
UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia “Galileo Galilei”

Master Degree in Physics of Data

Final Thesis

Study of a wearable IoT solution for personal safety

Internal advisor

Prof.Alberto Garfagnini

Internship supervisor Candidate

Dott. Francesco Vinelli Tommaso Tabarelli

Academic Year 2019/2020

Abstract

Recent advances to internet infrastructure have allowed an unprecedented expansion in the number
of devices connected to the network. Smartphones, tablets and computers are only some of the devices
that participate to the global network. Internet of Things (IoT) is a neologism which refers to the
extension of the Internet to common objects. A great deal of interesting applications have flourished
that take advantage of the possibilities offered by this expansion.

In this report, we document the process of studying and developing a wearable, integrated solution
which uses a wide range of sensors in order to monitor some environment parameters. The scope
of this device shall be detecting and alerting the user about nearby possible dangers; some use case
examples will be showed and some possible real simulation will be explained. Sensors can be applied
to different wearable elements (i.e., a vest, a smartwatch, gloves, a helmet). The gathered information
is transferred to a back-end system where a specialized analysis is carried out and potential actions to
safeguard user health are taken. Data and notifications are meant to be sent to a control room where
monitoring people are always ready to take appropriate actions. Some test data are analyzed to give
an idea of the potential information data can have; other series are generated to test the algorithm
functioning.

Contents

1 Introduction 3

1.1 The firm: PwC . 3
1.2 The exhibitions . 3

2 The project 5

3 Use Case analysis 7

3.1 Assumptions for Use Case . 7
3.2 Shared features . 7
3.3 Use Cases hypothesis . 8

3.3.1 Dinamic Virtual Wall and Group Notifications 8
3.3.2 Classified Man-Down and First Aid . 8

4 Sensor description and analysis 13

5 Data collection and management 17

5.1 Data collection . 17
5.1.1 Raspberry . 17
5.1.2 Smartwatch . 18
5.1.3 Data collection in real situations . 19

5.2 Data flow . 19
5.3 Notifications . 21
5.4 Data storing . 21
5.5 Data representation . 21
5.6 Data simulation . 21
5.7 Integration platform . 21

6 Data and algorithm analysis 25

6.1 Heart rate and sound values . 25
6.2 Altitude simulations . 26
6.3 Gas and Flames simulation . 26

7 Applications and possible improvements 35

8 Conclusions 37

CONTENTS CONTENTS

2

Chapter 1

Introduction

This project is developed by the Emerging technology team of PriceWaterhouse&Coopers for the
European Immersive Computing Summit (EICS) [2] and for Smart Production Solutions (SPS) [3]
exhibitions.

1.1 The firm: PwC

PriceWaterhouse & Coopers is among the world’s leading professional services networks. Relying
on offices located in 157 countries all around the world and counting more than 276000 employees,
PwC is a global network providing services in different professional areas: assurance, tax, advisory [1].
Founded in 1998 by the merger of Price Waterhouse and Coopers & Lybrand, PwC vaunts more than
one hundred and fifty years in professional services, since Samuel Lowell Price set up his business
in London in 1849 and William Cooper started his in 1854. Since then, their activities faced many
collaborations and mergers, growing and expanding their fields of activity, finally merging together.

Emerging technology is a new team built to face new challenges the contemporary business environ-
ments and innovations are requiring. In this perspective, PwC is financing IoT projects to show that
it can manage projects in this novel field, achieving good results. This purpose embrace the present
work, which is to be presented at EICS and SPS Italia exhibitions to show that PwC is innovating
itself and is ready to compete in the technology niche.

1.2 The exhibitions

European Immersive Computing Summit (EICS) is a European conference gathering entrepreneurial,
technical and creative minds to build the future and spread the word about their work. Its aim is
to gather the leading names in emerging technologies to participate to workshops, business meetings
and to share inspiring keynotes. Usually, there are practical case studies from corporate, agencies and
startups giving real examples on how to implement these new cutting-edge technologies into projects
and business. It represents an opportunity to get an overview on tech solutions in the field of man-
ufacturing, mobility & smart tourism, healthcare, architecture and design, art and entertainment,
retail. [2]

Smart Production Solutions (SPS) is a Italian exhibition devoted to smart, digital and flexible
industry. Since 2011, it is a key meeting to unearth and discuss the main themes involving the
industry of the future. Among SPS 2020 main topics there are additive manufacturing, artificial
intelligence, augmented reality (AR), automation, big data, blockchain, cyber security, digital twin,
green manufacturing, robotics, smart machines, and many others [3].

These two opportunities are key test benches for the firm to verify the impact of its projects and
the feasibility of its ambitions.

3

1.2. THE EXHIBITIONS CHAPTER 1. INTRODUCTION

4

Chapter 2

The project

The assigned project involves the development of a multi-sensor IoT solution for personal safety.
The main idea is to exploit a Raspberry module, a smartwatch, some smart glasses, which are small
enough to be integrated in a wearable suite without causing much encumbrance to the wearer. Many
sensors are applied to the wearable so that environment information, such as temperature and presence
of gas leaks, can be detected and gathered. Data collected from different sensors is sent to remote
server in distinct ways, depending on the sensors it comes from. At server level data can be stored
and better elaborated than at local level.

The scope of the work is to show that in principle it is possible to build a compact wearable
solution using different kind of sensors and items, including smartwatch, smart glasses; furthermore,
there is the possibility to include new sensors in future. The resulting object is integrated with a
back-end system and with the human intervention (e.g.: remote human assistance for in-loco first
aid interventions). It should be able to detect risks, to send alerts and to help protecting people
safety from the possible dangers they face during their work routine or in special situations, such as
accidents involving people. The back-end system collects and elaborate the information, sending back
notifications to user devices when they finds themselves in a dangerous state or sending notifications
to nearer users in order to make them help people facing troubles.

The main points of the project development involve:

❼ Use case analysis and possible simulations

❼ sensor description and analysis

❼ data collection and data management

❼ data simulations and algorithm analysis

❼ application ideas and possible improvements

My tasks in this project were to verify the Raspberry module configuration, to check sensors
functioning, to understand how they collect the data and how they interact with the Raspberry
module, to write a program to collect data from different sources simultaneously (example scripts are
given, but they use only one or two modules at a time; for this project, many of them are needed at
the same time). Furthermore, to better realize my assignment, an understanding of the whole system
was needed. Finally, some simulation were made and analyzed to test the back-end algorithm.

5

CHAPTER 2. THE PROJECT

6

Chapter 3

Use Case analysis

In this chapter main Use Cases will be analyzed and many possible applications of the wearable
solution will be discussed.

3.1 Assumptions for Use Case

Chosen field sensors may not give accurate parameters estimations (such as exact temperature or
exact gas density). Rather, they are expected to measure the parameters basing on arbitrary but
reasonable thresholds which can be used to detect dangers. Taking as an example the temperature
parameter, the main goal is not to detect the exact temperature but rather to notice if the it is larger
than about 35 ➦C (example value) to make the system able to notify if the user from which the measure
came from is in a possible danger situation. In other words, the scope of this work is to qualitatively
detect dangers, not to quantify them; in a sense, they are already quantified and considered risky
when the measure threshold is exceeded. For this reason, sometimes the exact method of sensor data
transformation into a number is not explained (some information lack also on the vendor guides and
websites, so they must be looked for in external sources).

For similar reasons, data from the Smartwatch sensors (accelerometer, gyroscope, altitude, heart
rate) is taken as is, since for some of them it is not possible to know the exact way they work.

