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Introduction

Surface partial differential equation are becoming increasingly important because of their
ability to model different phenomena such as earth process [13, 18, 20, 19, 17, 8], biological
processes and material science [28, 26, 32] and image processing [12, 35]. PDEs typically
describe balance laws of scalar, vector and tensor quantities living on the surface. The detailed
mathematical understanding of these PDEs is still limited, and applications are tackled mainly
by numerical techniques. One of these is the surface finite element method(SFEM), which dates
back to the first study carried out by [15] on the Laplace-Beltrami operator with surface finite
elements. Most of this research is, however, focused on scalar-valued problems, see [16], and in
this case the coupling between the geometry of the surface and the PDE is weak and thus allows
to solve these problems with relatively small modifications of established numerical approaches
in flat space. But many physical problem and models, like flow on surfaces as well as membranes
and shells, see [23, 24], or surface Navier-Stokes equation, see [33, 5], involve vector unknowns.
For surface vector and tensor PDEs the situation becomes more complicated, because from
the modeling and numerical discretization points of view of a much stronger coupling between
the solution of the PDE and the geometrical characteristics of the surface. In particular, the
extension of the Laplace-Beltrami operator, defined as div grad, in well known equation such as
Poisson, Heat transfer and the Wave equations, for the vector fields on surfaces can be defined
several natural Laplacians. For example, the rough and the Bochner Laplacians, differing by
a minus sign, see [22]; the Hodge Laplacian defined through the use of external calculus, see
[25], which differs from previous ones by a zero-order term depending only on the curvature of
the surface. So it is immediate and natural to ask what is the appropriate definition of vector
Laplacian and whether one definition is more appropriate than other for the definition of PDEs
arising for example from basic physical principle such as energy minimization. The answer to
these questions is not so obvious both in the context of differential geometry and the analysis
and development of mathematical and numerical models.

The numerical methods developed and seen so fa for such problems are not many and are
often restricted to very special surface cases, such as spherical surfaces [11, 10, 21] or physical
problem, see [27, 29, 31]. Although some numerical approaches exist, most of these methods
avoid the use of charts and atlases and mainly exploit the possibility of extending functions in
the tubular neighborhood of the surface, i.e., exploiting the properties of the embedding space.
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These methods based on implicit representation of the surfaces for example via level-set functions
have seen significant interest and development. By extending the problem to one higher spatial
dimension, these methods do not require explicit discretization of the surface, see [6] as an
example of application to the scalar case. On the other hand, methods based on SFEM which are
based on projection of the surface quantities from the embedding space, are difficult to extend
to the vector/tensor case as additional unknowns and equations must be added to constrain
vectors to live in the tangent space, see [30]. On the other hand, the recently developed intrinsic
FEM (ISFEM), see [8, 9, 7] ,for scalar parabolic equations and vector hyperbolic systems of
balance laws seems to be naturally suited to treat vector quantities. In fact, within this intrinsic
approach vector quantities are intrinsically and naturally defined on the tangent planes with
the difficulty the the PDEs and their variational formulations must be defined in a covariant or
contravariant form to incorporate the geometric information of the domain.

The purpose of this thesis is twofold: i) to study the nature of the different vector Laplacian
forms by showing a case of its derivation from an energy associated to a nematic liquid crystal
model. In particular we will study how the Hodge or the Bochner Laplacians develop and are
related through Weitzenböck identity; ii) to study the discretization of the latter by means of
the ISFEM (intrinsic finite element method), by extending the latter to the vector case and
using the building blocks developed for the scalar case in [3, 9]. Finally, a few examples on
simple surfaces will be numerically solved to test the accuracy and efficiency of the proposed
extension of scalar ISFEM to the vector Laplacian. The thesis is structured as follows:

• Chapter 1: we recall some preliminary mathematical notions and definition concerning
differential geometry. In particular, we will place great emphasis on the section regarding
surfaces and their properties.

• Chapter 2: we give the Hodge and Bochner Laplacian definitions and the Weitzenböck
identity, then we show the derivation of the PDE from the minimization of the energy
associated to the physical model of the paper [29].

• Chapter 3: we describe the ISFEM method of the paper [6] and then we extend it to
the vector case. Finally we give some example of the convergence of the scheme of three
different surfaces.



1
Geometrical preliminaries

In this chapter we recall some important notions of differential geometry that will be necessary
to define our geometrical setting for PDEs on surfaces. Following [1], we start by the more
general definitions of manifolds, functions defined over them, and differentiability. Then we
define tangent and cotangent spaces, and extend to the notion of tensors and differential forms.
We arrive then to set up relations between this objects, i.e. derivation rules, from the definition
of connection to exterior derivatives, Hodge operator and the co-differential, which will come in
hand later in the thesis work. In section 1.2, we concentrate on analogous definitions and results
on surfaces following [2]. Finally, in section 1.3, we introduce the concepts of local coordinate
systems and differential operators on surfaces, and the relation with the classical Cartesian ones,
in the setting that will be used later in the main part of the work.

1.1 Differential Geometry

Definition 1.1.1 (Chart). Let X be a topological space, U ⊂ X and V ⊂ Rn open sets and
φ : U −→ φ(U) = V homeomorphism, i.e., φ is continuous, bijective with a continuous inverse
φ−1. Then, the couple (U,φ) is called chart.

Given a point P ∈ X and a chart of X, we call local coordinates the image o P through the
chart φ(P ). The inverse of the chart is called local parametrization. In general, it is possible
to have multiple definitions of this kind of maps. When a subset V ⊂ Rn is defined through
multiple charts, feels natural to ask for some compatibility, i.e., the same structure needs to be
defined at the intersection between the charts. For this reason, we give the following definition:

Definition 1.1.2 (Compatibility of charts). Let (Ui, φi), (Uj , φj) be two charts of X. The charts
are compatible if

• Ui ∩ Uj = ∅ or

• 1. Ui ∩ Uj ̸= ∅

2. φi(Ui ∩ Uj) and φj(Ui ∩ Uj) are open sets of Rn

3. ηij = φi ◦ φ−1
j : φj(Ui ∩ Uj) −→ φi(Ui ∩ Uj) is a C∞-diffeomorphism (C∞ invertible

maps with its inverse that is also C∞).

7



8 CHAPTER 1. GEOMETRICAL PRELIMINARIES

The diffeomorphism ηij is called coordinates changing/charts changing or transition function.

Definition 1.1.3 (Atlas). A family collection of compatible charts A = {(Ui, φi)} such that
X = ∪i∈IUi is called an Atlas.

With this definitions, it is now possible to define a first type of manifold.

Definition 1.1.4 (Topological manifold). A topological manifold is a couple (X,A), where X is
a topological space and A is an atlas defined on X.

In the case of a chart with image contained in Rn, the integer n is called the dimension of the
locals chart. If the manifold is connected then all the charts must have the same dimension, thus
the value of n defines the manifold dimension.

To define the class of regularity of a manifold, we first recall that a function f is of class Cs

if it is continuous and its derivatives f (1), . . . , f (s) are continuous. In particular, we define CsP as
the set of functions that are defined in a neighborhood of P and are of class Cs.

Definition 1.1.5 (Differentiable manifold). A topological manifold is Cs if all the transition
functions ηij are Cs. A manifold is said to be differentiable if ηij are C∞.

From the definition of chart it is also possible to define and study functions over the manifolds.
Let X be a manifold, A be an atlas of X and (U,φ) a chart, the function f : X −→ R is of class
Cs if and only if the function

f̂ = f |U ◦ φ−1

is of class Cs as a function in Rn. Thus, it is possible to study a function f on manifolds through
the study of the corresponding f̂ function defined over an open set of Rn.

The next step concerns the regularity of functions that operate between different manifolds.
The idea is to use the previous definition of regularity of a function defined over a manifold and
extend it to the case of functions between manifolds. Given two different manifolds X,Y and a
function F : X −→ Y , such that for a point P ∈ X there is Q = F (P ) ∈ Y , we consider two
charts of X and Y respectively and the composition of those maps with F :

• (U,φ) local chart of X with P ∈ U ,

• (V, ψ) local chart of Y with Q ∈ V ,

• F̂ = ψ ◦ F ◦ φ−1 local representation of F .

Then, we say that F is Cs in a neighborhood of P ∈ U if F̂ is Cs in a neighborhood of P ∈ φ(P ).

Definition 1.1.6 (Differentiable function). We say that F is differentiable if it is C∞ in every
point of X.

Now, given a manifold X, we define the space of centered differentiation DerP as the space
of all operators satisfying the following properties in a point P ∈ X

• DP (f + g) = DP (f) +DP (g);

• DP (f) = 0 if f is a constant function;
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• DP (f · g) = DP (f) · g(P ) + f(P ) ·DP (g).

for every function f, g ∈ C∞
P . Then we are ready to define the tangent space of a manifold.

Definition 1.1.7 (Tangent space). The tangent space of a manifold X in a point P ∈ X is
defined as TPX = DerP .

With these notions we can define the differential, necessary to define a surface. Recalling
that given a function between manifolds F : X −→ Y and scalar function f : Y −→ R, the
pull-back is the map

F ∗ : C∞
Y −→ C∞

X

f 7−→ f ◦ F

with C∞
Y the space of the functions f : Y −→ R which are C∞.

Definition 1.1.8 (Differential). The differential of a function F : X −→ Y in a point P ∈ X is
the map

dFP : TPX −→ TF (P )Y

D 7−→ dFP (D) = D ◦ F ∗
P

Definition 1.1.9 (Tangent bundle). Let X be a smooth manifold. The tangent bundle of X is
the couple (TX, π), with

TX =
⊔
P∈X

TPX = {(P, v)|P ∈ X, v ∈ TPX},

where TPX is the tangent space of X at the point P , and the projection

π : TX → X

(P, v) 7−→ P.

In analogous way, we can define the cotangent bundle:

Definition 1.1.10 (Cotangent bundle). The cotangent bundle T ∗X of X is the dual of the
tangent bundle TX,

T ∗X =
⊔
P∈X

T ∗
PX = {(P, α)|P ∈ X,α ∈ T ∗

PX},

where T ∗
PX = Hom(TPX,R) is the space of the homeomorphism from TPX to R.

Definition 1.1.11 (Vector bundle). Let X be a smooth manifold. A vector bundle of rank r on
X, is a smooth manifold E with a surjective differentiable function π : E → X such that:

• ∀P ∈ X the fiber EP = π−1(P ) is a vectorial space of dimension r,

• ∀P ∈ X exists an open neighborhood U ⊂ X of P and a diffeomorphism χ : E|U =
π−1(U) → U × Rr such that π = p1 ◦ χ, with p1 : U × Rr → U the projection along U .

Definition 1.1.12 (Section). A section of a vector bundle E on a open set U ⊂ X is a
differentiable function σ : U → E such that π ◦ σ = idU .
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This means that σ(P ) = (P, v) with ω ∈ E and ∀P ∈ U . IN particular this definition will be
necessary later to define the differential forms.

From the product between tangent and cotangent spaces, we can extend to the definition of
tensors.

Definition 1.1.13 (Tensor). A tensor t ∈ T pq (V ) = V ⊗ · · · ⊗ V︸ ︷︷ ︸
p

⊗V ∗ ⊗ · · · ⊗ V ∗︸ ︷︷ ︸
q

is a multilinear

function
t : V ∗ × · · · × V ∗︸ ︷︷ ︸

p

×V × · · ·V × V︸ ︷︷ ︸
q

∼→ R

Observation 1. If {v1, . . . , vn} is a base of V and {v1, . . . , vn} is the dual base of V ∗, then the
tensors

vi1 ⊗ · · · ⊗ vip ⊗ vj1 ⊗ · · · ⊗ vjq , (i1, . . . , ip = 1, . . . , n and j1, . . . , jq = 1, . . . , n)

form a base of T pq (V ), which has a dimension of np+q. Thus, a generic tensor can be express as

t = a
i1,...,ip
j1,...,jq

vi1 ⊗ · · · ⊗ vip ⊗ vj1 ⊗ · · · ⊗ vjq ,

where the ai1,...,ipj1,...,jq
are C∞ functions.

Among the tensors t ∈ T p(V ), i.e., among the multilinear application t : V ∗ × · · · × V ∗︸ ︷︷ ︸
p

→R, we

consider only the alternating ones, so such that the following relation holds:

t(ασ(1), . . . , ασ(p)) = sgn(σ) · t(α1, . . . , αp) ,

where αj ∈ V ∗ = Hom(V,R), and σ(j) a permutation on the indices j of the elements in V ∗.
We indicate with Λp(V ) ⊂ T p(V ) the subspace of alternating tensors. If dim(V ) = n < +∞, it
follows that

dim Λp(V ) =


(n
q

)
if 0 ≤ p ≤ n

0 if p > n
.

Given then definition of a tensor, now the state the following operation between tensors:

Definition 1.1.14 (External product). Let V be a vector space, and t1 ∈ Λp(V ) and t2 ∈ Λq(V )
alternating tensors, we define the external product ∧ as

Λp(V ) × Λq(V ) −→ Λp+q(V )

(t1 , t2) 7−→ t1 ∧ t2

such that
t1 ∧ t2 = (p+ q)!

p!q! A(t1 ⊗ t2)

Definition 1.1.15 (Volume form). Let M be a n-dimensional manifold. A volume form is a
non-vanishing n-dimensional form ν ∈ Λn(M).

This means that ∀P ∈ M and ∀{v1, . . . vn} basis of TPM , νP (v1 . . . vn) ̸= 0.

Definition 1.1.16 (k-differential form). Let M be a smooth manifold. A k-differential form is a
section of Λk(T ∗

PM). The set of all k-forms is indicated with Λk(M) =
⊔
P∈M Λk(T ∗

PM).
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Definition 1.1.17 (Exterior derivative). Let M be a smooth manifold. The exterior derivative
is an operator that sends a k-differential form w ∈ Λk(M) into a (k+1)-differential form:

d : Λk(M) −→ Λ(k+1)(M)

w 7−→ dw

In local coordinates, i.e. using the local we have that

w ∈ Λk(M) =⇒ w =
∑

i1<···<ir
fi1...irdx

i1 ∧ · · · ∧ dxir ,

where the fi1...ir are C∞ functions. Then the exterior derivative is defined by:

dw =
∑

i1<···<ir

(
n∑
j=1

∂fi1...ir
∂xj

dxj
)

∧dxi1 ∧ · · · ∧ dxir .

