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... Ha viaggiato sospinto dal vento per otto anni: 

ora in alto, ora in basso, sul mare e tra le nuvole, 

sulle foreste, i deserti, le distese senza limite dei ghiacci; 

poi una volta catturato, ha dato inizio 

alla sua avventura nel mondo organico. 

L'atomo del quale stiamo parlando è stato portato 

dal vento lungo un filare di viti. Ha avuto il fortunato 

destino di sfiorare una foglia, di penetrare al suo interno 

e di essere qui fissato da un raggio di sole. 

 

[Primo Levi, Il sistema periodico] 





 

Riassunto 
 

In questo lavoro di tesi si è voluto studiare la possibilità di utilizzare la funzione 

idrossamica per la protezione reversibile del gruppo ossidrilico in composti fenolici 

naturali: -OH → -O-N(R1)COR2.  

É noto che molti composti fenolici manifestano interessanti bioattività in vitro che 

possono trovare applicazione in campo farmaceutico. Tuttavia la biodisponibilità di 

questi composti è limitata dalle modificazioni della funzionalità fenolica durante il 

metabolismo di fase II in seguito a somministrazione orale. 

È stata adottata la strategia del precursore farmaceutico per la protezione del sito 

soggetto a metabolizzazione al fine di incrementare l’assorbimento del farmaco. 

La molecola modello del progetto di tesi è lo pterostilbene, un fenolo di origine 

naturale con grande potenziale per applicazioni in ambito farmaceutico. 

Il lavoro di tesi è stato svolto in parte presso i laboratori della Dr.ssa Sabine 

Amslinger dell’ Istituto di Chimica Organica dell’ Università di Regensburg 

nell’ambito del progetto Erasmus.  

Sono stati sintetizzati, purificati e caratterizzati, mediante spettrometria di massa e 

spettroscopia NMR 1H e 13C, undici nuovi derivati dello pterostilbene (Figura 1).  

 
Fig. 1 Pterostilbene and hydroxamate derivatives synthesized 

E’ stato effettuato uno studio della reattività di questi derivati in soluzioni acquose a 

pH corrispondenti a quelli dei comparti biologici interessati alla somministrazione 

orale di farmaci (stomaco e primo tratto intestinale). La velocità di idrolisi ed i 

prodotti ottenuti dipendono molto dalla natura dei sostituenti R1 ed R2. Sono stati 



individuati alcuni intermedi di reazione e proposti meccanismi di reazione anche 

riguardanti equilibri di isomeria E, Z. Alcuni dei composti sintetizzati presentano 

elevata stabilità sia in soluzioni fortemente acide (stomaco) che neutre (intestino) e si 

prospettano quindi come interessanti candidati per saggi più specifici. Sono 

attualmente in corso presso i laboratori del Dr. Mario Zoratti dell’Istituto di 

Neuroscienze del CNR prove di stabilità in sangue e studi in vivo mediante 

farmacocinetiche dopo somministrazione orale in ratti.  



 

Summary 
 

In this thesis work I explored the feasibility of using the hydroxamic functionality for 

the reversible protection of the hydroxy group of natural polyphenols: -OH → -O-

N(R1)COR2. 

Many phenolic compounds exhibit, in vitro, interesting bioactivities with potential 

applications in human health care. However their bioavailability after ingestion is 

limited by the modifications of the phenolic functionality introduced by the enzymes 

of phase II metabolism. 

The prodrug strategy has thus been adopted to protect the sensitive sites and to 

increase the absorption of the active molecule. 

As model compound for the project I have used pterostilbene, a natural phenol with a 

vast potential for pharmaceutical applications. 

The thesis work has been performed in part in the laboratory of Dr. Sabine 

Amslinger of the Institute of Organic Chemistry of the University of Regensburg 

within the Erasmus program. 

Eleven new derivatives of pterostilbene (Figure 1) have been synthesised, purified 

and characterized by mass spectrometry and 1H and 13C NMR spectroscopy.  

 
Fig. 1 Pterostilbene and hydroxamate derivatives synthesized 

A study has been carried out of the reactivity of these derivatives in aqueous solution 

at pH values close to those of the body compartments involved in the absorption of 

orally administered drugs (stomach and first intestinal tract). The rate of hydrolysis 

and what products are obtained strongly depend on the nature of the R1 and R2 

substituents. Some reaction intermediates have been identified and reaction 



mechanisms proposed, regarding also E, Z isomerism equilibria. Some of the 

compounds obtain show considerable stability both in strongly acidic (stomach-like) 

and neutral (intestine-like) solutions, and are therefore interesting candidates for 

more elaborated assays. Stability tests in blood and pharmacokinetic studies in vivo 

(rat) are currently under way in the laboratory of Dr. M. Zoratti of the CNR Institute 

of Neuroscience. 
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Introduction 

 

The major aim of scientific research in pharmaceutical chemistry is the synthesis and 

study of drugs, or in other words substances applied in therapy. 

A drug is an external substance, synthetically or naturally made, which issues a 

functional modification, positive or negative, through an interaction in a living being. 

Polyphenols belong to a wide family of compounds, which are plant-derived and are 

well-known for their interesting pharmaceutical activities. 

Pterostilbene is the model molecule chosen for this project and is a natural compound 

produced by some plants. It is a phenol and is known to afford favourable biomedical 

activities, including anti-inflammatory, antineoplastic, anti-oxidant and anti-diabetic 

effects. 

Unfortunately, these potential bioactivities are not fully displayed in vivo because the 

bioavailability by oral administration is low. The inefficient adsorption and effective 

metabolizing of phenolic function does not allow to achieve a sufficient plasma level 

to execute the potential bioactivities. 

The aim of this work is the synthesis and study of pterostilbene derivatives to be used 

as potential prodrugs. 

Prodrug strategy is based on a drug derivatization to an inactive compound, which 

needs a chemical or enzymatic process to regenerate the active drug. In our case the 

major goal is to avoid modification by phase II metabolism by protecting the 

phenolic function. The promoiety must allow absorption and be bioreversible. 

The project is focused on a new class of pterostilbene derivatives, where the phenolic 

group is derivatized by the hydroxamate function: -OH → -O-N(R1)COR2. 

Substituents groups R1 and R2 are able to tune the chemical features and modulate the 

chemical stability of the N-O bond. 

At this preliminary stage of the studies on protective function, different R substituent 

groups were developed. 

The derivatives were synthesized, purified and characterized by ESI mass 

spectrometry and by 1H NMR and 13C NMR to the laboratory of Dr. Sabine 

Amslinger of Organic Department of the University of Regensburg. 
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Tests of stability in vitro and in solutions mimicking the gastrointestinal environment 

were developed at the laboratory of Dr. Mario Zoratti of the CNR Institute of 

Neuroscience. 

Stability assays in whole rat blood, and in vivo pharmacokinetics of pterostilbene 

hydroxamates are still in progress. 

Chapter 1 provides an overview on pterostilbene and the problem of low 

bioavailability, followed by a description of prodrug strategy as a potential solution 

of the problem. The synthesis of derivatives is fully described in Chapter 2. The 

results on stability assays and the discussion about the reactivity are reported in 

Chapter 3. 

Finally, the experimental procedures and characterizations are described in Chapter 

4. 



 
 

 

CHAPTER 1 
 

Pterostilbene and Prodrug design  

 

This chapter contains a description of pterostilbene, an interesting natural compound 

with various potential pharmaceutical applications. A brief introduction on the 

general properties of this molecule is presented, followed by the explanation of the 

problem of its low bioavailability and the applied strategy to overcome it by prodrug 

design. 

 

1.1  Pterostilbene 

4-[(E)-2-(3,5- dimethoxyphenyl)ethenyl]phenol, by IUPAC convention, is commonly 

known as pterostilbene (Fig. 2). 

 
Fig. 2 Pterostilbene  (3,5-dimethoxy-4’-hydroxy-trans-stilbene) (1) and  

resveratrol (3,5,4’-trihydroxy-trans-stilbene) 

Pterostilbene is a stilbenoid, chemically related to resveratrol and classified as a 

benzylidene compound, which biochemically belongs to the family of 

phenylpropanoids.1 It is a phytoalexin, which are antimicrobial and antifungine 

compounds produced by plants in response to infection.2 Several molecules of the 

stilbenoid family are produced by plants in response to environmental challenges 

such as viral, microbial and fungal infections or excessive ultraviolet exposure. 

Together with resveratrol, it has been isolated from several natural plant sources, 

notably blueberries; it has been identified also in Vitis Vinifera leaves, in infected as 

well as healthy and immature grape berries (Chardonnay, Gamay, Pinot Noir).3 

Pterostilbene has not been detected in wine4, but it was found to be one of the active 

constituents in extracts of the heartwood of Pterocarpus marsupium.5 
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Chemically, pterostilbene is similar to resveratrol and, as this well-investigated 

counterpart, shows a range of powerful bioactivities, limited by a still unsatisfactory 

bioavailability; nonetheless, methylation of phenolic functions on 3,5 positions of 

resveratrol improves the transport into cells and increases the metabolic stability of 

the stilbenoid. 

Bioavailability, pharmacokinetics, and metabolism of these phenols via oral dosing 

in rats have been compared, and the results suggests that the in vivo biological 

activity of equimolar doses of pterostilbene may be greater than that of resveratrol.6 

The pharmacological activities of pterostilbene are summarized as anti-

inflammatory, antineoplastic, and antioxidant actions via modulations of gene 

expression and enzyme activity, as discussed in some more detail below.7 

Furthermore, its pharmacological actions may alleviate diseases associated with 

oxidative damage, inflammation, aging, dyslipidemia and viral infection. 

 

Antimicrobial effect 

Pterostilbene exhibits potent antifungal properties that are 5-10 times stronger than 

those of resveratrol. It also exhibits antiviral effects. This protecting action is an 

important function of stilbenes in plants, and it may extend to humans and animals as 

well.7 

 

Antineoplastic effect 

The anticancer effect is exhibited through various molecular mechanisms.8,9,10 

Studies show the actions of pterostilbene include modulation of signal transduction 

pathways, cell cycle regulatory genes, cell differentiation genes, oncogenes and 

tumor suppressor genes.7 

An example of anticancer effect by inhibition of catalytic activity is shown on human 

recombinant cytochromes P450 CYP1A1. CYP1A1 and CYP1B1 are the inducible 

forms of cytochrome P450 expressed in extrahepatic tissues, which are responsible 

for the biotransformation of polycyclic aromatic hydrocarbons, heterocyclic amines 

and estradiol to carcinogenic intermediates.11 

 

Antioxidant effect 

Pterostilbene is able to reduce extracellular ROS.12 



 
 

The localization of antioxidative effect allows the use of pterostilbene to target 

extracellular reactive oxygen species that are, among other things, responsible for 

tissue damage during chronic inflammation.  

