UNIVERSITY OF PADOVA

DEPARTMENT OF MATHEMATICS “TUurrio LEvI-CrviTA”

MasTER THESIS IN CYBERSECURITY

ATTACKING ANONYMITY SET IN TORNADO

CAsH ViA WALLET FINGERPRINTS

SUPERVISOR MaSTER CANDIDATE

Mavurco CoNTI MARTINA SOLETI

UNIVERSITY OF PADOVA

CO-SUPERVISOR STUDENT ID

ANKIT GANGWAL 2063554

AcCADEMIC YEAR

2023-2024

ii

“Gop’s SOLDIER”

v

Abstract

Tornado Cash is a decentralized application (dApp) that runs on Ethereum Virtual Machine
(EVM) compatible networks to enhance users’ privacy in terms of user transaction history over
the blockchain. The dApp achieves this goal by enabling users to deposit currencies into des-
ignated pools and subsequently withdraw them, severing the link between depositor and with-
drawer addresses. At deposit time, Tornado Cash communicates to users the level of privacy
they will benefit from (anonymity set) by depositing currencies into one of its pools. Existing
analyses have indicated discrepancies between the claimed anonymity set and the actual level of
privacy provided, primarily attributed to users’ incorrect utilization of the dApp. The current
project aims to explore a new way to challenge the dApp proposed anonymity set by examin-
ing wallet fingerprints, a factor not directly related to user behavior within the application. The
findings of this research shed light on the potential for creating links between clusters of users in
TC according to the new proposed approach and raise a privacy concern within the Ethereum
network.

vi

ABSTRACT

LIST OF FIGURES

LIST OF TABLES

LISTING OF ACRONYMS

1 INTRODUCTION

2 BACKGROUND

2.1 Ethereum
2.2 Gas fees

2.3 Tornado Cash
Deposit
Withdraw
2.4 Useful definitions

2.3.1
2.3.2

3 RELATED WORKS

4 PROJECT CORE

4.1 Wallet analysis
Metamask,
TrustWallet.
ShapeShift Wallet
Rainbow
OneKey.
Unstoppable Wallet
4.2 Tornado Cash analysis
4.3 Additional work

4.1.1
4.1.2
4.1.3
4.1.4
4.1.5
4.1.6

s REsuLTs

6 CONCLUSION

ACKNOWLEDGMENTS

vii

Contents

ix
xiii

XV

REFERENCES

viii

75

2.1
2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9
2.10

3.3

3.4

3.5

4.1
4.2
4.3
4.4

Listing of figures

Legacy transaction on Etherscan. 00000
EIP-1559 transaction on Etherscan.
Example of the Tornado Cash 1 ETH pool: addresses A through F deposit
to and withdraw from the pool. It quickly becomes impossible to associate
withdraw and deposit transactions given a growing mixer [1].
TC pools for ETH currency in the Ethereum mainnet network.
TC smart contracts addresses for ETH currency in the Ethereum mainnet net-
work [2].. . ..
Example of TC secret note, received after a deposit in the Goerli testnet net-
work. .. e
Toy example of a TC Merkle tree with height 3, four deposits C; and four pre-
initialized zerosleafx;.
Toy example of a TC deposit in the Merkle tree (Cs), with related Merkle path
{xe, 2, '}
TC general working schema [3].
Example of a withdrawal from o.1 ETH pool involving a relayer.

Heuristic 1 schema: a single address 4 withdrawing and depositing to the
same TCpool [1]. o
Heuristic 2 schema: two addresses (4 and D) depositing to and withdrawing
from the same TC pool with an equal custom-set gas price [1].
Heuristic 3 schema: addresses 4 and D deposit and withdraw from the same
TC pool, moreover interactions in terms of transactions do exist between them
outof TC[1]. e
Heuristic 4 schema: addresses 4 and D deposit and withdraw the same num-
ber of times from the same three Tornado Cash pools [1].
Heuristic 5 schema: address D performs a withdrawal from the 1 ETH pool,
obtaining a reward implying that the deposit has been in the pool for 7 blocks.