Definition 1.1.18 (Connection). Let M be a smooth manifold. A connection on a vector bundle
E is a function:

∇ : T (M) × E(M) −→ E(M)

(X, s) 7−→ ∇Xs

such that the following holds:

1. ∀ X1, X2 ∈ T (M), ∀f1, f2 ∈ C∞(M), ∀σ ∈ E(σ)

∇f1X1+f2X2 = f1∇X1s+ f2∇X2s

2. ∀ X ∈ T (M), ∀s1, s2 ∈ E(M), ∀a1, a2 ∈ R

∇X(a1s1 + a2s2) = a1∇Xs1 + a2∇Xs2

3. ∀ X ∈ T (M), ∀s ∈ E(M), ∀f ∈ C∞

∇X(fs) = X(f)s+ f∇Xs

In particular, the section ∇Xs ∈ E(M) is called covariant derivative of s along the vector field
X. If E = TM , the connection on E is called linear connection on M .

Now we recall some definitions regarding the theory of the Riemannian manifold that will be
necessary later to define some important operators.

Definition 1.1.19 (Riemannian metric). A Riemannian metric on a manifold M is a 2-covariant
tensor g ∈ T2(M) symmetric and positive definite, i.e.:

• gP (w, v) = gP (v, w) ∀P ∈ M,∀v, w ∈ TPM

• gP (v, v) > 0 ∀v ̸= 0, v ∈ TPM

In other words, a Riemannian metric associates with each point P ∈ M a scalar product (positive
definite) gP : TPM × TPM −→ R, which smoothly depends on the point P .
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Definition 1.1.20 (Riemannian manifold). We call the couple (M, g) Riemannian manifold.

Theorem 1.1.21. Every differentiable manifold M admits a Riemann metric.

In local charts (U,φ), we can express the symmetric tensor g as:

g = gijdx
i ⊗ dxj , i, j = 1, 2

where gij ∈ C∞(U) are the coefficients of the metric. Since g is symmetric and positive definite,
we can also define its inverse as the 2-contravariant tensor g−1 such that

δki = gijg
jk .

It is now possible to define an explicit connection between the tangent and cotangent spaces
of a Riemann manifold.

Definition 1.1.22 (♭ and ♯). Let (M, g) be a Riemann manifold. For each P ∈ M there exists
an isomorphism:

♭P : TPM −→ T ∗
PM = hom(TPM,R)

v 7−→ ♭(v)

where

♭P (v) : TPM −→ R

w 7−→ (♭(v))(w) = gP (v, w)

We denote by the symbol ♯ the inverse of ♭:

(♭P )−1 = ♯P : T ∗
PM −→ TPM

α 7−→ ♯(α)

We want to find an expression for ♭ and ♯ in local coordinates. Let g = gijdx
i ⊗ dxj be the

Riemann metric and X = Xh∂h a local section of TM . Since ♭ is the map from the tangent
space to the cotangent space, ♭(X) = αjdx

j . From the definition of ♭ we get that:

(♭(X))(∂k) = g(X, ∂k) =
(
gijdx

i ⊗ dxj
) (
Xh∂h, ∂k

)
= gijX

hdxi(∂h)dxj(∂k) = gijX
hδihδ

j
k = ghkX

k.

Moreover, from the definition of ♭ we have that:

(♭(X))(∂k) = αjdx
j(∂k) = αjδ

j
k = αk .

Comparing these two expressions we get:

αk = ghkX
h and♭

(
Xh∂h

)
= ghkX

hdxk

So, we identify the isomorphism ♭ as the isomorphism that lowers the indices using the Riemann
metric. Analogously, it can be proved that the inverse isomorphism ♯ uppers the indices, namely:

Xh = gkjghkX
h = gkjαk.
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For example, if we consider a function f ∈ C∞(M), the differential df is a section of T ∗M ,
thus a 1-differential form. If we apply the isomorphism ♯ to df we get a vector field over M :

∇f := ♯(df) ∈ TM (1.1)

which is called gradient of f. In local coordinates, we have df = ∂f

∂xj
dxj , and we get

∇f = gij
∂f

∂xj
∂

∂xi
,

since ♯ : ∂f
∂xj 7−→ gij ∂f

∂xj .
We define now an operator between differential forms that will be necessary for the calculus

on the following chapter.

Definition 1.1.23 (Hodge operator). Let M be a n-Riemannian manifold with a volume form
νg. The Hodge operator ⋆ is the unique linear map, for 0 ≤ k ≤ n, defined as

⋆ : Λk(M) → Λn−k(M)

ω 7−→ ⋆ω

and such that
ω ∧ (⋆η) = 1

k!⟨ω, η⟩νg, ∀ω, η ∈ Λk(M),

where ⟨·, ·⟩ is the metric defined along the fibers of Λk(M) as ⟨ω, η⟩ = ⟨ω1∧· · ·∧ωk, η1∧· · ·∧ηk⟩ =
det
(
⟨ωi, ηj⟩g

)
.

Proposition 1.1.24. Let M be a n-dimensional Riemannian manifold with the volume form νg.
The Hodge star operator satisfies the following properties for α, β ∈ Λk(M):

• α ∧ ⋆β = β ∧ ⋆α = ⟨α, β⟩νg

• ⋆1 = νg; ⋆νg = 1

• ⋆ ⋆ α = (−1)k(n−k)α

• ⟨α, β⟩ = ⟨⋆α, ⋆β⟩

• Given a vector field F and the associated 1-form ωF : curl(F ) = ⋆dωF and div(F ) = ⋆d⋆ωF

Definition 1.1.25 (External codifferential). Let M be a n-Riemannian manifold, the external
codifferential δ : Λk(M) → Λk−1(M) is defined for every k = 1, . . . , n by

δ = (−1)n(k+1)+1 ⋆ d ⋆,

with d the external differential.

We define (·, ·) to be the positive definite inner product over Λk(M):

(ω, η) = 1
k!

∫
M

⟨ω, η⟩νg, ∀ω, η ∈ Λk(M),

then the following proposition holds:
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Proposition 1.1.26. Let M be a n-dimensional Riemannian manifold. Then d and δ are
adjoints

(dη, ω) =
∫
M

dη ∧ ⋆ω =
∫
M
η ∧ ⋆δω = (η, δω)

∀ω ∈ Λk(M) and η ∈ Λk−1(M).

Finally, we recall the definition of connection and covariant derivative, deriving the so
called Christoffel symbols and their expressions on a Riemann manifold. Let (U,φ) be a local
chart of a smooth manifold M . Let E be a vector bundle of rank r, with the diffeomorphism
χ : EU = π−1(U) −→ U ×Rr. The canonical basis of Rr defines the associated local basis of EU ,
i.e. the sections e1, · · · , er ∈ E(U) such that, for all P ∈ U , the set {e1(P ), · · · er(P )} is a local
basis for the fiber EP . The local chart determines the local basis {∂1 = ∂

∂,x1 , · · · , ∂n = ∂
∂xn } of

TM . So, from definition 1.1.18, we get that

∇∂j
eh = Γkjhek j = 1, · · · , n h, k = 1, · · · , r, (1.2)

where Γkjh ∈ C∞(U).
We call these function connection coefficients. In the case of a linear connection, E = TM ,

the functions Γkjh are called Christoffel symbols. In particular, these coefficients determine
completely the connection, allowing us to express the connection of a general section s = skek as
the following:

∇X(sk) = X(sk) + ΓkjhXjsh, k = 1, · · · , r.

where X = Xj∂j ∈ T (M) and Γkjh, sk, Xj ∈ C∞(U).
We are now ready to recall one of the most important results of Riemannian manifolds, the

Levi-Civita theorem. Thanks to this theorem, an explicit expression for the Christoffel symbols
is available.

Theorem 1.1.27. On every Riemannian manifolds (M, g), there exists a unique symmetric
connection ∇ compatible with the metric. This connection satisfies the following:

⟨∇XY,Z⟩ = 1
2(X⟨Y,Z⟩ + Y ⟨Z,X⟩ − Z⟨X,Y ⟩ + ⟨[X,Y ], Z⟩ − ⟨[Y,Z], X⟩ + ⟨[Z,X], Y ⟩)

for all X,Y, Z ∈ T (M). The Christoffel symbols of ∇ have the following expression:

Γkij = 1
2g

kl
(
∂glj
∂xi

+ ∂gil
∂xj

− ∂gij
∂xl

)
(1.3)

1.2 Surfaces

In this section, we will focus on the theory concerning surfaces, following [2]. We begin with
the definition of an immersed, or parametrized, surface.

Definition 1.2.1 (Immersed(or parametrized) surface). An immersed (or parametrized) surface
in R3 is a map φ : U −→ R3 of class C∞, where U ⊆ R2 is an open set, such that the differential
dφ : R2 −→ R3 is injective (i.e., of rank 2) in every point x ∈ U . The image φ(U) of φ is the
support of the immersed surface.
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For example, given the map φ : U ⊂ R2 −→ R3, the differential dφx of φ = (φ1, φ2, φ3) in x̂ ∈ U

is represented by the Jacobian matrix:

Jac φ(x̂) =



∂φ1
∂x1 (x̂) ∂φ1

∂x2 (x̂)

∂φ2
∂x1 (x̂) ∂φ2

∂x2 (x̂)

∂φ3
∂x1 (x̂) ∂φ3

∂x2 (x̂)


∈ M3,2(R)

and it is of rank 2 in x̂ if there exist a 2 × 2 minor with non zero determinant.

In this definition the emphasis is on the map rather than on its image. Note that, we are not
asking for the immersed surfaces to be a homeomorphism with their images or to be injective.
For example, if U = (−1,+∞) × R, and φ : U −→ R3 is given by

φ(x1, x2) =
(

3x1

1 + (x1)3 ,
3x12

1 + (x1)3 , x
2
)
,

we have that φ is an injective immersed surface, but is not a homeomorphism with its image, as
φ ((−1, 1) × (−1, 1)) is not open in φ(U). However, both these properties are locally true. To
prove this fact, we state the following corollary:

Corollary 1.2.2. Let φ : U −→ R3 be an immersed surface. Then every x̂ ∈ U has a
neighborhood U1 ⊆ U such that φ|U1

: U1 −→ R3 is a homeomorphism with its image.

Now we are ready to state the definition of surface:

Definition 1.2.3 (Surface). A connected subset S ⊂ R3 is a (regular) surface if ∀P ∈ S there
exists a C∞-map φ : U −→ R3, where U ⊂ R2, such that:

• φ(U) ⊂ S is an open neighborhood of P ;

• φ is an homeomorphism with its image;

• ∀Q ∈ U , the differential dφQ : R2 −→ R3 is injective.

An easy example of surface is given by the plane through a point s0 ∈ R3 and parallel to the
linearly independent vectors v1, v2 ∈ R3. It has only a single local parametrization φ : R2 −→ R3

given by φ(x1, x2) = s0 + x1v1 + x2v2.

Definition 1.2.4 (Critical point, critical value, level set). Let V ⊂ R3 an open set and
F : V −→ R a differentiable function. We say that:

• P ∈ V is a regular point of F if dFP is surjective.

• P ∈ V is a critical point of F if dFP is not surjective.

• A critical value is the image F (P ) of a critical point P ∈ V .

In this setting we get that, for a point P ∈ V , dFP : R3 −→ R is not surjective, that means
that P is critical if and only if dFP is everywhere zero. Note that, this happens when the
gradient ∇f is zero.

As a consequence, the following proposition gives us another way to define a regular surface:
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Proposition 1.2.5. Let U ⊂ R3 be an open set and f ∈ C∞(U). If a ∈ R is a regular value
of f , then every connected component of the level set f−1(a) = {P ∈ U |f(P ) = a} is a regular
surface.

Then, we have the following definition:

Definition 1.2.6 (Level set surface). Let U ⊂ R3 be an open set, and f ∈ C∞(U). Every
connected component of the level set f−1(a), where a is a regular value for f , is a regular surface.

For example, the elliptic paraboloid x3 − (x1)2 − (x2)2 = a, for a ∈ R, is a regular surface. In
fact, its expression is of the form f−1(a), where f : R3 −→ R is the the function f(x1, x2, x3) =
x3 − (x1)2 − (x2)2 ∈ C∞, and the gradient ∇f = (−2x1,−2x2, 1) is never vanishing. This means
that f−1(a) is a level set surface ∀a ∈ R, and so it is a regular surface.

The last characterization of a surface that we recall here is given by the following:

Proposition 1.2.7. Every regular surface is locally a graph. In particular, if S ⊂ R3 is a regular
surface and P ∈ S, then there exists a local parametrization φ : U −→ S in P which takes one
of the following forms:

φ(x1, x2) =


(x1, x2, f(x1, x2)), or

(x1, f(x1, x2), x2), or

(f(x1, x2), x1, x2),

for a given function f ∈ C∞(U).

Let U ⊆ R2 be an open set and f ∈ C∞(U) an arbitrary function, then the parametrization:

φ(x1, x2) = (x1, x2, f(x1, x2)), (1.4)

is called Monge parametrization. This is the only parametrization for the so called graph
ΓF = {(x1, x2, f(x1, x2)) ∈ R3|(x1, x2) ∈ U} of f , which is a regular surface.

Another important result regarding maps over a regular surface is the following.

Proposition 1.2.8. Let S ⊂ R3 be a regular surface, U ⊆ R2 an open subset, and φ : U −→ R3

an immersed surface with support contained in S. Then:

• φ(U) is open in S;

• if φ is injective then for all P ∈ φ(U) there exist a neighborhood W ⊂ R3 of P ∈ R3

with W ∩ S ⊆ φ(U), and a map ϕ : W −→ R2 of class C∞ such that ϕ(W ) ⊆ U

and ϕ|W∩S ≡ φ−1
|W∩S. In particular, φ−1 : φ(U) −→ U is continuous, so φ is a local

parametrization of S.

In other words, if we already know that S is a surface, to verify whether a map φ : U −→ R3

from an open subset U of R2 to S is a local parametrization. it is sufficient to check that φ is
injective and that dφx has rank 2 for all x ∈ U . Summarizing, we may deduce the continuity of
the inverse of a globally injective immersed surface φ only if we already know that the image of
φ lies within a regular surface.