 

Anti-infiammatory effect 

Pterostilbene exhibits moderate inhibition (IC50 = 19.8 µM) of cyclooxygenase 

(COX)-1 and is weakly active (IC50= 83.9 µM) against COX-2, enzymes involved in 

the synthesis of mediators of inflammation.7 It furthermore decreases the levels of 

tumor necrosis factor-α (TNF-α; a cytokine involved in systemic inflammation), in 

comparison with controls.7  

 

Miscellaneous effects 

Studies show that pterostilbene has hypolipidemic13 and antidiabetic properties14, and 

may be efficient in reversing the deleterious effects of aging such as cognitive 

function and working memory.7,15 
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1.2 Bioavailability of pterostilbene 

Polyphenols are present in food as glycosylated derivatives. In blood, however, 

glycosylated derivatives are not found even in trace amounts, which indicate that 

hydrolysis of glycosides takes place during absorption.  

Pterostilbene has a relatively poor bioavailability due to a built-in propensity to 

phase II metabolism. It is subjected to “detoxification”, consisting in the covalent 

modification of the hydroxyl groups by the sulfo-transferases (SULTs) and 

glucuronosyl-transferases (UGTs) of enterocytes and hepatocytes. Enzyme-catalyzed 

reactions are reported in Figure 3 and Figure 4. Sulfate and glucuronide metabolites 

are more soluble than their parent compounds and their elimination occurs via renal 

and biliary routes.6 

Studies of in vitro metabolism in rat liver microsomes, and the detection of 

pterostilbene glucuronidated and sulfated metabolites in both serum and urine 

confirm a phase II metabolism of pterostilbene.17 

When administered orally, pterostilbene shows a higher bioavailability than 

resveratrol, with higher total plasma levels of both the parent compound and 

metabolites. These differences in pharmacokinetics suggest that the in vivo biological 

activity of equimolar doses of pterostilbene may be greater than that of resveratrol.6  

The dimethylether analogue to resveratrol may overcome some limitations to 

pharmacological efficacy. 
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Fig. 3  Enzyme-catalyzed sulfation of phenolic function with co-substrate 3'-phosphoadenosine-5'-

phosphosulfate (PAPS) 
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Fig.  4 Enzyme-catalyzed glucuronidation of phenolic function with co-substrate Uridine diphosphate 

glucuronic acid (UDPGA) 

 

1.3  Prodrug strategy and prodrug design 

As mentioned in paragraph 1.1, sulfate and glucuronide metabolites of pterostilbene 

are excreted more rapidly than their parent compounds via renal and biliary routes; 

they are furthermore likely to have lower bioactivity and a different set of 

pharmacological targets. Thus, it is desirable to limit the enzymatic conjugation of 

the phenolic function during phase II metabolism. 

A possibility is to use the prodrug approach, widely used to enhance therapeutic 

efficacy and/or reduce adverse effects of drugs. 

By Rautio’s definition18, prodrugs are bioreversible derivatives of drug molecules 

that undergo an enzymatic and/or chemical transformation in vivo to release the 

active parent drug, which can then exert the desired pharmacological activity (Figure 

5).19 

 
Fig.  5 Regeneration of parent drug by enzymatic and/or chemical transformation19 
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Prodrugs are chemicals with little (1000-times less potent than parent drug) or no 

pharmacological activity. In 2009, 5% to 7% of drugs approved worldwide were 

classified as prodrugs. 

A chemical criterion helps to classify the prodrugs into four classes:20  

• Carrier-linked prodrugs : Simple prodrugs which contain a covalent link 

between the drug and a strategically selected chemical/transport moiety or 

promoiety. Activation occurs by hydrolysis, oxidation or reduction. 

• Bioprecursors: these do not contain a promoiety yet are activated by 

oxidation, reduction or hydrolysis. 

• Macromolecular prodrugs: where the carrier is a macromolecule. 

• Drug–antibody conjugates: where the carrier is an antibody. 

A rational way of improving the efficiency of a drug is to manipulate the 

physicochemical properties by creating a prodrug with the potential to increase the 

rate of diffusion through biomembranes or increasing the solubility. 

Another important strategy is to increase the targeting to a specific site or prolong the 

half-life.19 

Increased aqueous solubility is able to overcome important factors limiting oral, 

transdermal, and parenteral bioavailability. Generally, charged promojeties can be 

used for this aim. It should be noted that the enhanced water solubility, and thus, the 

better oral bioavailability, can also be achieved by decreasing the crystal packing or 

by altering the melting point of the parent drug. 

On the other hand, an increased lipophilicity is helpful for transcellular absorption, 

so it is necessary to balance these factors with sufficient aqueous solubility, 

otherwise oral bioavailability will become dissolution-limited.  

Another validated concept in prodrug design is to protect the drug against rapid 

metabolic breakdown after activation; because the drug has to be transported via the 

circulation system to the target site where it carries out its mode of action.21 

Finally, drug targeting to specific enzymes or membrane transporters is a widely 

used prodrugs approach and it is very efficient to achieve a high local concentration 

of the drug and to decrease unwanted side effects. 

The prodrug strategy to drug design comprises versatile and powerful techniques 

which can be applied to a wide range of drug administration routes such as oral, 

transdermal, ocular, and parenteral applications. 



 
 

Oral administration is the most common route of applying drugs, after which they are 

absorbed by the gastrointestinal system, attaining a measurable concentration in the 

circulatory stream.19 

The fraction absorbed is largely controlled by the physico-chemical parameters of the 

drug or prodrug. The fraction absorbed can be increased by optimizing dissolution 

rate, solubility and/or membrane permeability. 

 

1.4 State of the art and aims of the thesis 

This thesis work is part of a research program addressing the problem of the low 

bioavailability of polyphenols (see paragraph 1.2) through the development of 

prodrugs.  The project envisions the screening of various potential protective groups 

of phenol function to identify the functionality with optimal stability/reactivity 

features (Figure 6). 

 
Fig. 6 Types of potential protecting group screened in the search for an optimized linker for the 

protecting/functionalizing group in polyphenol prodrugs. 

Prodrugs meant for oral administration need to be stable under gastrointestinal 

conditions but must regenerate the natural compound in blood or other organs with 

appropriate kinetics (half-life in the order of several to many minutes) 

(“bioreversibility tuning”). Furthermore, the physico-chemical properties of the 

prodrug can be tailored through an appropriate choice of the substituent group(s) in 

order to optimize characteristics such as water solubility, membrane permeability, 

intestinal uptake. Some of the functionalities shown in Figure 6 have already been 

tested by Prof. Paradisi’s research group22,23. The most promising one so far have is 

the N-monosubstituted carbamoyl linkage (number 4 in Fig. 6, with R’’ = H). Its 

applications are being studied in other projects. 
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The aim of my project was to obtain model prodrug(s) containing the unusual -O-

NR1R2 moiety (group 12 in Figure 6) and to test its suitability for prodrug 

construction, in particular its stability in aqueous environments. As model core 

compound for the study we chose pterostilbene, closely related to resveratrol and 

reportedly endowed with even more favourable biomedical properties. 

In a preliminary phase of prodrug design information about the stability of 

conceivable derivatives was obtained from the literature. The simplest structures, 

with hydrogen and/or alkyl groups bonded to the N atom, did not offer sufficient 

perspectives of stability: phenoxy amine24 and N-alkyl O-phenyl hydroxylamine25 are 

classes of compounds too unstable and of too hard handling for the purposes of the 

project. 

A common strategy to improve the stability of weak N-O bond is the introduction of 

a carboxyl group directly bonded to the nitrogen. N-Benzoylation is a typical 

reaction used to improve the stability of substituted hydroxylamines, taking 

advantage of the formation of a hydroxamate function. 25  

Various studies reported in the literature concern hydroxamic acids and their N-

substituted esters, as well as their potential application in the pharmaceutical field, 

but the use of the hydroxamate function as protecting group is a recent innovation in 

prodrug design26,27.  

The strategy adopted for the syntheses was suggested by a recent study, which takes 

advantage of the irreversible activation of phenol by cleavage of a weak N-O bond 

by reducing nucleophiles.27 

 



 

 

CHAPTER 2 

 

Results and discussion 

 

This chapter contains the description of the synthetic strategy and an overview on 

synthesized derivatives. Before that, the synthetic pathways and related problems are 

presented. 

2.1 Synthesis 

During my Thesis internship I have synthesized eleven new hydroxamate derivatives 

of pterostilbene (Fig. 7) with different R1 and R2 substituent groups as detailed in 

Tab. 1 

            

 

  

 

Fig 7 Pterostilbene hydroxamate 

derivatives synthesized 

 

 

 

 

 

Tab. 1 R1 and R2 substituent groups in the hydroxamate derivatives synthesized

n. R1 R2 

2 tert-butoxy H 

3a tert-butoxy C(O)CH2OCH2CH2OCH3 

3b tert-butoxy C(O)CH2O(CH2CH2O)2CH3 

4a OH C(O)CH2OCH2CH2OCH3 

4b OH C(O)CH2O(CH2CH2O)2CH3 

5 tert-butoxy C(O)CH3 

6 OH C(O)CH3 

7a tert-butoxy Boc-(L)-Ala-CO 

7b tert-butoxy Boc-(L)-Ile-CO 

8 tert-butoxy CH3 

9 tert-butyl H 
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They will be tested as prodrugs to find out whether and under which conditions 

pterostilbene could be released via hydrolysis of the protecting group and 

regeneration of the free OH group.  

An overview of the pathways used to synthesize all of these hydroxamate derivatives 

starting from pterostilbene (1) is reported in Scheme 1. Two of these derivatives, 2 

and 9, were obtained via electrophilic amidation of pterostilbene. From 2, then, four 

sets of derivatives were synthesized in which the hydrogen on the nitrogen atom is 

substituted by the following groups: methoxy oligoethylen glycol acetyl (3a and 3b; 

4a and 4b), acetyl (5 and 6), amino (7a and 7b) and methyl (8). 

