

ds2 = H(−dudv +Kdv2) +

4∑︂
i=1

dxidxi +

4∑︂
a=1

dzadza, (3.24)

H−1 = 1 +
Q1

r2
, K =

Qp

r2
, e2ϕ = H;

however this is not the metric produced by typical configurations of the F1-P system. The reason for
this is that this metric assumes that the F1 string sits at the position r = 0, while instead we know that
the momentum charges cause the string to vibrate in the transverse directions, which then moves away
from the position r = 0. In the oscillating process the N1 strands that constitute the string separate in
the transverse directions x following the transverse displacement profile F (v), so, intuitively, we will
need to replace the r in (3.24) with

⃓⃓
x− F (v)

⃓⃓
, since this is now the new location of the string. The

metric for a single strand is known (see [17, 18]) and from it, by superposing the single-strand harmonic
functions, we retrieve the multiple strand’s metric given by

ds2 = H(−dudv +Kdv2 + 2Aidxidv) +

4∑︂
i=1

dxidxi +

4∑︂
a=1

dzadza, (3.25)

with H, K and Ai equal to

(H(x, v))−1 = 1 +
∑︂
s

Q
(s)
1⃓⃓

x− F (v)
⃓⃓2 , K(x, v) =

∑︂
s

Q
(s)
1

⃓⃓
Ḟ

(s)
(v)
⃓⃓2⃓⃓

x− F (v)
⃓⃓2 , (3.26)

Ai(x, v) = −
∑︂
s

Q
(s)
1 Ḟ

(s)
i (v)⃓⃓

x− F (v)
⃓⃓2 ,
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3.4. The structure of the microstates: fuzzballs 3. D-branes and black holes

with the sum on s being the sum on the different strands. Specializing to our case, we have N1 strands.
To simplify the treatment we focus on a configuration with wave length λ≫ 2πR that, although being
far from the typical wave length that can be obtained from the analysis of the previous section, enables
us to convert the sum on the strands into an integral since the string’s typical displacement in the
transverse space and the distance between neighboring strands are given, respectively, by

∆x ∼
⃓⃓
Ḟ
⃓⃓
λ, δx ∼

⃓⃓
Ḟ
⃓⃓
2πRλ ⇒ δx

∆x
∼ 2πR

λ
≪ 1, (3.27)

and so all strands give a similar contribution to the harmonic functions. We then have

N1∑︂
s=1

→
∫︂ N1

0
ds =

∫︂ LT

0
dv (3.28)

so the metric (3.25) becomes

ds2 = H(−dudv +Kdv2 + 2Aidxidv) +
4∑︂
i=1

dxidxi +
4∑︂

a=1

dzadza, (3.29)

with H, K and Ai equal to

(H(x))−1 = 1 +
Q1

LT

∫︂ LT

0

dv⃓⃓
x− F (v)

⃓⃓2 , K(x) =
Q1

LT

∫︂ LT

0

dv
⃓⃓
Ḟ (v)

⃓⃓2⃓⃓
x− F (v)

⃓⃓2 , (3.30)

Ai(x) = −Q1

LT

∫︂ LT

0

dvḞ i(v)⃓⃓
x− F (v)

⃓⃓2 ,
Before moving on, a hint as to how to solve the discrepancy we mentioned at the beginning of the

section. It is possible to show that the area of the region typically occupied by the oscillating string is
such to satisfy a Bekenstein type relation, even though this region is not a proper horizon. Indeed, this
region separates the portion of space where the geometry has to be described by the metric (3.29) (the
inside) from the region where we could get away with using (3.24) (the outside). For a nice discussion
on the absence of horizon for the microstates we redirect the reader again to [4].

Moving on then, (3.29) is the metric for a F1-P brane configuration; it is possible, through a chain
of dualities, to get the metric for a D1-D5 brane configuration. For this, recall that an S duality,
on top of sending the dilaton ϕ into −ϕ, acts on the string-frame metric gµν in such a way that the
Einstein-frame metric gE

µν =
√
gse

−ϕ/2gµν remains invariant under it. On top of that, from requiring
the metric to approach Minkowski’s one at infinity, we will need to rescale the coordinates by powers
of the string coupling constant gs at each step. Finally, recall that under T duality along a compact
direction with radius R, the dilaton shifts so that the new string coupling constant is given by g̃s =

gs
R .

The chain of T and S dualities action on some parameters of the theory is the following⎛⎜⎜⎜⎜⎝
gs
Q1

R
R6

V

⎞⎟⎟⎟⎟⎠ S−→

⎛⎜⎜⎜⎜⎝
1/gs
Q1/gs
R/

√
gs

R6/
√
gs

V/g2s

⎞⎟⎟⎟⎟⎠ T6 T7 T8 T9−−−−−−→

⎛⎜⎜⎜⎜⎝
gs/V
Q1/gs
R/

√
gs√

gs/R6

g2s /V

⎞⎟⎟⎟⎟⎠ S−→

⎛⎜⎜⎜⎜⎝
V/gs

(Q1V )/g2s
(R

√
V )/gs√
V /R6

V

⎞⎟⎟⎟⎟⎠ T5 T6−−−→

⎛⎜⎜⎜⎜⎝
R6/R

(Q1V )/g2s
gs/(R

√
V )

R6

√
V

R2
6

⎞⎟⎟⎟⎟⎠ (3.31)

At this point we obtained a NS5-F1 configuration; to get to the D1-D5 configuration we need to perform
a final S duality ⎛⎜⎜⎜⎜⎝

R6/R
(Q1V )/g2s
gs/(R

√
V )

R6

√
V

R2
6

⎞⎟⎟⎟⎟⎠ S−→

⎛⎜⎜⎜⎜⎝
R/R6

(Q1RV )/(g2sR6)
gs/

√
RR6V√

R6R/
√
V

R2

⎞⎟⎟⎟⎟⎠ ≡

⎛⎜⎜⎜⎜⎝
g′s
Q′

5

R′

R′
6

V ′

⎞⎟⎟⎟⎟⎠ (3.32)
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Due to the dualities, all lengths are scaled by a factor

µ =

√︄
V R

g2sR6
(3.33)

and the final metric for the D1-D5 system is given by

ds2 =

√︃
H

1 +K

[︁
−(dt−Aidx

i)2 + (dy +Bidx
i)2
]︁
+

√︃
1 +K

H
+ dxidxi +

√︁
H(1 +K)dzadza (3.34)

where now H, K, and Ai are given by

(H(x))−1 = 1 +
µQ1

LT

∫︂ µLT

0

dv⃓⃓
x− µF (v)

⃓⃓2 , K(x) =
µQ1

LT

∫︂ µLT

0

dv
⃓⃓
µ2Ḟ (v)

⃓⃓2⃓⃓
x− µF (v)

⃓⃓2 (3.35)

Ai(x) = −µQ1

LT

∫︂ µLT

0

dvµḞ i(v)⃓⃓
x− µF (v)

⃓⃓2 , dB = −⋆4dA (3.36)

with ⋆4 being the duality operator in the space spanned by x1, . . . , x4 using the flat metric.
Even though it is difficult to appreciate at this level, the metric (3.34) is perfectly regular at all

points. One could be concerned, looking at the expressions of H and the other fields in (3.35), that
the point x = µF (v) might create some problems; however it is possible to show (see [19]), through a
coordinate change, that the metric is indeed regular at the location of the string, where it ends in a
so-called cap whose shape depends on the specific profile F (v).

3.4.1 Circular profile function

The simplest example in which the integrals from above can be carried out explicitly is the one where
the displacement profile F (v) describes a circular profile. Starting from the F1-P case, suppose that

F (v) = (â cos(ωv), â sin(ωv), 0, 0) (3.37)

with â =const and ω = 1
N1R

so that the string swings a single turn of helix in the x1 − x2 plane. Then,
introducing the coordinates

x1 = r̃ sin θ̃ cos ϕ̃, x2 = r̃ sin θ̃ sin ϕ̃, x3 = r̃ cos θ̃ cos ψ̃, x4 = r̃ cos θ̃ sin ψ̃, (3.38)

the integral for H in (3.30) can be promptly computed (ξ = ωv)

H = 1 +
Q1

2π

∫︂ 2π

0

dξ

r̃2 + â2 − 2r̃â sin θ̃ cos(ϕ̃+ ξ)
= 1 +

Q1√︂
(r̃2 + â2)2 − 4â2r̃2 sin2 θ̃

= 1 +
Q1

r2 + â2 cos2 θ
;

(3.39)

where, in the last step, we introduced coordinates r and θ such that

r̃ =
√︁
r2 + â2 sin2 θ, cos θ̃ =

r cos θ√︁
r2 + â2 sin2 θ

(3.40)

The remaining integrals are computed using the useful rule∫︂ 2π

0
dα

cosn α

1 + β cosα
=

2π√︁
1− β2

(︃√︁
1− β2 − 1

β

)︃n
. (3.41)

The results are

K =
â2Q1

N2
1R

2(r2 + â2 cos2 θ)
, Ax1 =

Q1â
2 sin ϕ̃ sin θ

RN1

√︁
r2 + â2(r2 + â2 cos2 θ)

, (3.42)

Ax2 = − Q1â
2 cos ϕ̃ sin θ

RN1

√︁
r2 + â2(r2 + â2 cos2 θ)

, Ax3 = Ax4 = 0.
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Singularity“Throat”

Flat space

(a) Typical BH picture (b) Fuzzball

Figure 3.1: Fuzzball cartoon. On the RHS we see the “typical” picture of a black hole: flat spacetime at large
distances from the singularity with in-between a throat like region. On the LHS instead, we see the cartoon for
a fuzzball; the main difference is in the singularity region where the fuzzball ends “smoothly” in a cap whose
shape depends on the specific branes configurations.

Expressing A in coordinates r, θ, ϕ ≡ ϕ̃ and ψ ≡ ψ̃, results in

Aϕ = Ax1
∂x1
∂ϕ

Ax2
∂x2
∂ϕ

= − Q1â
2 sin2 θ

RN1(r2 + â2 cos2 θ)
. (3.43)

We now turn our attention to the D1-D5 picture. Thanks to what we saw in Section 3.4, the
D1-D5’s displacement profile F (v) is simply given by µF (3.37)(v), with a ≡ µâ and µ from (3.33). H,
K, Aϕ and Bψ are given by

H−1 = 1 +
µ2Q1

f
≡ 1 +

Q′
5

f
, K = µ2

Qp

f
≡ Q′

1

f
Aϕ = −a

√︂
Q′

1Q
′
5

sin2 θ

f
, (3.44)

Bψ = −a
√︂
Q′

1Q
′
5

cos2 θ

f

with f ≡ r2 + a2 cos2 θ and a connected to the charges and new y’s radius R′ = gs/
√
RR6V by

a =

√︁
Q′

1Q
′
5

R′ . (3.45)

Inserting the (3.44) in (3.34) results in

ds2 =− 1

h
(dt2 − dy2) + hf

(︃
dθ2 +

dr2

r2 + a2

)︃
−

2a
√︁
Q′

1Q
′
5

hf
(cos2 θdydψ + sin2 θdtdϕ)

+ h

[︃(︃
r2 +

a2Q′
1Q

′
5 cos

2 θ

h2f2

)︃
cos2 θdψ2 +

(︃
r2 + a2 − a2Q′

1Q
′
5 sin

2 θ

h2f2

)︃
sin2 θdϕ2

]︃
+

√︄
Q′

1 + f

Q′
5 + f

dzadza

(3.46)

where

h =

[︃(︃
1 +

Q′
1

f

)︃(︃
1 +

Q′
5

f

)︃]︃ 1
2

. (3.47)

At large r we have that f → r2 and h → 1, implying that the metric approaches flat space. For
r ≪ (Q′

1Q
′
5)

1/4 (with r′ = r/a) the metric becomes

ds2 = −(r′2)
a2dt2√︁
Q′

1Q
′
5

+ r′2
a2dy2√︁
Q′

1Q
′
5

+
√︂
Q′

1Q
′
5

dr′2

r′2 + 1

+
√︂
Q′

1Q
′
5[dθ

2 + cos2 θdψ′2 + sin2 θdϕ′2] +

√︄
Q′

1

Q′
5

dzadza

(3.48)
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with the new angles ψ′ and ϕ′ equal to

ψ = ψ − a√︁
Q′

1Q
′
5

y, ϕ = ϕ− a√︁
Q′

1Q
′
5

t (3.49)

that are well-defined that to (3.45). Actually, using (3.45) to simplify (3.48) we find

ds2 =
√︂
Q′

1Q
′
5

[︃
−(r′2 + 1)

dt2

R2
+ r′2

dy2

R2
+

dr′2

r′2 + 1

]︃
+
√︂
Q′

1Q
′
5

[︁
dθ2 + cos2 θdψ′2 + sin2 θdϕ′2

]︁
+

√︄
Q′

1

Q′
5

dzadza

(3.50)

i.e. an AdS3 × S3 × T 4 structure. As stressed before for the general metric in Section 3.4, this metric is
perfectly regular, ending in a sort of cap, at r = 0. It is also flat at infinity and has a throat for small r.
See Figure 3.1 for a cartoon.
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Chapter 4

WZW models and black hole microstates

In this chapter we will examine the relationship between some supergravity systems (NS5, NS5-P
and NS5-F1) and the gauged Wess-Zumino-Witten models (WZW models for short). The connection
between the two arises from the fact that, as we will show, by introducing appropriate gauge fields in a
WZW model, and integrating them out by means of their equations of motion, the action that results
is exactly the sum of action (2.68) and (2.69), meaning the actions for strings coupled respectively
to a non-trivial metric and B field, for metric and B field given by the supergravity solutions for the
aforementioned systems in the so-called decoupling limit. The main advantage in using this technique
is that the theory in the “upstairs” world (meaning the theory in G) can be quantized exactly, thus
preserving all the UV corrections that are otherwise lost in the supergravity limit. Then, once one
moves to the “downstairs” world (i.e., to the coset G/H and after integrating out the gauge fields), it is
possible to implement such corrections in the supergravity computations.

We start with a brief review of Wess-Zumino-Witten models.