The following theorem will be useful later in discussing the orthogonalization of tangent
vectors to the surface S and the associated parametrization:
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Theorem 1.2.9. Let S be a surface, and let φ : U −→ S, ψ : V −→ S be two local parametriza-
tions with Ω = φ(U) ∩ ψ(V ) ̸= ∅. Then the map h = φ−1 ◦ ψ|ψ−1(Ω) : ψ−1(Ω) −→ φ−1(Ω) is a
diffeomorphism.

Given the characterization of a surface, we now focus on its tangent vectors and their variation
on the surface, arriving to the definition of first and second fundamental form.

Definition 1.2.10 (Tangent vector). Let S ⊂ R3 be a regular surface and P ∈ S. A tangent
vector to S at P is a vector of the form γ′(0), where γ : (−ε, ε) −→ R3 is a curve of class C∞,
whose support lies in S and such that γ(0) = P . The set of all possible tangent vectors to S at
P is the tangent cone TPS to S at P .

In this definition we remark that the cone C is a subset of a vector space V such that av ∈ C,
∀a ∈ R and ∀v ∈ C.

Proposition 1.2.11. Let S ⊂ R3 be a surface, P ∈ S and φ : U ⊂ R2 −→ S a local
parametrization at P with φ(x̂) = P . Then dφx̂ is an isomorphism between R2 and TPS. In
particular, TPS = dφx̂(R2) is always a vector space of dimension 2, and dφx̂(R2) does not
depend on φ but only on S and P .

With this result we can define

Definition 1.2.12 (Tangent plane). Let S ⊂ R3 be a surface and P ∈ S. The vector space
TPS ⊂ R3 is the tangent plane to S at P .

We remark that with this definition the tangent plane is a vector subspace of R3, so it contains
always the origin no matter where the point P ∈ S. When we want to draw the tangent plane
on a point P on a surface, we actually are considering the affine tangent plane given by P +TPS.
Also, it can be shown that the affine tangent plane is the best plane approximating the surface
at the point P . The previous proposition provides us a direct connection between R2 and TPS,
in sense that, since they are isomorphic, the canonical basis {e1, e2} is mapped to {v1, v2}, which
spans TPS. In particular, we give the definition of tangent vector in the case of the surfaces:

Definition 1.2.13 (Tangent vectors). Let S ⊂ R3 be a set and P ∈ S. If φ : U −→ S is a local
parametrization centered at P , and {e1, e2} is the canonical basis of R2, then the tangent vectors
∂
∂x1

∣∣∣
P
, ∂
∂x2

∣∣∣
P

∈ TPS are defined by:

∂

∂xj

∣∣∣∣
P

= dφO(ej) = ∂φ

∂xj
(O) =


∂φ1
∂xj (O)

∂φ2
∂xj (O)

∂φ3
∂xj (O)

 .

Proposition 1.2.14. Let U ⊂ R3 an open set, and a ∈ R a regular value of a function
F ∈ C∞(U). If S is a connected component of F−1(a) and P ∈ S, the tangent plane TPS is the
subspace of R3 orthogonal to ∇F (P ).



18 CHAPTER 1. GEOMETRICAL PRELIMINARIES

Recalling the example (1.4), we obtain that the two tangent vectors:

∂

∂x1

∣∣∣∣
P

=


1
0

∂f
∂x1 (x1, x2)

 , ∂

∂x2

∣∣∣∣
P

=


0
1

∂f
∂x2 (x1, x2)

 (1.5)

span the tangent plane at the point P of the regular surface given by the Monge parametrization.

Definition 1.2.15 (Differential on surface). If F : S −→ Rn is a C∞ map, and P ∈ S, the
differential dFP : TPS −→ Rn of F at P is defined by setting dFP (v) = (F ◦ σ)(0) for all
v ∈ TPS, where σ : (−ε, ε) is an arbitrary curve in S with σ(0) = P and σ(0) = v.

1.2.1 Properties of Surfaces

After giving the generalities of what a surface is, we now explore its properties, in particular
about measuring lengths, areas and curvatures. We begin this section with the first fundamental
form. The euclidean R3 space is defined with the usual scalar product. If we consider a regular
surface S ∈ R3 and a point P ∈ S, the tangent plane TPS can be considered as a subspace of
R3 and for this reason we can consider the inner product between two vector in the point P in
this space as the scalar product induced by R3.

Definition 1.2.16 (First fundamental form). Let S be a regular surface. For all P ∈ S we
denote by ⟨·, ·⟩P the positive definite scalar product on TPS induced by the canonical product of
R3. The first fundamental form IP : TPS −→ R is the positive definite quadratic form associated
with this scalar product:

∀v ∈ TPS IP (v) = ⟨v, v⟩P ≥ 0.

We know that, if a parametrization is given, it is possible to obtain the basis of the tangent
plane at a point P by deriving the parametrization. The following definition is then direct:

Definition 1.2.17 (Metric coefficients). Let S be a regular surface and φ : U ∈ R2 −→ S a
local parametrization of S. Then, the metric coefficients of S with respect to φ are the functions
E,F,G : U −→ R given by

E(x) = ⟨∂1, ∂1⟩φ(x), F (x) = ⟨∂1, ∂2⟩φ(x) and G(x) = ⟨∂2, ∂2⟩φ(x) ∀x ∈ U .

Since, given a parametrization φ of a surface S, ⟨∂1, ∂2⟩φ(x) = Tφ(x)S, the first fundamental form
is completely determined by the metric coefficients, which are C∞ function because they come
from the differentiations of the parametrization of S. For this reason, it follows that the metric
coefficients and so the first fundamental form depend strongly on the local parametrization. For
this reason IP it is an intrinsic object of the surface S. Recalling the example (1.4) and its
tangent vectors, we can calculate the metric coefficients

E(x) = 1 +
(
∂f(x)
∂x1

)2
, f(x) = ∂f(x)

∂x1
∂f(x)
∂x2 , G(x) = 1 +

(
∂f(x)
∂x2

)2
,

and so the first fundamental form

IP =


1 +

(
∂f(x)
∂x1

)2 ∂f(x)
∂x1

∂f(x)
∂x2

∂f(x)
∂x1

∂f(x)
∂x2 1 +

(
∂f(x)
∂x2

)2

 .



1.2. SURFACES 19

Definition 1.2.18 (Angle). Let S ⊂ R3 be a surface, and P ∈ S. A determination of the angle
between two tangent vectors v1, v2 ∈ TPS is a θ ∈ R such that

cos θ = ⟨v1, v2⟩√
IP (v1)IP (v2)

= F√
EG

.

Moreover, if σ1, σ2 : (−ε, ε) −→ S are curves with σ1(0) = σ2(0) = P , we shall call the angle
between σ1 and σ2 at P the angle between σ′

1(0) and σ′
2(0).

With the concept of angle, we can give here important definitions regarding orthogonality.
In the canonical Euclidean system the axes are orthogonal. We can extend this property to the
basis of tangent planes on a surface.

Definition 1.2.19 (Orthogonal parametrization). We say that a local parametrization φ of a
surface S is orthogonal if its coordinate curves meet at a right angle, that is, if ∂1|P and ∂2|P
are orthogonal for each P in the image of φ.

The parametrization of example (1.4) is not orthogonal, in fact in general the metric coefficient
F ̸= 0. An important definition that follows from the concept of orthogonality is the normal
vector or in general normal vector field:

Definition 1.2.20 (Normal vector field). A normal vector field on a surface S ⊂ R3 is a map
N : S −→ R3 of class C∞ such that N(P ) is orthogonal to TPS ∀P ∈ S; If, moreover, ||N || = 1
we shall say that N is normal versor field to S.

In particular, we note that since we are in R3, the knowledge of one between the tangent plane or
the normal vector field, completely defines the other one through the condition of orthogonality.
For example, recalling example (1.4), from the tangent vectors we calculate the normal vector
field in the following way:

N ◦ φ = ∂1 × ∂2
||∂1 × ∂2||

= 1√
1 +

(
∂f

∂x1

)2
+
(
∂f

∂x2

)2


− ∂f

∂x1

− ∂f

∂x2

1

 (1.6)

In addition, with the definition of normal vector field we can determine an external and an
internal face of the surface, by considering the sign of the normal vector, thus creating an
oriented object whenever we can identify the normal vector field. Since N depends on the
parametrization of the surface, if another chart has a different N , the orientability of the surface
is not guaranteed anymore. In fact:

Proposition 1.2.21. A surface S ⊂ R3 is orientable if and only if there exists a normal versor
field on S.

Moreover, it is possible to define the orientation by:

Definition 1.2.22 (Gauss map). Let S ⊂ R3 be an oriented surface. The Gauss map of S is
the normal versor field N : S −→ S2 that identifies the given orientation.
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When such a normal vector field exists, it can give a measure the curvature of the surface. In
fact, the curvature is an indicator of how much the tangent plane varies between close points on
the surface, and this variation can also be determined by studying the variation of the normal
versor. Then, directly from the Gauss map, we have:

Definition 1.2.23 (Shape Operator/Weingarten map). Let S ⊂ R3 be an oriented surface and
P ∈ S. Then for each tangent vector v ∈ TPS, we define the Shape operator/Weingarten map
BP : TPS −→ TPS:

BP (v) = −dNP (v). (1.7)

As said before, the Gauss map determines uniquely the tangent planes to the surface, in the
same way, the shape operator tells us how the normal to the tangent plane, thus the tangent
plane itself, varies in every direction. So, it tells us the way S is curving in all directions at P .
From example in eq. (1.4), we calculate the differential of the Gauss map by computing:

dNP (∂j) = ∂(N ◦ φ)
∂xj

(x)

= 1
(1 + ∥∇f∥2)3/2



∂f

∂x1
∂f

∂x2
∂2f

∂xj∂x2 −
(

1 +
(
∂f

∂x2

)2) ∂2f

∂xj∂x1

∂f

∂x1
∂f

∂x2
∂2f

∂xj∂x1 −
(

1 +
(
∂f

∂x1

)2) ∂2f

∂xj∂x2

0


Definition 1.2.24 (Second fundamental form). Let S ⊂ R3 be an oriented surface, with Gauss
map N : S −→ S2. The second fundamental form of S is the quadratic form IIP : TPS −→ R
given by

IIP (v) = −⟨dNP (v), v⟩P , ∀v ∈ TPS.

In particular, given a local parametrization φ : U ⊂ R2 −→ S of the surface S and a point
φ(x1, x2) = P ∈ S, it is known that every vector of the tangent space can be written as
a linear combination of the two tangent vectors obtained from the parametrization: v =
v(1)∂1 + v(2)∂2, ∀v ∈ TPS. So, we can define the form coefficient of the second fundamental
form by using the basis vectors in the following way:

L(x) = −⟨dNφ(x)(∂1), ∂1⟩φ(x), M(x) = −⟨dNφ(x)(∂1), ∂2⟩φ(x), N(x) = −⟨dNφ(x)(∂2), ∂2⟩φ(x)

with L,M,N : U −→ R. Thus, the second fundamental form is completely determined. In fact,
∀x ∈ U, v ∈ TPS we get:

IIφ(x)(v) = L(x)
(
v(1)

)2
+ 2M(x)v(1)v(2) +N(x)

(
v(2)

)2
.

For example, considering again the Monge parametrization from eq. (1.4), the coefficients of the
second fundamental form are:

L(x) = 1√
1 + ||∇f ||2

∂2f

∂(x1)2 , M(x) = 1√
1 + ||∇f ||2

∂2f

∂x1∂x2 , N(x) = 1√
1 + ||∇f ||2

∂2f

∂(x2)2 ,
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so, for a generic point φ(x) = P ∈ TPS and a generic vector v ∈ TPS, the second fundamental
form is

IIP (v) = −⟨dNP (v), v⟩P

= −⟨dNP (∂1), ∂1⟩P
(
v(1)

)2
− 2⟨dNP (∂1), ∂2⟩P v(1)v(2) − ⟨dNP (∂2), ∂2⟩P

(
v(2)

)2

= −⟨dNP (∂1), ∂1⟩P
(
v(1)

)2
− 2⟨dNP (∂1), ∂2⟩P v(1)v(2) − ⟨dNP (∂2), ∂2⟩P v

= L(x)
(
v(1)

)2
+ 2M(x)v(1)v(2) +N(x)

(
v(2)

)2

= 1√
1 + ||∇f ||2

[
∂2f

(∂x1)2

(
v(1)

)2
+ 2 ∂2f

∂x1∂x2 v
(1)v(2) + ∂2f

(∂x2)2

(
v(2)

)2
]

Finally, we define here how to compute the area of bounded regions of the surface, and
the extension to the definition of integrals over regions of the surface. We begin with some
definitions about the regions over the surface which will allow us to define the integrals.

Definition 1.2.25 (Regular region). A regular region R ⊂ S is a connected compact subset
of S obtained as the closure of its interior R̊ and whose boundary is parametrized by finitely
many curvilinear polygons with disjoint supports. If S is compact, then R = S is a regular region
without boundary.

Definition 1.2.26 (Partition of regular region). Let R ⊆ S be a regular region of a surface S.
A partition of R is a finite family R = {R1, . . . Rn} of regular regions contained in R, such that
R = ∪i=1Ri and Ri ∩Rj ⊆ ∂Ri ∩ ∂Rj, for i, j = 1, . . . , n and i ̸= j. The diameter diam R of a
partition is the maximum of the diameters of the elements of R. A pointed partition of R is a
pair (R, P ) given by a partition R of R and a n-tuple P = {p1, . . . , pn} of points of R such that
pi ∈ Ri, i = 1, . . . , n.

Definition 1.2.27 (Orthogonal projection). Let R ⊆ S be a regular region of a regular surface S
and (R, P ) a pointed partition of R. For all Ri ∈ R, denote by πi(Ri) the orthogonal projection
of Ri on the affine tangent plane pi + TpiS. The area of the pointed partition is defined as:

Area(R, P ) =
∑
i

Area(πi(Ri)).

The region R is rectifiable if the limit

AR = lim
diam R→0

Area(R, P )

exists and is finite. If it is the case, the limit is the area of R.

Thanks to these definitions, we can now state some results regarding the integration of a function
over a surface.