Some users can be provided cutting edge technology items, including smartphones, augmented

reality viewers, smart glasses. A data integration platform supports the whole system collecting
information coming from the different sources (environment sensors, smartwatch sensors) and making
them homogeneous.

Flux of information will be bidirectional between users and the platform: first step is data collection
from sensors; after having elaborated them, if necessary, notification can be sent to user devices.
Following IoT paradigm, signal administration logic will be implemented to collect data regardless
the type of sensor they come from. Those records will be exploited to remotely manage people in the
work area.

3.2 Shared features

Basically every user can be notified by a smartphone or via different kind of notifications depending
on the equipment the person is bringing. If a user has a smartwatch, the notification can be shown
also on it. Furthermore, if a user is wearing smart glasses, a overlay visual notice can be shown on
them.

User can test various kinds of notifications related to different scenarios. A variety of distinct events
can be simulated to test data collection from sensors and its elaboration. In particular, acquired data
will be related to:

❼ Environmental information

– gas leak monitoring

7

3.3. USE CASES HYPOTHESIS CHAPTER 3. USE CASE ANALYSIS

– flames and fires detection

– excessive noise detection

❼ Indoor and outdoor location

❼ life parameters real time monitoring

This kinds of Use Case are at the foundation of the interactions and the realization of an immersive
experience, aiming to recover absent-minded workers. In the following, many Use Cases are proposed
to show how effectively the presented system can lead to relevant and actual improvements during
dangers handling, but also in space and people management.

3.3 Use Cases hypothesis

3.3.1 Dinamic Virtual Wall and Group Notifications

In this context many access management situations involving the admission to physical work spaces
in alert circumstances and in standard conditions are explained. The goal is to show how, making
use of latest IoT and AR software and solutions, it is possible to avoid personnel overlaps, to prevent
non-authorized accesses, to handle complex situations as emergencies and accidents, having a global
vision about every business process from a single control center. The users will be real-time instructed
on how and where to move in work area basing on the actual circumstances. It is assumed personnel
diversification based on roles and competence. Every person belonging to different groups will be
instructed on what actions they may or may not do.

Simulation Users will be asked to move in a work space (previously divided in different sections,
which are classified in different types). When someone is found going to a zone he might not approach,
notifications to not proceed will be sent to that user to advise him he can not access that area.
Notifications type can change also basing on the devices the user is wearing/using (e.g.: visible feedback
on smart glasses). First kind of simulation is based on a virtual wall delimiting the space a user can
access basing on the permission that person has (Figure 3.1). Then more complex simulations can be
done, involving fires or flooding situations.

Example: fire During a fire event there are two main responses to act: the first is leading the users
to safe zones and the second is to take care they arrive to safe zones without choosing the wrong path.
To achieve this scopes, smartwatches will be used, eventually combining them with the other objects
the users have (smartphone, smart glasses, tablet). From a real environment, a fire event will be
simulated, enlightening how smart management of people in the environments can simplify gathering
processes towards safe zones, thus lowering the dispersion of users on the way of chaotic environments.
Users movements will be easier due to the items they are equipped with and they will not be asked
to take decisions basing on their instinct, avoiding fire environments thanks to the feedbacks they
receive. At the same time, those who are qualified to approach the novel fire will be notified about
the nearest means they can use. In this case, walls will be used as beacon for the fire environment to
make people reach it faster; these notifications can be combined with those on the other objects.

3.3.2 Classified Man-Down and First Aid

In this case the focus is put on personal safety and accidents management on workplace, called
”man down” events; these have to be handled basing on the different circumstances which originate
them. The goal is to show the possibility of timely intervention in case of injury, exploiting AR
solutions, IoT paradigm, smart objects. It is assumed peronnel diversification basing on roles and
competence, with particular focus on first aid abilities. Based on this information, on people position
and relating on the man down user location everyone will be call to act in the proper moment, helped
by remote assistance.

8

CHAPTER 3. USE CASE ANALYSIS 3.3. USE CASES HYPOTHESIS

(a)

(b)

Figure 3.1: Figures show an example of virtual wall application: when an user with smart glasses can not entry
a specific zone, it will be displayed on them (the figures give only an idea of how this can be achieved); when
the user approach the entrance, its access is actually denied. Besides visual notification on glasses, people will
be notified also via their smartwatch (if they are wearing one) and their phones.

9

3.3. USE CASES HYPOTHESIS CHAPTER 3. USE CASE ANALYSIS

Simulation This simulation needs two or more users to be performed. One users will be the man

down person, while the others will embody those who will provide first aid to the injured person. If
more than two users will participate, it is possible to choose the best person who can provide first aid
basing on the position and the competences. That user will be the chosen one to be notified. The
first user will only simulate the man down event and wait for help while the others will be assisted in
providing first aid via information given by specialized personnel which can not be there immediately.
Different events will be tested to show that the man down alert works properly and that different
event classification is possible. Sensors will provide data to a platform that will select which type of
event happened (it can be an injury, a fall, a sickness), helping distinguishing the different kind of
emergencies, thus allowing the proper choice of personnel to handle the situation. Once the selected
user reaches the man down one, he will be helped via tablet, smartphone or smartglasses by being
shown interacting visual information on first aid procedure to act.

Example: injured user with visible wound A possible scenario involves a man down with a
visible wound and a possible bleeding. In this situation the chosen user firstly will receive the proper
alert notification, including the kind of man down event; after this, he would reach the other user and
there, using either tablet, smartphone or smart glasses, connect with remote specialist to show the
injury and to be helped providing first aid.

10

CHAPTER 3. USE CASE ANALYSIS 3.3. USE CASES HYPOTHESIS

(a) (b)

(c) (d)

Figure 3.2: Example of a possible man down scenario. In these scenes, a user is having an accindent (a-b)
and another busy one is near but did not notice it. The wearable solution sends data to the platform to be
elaborated; it generates a man down event, which is sent to the control room (c). From there, specialized people
can be alerted and notifications can be sent to nearby users (d) so that they can assist the injured one (if they
are able to do so) until the proper personnel arrive there.

11

3.3. USE CASES HYPOTHESIS CHAPTER 3. USE CASE ANALYSIS

12

Chapter 4

Sensor description and analysis

As mentioned before, for this project many different sensors are going to be used. Some of them,
such as temperature and gas sensors, come from Sensor Kit V2.0 for Raspberry Pi B+ [4]. Others,
such as BPM detector and accelerometer, are related to Smartwatch and are integrated in it [5].

In our case the sensors which we are using are the following:

Temperature sensor: Temperature sensor used in this project is a thermal resistor. It is made
of semiconductor materials; most thermistors are negative temperature coefficient (NTC) ones, the
resistance of which decreases with rising temperature. This effect is due to the increasing number of
free charges in the semiconductor thanks to increasing temperature. Since their resistance changes
acutely with temperature variations, thermistors are the most sensitive temperature sensors; the
precision of NTC thermistors can be up to 0.01 ❽ (depending on the material and how they are built)
and the time constant can be less than 10s. A first approximation for their behaviour is ∆R = k∆T ,
with k < 0 (NTC), which means that a variation in temperature (∆T) makes an opposite change in
resistance (∆R). [6]

More precisely, in this specific case the relation between temperature and resistance can be ap-
proximated as follow

R(T) = R0 · e
B[1/(T+273)−1/(T0+273)]

where R(T) is the resistance measured at temperature T (in Celsius), R0 is the resistance measured
at temperature T0 = 25 ➦C and B is a coefficient given by the constructor. [7] [8]

This module measures the potential of the thermoresistor with respect to the conventional ground
level [7] and then sends it as an analog output which is collected by a Analog/Digital (A/D) converter.
It stores the value in its memory and let Raspberry module to go and read it. The code used to collect
data converts the analog values into proper temperature values, thus enabling the visualization in a
common unit of measure: K, ➦C, or ➦F.