The only deposit present in the prior 7 block is the one made by 4, so the two
addressesarelinked [1].

Metamask features at frontend level. Lo
Metamask entry point for the send transaction button.
Metamask’s code flow in case of gas fee suggestions for type-2 transactions.

Metamask’s code flow in case of gas fee suggestions for type-o transactions. . .

ix

25

30
30
30

4.5
4.7
4.8

4.9
4.10

4.11
4.12

4.13
4.14

4.15
4.16

4.17
4.18
4.19
4.20
4.21
4.22

423
4.24
4.25
4.26

4.27
4.28
4.29
4.30
4.31
4.32
4.33
4.34
4.35
4.36

Figure 4.3’s catch branch ending flow, repeated for each priority level. 32

Figure 4.5 additionals. o oo 32
Metamask frontend gas fee suggestions for the low priority level along a type-
200 1 0 17 ot Uo) o VA 33
Collection of Metamask gas fee suggestions from the two URLS inherent to
ATYyPE-2 transaction. vt 33
Trust Wallet’s RPC parameters. 34
Trust Wallet’s RPC parameters. 35
Trust Wallet frontend gas fee suggestions for a type-2 transaction. 35
Collection of Trust Wallet gas fee suggestion for a type-2 transaction through
a python script emulating the logic of Trust Wallet. 35
Example of results coming from the ShapeShift Wallet API. 36
ShapeShift Wallet gas fee suggestions at the frontend level along a transfer op-
ELAtION. . . v v e e e e e e e e e 37
ShapeShift Wallet gas fee suggestions retrieved through a Python script. . . . 37
Rainbow’s source code snippet with the reference to the API involved in the
gasfeesuggestions. 38
Output form of the Figure 4.16’s APIcall. 38
Priority levels multipliers. o Lo 39
Rainbow wallet suggestions for the normallevel. 40
Rainbow wallet suggestions for the fastlevel. 40
Rainbow wallet suggestions for the wrgentlevel. 40

Rainbow gas fee predictions retrieved through a Python script. For the maxFeeP-
erGas parameter, the picture shows both the float value and its rounding to

the nearestinteger. L L 40
OneKey wallet suggestions for the Jowlevel. 41
OneKey wallet suggestions for the normallevel. 41
OneKey wallet suggestions for the highlevel. 41
Blocknative gas fee predictions for ranges of confidence in descending order

(from 90% to 70%). 42
Unstoppable Wallet RPC parameters. 43
Figure 4.27’s resultshandling. 43
Definition of recommendedBaseFee function in Figure 4.28. 44
Definition of recommended PriorityFee function in Figure 4.28. 44
Unstoppable Wallet gas fee suggestions at frontend level. 45
Unstoppable Wallet gas fee suggestions retrieved through a python script. . . 45
Portion of code related to the Tornado Cash’s generate Transaction function. 46
Portion of code related to the Tornado Cash’s ferchGasPrice function. 47
Portion of code related to the Tornado Cash’s gasPriceETH function. 47
Code snippet 1 of the gasPrice function in gas-price-oracle external library. . . 48

4.37 Oracle 1 taken into account by snippet in Figure 4.36.
4.38 Oracle 2 taken into account by snippet in Figure 4.36.
4.39 Code snippet 2 of the gasPrice function in gas-price-oracle external library.
4.40 Oracle taken into account by snippet in Figure 4.39.
4.41 Multipliers for different priority levels generation valid for both Figure 4.39
and Figure 4.42 snippets. L L L
4.42 Code snippet 3 of the gasPrice function in gas-price-oracle external library.
4.43 Example of a withdrawal involving a relayer and the 100 ETH smart contract.
4.44 Tornado Cash gas fee suggestions according to the above formula.
4.45 Example of TC activity concerning its 10 ETH pool in Ethereum Mainnet
network. ... L.
4.46 Example of TC activity concerning its too MATIC pool in Polygon network.
4.47 Rabby Waller suggested fees at frontendlevel.
4.48 Rabby Wallet suggested fees in wer retrieved through the APL.