Theorem 1.2.28. Let R ⊆ S be a regular region contained in the image of a local parametrization
φ : U −→ S. Then, R is rectifiable and its area is

AR =
∫
φ−1(R)

√
EG− F 2dx.

Moreover we have that:
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Lemma 1.2.29. Given φ : U −→ S a local parametrization of a surface S, then:

∥∂1 × ∂2∥ =
√
EG− F 2.

Furthermore, if ψ : V −→ S is another local parametrization with W = ψ(V ) ∩ φ(U) ̸= ∅, and
f = ψ−1 ◦ φ|φ(U)−1, then

(∂1 × ∂2)|φ(x) = det(Jf)(x)(∂̃1 × ∂̃2)|ψ◦f(x),

for all x ∈ φ−1(W ), where {∂̃1, ∂̃2} is the basis induced by ψ.

Now it is possible to define the integral of a function defined over a regular region of a surface:

Definition 1.2.30 (Integral on a surface). Let R ⊆ S be a regular region contained in the image
of a local parametrization φ : U −→ S of a regular surface S, and f : R −→ R a continuous
function. The integral of f on R is given by:∫

R
f =

∫
φ−1(R)

(f ◦ φ)
√
EG− F 2dx.

From this the famous Stokes theorem follows. In fact, recalling definition 1.1.16 of a differential
form, we get that:

Theorem 1.2.31. Let S ⊂ R3 be a surface with smooth boundary ∂S and ω a 1-differential
form with compact support on S. Then:∫

∂S
ω =

∫
S
dω.

1.3 Coordinate Systems

Before proceeding, we make a parenthesis regarding the system frames that can be used to
express quantities on the surface, as they will come in handy later. In particular, we need to
explore the difference between the knowledge of physical, covariant and contravariant vectors
and tensors, so that we can move from one to the other exploiting and ensuring the invariance
of the coordinates.
First, we recall that given a n-dimensional vector space V and a covariant basis of V {v1, v2, . . . vn},
every vector v ∈ V can be expressed in a unique way as a linear combination of the elements of
the basis, i.e., v =

∑n
i=1 α

ivi. We call the coefficients αi the contravariant components of the
vector v, and we denote them with the superscript. Whereas, if we consider a contravariant
vector v∗, the dual of v, its components are called covariant components and we denote them
with the subscript: v∗ =

∑n
i=1 βi(v∗)i. So, with this identifications, given a regular surface S

and a point P ∈ S , we will write vectors of the tangent space with coefficient with superscripts.
Instead, vectors of the cotangent space will have the coefficients with the subscripts:

v = v1t1 + v2t2, ∀v ∈ TPS,

ω = ω1α
1 + ω2α

2, ∀α ∈ T ∗
PS.

with {t1, t2} and {α1, α2} basis of TPS and T ∗
PS respectively.
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At this point, we explore the connection between the canonical reference frame and the local
one. Every point of R3 can be written through the canonical basis {e1, e2, e3}, in the usual
Global Cartesian coordinate System (GCS) in the coordinates (x1, x2, x3). The same can be said
for vectors: ∀v ∈ R3, v =

∑3
i=1 v(i)ei, and we call v(i) the physical components of v relative

to the canonical basis, e.g. these components would be the one that a physical instrument
would detect. If we consider a regular surface S embedded in R3, each point P ∈ S can be
described through the the parametrization of the surface φ : U ⊂ R2 −→ S, with respect to local
coordinates (s1, s2). As said before, we can compute the reference basis vector for the tangent
space to the surface at the point P as

{
∂φ
∂s1 ,

∂φ
∂s2

}
, and we can complete this set of vectors to a

basis of R3 with ∂1×∂2
∥∂1×∂2∥ . We call this reference as Local Curvilinear coordinate System (LCS)

and we will associate it with the local coordinates (s1
p, s

2
p, s

3
p), as we can think of them as three

vector "attached" to a any point P on the surface which depend on the local parametrization.
Now, to derive the connection between these two systems, we follow the work of Dziuk and
Elliott[16] to arrive at the so called Fermi Coordinates, which represents the global coordinates
in a neighborhood of the surface. First, we define a distance function and a lemma for which it
will be direct the result. Assuming that there exists G ⊂ R3 bounded and open with exterior
normal ν, such that S = ∂G, we define the Oriented distance for S as

d(x) =

infy∈S |x− y| x ∈ R3 \ Ḡ,

− infy∈S |x− y| x ∈ G.

We remark that d is globally Lipschitz-continuous with Lipschitz constant 1.

Lemma 1.3.1. We define Wε = {x ∈ R3| |d(x)| < ε}. Then d ∈ Ck(Wε), and for every point
x ∈ Wε there exists a unique point a(x) ∈ S such that

x = a(x) + d(x)ν(a(x)).

Moreover, we have that

∇d(x) = ν(a(x)), |∇d(x)| = 1, for x ∈ Wε.

With this lemma we get a connection between points in the so call tubular neighborhood
Wε of S and points on the surface. In particular, for every point in Wε there exists only one
correspondent point in the surface. This is possible as long as the normal lines to the surface do
not have any intersection that belongs to the tubular neighborhood. The following proposition
from [14] ensure this fact:

Proposition 1.3.2. Let S be a regular surface and φ : U ⊂ R2 −→ S a local parametrization
centered at P ∈ S. Then, there exists a neighborhood Wε ⊂ φ(U) of P in S and positive constant
ε > 0 such that the segments of the normal lines passing through points Q ∈ W , centered at Q
and with length 2ε, are disjoint.

Therefore, we have obtained a connection between the GCS and the LCS which result to be
a diffeomorphism thank to the previous two lemmas:

GCS −→ LCS LCS −→ GCS
φP : R3 −→ R3 ψP := φ−1

P : R3 −→ R3,

xP 7−→ sP sP 7−→ xP
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In addition, to get an explicit connection between these two systems that will be useful for the
intrinsic definitions, we introduce the notation of the scale factor. Given a R3 reference systems
different from the usual Cartesian one, for example the previous LCS, for each coordinate is
associated a scale factor hi which gives a measure of how a change in coordinate changes the
position of a point. More specifically, given a set of orthogonal curvilinear coordinates, for which
each direction of the coordinates is orthogonal to the others:

u = u(x1, x2, x3)

v = v(x1, x2, x3)

w = w(x1, x2, x3)

the scale factor is calculated as

hu =

√(
∂x1

∂u

)2
+
(
∂x2

∂u

)2
+
(
∂x3

∂u

)2

hv =

√(
∂x1

∂v

)2
+
(
∂x2

∂v

)2
+
(
∂x3

∂v

)2

hw =

√(
∂x1

∂w

)2
+
(
∂x2

∂w

)2
+
(
∂x3

∂w

)2

For example, given the spherical polar coordinates
x1 = ρ sinφ cos θ

x2 = ρ sinφ sin θ

x3 = ρ cosφ

the scale factors are:

hρ =
√

(sinφ cos θ)2 + (sinφ sin θ)2 + (cosφ)2 = 1

hφ =
√

(ρ cosφ cos θ)2 + (ρ cosφ sin θ)2 + (−ρ sinφ)2 = ρ

hθ =
√

(−ρ sinφ sin θ)2 + (ρ sinφ cos θ)2 + (0)2 = ρ sinφ

Therefore, any vector in R3 can be read through the Cartesian system, e(i), with the physical
components or any other different reference system, ê(i), for which the components change
according with the scale factors:

v = v(i)e(i) = h(i)v
iê(i).

So we get the relation between the physical and contravariant components:

v(i) = h(i)v
i. (1.8)

Using (1.1.22), it follows in a direct way the relationship between the physical and covariant
coordinates:

v(i) = h(i)g
ijvj . (1.9)

In the setting of a regular surface S ⊂ R3, we want to write the differential operators not
with the usual canonical system, GCS, but with the LCS given by the parametrization of the
surface. So, we have that:



1.3. COORDINATE SYSTEMS 25

Proposition 1.3.3. Let (s1, s2) be the curvilinear coordinates on S and GS the associated metric
tensor. Let f : S −→ R a scalar differentiable function on S, u : S −→ R2 a contravariant
(tangent) vector field on S, given by u = u1t1 + u2t2 and T : Ω −→ R2×2 a rank-2 contravariant
(tangent) tensor given by, T = {τ ij}. Then, the intrinsic differential operators on S
expressed in the local curvilinear coordinate system are given by the following expressions:

• The intrinsic gradient of f is:

∇GSf = G−1
S ∇f = gij

∂f

∂si
. (1.10)

• The intrinsic divergence of f is:

∇GS · f = 1√
det GS

∇ ·
(√

det GSf
)
. (1.11)

• The k-th component of the intrinsic divergence of T is:

(∇GST)j =
(
∇GS

)
i
τ ik = 1√

det GS

∂

∂si

(
det GSτ

ik
)

+ Γkijτ ij (1.12)

• The k-th component of the intrinsic curl of u is:

(∇ ×GS v)k = 1√
det GS

∑
ij

εijk∂i
(
h(j)u(j)

)
= 1√

det GS

∑
ij

εijk∂i
(
h2

(j)u
j
)
.

(1.13)

• The intrinsic Laplace-Beltrami operator of f is:

∆GSf = ∇GS · ∇GSf = 1√
det GS

1
∂si

(√
det GS g

ij ∂f

∂sj

)
(1.14)

We recall that the h(i) are the elements of the first fundamental form, which depends only on
the parameters of the parametrization. Therefore, the h(i) are function of s1 and s2.

We state two important results concerning intrinsic divergence of theorem 1.2.31 and the intrinsic
version of the Green’s lemma, that will be useful later when solving PDEs on surfaces.

Lemma 1.3.4. Let S ⊂ R3 be a surface with smooth boundary ∂S and X be a continuous
differentiable vector field. Then: ∫

S
∇G ·X ds =

∫
∂S

⟨X,µ⟩G dσ

where µ : S −→ R2 denotes the vector tangent to S and normal to ∂S with components written
with respect to the local reference frame (i.e. µ = µ1∂1 + µ2∂2), and ds and dσ are the surface
area measure and the curve length measure, respectively.

Lemma 1.3.5. Let S ⊂ R3 be a surface with smooth boundary ∂S and f, g ∈ C2(S) be
continuously differentiable functions over S. Then:∫

S
⟨∇Gf,∇Gg⟩G ds = −

∫
S

∆Gf g ds+
∫
∂S

⟨∇Gf, µ⟩G g dσ

where µ : S −→ R2 denotes the vector tangent to S and normal to ∂S with components written
with respect to the local reference frame, and ds and dσ are the surface area measure and the
curve length measure, respectively.
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1.3.1 Orthogonal reference system

In this last section, we will set-up the geometrical framework used in the following chapters.
We make use of a global Monge parametrization to obtain a set of tangent vectors that we
orthogonalize, in order to obtain an orthogonal local reference system. As a consequence,
the resulting metric is diagonal, yielding to simplified expressions for the intrinsic differential
operators.

Recalling the Monge parametrization given in eq. (1.4), in the local coordinates (x1, x2) ⊂ R2,
we first compute the tangent vectors {t̂1, t̂2} by eq. (1.5), and then we orthogonalize them by
fixing t̂1 and applying Gram-Schmidt to t̂2. The two orthogonal tangent vectors {t1, t2} form a
basis of the tangent plane at the point P ∈ S. We can extend this basis to be reference frame in
R3, our LCS, by extending the basis with the normal vector ν to the surface. The vector ν is
calculated in eq. (1.6). Explicitly we have:

t1(P ) = t̂1 =
[
1; 0; ∂x1f

]
(1.15)

t2(P ) = t̂2 − ⟨t1, t̂2⟩
⟨t1, t1⟩

t1 =
[
− ∂x1f ∂x2f

1 + (∂x1f)2 ; 1; ∂x2f

1 + (∂x1f)2

]
(1.16)

ν(P ) =
[ −∂x1f

∥t1 × t2∥
; −∂x2f

∥t1 × t2∥
; 1
∥t1 × t2∥

]
(1.17)

with ∂x1f = ∂f

∂x1 , ∂x2f = ∂f

∂x2 and ∥t1 × t2∥ =
√

1 + (∂x1f)2 + (∂x2f)2. We will denote the R3

local coordinates (s1, s2, s3).
The associated metric tensor is the diagonal matrix:

G3 =


∥t1(P )∥2 0 0

0 ∥t2(P )∥2 0
0 0 ∥ν(P )∥2

 =


h2

(1) 0 0
0 h2

(2) 0
0 0 1

 ,
which can be simplified to the first 2 × 2 block

G2 =
[
∥t1(P )∥2 0

0 ∥t2(P )∥2

]
=

h2
(1) 0
0 h2

(2)


if only tangential quantities are considered.

The intrinsic differential operators of proposition 1.3.3 can be simplified when written with
respect to the previous metric tensors:

• The k-th component of the gradient of a scalar function f is:

(∇Gf)k = 1
h2

(k)

∂f

∂sk
. (1.18)

• The divergence of a vector u is:

∇G · u = 1
h(1)h(2)

∇ ·
(
h(1)h(2)u

)
. (1.19)

• The k-th component of the divergence of the 2-tensor T is:

(∇GT)k = ∇G · τ (·k) + 1
h(k)

∑
i

(
(τ ik + τki)

∂h(k)
∂si

− τ ii
h(i)
h(k)

∂h(i)
∂sk

)
. (1.20)
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• The k-th component of the intrinsic curl of a vector u is:

(∇ ×G v)k =
h(k)

h(1)h(2)

∑
ij

εijk∂i
(
h2

(j)u
j
)
. (1.21)

• The Laplace-Beltrami operator of a scalar function f is:

∆Gf = 1
h(1)h(2)

[∑
i

1
∂si

(
h(1)h(2)
h2

(i)

∂f

∂si

)]
. (1.22)

In addition we get a simplified formula for the gradient of a vector field:

(∇Gu)(ij) = h(i)h(j)(∇Gu)ij =


∂ui

∂si
+ 1
h(i)

⟨u,∇Gh(i)⟩G if i = j

1
h(i)

(
∂(h(j)u

j)
∂si

−
uih(i)
h(j)

∂h(i)
∂sj

)
if i ̸= j

(1.23)

Remark 1. In our work we will use theMonge parametrization ϕ : (x1, x2) ∈ U ⊆ R2 −→ ϕ(U) ⊂
S ⊂ R3, but as said before, we will consider the reference system obtained by orthogonalizing the
tangent vectors. This implies that we will obtain derivations associated with the tangent vectors
that are different from the initial ones, which are identified by the canonical derivatives ∂

∂x1 ,
∂
∂x2 ,

recalling (1.2.11). These new differentiations are associated to a different local chart, so to a
different local parametrization. Then, recalling (1.2.9), we get that the map between these two
local parametrization is a diffeomorphism, which is given by the restriction of the two orthogonal
tangent vector to their first 2 coordinates, obtaining a matrix that represents the Jacobian of the
changes through the orthogonalization of the two coordinate axis x1, x2 to the local coordinates
s1, s2:

W :=

1 − ∂x1f ∂x2f

1 + (∂x1f)2

0 1

 =


∂x1

∂s1
∂x1

∂s2

∂x2

∂s1
∂x2

∂s2

 .
So, W acts as the Jacobian of the diffeomorfism between these two local maps, that we call

ψ̄ : V ⊂ R2 −→ U ⊂ R2

(s1, s2) 7−→ ψ̄(s1, s2) = (x1, x2).