Figure 4.1: Thermistor module

13

CHAPTER 4. SENSOR DESCRIPTION AND ANALYSIS

Sound sensor: The sound sensor is a component that receives sound waves and converts them into
electrical signal. It has a build-in capacitively electret microphone that is sensitive to sound. The
electret microphone vibrates with the acoustic wave resulting in the change of capacitance and of the
subsequent micro voltage. This voltage is amplified by a operational amplifier and then sent as analog
signal to an A/D converter [9] [10]. Due to the way it is built, in this case it is not possible to have
a direct conversion of the analog value since it is hard to establish a relation between the sound and
the signal due to the membrane vibration.

Figure 4.2: Sound sensor module

Gas sensor: The MQ-2 Gas Sensor is a sensor for flammable gas and smoke. It detects the concen-
tration of combustible gas in the air, in particular it is able to recognize liquid petroleum gas (LPG),
alcohol, propane, hydrogen, CO and even methane. This kind of sensor is used in gas detecting
equipment for smoke and flammable gasses in household, industry or automobile [12].

MQ-2 gas sensor is a kind of surface ion type and N-type semiconductors, which uses tin oxide
semiconductor gas sensitive material. It requires a pre-heating period of about two minutes. Tin
oxide will adsorb oxygen in the air and form oxygen anion adsorption to decrease electron density in
semiconductor so as to increase its resistance. When in contact with the smoke, if grain boundary
barrier is modulated by the smoke and changed, it could cause surface conductivity change. In this
way, information on the smoke existance can be gained. The higher the smoke concentration is, the
more conductive the material becomes, thus the lower the output resistance is, resulting in a higher
voltage registered (reflected by a higher analog value). [11]

This gas sensor has both analog and digital outputs. The digital output triggers when a certain gas
concentration threshold is passed; it can be tuned via the potentiometer included in the module. The
analog output can be sent to A/D converter to be read. The measuments corresponds to the voltage
of the surface in arbitrary units. It can be calibrated to get approximately the gas concentration (this
passage is not accomplished in this work). [13]

Figure 4.3: Gas Sensor MQ-2 module

14

CHAPTER 4. SENSOR DESCRIPTION AND ANALYSIS

Flame sensor: A flame sensor performs detection by capturing infrared photons with specific wave-
lengths from flame. It can be used to detect and warn of flames. There are several types of flame
sensors. In our case, a far-infrared flame sensor is used. It can detect infrared photons with wavelength
ranging from 700nm to 1000nm. A far-infrared flame probe converts the strength changes of external
infrared light into current changes. It also converts analog quantities into digital ones. This sensor has
both analog and digital output as well. Analog values are sent to the A/D converter. Digital output
sensitiveness can be tuned by the potentiometer on the module. [14] [15]

Figure 4.4: Flame sensor

Smartwatch: a smartwatch has its own integrated sensors, which comprise accelerometer, barome-
ter, gyro sensor, HR sensor, light sensor. [5]

The heart rate sensor measures heart rate in Beats per Minute using an optical LED light source
and an LED light sensor. The light shines through the skin, and the amount of light that reflects back
is measured. The light reflections will vary as blood pulses under skin past the light. Variations in
the light reflections are interpreted as heartbeats. The sensor is located in the device back. [16]

Figure 4.5: Smartwatch (front and back view).

15

CHAPTER 4. SENSOR DESCRIPTION AND ANALYSIS

16

Chapter 5

Data collection and management

In this chapter data collection and management is described. Particular focus will be placed on:

❼ Data collection and elaboration

❼ Data flow

❼ Notifications

❼ Data historicization

❼ Data representation

❼ Data simulation

❼ Integration platform

Every step in this process is achieved through different applications and stages. Data is collected
by the sensors, sent to a server and processed. It can be accessed via a dashboard to monitor real
time values.

5.1 Data collection

A data collection process depends on the device data is obtained from. Raspberry and Smartwatch
collect and send data in different ways. According to IoT paradigm, they both send data to a central-
ized elaboration unit via Wifi, LTE or Bluetooth. In this project the focus is on how the Raspberry
works and how data collection is implemented. Smartwatch data gathering is mainly automatized and
implemented by third party partner company, so it will be described briefly.

5.1.1 Raspberry

Configuration After having downloaded and installed the RASPBIAN operating system on a Mi-
croSD, it was configured following the steps of guide [20], (pp. 14 to 21 of the PDF document). To
access the device via a desktop, the VNC Service was enabled, following instruction of the aforemen-
tioned guide (pp. 30 to 34 of PDF document). Libraries to interact with the hardware were installed
as shown in Appendix A.

Software-hardware interaction To collect data from the sensors connected to the Raspberry,
Python and C scripts can be used. Some examples and code can be downloaded from the SunFounder
web page [24]. Python scripts were chosen for their syntax simplicity. An initial analysis was carried
out to understand the example scripts and how the sensors interact with the raspberry. As a result, a
script collecting data from multiple sensors at the same time was implemented. Sensors used for data
collection are: temperature sensor (thermistor), sound sensor, gas sensor, flame sensor.

17

5.1. DATA COLLECTION CHAPTER 5. DATA COLLECTION AND MANAGEMENT

Sensors-Raspberry interaction The Raspberry module collects data from the sensors connected
to it. As described before, there are different sensors that collect distinct environment data. They
communicate with Raspberry module in two main ways:

❼ directly, as Boolean signals (high-low), connecting to Raspberry pins;

❼ via an A/D converter, which stores the data in its registers and then is used as a slave by the
raspberry module in a ip-bus framework

The A/D converter is a PCF8591 module. It has four analog inputs, one analog output and a
serial I2C-bus interface. Address, control and data to and from the device are transferred serially via
the two-line bidirectional I2C-bus. [17]

Figure 5.1: PCF8591 8-bit A/D and D/A converter Module.

Different modules are connected to different A/D channels of the PCF8591 converter and send
their information to it. Raspberry reads the converter’s registers to collect the data (to read the
registers, a proper Python library is used; it can be found on the vendor’s web page, together with
the code examples). The code for the data collection can be found in the Appendix B.

Every sensor was tested in order to prove it can detect proper environment information and the
results are reported in Appendix C. As explained before, the analog data unit of measure are
arbitrary since is not always possible to convert them from stored analog value to a proper number
describing something specific (e.g. gas density). For the flame sensor a lighter was ignited in front
of it and moved to different distances. Changes in the value registered by the sensor correspond to
different distances of the flame with respect to the sensor (the relation is inversely proportional due
to the way sensor is build). For the temperature sensor, it was left on a surface for a while, then
kept in contact with a hand: the temperature grew quickly when touching it and decreased back when
the hand was taken away. For MQ-2 gas sensor a lighter was used to release some gas nearby it
(without igniting it): detected value increased as the gas density increased and went back to previous
plateau value when gas was blowed away. For what concern sound sensor, some noise was made to
test if it could catch it. Since the way it detects the membrane vibration are instantaneous, sometimes
its status is registered as ”normal” (no noise) also if actually some noise was made (this can be to the
fact that in the exact instant the measure was taken, the sensor was not vibrating that much). This
was not considered an important issue because in the case there would be an unbearable noise, the
module would detect it anyway.