4.1 Wess-Zumino-Witten model

In this section we follow [20] and [21]. The Wess-Zumino-Witten model can be obtained starting from
the principal chiral model whose action is given by

S0[g] =
1

4λ2

∫︂
S2

d2x Tr
[︁
g−1∂µgg

−1∂µg
]︁

(4.1)

where
g ≡ g(z, z̄) : S2 → G (4.2)

are matrices generating a faithful representation of the Lie group G, and S2 is the Riemann sphere.
This model enjoys a G × G symmetry that corresponds to sending the g into gLg(z, z̄)gR for some

gL, gR ∈ G. The conserved currents related to this symmetry can be computed from the equation of
motion that read

∂µ(g
−1∂µg) = 0 ⇐⇒ g∂µ(g

−1∂µg)g−1 = ∂µ[(∂
µg)g−1] = 0; (4.3)

the right-hand side comes directly from the variation of S0, and gives the conserved current Jµ = g−1∂µg
for the multiplication by gR, while the left-hand side gives the conserved current J̃

µ
= (∂µg)g−1 for the

multiplication by gL.
Changing coordinates for complex ones, the current conservation condition becomes

∂Jz̄ + ∂̄Jz = 0 (4.4)

which would remind of CFT if the currents had holomorphic and antiholomorphic components. Unfor-
tunately, this is incompatible with a non-Abelian Lie group. This issue though is promptly solved by
the introduction of the so-called Wess-Zumino term (WZ term for short)

Γ[g] =
i

12π

∫︂
B
d3y ϵαβγ Tr

[︁
g−1∂αgg−1∂βgg−1∂γg

]︁
=

i

2π

∫︂
B
Tr
[︁
g−1dg ∧ g−1dg ∧ g−1dg

]︁ (4.5)
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where B is the ball you get by considering the interior of the Riemann sphere, and g is now a field
on B that coincides with the g in S0 on ∂B = S2. A somewhat detailed discussion on why such an
analytic continuation is possible can be read in [20]; here we give a summary of it. Essentially, because
of properties of every Lie group, every map g from (4.2) can be continuously deformed into the constant
map; once this is done, it is possible to extend the map g from S2 to its interior B. Bearing in mind
that the continuation is not unique, it can be showed that, thanks to fact that the third homotopy
group of every simple Lie group G is π3(G) ∼= Z, the difference between two Γ coming from topologically
different gs is just proportional to 2πi. Consequently, the path integral is well-defined as is the case for
the Quantum theory.

The action for the Wess-Zumino-Witten model (WZW model for short), is then given by

S = S0[g] + kΓ[g] (4.6)

with k ∈ Z being the level of the model. From the equations of motion (see Appendix A.1), together
with the conditions k ∈ Z>0 and λ2 = 2π/k, the conserved currents associated to the G × G symmetry
are now antiholomorphic and holomorphic

J̄ = kg−1∂̄g and J = −k(∂g)g−1. (4.7)

To end this section, we mention that the WZW model is a CFT also at the quantum level. To
prove this it suffices to show that the quantum theory admits a stress-energy tensor with OPE as
in (2.60); and indeed, thanks to a procedure known as Sugawara construction, this is feasible. Briefly, it
is possible to construct the OPE between the conserved currents Ja, where a is an index in the adjoint
representation of the algebra of G, on the basis of general dimensional and unitary principles to be

Ja(z)Jb(w) ∼ κab

(z − w)2
+
fabcJ

c(w)

(z − w)
, (4.8)

where κab is the Killing form and fabc are the structure constants. Starting from this OPE, one can
show that the modes of the conserved currents satisfy the so-called affine Kac-Moody algebra[︁

Jam, J
b
n

]︁
= kmδabδn+m,0 + ifabcJ

c
n+m. (4.9)

Once the currents are in place, the correct stress-energy tensor turns out to be (again, through the
Sugawara construction)

T (z) = γ :JaJa: (z) (4.10)

with γ being fixed by computing the TJ OPE. Built in this way, the stress-energy tensor satisfies the
Virasoro algebra, and the spectrum of the theory can be built from the action of the Kac-Moody algebra
on highest weight states.

4.2 NS5 branes and gauged WZW model

In this section we are firstly going to examine how to build the solution for the NS5 branes system in
the decoupling limit, and secondly we will show how the same metric can be obtained by null gauging
an appropriate WZW model. To know more than what will be here presented about these topics we
redirect the reader to [22, 23] and references therein; these will also be the main references of the
following sections.

The notation used is similar to that of the previous chapter: we will indicate with ỹ a direction
compactified into a circle of radius Rỹ; the space transverse to this direction will be R4 × T 4 with
coordinates (x1, . . . , x4) in R4, while T 4 is a four torus we will mostly ignore.
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4.2.1 The Supergravity side

Consider N5 NS5 branes placed in a symmetric arrangement on circle of radius a in the (x1, x2) plane
at positions xm with m = 1, . . . , N5. The metric for this configuration is given by [24]

ds2 = −dt2 + dỹ2 +H5(x)(dx
2
1 + · · ·+ dx24) + ds2T 4 (4.11)

H5(x) = 1 +

N5∑︂
m=1

1

|x− xm|2
. (4.12)

Introducing adapted coordinates (ρ, θ, ϕ, ψ) with θ ∈
[︁
0, π2

]︁
and ρ ≥ 0 such that1

x1 + ix2 = a cosh ρ sin θeiϕ and x3 + ix4 = a sinh ρ cos θeiψ, (4.13)

the positions of the NS5 branes are given by (x1)m + i(x2)m = aeiϕm with ϕm = 2πm
N5

and both (x3)m
and (x4)m equal to zero. Inserting this in (4.12), we get

H5(x) =1 +

N5∑︂
m=1

1

|x1 + ix2 − aeiϕm |2 + |x3 + ix4|2

=1 +
N5

a2(cosh2 ρ− sin2 θ)

(︃
sinh(N5χ)

cosh(N5χ)− cos(N5χ)

)︃
= 1 +

N5

a2(cosh2 ρ− sin2 θ)
ΛN5

(4.14)

where eχ = cosh ρ
sin θ ; for the details on the intermediate steps see Appendix A.2.

The factor ΛN5 contains the information about the precise location of the NS5 branes; so, to simplify
the metric, we will smear them along the circle in the ϕ angle. This amounts to computing an integral
on the angle ϕ rather than a sum on the location of the branes to compute H5 (see (A.22)). Actually,
the same result you get from the integral can be simply obtained by sending ΛN5 → 1 or, equivalently,
by taking the large N5 limit as, indeed, in this limit we have many sources that get progressively closer
to one another as more and more are added. In the limit N5 → ∞ we effectively have a continuous
distribution of NS5 branes. So, in the N5 ≫ 1 limit, H5 is given by

H5 = 1 +
N5

a2(cosh2 ρ− sin2 θ)
(4.15)

The last simplification we are going to take is the aforementioned decoupling limit ; in this limit we
neglect the 1 in the expression of H5 and this coincides to taking the near-horizon limit for the metric.
In this limit the NS5 metric reads

ds2 = −dt2 + dỹ2 +N5(dρ
2 + dθ2) + a2H5(sin

2 θ cosh2 ρ dϕ2 + cos2 θ sinh2 ρ2 dψ2)

= −dt2 + dỹ2 + ds2⊥
(4.16)

H5 =
N5

a2(cosh2 ρ− sin2 θ)
. (4.17)

4.2.2 Gauged WZW model

To reproduce the transverse part of the NS5 metric (namely, looking at (4.16), the ds2⊥ piece) we start
from a gauged WZW model with group structure

SL(2,R)× SU(2)

U(1)L × U(1)R
, (4.18)

where the U(1)s will be the gauge groups.
We parametrize the two groups elements g ≡ (gsl, gsu) ∈ SL(2,R)× SU(2) as

gsl = e
i
2
(τ+σ)σ3eρσ1e

i
2
(τ−σ)σ3 , gsu = e

i
2
(ψ+ϕ)σ3eiθσ1e

i
2
(ψ−ϕ)σ3 , (4.19)

1Basically, we think of R4 as the product of the two R2 factors that can then each be seen as a C factor.
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where σi are Pauli’s matrices. In line with what has been said in Section 4.1, the action for the WZW
model with target space G ≡ SL(2,R)× SU(2) from where we start from is

Swzw =
k

4π

∫︂
S2

d2x Tr
[︁
g−1∂µgg

−1∂µg
]︁
+
ik

6π

∫︂
B
d3y ϵαβγ Tr

[︁
g−1∂αgg−1∂βgg−1∂γg

]︁
(4.20)

where there is a hidden minus sign in front of the trace on the SU(2) component compared to the trace
on SL(2) to ensure that the correct signature in G (i.e. one timelike and five spacelike dimensions) is
achieved. Substituting the explicit form of the two group elements from (4.19), the final action turns
out to be (see Appendix A.3 for the intermediate steps)

Swzw =
k

π

∫︂
S2
d2z

(︁
− cosh2 ρ ∂τ ∂̄τ + ∂ρ∂̄ρ+ sinh2 ρ ∂σ∂̄σ + cos2 θ ∂ψ∂̄ψ + ∂θ∂̄θ + sin2 θ ∂ϕ∂̄ϕ

)︁
+
k

π

∫︂
S2
d2z

(︁
− cosh2 ρ (∂τ ∂̄σ − ∂σ∂̄τ)− cos2 θ (∂ϕ∂̄ψ − ∂ψ∂̄ϕ).

)︁ (4.21)

The one above is the action for a string theory in a non-flat background with non-zero B field, see (2.68)
plus (2.69). In this case the background metric is the one of G; to get the background we wish, meaning
to get the ds2⊥ part of the metric from (4.16), we must quotient G by two U(1) gauge transformations,
so that all the points along the two gauged direction will be physically equivalent. As done in [25], we
gauge the U(1)L × U(1)R subgroup such that

(gsl, gsu) ↦→
(︁
eiασ3gsle

iβσ3 , e−iασ3gsue
iβσ3

)︁
(4.22)

namely, the transformation acting on the parameters from (4.19) as follows

τ ↦→ τ + α+ β

σ ↦→ σ + α− β

ρ ↦→ ρ

ϕ ↦→ ϕ− α− β

ψ ↦→ ψ − α+ β

θ ↦→ θ

(4.23)

The expected number of gauge fields for two U(1) groups in a two-dimensional space (the Riemann
sphere) would be four: a two-component vector for each U(1); however, in this case, since the currents
being gauged are null, it turns out that just two gauge fields survive and are thus necessary. Indicating
the two gauge fields as A and Ā, the two couple to a combination of the currents (T3 = 1

2σ3)

J sl
3 =kTr

[︁(︁
−iT3

)︁
∂gslg

−1
sl
]︁
= k

(︁
cosh2 ρ ∂τ − sinh2 ρ ∂σ

)︁
J̄

sl
3 =kTr

[︁(︁
−iT3

)︁
g−1
sl ∂̄gsl

]︁
= k

(︁
cosh2 ρ ∂̄τ + sinh2 ρ ∂̄σ

)︁
J su
3 =kTr

[︁(︁
−iT3

)︁
∂gsug

−1
su
]︁
= k

(︁
cos2 θ ∂ψ + sin2 θ ∂ϕ

)︁
J̄

su
3 =kTr

[︁(︁
−iT3

)︁
g−1
su ∂̄gsu

]︁
= k

(︁
cos2 θ ∂̄ψ − sin2 θ ∂̄ϕ

)︁ (4.24)

given by J sl
3 + J su

3 for Ā, and J̄ sl
3 − J̄

su
3 for A as these are null combinations with respect to the Killing

metric. Putting all of this together, the action for the gauged WZW model is given by

Stot =Swzw + Sgauge

=Swzw +
1

π

∫︂
S2

d2z
(︁
2Ā(J sl

3 + J su
3 ) + 2A(J̄

sl
3 − J̄

su
3 )− 4k(sinh2 ρ+ cos2 θ)AĀ

)︁
,

(4.25)

with the gauge fields transforming under a gauge transformation as

A ↦→ A+ ∂β; Ā ↦→ Ā+ ∂̄α. (4.26)

The action Stot with gauge transformations from (4.22) and (4.26) is gauge invariant.
To get the ds2⊥ metric, we need to integrate out the gauge fields with the help of their equations of

motions which have solutions

A =
cosh2 ρ ∂τ + cos2 θ ∂ϕ+ sin2 θ ∂ϕ− sinh2 ρ ∂σ

cosh(2ρ) + cos(2θ)

Ā =
cosh2 ρ ∂̄τ − cos2 θ ∂̄ϕ+ sin2 θ ∂̄ϕ+ sinh2 ρ ∂̄σ

cosh(2ρ) + cos(2θ)
.

(4.27)
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Inserting these in (4.25), performing all computations and renaming k → N5 yields exactly what we
are after

Stot =
N5

π

∫︂
d2z

(︃
∂ρ∂̄ρ+ ∂θ∂̄θ+

N5

Σ

(︁
sin2 θ cosh2 ρ ∂ϕ∂̄ϕ+ cos2 θ sinh2 ρ ∂ψ∂̄ψ

)︁
+
N5 cos

2 θ cosh2 ρ

Σ

(︁
∂ψ∂̄ϕ− ∂ϕ∂̄ψ

)︁)︃ (4.28)

with
Σ = N5(cosh

2 ρ− sin2 θ). (4.29)

The one in (4.28), together with (4.29), is the correct action of string theory with background given by
the ds2⊥ piece from (4.16).

4.3 Supertubes

A more general solution than the one above is the supertube solution. In this case the NS5 branes
spiral around the ỹ direction into a helix, giving rise to a momentum and angular momentum charge,
as we will see below. The amount of the spiraling is controlled by a new parameter k ∈ Z (this is a
different k with respect to the one from Section 4.1).