This will be essential when we will need to calculate the partial differentiation of a function
depending on the local coordinates s1, s2, for example the metric, and we will use this change
within the chain-rule:

∂h1(s1, s2)
∂s1 = ∂h̃1(ψ̄(s1, s2))

∂x1
∂x1

∂s1 + ∂h̃1(ψ̄(s1, s2))
∂x2

∂x2

∂s1

where h̃i, i = 1, 2, is the metric defined through the initial Monge parametrization.
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2
Derivation of the Vector Laplacian

The purpose of this section is to show the derivation of the vector Laplacian that generalizes
the scalar Laplacian. Most of the results are, however, focused on problems with scalar functions,
as for example Dziuk work [16], which simplifies the differential calculus since the covariant
derivative of a vector field, or more generally a tensor field, is not needed. In this case the
coupling between the geometry of the surface and the PDE is weak and thus allows to solve
these problems with small modifications of established numerical approaches in flat space. But
there are also many physical models on surfaces that involve vector functions and in these cases,
the relation between the surface and and the vector or tensor-valued surface PDEs is much
stronger and much more difficult to study.

So, following the paper [29], we show an example of derivation of a vector Laplacian PDE,
but unlike the paper we will use an intrinsic approach, starting from the physical model of
the Nematic Liquid Crystal, whose model and energy can be found in [34]. In particular, this
derivation turns out to be equivalent to the one carried out in the paper [29], in which however
is used an embedded approach that makes use of the projection on the surface to define all the
necessary operators.

We start considering the Frank-Oseen energy associated to the system in a domain of Ω ⊂ R3,
and after applying initial simplifications to the formula, we will proceed by writing all the
operators contained in the energy in terms of the local coordinates of the LCS, and then obtain
the formulation on the surface by sending the third coordinate of the LCS to zero, i.e. applying
the limit for the normal direction to the surface tending to zero.

Then we minimize the energy on the surface, through the method of the L2 gradient flow,
obtaining the equilibrium equation, which will be a PDE containing the vector Laplacian. Finally,
while there are several natural Laplacians acting on vector fields on surfaces, we consider the
deRham Laplacian, which will be derived from the energy analysis, and through the Weitzenböck
identity we will switch to the Bochner Laplacian, as it is better known and easier to deal with,
and then we will study the obtained PDE through the ISFEM method in the next chapter.

Before we begin, we give below the definitions of deRham, Bochner Laplacian and the
relationship between them, Weitzenböck identity, which will be used at the end of the derivation
of the equation on the surface.

29
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Vector Laplacians and their relationship

Following [4], we give the definition of Bochner Laplacian:

Definition 2.0.1 (Bochner Laplacian). Let S be a compact, oriented manifold equipped with a
metric. Let E be a vector bundle over S equipped with a fiber metric and a compatible connection
∇. This connection gives rise to a differential operator

∇ : Γ(E) −→ Γ(T ∗S ⊗ E)

where Γ(E) denotes the smooth sections of E, and T ∗S is the cotangent bundle of S. Taking the
L2-adjoint of ∇, we define the diffential operator

∇ : Γ(T ∗S ⊗ E) −→ Γ(E).

Then, the Bochner Laplacian is given by

∆B = ∇∗∇

Definition 2.0.2 (DeRham Laplacian). Let (S, g) be a Riemannian manifold. Then, given the
external differential d and the external codifferential δ defined over S, we define the DeRham
Laplacian as

∆dR = dδ − δd

Then, we can state the Weitzenböck identity that connects the previous Laplacians defined
over a surface:

∆Bv = ∆dRv + Kv ∀ v ∈ TS, (2.1)

where K is the curvature of S. In particular, we notice that the two Laplacians differs only by a
term that depends only on the curvature of the surface.

Now we introduce formulation of the model.

2.1 Formulation of the surface model

Among the liquid crystal models, i.e. physical systems consisting of elongated rod-like
molecules with a preferred local average direction, we consider the model of Nematic liquid
crystals. In this case, the long axes of the constituent molecules tend to be parallel to each
other choosing some common preferred direction, usually called anisotropic axis. We start by
introducing a unit vector u, called director, to describe the local direction of average molecular
alignment in liquid crystals.

We consider a surface bound system of densely packed rod-like particles that tend to align
tangentially to the director, and following Frank-Oseen theory, we take in consideration a free
energy that depends on the director u as follows:

FF[u,Ω] = 1
2

∫
Ω
K1(∇ · u)2 +K2(u · (∇ × u))2 +K3||u × (∇ × u)||2 dV. (2.2)
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This energy describes the spatial variation on a domain Ω ⊂ R3 of the director field and represents
the energy costs due to spatial distortions and deformations, such as splay, twist and bend,
modeled through the three different terms with K1,K2 and K3 coefficients. We approximate
these constants with a same factor K = K1 = K2 = K3 to get the following:

FOC [u,Ω] = K

2

∫
Ω

(∇ · u)2 + (u · (∇ × u))2 + ||u × (∇ × u)||2dV

= K

2

∫
Ω

(∇ · u)2 + (u · (∇ × u))2 + ||u||2 · ||(∇ × u)||2 − (u · (∇ × u))2 dV

||u||=1= K

2

∫
Ω

(∇ · u)2 + ||∇ × u||2 dV.

Since we want to formulate this energy on a Riemannian surface S, we consider a tubular
neighborhood S ⊂ Ωδ, with u tangent to the surface, so u ∈ TS, and δ > 0 small enough to
ensure that every point in this domain, can be projected along the normal direction of the
surface S in a unique way. The idea to restrict this energy to be a surface energy is to proceed
by performing a thin limit approximation, by considering δ ↘ 0. Due to the fact that a smooth
vector field with unit norm exists on a surface S if and only if χ(S) = 0, we start by relaxing
the constraint ||u|| = 1. We translate this properties by enforcing the condition adding a quartic
state potential to the free energy, with a penalty term ωn ≫ K:

Fwn [u,Ωδ] = K

2

∫
Ωδ

(∇ · u)2 + ||∇ × u||2 dV + ωn
4

∫
Ωδ

(||u||2 − 1)2 dV. (2.3)

We now analyze the previous energy using the intrinsic setting, i.e. using the LCS basis
in the space R3, with which we can write the intrinsic operators (1.3.3) to derive the equation
containing the vector Laplacian. From now on we will consider a simplified version of energy
(2.3), in which the last penalty term will not be present. In this way, we will deal with a more
general equation, obtaining a method that can be applied in contexts where the vector Laplacian
is present. The simplified energy we will consider in the intrinsic setting is given by:

F [u,Ωδ] = K

2

∫
Ωδ

(∇ ·G3 u)2 + ||∇ ×G3 u||2 dV. (2.4)

Next, we analyze this formula in the space Ωδ with the aim of arriving at the corresponding
energy on the surface S via the limit for δ tending to zero.

2.1.1 Intrinsic Approach

As said before, we apply our intrinsic framework to eq. (2.4). In particular, we will refer
to operators defined on the surface S through the tensor G2 and to quantities in the subspace
Ωδ ⊂ R3 with the tensor G3 associated to the LCS. In particular we will refer to quantities on
the tubular neighborhood Ωdelta with the variable ũ and to quantities on the surface S with the
variable u.
We now begin to write all quantities explicitly, starting with the gradient of the vector ũ ∈ TPΩδ,
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for which we use the expression (1.18):

(∇G3 · ũ)2 = 1
h2

(1)h
2
(2)

[ 3∑
i=1

∂(h(1)h(2)u
i)

∂si

]2

= 1
h2

(1)h
2
(2)

[ 2∑
i=1

∂(h(1)h(2)u
i)

∂si
+ h(1)h(2)

∂u3

∂s3

]2

= 1
h2

(1)h
2
(2)

[ 2∑
i=1

∂(h(1)h(2)u
i)

∂si

]2

+ 2
h(1)h(2)

2∑
i=1

∂(h(1)h(2)u
i)

∂si
∂u3

∂s3 +
(
∂u3

∂s3

)2

= (∇G2 · u)2 + 2
h(1)h(2)

( 2∑
i=1

∂(h(1)h(2)u
i)

∂si

)
∂u3

∂s3 +
(
∂u3

∂s3

)2

= (∇G2 · u)2 + 2
h(1)h(2)

( 2∑
i=1

∂(h(1)h(2)u
i)

∂si

)
O(ξ) + O(ξ2)

= (∇G2 · u)2 + O(ξ)

where we consider the fact that ∂u3

∂s3 = O(ξ). This is because our purpose is to take the limit
for δ → 0 to get the formulation on the surface S, and on S the quantities are defined in terms
of tangential variables while there is no variation along the normal direction ν of the LCS. It
means that the value ξ goes to zero when δ goes to zero. Moreover, since we assumed that every
ũ ∈ TΩδ is parallel to the surface and is obtained through a parallel transport of u along the
normal direction to the surface ν, it means that ũ is an extension of u, i.e. ũ|S = u ∈ TS. This
has the direct consequence that the covariant derivative of the third component of every vector
ũ ∈ TΩδ, in the direction of ξ, is zero. Hence, recalling the definition of connection in (1.1.18):

0 = ∇ξ ũ
I = ∂ξ ũ

i + Γ̃iξk ũk ,

where we use the lower-case indices when we indicate quantities on the surface and upper-case
indices when when we consider quantities on Ωδ.

Now we can express the Christoffel symbols in terms of shape operator and terms depending
on the normal direction. We recall that every point in the tubular neighborhood x̃ ∈ Ωδ can be
written in the LCS by 1.3.1:

x̃(s1, s2, ξ) = x(s1, s2) + ξν(s1, s2).

Here, using the definition of shape operator (1.7), we get that the coefficients of the metric can
be written as follow:

g̃ij = (∂ix · ∂jx) = ∂ix · ∂jx+ ξ ∂ix · ∂jν + ξ ∂jx · ∂iν + ξ2∂iν · ∂jν;

= gij + 2ξ ∂ix · ∂jν +O(ξ2) = gij − 2ξ Bij + O(ξ2)

g̃ξξ = ν · ν = 1;

g̃iξ = g̃ξi = 0.

And then, we use the definition of Christoffel symbols (1.3) to get:

Γ̃iξk = 1
2 g̃

il
(
∂g̃lk
∂ξ

+ ∂g̃ξl
∂sk

− ∂g̃ξk
∂sl

)
= 1

2 g̃
il (−2Bkl + O(ξ)) = Bki + O(ξ)ki .

Finally, we have the following result:

∂ξ ũ
i = −Γ̃iξk ũk = Bki ũk + O(ξ)ki . (2.5)
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The next step is to compute the curl of ũ ∈ TΩδ recalling the formula in eq. (1.21):

∇ ×G3 ũ = 1√
det(G3)

εijk∂i
(
h2

(j)v
j
)

= 1
h(1)h(2)


∂2
(
h2

(3)u
3
)

− ∂3
(
h2

(2)u
2
)

∂3
(
h2

(1)u
1
)

− ∂1
(
h2

(3)u
3
)

∂1
(
h2

(2)u
2
)

− ∂2
(
h2

(1)u
1
)

 ,

and taking the squared norm of this term, we obtain:

∥∇ ×G3 ũ∥2 = (∇ ×G3 ũ)T G3 (∇ ×G3 ũ)

= 1
h2

(1)h
2
(2)

{
h2

(1)

[
∂2
(
h2

(3)u
3
)

− ∂3
(
h2

(2)u
2
)]2

+ h2
(2)

[
∂3
(
h2

(1)u
1
)

− ∂1
(
h2

(3)u
3
)]2

+

+h2
(3)

[
∂1
(
h2

(2)u
2
)

− ∂2
(
h2

(1)u
1
)]2}

= 1
h2

(1)h
2
(2)

{
h2

(1)

[
∂2(u3) − ∂3

(
h2

(2)u
2
)]2

+ h2
(2)

[
∂3
(
h2

(1)u
1
)

− ∂1
(
u3
)]2}

+

+ 1
h2

(1)h
2
(2)

[
∂1
(
h2

(2)u
2
)

− ∂2
(
h2

(1)u
1
)]2

= 1
h2

(2)

[(
∂3
(
h2

(2)u
2
))2

− 2∂2(u3)∂3
(
h2

(2)u
2
)

+
(
∂2(u3)

)2
]

+

+ 1
h2

(1)

[(
∂3
(
h2

(1)u
1
))2

− 2∂1(u3)∂3
(
h2

(1)u
1
)

+
(
∂1(u3)

)2
]

+ ∥∇ ×G2 u|S ∥2
S

= 1
h2

(2)

[(
∂3
(
h2

(2)u
2
))2

− 2O(ξ)∂3
(
h2

(2)u
2
)

+ O(ξ2)
]

+

+ 1
h2

(1)

[(
∂3
(
h2

(1)u
1
))2

− 2O(ξ)∂3
(
h2

(1)u
1
)

+ O(ξ2)
]

+ ∥∇ ×G2 u|S ∥2
S

= 1
h2

(2)

[
∂3
(
h2

(2)u
2
)]2

+ 1
h2

(1)

[
∂3
(
h2

(1)u
1
)]2

+ ∥∇ ×G2 u|S ∥2
S + O(ξ).