5.1.2 Smartwatch

Smartwatch data is sent to a third-party platform. Its task is to gather data from the accelerometer,
altitude and HR sensors [18]. In this platform an algorithm takes care of carrying out a first analysis
to look for correlations in the data via a man down events detection patterns. These kind of events
can be represented by a user feeling sick (e.g. lying on the ground for a long time and/or having
very low or very high heart rate), stopping for a long time (using GPS sensors), falling from a serious
height (using altitude and accelerometer sensors), suffering dangerous impacts. In all of these cases,
the algorithm recognizes if the user can be in a dangerous situation and it sends a predefined type of
data and notifications to the integration platform.

18

CHAPTER 5. DATA COLLECTION AND MANAGEMENT 5.2. DATA FLOW

Figure 5.2: From left to right and from top to bottom: PCF8591 module, thermistor module, sound sensor
module, gas sensor module, flame sensor module.

5.1.3 Data collection in real situations

It is clearny not possible to collect data about real fires, gas leaks or dangerous accident imple-
menting simulations involving human beings. This kind of test can be made placing the sensors on a
small movable object or simply placing them near a real restrained danger (e.g. a controlled gas leak
or fire); a dummy can be used to make some man down tests which mimic dangerous accelerations
or falling from high places. These tests should be done not only to check the sensors functioning but
also to check that they can be used in real life scenarios and that the whole system concerning data
collection and integration works well.

5.2 Data flow

Data is meant to be sent to an integration platform whose task is to correlate the data and to
eventually send notifications about possible dangerous situations to the dashboard, which should be
kept under observation in a control room. This platform is a server which task consist in gathering
information from all sources; it collects and elaborate raspberry data, while it only collects smartwatch
data coming from the third-party platform and not directly from the smartwatch. (Figure 5.3).

To transfer data from the raspberry module to the platform a Node-RED [25] flow is used
(Figure5.4). It brings data from the file generated by the Python script and insert the different
sensors values in a JSON formatted message; this format was chosen because it is a standard format
and can be easily parsed by most software. The created message is sent to the integration platform. In
Appendix D the code of the transformToJSONFormat node is reported, showing the logic to collect
the data and generate a message containing all information the integration platform needs to identify
the message, such as the device which is sending them, the position, etc.

19

5.2. DATA FLOW CHAPTER 5. DATA COLLECTION AND MANAGEMENT

Figure 5.3: Schema of the different section of the whole architecture. Smartwatch sends data to a third party
platform that elaborates it and send proper messages to the integration platform. Sensors collect data and
communicate with the raspberry module; after a brief analysis, it sends the data to the integration platform.
The integration platform takes care of storing data and performing deeper analysis on it. It communicates with
the real time dashboard and with the smart objects the user may has, such as smart glasses and a mobile device.

Figure 5.4: Figure shows Node-Red flow to collect data from file generated by python script (conventionally
called ”test.txt”). Data is sent to a debug node and to the integration platform via web socket packages.

20

CHAPTER 5. DATA COLLECTION AND MANAGEMENT 5.3. NOTIFICATIONS

5.3 Notifications

Integration platform verify if the (raspberry) data have anomalous values. In case of dangerous
values (e.g. density of flammable gas is too high or in case of fire detection) it generates and send
notifications to the dashboard and to users which are facing the risk.

In case of a man-down event, the integration platform takes care of sending the notification to the
nearest proper user, if any (e.g. to nearest first aid qualified users).

5.4 Data storing

Data collected by the integration platform is saved into a database for further analysis. In this
scenario, an algorithm reads and elaborate the data in order to verify anomalous situations which are
not instantaneously detectable; e.g. when a user is laying down for a long time interval (gyroscope
and altitude data), without moving (accelerometer data) and maybe a user is having some health
problems (irregular pattern in heart rate detection).

In all the aforementioned cases, a notification is generated by the integration platform basing on
the event that occurred.

Figure 5.5: Figure shows the database in which data are stored. A query example is operated and a piece of
data is shown completely. It can be noticed the JSON format used to send and store the data.

5.5 Data representation

As explained before, data can be used to monitor the state of the users by some Security personnel.
For this purpose, a dashboard has been developed (Figure 5.6). It allows the real time monitoring of
the positions and the main parameters of the users, besides the visualization of recent past data via
some graphs. This way it can be used by people in a control room to monitor the users and eventually
manage emergencies faster.

5.6 Data simulation

As already mentioned, it is very hard to collect data from real situations as those aforementioned.
To test integration platform, data collection, data historicization and notification dispatching, data in
non-danger situations were collected and some simulations were made in order to generate data for
more risky events; plausible data were generated via Node-red flows. It is then formatted via some
functions and routed to the typical data flow concerning data historicization and elaboration.

5.7 Integration platform

The integration platform is the most important component of the system. Its task is to collect
data from all sources and elaborate them to eventually send notifications to the control room and to

21

5.7. INTEGRATION PLATFORM CHAPTER 5. DATA COLLECTION AND MANAGEMENT

Figure 5.6: Figure shows a prototype of the dashboard. As mentioned, it can shows real time parameters as
well as graphics showing data in a selected interval of time. In this example, smartwatch test data is loaded
from database.

users. To test it, some situations were performed and some other simulation data concerning more
dangerous events were generated.

Data from all possible sources is generated via the data receiver tab (Figure 5.7a), then it is sent
to three different stages. The first stage involves data storage (Figure 5.7b); here data is sent to a
database to be registered and be accessible for deeper analysis. Second step involves data analysis
(Figure 5.7c): here some first correlations are checked analyzing if data about flammable gas and
flames are both present in a short period of time or if there is a man-down event and a high variation
in altitude sensor measures. Both this events imply a more dangerous situation with respect to that
represented by those signals alone. In these cases, more serious event are generated and sent both to
database and to final stage integration platform. The third stage represents the core of the integration
platform (Figure 5.7d), collecting data from all sources and sending back notifications to dashboard
and to the user. The last tab is a simulation of queries sent to the database to retrieve data (Figure
5.7e); data storing is important because it allows to look for special situations that are characterized
by time dependent events, such as the falling from a high linked to a man-down event, which can not
be spotted by instantaneous data.

22

CHAPTER 5. DATA COLLECTION AND MANAGEMENT 5.7. INTEGRATION PLATFORM

(a)

(b) (c)

(d) (e)

Figure 5.7: Figures show the integration platform flows, based on Node-red. The first one (a) shows the tab in
which data is collected from real sensors and eventually generated. A node is expanded to show how the code
is structured; every other node has a similar structure. The others shows respectively the tabs in which data
is sent to the database (b), where data is elaborated looking for correlations (c), where event and notification
management is carried out (d) and finally the tab in which some example queries are generated to test the
database response.

23

5.7. INTEGRATION PLATFORM CHAPTER 5. DATA COLLECTION AND MANAGEMENT

24

Chapter 6

Data and algorithm analysis

Data from real scenarios simulations and generated data was collected and analyzed. Simulated
data was built ad-hoc trying to best simulate real scenarios to check algorithm responses.

This data was used to test a first version of the algorithm to check if it can detect most obvious
evidence of dangers and to see if it can distinguish a probable accident with respect to a sensors
malfunction.