4.3.1 Supergravity limit

The supergravity metric is retrieved by slightly modifying the positions of the NS5 branes in the previous
solution by introducing a new term in the definition of the ϕm angle, namely the angle determining the
placement of the branes as (x1)m + i(x2)m = aeiϕm ; the new term gets us from (m = 1, . . . , N5)

ϕm =
2πm

N5
to ϕm =

k

N5

t+ ỹ

Rỹ
+

2πm

N5
. (4.30)

As can be clearly seen, the NS5 solution is simply given by setting k = 0.
The metric when k ̸= 0, i.e. the metric for the NS5-P system, is [23] (v = t− ỹ and u = t+ ỹ)

ds2 =− dudv +N5

[︃
dρ2 + dθ2 +

1

Σ0

(︁
sin2 θ cosh2 ρ dϕ2 + cos2 θ sinh2 ρ dψ2

)︁]︃
+

1

Σ0

[︃
2k

Rỹ
sin2 θ dvdϕ+

k2

N5R2
ỹ

dv2
]︃
+ ds2T 4

(4.31)

e−2Φ =
NpΣ0

N5k2V4
, B =

N2
5 cos

2 θ cosh2 ρ

Σ0
dϕ ∧ dψ +

k cos2 θ

RỹΣ0
dv ∧ dψ (4.32)

where Σ0 = sinh2 ρ+ cos2 θ and V4 is the volume of the four torus.
Following the method from [26], we can compute the linear and angular momentum associated

to this solution; let’s start with the linear momentum. Following the general recipe from the above
reference, if we wish to compute the momentum along a translation-invariant direction ỹ chosen between
the set X of such directions, we must compute the asymptotic value of the metric component gtỹ. If
this goes as

gtỹ ∼
q

rD−3
, (4.33)

where q is some constant, D is the number of spacetime dimensions without the ones in X and r is the
radius in these D dimensions, then the modulus of the momentum along the direction ỹ per unit of
volume in the space spanned by the X directions, is given by

⃓⃓
Pỹ
⃓⃓
=

(D − 3)ΩD−2q

16πG
, (4.34)
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where ΩD−2 is the surface of the unit radius SD−2, and G = 8π6g2s is Newton’s constant2. Using the
metric from (4.31), we find

gtỹ ∼
k2a2

N5R2
ỹr

2
⇒ q =

k2a2

N5R2
ỹ

(4.35)

where r = a sinh ρ, and in this case D = 5. Hence, we find

⃓⃓
Pỹ
⃓⃓
=

Ω3

8πG

k2a2

N5R2
ỹ

=
2π2

64π7g2s

k2a2

N5R2
ỹ

=
k2a2

32π5N5g2sR
2
ỹ

; (4.36)

and, multiplying by the volume of the four torus and the ỹ-coordinate’s one, we find

⃓⃓
Pỹ
⃓⃓
=
⃓⃓
Pỹ
⃓⃓(︁
2πRỹV4

)︁
=

k2a2V4
16π4N5g2sRỹ

. (4.37)

A similar reasoning leads us to the computation of the angular momentum of the metric. This time, we
look at the component gtϕ which should behave at infinity as

gtϕ ∼ q̃

rD−3
for (4.31) gtϕ ∼ ka2

Rỹr2
⇒ q̃ =

ka2

Rỹ
(4.38)

from where we find, together with the help of the definition of the angular momentum density
Jϕ =

ΩD−2q̃
8πG ,

Jϕ =
Ω3a

2k

8πGRỹ
=

πa2k

4GRỹ
⇒ Jϕ = Jϕ

(︁
2πRỹV4

)︁
=
π2a2kV4

2G
=

a2kV4
16π4g2s

. (4.39)

It is also possible to relate the angular momentum Jϕ to N5, Np and k using the fact that
⃓⃓
Pỹ
⃓⃓
=

Np
Rỹ

together with (4.37) that yields

Np =
k2a2V4

16π4N5g2s
(4.40)

which, once inserted in (4.39), gives

Jϕ =
N5Np

k
(4.41)

Since it was introduced at the beginning of this section, little has been said about the parameter
k; we now rectify this issue. The parameter k has a simple meaning: say you start circling around
the ỹ axis from the mth brane; then, once the circle around the ỹ axis is completed, you will find
yourself sitting at the (m+ k)th brane’s position. Hence, k gives the number of branes’ positions that
are jumped as a circle in ỹ is completed. If k and N5 admit a common divisor different from 1, i.e. if
gcd(k,N5) = d ̸= 1, than there will be d strands of NS5 branes winding around the ỹ circle; on the
other hand, if gcd(k,N5) = 1, then there will be a single brane winding N5 times around the ỹ circle.
See Figure 4.1.

4.3.2 Supertubes from WZW model

To reproduce the metric (4.31) using a similar technique to the one used in Section 4.2.2, we need to
enlarge the target space to accommodate for the branes’ tilting. The target space is then

G = SL(2,R)× SU(2)× Rt × Sỹ × T 4. (4.42)

G has signature equal to (10, 2), while we would need a signature equal to (9, 1) to correctly reproduce
the NS5-P supertube. To get the correct signature and dimensionality, we again take the coset G/H,
with H being the gauge group gauging two null isometries of G. Introducing the two gauge fields, and
integrating them out using their equations of motions, we effectively reach the desired supergravity

2Recall that we set α′ = 1; if it was not, we would have G = 8π6g2sα
′4.
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(a) N5 = 3, k = 5. One NS5 brane
wounding three times around ỹ.

(b) N5 = 6, k = 15. Three NS5
strands wounding around ỹ.

Figure 4.1: Two examples of supertubes with different windings and strands numbers.

background: the NS5-P supertube in the decoupling limit. The most general null embeddings of
H = U(1)× U(1) will be considered first.

The group element g will be now given by (the ϕ and σ used here are opposite to the ones of
Section 4.2.2)

g = (gsl, gsu, e
it, eiỹ) =

(︁
e
i
2
(τ−σ)σ3eρσ1e

i
2
(τ+σ)σ3 , e

i
2
(ψ−ϕ)σ3eiθσ1e

i
2
(ψ+ϕ)σ3 , eit, eiỹ

)︁
. (4.43)

The action of the most general null embedding of U(1)× U(1) on g is

g ↦→ (eil1αgsle
ir1β, e−il2αgsue

−ir2β, eil3αeiteir3β, e−il4αeiỹe−ir4β), (4.44)

and this implies the following transformations rules for the parameters from (4.43)

τ ↦→ τ + l1α+ r1β

σ ↦→ σ − l1α+ r1β

ψ ↦→ ψ − l2α− r2β

ϕ ↦→ ϕ+ l2α− r2β

t ↦→ t+ l3α+ r3β

ỹ ↦→ ỹ − l4α− r4β
(4.45)

and the general conserved currents

U(1)L : J = l1J
sl
3 + l2J

su
3 + l3P̂ t,L + l4P̂ ỹ,L

U(1)R : J̄ = r1J̄
sl
3 + r2J̄

su
3 + r3P̂ t,R + r4P̂ ỹ,R

(4.46)

where J sl,su
3 and J̄ sl,su

3 are the ones from (4.24) and

P̂ t,L ≡ ∂t, P̂ t,R ≡ ∂̄t, P̂ ỹ,L ≡ ∂ỹ, P̂ ỹ,R ≡ ∂̄ỹ. (4.47)

For the two isometries that are gauged to be null isometries, the norms of the above currents J and J̄
must be zero with respect to the Killing metric; this amounts to require that

⟨J, J⟩ = N5(−l21 + l22)− l23 + l24 = 0 and ⟨J̄ , J̄⟩ = N5(−r21 + r22)− r23 + r24 = 0. (4.48)

The action for such a general null gauging is equal to

Stot = Swzw +
1

2π

∫︂
S2

d2z (−∂u∂̄v − ∂v∂̄u) +
1

π

∫︂
S2

d2z (2AJ̄ + 2ĀJ − 4N5ΣAĀ) (4.49)

where
N5Σ =

1

2

(︁
N5(l1r1 cosh 2ρ− l2r2 cos 2θ) + l3r3 − l4r4

)︁
. (4.50)

Choosing the values such that |l1| = |l2| and |l3| = |l4| (and similarly for the right component of
the current) tilts the null currents J and J̄ in the Rt × Sỹ direction. The action Stot from (4.49), after
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integrating out the gauge field, takes the form of the action of a string theory with background metric
and B field given by the supergravity supertubes solutions. Specifically, selecting the values

l1 = l2 = 1, l3 = −l4 = − k

Rỹ
, r1 = −r2 = 1, r3 = −r4 = − k

Rỹ
, (4.51)

leads us to the NS5-P supertube of the previous section as, indeed, integrating out the gauge fields via
their equations of motion and selecting the gauge τ = σ = 0, Stot becomes

Stot =− 1

2π

∫︂
d2z (∂u∂̄v + ∂v∂̄u) +

N5

π

∫︂
d2z

[︃
∂ρ∂̄ρ+ ∂θ∂̄θ

1

Σ0
(sin2 θ cosh2 ρ ∂ϕ∂̄ϕ+ cos2 θ sinh2 ρ ∂ψ∂̄ψ) +

cos2 θ cosh2 ρ

Σ0
(∂ϕ∂̄ψ − ∂ψ∂̄ϕ)

+
k

N5Σ0Rỹ

[︁
sin2 θ(∂ϕ∂̄v + ∂v∂̄ϕ) + cos2 θ(∂ψ∂̄v − ∂v∂̄ψ)

]︁
+

k2

R2
ỹN

2
5Σ0

∂v∂̄v

]︃
.

(4.52)

To understand the role played by the parameter k in this picture it is useful to focus on the gauge
action for ρ = 0 and θ = π

2 , i.e. to focus the gauge action while being at the branes’ locus. In this case
the gauge action becomes (τ = 0)

Sgauge =
1

π

∫︂
d2z

[︃
A
(︃
− k

Rỹ
dv −N5dϕ

)︃
+ Ā

(︃
− k

Rỹ
dv̄ −N5dϕ̄

)︃]︃
(4.53)

i.e., the quadratic term in A and Ā vanishes, so the two gauge fields act as Lagrange multipliers
imposing the constraint

N5dϕ+
k

Rỹ
dv = 0. (4.54)

This is nothing but the condition that the branes wind in helices around the ỹ-ϕ torus as can be checked
by taking dϕ = −2πk

N5
, which amounts to translate by k’s branes position along the ϕ circle, namely the

one on the (x1, x2) plane along which the branes are positioned. By definition of the parameter k, this
should mean that a whole lap of the ỹ circle has been completed; and indeed, substituting dϕ = −2πk

N5

in (4.54) yields (take t = 0)
dỹ = 2πRỹ. (4.55)

Taking a T -duality of the NS5-P metric (4.31) along the ỹ direction, leads to the NS5-F1 supertube
with metric given by (we refer to the T -dual of ỹ as y and, consequently, to the y-coordinate-circle’s
radius as Ry = 1

Rỹ
)

ds2 =− dudv +N5

[︃
dρ2 + dθ2 +

1

Σ

(︁
cosh2 ρ sin2 θ dϕ2 + sinh2 ρ cos2 θ dψ2

)︁]︃
+

2ν

Σ

(︁
sin2 θ dtdϕ+ cos2 θ dydψ

)︁
+

ν2

N5Σ

(︁
N5 sin

2 θ dϕ2 +N5 cos
2 θ dψ2 + dudv

)︁
+ ds2T 4

(4.56)

where ν = kRy and the B field and dilaton are given by

B =
cos2 θ

(︁
ν2 + cosh2 ρ

)︁
Σ

dϕ ∧ dψ − ν2

N5Σ
dt ∧ dy

+
ν cos2 θ

Σ
dt ∧ dψ +

ν sin2 θ

Σ
dy ∧ dϕ

e−2Φ =
N1Σ

k2R2
yV4

, Σ =
ν2

N5
+Σ0 (4.57)

with u = t+ y and v = t− y. The metric for this configuration of charges is related to the parameters
choice

l1 = l2 = 1, l3 = l4 = −kRy, r1 = −r2 = 1, r3 = −r4 = −kRy, (4.58)

We highlight that the NS5-F1 supertube is the same system we already studied in Section 3.4.1, namely
the D1-D5 fuzzball, just in a different duality frame.
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1

2

3

Region 2: linear dilaton
Region 1: flat spacetime

Region 3: (AdS3 × S3 × T 4)/Zk

Figure 4.2: Structure of spacetime for the supergravity system of NS5-F1 branes from the end of Section 4.3.2.
Basically, the decoupling limit, which amounts to neglecting the 1 in the H5 harmonic function, decouples the
asymptotic flat spacetime that we would have at ρ → ∞ if the 1 was in place, leaving behind an asymptotic
linear dilaton spacetime.

Before moving on with the next chapter, we take the chance to spend a few words on the structure
of spacetime resulting from taking the decoupling limit; a cartoon representing the situation for the
NS5-F1 system can be seen in Figure 4.2. Essentially, the decoupling limit affects the asymptotic
spacetime that we get by taking the ρ→ ∞ limit: with the 1 present in the H5 harmonic function we
would get an asymptotically flat spacetime, while in the decoupling limit we get an asymptotic linear
dilaton spacetime

ds2 ∼ −dt2 + dy2 +N5(dρ
2 + dΩ2

3) + ds2T 4 with Φ ∼ −ρ (4.59)

where Φ is the dilaton. This is also the asymptotic limit for a stack of NS5 branes in the decoupling
limit, as from far away distinguishing between the branes placed on a circle and the branes placed on
top of each other is difficult. Finally, the structure indicated by (AdS3 × S3 × T 4)/Zk in Figure 4.2
is known as orbifold ; if we set k = 1 the orbifold reduces to the simpler AdS3 × S3 × T 4 throat. The
emerging of the orbifold can be naively seen by taking the Ry → ∞ limit in (4.56) to look at the throat;
in this limit, the metric becomes

ds2 =N5

[︃
−cosh2 ρ

k2R2
y

dt2 +
sinh2 ρ

k2R2
y

dy2 + dρ2
]︃

+N5

[︃(︃
dt

kRy
+ dϕ

)︃2

sin2 θ +

(︃
dy

kRy
+ dψ

)︃2

cos2 θ + dθ2
]︃
+ ds2T 4 .

(4.60)

As we can see, to put the metric in a true AdS3 × S3 × T 4 form, we would need to implement a
coordinate change such as

dϕ→ dϕ′ =
dt

kRy
+ dϕ and dψ → dψ′ =

dy

kRy
+ dψ (4.61)

However, ϕ′ and ψ′ are only angles if they satisfy periodic boundary conditions, and while there are no
problems for ϕ′ to satisfy this, ψ′ does pose some problems since both y and ϕ are periodic coordinates.
In the case of k = 1 this problem is promptly solved because the periodicity in ϕ and in y match each
other, but for k ̸= 1 the orbifold structure emerges. We will not go in more detail about this because it
is beyond the scope of this thesis.

43



Chapter 5

Geodesics

In this chapter we are going to analyze how the geometry of some string theory solutions presented
in the previous chapters influence the motion of massless probes. The analysis will be carried out for
different supergravity backgrounds, starting from the D1-D5 circular fuzzball, and moving to both the
elliptical and circular NS5 branes arrangement, to finally end with the elliptical and circular NS5-F1
fuzzball. The main goal is looking for closed trajectories orbiting around the said solutions, indicating
the possibility for the above branes configurations to trap light similarly to more ordinary, GR black
holes. In this context, the main results presented in this chapter suggest that as the microstates
parameters are changed, the absorption properties of some fuzzball configuration change as well. Indeed,
it seems that the fuzzballs under study only absorb light with a specific impact parameter, while
deviating all other light rays with different impact parameters. However, since the impact parameter
giving absorption depends on some microstate-characterizing parameter, one can think that considering
the full ensemble will generate absorption for all impact parameters below a certain critical one.