By analizing the first two terms we get:

1
h2

(2)

[
∂3
(
h2

(2)u
2
)]2

+ 1
h2

(1)

[
∂3
(
h2

(1)u
1
)]2

= 1
h2

(2)

[
∂3
(
h2

(2)

)
u2 + h2

(2)∂3u
2
]2

+ 1
h2

(1)

[
∂3
(
h2

(1)

)
u1 + h2

(1)∂3u
1
]2

= 1
h2

(2)

[
h2

(2)∂3u
2
]2

+ 1
h2

(1)

[
h2

(1)∂3u
1
]2

= h2
(2)

[
∂3u

2
]2

+ h2
(1)

[
∂3u

1
]2

(2.5)= h2
(2)

[
B1
ku

k
]2

+ h2
(1)

[
B2
ku

k
]2

+ O(ξ) = (Bu)TG2Bu + O(ξ)

=∥Bu∥2
S + O(ξ)
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So, putting everything together, we obtain that (2.4) can be re-written as:

F [ũ,Ωδ] =
∫

S

∫ δ/2

−δ/2

[
K

2
(
(∇G2 · u)2 + ∥∇ ×G2 u∥2

S + ∥Bu∥2
S

)
+ O(ξ)

]
dξdS

=
∫

S

[
K

2
(
(∇G2 · u)2 + ∥∇ ×G2 u∥2

S + ∥Bu∥2
S

)(∫ δ/2

−δ/2
dξ

)
dS
]

+
∫

S

∫ δ/2

−δ/2
O(ξ)dξdS

= δ

∫
S

[
K

2
(
(∇G2 · u)2 + ∥∇ ×G2 u∥2

S + ∥Bu∥2
S

)]
dS + δO(δ)

= δ

(∫
S

[
K

2
(
(∇G2 · u)2 + ∥∇ ×G2 u∥2

S + ∥Bu∥2
S

)]
dS + O(δ)

)
.

Finally, dividing by δ and taking the limit δ → 0, we have that:

lim
δ→0

F [ũ,Ωδ]
δ

= lim
δ→0

(∫
S

[
K

2
(
(∇G2 · u)2 + ∥∇ ×G2 u∥2

S + ∥Bu∥2
S

)]
dS + O(δ)

)
= K

2

∫
S

(
(∇G2 · u)2 + ∥∇ ×G2 u∥2

S + ∥Bu∥2
S

)
dS

and we define the weak surface Frank-Oseen energy as

FS [u] = K

2

∫
S

(
(∇G2 · u)2 + ∥∇ ×G2 u∥2

S + ∥Bu∥2
S

)
dS. (2.6)

We can observe that, this energy is the sum of an intrinsic and an extrinsic contributions:

FS [u] = FS
I [u] + FS

E [u] ,

which are respectively:

FS
I [u] = K

2

∫
S

(
(∇G2 · u)2 + ∥∇ ×G2 u∥2

S

)
dS, (2.7)

and
FS
E [u] = K

2

∫
S

||Bu||2S dS, (2.8)

where we recall that the shape operator is defined by B = −grad ν, with ν the outer normal to
the surface S.

2.2 Energy Minimization

Having obtained the energy on the surface, we now try to minimize this functional FS [u].
Lets start by the definition of the functional spaces:

H(div,S,TS) :=
{

u ∈ L2(S; TS) : div u ∈ L2(S)
}

H(rot,S,TS) :=
{

u ∈ L2(S; TS) : rot u ∈ L2(S)
}

HDR(div,S,TS) := H(div,S,TS) ∩H(rot,S,TS).

We need now to define our operators in a proper way on the surface not only with the local
coordinates, but also with the exterior calculus that will be necessary to derive the final expression
of the Laplacian. We collect the most important definitions in the following table, which derive
from the proposition of the intrinsic operators (1.3.3) and from the theory of the Hodge operator
1.1.23 and (1.1.24):
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Symbolic Local coordinates Exterior Calculus

⟨u,v⟩ uigijv
i ⋆(α ∧ ⋆β)

grad f gij∂jf∂iφ df

rot f 1√
|G|

(∂s1f∂s2φ− ∂s2f∂s1φ) ⋆df

div v ∂iv
i + 1√

|G|
vi∂i

√
|G| ⋆d ⋆α

rot v 1√
|G|

(∂s1vs2 − ∂s2vs1) ⋆dα

In particular, we recall that φ is the parametrization of the surface through the local
coordinates (s1, s2), and we observe that in our context f : S −→ R is a scalar function,
u,v : S −→ TS are vector field and α,β : S −→ T ∗S are the 1-forms associated to the vector
fields u,v through the ♯-♭ isomorphism.

We want to find

u∗ = argmin
{
FS [u] : u ∈ HDR(S; TS)

}

through an L2-gradient flow approach, in which the gradient of FS has to be interpreted with
respect to the L2(S;TS) inner product. So, we impose that the variation in time of the variable
u is equivalent to the variational derivative of the functional of the energy (2.6):

−∂tu = δFS

δu [u].

Multiplying each member by a test function v ∈ HDR(S;TS) and integrating over S we get:

∫
S

〈
− ∂tu,v

〉
dS =

∫
S

〈
δFS

δu [u],v
〉

dS = lim
ε→0

FS [u + εv] − FS [u]
ε

=
[
d

dε
FS [u + εv]

]∣∣∣∣∣
ε=0

for which, substituting u + εv in FS we obtain:

FS [u + εv] = K

2

∫
S

(
div(u + εv)

)2
+
(
rot(u + εv)

)2
+ ||B · (u + εv)||2 dS

= K

2

∫
S

(
div(u) + εdiv(v)

)2
+
(
rot(u) + εrot(v)

)2
+
(
(u + εv)T · BT

)(
B · (u + εv)

)
dS

= K

2

∫
S

(
div(u)2 + 2ε div(u)div(v) + ε2div(v)2 + rot(u)2 + 2ε rot(u)rot(v) + ε2rot(v)2+

+uTBTBu + 2εuTBTBv + ε2vTBTBv
)

dS

and since the shape operator is symmetric, i.e. B = BT , we have that BTB = B2. Now we can
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proceed differentiating and then evaluating in ε = 0:[
d

dε
FS [u + εv]

]∣∣∣∣∣
ε=0

=
[
d

dε

(
K

2

∫
S

(
div(u)2 + 2ε div(u)div(v) + ε2div(v)2 + rot(u)2 + 2ε rot(u)rot(v)+

+ε2rot(v)2 + uTB2u + 2εuTB2v + ε2vTB2v
)

dS
)]∣∣∣∣∣

ε=0

=
[
K

2

∫
S

(
2div(u)div(v) + 2ε div(v)2 + 2rot(u)rot(v) + 2ε rot(v)2 + 2uTB2v+

+2εvTB2v
)

dS
]∣∣∣∣∣
ε=0

= K

∫
S

(
div(u)div(v) + rot(u)rot(v) +

〈
B2u,v

〉)
dS . (2.9)

Now, we want to analyze the surface expression for the terms div(u)div(v) and rot(u)rot(v).
We begin with the first, by recalling that:

• from the definition of the Riemannian metric we have that gijgjk = δki ;

• for every vector field b there exists an associated 1-form α through the isomorphism ♯-♭
(see eq. (1.1)), and in particular for every scalar function f we have the association between
gradf -df . Explicitly:

(gradf)i = dfj gij (2.10)

(b)i = αj g
ij (2.11)

For all scalar function f and all vector field v we have that:

−
∫

S

〈
grad f,b

〉
dS = −

∫
S

(grad f)igijvj dS = −
∫

S
(df)l gil gij αmgjm dS

= −
∫

S
(df)l δlj αmgjm dS = −

∫
S

(df)l αmglm dS = −
∫

S
⟨df,α⟩ dS.

(2.12)

Then, we recall some definitions and properties regarding k-differential forms , Hodge operator,
codifferential over the surface S (i.e., a manifold with dimension 2):

• from definition 1.1.23 of the Hodge Operator, we have that ⋆ : Λk(S) −→ Λ2−k(S);

• from definition 1.1.25 of the codifferential, we have that δ : Λk(S) −→ Λk−1(S) and in
particular

δ = (−1)n(k+1)+1 ⋆ d⋆ = (−1)2(k+1)+1 ⋆ d⋆ = − ⋆ d⋆,

since 2(k + 1) + 1 will always be odd for all k = 0, 1, 2;

• from proposition 1.1.26, we have that the codifferential and the Hodge operator are adjoint:

⟨dη, ω⟩ = ⟨η, δω⟩

for all η ∈ Λ(S)k−1 and ω ∈ Λ(S)k;
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• we recall that for all vector field v and its 1-form associated α, we have

div v = ⋆d ⋆α.

Thus, from eq. (2.12), we get that:

−
∫

S

〈
grad f,v

〉
dS = −

∫
S

⟨df,α⟩ dS = −
∫

S
fδα dS =

∫
S
f ⋆ d ⋆α dS =

∫
S
f div(v) dS ,

and substituting f = div u, we obtain:

−
∫

S

〈
grad div(u),v

〉
dS =

∫
S

div(u) div(v) dS.

Now, for the term rot(u)rot(v), we start by recalling that:

• for every scalar function f , we have:

rot f = ⋆df ;

• from property (1.1.24) we have that: for every α,β ∈ Λk(S)

⟨α,β⟩ = ⟨⋆α, ⋆β⟩.

We can then write:

−
∫

S

〈
rot f,v

〉
dS = −

∫
S

〈
⋆ df,α

〉
dS = −

∫
S

〈
⋆ ⋆df, ⋆α

〉
dS

and recalling that d and δ are adjoint and that ⋆ ⋆α = −α, we have:

−
∫

S

〈
⋆ ⋆df, ⋆α

〉
dS =

∫
S

〈
df, ⋆α

〉
dS =

∫
S
f δ ⋆α dS = −

∫
S
f ⋆ d ⋆ ⋆α dS =

∫
S
f ⋆ dα dS

=
∫

S
f rot(v) dS .

Now, substituting f = rot(u), we obtain

−
∫

S

〈
rot rot(u),v

〉
dS =

∫
S

rot(u) rot(v) dS ,

and putting all together in (2.9), we have:∫
S

〈
− ∂tu,v

〉
dS =

[
d

dε
FS [u + εv]

]∣∣∣∣∣
ε=0

= K

∫
S

(
⟨grad div(u),v⟩ + ⟨rot rot(u),v

〉
+
〈
B2u,v

〉)
dS

= K

∫
S

〈
− grad div(u) − rot rot(u) + B2u,v

〉
dS

=
∫

S

〈
K
(

− ∆dRu + B2u
)
,v
〉

dS,

where ∆dR is the De-Rham Laplacian (see definition 2.0.2) associated to the vector fields through
the ♯-♭ isomorphisms. In fact, using the previous definitions for div and rot in terms on exterior
calculus, the association between 1-forms and vector fields and the properties of the Hodge
Operator, differential and codifferential, we have:

−
∫

S

〈
grad div(u) + rot rot(u),v

〉
dS = −

∫
S

〈
d(⋆d ⋆ (α)) + ⋆d(⋆d(α)), β

〉
dS

= −
∫

S

〈
(d ⋆ d ⋆+ ⋆ d ⋆ d)α, β

〉
dS =

∫
S

〈
(dδ + δd)α, β

〉
dS =

∫
S

〈
∆dRα, β

〉
dS
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Therefore, we obtain that ∀v ∈ HDR(S;TS)∫
S

〈
− ∂tu,v

〉
dS =

∫
S

〈
K
(

− ∆dRu + B2u
)
,v
〉

dS

that leads to
∂tu +K

(
− ∆dRu + B2u

)
= 0 for u ∈ HDR(S;TS) (2.13)

which is a PDE that contains a vector Laplacian.
Now, using the following geometrical properties from [30, appendix D]:

0 = B2 − HB + KP ,

B = B P,

where K = detB is the curvature of S, H = tr(B) is the mean curvature of S, P = I − ννT the
projection operator with ν the normal to S and Pu = u since u ∈ TS. Then, recalling the
definitions of the deRham Laplacian 2.0.2, Bochner Laplacian 2.0.1 and their relationship in
eq. (2.1), eq. (2.13) becomes:

∂tu +K
(

− ∆dRu + B2u
)

= ∂tu +K
(

− ∆Bu + Ku + (HB − KP)u
)

= ∂tu +K
(

− ∆Bu + HBu
)

= 0

And finally, we arrive to the PDE that contains the Bochner vector Laplacian over a surface:

∂tu +K
(

− ∆Bu + HBu
)

= 0 , (2.14)

which we will solve numerically in the following chapter. We remark that, starting from the
energy of the model, we obtain a PDE that contains the Bochner Laplacian and a reaction term.



3
Intrinsic Surface Finite Element Method

In this chapter we look in more detail at the ISFEM applied to solve a PDE on generic
surfaces following the work in [6] for scalar equation and then generalizing the approach to
vector equations. This method is different from the one presented in [15], the so-called surface
finite element methods (SFEM), which define the differential operators on the surface by using
the projection operator along the normal. Moreover, SFEM considers a piece-wise polygonal
approximation of the surface and introduce a finite element space defined directly on this
triangular surface mesh. Our method follows the previous one, but it differs on rewriting all
quantities on the surface by making use of LCS, and exploiting all the intrinsic geometric
information of the surface where the PDE is defined. In particular, our triangulation will be
construct directly on surface, instead of using an approximation, and we will assume that tangent
planes are known in exact or approximate form at the nodes of the triangulation. This is
possible also thanks to the recent developed capabilities for constructing surface triangulation
and tangent plane from point data in computer graphics.

Considering the previously derived PDE in eq. (2.14), in which we take for simplicity K = 1,
we develop the intrinsic method first in the scalar case, then in the vector case.

3.1 Intrisic Surface FEM in the scalar case

Recalling the intrinsic setting with the Monge parametrization, defined in section 1.3.1, we
consider a compact surface S ⊂ R3 and the following equation:

∂u(x, t)
∂t

− ∆Gu(x, t) + c u(x, t) = f(x) on S, (3.1)

where

• u : S × IT −→ R is a scalar function defined on the surface and depending on time in
IT = (0, T ] ⊂ R;

• f is a force function, and f ∈ L2(S) to ensure the well posedness of the equation;

• c is the corresponding coefficient of the reaction term of (2.14), HB, in the scalar case.