Scheme 1. General synthetic scheme to obtain the new hydroxamate derivatives 
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2.1.1 Synthesis of tert-butyl N-pterostilbene carbamate (2) 

The tert-butyloxy hydroxamate of pterostilbene 2 was synthesized via three step 

synthesis as described in Scheme 2.  

 

Scheme 2. Synthesis of tert-Butyloxy hydroxamate of pterostilbene.  

The synthetic strategy was adapted from the literature, which reports the synthesis of 

N-acyl O-amino phenol derivatives of CBI-TMI (1,2,9,9a-

tetrahydrocyclopropa[c]benz[e]indol-4-one), as prototype of the natural antitumor 

agent duocarmycin27. In this work it was found that the prodrug reacted to release the 

free drug with a half-life of 3 h.  

The first step of Scheme 2 (step a) is the Boc-protection reaction of hydroxylamine 

(eq. 1). The reaction was conducted under the typical conditions for the protection of 

amino groups using tert-butyl carbonate and a mild base. 

  

                                                 (1) 

 

The material was not exposed to heat, due to the relatively instability of the N-O 

bond, the hydroxylamine is a dangerous explosive on heating. The tert-butyloxy 

carbonyl group in the reaction product increases the stability of the weak N-O bond 

through electron withdrawing effects. The product is a hydroxamic acid, a good 

chelating agent. The chelating effect was observed by a colorimetric test, which 

showed a color change of an aqueous solution of ferric chloride from yellow to 

purple. 

OHH2N
HO

N
H

O

O(Boc)2O,
NaHCO3

THF/H2O, 0°C, 2h 92%
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The second step (b) is a tosylation reaction of the hydroxyl group of the hydroxamate 

(eq. 2). 

               (2) 

To avoid the decomposition of the starting material, this exothermic reaction was 

carried out at low temperature and with very slow addition of tosyl chloride. The 

introduction of a good leaving group, such as the tosylate, makes the nitrogen atom 

more electrophilic and thus useful as an amidating reagent in the next step of the 

synthesis. N-Tosyloxycarbamate can indeed be viewed as a synthetic equivalent of 
+NHBoc (Figure 8). 

 

Figure 8 Synthetic equivalent of +NHBoc. 

The final step of the synthesis, c in Scheme 2, an electrophilic amidation reaction, 

was carried out in the presence of a base and afforded the desired product 2 in 

moderate yields (Table 2). The mechanism for this reaction which is proposed in 

literature28 in the presence of the strong base LiHMDS is reported in Scheme 3, 

which shows the coordinating effect by the lithium cation.   

 

Scheme 3. Coordinating effect by the lithium cation on electrophilic 

amidation reaction in the presence of the base LiHMDS 
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The influence of the metal coordinated to the nitrogen in metallated tert-butyl-N-

tosyloxy carbamates on their reactivity in electrophilic aminations of carbanions is 

well known. 28 

Step c of Scheme 2 afforded at best a 37% yield of 2 when using LiHMSD as base. 

Attempts to improve the yield of this reaction using weaker amine bases, and 

increasing both the reaction time and temperature have been tried out. However, as 

reported in Table 2, the results were not improved and comparable yields were 

obtained also using longer reaction times and DMAP or TEA as base instead of 

LiHMDS. 

Solvent Base eq. Base 

eq. Aminating 

agent Time Temperature 

Yield of 

product 2 (%) 

THF LiHMDS 3 3 3 h 0°C → r.t. 37 

THF DMAP 1.5 1.5 x 4 times 5 gg 35°C 38 

THF TEA 1.5 1.5 x 4 times 5 gg 35°C 27 

Table 2. Reaction conditions of electrophilic amidation reaction 

Product 2 proved to have good stability and was purified without problems by flash 

chromatography, in accordance with the promoiety stability of prodrug reported in the 

literature27. 
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2.1.2 Synthesis of tert-butyl N-(olygoethylen glycol acetyl)N-pterostilbene 

carbamates (3a, 3b) and N-(olygoethylen glycol acetyl)N-pterostilbene carbamic 

acid (4a, 4b) 

The next goal was to convert derivative 2 into prodrugs of greater hydrophilicity, 

notably the ethylen glycol substituted derivatives 3a-b and the hydroxamate 

derivatives 12a-b shown in Scheme 4.   

Scheme 4. Pathway attempted to synthesize olygoethylen glycol hydroxamate derivatives of 

pterostilbene 

. 

The first step (a) of Scheme 4 is an acylation reaction on nitrogen to introduce the 

ethylen glycol acetyl chain. The anhydrides necessary for this reaction had to be 

synthesized from the corresponding acids, 2-(2-methoxyethoxy)acetic acid  and 2-(2-

(2-methoxyethoxy)ethoxy)acetic acid, via condensation induced by treatment with 

equimolar amounts of dicyclohexylcarbodiimide (DCC) in dichloromethane for 4 h 

at room temperature under nitrogen (eq. 3). The anhydrides were used directly, 

without further purification, in the subsequent step involving N-acylation of 2 to 

afford the desired product 3 (eq. 4). 
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(3) 

 

 

 

(4) 

 

The acylation reactions were run in dichloromethane in the presence of an excess of 

TEA and of a catalytic amount of DMAP for 12 h at room temperature under 

nitrogen. The reactions afforded the products 3a and 3b in good yield (Tab.3) 

Tab.3 Yield of products 3 obtained from reaction of 2 with the corresponding anhydride in the 

presence of TEA (4 eq), DMAP(in catalytic amount) in dichloromethane at room temperature for 12 h 

under nitrogen. 

The reaction products showed a good stability.  

The second step of the synthesis of Scheme 4 was intended to realize the 

deprotection reaction by removal of Boc to achieve the desired targets 10a and 10b. 

This reaction is usually afforded by treatment with a strong acid. The widely 

accepted mechanism for the acid-catalyzed deprotection of a Boc-protected amine 

involves a rapid equilibrium protonation of the Boc group, followed by a rate 

limiting fragmentation of the resultant protonated intermediate (Scheme 5). 29 In this 

mechanism it is assumed that the breakdown of the carbamic acid, initially produced 

by the reaction, is fast. 30  

Substituent group R = % yield of product 3 

-CH2OCH2CH2OCH3 90 

-CH2(OCH2CH2)2OCH3 83 
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Scheme 5 Mechanism for the acid-catalyzed deprotection of a Boc protected amine 

However this reaction failed to produce from derivatives 3 the expected 

corresponding hydroxamate products 10. The carbamic acids 4 were obtained instead 

(eq. 5). 

 

 

 

(5) 

 

 

 

For these reactions, the N-protected derivatives 3 were dissolved in a solution of 

dichloromethane and trifluoroacetic acid (1:1 v/v) in the presence of a small amount 

of triisopropylsilane (TIPS 2.5 % v/v). The reaction was run for 7 hours starting from 

an initial temperature of 0 °C and allowing the mixture to return to room 

temperature. Products 4 were obtained (Tab. 4). 

Tab.4 Yield of products 4 obtained from reaction of 3 in TFA/DCM (1:1) 

from 0°C to room temperature for 7 h. 

The addition of TIPS allows to trap the tert-butyl cation formed, thus avoiding a 

secondary reaction on the unsaturated pterostilbenic scaffold. Products 4 have limited 

chemical stability so that several attempts were necessary to find proper conditions 

for their isolation. Indeed products 4 proved to be unstable in silica gel, used as a 

Substituent group R = % yield of product 4 

-CH2OCH2CH2OCH3 44 

-CH2(OCH2CH2)2OCH3 44 
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stationary phase for purification by chromatography (FSGC and PTLC), due to fast 

N-O bond cleavage with quantitative regeneration of pterostilbene. This cleavage 

was avoided by purifying the reaction products by means of HPLC, using a C18 

reverse phase column. For details on the purification and characterization of the 

products see section 4.3.2. 

To confirm and extend the unexpected results of incomplete Boc deprotection 

observed with derivatives 3a and 3b, the synthesis and study of an analogous 

derivative of simpler structure, namely the acetyl derivative 5,  was developed. 

 

2.1.3 Synthesis of tert-butyl N-acetyl N-pterostilbene carbamate (5) and 

N-(acetyl) N-pterostilbene carbamic acid (6) 

Product 5 was obtained in good yield by reaction of 2 with acetic anhydride in 

dichloromethane in the presence of an excess of TEA and of a catalytic amount of 

DMAP for 12 h at room temperature (eq. 6).The product is stable and was purified 

by flash chromatography on silica gel. 

 

 

            

(6) 

 

When subjected to the typical reaction conditions for Boc-deprotection, 5 behaved 

similarly to 3a and 3b producing the acid 6 (eq. 7) instead of the fully deprotected 

product, N-pterostilbene acetamide. 

 

 

            

(7) 

                                                                          

Similarly to the analogous derivatives 4a and 4b, 6 has limited stability which made 

its manipulation rather difficult. N-O bond cleavage, with consequent regeneration of 
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pterostilbene was observed during the purification by FSGC (Flash Silica Gel 

Chromatography) in acetone on silica gel. The product was therefore purified by 

HPLC, using a C18 reverse phase column. For details on the purification and 

characterization of the products see section 4.5.2. 

 

2.1.4 Synthesis of tert-butyl N-Boc protected amino acydyl N-pterostilbene 

carbamate (7a-b) 

The amino acidyl hydroxamate derivatives 7a-b were obtained from 2 following a 

similar pathway to that used for the ethylen glycol derivatives 3a-b (step a in 

Scheme 4). From compounds 7a-b I tried to obtain the derivatives 11a-b which were 

of interest because of the possibility that the free amino group could promote an 

active transport of the prodrugs mediated by amino acid transporters. 

Scheme 6  Synthesis of C-amino hydroxamate derivatives of pterostilbene 

Step a of Scheme 6 is an N-acylation reaction of 2. The required amino acidic 

anhydrides were synthesized in quantitative yield from the corresponding amino 

acids (eq. 8) and used directly, without further purification, in the following step (a 

in Scheme 6). This reaction was run in dichloromethane in the presence of an excess 

of TEA and a catalytic amount of DMAP at room temperature for 12 h. The products 

7a and 7b were obtained in good yield (Tab.5) 
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(8) 

 

 

Tab.5 Yield of 7 products obtained from reaction of 2 with the corresponding anhydride in presence 

of TEA (4 eq), DMAP cat. in dichloromethane at room temperature for 12 h. 