At a first glance, data that can be correlated and which are easier to collect or simulate are:

❼ Heart rate and sound values

❼ difference in altitude

❼ Presence of both flames and gas in a short period of time

All these kind of relations can be evidence of some particular event that can turn out to be serious.
All of them should be captured as soon as possible. For this purpose, a balance is needed between data
collection frequency (that can arrive to arbitrary frequencies, e.g. 10 times per second), the network
usage of every device (if every device is always sending data, the network may not be able to handle
much traffic), the storage capability of the system (collecting much data implies higher memory usage,
which can have a cost and can impact the time during which data is retrievable). Simulations were
done using only one device; however to have a realistic analysis, data was chosen to be collected every
ten seconds, thus allowing a more realistic scenario.

6.1 Heart rate and sound values

A first analysis was carried out using data coming from easier to simulate events. They comprise
common situations, which involves less risk for the user but which are nevertheless useful to the inte-
gration platform to detect possible dangers for the human being, especially if they are not immediate
and their consequences raise due to a prolonged exposure. To begin with, heart rate and sound data
were collected. For this goal, a ten minute simulation was made; some noise was produced at times
(hitting the table and speaking loud) near a user wearing the sensors; in that period, both sound
and heartbeat measures were recorded. All the other parameters were kept as constant as possible;
the user was kept in the same room (so the temperature was considered constant and not taken into
account), he was sat and thus he could be considered at rest; no flame nor gasses were present in the
room. Results are reported in (Figure 6.1 and 6.2).

Comparing the results (Figure 6.3), highlighting the periods in which there is more noise, there
seems to be a correlation between the presence of noise and the increased heart rate. To try to give
en estimation of it, conventionally we assigned values ”0” for a quiet situation and ”1” for noise.

Evaluating the correlation coefficient between the series, using the formula rxy =
∑

i
((xi−x̄)·(yi−ȳ))

√
((
∑

i
xi−x̄)2)·(

∑
i
yi−ȳ)2

,

the values obtained are reported in Table 6.1.

These values indicates poor correlation between the noise and the heart beat ratio in the two
samples, but nevertheless it seems that there is a considerable influence. With a better insight on the

25

6.2. ALTITUDE SIMULATIONS CHAPTER 6. DATA AND ALGORITHM ANALYSIS

First sample Second sample

r 0.500 0.557

Table 6.1

cases, there are many factors that can lead to uncertainty about this preliminary result. First, we
must take into consideration the fact that the values of noise are only boolean ones: this fact can lead
to a less rich noise sample, constraining the measures with respect to a threshold and leading to poor
results. The threshold itself can be tuned (in the two data acquisitions the sound sensor was used
without modifying the threshold value), thus leading to slightly different results. Even if the most of
the distractions were removed while taking measures, the heart rate can be influenced also by other
factors, such as the some unexpected event, some shock, how relaxed the user is, or the thoughts that
come to his mind.

To improve this kind of measure, the data can be collected in a more controlled situation or even
better, in real situations while testing the solution on real users during their activity, even if in that
case there will be more factors participating and influencing each other, such as physical effort (due
to work), noise, temperature, stress. Furthermore, the sensor can be changed using one that can take
a proper sound measure in db instead of measuring a threshold for noise.

Finally, even if this type of correlation seems quite obvious, in some studies doubts are expressed
about it [27].

This kind of analysis is carried out because it can be valuable as first step to study the time a user
is exposed to noise during a workday and the effects this has on his health [27].

6.2 Altitude simulations

To test the integration platform algorithm detecting altitude anomalies some data simulations
were built ad-hoc. The main goal of the algorithm is to detect if there are some serious variations in
the altitude value: in particular, these differences should be smaller than 0, thus indicating a possible
fall; they should be of a consistent magnitude, otherwise also a user getting down to lie his shoes
would be detected as a particular event, the altitude being measured by a smartwatch; they should be
”instantaneous”, they should not persist in time since this situation can be a signal that someone is,
for example, going downstairs. In simulations, values are stored every 10 seconds. Three simulations
were made in order to try different scenarios: in the first one (Figure 6.4), a user going upstairs is
simulated, adding about 3m to the baseline value in 10 seconds; in the second one (Figure 6.5), a
possible fall event is simulated, involving a decrease in altitude of about 3 meters in two successive
points of the series (thus in less than 10 seconds); in the third one (Figure 6.6), a user going downstairs
two floors is simulated, making the changes in the measures lasts for longer. If the algorithm spots an
anomaly in the altitude values, it looks for the presence of man down events sent by the third party
platform to the integration platform and regarding the same user. If it finds one, they are treated as
a confirmation of each other and a more serious notification is sent to the dashboard. If there are no
man down events, the algorithm goes on and waits for latest data.

In the following, data simulations and their results in the form of graphical representations are
showed; if the algorithm did not trigger, nothing but the altitude records are shown in the figure.

6.3 Gas and Flames simulation

For gas and flame data some simulations were made in order to verify the correct functioning of
the algorithm. When a gas or flame event is detected, the algorithm looks for other events of the other
to eventually notify that there are two dangers which can possibly combine to give a more serious one.
To simulate them, some random events were simulated in a 10 minutes period. When the algorithm
goes through the series, it checks the events in the following way:

❼ if a flame event is detected, gas events since the previous 30 seconds are also checked;

26

CHAPTER 6. DATA AND ALGORITHM ANALYSIS 6.3. GAS AND FLAMES SIMULATION

❼ if a gas event is detected, flame events since the previous 10 seconds are also checked.

This difference in the verification are due to the different nature of the considered dangers: gas is
more prone to stay in a zone when is detected, while if flame detection stops, than probably there are
no more flame in the area, but a check is made anyway on the previous period.

Simulations results are reported below. In the figures, events ”tails” represent the time windows in
which the algorithm looks for the events of the other kind. In the first simulation no event combinations
were found. In the second one, two events occurred simultaneously and the algorithm responded well,
generating a more important notification and sending it to the dashboard.

27

6.3. GAS AND FLAMES SIMULATION CHAPTER 6. DATA AND ALGORITHM ANALYSIS

(a)

(b)

Figure 6.1: Figures show data collected in a 10 minutes period for noise sensor and heart rate. Figure (a)
shows heart beat measures with respect to time, while figure (b) shows the values displayed by the sound sensor
(remember the sound sensor used claims there is noise evaluating if its signals exeed a threshold).

28

CHAPTER 6. DATA AND ALGORITHM ANALYSIS 6.3. GAS AND FLAMES SIMULATION

(a)

(b)

Figure 6.2: These figures show other data for noise sensor and heart rate. Figure (a) shows heart beat measures
with respect to time, while figure (b) shows the values displayed by the sound sensor.

29

6.3. GAS AND FLAMES SIMULATION CHAPTER 6. DATA AND ALGORITHM ANALYSIS

(a)

Figure 6.3: Figures show time comparison between sound sensor data and heart rate data. Areas in which the
sound is detected are highlighted to have a clearer comparison. The two series actually seem to be correlated;
when there is noise, the user’s heart rate seem to be higher.

30

CHAPTER 6. DATA AND ALGORITHM ANALYSIS 6.3. GAS AND FLAMES SIMULATION

Figure 6.4: Figure shows a simulation of altitude measure of a man going upstairs. In this case the algorithm
should not detect dangers (and indeed it does not) because there is no clue of a dangerous situation.

Figure 6.5: Figure shows second kind of simulation in which there is a possible fall event. In this case, the
integration platform algorithm checks for man down events notification from the third-party platform; if the
check is successful, a more serious notification is sent to the dashboard and thus to the control room.