All the differential operators are written intrinsically in the LCS coordinate system. Recalling
the definition of the Hilbert space:

H1(S) =
{
w : S −→ R | w ∈ L2(S),∇w ∈ L2(S)

}
(3.2)

39
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we define the space of the test function as V(S) = {v ∈ H1(S) |
∫

Γ v = 0}. Then, recalling the
definition of the intrinsic operators in section 1.3.1 and the intrinsic version of the Green Lemma
in lemma 1.3.5, we can write the intrinsic variational formulation of eq. (3.1) by multiplying
by a test function v ∈ V(S) and then integrating over the surface S. We obtain the following
variational formulation:

Problem 1. Find u ∈ L2(IT ;H1(S)) such that

m(∂tu, v) + a(u, v) + b(u, v) = F (u) ∀v ∈ V(S)

where the bilinear forms are given by:

m(∂tu, v) =
∫

S
∂tu v ds, a(u, v) =

∫
S

⟨∇Gu,∇Gv⟩G ds

b(u, v) = c

∫
S
u v ds

and the right-and-side:
F (v) =

∫
S
f v ds

We are now ready to explore the intrinsic formulation of the finite element method. We
start by considering a surface triangulation T (S) of the surface S formed by the union of
non-intersecting surface triangles Ti, with vertices on S. The edges connecting the vertices are
geodesic curves of minimal length. Therefore, we have that T (S) = ∪NT

i=1Ti, with NT the total
number of nodes of the triangulation, and every non empty intersection between two curved
triangles, σij = Ti ∩ Tj , is and internal geodesic edge or vertex.

We can define the space of the basis functions generating the finite-dimensional FEM space,
over the curved triangulation of the surface as Vh(T (S)), and for this we use the lowest order
conforming approach, which gives:

Vh(T (S)) = {v ∈ C0(T (S)) | v|T ∈ P1(T ) ∀ T ∈ T (S)}, (3.3)

where P1(T ) is the space of the polynomial of first degree. In particular, Vh(T (S)) is spanned by
the nodal basis functions φ1, · · · , φNT

defined by requiring the classical interpolation property:

φj ∈ Vh(T (S)), φj(Pi) = δij , i, j = 1, · · · , NT (3.4)

where Pi are the vertices of the triangulations. Then, every function v ∈ Vh(T (S)) can be
written as

v(x) =
NT∑
j=1

vj φj(x) x ∈ S

with vj the nodal coefficients. From the practical point of view, to calculate each basis function
we proceed as follows. Given the global coordinates x(P ) of P ∈ T , we can define the affine
function φ̃(x) = ã+ b̃x1 + c̃x2 + d̃x3 as a function in R3. Then by composition with the local
parametrization we can get the basis function in the local coordinates:

φTj (s1, s2) = φ̃Tj ◦ ϕ(s1, s2).
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Moreover, assuming that for each cell T there exist an open set U ⊂ R2 such that T ⊂ ϕmt(U),
for a point mT ∈ T , we have that

ϕmT = TmT (S) + O(h2).

Exploiting this relation, it is enough to re-write φ̃Tj in the local coordinates of TmT (S), thus
maintaining the “linear” feature of the basis function.

Observation 2. We remark that, up to the definition of Vh(T (S)), everything has defined
without any approximations, since every quantities has been defined on T (S) whose interior
coincides with the surface S. Approximations issues arise when we need to compute quantities,
and in our case we find them in appropriate quadrature rules for surface integrals and in the
calculation of relevant quantities on the cells. So to keep the exact setting as much as possible,
we assume that all relevant geometric information related to the surface are known at the vertices
of the triangulation, even approximated but in consistent form.

Therefore, we can formulate the intrinsic SFEM variational formulation of (3.1) written in
the LCS as:

Problem 2. Find uh ∈ L2(IT ; Vh(T (S))) such that

m(∂tuh, v) + a(uh, v) + b(uh, v) = F (uh) ∀v ∈ Vh(T S)

where the bilinear forms are given by:

m(∂tuh, v) =
∫

S
∂tuh v ds a(uh, v) =

∫
S

⟨∇Guh,∇Gv⟩ ds

b(uh, v) = c

∫
S
uh v ds

and the right and side form:
F (v) =

∫
S
f v ds

We can now express the numerical solution as linear combination of the basis functions, i.e.
uh =

∑NT
j=1 ujφj . For every i = 1, · · · , NT we obtain:

NT∑
j=1

∂tujm(φj , φi) +
NT∑
j=1

∂tuj(a(φj , φi) + b(φj , φi)) = F (φi) ,

We can also re-write the scheme in matrix form:

M∂tu+ (A + B)u = F ,

where u = {ui} is the vector of the coefficients with respect to the basis functions, and b = {F (φi)}
is the right-hand-side vector. The above matrices take the following expressions:

Mij =
∫

S
φjφi dx Aij =

∫
S

⟨∇Gφj ,∇Gφi⟩ dx

Bij = c

∫
S
φj φi dx
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For the time discretization, we consider an Implicit Euler scheme. Let {tn}Nn=0 be a partition
of the time interval IT and ∆tn = tn+1 − tn the n-th time step. For n = 0, · · · , N − 1, the
scheme reads: ( 1

∆tnM + A + B
)
un+1 = F + 1

∆tnMun (3.5)

where the superscripts indicate the time-step evaluation.
To calculate the surface integrals we use the Gaussian quadrature rules, so it is necessary to

evaluate the nodal basis functions at quadrature points Pj inside the cell T . For this reason,
the knowledge of the set of tangent vectors at the point is needed. Since we are considering low
order polynomials basis function, the optimal accuracy is still ensured already by considering
first order quadrature rules. We consider here the mid-point rule, so tangent vectors and metric
needs to be defined at the mid-point of each cell. If geometric quantities are known only at the
vertices of the triangulation, a linear interpolation of these at mid-points is enough to ensure
the accuracy of the scheme (see [6]).

3.2 Intrinsic Surface FEM in the vector case

We consider now the vector form of the equation (3.1) on a regular surface S ⊂ R3:

∂u(x, t)
∂t

− ∆Gu(x, t) + B̃u(x, t) = f(x) on S, (3.6)

where

• u : S × IT −→ R3 is a tangent vector to the surface u ∈ TS, depending on time in
IT = (0, T ] ⊂ R;

• f ∈ L2(S) to ensure the well posedness of the equation;

• B̃ is a 1 contravariant-1 covariant tensor, so in our case it maps vectors to vectors.

This can be directly related to the final equation of the previous chapter, eq. (2.14), by considering
B̃ = HB. In this case, to ensure the well posedness of the problem, we add to B̃ the term cI
with c > 0 and consider H > 0, in this way we get that B̃ = HB + cI is positive semi-definite,
since B is symmetric. With this observation, the bilinear form results to be coercive and the
existence of the solution is guaranteed by the Lax-Milgram theorem.

We consider the solution u = u1t1 +u2t2 written in contravariant coordinates, and we need to
extend our functional spaces to a two-dimensional form, due to the fact that the solution depends
on the tangent space to the surface, which is a two-dimensional space. The corresponding
two-dimensional extension of the Hilbert space (3.2) is then:

H⃗1(S) =
[
H1(S)

]2
=
{

w : S −→ R3 | w ∈ L2(S),∇w ∈ L2(S)
}
,

in which we consider the following L2(S) scalar products: for every v,w ∈ TS and every
∇Gv,∇Gw : TS −→ R3 × R3 we define

(v,w)L2(S) :=
∫

S
⟨v,w⟩G ds ,

(∇Gv,∇Gw)L2(S) :=
∫

S
∇Gv :G ∇Gw ds .
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The term ∇Gv :G ∇Gw is a double-scalar product in the LCS, and is defined as the sum of the
component-wise product of the two elements:

∇Gv :G ∇Gw =
∑
i,j

(∇Gv)(ij)(∇Gw)(ij) =
∑
i,j

(∇v)ij(∇w)ijh2
(i)h

2
(j) . (3.7)

We also need to extend the test-space to the vector case:

V⃗(S) = V(S) × V(S) =
{

v ∈
[
H1(S)

]2 ∣∣∣}. (3.8)

Then testing eq. (3.6) by a test function v, we obtain the variational formulation for the vector
case:

Problem 3. Find u ∈ L2(IT ; H⃗1(S)) such that

m(∂tu,v) + a(u,v) + b(u,v) = F (u) ∀v ∈ V⃗(S) (3.9)

where the bilinear forms are given by:

m(∂tu,v) =
∫

S
⟨∂tu,v⟩G ds a(u,v) =

∫
S

∇Gu :G ∇Gv ds

b(u,v) =
∫

S
⟨B̃u,v⟩G ds

and the right-and-side linear form:

F (v) =
∫

S
⟨f ,v⟩G ds

.

3.2.1 Fulle-discrete scheme in the vector case

We start by the definition of the space of the basis functions generating the FEM space
as the extension of the scalar one, presented in the previous section. By considering a surface
triangulation, as before, we can write:

V⃗h(T (S)) = Vh(T (S)) × Vh(T (S))

with Vh(T (S)) defined in eq. (3.3). We write our numerical solution as uh = u1
ht1 + u2

ht2, where
each contravariant component can be written in terms of the scalar basis functions:

uh =
N∑
j=1

u1
jφjt1 + u2

jφjt2. (3.10)

Then, we consider all the expression for the differential operators as described in section 1.3.1.
The idea is to expand the computations and collect back terms in a block-structured matrix as:[

comp-1 u, comp-1 v(N ×N) comp-2 u, comp-1 v(N ×N)
comp-1 u, comp-2 v(N ×N) comp-2 u, comp-2 v(N ×N)

] [
u1(N × 1)
u2(N × 1)

]
=
[

F1(N × 1)
F2(N × 1)

]

u1 = {u1
j},u2 = {u2

j}, for j = 1, · · · , N , are the coefficients of the two contravariant components
in terms of the scalar basis functions.
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We organize our work, by considering each bilinear form separately. We start by considering
the weak Laplacian term:



∂φℓ
∂s1

∂φm
∂s1 + ∂φℓ

∂s1 φm
1
h(1)

∂h(1)
∂s1 + φℓ

∂φm
∂s1

1
h(1)

∂h(1)
∂s1 φℓ

∂φm
∂s1

1
h(1)

∂h(1)
∂s2 + ∂φℓ

∂s2 φm
1
h(2)

∂h(2)
∂s1

+φℓφm

( 1
h(1)

∂h(1)
∂s1

)2

+
(

1
h(2)

∂h(2)
∂s1

)2

+ 1
h2

(2)

(
∂h(1)
∂s2

)2
 +φℓφm

(
1
h2

(1)

∂h(1)
∂s2

∂h(1)
∂s1 + 1

h2
(2)

∂h(2)
∂s2

∂h(2)
∂s1

)

+ 1
h2

(2)

∂h(1)φℓ

∂s2
∂h(1)φm

∂s2 −φℓ
∂φm
∂s2

1
h(2)

∂h(2)
∂s1 − ∂φℓ

∂s1 φm
1
h(1)

∂h(1)
∂s2

−φℓφm
1

h(1)h(2)

(
∂h(2)
∂s1

∂h(1)
∂s2 +

∂h(2)
∂s1

∂h(1)
∂s2

)

∂φℓ
∂s1 φm

1
h(1)

∂h(1)
∂s2 + φℓ

∂φm
∂s2

1
h(2)

∂h(2)
∂s1

∂φℓ
∂s2

∂φm
∂s2 + ∂φℓ

∂s2 φm
1
h(2)

∂h(2)
∂s2 + φℓ

∂φm
∂s2

1
h(2)

∂h(2)
∂s2

+φℓφm

(
1
h2

(1)

∂h(1)
∂s1

∂h(1)
∂s2 + 1

h2
(2)

∂h(2)
∂s1

∂h(2)
∂s2

)
+φℓφm

( 1
h(2)

∂h(2)
∂s2

)2

+
(

1
h(1)

∂h(1)
∂s2

)2

+ 1
h2

(1)

(
∂h(2)
∂s1

)2


−∂φℓ
∂s2 φm

1
h(2)

∂h(2)
∂s1 − φℓ

∂φm
∂s1

1
h(1)

∂h(1)
∂s2 + 1

h2
(1)

∂h(2)φℓ

∂s1
∂h(2)φm

∂s1

−φℓφm
1

h(1)h(2)

(
∂h(2)
∂s1

∂h(1)
∂s2 +

∂h(2)
∂s1

∂h(1)
∂s2

)





u1
1
...
u1
N

u2
1
...
u2
N



Then, collecting terms together we get:[
⟨∇G φℓ,∇G φ

1
m⟩G 0

0 ⟨∇G φℓ,∇G φ
2
m⟩G

]h2
(1) 0
0 h2

(2)



+
[
φℓφm 0

0 φℓφm

]
(

1
h(1)

∂h(1)
∂s1

)2
+
(

1
h(2)

∂h(2)
∂s1

)2
+ 2

h2
(2)

(
∂h(1)
∂s2

)2
0

0
(

1
h(1)

∂h(1)
∂s1

)2
+
(

1
h(2)

∂h(2)
∂s1

)2
+ 2

h2
(2)

(
∂h(1)
∂s2

)2



+
[

0 φℓφm

φℓφm 0

] 0 1
h2

(1)

∂h(1)
∂s1

∂h(1)
∂s2 + 1

h2
(2)

∂h(2)
∂s1

∂h(2)
∂s2 − 2

h(1)h(2)

∂h(1)
∂s2

∂h(2)
∂s1

1
h2

(1)

∂h(1)
∂s1

∂h(1)
∂s2 + 1

h2
(2)

∂h(2)
∂s1

∂h(2)
∂s2 − 2

h(1)h(2)

∂h(1)
∂s2

∂h(2)
∂s1 0



+



〈 1
h(1)

∂h(1)
∂s1

h(1)
h2

(2)

∂h(1)
∂s2

 ,∇G φℓ

〉
G

φ1
m

〈− 1
h(1)

∂h(1)
∂s2

1
h(2)

∂h(2)
∂s1

 ,∇G φℓ

〉
G

φ1
m

〈 1
h(1)

∂h(1)
∂s2

− 1
h(2)

∂h(2)
∂s1

 ,∇G φℓ

〉
G

φ2
m

〈h(2)
h2

(1)