5.1 Geodesics in D1-D5 fuzzballs

We already know the metric for the D1-D5 fuzzball with circular profile from Section 3.4.1, equa-
tion (3.46); we rewrite it here (in a more compact form and with some minor changes of notation:
hSec. 3.4.1 ≡ Hhere, Q′

1,5 ≡ Q1,5, r ≡ ρ plus neglecting the ds2T 4 component of the metric) for completeness

ds2 =H−1
[︁
−(dt+ ωϕdϕ)

2 + (dy + ωψdψ)
2
]︁

+H

[︃
f

(︃
dρ2

ρ2 + a2
+ dθ2

)︃
+ ρ2 cos2 θdψ2 + (ρ2 + a2) sin2 θdϕ2

]︃
,

(5.1)

where

H =

√︄(︃
1 +

Q1

ρ2 + a2 cos2 θ

)︃(︃
1 +

Q5

ρ2 + a2 cos2 θ

)︃
, f = ρ2 + a2 cos2 θ, a =

√
Q1Q5

R
(5.2)

ωϕ =
a
√
Q1Q5 sin

2 θ

ρ2 + a2 cos2 θ
, ωψ = −a

√
Q1Q5 cos

2 θ

ρ2 + a2 cos2 θ
,

Please notice that, compared to [27], along with other variable renaming, we have (ωψ)here =
−(ωψ)from [27].

To simplify the study that follows, we will restrict to the θ = 0 surface, i.e. to the plane orthogonal
to the branes in the x space; the metric (5.1) becomes

ds2 = H−1
[︁
−dt2 + (dy + ωψdψ)

2
]︁
+H

[︃
(ρ2 + a2)

dρ2

ρ2 + a2
+ ρ2dψ2

]︃
. (5.3)

Wishing to study the null paths in the D1-D5 fuzzball, we introduce the Lagrangian

L =
1

2
gµν ẋ

µẋν (5.4)
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where ẋµ represents the derivative with respect to an affine parameter λ. From it, taking into
consideration that L does not depend on t, y, ϕ and ψ, we can compute the corresponding conserved
quantities1

E = −∂L
∂ṫ

=
ṫ

H
=

(a2 + ρ2)ṫ√︁
(a2 +Q1 + ρ2)(a2 +Q5 + ρ2)

,

P =
∂L
∂ẏ

=
ẏ + ωψψ̇

H
=

(a2 + ρ2)ż − a
√
Q1Q5ψ̇√︁

(a2 +Q1 + ρ2)(a2 +Q5 + ρ2)
,

Jψ =
∂L
∂ψ̇

=
ωψ
(︁
ẏ + ωψψ̇

)︁
H

+Hρ2ψ̇ =
ψ̇(a2ρ2 + (Q1 + ρ2)(Q5 + ρ2)− a

√
Q1Q5ż√︁

(a2 +Q1 + ρ2)(a2 +Q5 + ρ2)

(5.5)

and the velocities related to them

ṫ = EH =
E
√︁

(a2 +Q1 + ρ2)(a2 +Q5 + ρ2)

a2 + ρ2
,

ẏ =
PH2ρ2 − Jψωψ + Pω2

ψ

Hρ2
=
aJψ

√
Q1Q5 + a2Pρ2 + P (Q1 + ρ2)(Q5 + ρ2)

ρ2
√︁
(a2 +Q1 + ρ2)(a2 +Q5 + ρ2)

,

ψ̇ =
Jψ − Pωψ
Hρ2

=
a2Jψ + a

√
Q1Q5P + ρ2Jψ

ρ2
√︁
(a2 +Q1 + ρ2)(a2 +Q5 + ρ2)

.

(5.6)

With the help of these, starting from the null condition gµν ẋµẋν = 0 with gµν from (5.3), we can obtain
the following equation for ρ̇

ρ̇2 = E2 − P 2 −
(Jψ − ωψP )

2

H2ρ2
(5.7)

that we later recast, with the help of the chain rule ρ̇ = dρ
dψ ψ̇, into (x ≡ ρ2)(︃

dρ

dψ

)︃2

=
x
(︁
Ax3 +Bx2 + Cx+D

)︁(︁
a2Jψ + a

√
Q1Q5P + Jψx

)︁2 ≡ xP(x)(︁
a2Jψ + a

√
Q1Q5P + Jψx

)︁2 ; (5.8)

the parameters A, . . . ,D’s explicit definitions in terms of the metric’s charges are

A = E2 − P 2

B = −J2
ψ +

(︁
2a2 +Q1 +Q5

)︁(︁
E2 − P 2

)︁
C = −2aJψ

√︁
Q1Q5P +Q1Q5

(︁
E2 − P 2

)︁
+ a2

(︁
−2J2

ψ +
(︁
Q1 +Q5 + a2

)︁(︁
E2 − P 2

)︁)︁
D = −a2

(︁
aJψ +

√︁
Q1Q5P

)︁2
.

(5.9)

In the remainder of this section we are interested in both the values xi such that P(xi) = 0, and radii
x∗ such that P(x∗) = P ′(x∗) = 0, i.e. zeros of P(x) as well as of its first derivative. The xi represent
inversion radii, meaning radii at which the particle inverts its motion, switching from approaching the
fuzzball to moving away from it. The x∗, on the other hand, represent radii at which the massless
particle starts to “circle around” the fuzzball, moving along a close trajectory. These second kind of
trajectories are the most interesting among the two because they signal the possibility for the specific
fuzzball we are considering to capture massless particles, meaning that it would possess the property
after which black holes get their name.

We will save the more interesting solutions for later; now we focus on the study of inversion radii.
To do this we rewrite (5.8) in a more explicit way as(︃

dρ

dψ

)︃2

=
(ρ2 + a2 +Q1)(ρ

2 + a2 +Q5)ρ
4

b2
(︂
ρ2 + a2 + av

√
Q1Q5

bψ

)︂ − ρ2 (5.10)

1In our notation, the conserved quantity with respect to a variable x such that ∂L
∂x

= 0 is C = ∂L
∂ẋ

.
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∆ψ

Figure 5.1: Deflection angle for a massless particle approaching the D1-D5 fuzzball in the θ = 0 slice of the
metric. The black dot represents the fuzzball location.

where
v =

P

E
, bψ =

Jψ
E
, b =

bψ√
1− v2

(5.11)

with bψ being the impact parameter of the particle in the θ = 0 section. For large ρ, it is possible to
expand the RHS of (5.10) to find that the inversion radius ρi is given by

ρi = b

(︃
1− f2

2b2

)︃
with f2 = Q1 +Q5 −

2av
√
Q1Q5

bψ
. (5.12)

So, we learn that for large impact parameters the massless particle will not be captured by the fuzzball,
but its trajectory will be perturbed nonetheless; actually, as done in [27], it is possible to compute the
deflection angle due to the fuzzball. In our case, it turns out to be (see the reference for more details
on how to compute it and Figure 5.1)

∆ψ =
π(1− v2)

2b2ψ

(︃
Q1 +Q5 −

2av
√
Q1Q5

bψ

)︃
+ . . . (5.13)

We now turn our attention to the circling paths; to do this we are now going to study the polynomial
P(x) from (5.8) as done in [28]. The sign of A and D is fixed: A can only be positive, since E2 > P 2;
while D is bound to be negative. As a consequence, P(x≫ 1) > 0 and P(0) < 0, implying that at least
one of P(x)’s three zeroes is positive. Of the three, we should concentrate on the largest one, since this
will be the first-one a particle meets as it approaches the fuzzball. Requiring the largest zero to be
positive and double, together with the conditions A > 0 and D < 0, we find that2 C > 0 and B < 0.

The largest solution to the equation P ′(x) = 0, meaning the large solution to the equation

3Ax2 + 2Bx+ C = 0 (5.14)

is

x∗ =
−B +

√
B2 − 3AC

3A
, (5.15)

and it exists iff B2 ≥ 3AC. Plugging it inside the equation P(x) = 0, D can be seen to be equal to
(look at (B.3))

D =
2
(︁
B2 − 3AC

)︁ 3
2 −B

(︁
2B2 − 9AC

)︁
27A2

. (5.16)

Imposing the requirement D ≤ 0, we find that B ≤ 4AC and this, in conjunction with the former
bound on B, combines into the bound 4AC ≥ B2 ≥ 3AC. These bounds are quite tricky to be solved in
the most general case; however, choosing B = −2

√
AC, which is equivalent to imposing D = 0, we find

x∗ =
C

A
=

√︄
−2aJψ

√
Q1Q5P +Q1Q5

(︁
E2 − P 2

)︁
+ a2

(︁
−2J2

ψ +
(︁
Q1 +Q5 + a2

)︁(︁
E2 − P 2

)︁)︁
E2 − P 2

. (5.17)

2To see this, it is sufficient to write P(x) = (x− z∗)
2(x− z1), where z∗ is the largest, double, positive zero, and expand

the expression to find P(x) = x3 + (−z1 − 2z∗)x
2 +2z∗z1x− z1z

2
∗. Using the constraint D > 0, we deduce z1 > 0; now all

other conclusions follow immediately.
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Again, this condition, with the many free parameters it has, is rather unintelligible so, to get a
comprehensible result, it is easier to fix some parameters. For instance, specializing to the case
Q1 = Q5 = Q and P = − aJψ√

Q1Q5
, the one above simply reduces to (see (B.5))

x∗ = Q+ a2. (5.18)

At this point it is interesting to look at (5.10) where the above values for the charges and momentum
have been selected, the upshot is(︃

dρ

dψ

)︃2

=
(ρ2 + a2 +Q)2

b2
− ρ2

=
(ρ2 + a2 +Q− bρ)(ρ2 + a2 +Q+ bρ)

b2
.

(5.19)

The turning-point equation is now easy to solve, and returns that there exist turning points if b >
bcrit = 2

√︁
a2 +Q; on the other hand, if b = bcrit, the null path ends up in a closed trajectory with

radius ρ2∗ = x∗ around the fuzzball, hence being trapped forever. Finally, for b < bcrit the particle
reaches ρ = 0 and after possibly looping around few times, escapes back to infinity. Summing up, for
the above configurations of charges and momentum, we find that the massless probe will be sent back
to infinity by the fuzzball if b > bcrit and if b < bcrit; in the first case it stops short of ρ = 0, whereas in
the second case it does arrive at ρ = 0 to then continue its journey towards infinity. Conversely, for
b = bcrit the particle gets trapped in a closed trajectory around the fuzzball.

If we wanted to compare this to the behavior of a massless probe in the Schwarzschild geometry,
keeping in mind that the fuzzball under consideration is a two-charge solution in five spacetime
dimensions, so not really a physical solution, we would immediately notice a striking difference: in the
case of the fuzzball the particle ends up being trapped, and hence never coming back from its trip, just
for a specific impact parameter (i.e., bcrit), while in the Schwarzschild black hole all particles hitting the
event horizon are doomed to never emerge again from the hole. A plausible idea to cure this issue, is to
recall that up to now we have been analyzing one specific fuzzball configuration, whereas a true black
hole would be composed by a statistical ensemble of such configurations. If then every configuration
had a slightly different bcrit, once the average over the ensemble is carried out, we would find a picture
agreeing with the absorbing behavior of a typical black hole. One way in which we could explore some
different fuzzball configurations is by the introduction of the parameter k from Section 4.3.1. In the
case of the NS5-P supertube we have seen that k indicates the number of branes positions shifted
as a turn of the y circle is completed; performing an S duality from the NS5-F1 metric it is possible
to implement the dependence on k in the D1-D5 metric as well. Doing the S duality, it is possible
to see that k will appear wherever there is a y-coordinate’s radius R; given this fact, and looking at
the definition of the parameter a in (5.2), we have that ak ̸=1 =

ak=1
k . With this substitution inserted

in (5.18) and in bcrit = 2
√︁
a2 +Q, we immediately see that changing k, which again corresponds to

considering different circular supertubes, the critical radius, as well as the value for bcrit, change, giving
us hope that the discussion given above on the ensemble average is at least plausible.

5.2 Geodesics in NS5-F1 supertubes

5.2.1 Circular supertube

Moving to the S-dual system to the just considered, which we already met in Section 4.3.2, the metric
is given by

ds2 =−
(︃
1− ν2

N5Σ

)︃
(dt2 − dy2) +N5

[︃
dρ2 + dθ2 +

1

Σ
(cosh2 ρ sin2 θdϕ2 + sinh2 ρ cos2 θdψ2)

]︃
+

+
2ν

Σ
(sin2 θdtdϕ+ cos2 θdydψ) +

ν2

N5Σ
(N5 sin

2 θdϕ2 +N5 cos
2 θdψ2)

(5.20)
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with ν = kR, Σ = ν2

N5
+ Σ0 = ν2

N5
+ sinh2 ρ + cos2 θ. Actually, this is not the S-dual to the D1-D5

fuzzball because the metric above is the metric in the decoupling limit for the NS5 branes, and we have
already seen at the end of Section 4.3.2 how this influences the asymptotic limit.

Once again, we will take θ = 0, which gives us the metric

ds2 = −
(︃
1− ν2

n5Σ

)︃
(dt2 − dy2) + n5dρ

2 +
2ν

Σ
dydψ +

ν2 + n5 sinh
2 ρ

Σ
dψ2, (5.21)

and repeat similar steps to the ones performed in the previous section, i.e. introduce the Lagrangian L
for the metric (5.20), compute the conserved quantities

E = −∂L
∂ṫ

= ṫ

(︃
1− ν2

n5Σ

)︃
=

ṫn5 cosh
2 ρ

n5 + k2R2 + n5 sinh
2 ρ

P =
∂L
∂ẏ

=
ν(ψ̇n5 − ẏν)

n5Σ
+ ẏ =

n5[ẏ + 2ψ̇kR+ ẏ cosh(2ρ)]

n5 + 2k2R2 + n5 cosh(2ρ)

Jψ =
∂L
∂ψ̇

=
ψ̇n5 sinh

2 ρ+ ν(ẏ + ψ̇ν)

Σ
= n5

(︃
ψ̇ +

kRẏ − n5ψ̇

n5 + k2R2 + n5 sinh
2 ρ

)︃ (5.22)

and solve them to find the velocities

ṫ =
n5EΣ

n5Σ− ν2
= E +

k2ER2

n5 cosh
2 ρ

ẏ =
n5Σ

[︁
ν(−Jψ + Pν) + n5P sinh2 ρ

]︁
n5(−ν2 + n5Σ) sinh

2 ρ− ν2(n5 + ν2 − n5Σ)
= P +

kR(−Jψ + kPR)

n5 sinh
2 ρ

ψ̇ =
Σ[−ν(n5P + Jψν) + n5JψΣ]

n5(−ν2 + n5Σ) sinh
2 ρ− ν2(n5 + ν2 − n5Σ)

=
Jψ cosh

2 ρ− kPR

n5 sinh
2 ρ

.