To develop more atom economic pathway to produce the acylating reagent for step a 

two attempts were experimented. The acylation of 2 was only successful when the 

anhydrides were used as acylating reagents. There was no reaction in the synthesis of 

derivative 7b via activated ester using two different activating reagents, N-

hydroxysuccinimide (NHS) and N,N,N′,N′-tetramethyl-O-(1H-benzotriazol-1-

yl)uronium hexafluorophosphate (HBTU) under the reaction conditions reported in 

Tab. 6. 

 
Tab.6 Attempted alternative acylation reactions via activated ester 

The reason for this failure could be attributed to the less electrophilic character of 

activated esters with respect to anhydrides, or to steric hindrance around the reaction 

center.  

 

All attempts to perform the next step, a Boc deprotection reaction of 7a and 7b (step 

b in Scheme 6) under strongly acidic conditions, failed to yield the desired products, 

11a-b, but gave pterostilbene instead (eq. 9).  

Substituent group R = % yield of product 7 

-CH3 (Ala derivative 7a) 75 

-CH(CH3)2CH2CH3 (Ile derivative 7b) 73 

Amino acid 
 

Solvent 
 

Activating 
reagent 

Base 
 

Activating 
agent 

Time 
 

Yield 
 

Boc-(L)-Ile-OH 
DCM/DMF 

9:1 NHS DMAP DCC 12 no reaction 

Boc-(L)-Ile-OH DMF HBTU TEA - 12 no reaction 
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(9) 

 

A summary of all experimental conditions tested to perform the desired Boc 

deprotection reaction31,32 is reported in Tab. 7a-b-c. 

n. Acid Temperature (°C) Solvent Cleavage N-O bond 

1 TFA 0 DCM complete 

2 TFA -10 DCM complete 

3 TFA -78 DCM complete 

4 TFA -20 - complete 

5 TFA + 0.025% H2O -20 - complete 

Tab.7a Attempted Boc deprotection using TFA 

n. Acid Temperature (°C) Solvent Cleavage N-O 

1 HCl r.t. EtOAc complete 

2 HCl r.t. dioxane complete 

Tab.7b Attempted Boc deprotection using HCl 

n. 

Deprotecting 

agent Temperature (°C) Solvent Cleavage N-O 

1 TMS-Cl/ NaI reflux ACN 
complete 

2 TMS-Cl/ NaI -20 CHCl3 
complete 

Tab.7c Attempted Boc deprotection using TMS-Cl/NaI 

The amino acidic promojety destabilizes the N-O bond of derivatives 7, an effect 

which is confirmed by the results of stability assays reported at the Section 3.2.  

 



23 
 

2.1.5 Synthesis of tert-butyl N-(methyl) N-pterostilbene carbamate (8) 

The derivative 8 was synthesized from 2 via direct N-methylation (eq. 10). The goal 

was to study a derivative of 2 with steric hindrance on the nitrogen. 

   (10) 

The product was easily synthesized using an excess of methyl iodide (2 eq.) and 

LiHMDS (1 eq.), as a strong base. Low reaction yield is explained by experimental 

observation of pterostilbene regeneration during addition of methylating agent. 

Excess of methylating agent, compared with the base equivalent, afforded a 

production of hydrogen iodide, which afforded the cleavage of the weak N-O bond. 

2.1.6 Synthesis of N-pterostilbene pivaloylamide (9) 

The synthesis of 9 was achieved via the 6-step procedure outlined in Scheme 7.  

Scheme 7. Synthesis of tert-butyl hydroxamate of pterostilbene 

The first five steps (a - d) were necessary to synthesize the reagent N-(tosyloxy) 

pivaloylamide, which is then used as amidating agent in the last step e to achieve the 

desired product. 
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I tried a shorter route to synthesize N-(tosyloxy) pivaloylamide, as outlined in 

Scheme 8. 

 
Scheme 8. Attempted two step synthesis of N-(Tosyloxy) pivaloylamide 

The first step of this pathway (I ) afforded the desired product tert-butyl hydroxamic 

acid, although in low yield, via reaction of hydroxylamine with pivaloyl chloride (eq. 

9). 

              (9) 

Unfortunately, all attempts to perform the second step (II in Scheme 8), failed to 

afford the expected product. The tosylation reaction was not successful using tosyl 

chloride in the presence of two different bases, DMAP and LiH. The failure to obtain 

the desired product is probably due to the low nucleophilicity of the reagent and the 

chemical instability of the product in the presence of a base. 

Thus, the 5-step route of Scheme 7 was adopted. Steps a and b are the same as 

described in paragraph 1.1. It is interesting to compare reaction (9), which could not 

be performed, with reaction (2) which gave the tosylated product in 80% yield: it is 

probably due to the electron withdrawing effect of the oxygen in the alkoxy 

substituent. Step c was performed with pivaloyl chloride the in presence of base to 

give the acylated product (eq. 10). 

     (10) 

Step d, a Boc-deprotection reaction, afforded the desired product using TFA at room 

temperature (eq. 11).  
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            (11) 

Finally, the last step in the overall sequence, e in Scheme 7, is analogous to the 

synthesis tert-butyloxy hydroxamate of pterostilbene 2 reported in Section 2.1.1 The 

same reaction conditions were used, i.e. 2.5 eq of the amidating agent and 2.5 eq. of 

base (LiHDMS) in THF starting at a temperature of 0°C and allowing the mixture to 

return to r.t. (eq. 12)  

    (12) 

The importance to add the amidating agent at low temperature is proved by 

experimental results obtained in a reaction run under the same experimental 

conditions, except that the amidating agent was added in two portions: the first half 

(1.25 eq.) was added at 0°C and the second one (1.25 eq.) at room temperature. The 

yield in this case was drastically reduced from 20% to 4%, suggesting that at room 

temperature the amidating reagent is not stable in the presence of a strong base as 

LiHDMS.  

Product 9 underwent partial reconversion to pterostilbene during purification with 

PTLC (acetone on silica gel). It was therefore purified by FSGC with a 1% TEA 

addition, to make less acid the stationary phase (Section 4.8.3). 



 
 



 
 

 

CHAPTER 3 

 

Stability of the synthesized derivatives at neutral 

and acidic pH 

 

This chapter contains the results of stability studies on the synthesized new prodrugs 

in aqueous solutions at pH values which are characteristic of physiological 

compartments of interest for oral administration: strongly acidic, as in the stomach, 

and nearly neutral, as in the intestine. A brief introduction on the protocols used to 

perform the stability assays is presented, followed by a description of the results and 

their discussion. 

3.1 Experimental procedures 

Chemical stabilities were studied by monitoring concentration vs time profiles of the 

desired prodrug and products by means of HPLC-UV analysis as detailed in Chapter 

4. Two aqueous reaction media were considered for these experiments, notably 

aqueous HCl (pH = 1) and PBS (pH = 6.8).  

3.2 Results and discussion 

The tested compounds (2, 3a, 4a, 4b, 5, 6, 7a, 8 and 9) show a remarkable 

range of reactivity. With regard to the most important issue concerning the release of 

pterostilbene, the results, shown and discussed in the following paragraphs, indicate 

that this was either not observed or negligible, with the only exception of compound 

7a. Therefore, the hydroxamate function might be useful as protection of phenolic 

groups in the development of prodrugs for oral administration.  

A few of the tested derivatives proved to be stable under both acidic and 

neutral pH as shown, for example in Figs. 9 – 10 for compound 2. It is seen that the 

HPLC-UV traces of samples taken at time zero and 24 h after incubation at 37°C in 

either acidic or neutral solutions contain only the chromatographic peak due to 2. 

Similar behavior was observed with compounds 8 (Figs. 11-12) and 9 (Figs 13-14).
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Fig. 9 Product 2 in HCl 0.1N (pH = 1). Two chromatograms are shown: in blue analysis 

immediately after addition of the compound to HCl solution (t = 0), in red analysis after 24 h of 

incubation at 37°C (5µM). 

 
Fig. 10 Product 2 in PBS (pH = 6.8). Two chromatograms are shown: in blue analysis 

immediately after addition of the compound to PBS solution (t = 0), in red analysis after 24 h of 

incubation at 37°C (5 µM). 

 

Fig. 11 Product 8 in PBS (pH = 6.8). Two chromatograms are shown: in blue analysis 

immediately after addition of the compound to PBS solution (t = 0), in red analysis after 24 h of 

incubation at 37°C (12µM). 
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Fig. 12 Product 8 in HCl 0.1N (pH = 1). Two chromatograms are shown: in blue analysis 

immediately after addition of the compound to HCl solution (t = 0), in red analysis after 24 h of 

incubation at 37°C (12 µM). 

 
Fig. 13 Product 9 in HCl 0.1N (pH = 1). Two chromatograms are shown: in blue analysis 

immediately after addition of the compound to HCl solution (t = 0), in red analysis after 24 h of 

incubation at 37°C (15 µM). 

 
Fig. 14 Product 9 in PBS (pH = 6.8). Two chromatograms are shown: in blue analysis 

immediately after addition of the compound to PBS solution (t = 0), in red analysis after 24 h of 

incubation at 37°C (15µM). 

All other derivatives tested undergo reaction to different extents and form 

different intermediates/products depending on the pH conditions and on the 

substituents present on the –N-O-PTS moiety. Notably all, except 5, react faster at 

pH 6.8 than at pH 1. 
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In the case of compound 7a, pterostilbene is the only product detected by 

HPLC analysis at any reaction time in either media (Fig. 15-17).  

 
Fig. 15 Product 7a in HCl 0.1 M (pH = 1). Two chromatograms are shown: in blue analysis 

immediately after addition of the compound to HCl solution (t = 0), in red analysis after 24 h of 

incubation at 37°C (5 µM). 

 
Fig. 16 Stability assay of 7a in HCl (pH = 1). 

 
Fig. 17 Product 7a in PBS (pH = 6.8). Two chromatograms are shown: in blue analysis 

immediately after addition of the compound to PBS solution (t = 0), in red analysis after 24 h of 

incubation at 37°C (5 µM). 
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Fig. 18 Stability assay of 7a in PBS (pH = 6.8). 

Release of pterostilbene was also observed to a minor extent in the reaction of 

compounds 4a, 4b, and 6, which display a more complex behavior, as described 

later. 