31

6.3. GAS AND FLAMES SIMULATION CHAPTER 6. DATA AND ALGORITHM ANALYSIS

Figure 6.6: Figure shows a case that can be interpreted as a user going downstairs. While analyzing the data,
the algorithm recognize that there is the possibility of an accident and starts checking for man down events; in
the successive step, it recognizes that probably there is no serious danger and it keep going on.

Figure 6.7: Figure shows the data of a simulation of gas and flame sensors. In this case there are no combined
events and the tails never include a signal of the other kind.

32

CHAPTER 6. DATA AND ALGORITHM ANALYSIS 6.3. GAS AND FLAMES SIMULATION

Figure 6.8: Figure shows another simulation of gas and flame sensors data. In this case there is a simultaneous
detection and the algorithm prompts a notification about it.

33

6.3. GAS AND FLAMES SIMULATION CHAPTER 6. DATA AND ALGORITHM ANALYSIS

34

Chapter 7

Applications and possible
improvements

As for now, possible uses of the solution can include jobs involving working in an environment
with presence of flammable gas, dangerous heights, moving machines, restricted areas. Furthermore,
the described solution has to be organized and implemented in a fixed environment (e.g. a factory), in
which work space, rooms, people roles and accesses are studied and integrated with the software (e.g.
to control accesses to different areas or to lead people to nearest exit in case of danger). Moreover,
a control room should be present with personnel that can control and help out with emergency
resolutions. For these reasons, the application of this kind of solution is most useful when working
in large environments with many people and where dangers can spread very easily (e.g. a gas plant
or a factory handling flammable gas); in these cases the studied solution can spot dangers, notify all
present users about them and it can manage the proper actions for everyone, including guiding people
towards nearest exit in a ordered way, helping firefighter users to handle the beginning of fires, leading
first aid people to assist injured users.

In other different cases the application of the wearable solution can have less positive impact; e.g.
in case of a small working environment which usually present a small number of people, chaos handling
is less important since the risk of causing chaos during crisis is lower; emergency exits are easier to
find and danger situation in general are easier to handle; in case of slow-spreading dangers, traditional
safety systems can be used and workers can be advised via the standard alert methods.

As mentioned before, another unfavorable point is that the system should be integrated in the
proper scenario where people act; going outside the predefined zones implies that the system is not
able to act properly. The connection can be lost and so data are not received nor sent to user; notifi-
cations becomes useless since the outside places are not registered to the software (e.g. those involving
emergency exits and access control). A way the other features of the wearable (detection of man-down

events, presence of flames or flammable gasses) can be exploited everywhere involves the use of SIM
cards in Raspberry module and Smartwatch, thus enabling them to send and receive data from all
areas covered by an internet connection.

Looking for future improvements, presented solution can be updated to be applicable in more
different scenarios.

For example, in case of heavy smoke it becomes very hard to see also the nearest objects; in a
scenario where a firefighter team is called for a fire event involving people trapped or lost in a building,
if they are able to enter and look for them, rescue procedure may be difficult due to scarce vision. A
possible solution can be to integrate an ultrasonic sensor which acts like a radar in the wearable. It
can be both integrated with the Raspberry or stand-alone. The crucial point is it sends information
to a server (it can also be a mobile center that can be installed on the firefighter truck to be always
available) which then transmits it to the smart-glasses of the team (supposing they wear them). This
way they can move in the building despite heavy smoke situation and are able to better help the
people in trouble.

Another possible improvement involves the usage of a camera and/or an infra-red (IR) camera.

35

CHAPTER 7. APPLICATIONS AND POSSIBLE IMPROVEMENTS

They can be integrated with the Raspberry module and they can be enabled if necessary; for example,
in a man down case where there are no room cameras near the intervention scenario, a camera on
the wearable can be enabled to send visual information about the trauma and the positioning of the
injured user. The IR camera instead can be exploited (with the help of smart glasses or a visor) in case
the lights go out or if users have to move in a dark surroundings. It can also be useful in particular
situations such as finding out possible gas leaks using visual images.

Other possible improvements involving the augmented reality related to the smart glasses are the
possibility to save every-day backup of the rooms shapes and objects positioning; these can be used
when, for example, some thieves enter in the workplace and steal some valuable items. Helped by the
backup and augmented reality, an employee could quickly notice what is missing. Another example of
application, when doable, is to use this backups in case of a disaster and subsequent building collapse;
that backup, along with GPS information and details about people roles and positioning, can help
rescuing trapped users much faster.

36

Chapter 8

Conclusions

This work presented a possible implementation of a wearable solution for personal safety. Use

cases in which it would be useful were studied, highlighting how this work can help in handling
special situations, e.g. access control and possible injuries detected by integration-platform algorithm,
combined with the messages coming from the third-party platform.

Hardware and sensors were selected basing on the possible applications of the solution trying to
include the detection for most common and dangerous risks, such as the presence of gas leaks, that
are usually hardly perceivable by human beings. A scope of this work was to study the Raspberry
module and its way to collect data from sensors. The interaction between hardware and software
was analyzed; sensors were successfully tested to collect data. Thanks to this, a program collecting
information from multiple sensors was written, enabling the Raspberry module to gather different
environmental data simultaneously. Moreover, it can be modified and expanded to collect data from
more sensors, allowing for future improvements.

Following IoT paradigm, Raspberry module was tested to send data to the integration-platform,
thus enabling data sharing in the network; in particular, the integration-platform is meant to send
data and notifications to a dashboard; it is made to show recent data in a control room. Here people
can see the alerts and handle emergency situation faster thanks to the data they have. The integration
platform can also be enabled to send notifications to specific devices connected to the network (e.g.
users smartphones and smart objects), thus alerting in a more precise way than usual alarm systems.
This way, notified users know the situation they are facing and can handle it with less panic.

Unfortunately, data is scarce due to the impossibility to simulate certain events. Future develop-
ments can concern data collection and storage; data analysis can be carried out try highlight specific
patterns in some parameters, as it is showed in this work concerning heart rate data and sound
recordings.

Platform algorithm was tested simulating data coming from sensors. The results showed it works
as expected, upholding its potential of combining information coming from different sources. Never-
theless, for the future, real situation data acquisitions are needed to confirm the correct functioning
of the platform in real scenarios and to better tune the parameters triggering the notifications.

The presented device can be used in many different kinds of scenarios involving dangers spot and
some emergency situation. Its applications can improve the safety conditions during everyday job
routine of many workers which face daily dangerous situations. This thesis presented only a first
development of this solution. It wanted to show that such a device is actually doable and that it
can be integrated successfully with a back-end system, leaving the door opened for more studies and
possible developments which can also differ from the initial purposes. Some examples can be adding
the possibility to include a backup of the whole system (data, platforms, algorithms, ecc.), studying
how to decrease the possibilities of a system crash and eventually how to notify such a failure. Further
studies can also be carried out adding new sensors at the wearable, thus increasing the data gathering
mechanism and allowing for more parameters to be analyzed (e.g. humidity percentage, luminosity).
Furthermore, thanks to the choice of Raspberry device, the solution can be enriched using some camera
modules (standard camera and IR) and adapted to collect data from them. This can improve handling
of already presented scenarios (e.g. sending images to the control room concerning how a injured user

37

CHAPTER 8. CONCLUSIONS

is positioned and the king of wound he has) and introducing the possibility of new applications (such
as being able to see in the dark, integrating the IR camera with the smart glasses, or spotting gas
leaks exploiting IR images).