(5.23)

Substituting these inside the condition gµν ẋµẋν , it is possible to find

ρ̇2 =

(︁
−J2

ψ + n5
(︁
E2 − P 2

)︁)︁
sinh4 ρ

n25 sinh
2 ρ cosh2 ρ

+

+

(︁
−J2

ψ + n5
(︁
E2 − P 2

)︁
− (Jψ − kPR)2 + E2k2R2

)︁
sinh2 ρ− (Jψ − kPR)2

n25 sinh
2 ρ cosh2 ρ

(5.24)

that can later be recast into (x ≡ sinh2 ρ)(︃
dρ

dψ

)︃2

=
x
(︁
Ax2 + (A−B + C)x−B

)︁
(Jψ(1 + x)− kPR)(1 + x)

=
xP(x)

(Jψ(1 + x)− kPR)(1 + x)
, (5.25)

with
A = −J2

ψ +N5

(︁
E2 − P 2

)︁
B = (Jψ − kPR)2 C = E2k2R2. (5.26)

Now, the way to proceed to look for closed null paths is the same as before: find x∗ such that
P(x∗) = P ′(x∗); solving the equation P(x) = 0 we find the discriminant ∆ = A2+2A(B+C)+(B−C)2

whose sign is
∆ ≥ 0 for A ∈

(︂
−∞,−(

√
B +

√
C)2

]︂
∪
[︂
−(

√
B −

√
C)2,+∞

)︂
. (5.27)

For sake of brevity, we rename A1 ≡ −(
√
B +

√
C)2 and A2 ≡ −(

√
B −

√
C)2. For A such that ∆ ≥ 0,

the solutions to P(x) = 0 are

x1 =
B −A− C +

√
∆

2A
and x2 =

B −A− C −
√
∆

2A
(5.28)

Keeping in mind that P(x), being proportional to
(︁ dρ
dψ

)︁2, must be positive, we divide the analysis in
three cases and restrict to

√
C >

√
B (so that x∗ > 0, see below).
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• Case 1: A > 0. In this case x1 > 0 and x2 < 0; P(x) is non-negative iff x ≥ x1, given that x > 0
by definition. The massless particle can arrive from infinity at x = x1 where it inverts its motion.

• Case 2: A ∈ [A2, 0). In this case x2 > x1 > 0 and P(x) ≥ 0 for x ∈ [x1, x2]; so these values are
isolated from infinity. As A approaches −

(︁√
B−

√
C
)︁2 the two solutions converge to x∗ =

√
B√

C−
√
B

.

• Case 3: A ∈ (−∞, A1]. In this case x1 and x2 are both negative so no inversion point exist.

Since they are the most interesting cases to us, let us spend a few more words on the x∗s coming from
A = −

(︁√
B −

√
C
)︁2 and A =

(︁√
B +

√
C
)︁2 starting from the first one. For A = −

(︁√
B −

√
C
)︁2 we

have

P(x) = −
(︂(︁√

B −
√
C
)︁
x+

√
B
)︂2

⇒ x∗ =

√
B√

C −
√
B

=
|Jψ − kPR|

EkR− |Jψ − kPR|
,

and, as hinted above, this is acceptable (i.e. positive) only if
√
C >

√
B. It cannot be reached from

infinity since, with A being negative, we would have
(︁ dρ
dψ

)︁2
< 0 at ρ→ ∞, as we can see from (5.25).

On the other hand, the x∗ coming from A =
(︁√
B +

√
C
)︁2 has to be discarded because it is negative.

Similarly to the case of the D1-D5 fuzzball, the condition on A for the existence of a circular null path
imposes a condition on the impact parameter with which the particle approaches the hole. This is
seen most easily for P = 0, when the condition A = −

(︁√
B −

√
C
)︁2 is easily solvable in terms of Jψ/E.

Most of the similarities with the D1-D5 fuzzball seem to end here though, as this solution cannot be
reached from infinity, meaning that a massless probe would only be able to travel along the trajectory
if it spawned on it. This is related to the fact that, while in D1-D5 fuzzball the critical solution arises
from trajectories that arrive from infinity and are deviated back to infinity, in the case of the NS5-F1
supertube the critical solution emerges from a trajectory that is already limited between two finite
radii, as we said in “Case 2” above.

AdS limit

Taking the R→ ∞ limit, the metric (5.20) transforms into

ds2 = N5

[︃
−cosh2 ρ

k2R2
dt2 +

sinh2 ρ

k2R2
dy2 +

(︃
dt

kR
+ dϕ

)︃2

sin2 θ +

(︃
dy

kR
+ dψ

)︃2

cos2 θ + dθ2 + dρ2
]︃
, (5.29)

and taking the θ = 0 section returns

ds2 = n5

[︃
−cosh2 ρ

k2R2
dt2 +

sinh2 ρ

k2R2
dy2 +

(︃
dy

kR
+ dψ

)︃2

+ dρ2
]︃
. (5.30)

To this, we can associate the conserved charges

E = ṫ
n5Σ0

k2R2
= ṫ

n5 cosh
2 ρ

k2R2

P =
n5(ψ̇kR+ ẏΣ0)

k2R2
=
n5(ẏ + ψ̇kR+ ẏ sinh2 ρ)

k2R2

Jψ = n5

(︃
ψ̇ +

ẏ

kR
,

)︃ (5.31)

and velocities

ṫ =
Ek2R2

n5Σ0
=

Ek2R2

n5 cosh
2 ρ

ẏ =
kR(kPR− Jψ)

n5(Σ0 − 1)
=
kR(kPR− Jψ)

n5 sinh
2 ρ

ψ̇ =
kPR− JψΣ0

n5(1− Σ0)
=
Jψ cosh

2 ρ− kPR

n5 sinh
2 ρ

.

(5.32)
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The equation for ρ̇2 determined from the null condition as already done for the previous systems is

ρ̇2 = −
(Jψ − kPR)2 cosh2 ρ+ Jψ cosh

2 ρ sinh2 ρ− E2k2R2 sinh2 ρ

n25 sinh
2 ρ cosh2 ρ

, (5.33)

and can be turned into(︃
dρ

dψ

)︃2

=
x
[︁
−Ax2 + (−B −A+ C)x−B

]︁
(1 + x)

(︁
Jψx+ Jψ − kPR

)︁2 =
xP(x)

(1 + x)(Jψx+ Jψ − kPR)2
, (5.34)

where x ≡ sinh2 ρ, and we introduced

A = J2
ψ, B =

(︁
Jψ − kPR

)︁2
, C = E2k2R2. (5.35)

Studying P(x) = 0, we find that the requirement for the discriminant to be non-negative, once combined
with the constraint A = J2

ψ > 0, translates into A ∈
[︂
0,
(︁√
B −

√
C
)︁2]︂∪ [︂(︁√B +

√
C
)︁2
,+∞

)︂
. Further

requiring that the two solution given by

x1 =
C −A−B −

√
∆

2A
and x2 =

C −A−B +
√
∆

2A
(5.36)

are both non-negative, together with
√
C >

√
B, imply that A ∈

[︂
0,
(︁√
B −

√
C
)︁2]︂. Finally, x∗ is again

computed by selecting A so that P(x) is a perfect square; this occurs for A =
(︁√
B −

√
C
)︁2, and x∗ is

given by (it is positive iff
√
C >

√
B)

x∗ =

√
B√

C −
√
B

=
|Jψ − kPR|

EkR− |Jψ − kPR|
(5.37)

Once again, x∗, as well as x1 and x2, cannot be reached from infinity.
Considering now the k = 1 case, and defining dϕ′ = dt

R + dϕ and dψ′ = dy
R + dψ, the metric (5.29)

turns into (ϕ′ ≡ ϕ, ψ′ ≡ ψ)

ds2 = N5

(︃
−cosh2 ρ

R2
dt2 +

sinh2 ρ

R2
dy2 + sin2 θdϕ+ cos2 θdψ2 + dθ2 + dρ2

)︃
. (5.38)

Starting from this, and following identical steps as before, we arrive at(︃
dρ

dψ

)︃2

=
−Ax2 + (−A−B + C)x−B

x(1 + x)J2
ψ

=
P(x)

x(1 + x)J2
ψ

. (5.39)

The study of P(x) is now the equal to the one performed for k ̸= 1 with A, B and C from (5.35)
replaced by

A = J2
ψ, B = R2P 2, C = R2E2. (5.40)

In particular, x∗ is now given by

x∗ =

√
B√

C −
√
B

=
P

E − P
(5.41)

for A =
(︁√
B −

√
C
)︁2.

5.2.2 Elliptical supertube

Up to this point, the NS5 branes have always been positioned on a circle in the (x1, x2)-plane; we
now consider the situation where the branes sit on an ellipse in the same plane, with a1 being the
semi-major axis and a2 the semi-minor one. The coordinates used to parametrize this solution in the
R4 orthogonal to the y-direction are

x1 =
√︂
r2 + a21 sin θ cosϕ, x2 =

√︂
r2 + a22 sin θ sinϕ, x3 = r cos θ cosψ, x4 = r cos θ sinψ,

(5.42)
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(a) Elliptical NS5 branes (b) Elliptical supertube

Figure 5.2: Representations for the branes positioned along an ellipse. On the left-hand-side we have the
configuration with k = 0 and N5 = 25, while on the right-hand-side we have k = 4 and N5 = 25.

and, while we are at it, we also define the two quantities

a2 =
1

2
(a21 + a22), ϵ =

a21 − a22
a21 + a22

, (5.43)

along with
∆i = r2 + a2i , ∆ = ∆1∆2 cos

2 θ + r2 sin2 θ (∆1 sin
2 ϕ+∆2 cos

2 ϕ) (5.44)

where i = 1, . . . , 4 and a3 = a4 = 0.
The metric generated by this branes configuration is equal to [29]

ds2 = K−1
[︁
−(dt+ A)2 + (dy + B)2

]︁
+ H dx · dx+ ds2T 4 , (5.45)

where

H =
N5

√
∆1∆2

∆

K = 1 +
k2H

N2
5

[︃
a2 +

1

2

[︁
(∆1 +∆2) cos

2 θ + (2r2 − (∆1 −∆2) cos 2ϕ) sin
2 θ
]︁
−N5H

−1

]︃
A = −a1a2k sin θ

2∆

[︂(︁
(∆1 +∆2)− (∆1 −∆2) cos 2ϕ

)︁
sinϕdϕ− (∆1 −∆2) cos θ sin 2ϕdθ

]︂
B = a1a2k

√
∆1∆2

∆
cos2 θ dψ

(5.46)

with k being the same parameter we already encountered in Section 4.3.1, and we are still in the
decoupling limit for the NS5 branes, which means linear dilaton asymptotics.

Actually, the metric for the elliptical NS5-F1 supertube in the decoupling limit can still be obtained
by a similar procedure to the one used in Chapter 4, namely the gauging of a WZW model, however,
there are some differences with respect to said procedure. In particular, in this case, the target space G
of which we then form the coset via the two (still null) gauge transformations, has not a precise group
structure, but rather is a Lunin-Mathur geometry, and in particular is the Lunin-Mathur geometry for
the AdS decoupling limit of the elliptical NS5-F1 supertube, meaning the metric of the form

ds2LM = −K′−1
(dv̂ + β)(dû+ ω) + H dx · dx+ ds2M, (5.47)

where M will be T 4 in our case, K′ = K− 1 and v̂ = τ + σ, while û = τ − σ. To this, the R× S1 piece
−dt2 + dy2 is then added, and then two null isometries are gauged away; we will not perform these
steps here; see [29] for that. See Figure 5.2b for a representation of this brane arrangement.

We now wish to perform the same analysis done in the previous section, hence we restrict to the
θ = 0 section, compute the conserved quantities equal to

E =
ṫ

K
, P =

∆ẏ + a1a2k
√
∆1∆2ψ̇

K∆
, Jψ =

a1a2k∆
√
∆1∆2ẏ +

(︁
HKr2∆2 + a21a

2
2k

2∆1∆2

)︁
ψ̇

∆2K
(5.48)
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from which we extract the velocities

ṫ = EK, ẏ = KP +
a1a2k(a1a2kP∆1∆2 − Jψ∆

√
∆1∆2)

Hr2∆
, ψ̇ =

Jψ∆− a1a2kP
√
∆1∆2

Hr2∆
. (5.49)

Substituting the velocities from (5.49) in the condition gµν ẋµẋν = 0 we extract an equation for ṙ equal
to

−
(︁
N2

5 r
2
)︁
ṙ2 =− 2a1a2JψP

√︂
(a21 + r2)(a22 + r2) + a21

[︁
a22
(︁
J2
ψ − k2

(︁
E2 − P 2

)︁)︁
r2
]︁

+ r2
[︂
a22
(︁
J2
ψ − k2

(︁
E2 − P 2

)︁)︁
+ J2

ψr
2 −

(︁
E2 − P 2

)︁
N5

√︂
(a21 + r2)(a22 + r2)

]︂
+ r2

(︁
E2 − P 2

)︁
k2
(︂√︂

(a21 + r2)(a22 + r2)− r2
)︂
.

(5.50)

The square roots in this equation render it difficult to study it, so, to simplify the treatment, we will
make use of the ϵ parameter from (5.43) and redefine a2 = a1

√︁
(1− ϵ)/(1 + ϵ); we can then expand up

to linear order in ϵ equation (5.50) to get

ṙ2 =
A(1 + ϵ)r4 + a21(A−B + C)r2 + a41B(ϵ− 1)

r2N2
5

=
P

r2N5
(5.51)

where A, B and C are3

A = −J2
ψ +N5

(︁
E2 − P 2

)︁
, B = (Jψ − kP )2, C = E2k2. (5.52)

The analysis now goes through in the same way as the one performed for the NS5-F1 circular supertube,
meaning that, renaming x = r2, we compute the discriminant of P(x), ∆P , to be

∆P = a41
(︁
A2 + (B − C)2 + 2A(B + C)

)︁
+O(ϵ2). (5.53)

Imposing it to be zero in order to look for radii solving both P(x) = 0 and P ′(x) = 0, gives back the
two solutions for A

A = (
√
B +

√
C)2 and A = −(

√
B −

√
C)2; (5.54)

for the first value above, the critical radius is negative, hence we discard this solution, but, for the
second one we actually find

P(x) = −
(︂(︁√

B −
√
C
)︁√

1 + ϵ x+ a21
√
B
√
1− ϵ

)︂2
(5.55)

and the upshot is that the critical radius r∗ is such that

r2∗ =
a21
√
B√

C −
√
B

√︃
1− ϵ

1 + ϵ
. (5.56)

From this, we notice that once we modify the shape of the supertube (from a circular section to an
elliptical one) the critical radius changes. Furthermore, as the ellipse is changed by acting on ϵ, again
the critical radius gets modified. This holds true for the impact parameter as well since the condition
from which it is possible to obtain the impact parameter, namely the ∆P = 0 condition, now contains
terms of order ϵ2. Now, the typical branes arrangement in the ensemble will differ strongly from a
circular supertube or even an elliptical one, so it would be interesting to study how the critical radius
of more typical microstates is affected by the structure of the given microstate. Nevertheless, the
results obtained thus far indeed give us hope that the same behavior will manifest in the case of typical
microstates-determining parameters.