The reactions of derivatives 3a and 5 are similar and produce the same 

product. This was identified as 2 based on its retention time, matching that of an 

authentic sample, and by HPLC-ESI/MS analysis (Fig.19). As seen from Figs 20-22 

and Figs. 24-26, no other peaks are detected. Moreover, the product is stable under 

the reaction conditions, consistent with the results reported above indicating that 2 

does not react either in acidic or in neutral solution. 

 
Fig. 19 Mass spectrum of product 2 detected by HPLC-ESI/MS in the reaction of 5 
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Fig. 20 Product 3a in HCl 0.1N (pH = 1). Two chromatograms are shown: in blue analysis 

immediately after addition of the compound to HCl solution (t = 0), in red analysis after 24 h of 

incubation at 37°C (5 µM). 

 
Fig. 21 Stability assay of 3a in HCl (pH = 1). 

 
Fig. 22 Product 3a in PBS (pH = 6.8). Two chromatograms are shown: in blue analysis 

immediately after addition of the compound to PBS solution (t = 0), in red analysis after 24 h of 

incubation at 37°C (5 µM). 
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Fig. 23 Stability assay of 3a in PBS (pH = 6.8). 

 
Fig. 24 Product 5 in HCl 0.1N (pH = 1). Two chromatograms are shown: in blue analysis 

immediately after addition of the compound to HCl solution (t = 0), in red analysis after 24 h of 

incubation at 37°C (5 µM). 

 

Fig. 27 Stability assay of 5 in HCl (pH = 1). 
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Fig. 26 Product 5 in PBS (pH = 6.8). Two chromatograms are shown: in blue analysis 

immediately after addition of the compound to PBS solution (t = 0), in red analysis after 24 h of 

incubation of incubation at 37°C (5 µM). 

 

Fig. 25 Stability assay of 5 in PBS (pH = 6.8). 

 

A possible mechanism for the hydrolysis of 3a and 5 to product 2 is shown in 

Scheme 9.  

 
Scheme 9 Suggested pathway for hydrolysis of derivatives 3a and 5 to product 2. 

 

A deacylation mechanism of hydroxamic acid derivatives via tetrahedral 

intermediate is reported in the literature33. 

The behavior of compounds 4a, 4b and 6 is rather more complex. In addition 

to pterostilbene, mentioned above, other products were detected by HPLC analysis.  
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Fig. 28  Product 4a in HCl 0.1N (pH = 1). Three chromatograms are shown: in blue analysis 

immediately after addition of the compound to HCl solution (t = 0), in red analysis after 5 h of 

incubation, and in green analysis after24 h of incubation at 37°C (15 µM). 

 
Fig. 29  Stability assay of 4a in HCl (pH = 1). 

 
Fig. 30  Product 4a in PBS (pH = 6.8). Four chromatograms are shown: in blue analysis 

immediately after addition of the compound to PBS solution (t = 0), in red analysis after 1 h of 

incubation, in green analysis after 4 h of incubation  and in pink analysis after24 h of incubation at 

37°C (15 µM). 
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Fig. 31 Stability assay of 4a in PBS (pH = 6.8). 

 
Fig. 32 Product 4b in HCl 0.1N (pH = 1). Three chromatograms are shown: in blue analysis 

immediately after addition of the compound to HCl solution (t = 0), in red analysis after 5 h of 

incubation, and in green analysis after24 h of incubation at 37°C (15 µM). 

 
Fig. 33  Stability assay of 4b in HCl (pH = 1). 



37 
 

 
Fig. 34 Product 4b in PBS (pH = 6.8). Four chromatograms are shown: in blue analysis 

immediately after addition of the compound to PBS solution (t = 0), in red analysis after 1 h of 

incubation, in green analysis after 4 h of incubation  and in pink analysis after24 h of incubation at 

37°C (15 µM). 

 
Fig. 35  Stability assay of 4b in PBS (pH = 6.8). 

 
Fig. 36  Product 6 in HCl 0.1N (pH = 1). Three chromatograms are shown: in blue analysis 

immediately after addition of the compound to HCl solution (t = 0), in red analysis after 8 h of 

incubation, in green analysis after 4 h of incubation  and in pink analysis after24 h of incubation at 

37°C (12 µM). 
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Fig. 38 Stability assay of 6 in HCl (pH = 1). 

 
Fig. 39  Product 6 in PBS (pH = 6.8). Three chromatograms are shown: in blue analysis 

immediately after addition of the compound to PBS solution (t = 0), in red analysis after 2 h of 

incubation, in green analysis after 24 h of incubation at 37°C (12 µM). 

 
Fig. 40 Stability assay of 6 in PBS (pH = 6.8). 

In particular, one common product is formed, both at pH 1 and 6.8, from all 

three prodrugs. Based on the results of HPLC-MS/ESI analysis, this product is 

assigned the structure of 11 (Fig. 41).  
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Fig. 41 Mass spectrum of product 11 detected by HPLC-ESI/MS in the reaction of 6. 

Product 11 is possibly formed according to the pathway shown in Scheme 10.  

 
Scheme 10 Suggested hydrolytic pathway for derivatives 4a, 4b and 6 in acid conditions (pH=1) 

  

Product 11 appears to be stable in acidic solution but somewhat less so at 

neutral pH. 

In addition to 11 compounds 4a, 4b and 6 behave similarly also for the 

production, detected only in the experiments at pH 6.8, of a rather unstable species 

which builds up very rapidly and is then consumed in a slower reaction. These 

intermediate species are indicated as 10a, 10b and 10c in Figs. 42 

 
Fig.42 Z-isomers 10a-b-c 

The identification of intermediates 10a, 10b and 10c was not so immediate. By 

means of HPLC-MS/ESI analyses it was found that each has the same mass as the 
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precursor prodrug, so they are isomers of 4a, 4b and 6, respectively. In other words, 

derivatives 4a, 4b and 6 undergo some isomerization reaction in phosphate buffer 

solution. Two types of isomerism were considerd, namely a keto-enol tautomerism 

(Scheme 11) and a cis–trans isomerism about the C-N bond (Scheme 12). 

 
Scheme 11 Keto-enol tautomerism 

Scheme 12 E–Z isomerism 

In the literature34 a study of cis–trans isomerism about the C-N bond of N-substituted 

hydroxamic acids is reported. The same paper34 also reports that NMR peaks of the 

enolic forms of N-substituted hydroxamic acids are only observable at low 

temperature (-15° C). 
1H and 13C NMR spectra of derivatives 4a, 4b and 6 in CDCl3 and DMSO-d6 

afforded the signals of a single isomer and enolic signals were not observed.  

These results suggest the total or preponderant presence of one stable conformational 

isomer (Z or E) in solution. Furthermore, the 1H NMR spectrum of 6 in DMSO-d6 

shows a deshielded peak at 10.6 ppm, not revealed in CDCl3, which is imputable to 

the proton of the carbamic function. 

The low field shift of this proton is typical of a strongly intramolecularly hydrogen 

bonded proton, as is possible in the E isomer. 

The E isomer could be stabilized by intramolecular hydrogen bond, but destabilized 

by steric interactions between the group R and the pterostilbene scaffold. Based on 

these considerations it can be assumed that E is the prevailing isomer of derivatives 

4a, 4b and 6 in DMSO solution. 

It is expected that the E/Z ratio is temperature and solvent dependent and indeed it 

was able to detect changes in the E/Z in experiments described below and followed 

by means of HPLC analysis. 
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A 1 µL aliquot of a solution of 4b in DMSO (12 mM) was diluted in ACN (12 µM) 

at room temperature and analyzed by HPLC-ESI/MS. At t = 0 only one 

chromatographic peak was revealed and identified as 4b (E isomer) (Figure 43). 

After one hour at room temperature two extra peaks were observed: 10b (Z isomer) 

and 11 (Figure 41). 

 
Fig. 43 Chromatogram and mass spectrum of a fresh 4b solution in ACN (t = 0) at r.t. (12 µM). 

 
Fig. 44 Chromatogram and mass spectra of a 4b solution in ACN (t = 1h) at r.t. (12 µM). 

These results show that the E/Z ratio is solvent dependent and decreases in ACN. 

The results showing the isomerization of 4b to 10b in ACN at room temperature are 

shown in Fig. 45. 
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Fig. 45  isomerization in ACN, r.t. 

The effect of solvent on this type of isomerizations was investigated with a similar 

experiment using derivative 6 in aqueous solution.  A 1 µL aliquot of a solution of 6 

in DMSO (15 mM) was diluted with water (15 µM) at 20°C and analyzed by HPLC. 

The overlaid chromatograms reported in Figure 47 show that the E/Z ratio is 

decreasing in time. The effect is more clearly visible in the bar plot shown in Fig. 47. 

 
Fig. 46  Overlais chromatogram of 4b solution in DMSO diluted in water (t = 0, 10, 20, 30 min) at 

20°C (15 µM). 

 
Fig. 47 6 isomerization in H2O, 20°C 
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The effect of temperature was instead investigated by determining the E/Z ratio in 

two solutions of 6 in DMSO: H2O = 4:1 incubated at different temperatures. 

6 Solutions (15 mM) in DMSO: H2O = 4:1 were diluted in DMSO: H2O = 4:1 (15 

µM) solutions at 20 °C and 37 °C. At the higher temperature a decrease of the E/Z 

ratio is observed as well as the hydrolysis of 11 to pterostilbene. 

Overlaid chromatograms at 20 °C and 37 °C are reported in Figure 48.  

 
Fig. 48  Product 6 in DMSO:H2O 8:2. Two chromatograms are shown: in blue analysis immediately 

after addition of the compound at 20°C, in red analysis immediately after addition of the compound at 

37°C (15 µM). 

Isomerization-temperature effect (6/10c ratio decrease with temperature raising) is 

reported in plot, Figure 49. 

 

 
Fig. 49  Isomerization-temperature effect of 6 in DMSO:H2O

 



 
 



 
 

CHAPTER 4 

 

Experimental section 

 

This chapter contains the informations about materials, purification techniques, 

characterization methodsn and synthetic procedures. 

 

4.1 Materials and procedures 

4.1.1 Solvents and reagents 

Pterostilbene was obtained from Wonda Science (North Waltham, MA, USA). 