38

Appendix A: installing libraries

In this Appendix it is briefly shown how to download, install and verify the installation of the
wiringPi and GPIO libraries. They are needed to make C and/or Python scripts able to interact with
sensors in a proper way. [21]

wiringPi

WiringPI is a C language GPIO library applied to the Raspberry Pi platform. It complies with
GNU Lv3. If the latest Raspbian is installed, library installation can be skipped.

Download To download the library, in an open terminal the following instruction must be typed:

git clone git://git.drogon.net/wiringPi

Install Immediately after the previous step, typing the following lines will install the library:

cd wiringPi

git pull origin

./build

Testing installation The correct installation can be verified by typing:

gpio -v

If the message displayed above appears, the wiringPi is installed successfully.
To visualize all the different name convention referring to the pins, the following command has to

be typed.

gpio readall

39

CHAPTER 8. CONCLUSIONS

RPi.GPIO

For Python users, GPIOs can be programmed with API provided by RPi.GPIO. It is a module
to control RaspberryPi GPIO channels. The package provides a class to control the GPIO on a
RaspberryPi. For examples and documents, refer to [22] (pag 39 of [20]).

Installing In case the library is not installed on the system, the following commands can be typed
in a terminal [23]:

sudo apt-get update

sudo apt-get install python-rpi.gpio python3-rpi.gpio

Testing installation To verify the correct installation it can be imported in python:

If no error is displayed, than the library is installed successfully (pag 39 of [20]).

40

Appendix B: code for data collection

The python script used for data collection is reported here.

#!/usr/bin/env python3.7

import PCF8591 as ADC

import RPi.GPIO as GPIO

import time

import math

Input from flame sensor

DF = 4

Input from gas sensor

DO = 17

GPIO.setmode(GPIO.BCM)

def setup():

Setup for AD converter

ADC.setup(0x48)

Setup for FLAME GPIO pins

GPIO.setup(DF, GPIO.IN)

Setup for GAS GPIO pins

GPIO.setup(DO, GPIO.IN)

def Print_flame(x):

if x == 1:

print(’ * Fire Safe *’)

if x == 0:

print(’ * Fire! *’)

def Print_temp(x):

if x == 1:

print(’* Better~ *’)

if x == 0:

print(’* Too Hot! *’)

def Print_gas(x):

if x == 1:

print(’ * Gas Safe *’)

if x == 0:

print(’ * Danger Gas! *’)

def loop():

status_flame = 1

tmp_flame = 1

status_temp = 1

tmp_temp = 1

41

CHAPTER 8. CONCLUSIONS

status_gas = 1

count_gas = 0

while True:

N.B.: reading FLAME from AIN0

reading TEMP from AIN1

reading SOUND from AIN2

reading GAS from AIN3

FLAME DETECTION

print("Analog flame:", ADC.read(0))

tmp_flame = GPIO.input(DF);

if tmp_flame != status_flame:

Print_flame(tmp_flame)

status_flame = tmp_flame

TEMPERATURE DETECTION

analogVal = ADC.read(1)

print("Analog temp:", analogVal)

Vr = 5 * float(analogVal) / 255

Rt = 10000 * Vr / (5 - Vr)

temp = 1/(((math.log(Rt / 10000)) / 3950) + (1 / (273.15+25)))

temp = temp - 273.15

print(’temperature = ’, temp, ’C’)

For Thermister module(with sig pin)

if temp > 33:

tmp_temp = 0

elif temp < 31:

tmp_temp = 1

###

if tmp_temp != status_temp:

Print_temp(tmp_temp)

status_temp = tmp_temp

SOUND DETECTION

count = 0

voiceValue = ADC.read(2)

if voiceValue:

print ("Noise value:", voiceValue)

if voiceValue < 50:

print ("Voice detected! ", count)

count += 1

GAS DETECTION

gasVal = ADC.read(3)

print("Gas value:", gasVal)

tmp_gas = GPIO.input(DO)

print(tmp_gas)

if tmp_gas != status_gas:

Print_gas(tmp_gas)

42

CHAPTER 8. CONCLUSIONS

status_gas = tmp_gas

STORING VALUES TO FILE

ifile = open("/home/pi/test.txt","w")

ifile.write("%d3.2;%3i;%3i" % (temp, voiceValue, gasVal))

ifile.close()

time.sleep(2)

if __name__ == ’__main__’:

try:

setup()

loop()

except KeyboardInterrupt:

pass

The main idea of this script is to read the sensors nearly every 2 seconds and write the values to a
file. The same file will be read by a Node-RED flow. As already explained, frequency modulation will
be studied better when the application will be tested in real situations, hopefully including different
devices to test the network stability.

43

CHAPTER 8. CONCLUSIONS

44

Appendix C

Here the results of preliminary tests are reported. Figures show screen output generated by the
code while detecting information from the sensors. Temporal development is from top to bottom, last
measures are those in the bottom lines.

Flame sensor

For the flame sensor, a lighter was used to test its sensitivity. It was ignited and moved towards
the sensor. As shown in the figure below, the signal changed as the lighter went closer. The measures,
as the above code shows, are detected every 0.5 seconds (Figure 8.1).

Gas sensor

To test gas sensor functioning, lighter gas was used. A lighter was put near the detector and gas
was released (without igniting it). Sensor response was detected by the script (Figure 8.2). The sensor
needs to be heated up for a while before taking measures; for this reason, it was left turned on for
some minutes until the values on the screen becomes stable in time.

Sound sensor

To test sound sensor functioning, some noise was made near it using voice and hitting the surface
it was laying on. Something that can be noticed is that the response of this sensor is different from
the others; it measures the instant vibration it perceives, making the record very hard to achieve since
if there is no instantaneous external solicitation, the membrane lays at rest and no noise is detected
(Figure 8.3a).

Temperature sensor

To test the temperature sensor functionality, it was simply left exposed to environment, then
touched, and left again. When in contact with the hand, temperature started raising (Figure 8.3b).
Temperature values printed to screen seemed realistic so it was assumed the conversion algorithm was
written properly by the authors (conversion lines were taken from an example script [26]).

45

CHAPTER 8. CONCLUSIONS

Figure 8.1: Figure shows script output when a flame is ignited (in this case a lighter is used) near flame sensor.
The sensor value changes properly and when it overcomes the threshold ”Fire!” state is prompted to screen.
When the signals detected by the sensor are no longer above the threshold, a ”Fire Safe” state is prompted,
signaling that the dangerous situation is no longer present.

46

CHAPTER 8. CONCLUSIONS

(a) (b)

Figure 8.2: Figures show script output while testing gas sensor. In this case gas was released near the detector
surface; the changes in sensor values can be noticed in both (a) and (b) (from top to bottom). If the gas
concentration reaches a certain threshold, ”Danger Gas!” will be printed on the screen. In our case, we can
notice how the value registered by the sensor is increasing with time, but the threshold is not reached. This
limit can be modified using the potentiometer on MQ-2 gas sensor module.

47

CHAPTER 8. CONCLUSIONS

(a) (b)

Figure 8.3: Figures show sensor records while testing sound sensor (a) and thermistor functioning (b). As one
can notice in figure (a), sound detection module acts in different way with respect to the others. This is due to
its functioning principle, which makes it detect only almost instantaneous signals. Looking at the script output
indeed, it can be noticed how sometimes the signals are similar with respect to sensor baseline even if some
noise is being made; if the detected vibration causes a sufficient potential variation, the signal is interpreted as
noise and ”Voice detected!” is printed to screen.5 Figure (b) shows the raising temperature while the sensor has
just been touched (and it is still in contact with the heat source, a hand in this case). The temperature printed
seems reasonable. As in previous cases, if a certain prefixed threshold is exceeded, a signal will be written to
screen.