3These are quite similar to the ones in (5.26) except some missing factors of R, the y-coordinate radius. This is because
in this system the coordinates are rescaled to be dimensionless i.e. yellipse = ycircle/R.
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5.3 Geodesics for NS5 branes solutions

5.3.1 Elliptical array

If we set k = 0 in the metric (5.45) we get a system of NS5 branes placed, rather than along a circle,
like we saw in Section 4.2.1, along an ellipse with metric given by

ds2 =− dt2 + dy2 +N5

(︃
dr2√
∆1∆2

+

√
∆1∆2 sin

2 θ (∆1 sin
2 ϕ+∆2 cos

2 ϕ)

∆
dϕ2
)︃

+N5

√︁
∆1∆2

(︃
r2 cos2 θ

∆
dψ2 +

r2 sin2 θ + cos2 θ (∆1 cos
2 ϕ+∆2 sin

2 ϕ)

∆
dθ2
)︃

+ 2N5

√︁
∆1∆2

(∆2 −∆1) cos θ cosϕ sin θ sinϕ

∆
dθ dϕ.

(5.57)

In this case we get (again expanding up to linear order in ϵ and having selected θ = 0)

(︃
dr

dψ

)︃2

=
r2
[︂(︁
−J2

ψ +N5

(︁
E2 − P 2

)︁)︁
r4 + a21r

2
(︁
−2J2

ψ +N5

(︁
E2 − P 2

)︁
(1 + ϵ)

)︁
− a41J

2
ψ

]︂
J2
ψ(a

2
1 + r2)2

. (5.58)

Addressing the terms inside the square bracket as P, we will again look for critical radii r∗ by looking
at the discriminant of P; before doing that, allow us to rewrite P as (x ≡ r2)

P = Ar4 + (A(1 + ϵ) +B(ϵ− 1))a21r
2 − a41B (5.59)

with
A = −J2

ψ +N5

(︁
E2 − P 2

)︁
, and B = J2

ψ. (5.60)

The discriminant is then equal to

∆P = a41(A+B)(A+B + 2ϵ(A−B)) +O(ϵ2), (5.61)

and requiring it to be null, together with the help of the coefficients from (5.60), we find the condition
(we omit the O(ϵ2) for brevity)

a41N5

(︁
E2 − P 2

)︁(︂
N5

(︁
E2 − P 2

)︁
+ 2ϵ

[︁
−2J2

ψ +N5

(︁
E2 − P 2

)︁]︁)︂
= 0 (5.62)

from where we can obtain the solution

J2
ψ =

N5

(︁
E2 − P 2

)︁
(1 + 2ϵ)

4ϵ
. (5.63)

Inserting this in (5.59) and solving for x∗ we get

−
N5

(︁
E2 − P 2

)︁
(1− 2ϵ)

4ϵ
x2 +

(︃
N5

(︁
E2 − P 2

)︁
ϵ−

N5

(︁
E2 − P 2

)︁
2ϵ

)︃
a21x− a41

N5

(︁
E2 − P 2

)︁
(1 + 2ϵ)

4ϵ
(5.64)

and this is equal to

−

(︄√︄
N5

(︁
E2 − P 2

)︁
(1− 2ϵ)

4ϵ
x+ a21

√︄
N5

(︁
E2 − P 2

)︁
(1 + 2ϵ)

4ϵ

)︄2

. (5.65)

From this we deduce that we should have

r2∗ = −a21

√︃
1 + 2ϵ

1− 2ϵ
(5.66)

which is negative and so has to be discarded. So, in the end, no critical solution is available in the case
of the elliptical array of NS5 branes.
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m = 2

m = 20

ψ̇ = 0

Figure 5.3: Cigar with three examples of incoming geodesics. As the dimensionless parameter m gets larger, the
geodesic gets nearer to the ρ = 0 point in the cigar, see Figure 5.4 for a better representation of this. The green
line is just a geodesic for which ψ̇ = 0; notice that it can reach the point ρ = 0.

5.3.2 Circular array

We now return to the simpler metric of the NS5 branes with the hope of understanding from where in
G do the null paths in the coset G/H descend from. To simplify things even more, we will focus on the
θ = 0 section; the metric in this section can either come from the coset used in Section 4.2.2 where we
set θ = 0, or, alternatively, from the SL(2,R)

U(1) coset where we gauge away the τ direction; we will follow
this last approach. The metric for the NS5 branes is the same from Section 4.2.1, i.e.

ds2 = −dt2 + dy2 + ds2T 4 +N5

[︃
dρ2 + dθ2 +

1

Σ0

(︁
cosh2 ρ sin2 θdϕ2 + sinh2 ρ cos2 θdψ2

)︁]︃
(5.67)

with Σ0 = sinh2 ρ+ cos2 θ as for the NS5-F1 solution. We now focus again on the θ = 0 slice.

Cigar metric

The metric for the θ = 0 slice, known as cigar metric because of its shape in the (ρ, ψ) variables, see
Figure 5.3, is equal to (we neglect the ds2T 4)

ds2 = −dt2 + dy2 +N5dρ
2 +N5 tanh

2 ρdψ2. (5.68)

The conserved charges and velocities related to this metric are given in Appendix B.2. Employing them
we find (following the now usual steps)(︃

dρ

dψ

)︃2

=
tanh2 ρ

[︁
sinh2 ρ

(︁
N5

(︁
E2 − P 2

)︁
− J2

ψ

)︁
− J2

ψ

]︁
J2
ψ cosh

2 ρ
. (5.69)

For this metric there exist no closed null path: the massless probe reaches radius ρ∗ such that

sinh2 ρ∗ =
J2
ψ

N5

(︁
E2 − P 2

)︁
− J2

ψ

(5.70)

and then inverts its motion. Moreover, given that if we want ρ∗ to be positive we must require
J2
ψ < N5

(︁
E2 − P 2

)︁
, the point of inversion can be reached from infinity since

lim
ρ→∞

(︃
dρ

dψ

)︃2

=
N5

[︁(︁
E2 − P 2

)︁
− J2

ψ

]︁
J2
ψ

. (5.71)

Setting P = 0 and N5E
2 = mJ2

ψ, with m some number that must be greater than 1, given the condition
for the positivity of ρ∗, (5.69) transforms into(︃

dρ

dψ

)︃2

=
tanh2 ρ

[︁
(m− 1) sinh2 ρ− 1

]︁
cosh2 ρ

→ dρ

dψ
= ±

√︄
tanh2 ρ

[︁
(m− 1) sinh2 ρ− 1

]︁
cosh2 ρ

. (5.72)

Note that with P = 0 and the introduction of m, the turning point ρ∗ is given by the equation

sinh2 ρ∗ =
1

m− 1
, (5.73)
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-10 10 20
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m = 2

m = 20

Figure 5.4: Two-dimensional representation of the incoming geodesics with m = 2 and m = 20. From this plot
we clearly see that the red line gets much closer to the point ρ = 0 than the blue line.

hence the bigger m is the closer the geodesic gets to ρ = 0.
The equation on the right side of the arrow in (5.72) is still too complicated to be solved analytically;

however, a numerical solution can still be found. Specifically, selecting the minus sign, which amounts
to focus on the incoming geodesic, two solutions, respectively for m = 2 and m = 20, are presented in
Figure 5.3 and Figure 5.4.

As can be clearly seen from Figure 5.3, once ψ̇ is different from zero (or, equivalently, once Jψ ̸= 0)
the geodesics swirl around the cigar. This is not a surprise given that the cigar metric (5.68) approaches
the cylinder one in (ρ, ψ) coordinates for ρ≫ 1 and, indeed, the geodesics on a cylinder are helices. As
the particle gets closer to its inversion point near the tip of the cigar, where the metric deviates from a
cylinder, the solution is not anymore a perfect helix as it can be checked by expanding the square root
in (5.72) for ρ ∼ ρ∗.

Concerning the solution for ψ̇ = 0, the geodesic equation for ρ is simply given by ρ̈ = 0, see (B.11);
hence why in this case we obtain a straight line.
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Conclusions

In this thesis we have reviewed some classical black hole solutions in GR, starting from the Schwarzschild
solution and ending with the Kerr metric, without forgetting the Reissner-Nordström metric. We
presented the basic concepts of black hole mechanics: Hawking temperature, Bekenstein-Hawking
entropy and the four laws of black holes mechanics, and then finally reviewed the argument for the
information paradox.

Successively, we presented some fundamental concepts from String Theory, introducing and quan-
tizing, through lightcone quantization, Bosonic String Theory. We discussed CFTs, defining what a
conformal transformation is, and later focussing on the particular case of two-dimensional CFTs, since
the worldsheet is a two-dimensional manifold. We have reviewed how the action for a String Theory in
a non-flat metric is given, and showed how other background fields outside the metric, such as the B
field and the dilaton, can be added to the String Theory action. Finally, we ended the second chapter
with the introduction of the (massless) spectrum of Type IIB and IIA string theories and with a section
summarizing T and S dualities.

The thesis later dealt with the presentation of some known examples of black hole metrics produced
by different arrangements of D and M branes, starting off with a four-charge black hole and then
transitioning to a three-charge black hole. In this latter case, the Bekenstein-Hawking entropy has been
computed, and later compared with the entropy coming from a microscopic counting of the degrees of
freedom in String Theory, showing that the two results agree. Finally, we reviewed the fuzzball proposal,
meaning a proposal suggesting that the microstates of a black hole might be structures extending up to
the horizon. In this regard, we concentrated on two-charge fuzzballs, first presenting the general idea in
the F1-P picture, and later computing the metric in the case of the circular D1-D5 fuzzball.

In its opening section, Chapter 4 has then been devoted to the presentation of WZW models, while
following sections focussed on showing how the supergravity metric in the decoupling limit for some
fuzzball solutions can be obtained starting from a WZW model with target space G, and realizing
the coset G/H by means of two U(1) gauge transformations. We initially showed how this method
produces the desired result in the simpler case of a circular array of NS5 branes, and then performed a
similar analysis in case of the NS5-P supertube, starting from the general null-gauge transformation,
later specialized to the case under study. We also quoted that the same result holds for a NS5-F1
supertube, reached by a T duality of the NS5-P solution.

In the last chapter we studied the motion of massless particles in some background metrics previously
presented throughout the thesis, such as the D1-D5 fuzzball from Chapter 3, the circular NS5-F1
supertube and the circular array of NS5 branes, both from Chapter 4, along with the motion of massless
particles on some new background metrics, such as the elliptical NS5-F1 supertube and the elliptical
NS5 branes array. The main focus of this study was the presence of null paths orbiting around the
various fuzzballs and, if such trajectories existed, how did they depend on the microstates-characterizing
parameters present in the given fuzzball solution. Particularly interesting is the case of the elliptical
NS5-F1 supertube, as this is an original study that indeed shows how the critical radius changes as we
move in (a portion of) the phase space of fuzzballs.

Finally, we took the first steps into the study of how to relate the geodesics in G/H to the ones in
G, studying the simple case of (some) null geodesics in the cigar metric for the NS5 solution, and then
setting up the study on the ones in AdS3.
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Appendix A

Computations for NS5 branes solutions

A.1 WZW model equations of motion

We derive here the equations of motion for the WZW model. Starting with S0 from (4.1), we find

δS0 =
1

2λ2

∫︂
d2x Tr

[︁
(−g−1δgg−1∂µg + g−1∂µδg)g

−1∂µg
]︁

=
1

2λ2

∫︂
d2x Tr

[︁
∂µ(g

−1δg)g−1∂µg
]︁

=− 1

2λ2

∫︂
d2x Tr

[︁
g−1δg∂µ(g

−1∂µg)
]︁
,

(A.1)

where, to better see what happened in the second step, it suffices to move the term outside the
parenthesis in the very first line, namely g−1∂µg, in front of the first term inside the parenthesis, namely
−g−1δgg−1∂µg, by means of a cyclic permutation; having done this, it will hopefully be clearer how
the second step comes about.

For the WZ term instead we find

δΓ =
i

4π

∫︂
d3y ϵαβγ Tr

[︁
(−g−1δgg−1∂αg + g−1∂αδg)g−1∂βgg−1∂γg

]︁
=
i

4π

∫︂
d3y ϵαβγ Tr

[︁
g−1∂α(δgg−1)∂βgg−1∂γg

]︁
=
i

4π

∫︂
d3y ϵαβγ Tr

[︁
∂α(g−1δgg−1∂βgg−1∂γg)

]︁
=
i

4π

∫︂
d2x ϵαβ Tr

[︁
g−1δgg−1∂αgg−1∂βg

]︁
=
−i
4π

∫︂
d2x ϵαβ Tr

[︁
g−1δg∂αg−1∂βg

]︁
=

−i
4π

∫︂
d2x ϵαβ Tr

[︁
g−1δg∂α(g−1∂βg)

]︁
.

(A.2)

In the first step we employed both the trace’s and the epsilon-indices’ cyclicity. To understand the
equivalence between second and third line, it is useful to start from the equivalence

g−1∂α(δgg−1)∂βgg−1∂γg =∂α(g−1δgg−1∂βgg−1∂γg)− ∂α(g−1)δgg−1∂βgg−1∂γg

− g−1δgg−1∂βg∂α(g−1)∂γg
(A.3)

and check that the two last terms cancel each other thanks to ϵ antisymmetry. Finally, in the last step
we again used the antisymmetry of the ϵ to collect a derivative.

From the two above-results we deduce that the variation of S = S0 + kΓ is

− 1

2λ2
∂µ(g

−1∂µg)− ik

4π
ϵαβ∂

α(g−1∂βg) (A.4)

that, once complex coordinates are employed, transforms into (gzz̄ = 2 gzz = gz̄z̄ = 0, ϵzz̄ =
i
2)

− 1

λ2
[︁
∂(g−1∂̄g) + ∂̄(g−1∂g)

]︁
+

k

2π

[︁
∂̄(g−1∂g)− ∂(g−1∂̄g)

]︁
. (A.5)
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Rearranging the terms we find(︃
− 1

λ2
− k

2π

)︃
∂(g−1∂̄g) +

(︃
− 1

λ2
+

k

2π

)︃
∂̄(g−1∂g), (A.6)

from where, imposing the condition that the above variation must be zero, we see that for λ2 = 2π
k the

current J̄ = g−1∂̄g is indeed antiholomorphic.