Dimethylamino piridine (DMAP), Trifluoroacetic acid (TFA), Triisopropylsilane 

(TIPS), p-Toluenesulfonyl chloride (TsCl), Triethylamine (TEA), N-Boc 

hydroxylamine, N-hydroxysuccinimide, Boc-Ala-OH, Boc-Ile-OH, N,N-

Dicyclohexylcarbodiimide (DCC), Triisopropyl silane (TIPS), Acetone, 

Tetrahydrofuran, Dichloromethane, Methanol, Petroleum Ether, Ethyl Ether, d-

Chloroform, DMSO-d6 and HPLC grade Acetonitrile were obtained from Sigma 

Aldrich (Steinheim, Germany).  

4.1.2 Purifications (FSGC, PTLC and preparative HPLC) 

Column chromatography was performed on silica gel Geduran Si 60 (0.063-0.200 

mm) by Merck. Preparative plates were prepared using silica gel 60 GF254 by Merck. 

Purifications by preparative HPLC were performed using a Shimadzu LC-8A with 

detector: absorption spectrophotometer UV-Vis at 300 nm and an inverse phase 

column (C18 functionalized silica) ACE 5 AQ with size of 150x21,2 mm. 

4.1.3 Mass spectrometry 

Mass spectra were obtained on Agilent Tech 6540 UHD, Finnigan MAT 95 or 

Agilent Technologies MSD SL Trap, equipped with electrospray source (ESI, 

ElectroSpray Ionization), ionic trap analyzer, connected with a binary pump (Agilent 

Technologies 1100 Series) and carried out in FIA (Flow Injection Analysis). 
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4.1.4 NMR spectroscopy 
1H and 13C NMR spectra were recorded with a Bruker AV300 FT-NMR 

spectrometer, a Bruker AVII400 spectrometer, Bruker AVII500 spectrometer. The 

following abbreviations are used to explain the multiplicities: s, singlet; d, doublet; 

dd, doublet of doublets; t, triplet; m, multiplet. 

4.1.5 Protocol for stability assays 

A 1 mL of a 5-15µM solution of the desired prodrug in the desired solvent was 

thermostatted at 37°C in the autosampler. Analysis of samples (2 µL) taken over time 

from solutions of the derivatives in HCl 0.1N and 0.1 M PBS (pH= 6.8) and analyzed 

using a reversed phase column (Zorbax RRHD Eclipse Plus C18, 1.8 µm, 50 × 2.1 

mm i.d.). The eluate was monitored at wavelength 300 nm. The amount of compound 

in the samples was determined from the area of the corresponding chromatographic 

peaks and expressed as percent of the total (plotted vs. time of incubation at 37°C). 

 

4.2 Synthesis of tert-butyloxy hydroxamate of pterostilbene 

4.2.1 tert-butyl  N-hydroxy carbamate  

A solution of hydroxylamine hydrochloride (7.10 g, 102 mmol) and (Boc)2O (22.0 g, 

101 mmol) in 1:1 THF:H2O (220 mL) at 0° C was treated with NaHCO3 (17.1 g, 203 

mmol). The solution was stirred at 0° C for 2 h, after which it was diluted with ethyl 

acetate, washed with H2O, and saturated aqueous NaCl, and dried (MgSO4). The 

solvent was removed under reduced pressure to provide the product as a white solid 

(12.4 g, 92%).  
1H NMR (400 MHz, CDCl3) δ 7.32 (s, 1H), 7.16 (s, 1H), 1.46 (s, 9H). 
13C NMR (101 MHz, CDCl3) δ 158.8, 82.1, 28.2. 

CI-MS LR m/z 151 (M + NH4
+, C5H15N2O3

+ requires 151). 

4.2.2 tert-butyl N-Tosyloxy carbamate 

Tert-Butyl N-hydroxycarbamate (5.01 g, 37.6 mmol) and TsCl (7.14 g, 37.5 mmol) 

in THF (60mL) at 0° C was treated with triethylamine (6.00 mL, 43.2 mmol). The 

resulting suspension was stirred at 0 °C for 4 h. The solution was filtered through 

course frit and the filtrate was concentrated under reduced pressure. The residue was 

dissolved in ethyl acetate, washed with 1N HCl, H2O, and saturated aqueous NaCl, 

and dried (MgSO4). The solution was concentrated, and the resulting yellow solid 
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was purified by FSGC (8:2 PE: acetone) to provide the product as a pure white solid 

(8.66 g, 80%). 
1H NMR (300 MHz, CDCl3) δ 7.91 – 7.86 (m, 2H), 7.57 (s, 1H), 7.36 (d, J = 8.0 Hz, 

2H), 2.46 (s, 3H), 1.30 (s, 9H). 
13C NMR (75 MHz, CDCl3) δ 145.9, 129.6, 129.6, 83.9, 27.2, 21.7. 

ESI-TOF HRMS m/z 305.1169 (M + NH4
+, C12H21N2O5S

+ requires 305.1166) 

4.2.3 tert-butyl N-pterostilbene carbamate (2) 

A solution of pterostilbene (604 mg, 2.35 mmol) in THF (4 mL) at 0° C was treated 

with LiHMDS (7.00 mL, 7.00 mmol, 1.0M in THF).The solution was stirred for 30 

min, after which tert-Butyl tosyloxycarbamate (2.09 g, 7.28 mmol) was added and 

the solution was warmed to room temperature and stirred for 4 h. The reaction 

mixture was diluted with dichloromethane, washed with H2O and saturated aqueous 

NaCl, and dried (MgSO4). The solution was concentrated under reduced pressure and 

purified by FSGC (30:70:5 PE:DCM:acetone) to afford 324 mg of product (37%).  
1H NMR (300 MHz, CDCl3) δ 7.51 – 7.45 (m, 2H), 7.17 – 7.11 (m, 2H), 7.00 (q, J = 

16.3 Hz, 2H), 6.66 (d, J = 2.2 Hz, 2H), 6.40 (t, J = 2.2 Hz, 1H), 3.82 (s, 6H), 1.32 (s, 

9H). 
13C NMR (75 MHz, CDCl3) δ 161.7, 157.0, 150.7, 139.9, 135.4, 129.5, 128.8, 128.1, 

122.2, 105.3, 100.8, 82.7, 56.0, 26.9. 

ESI-TOF HRMS m/z 372.1810 (M+ H+, C21H26NO5
+ requires 372.1805). 

4.3 Synthesis of N-(2-(2-methoxyethoxy)acetyl)N-pterostilbene 

carbamic acid 

4.3.1 tert-butyl N-(2-(2-methoxyethoxy)acetyl)N-pterostilbene carbamate (3a) 

To a solution of 2-(2 methoxyethoxy) acetic acid (231 mg, 1.72 mmol) in DCM (4 

mL) was added DCC (185 mg, 0.896 mmol). The reaction quickly became cloudy 

and was stirred at r.t. for 4 h. The reaction was filtered through a coarse frit and the 

filtrate concentrated under vacuum. Then it was diluted in diethyl ether (4 mL) and 

filtrated through microfilter (PTFE, 0.45 µm) and concentrated under vacuum. The 

product was dissolved in DCM (4 mL) and treated with a solution of 2 (74.2 mg, 

0.199 mmol) in DCM (4 mL), TEA (110 µL, ρ= 0.73 g/mL 0.792 mmol) and a small 

amount of DMAP cat. The reaction mixture was stirred at r.t. for 12h and then it was 

concentrated under vacuum, diluted with ethyl acetate, washed with H2O, saturated 
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aqueous NaCl, and dried (MgSO4). The solution was concentrated under reduced 

pressure and purified by FSGC (90:15 DCM:acetone) to afford 87.2 mg of product 

(90 %).  
1H NMR (400 MHz, CDCl3) δ 7.54 – 7.48 (m, 2H), 7.17 – 7.09 (m, 2H), 7.08 – 6.93 

(m, 2H), 6.64 (d, J = 2.3 Hz, 2H), 6.39 (t, J = 2.2 Hz, 1H), 4.63 (d, J = 1.1 Hz, 2H), 

3.80 (s, 6H), 3.78 – 3.67 (m, 2H), 3.63 – 3.55 (m, 2H), 3.37 (s, 3H), 1.38 (s, 9H).  
13C NMR (101 MHz, CDCl3) δ 171.0, 161.0, 153.5, 149.3, 138.9, 135.8, 129.5, 

127.7, 127.6, 121.37, 104.6, 100.1, 86.1, 71.9, 71.9, 70.8, 59.0, 55.3, 27.1. 

ESI-TOF HRMS m/z 488.2281 (M+ H+, C26H33NO8
+ requires 488.2279) 

4.3.2 N-(2-(2-methoxyethoxy)acetyl)N-pterostilbene carbamic acid (4a) 

A solution of 3a (101 mg, 0.208 mmol) in DCM (2 mL) was treated with 

triisopropylsilane (50 µL, ρ= 0.77 g/mL 0.244 mmol) and trifluoroacetic acid (2 mL) 

at 0°C. The mixture reaction was allowed to achieve room temperature, was stirred 

for 7h, and then the solvent was taken off under a stream of nitrogen and washed 

with DCM and evaporated under vacuum. The reaction mixture was dissolved in 

DMSO (1mL) and purified by HPLC (program: 10→100%B (30 min); where 

B=ACN  and A=H2O) to afford 39.6 mg of product (44%).  
1H NMR (400 MHz, CDCl3) δ 7.52 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.6 Hz, 2H), 

7.01 (q, J = 16.3 Hz, 2H), 6.65 (d, J = 2.2 Hz, 2H), 6.40 (t, J = 2.2 Hz, 1H), 4.68 (s, 

2H), 3.82 (s, 6H), 3.77 (dd, J = 5.4, 3.4 Hz, 2H), 3.62 (dd, J = 5.4, 3.4 Hz, 2H), 3.39 

(s, 3H). 
13C NMR (101 MHz, CDCl3) δ 170.1, 161.1, 150.6, 149.3, 139.0, 135.9, 129.6, 

127.9, 127.7, 121.6, 104.7, 100.2, 71.9, 71.3, 70.8, 59.0, 55.4. 