∂h(2)
∂s1

1
h(1)

∂h(2)
∂s2

 ,∇G φℓ

〉
G

φ2
m



+



〈 1
h(1)

∂h(1)
∂s1

h(1)
h2

(2)

∂h(1)
∂s2

 ,∇G φm

〉
G

φℓ

〈 1
h(1)

∂h(1)
∂s2

− 1
h(2)

∂h(2)
∂s1

 ,∇G φm

〉
G

φℓ

〈− 1
h(1)

∂h(1)
∂s2

1
h(2)

∂h(2)
∂s1

 ,∇G φm

〉
G

φℓ

〈h(2)
h2

(1)

∂h(1)
∂s1

1
h(1)

∂h(1)
∂s2

 ,∇G φm

〉
G

φℓ
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So, for i, j = 1, 2 that denotes the indices for the vector-components, l,m = 1, · · · , N the
indices for the basis function decomposition, we can define the following quantities:

Aii
lm =

∫
S
h2

(i)⟨∇Gφm,∇Gφl⟩G;

Mij
lm =

∫
S
µijφmφl with

µ11 =
(

1
h(1)

∂h(1)
∂s1

)2

+
(

1
h(2)

∂h(2)
∂s1

)2

+ 2
h2

(2)

(
∂h(1)
∂s2

)2
,

µ22 =
(

1
h(2)

∂h(2)
∂s2

)2

+
(

1
h(1)

∂h(1)
∂s2

)2

+ 2
h2

(1)

(
∂h(2)
∂s1

)2
,

µ12 = 1
h2

(1)

∂h(1)
∂s1

∂h(1)
∂s2 + 1

h2
(2)

∂h(2)
∂s1

∂h(2)
∂s2 − 2

h(1)h(2)

∂h(1)
∂s2

∂h(2)
∂s1 ;

Bij
lm =

∫
S

⟨wij ,∇Gφm⟩Gφl with

w11 =

 1
h(1)

∂h(1)
∂s1

h(1)
h2

(2)

∂h(1)
∂s2

 , w22 =

h(2)
h2

(1)

∂h(1)
∂s1

1
h(1)

∂h(1)
∂s2

 , w12 = −w21 =

− 1
h(1)

∂h(1)
∂s2

1
h(2)

∂h(2)
∂s1

 .
Finally, the double-scalar product term can be expressed in the following block-matrix

formulation:[
A11 B
BT A22

]
=
[
A11 + M11 + B11 + BT,11 M12 + B12 + BT,12

M21 + B21 + BT,21 A22 + M22 + B22 + BT,22

] [
u1

u2

]
.

Remark 2. We remark that all the N × N-matrices are obtained as in the scalar case, with
coefficients that depend on the surface through the values of the metric, i.e. h(1), h(2) and its
derivatives ∂h(i)

∂sj , for i, j = 1, 2. In particular, when the metric has constant coefficients, for
example if the surface is flat, the system becomes a lot easier. In fact, since the metric becomes
the identity, the matrix reduces to a diagonal block system in which the two components are
completely decoupled: [∫

S⟨∇Gφm,∇Gφl⟩G 0
0

∫
S⟨∇Gφm,∇Gφl⟩G

] [
u1

u2

]
.

Considering now the reaction term, we get that:

⟨B̃φℓ, φm⟩G =
〈(

B̃1
1φ

1
ℓ + B̃1

2φ
2
ℓ

B̃2
1φ

1
ℓ + B̃2

2φ
2
ℓ

)
, φm

〉
G

= h2
(1)(B̃

1
1φ

1
ℓφ

1
m+B̃1

2φ
2
ℓφ

1
m)+h2

(2)(B̃
2
1φ

1
ℓφ

2
m+B̃2

2φ
2
ℓφ

2
m) ,

and then, defining
Rij
ℓm =

∫
S
h2

(i)B̃
i
jφℓφm,

we can re-write the reaction block-matrix as:[
R11 R12

R21 R22

] [
u1

u2

]
.
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Finally, the mass matrix in the time derivative term, and the right-hand-side vector, are given
by:

Ti
ℓm =

∫
S
h2

(i)φℓφm , and Fi
l =

∫
S
h2

(i)f
iφl.

Going back to eq. (3.9), we can express the final system in the following way:[
T1 0
0 T2

] [
∂tu1

∂tu2

]
+
([

A11 B
BT A22

]
+
[
R11 R12

R21 R22

])[
u1

u2

]
=
[
F1

F2

]
,

Remark 3. Due to the nature of the linear system that we get, we expect the final matrix to be
symmetric. In the numerical tests, we will show that we actually get a symmetric system.

Concerning the time discretization, we consider an Implicit Euler scheme. Then, for n =
0, · · · , N − 1, we can write the fully-discrete ISFEM scheme as:

Problem 4. Find u ∈ L2(IT , V⃗h(T (S))) such that:(
1

∆tn

[
T1 0
0 T2

]
+
[
A11 B
BT A22

]
+
[
R11 R12

R21 R22

])[
u1
n+1

u2
n+1

]
=
[
F1

F2

]
+ 1

∆tn

[
T1 0
0 T2

] [
u1
h,n

u2
h,n

]
(3.11)

with {tn}Nn=0 be a partition of IT , ∆tn = tn+1 − tn the n-th time step.

Then, to solve the system, we proceed as in the scalar case (3.5). So, we compute the
integrals in space applying the surface mid-point rule, which is a consistent rule with the same
accuracy of the linear SFEM.

3.3 Numerical Results

In this section, we verify experimentally the applicability of the previously derived scheme
to solve eq. (2.14) from chapter 3, in numerical cases with and without time dependence. For
simplicity, we take B̃ = I to be the reaction coefficient.

We will start testing the convergence of the scheme on a stationary case, i.e. where ∂tu = 0.
We observe that in this case, the system (3.11) simplifies to:([

A11 B
BT A22

]
+
[
R11 R12

R21 R22

])[
u1

u2

]
=
[
F1

F2

]
. (3.12)

To check the numerical convergence, we consider a fixed solution and calculate the corresponding
right-hand-side vector from the equation (2.14):

f(x1, x2) = −∆Gufix(x1, x2) + Iufix(x1, x2).

We consider three different domains: a horizontal plane, a sloping plane and a parabola case.
Figure 3.1 shows the representation of these surfaces. In particular, we will use the same domain
U = [−1, 1] ⊂ R2 for the charts needed to define the three different surfaces. The choice follows
an increase complexity in terms of the geometric information on the surface. On the horizontal
plane, as previously observed in remark 2, the system turns out to be decoupled in terms of
the two components. The sloping plane is the first case in which the metric is not the identity
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(a) (b)

(c)

Figure 3.1: Three test surfaces
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Figure 3.2: Structure of the block matrix of the system for the each case.

matrix, but it is still constant on the whole surface. With a similar argument as in remark 2,
we can see that the system simplified to be decoupled in the components. Both these cases
do not present the extra matrices Mij and Bij , because the coefficients depend explicitly on
the derivative of the metric tensor. In these cases, we take a non-trivial and non-linear fixed
solutions ufix = [(x1)2, 0].

The case of the parabola is the first in which curvatures are considered. The system is no
longer a “classical” Laplacian in the two components, but the extra terms are present. The metric
is no longer constant and therefore the terms deriving from its derivatives are no longer zero
everywhere. In this case the calculation of the right-hand-side from a fixed solution is not trivial
anymore, and for this reason, we choose the simple solution ufix = [1, 0] to be the fixed solution.
The right-hand-side would contains all the terms coming from the geometric information of the
surface. Note that, the parabola case is still a domain where the the components are decoupled,
because the mixed terms in the derivative of the metric, i.e. ∂hi

∂sj = 0 with i ̸= j.

Remark 4. As first observed in remark 3, we expect the matrix of the system (4) to be a block
symmetric matrix. To this aim, fig. 3.2 represent the sparsity pattern of the system matrix for
the three considered surfaces, on a mesh with 4 × 4 nodes.

Finally, for time dependent case, we simplify the equation (2.14) by assuming B̃ = 0. Then:

∂tu − ∆Bu = 0 (3.13)

which is the well-known Heat Equation. In this case, there is only the diffusion term and we
show the diffusion of the numerical solution. For this purpose, we fix an initial solution and we
solve the equation in the time interval I = [0, 1], with a time step of ∆t = 0.1. For simplicity,
we consider a parabola case defined on a two-dimensional domain U = [−4, 4]2. We start from
an initial solution defined as:

ufix =

1 if
√

(x1)2 + (x2)2 ≤ ε

0 otherwise
(3.14)
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xnodes ynodes errL2sol ratio-errL2sol

10 10 1.57869e-02 -
20 20 3.93653e-03 4.0103
40 40 9.8348e-04 4.0026
80 80 2.45829e-04 4.0006
160 160 6.14547e-05 4.0001

Table 3.1: Flat case: L2 error norms for u and corresponding experimental convergence rates.

xnodes ynodes errL2sol ratio-errL2sol

10 10 1.57897e-02 -
20 20 3.96393e-03 4.0103
40 40 9.90324e-04 4.0026
80 80 2.4754e-04 4.0006
160 160 6.18823e-05 4.0001

Table 3.2: Slope case: L2 error norms for u and corresponding experimental convergence rates.

with a fixed value of ε. Now we are ready to show the results of the tests.

3.3.1 Flat case

We solve eq. (3.12) on the surface defined by the constant height function x3 = f(x1, x2) = 0,
in the domain U = [−1, 1]2 ⊂ R2. We consider the smooth solution ufix = [(x1)2, 0] and impose
the boundary condition u = ufix on ∂S. Figure 3.3 shows the numerical solution in norm, by
the color map, and direction by the arrows. We can qualitatively recognize that the behavior is
the one of the fixed solution, i.e., the vector field [1, 0] with magnitude (x1)2. To check numerical
convergence we consider a set of meshes and computer the error between the numerical solution
and the fixed one. We use a starting mesh with 10 nodes in both x1 and x2 directions, and
consider 4 level of refinements by doubling the number of nodes on each side. Table 3.1 reports
the L2-norm of the error between the exact and numerical solution on the different refinements
of the grid, and the experimental rate of convergence. We can see that we obtain a convergence
rate of order 4, as expected.

3.3.2 Slope case

We solveeq. (3.12) in the domain U = [−1, 1]2 ⊂ R2 with the height function x3 = f(x1, x2) =
−0.1 · (x1 − 1). We consider the smooth solution ufix = [(x1)2, 0] and impose the boundary
condition u = ufix on ∂S. Figure 3.4 shows the numerical solution in norm, by color map, and
direction by arrows. We can qualitatively recognize that the behavior is the one of the fixed
solution, i.e., the vector field [1, 0] with magnitude (x1)2. To check the numerical convergence
we consider a set of meshes and computer error between the numerical solution and the fixed
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Figure 3.3: Solution on the square domain in the Flat case.

Figure 3.4: Solution on the square domain in the Slope case.
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xnodes ynodes errL2sol ratio-errL2sol

10 10 2.22572e-03 -
20 20 5.75757e-04 3.8657
40 40 1.45248-e04 3.9639
80 80 3.63948e-05 3.9908
160 160 9.10391e-06 3.9977

Table 3.3: Parabola case: L2 error norms for u and corresponding experimental convergence
rates.

one. We use a starting mesh with 10 nodes in each x1 and x2 directions, and consider 4 level of
refinements by doubling the number of nodes on each side. Table 3.2 reports the L2-norm of the
error between the exact solution and the numerical solution on the different refinements of the
grid and the experimental rate of convergence. We can see that we obtain a convergence ratio of
order 4, as expected.

In particular, we note that the errors for each iteration are very similar to those obtained in
the case of the horizontal plane. This is due to the decoupling of the variable in the resolving
system. In fact, although the metric is no longer the identity, its contributions are simplified as
they are present in both members of the resolving system, obtain an analogous case to the flat
one.

3.3.3 Parabola case

We solve eq. (3.12) on the surface defined by the height function x3 = f(x1, x2) = (x1)2 on
the domain U = [−1, 1]2 ⊂ R2. We consider the smooth solution ufix = [1, 1] and impose the
boundary condition u = ufix on ∂S. Figure 3.5 shows the numerical solution in norm, by the
color map, and direction by the arrows. We can qualitatively recognize that the behavior is
the one of the fixed solution, i.e., the vector field [1, 1]. We use a starting mesh with 10 nodes
in both x1 and x2 directions, and consider 4 level of refinements by doubling the number of
nodes on each side. Table 3.3 reports the L2-norm of the error between the exact and numerical
solution on the different refinements of the grid, and the experimental rate of convergence. We
can see that we obtain a convergence rate of order 4, as expected.

3.3.4 Time dependent problem

We solve (3.13) on the surface defined by the height function x3 = f(x1, x2) = 0.1 · (x1)2,
on the domain U = [−4, 4]2 ⊂ R2. We consider the initial solution as defined in (3.14) with
ε = 1/50 and a mesh with 100 nodes for each edge. Figure 3.6 shows the evolution in time
of the magnitude of the solution vector u. We decided not to show the solution vector with
arrows due to the difficulty in the visualization. Qualitatively the diffusion is as expected: it is
faster along the x2-direction that in the x1-axis. Due to the surface parametrization, the metric
does not depends on x2, i.e. h2 = 1 and consequently its derivatives are zero. Whereas, in the
x1-direction the metric is not constant, and this affects the diffusion process.
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Figure 3.5: Solution on the square domain in the Parabola case. The arrow representing the
solution are tangent to the parabola, even though they seem like to "go out" of the surface, due
to a visualization problem.

Figure 3.6: Parabola case with time dependence: magnitude of the solution norm of the diffusion
of the Heat equation on the parabola surface at the initial time and time step t = 0.3, t = 0.6
and final time t = 1.
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3.4 Future work

The next step after what has been shown above will be to test the scheme on more general
surfaces, for example by considering the generalization of the parabola into a paraboloid and
later on more complicated surfaces. Once the theory and the applicability of the previously
defined scheme on general surfaces have been consolidated, the question of whether it is possible
to generalize this method not only to cases of vector Laplacians, but also to cases in which tensor
Laplacians are taken into account, will directly arise. In such a case, which is certainly really
hard, it will also be very interesting to understand the connection between the case of the vector
Laplacian and the tensor Laplacian.
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