A.2 NS5 branes harmonic function

We start by rewriting the explicit formula for H5(x) given in (4.14); that is, from

H5(x) = 1 +

N5∑︂
m=1

1

|x1 + ix2 − aeiϕm |2 + |x3 + ix4|2
. (A.7)

Introducing the coordinates from (4.13) we get (we neglect the 1)

N5∑︂
m=1

1

|a cosh ρ sin θeiϕ − aeiϕm |2 + a2 sinh2 ρ cos2 θ
. (A.8)

Defining the new variables ϕ̃ ≡ ϕm − ϕ, s ≡ sin θ and c ≡ cos θ, and opening up the squared-module,
results in

1

a2

N5∑︂
m=1

1

cosh2 ρ+ s2 − 2s cosh ρ cos ϕ̃
. (A.9)

Collecting the 2s cosh ρ term, and defining χ so that eχ = cosh ρ
s , we find

sinhχ

a2(cosh2 ρ− s2)

N5∑︂
m=1

1

coshχ− cos ϕ̃
, (A.10)

where to construct the sinhχ we multiplied and divided by (cosh2 ρ− s2). Employing the use of the
exponential expression of both cosh ρ and cos ϕ̃, and collecting in the appropriate way the terms, we get

1

coshχ− cos ϕ̃
=

2

eχ
(︁
1− e−χ−iϕ̃

)︁(︁
1− e−χ+iϕ̃

)︁ =
2

eχ

∞∑︂
a=0

(︁
e−χ−iϕ̃

)︁a ∞∑︂
b=0

(︁
e−χ+iϕ̃

)︁b
. (A.11)

Plugging this inside (A.10), and renaming 2 sinhχ
eχa2(cosh2 ρ−s2) ≡ κ for shortness, we get

κ

N5∑︂
m=1

∞∑︂
a,b=0

e−(a+b)χe−i(a−b)ϕ̃. (A.12)

Rewriting the sums on a and b as a sum on a = b, one on a > b and one on a < b, we get

κ

N5∑︂
m=1

[︄ ∞∑︂
a=0

e−2aχ +

(︄∑︂
a>b

+
∑︂
a<b

)︄ ∞∑︂
b=0

e−(a+b)χ−i(a−b)ϕ̃

]︄
. (A.13)

We collect the two sums on a < b and a > b into a formal sum
∑︁

± where the two signs refer to the
signs of the (a− b) term obtaining (we also compute the sums on a and m for the first term inside the
squared bracket)

κ
N5e

χ

2 sinhχ
+ κ

∑︂
±

N5∑︂
m=1

∑︂
a>b

∞∑︂
b=0

e−(a+b)χ±i(a−b)ϕ̃. (A.14)
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We focus for a moment on the sums on a and b to see how we can rewrite them better. Expanding
them, we find

∑︂
a>b

∞∑︂
b=0

e−(a+b)χ±i(a−b)ϕ̃ =
∞∑︂
a=1

e−aχ±iaϕ̃ +
∞∑︂
a=2

e−(a+1)χ±i(a−1)ϕ̃ +
∞∑︂
a=3

e−(a+2)χ±i(a−2)ϕ̃ + . . . (A.15)

Changing sum variable inside the sums, we obtain

∑︂
a>b

∞∑︂
b=0

e−(a+b)χ±i(a−b)ϕ̃ =
∞∑︂
a=1

e−aχ±iaϕ̃ +
∞∑︂
a=1

e−(a+2)χ±iaϕ̃ +
∞∑︂
a=1

e−(a+4)χ±iaϕ̃ + . . . (A.16)

Hence, we can now rewrite everything as

κ

[︄
N5e

χ

2 sinhχ
+

(︄∑︂
±

N5∑︂
m=1

∞∑︂
a=1

e−aχ±iaϕ̃

)︄ ∞∑︂
b=0

e−2bχ

]︄
. (A.17)

Now, substituting ϕ̃ by its explicit expression ϕ̃ = ϕm + ϕ = 2πm
N5

+ ϕ, and using the fact that

N5∑︂
m=1

e
±ia 2π

N5
m ̸= 0 (A.18)

only for a ∈ N5 × N, we can rewrite the sum on a from 0 to ∞ as a sum on the multiples of N5, i.e. as
a sum on a ∈ {N5, 2N5, . . . }. This yields

κ
eχ

2 sinhχ

[︄
N5 +

∑︂
±

∞∑︂
a=1

e−aN5±iaN5ϕ
N5∑︂
m=1

e2πaim

]︄
. (A.19)

Performing the three sums, we get

κ
N5e

χ

2 sinhχ

(︃
−1 +

1

1− e−N5χ+iN5ϕ
+

1

1− e−N5χ+−iN5ϕ

)︃
. (A.20)

Summing the terms in the parenthesis and substituting the value of κ, we find the result (4.14) (modulo
the 1 we neglected at the beginning)

κ
N5e

χ

2 sinhχ

sinh(N5χ)

cosh(N5χ)− cos(N5ϕ)
=

N5

a2(cosh2 ρ− sin2 θ)

sinh(N5χ)

cosh(N5χ)− cos(N5ϕ)
(A.21)

If we wanted to smear the NS5 branes along the circle on which they sit, the integral we should
compute is

N5

2πa2

∫︂ 2π

0

dϕ

cosh2 ρ+ s2 − 2s cosh ρ cosϕ
=

N5

4πa2s cosh ρ

∫︂ 2π

0

dϕ

coshχ− cosϕ

=
N5β sinhχ

2πa2(cosh2 ρ− s2)

∫︂ 2π

0

dϕ

1− β cosϕ
;

(A.22)

namely the integral of the argument of the sum in (A.9), where β = cosh−1 χ and we multiplied
everything by a normalization factor N5

2π . This is achieved by using (3.41)

N5β sinhχ

2πa2(cosh2 ρ− s2)

2π√︁
1− cosh−2 χ

=
N5

a2(cosh2 ρ− s2)
(A.23)
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A.3 WZW action

Starting from the action for the WZW models given by

S =
k

4π

∫︂
S2

d2x Tr
[︁
g−1∂µgg

−1∂µg
]︁
+
ik

6π

∫︂
B
d3y ϵαβγ Tr

[︁
g−1∂αgg−1∂βgg−1∂γg

]︁
, (A.24)

we move to complex coordinates in the first integral (d2x = 1
2d

2z, ∂z = 2∂z̄ and ∂ z̄ = 2∂z) which results
in (again, we write just the first term)

k

2π

∫︂
d2z Tr

[︁
g−1∂gg−1∂̄g

]︁
. (A.25)

We will focus on the SL(2) component since the steps for the SU(2) one are identical. The first step is
to compute (g ≡ gsl for brevity)

∂g = ∂

(︃
eiτ cosh ρ eiσ sinh ρ
e−iσ sinh ρ e−iτ cosh ρ

)︃
=

(︃
eiτ (i∂τ cosh ρ+ ∂ρ sinh ρ) eiσ(∂ρ cosh ρ+ i∂σ sinh ρ)
e−iσ(∂ρ cosh ρ− i∂σ sinh ρ) e−iτ (−i∂τ cosh ρ+ ∂ρ sinh ρ)

)︃
(A.26)

and similarly for ∂̄g. The next step consists in computing

g−1∂g =

(︃
i(∂σ sinh2 ρ+ ∂τ cosh2 ρ) ei(σ−τ)[∂ρ+ i(∂σ + ∂τ) sinh ρ cosh ρ]

e−i(σ−τ)[∂ρ− i(∂σ + ∂τ) sinh ρ cosh ρ] −i(∂σ sinh2 ρ+ ∂τ cosh2 ρ)

)︃
. (A.27)

The last step amounts to computing the full g−1∂gg−1∂̄g matrix; since we will later compute the trace,
we report here just the two diagonal elements

(g−1∂gg−1∂̄g)11 =i sinh ρ cosh ρ
[︁
∂̄ρ(∂σ + ∂τ)− ∂ρ(∂̄σ + ∂̄τ)

]︁
+ ∂σ∂̄σ sinh2 ρ− ∂τ ∂̄τ cosh2 ρ+ ∂ρ∂̄ρ

(A.28)

(g−1∂gg−1∂̄g)22 =− i sinh ρ cosh ρ
[︁
∂̄ρ(∂σ + ∂τ)− ∂ρ(∂̄σ + ∂̄τ)

]︁
+ ∂σ∂̄σ sinh2 ρ− ∂τ ∂̄τ cosh2 ρ+ ∂ρ∂̄ρ.

(A.29)

Hence, we have
Tr
[︁
g−1∂gg−1∂̄g

]︁
= 2
(︁
−∂τ ∂̄τ cosh2 ρ+ ∂ρ∂̄ρ+ ∂σ∂̄σ sinh2 ρ

)︁
. (A.30)

From this we can also retrieve the result for the gsu case by simply substituting τ → ψ, σ → ϕ and
ρ→ iθ; operating the substitution gives (the minus in front of the trace is there by definition, so that
we get the correct signature)

−Tr
[︁
g−1
su ∂gsug

−1
su ∂̄gsu

]︁
= 2
(︁
∂ψ∂̄ψ cos2 θ + ∂θ∂̄θ + ∂ϕ∂̄ϕ sin2 θ

)︁
. (A.31)

Inserting both of the previous results in (A.25) we find

k

π

∫︂
d2z

[︁
−∂τ ∂̄τ cosh2 ρ+ ∂ρ∂̄ρ+ ∂σ∂̄σ sinh2 ρ+ ∂ψ∂̄ψ cos2 θ + ∂θ∂̄θ + ∂ϕ∂̄ϕ sin2 θ

]︁
(A.32)

Turning now our attention to the WZ term, we will here follow a different approach with respect to
the one used above; we write

∂αg = ∂α
(︁
e
i
2
(τ+σ)σ3eρσ1e

i
2
(τ−σ)σ3)︁ =(︃ i

2
(∂ατ + ∂ασ)

)︃
σ3g + e

i
2
(τ+σ)σ3(∂αρ)σ1e

ρσ1e
i
2
(τ−σ)σ3

+ g

(︃
i

2
(∂ατ − ∂ασ)

)︃
σ3

(A.33)

and consequently

g−1∂αg =g−1

(︃
i

2
(∂ατ + ∂ασ)

)︃
σ3g + e−

i
2
(τ−σ)σ3(∂αρ)σ1e

i
2
(τ−σ)σ3 +

(︃
i

2
(∂ατ − ∂ασ)

)︃
σ3

=
i

2
(∂ατ + ∂ασ)M1 + ∂αρM2 +

i

2
(∂ατ − ∂ασ)M3

(A.34)
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where we defined

M1 = g−1σ3g, M2 = e−
i
2
(τ−σ)σ3σ1e

i
2
(τ−σ)σ3 , M3 = σ3. (A.35)

We now need to compute the product between three factors like the one in (A.34); in doing this, we also
need to keep in mind that the product of these three factors will be contracted with the Levi-Civita
tensor ϵ, so we will neglect terms that are symmetric in the derivatives. In the end, this simply implies
that just terms proportional to M1M2M3 (and permutations of this) will give a different-from-zero
contribution. Proceeding, yields

g−1∂αgg−1∂βgg−1∂γg =
i2

4

[︁
(∂ατ + ∂ασ)∂βρ(∂γτ − ∂γσ)M1M2M3

+ (∂ατ + ∂ασ)(∂βτ − ∂βσ)∂γρM1M3M2 + ∂αρ(∂βτ + ∂βσ)(∂γτ − ∂γσ)M2M3M1

+ ∂αρ(∂βτ − ∂βσ)(∂γτ + ∂γσ)M2M3M1 + (∂ατ − ∂ασ)(∂βτ + ∂βσ)∂γρM3M1M2

+ (∂ατ − ∂ασ)∂βρ(∂γτ + ∂γσ)M3M2M1

]︁
.

(A.36)

Using the fact that we will contract the above result with ϵ, we can collect the terms of the kind
∂ασ∂γτ − ∂ατ∂γσ and eliminate those symmetric in the derivates (like ∂ατ∂γτ). Doing this, we find
that the non-zero contribution is

g−1∂αgg−1∂βgg−1∂γg =
1

2

[︁
(∂ατ∂βρ∂γσ)M1M2M3 + (∂ατ∂βσ∂γρ)M1M3M2

+ (∂αρ∂βτ∂γσ)M2M1M3 + (∂αρ∂βσ∂γτ)M2M3M1 + (∂ασ∂βρ∂γτ)M3M2M1

+ (∂ασ∂γρ∂βτ)M3M1M2

]︁
.

(A.37)

Employing the fact that the matrices the products of matrices M1, M2 and M3 are inside a trace, we
can collect the terms thanks to the cyclic symmetry of the trace; this yields

g−1∂αgg−1∂βgg−1∂γg =
M1M2M3

2
(∂ατ∂βρ∂γσ + ∂αρ∂βσ∂γτ + ∂ασ∂γρ∂βτ)

+
M1M3M2

2
(∂ατ∂βσ∂γρ+ ∂αρ∂βτ∂γσ + ∂ασ∂βρ∂γτ).

(A.38)

All the terms inside the first parenthesis are equal to one another up to a cyclic permutation of the
indices, and the same goes for the terms inside the second parenthesis. The terms inside the first
parenthesis differ by an odd number of permutations of the indices with respect to the ones in the
second square parenthesis. Employing these two facts, we can write everything as

3

2
∂ατ∂βρ∂γσ

(︁
M1M2M3 −M2M1M3

)︁
. (A.39)

At this point, using the definitions (A.35), and taking the trace, we find that

ϵαβγ Tr
[︁
g−1∂αgg−1∂βgg−1∂γg

]︁
=12ϵαβγ∂

ατ∂βρ∂γσ cosh ρ sinh ρ

=− 6ϵαβγ∂
ατ∂βσ∂γ

(︁
cosh2 ρ

)︁ (A.40)

where in the third step we noticed that what appears in the second step is just a total derivative (the
minus sign emerges from the renaming and exchanging of the indices β and γ).

We can now retrieve the result for the SU(2) component as well by using the same substitutions
from before, namely τ → ψ, σ → ϕ and ρ→ iθ. Inserting these in (A.40) we find

−ϵαβγ Tr
[︁
g−1
su ∂

αgsug
−1
su ∂

βgsug
−1
su ∂

γgsu
]︁
=− 12ϵαβγ∂

αψ∂βθ∂γϕ cos θ sin θ

=6ϵαβγ∂
αψ∂βϕ∂γ

(︁
cos2 θ

)︁ (A.41)

Inserting both results inside the WZ term from (A.24), using Stokes theorem and changing to
complex coordinates (d2x = 1

2d
2z, ϵzz̄ = i

2 , g
zz̄ = gz̄z = 2) results in

kΓ[g] =
ik

π

∫︂
d2x ϵαβ

(︁
− cosh2 ρ ∂ατ∂βσ + cos2 θ ∂αψ∂βϕ

)︁
=
k

π

∫︂
d2z

[︁
− cosh2 ρ (∂τ ∂̄σ − ∂σ∂̄τ)− cos2 θ (∂ϕ∂̄ψ − ∂ψ∂̄ϕ)

]︁
.