ESI-TOF HRMS m/z 432.1661 (M+ H+, C22H26NO8
+ requires 432.1653) 

4.4 Synthesis of N-(2-(2-(2-methoxyethoxy)ethoxy))acetyl)N-

pterostilbene carbamic acid 

4.4.1 tert-butyl N-(2-(2-(2-methoxyethoxy)ethoxy))acetyl)N-pterostilbene 

carbamate (3b)  

To a solution of 2-(2-(2-methoxyethoxy)ethoxy)acetic acid (489 mg, 2.75 mmol) in 

DCM (5 mL) was added DCC (286 mg, 1.39 mmol). The reaction quickly became 

cloudy and was stirred at r.t. for 4 h. The reaction was filtered through a coarse frit 

and the filtrate concentrated under vacuum. Then, it was diluted in diethyl ether (4 
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mL) and filtrated through microfilter (PTFE, 0.45 µm), and concentrated under 

vacuum. The product was dissolved in DCM (5 mL) and treated with a solution of 

2(126 mg, 0.341 mmol) in DCM (1 mL), TEA (189 µL, ρ= 0.73 g/mL 1.362 mmol) 

and a small amount of DMAP cat. The reaction mixture was stirred at r.t. for 12h and 

then it was concentrated under vacuum, diluted with ethyl acetate, washed with H2O, 

saturated aqueous NaCl, and dried (MgSO4). The solution was concentrated under 

reduced pressure and purified by FSGC (90:5 DCM:acetone) to afford 151 mg of 

product (83 %).  
1H NMR (400 MHz, CDCl3) δ 7.48 (t, J = 5.6 Hz, 2H), 7.15 – 7.08 (m, 2H), 6.98 (q, 

J = 16.4 Hz, 2H), 6.62 (d, J = 2.2 Hz, 2H), 6.36 (t, J = 2.2 Hz, 1H), 4.62 (s, 2H), 3.77 

(s, 6H), 3.75 – 3.64 (m, 4H), 3.64 – 3.59 (m, 2H), 3.54 – 3.48 (m, 2H), 3.33 (s, 3H), 

1.36 (s, 9H). 
13C NMR (75 MHz, CDCl3) δ 170.9, 160.8, 153.4, 149.2, 138.8, 135.6, 129.3, 127.5, 

121.2, 104.5, 100.0, 86.0, 71.8, 71.7, 70.7, 70.5, 70.3, 58.9, 55.2, 27.0. 

4.4.2 N-(2-(2-(2-methoxyethoxy)ethoxy))acetyl)N-pterostilbene carbamic acid  

(4b) 

A solution of 3b (60.9 mg, 0.115 mmol) in DCM (2 mL) was treated with 

triisopropylsilane (200 µL, ρ= 0.77 g/mL 0.976 mmol) and trifluoroacetic acid (2 

mL) at 0°C. The mixture reaction was allowed to reach room temperature, stirred for 

12 h, and then the solvent was taken off under a stream of nitrogen and washed with 

DCM and evaporated under vacuum. The reaction mixture was dissolved in DMSO 

(1mL) and purified by preparative HPLC (program: 10→100%B (30 min); where 

B=ACN  and A=H2O) to afford 23.7 mg of SP047 (44%).  
1H NMR (300 MHz, CDCl3) δ 7.53 (d, J = 8.5 Hz, 2H), 7.19 (d, J = 8.4 Hz, 2H), 

7.10 – 6.95 (m, 2H), 6.66 (d, J = 1.7 Hz, 2H), 6.41 (s, 1H), 4.68 (s, 2H), 3.88 – 3.76 

(m, 8H), 3.74 – 3.66 (m, 2H), 3.67 – 3.60 (m, 2H), 3.58 (d, J = 5.0 Hz, 2H), 3.40 (s, 

3H). 
13C NMR (75 MHz, CDCl3) δ 170.3, 161.1, 150.7, 149.4, 139.1, 135.9, 129.6, 127.9, 

127.7, 121.6, 104.8, 100.3, 72.2, 71.8, 71.3, 71.1, 70.2, 59.0, 55.5. 

ESI- LRMS m/z 493.2183 (M+ NH4
+, C24H33N2O9

+ requires 493.2181)  
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4.5 Synthesis of N-(acetyl) N-pterostilbene carbamic acid 

4.5.1 tert-butyl N-acetyl N-pterostilbene carbamate (5) 

A solution of 2 (95.5 mg, 0.257 mmol) in DCM (10 mL) was treated with acetic 

anhydride (128 µL, ρ= 1.08 g/mL 1.354 mmol), TEA (190 µL, ρ= 0.73 g/mL 1.370 

mmol) and a small amount of DMAP cat. The mixture reaction was stirred at r.t. for 

12h and then it was concentrated under vacuum, diluted with ethyl acetate, washed 

with H2O, saturated aqueous NaCl, and dried (MgSO4). The solution was 

concentrated under reduced pressure and purified by FSGC (40:50:5 

PE:DCM:acetone) to afford 92.9 mg of product (87%).  
1H NMR (300 MHz, CDCl3) δ 7.57 – 7.51 (m, 2H), 7.19 – 7.13 (m, 2H), 7.12 – 6.96 

(m, 2H), 6.67 (d, J = 2.2 Hz, 2H), 6.41 (t, J = 2.2 Hz, 1H), 3.83 (s, 6H), 2.53 (s, 3H), 

1.39 (s, 9H). 
13C NMR (75 MHz, CDCl3) δ 170.6, 161.0, 153.5, 149.6, 139.0, 135.6, 129.4, 127.8, 

127.6, 121.4, 104.6, 100.1, 85.7, 55.4, 27.0, 25.3. 

ESI-TOF HRMS m/z 414.1907 (M+ H+, C23H28NO6
+ requires 414.1911) 

4.5.2 N-(acetyl) N-pterostilbene carbamic acid (6) 

A solution of 5 (115 mg, 0.278 mmol) in DCM (2 mL) was treated with 

triisopropylsilane (200 µL, ρ= 0.77 g/mL 0.976 mmol) and trifluoroacetic acid (2 

mL) at -10°C. The mixture reaction was allowed to reach room temperature and was 

stirred for 12h, then the solvent was taken off under a stream of nitrogen and washed 

with DCM and evaporated under vacuum. The mixture purified by FSGC (40:65:5 

PE:DCM:acetone) to afford a mix of product and parent phenol. The product was 

purified by HPLC (program: 10→100%B (30 min); where B=MeOH and A=H2O) to 

afford 46.2 mg of product (54%).  
1H NMR (400 MHz, CDCl3) δ 7.55 (dd, J = 6.6, 4.7 Hz, 2H), 7.24 – 7.20 (m, 2H), 

7.04 (q, J = 16.3 Hz, 2H), 6.67 (d, J = 2.2 Hz, 2H), 6.42 (t, J = 2.2 Hz, 1H), 3.84 (s, 

6H), 2.64 (s, 3H). 
13C NMR (101 MHz, CDCl3) δ 168.8, 161.0, 149.4, 149.2, 138.9, 135.9, 129.5, 

127.8, 127.6, 121.6, 104.6, 100.2, 55.4, 23.6. 

ESI-TOF HRMS m/z 358.1286 (M+ H+, C19H20NO6
+ requires 358.1285) 
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4.6 Synthesis of N-Boc protected amino acydil tert-butyloxy 

hydroxamate of pterostilbene 

4.6.1 tert-butyl N-(Boc-Ala) N-pterostilbene carbamate (7a) 

To a solution of Boc-(L)-Ala (2.03 g, 10.7 mmol) in DCM (25 mL) was added DCC 

(1.31 g, 6.38 mmol). The reaction quickly became cloudy and was stirred at r.t. for 4 

h. The reaction was filtered through a coarse frit and the filtrate concentrated under 

vacuum. Then it was diluted in diethyl ether (5 mL) and filtrated through microfilter 

(PTFA, 0.45 µm), and concentrated under vacuum. The anhydride was dissolved in 

DCM (20 mL) and treated with a solution of 2 (500 mg, 1.35 mmol) in DCM (20 

mL), TEA (307 µL, ρ= 0.73 g/mL 2.217 mmol) and a small amount of DMAP cat. 

The mixture reaction was stirred at r.t. for 12h and then it was concentrated under 

vacuum, diluted with ethyl acetate, washed with H2O, saturated aqueous NaCl, and 

dried (MgSO4). The solvent was removed under reduced pressure and purified by 

FSGC (80:30:5 PE: EtOAc: acetone) to afford 548 mg of product (75 %).  
1H NMR (500 MHz, CDCl3) δ 7.54 (d, J = 8.4 Hz, 2H), 7.20 – 7.15 (m, 2H), 7.03 (q, 

J = 16.3 Hz, 2H), 6.67 (d, J = 2.2 Hz, 2H), 6.41 (t, J = 2.2 Hz, 1H), 5.24 (s, 1H), 3.83 

(s, 6H), 1.49 – 1.45 (m, 3H), 1.44 (s, 9H), 1.39 (s, 9H). 
13C NMR (126 MHz, CDCl3) δ 175.0, 161.0, 155.0, 153.1, 149.5, 139.0, 135.7, 

129.4, 127.8, 127.6, 121.4, 104.6, 100.2, 86.1, 79.8, 55.3, 50.8, 28.3, 26.9, 19.3. 

ESI-TOF HRMS m/z 565.2515 (M+ Na+, C29H38N2NaO8
+

 requires 565.2520) 

4.6.2 tert-butyl N-(Boc-Ile) N-pterostilbene carbamate (7b) 

To a solution of Boc-(L)-Ile (113 mg, 0.487 mmol) in DCM (1 mL) was added DCC 

(105 mg, 0.508 mmol). The reaction quickly became cloudy and was stirred at r.t. for 

4 h. The reaction was filtered through a coarse frit and the filtrate concentrated under 

vacuum. Then it was diluted in diethyl ether (4 mL) and filtrated through microfilter 

(PTFE, 0.45 µm), and concentrated under vacuum. The product was dissolved in 

DCM (2 mL) and treated with a solution of 2(19.4 mg, 0.0520 mmol) in DCM (2 

mL), TEA (29 µL, ρ= 0.73 g/mL 0.209 mmol) and a small amount of DMAP cat. 

The mixture reaction was stirred at r.t. for 12h and then it was concentrated under 

vacuum, diluted with ethyl acetate, washed with H2O, saturated aqueous NaCl, and 

dried (MgSO4). The solvent was removed under reduced pressure and purified by 

FSGC (40:65:5 PE:DCM:acetone and 3:1 PE:acetone) to afford 22.3 mg of product 

(73 %).  
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1H NMR (400 MHz, CDCl3) δ 7.53 (d, J = 8.5 Hz, 2H), 7.18 (d, J = 8.2 Hz, 2H), 

7.03 (q, J = 16.3 Hz, 2H), 6.67 (d, J = 2.3 Hz, 2H), 6.41 (t, J = 2.2 Hz, 1H), 5.16 (m, 

1H), 3.83 (s, 6H), 1.98 (m,1H), 1.62 – 1.37 (m, 20H), 1.08 – 0.99 (m, 3H), 0.93 – 

0.84 (m, 3H). 
13C NMR (101 MHz, CDCl3) δ 174.3, 161.1, 155.9, 149.7, 139.1, 135.8, 129.5, 

128.0, 127.7, 127.6, 121.5, 104.8, 100.3, 79.9, 77.3, 58.8, 55.5, 31.0, 27.1, 27.1, 23.3, 

16.3, 11.8. 