48

Appendix D

Here the code of raspberry flow main node is reported. At beginning, the message from previous
node is read and values are stored in a list, split by semicolumn ”;”, as it was chosen to save data in
this way. Current date and time are saved to be inserted in the message. Some variables are created
to make test on read values and apply some changes to the payload accordingly. Main body of the
message is prepared and, after that, tests are done to verify the presence of dangers. If there are some,
payload values are changed consequently; furthermore, some notifications are added alerting about
the exceeded thresholds.

var list_param = String(msg.payload);

list_param = list_param.split(";");

// Order of parameters:

// flame

// gas

// noise

// temp

let dateTime = Date.now();

let flame_value = false;

let gas_value = false;

let sound_value = false;

// Preparing msg structure

msg = {

payload:{

DEVICE_ID: "RaspberryPi_field",

SOURCE: "fieldSensors",

POSITION: {

LATITUDE: "",

LONGITUDE: ""

},

TIMESTAMP: dateTime,

SIGNALS: [{

TYPE: "flame",

VALUE: flame_value,

MIN_THRESHOLD: null,

MAX_THRESHOLD: null,

UNIT_OF_MEASUREMENT: null,

SIGNAL_TIMESTAMP: dateTime,

},

{

TYPE: "gas",

VALUE: gas_value,

MIN_THRESHOLD: 0,

MAX_THRESHOLD: null,

UNIT_OF_MEASUREMENT: "K",

SIGNAL_TIMESTAMP: dateTime,

},

49

CHAPTER 8. CONCLUSIONS

{

TYPE: "sound",

VALUE: sound_value,

MIN_THRESHOLD: 0,

MAX_THRESHOLD: null,

UNIT_OF_MEASUREMENT: "K",

SIGNAL_TIMESTAMP: dateTime,

},

{

TYPE: "temperature",

VALUE: list_param[3],

MIN_THRESHOLD: 0,

MAX_THRESHOLD: null,

UNIT_OF_MEASUREMENT: "K",

SIGNAL_TIMESTAMP: dateTime,

}],

NOTIFICATIONS: []

}

}

//Flame sensor

// N.B.: safe signal is 1

if (list_param[0] === ’0’) {

flame_value = true;

msg.payload.SIGNALS[0].VALUE = true;

msg.payload.NOTIFICATIONS.push({

TYPE: "event",

VALUE: "detected fire",

PRIORITY: 1,

ROLE: "operator",

TEXT_COLOR: "",

BACKGROUND_COLOR: "",

VIBRATE: ""

}

);

}

//Gas sensor

if (list_param[1] === ’0’) {

gas_value = true;

msg.payload.SIGNALS[1].VALUE = gas_value;

msg.payload.NOTIFICATIONS.push({

TYPE: "event",

VALUE: "detected falmmable gas",

PRIORITY: 1,

ROLE: "operator",

TEXT_COLOR: "",

BACKGROUND_COLOR: "",

VIBRATE: ""

}

);

}

//Sound sensor

if (list_param[2] === ’0’) {

sound_value = true;

msg.payload.SIGNALS[2].VALUE = sound_value;

msg.payload.NOTIFICATIONS.push({

TYPE: "event",

VALUE: "detected noise",

50

CHAPTER 8. CONCLUSIONS

PRIORITY: 1,

ROLE: "operator",

TEXT_COLOR: "",

BACKGROUND_COLOR: "",

VIBRATE: ""

}

);

}

//Temperature sensor

if (list_param[3] >= 35) {

msg.payload.NOTIFICATIONS.push({

TYPE: "event",

VALUE: "detected high temperature",

PRIORITY: 1,

ROLE: "operator",

TEXT_COLOR: "",

BACKGROUND_COLOR: "",

VIBRATE: ""

}

);

}

return msg;

51

CHAPTER 8. CONCLUSIONS

52

Bibliography

[1] https://www.pwc.com/gx/en/about.html (last visit: 06/09/2020)

[2] https://eicsummit.com/ (last visit: 06/09/2020)

[3] https://www.spsitalia.it/it/la-fiera (last visit: 06/09/2020)

[4] www.sunfounder.com (last visit: 16/09/2020)

[5] https://www.samsung.com/it/wearables/galaxy-watch-r800/ (last visit: 16/09/2020)

[6] https://www.sunfounder.com/learn/sensor-kit-v2-0-for-raspberry-pi-b-plus/lesson-18-
temperature-sensor-sensor-kit-v2-0-for-b-plus.html (last visit: 17/09/2020)

[7] http://wiki.sunfounder.cc/index.php?title=Thermistor Module (last visit: 17/09/2020)

[8] http://wiki.sunfounder.cc/images/4/49/Thermistor datasheet.pdf (last visit: 17/09/2020)

[9] https://www.sunfounder.com/learn/sensor-kit-v2-0-for-raspberry-pi-b-plus/lesson-19-sound-
sensor-sensor-kit-v2-0-for-b-plus.html (last visit: 17/09/2020)

[10] http://wiki.sunfounder.cc/index.php?title=Sound Sensor Module (last visit: 17/09/2020)

[11] https://www.sunfounder.com/learn/sensor-kit-v2-0-for-raspberry-pi-b-plus/lesson-22-gas-sensor-
sensor-kit-v2-0-for-b-plus.html (last visit: 17/09/2020)

[12] https://components101.com/mq2-gas-sensor (last visit: 11/10/2020)

[13] http://wiki.sunfounder.cc/index.php?title=MQ-2 Gas Sensor Module (last visit: 11/10/2020)

[14] https://www.sunfounder.com/learn/sensor-kit-v2-0-for-raspberry-pi-b-plus/lesson-21-flame-
sensor-sensor-kit-v2-0-for-b-plus.html (last visited: 11/10/2020).

[15] http://wiki.sunfounder.cc/index.php?title=Flame Sensor Module (last visited: 11/10/2020).

[16] https://www.samsung.com/us/heartratesensor/ (last visit: 20/09/2020)

[17] http://wiki.sunfounder.cc/index.php?title=PCF8591 8-bit A/D and D/A converter Module
(last visit 21/09/2020).

[18] https://www.samsung.com/it/wearables/galaxy-watch-r800/

[19] https://www.cdc.gov/nchs/data/nhsr/nhsr041.pdf

[20] https://www.sunfounder.com/media/download file/
English-Sensor kit V2.0 for Raspberry Pi 4 Model B 2020.07.08.pdf (last visit 22/09/2020).

[21] http://wiringpi.com/download-and-install/ (last visit 22/09/2020).

[22] http://sourceforge.net/p/raspberry-gpio-python/wiki/Home/ (last visit 22/09/2020).

[23] https://sourceforge.net/p/raspberry-gpio-python/wiki/install/ (last visit 22/09/2020).

53

BIBLIOGRAPHY BIBLIOGRAPHY

[24] https://www.sunfounder.com/learn/category/sensor-kit-v2-0-for-raspberry-pi-b-plus.html (last
visit 23/09/2020).

[25] https://nodered.org/ (las visit 23/09/2020).

[26] https://www.sunfounder.com/learn/sensor-kit-v2-0-for-raspberry-pi-b-plus/lesson-18-
temperature-sensor-sensor-kit-v2-0-for-b-plus.html (last visit 06/10/2020).

[27] http://www.laboratoriopoliziademocratica.org/SALUTE/GIMLE rischio rumore 1.7.09.pdf

54