(A.42)

62



Appendix B

Geodesics

We give here some additional details and results from Chapter 5.

B.1 D1-D5 fuzzball

We now give some details about the computation of the D coefficient from (5.16). Inserting x∗
from (5.15), meaning

x∗ =
−B +

√
B2 − 3AC

3A
, (B.1)

inside P(x) = 0 with P from (5.8) equal to

Ax3 +Bx2 + Cx+D, (B.2)

gets us (∆ ≡ B2 − 3AC)

D = −Ax3∗ −Bx2∗ − Cx∗

=
B3 −∆3/2 + 3B∆− 3B2

√
∆

27A2
+

−2B3 + 3ABC + 2B2
√
∆

9A2
+
CB − C

√
∆

3A

=
−2B3 + 9ABC −∆3/2 + 3B2

√
∆− 9AC

√
∆

27A2
=

2∆3/2 −B
(︁
2B2 − 9AC

)︁
27A2

.

(B.3)

For x∗ =
√︂

C
A , using the explicit expressions of the A, . . . ,D parameters from (5.9), that is, using

A = E2 − P 2

B = −J2
ψ +

(︁
2a2 +Q1 +Q5

)︁(︁
E2 − P 2

)︁
C = −2aJψ

√︁
Q1Q5P +Q1Q5

(︁
E2 − P 2

)︁
+ a2

(︁
−2J2

ψ +
(︁
Q1 +Q5 + a2

)︁(︁
E2 − P 2

)︁)︁
D = −a2

(︁
aJψ +

√︁
Q1Q5P

)︁2
(B.4)

together with the conditions from Section 5.1 Q1 = Q5 = Q and P = −aJψ
Q , we have

x∗ =

⌜⃓⃓⎷Q2
[︁
2a2J2

ψ +
(︁
Q2E2 − a2J2

ψ

)︁
− 2a2J2

ψ + 1
Q2 (2Qa2 + a4)

(︁
Q2E2 − a2J2

ψ

)︁]︁
Q2E2 − a2J2

ψ

=

⌜⃓⃓⎷(︁Q2E2 − a2J2
ψ

)︁(︁
Q2 + 2a2Q+ a4

)︁
Q2E2 − a2J2

ψ

= Q+ a2.

(B.5)
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B.2 Geodesics in the cigar

The conserved charges associated with the Lagrangian coming from the cigar metric (5.68) are

E = ṫ, P = ẏ, Jψ = n5ψ̇ tanh2 ρ (B.6)

with velocities
ṫ = E, ẏ = P, ψ̇ =

Jψ

n5 tanh
2 ρ
. (B.7)

The equation for ρ̇ retrieved from the null condition is

ρ̇2 = −
J2
ψ cosh

2 ρ− n5
(︁
E2 − P 2

)︁
sinh2 ρ

n25 sinh
2 ρ

. (B.8)

B.2.1 Geodesic equation

For the simple metric
ds2 = −dt2 + dy2 + n5dρ

2 + n5 tanh
2 ρdψ2 (B.9)

the full geodesic equations can be promptly derived. The non-vanishing Christoffel coefficients are

Γ4
24 = Γ4

42 =
1− tanh2 ρ

tanh ρ
, Γ2

44 = tanh ρ(tanh2 ρ− 1), (B.10)

which result into the (non-trivial) geodesic equations⎧⎨⎩ρ̈+ tanh ρ(tanh2 ρ− 1)ψ̈
2
= 0

ψ̈ + 2
(︂
1−tanh2 ρ
tanh ρ

)︂
ψ̇ρ̇ = 0

(B.11)

The second equation can be promptly integrated, leading to a relation for ψ̇ that is equal (up to
constants) to the third relation in (B.7), i.e.

ψ̈

ψ̇
= −2

d

dλ
log(tanh ρ) ⇒ ψ̇(λ) =

ψ̇(λ0) tanh
2(ρ(λ0))

tanh2(ρ(λ))
=

const
tanh2(ρ(λ))

. (B.12)

Inserting the last result for ψ̇ in the equation for ρ you get the same result you would get if you derived
with respect to λ the (B.8); again, up to constants.

B.3 Geodesics in AdS3

We present here the very first steps we took with the aim of connecting the geodesics from Section 5.3.2
with the ones in the respective “upstairs” space: AdS3. The idea followed is to take a geodesic in the
AdS space and smear it along the τ direction, in order to make it τ -independet; at that point gauging
τ away will amount to focus on a given τ = const slice.

To approach the study of such geodesics, we are going to follow the approach from [30]. Basically,
we start from the parametrization of an element of SL(2,R) given by

g = eiuσ2eρσ3eivσ2 =

(︃
cos τ cosh ρ+ cosϕ sinh ρ sin τ cosh ρ− sinϕ sinh ρ
− sin τ cosh ρ− sinϕ sinh ρ cos τ cosh ρ− cosϕ sinh ρ

)︃
(B.13)

with u = 1
2(τ + ϕ) and v = 1

2(τ − ϕ). The group element g will be the one entering the WZW action,
to which we would like to add the gauge fields to perform the gauge transformation. We group in
the lightcone coordinates x± = λ ± σ the two worldsheet coordinates λ and σ; at which point, the
equations of motion coming from the WZW action in lightcone coordinates tell us that we can in general
decompose g as

g = g+(x
+)g−(x

−). (B.14)
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If we now eliminate the dependence from the worldsheet coordinate σ from the group element g, we
will be left with a worldsheet that becomes a worldline, and so we will be describing particles rather
than strings. Following the reference, we consider a given solution of the form from (B.14) with

g+ = Ueiv+(x+)σ2 and g− = eiu−(x−)σ2V (B.15)

where U and V are two arbitrary constant matrices in SL(2,R). If we choose v+ = αx+/2 and
u− = αx−/2, with α = ±

√︁
4h/k where h is some positive constant and k is the level of the WZW

model (namely it is the same k that appeared in Section 4.1), while keeping U and V general, we get

gtl = U

(︃
cos(αλ) sin(αλ)
− sin(αλ) cos(αλ)

)︃
V ; (B.16)

as we can see, the dependence on σ is gone, meaning we are now describing the motion of particles as λ
changes. Actually, any timelike geodesic can be written in such a way. Parametrizing both U and V as
done for g in (B.13) with parameters tu, ϕu and ρu for U and tv, ϕv and ρv for V , we get

(gtl)11 =cosh(ρu) cosh(ρv) cos(αλ+ tu + tv) + cosh(ρu) sinh(ρv) cos(αλ+ tu + ϕv)

+ sinh(ρu) cosh(ρv) cos(αλ+ tv − ϕu) + sinh(ρu) sinh(ρv) cos(αλ− ϕu + ϕv),
(B.17)

(gtl)22 =cosh(ρu) cosh(ρv) cos(αλ+ tu + tv)− cosh(ρu) sinh(ρv) cos(αλ+ tu + ϕv)

− sinh(ρu) cosh(ρv) cos(αλ+ tv − ϕu) + sinh(ρu) sinh(ρv) cos(αλ− ϕu + ϕv).
(B.18)

For the diagonal elements, and

(gtl)12 =cosh(ρu) cosh(ρv) sin(αλ+ tu + tv)− cosh(ρu) sinh(ρv) sin(αλ+ tu + ϕv)

+ sinh(ρu) cosh(ρv) sin(αλ+ tv − ϕu)− sinh(ρu) sinh(ρv) sin(αλ− ϕu + ϕv),
(B.19)

(gtl)21 =− cosh(ρu) cosh(ρv) sin(αλ+ tu + tv)− cosh(ρu) sinh(ρv) sin(αλ+ tu + ϕv)

+ sinh(ρu) cosh(ρv) sin(αλ+ tv − ϕu) + sinh(ρu) sinh(ρv) sin(αλ− ϕu + ϕv),
(B.20)

for the off-diagonal ones. Equating (B.16) and (B.13), one finds that

sinh2 ρ =
1

4

(︁[︁
(gtl)11 − (gtl)22

]︁2
+
[︁
(gtl)12 + (gtl)21

]︁2)︁
= cosh2 ρu sinh2 ρv + cosh2 ρv sinh2 ρu

+ cos(tu + tv + 2αλ− ϕu + ϕv) cosh ρv sinh ρv sinh(2ρu)
(B.21)

cosh2 ρ =
1

4

(︁[︁
(gtl)11 + (gtl)22

]︁2
+
[︁
(gtl)12 − (gtl)21

]︁2)︁
= cosh2 ρu cosh2 ρv + sinh2 ρv sinh2 ρu

+ cos(tu + tv + 2αλ− ϕu + ϕv) cosh ρv sinh ρv sinh(2ρu)
(B.22)

and that

cos τ =
(gtl)11 + (gtl)22

2 cosh ρ

=
cos(tu + tv + αλ) cosh ρu cosh ρv + cos(αλ− ϕv + ϕu) sinh ρu sinh ρv

cosh ρ

(B.23)

cosϕ =
(gtl)11 − (gtl)22

2 sinh ρ

=
cos(tv − ϕu + αλ) sinh ρu cosh ρv + cos(αλ+ ϕv + tu) cosh ρu sinh ρv

sinh ρ
.

(B.24)

We see from the above equations that ρ oscillates between two values set by ρu and ρv, and that both
of these latter parameter must be different from zero if we wish for the ρ coordinate to oscillate in λ.
To simplify things, we select the case in which tu = tv = ϕu = ϕv = 0 and fix ρu = 1 and ρv = 1.3; in
this case, for sinh ρ, cos τ and cosϕ we get the graph portrayed in Figure B.1.

The geodesic with ρ, ϕ and τ given as in the above figure seems to manifest the correct properties
to give, once smeared along τ and once this is gauged away, the geodesic circling around the cigar from
Figure 5.3; however, exactly connecting the two would require some deeper study.
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Figure B.1: Timelike geodesic in AdS3 with tu = tv = ϕu = ϕv = 0, ρu = 1 and ρv = 1.3.

Similarly, it would be interesting to take a closer look at the spacelike geodesics, namely the ones
represented by the general SL(2) matrix

gsl = U

(︃
eαλ 0
0 e−αλ

)︃
V, (B.25)

with elements equal to

(gsl)11 =cos(tu − tv) sinh(αλ+ ρu + ρv) + cos(tu + tv) cosh(αλ+ ρu + ρv), (B.26)
(gsl)12 =sin(tu + tv) cosh(αλ+ ρu + ρv)− sin(tu − tv) sinh(αλ+ ρu + ρv), (B.27)
(gsl)21 =− sin(tu + tv) cosh(αλ+ ρu + ρv)− sin(tu − tv) sinh(αλ+ ρu + ρv), (B.28)
(gsl)22 =cos(tu + tv) cosh(αλ+ ρu + ρv)− cos(tu − tv) sinh(αλ+ ρu + ρv). (B.29)

Naturally, also in this case, we can derive

cosh2 ρ =
[︁
sinh(αλ)[cosh(ρu) sinh(ρv) cos(tu − ϕv) + sinh(ρu) cosh(ρv) cos(tv + ϕu)]

+ cosh(αλ)[cosh(ρu) cosh(ρv) cos(tu + tv) + sinh(ρu) sinh(ρv) cos(ϕu − ϕv)]
]︁2

+
[︁
sinh(αλ)[cosh(ρu) sinh(ρv) sin(tu − ϕv) + sinh(ρu) cosh(ρv) sin(tv + ϕu)]

+ cosh(αλ)[cosh(ρu) cosh(ρv) sin(tu + tv) + sinh(ρu) sinh(ρv) sin(ϕu − ϕv)]
]︁2

(B.30)

sinh2 ρ =
[︁
cosh(αλ)[cosh(ρu) sinh(ρv) cos(tu + ϕv) + sinh(ρu) cosh(ρv) cos(tv − ϕu)]

+ sinh(αλ)[cosh(ρu) cosh(ρv) cos(tu − tv) + sinh(ρu) sinh(ρv) cos(ϕu + ϕv)]
]︁2

+
[︁
cosh(αλ)[cosh(ρu) sinh(ρv) sin(tu + ϕv)− sinh(ρu) cosh(ρv) sin(tv − ϕu)]

+ sinh(αλ)[cosh(ρu) cosh(ρv) sin(tu − tv) + sinh(ρu) sinh(ρv) sin(ϕu + ϕv)]
]︁2
,

(B.31)

that can later be used to obtain

cos τ =
(gsl)11 + (gsl)22

2 cosh ρ

=

sinh(αλ)[cosh(ρu) sinh(ρv) cos(tu − ϕv) + sinh(ρu) cosh(ρv) cos(tv + ϕu)]

+ cosh(αλ)[cosh(ρu) cosh(ρv) cos(tu + tv) + sinh(ρu) sinh(ρv) cos(ϕu − ϕv)]

cosh ρ

(B.32)

sin τ =
(gsl)12 − (gsl)21

2 cosh ρ

=

sinh(αλ)[cosh(ρu) sinh(ρv) sin(tu − ϕv) + sinh(ρu) cosh(ρv) sin(tv + ϕu)]

+ cosh(αλ)[cosh(ρu) cosh(ρv) sin(tu + tv) + sinh(ρu) sinh(ρv) sin(ϕu − ϕv)]

cosh ρ

(B.33)

for the variable τ , while for cosϕ we get

cosϕ =
(gsl)11 − (gsl)22

2 sinh ρ

=

cosh(αλ)[cosh(ρu) sinh(ρv) cos(tu + ϕv) + sinh(ρu) cosh(ρv) cos(tv − ϕu)]

+ sinh(αλ)[cosh(ρu) cosh(ρv) cos(tu − tv) + sinh(ρu) sinh(ρv) cos(ϕu + ϕv)]

sinh ρ
,

(B.34)
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and finally sinϕ is given by

sinϕ =
(gsl)12 + (gsl)21

2 sinh ρ

=

cosh(αλ)[sinh(ρu) cosh(ρv) sin(tv − ϕu)− cosh(ρu) sinh(ρv) sin(tu + ϕv)]

− sinh(αλ)[cosh(ρu) cosh(ρv) sin(tu − tv) + sinh(ρu) sinh(ρv) sin(ϕu + ϕv)]

sinh ρ
.

(B.35)

As can be noticed by comparing the above solutions for sinh ρ, cosh ρ, cos τ and cosϕ with their
timelike counterparts, the study of spacelike geodesics promises to be more involved than the one on
timelike geodesics.
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