ESI-TOF HRMS m/z 607.2988 (M+ Na+, C32H44N2NaO8
+ requires 607.2990) 

4.7 Synthesis of tert-butyl N-(methyl) N-pterostilbene carbamate (8) 

A solution of 2 (38.9 mg, 0.105 mmol) in THF (1 mL) at 0 °C was treated with 

LiHMDS (104 µL, 0.104 mmol, 1.0M in THF) and was stirred for 30 min. MeI (13 

µL, 0.0209 mmol) was added, and then the solution was warmed to room 

temperature and stirred for 3 h. The solvent was removed under a stream of N2, and 

the residue was purified by PTLC (50:50:5 PE:DCM:acetone) to afford the product 

(23 mg, 57%). 
1H NMR (400 MHz, CDCl3) δ 7.52 – 7.47 (m, 2H), 7.15 – 7.11 (m, 2H), 7.02 (q, J = 

16.3 Hz, 2H), 6.66 (d, J = 2.2 Hz, 2H), 6.40 (t, J = 2.2 Hz, 1H), 3.83 (s, 6H), 3.32 (s, 

3H), 1.36 (s, 9H). 
13C NMR (101 MHz, CDCl3) δ 161.0, 158.1, 150.6, 139.2, 134.7, 128.7, 128.2, 

127.4, 121.7, 104.5, 100.1, 82.6, 55.4, 41.2, 27.1. 

ESI-TOF HRMS m/z 386.1962 (M+ H+, C22H27NO5
+ requires 386.1962) 

4.8 Synthesis of tert-butyl hydroxamate of pterostilbene 

4.8.1 tert-butyl Pivaloyl(N-tosyloxy)carbamate 

A solution of tert-Butyl N-Tosyloxycarbamate (1.03 g, 3.49 mmol) and 

trimethylacetyl chloride (2.14 mL, 17.4 mmol) in THF (15 mL) at 0 °C was treated 

with triethylamine. The solution was warmed to room temperature and stirred 

overnight (16 h). The reaction mixture was diluted with ethyl acetate, washed with 

H2O and saturated aqueous NaCl, and dried (MgSO4). The reaction mixture was 

concentrated and the residue purified by FSGC (1:1 PE: DCM) to provide the 

product as a white solid (1.11 g, 97%). 
1H NMR (300 MHz, CDCl3) δ 7.86 (d, J = 8.4 Hz, 2H), 7.37 (d, J = 8.0 Hz, 2H), 

2.46 (s, 3H), 1.33 (s, 9H), 1.29 (s, 9H). 
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13C NMR (75 MHz, CDCl3) δ 181.2, 151.0, 146.0, 131.3, 129.7, 129.6, 85.5, 43.4, 

27.5, 27.4, 21.7. 

ESI-TOF HRMS m/z 394.1297 ( 28.25% M + Na+, C17H25NNaO6S
+ requires 

394.1295) 272.0958 ( 100% M + H+ - Boc). 

4.8.2 N-(Tosyloxy) pivaloylamide 

A vial containing tert-Butyl Pivaloyl(N-tosyloxy)carbamate (505 mg, 1.36 mmol) 

was treated with TFA (2 mL). The reaction mixture was stirred at room temperature 

for 3 h. The solvent was evaporated under a stream of N2 to provide the product (346 

mg, 91%). 
1H NMR (400 MHz, CDCl3) δ 7.84 (d, J = 8.3 Hz, 2H), 7.31 (d, J = 8.2 Hz, 2H), 

2.41 (s, 3H), 1.06 (s, 9H). 
13C NMR (101 MHz, CDCl3) δ 165.1, 140.7, 130.5, 128.9, 126.0, 52.8, 27.5, 21.3. 

ESI-MS HR m/z 272.0947 (M +H+, C12H18NO4S
+ requires 272.0951) 

 

4.8.3 N-pterostilbene pivaloylamide (9) 

A solution of Pterostilbene (88.7 mg, 0.346 mmol) in THF (1 mL) at 0 °C was 

treated with LiHMDS (877 µL, 0.877 mmol, 1.0M in THF). The solution was stirred 

for 30 min, after which N-(Tosyloxy)pivalamide (239 mg, 0.880 mmol) was added 

and the solution was warmed to room temperature and stirred for 3 h. The reaction 

mixture was diluted with DCM, washed with H2O and saturated aqueous NaCl, and 

dried (MgSO4). The solution was concentrated and purified by FSGC (1:1 

DCM:hexanes +1% TEA) to afford the product as a white solid (24.9 mg, 20%) 
1H NMR (400 MHz, CDCl3) δ 7.48 (d, J = 8.6 Hz, 2H), 7.12 (d, J = 8.6 Hz, 2H), 

7.01 (dd, J = 40.1, 16.3 Hz, 2H), 6.66 (d, J = 2.2 Hz, 2H), 6.40 (t, J = 2.2 Hz, 1H), 

3.83 (s, 6H), 1.40 (s, 9H). 
13C NMR (101 MHz, CDCl3) δ 160.9, 152.5, 150.5, 139.3, 134.1, 128.4, 128.4, 

127.3, 121.9, 104.5, 100.0, 55.3, 50.8, 28.7. 

ESI-TOF HRMS m/z 356.1857 (M +H+, C21H26NO4
+  requires 356.1856) 



 
 

 



 
 

Conclusions 

Eleven new hydroxamate derivatives of pterostilbene have been synthesized and 

characterized (Fig. 50) with the purpose of studying the properties of the 

hydroxamate functionality as a protecting group for phenolic hydroxyl groups.  

 

Fig. 50  Pterostilbene and synthesized hydroxamate derivatives 

The interest in this research is related to the possibility of developing new prodrugs 

for oral administration. The reactivity of the new derivatives was studied in aqueous 

media at acidic and neutral pH which are characteristic of the stomach and first 

intestinal tract, respectively. I have found that the chemical stability of the N-O bond 

under these conditions changes significantly depending on the substituent groups on 

the hydroxamate function. 

In all cases, with the only exception of derivative 7a, a good stability for the 

protecting group was observed with respect to cleavage to regenerate pterostilbene. 

Other reactions were observed for some of the derivatives: kinetics, intermediates 

and products of these reactions were investigated by means of HPLC-ESI/MS 
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analysis. Notably, a cis–trans isomerization about the C-N bond has been identified 

and rationalized in the case of derivatives 4a, 4b and 6, 

Some of the derivatives I have synthesized, in particular derivatives 2, 8 and 9, show 

high stability in aqueous media mimicking gastric and intestinal pH values and are 

thus useful candidates for further bioassays which are underway. These include 

studies of stability in blood and pharmacokinetics in rats after oral administration and 

will be carried out by the group of Dr. Mario Zoratti of the CNR Institute of 

Neuroscience.
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ABBREVIATIONS 

ACN = Acetonitrile                                                            TEA = Triethylamine  

Boc = tert-butyloxycarbonyl                                              TFA = Trifluoroacetic Acid 

Boc-Ala-OH = N-(tert-Butoxycarbonyl)-L-alanine          TIPS = Triisopropylsilane 

Boc-Ile-OH = N-(tert-Butoxycarbonyl)-L-isoleucine       TLC = Thin Layer Chromatography 

(Boc)2O = Di-tert-butyl dicarbonate 

CDCl3 = Deuterochloroform 

DCC = Dicyclohexylcarbodiimide 

DCM = Dichloromethane 

DMAP = Dimethylaminipyridine 

DMSO = Dimethylsulphoxide 

DMSO-d6 = Hexadeuterodimethyl sulfoxide 

ESI-MS = ElectroSpray Ionization Mass Spectrometry 

EtOAc = Ethyl Acetate 

FSGC = Flash Silica Gel Chromatography 

HPLC = High Performance Liquid Chromatography 

Ile = L-Isoleucine 

LiHMDS = Lithium bis(trimethylsilyl)amide 

Ala = L-Alanine 

MeOH = Methanol 

NMR = Nuclear Magnetic Resonance 

PBS = Phosphate Buffer Solution 

PTLC = Plate Thin Layer Chromatography 

PTS = Pterostilbene 

RT = Room Temperature 

THF = Tetrahydrofurane 

TsCl = p-Toluenesulfonyl chloride  

UV = Ultraviolet 



 
 

 

ESI MASS AND NMR SPECTRA OF THE SYNTHESIZED COMPOUNDS 
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Product 2 1H NMR (300 MHz, CDCl3) 

 



 
 

Product 2 13C NMR (75 MHz, CDCl3) 
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Product 3a 1H NMR (400 MHz, CDCl3) 

 



 
 

Product 3a 13C NMR (101 MHz, CDCl3) 
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Product 4a 1H NMR (400 MHz, CDCl3)  

 



 
 

Product 4a 13C NMR (75 MHz, CDCl3) 
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Product 3b 1H NMR (400 MHz, CDCl3)  

 



 
 

Product 3b 13C NMR (75 MHz, CDCl3)  
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Product 4b 1H NMR (300 MHz, CDCl3) 

 



 
 

Product 4b  13C NMR (75 MHz, CDCl3)  
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Product 5 1H NMR (300 MHz, CDCl3)  

 



 
 

Product 5  13C NMR (75 MHz, CDCl3)  
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Product 6 1H NMR (400 MHz, CDCl3) 

 



 
 

Product 6 13C NMR (101 MHz, CDCl3)  
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Product 7a 1H NMR (500 MHz, CDCl3)  

 



 
 

Product 7a 13C NMR (126 MHz, CDCl3)  
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Product 7b 1H NMR (400 MHz, CDCl3) 

 



 
 

Product 7b 13C NMR (101 MHz, CDCl3)  
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Product 8 1H NMR (400 MHz, CDCl3)  

 



 
 

Product 8 13C NMR (101 MHz, CDCl3)  
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Product 9 1H NMR (400 MHz, CDCl3)  

 



 
 

Product 9 13C NMR (101 MHz, CDCl3)  
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