5.1 Example of gas fee suggestions collected at a specific UTC time by the built
Pythomscript. L

5.2 Javascript code snippet for retrieving (and filter) transactions from the Etherenm
blockchain.

5.3 Example of a real transaction validated over the Etherenm Blockchain.

5.4 Gas fee suggestion collections coming from the analyzed wallets for a times-
tamp consistent with the transaction in Figure s.3.

s.s Example of a real transaction validated over the Etherenm Blockchain.

5.6 Gas fee suggestion collections coming from the analyzed wallets for a times-
tamp consistent with the transaction in Figures.s.

5.7 Example of a real transaction validated over the Etherenm Blockchain.

5.8 Gas fee suggestion collections coming from the analyzed wallets for a times-
tamp consistent with the transaction in Figures.7.

5.9 Example of a real deposit transaction validated over the Etherenm Blockchain.
TCpoolinvolvedis IOOETH.

s.1o Full match in terms of gas fee suggestions coming from the Metamask wallet
for a timestamp consistent with the transaction in Figure s.g9.

s.11 Example of a real withdrawal transaction validated over the Ethereum Blockchain.

TC poolinvolvedis IO0ETH.
s.12. Full match in terms of gas fee suggestions coming from the Metamask wallet
for a timestamp consistent with the transaction in Figure s.x1.
s.13 Example of areal Tornado Cash deposit transaction validated over the Etherenm
Blockchain.
5.14 Gas fee suggestion collections coming from the TC platform according to the
empirically retrieved formula for a timestamp consistent with the transaction
inFigures.x3. L

xi

48
48
49
49

50
50
SI
SI

52
53

55
55

58

6o
61

61
61

61
62

62

65

65

5-15

Example of a real Tornado Cash withdrawal transaction with relayer involved
validated over the Ethereum Blockchain.
Gas fee suggestion collections coming from the TC platform according to the
empirically retrieved formula for a timestamp consistent with the transaction
inFigures.xs. L
Example of a real Tornado Cash withdrawal transaction with no relayer in-
volved validated over the Ethereum Blockchain.
Gas fee suggestion collections coming from the TC platform according to the
empirically retrieved formula for a timestamp consistent with the transaction
inFigures.xz.

xii

Listing of tables

xiil

Xiv

Listing of acronyms

dApp Decentralized Application

TC Tornado Cash

DeFi........... Decentralized Finance

P2P Peer to Peer

EOA Externally Owned Account

ENS Ethereum Name Service

EVM Ethereum Virtual Machine

OFAC Office of Foreign Assets Control

SDN Specially Designated Nationals And Blocked Persons
PoW Proof-of-Work

zk-SNARK Zero-Knowledge Succint Non Interactive Argument of Knowledge
RPC........... Remote Procedure Call

CLI Command Line Interface

EIP Ethereum Improvement Proposal

GNN Graph Neural Network

XV

Xvi

Introduction

Blockchains are public, decentralized, distributed, append-only immutable ledgers that pro-
vide users with pseudo-anonymity, enabling them to trigger some events that are recorded in
the form of a new transaction written on the ledger. Money transfer is an event example over
the blockchain. The term blockchain itself refers to the ledger structure: a chain of blocks, with
each block containing transactions and other data. This chain is made in such a way that any-
one can get in it and look at its content (public), there is not a single entity that detains control
over it (decentralized), anyone can have a copy of it according to a peer-to-peer protocol (dis-
tributed) and new content can take part of it considering that, once added, no modification is
allowed (append-only). Users are drawn to blockchains for their decentralized nature, freeing
assets from centralized authorities like banks, and for the pseudo-anonymity they offer, with
each user identified by one or more hexadecimal addresses. Bitcoin [4] is the first blockchain
system to go live, enabling parties to engage in money transfers using the native currency of
the blockchain. Bitcoin has been followed up by Ethereum, a blockchain offering enhanced
capabilities by enabling the execution of decentralized applications (dApps) directly within its
blockchain network through the deployment of smart contracts [5]. Smart contracts consist
of programs runnable over the blockchain, there identified by their unique address. An exam-
ple of smart contract running over Ethereum is Tornado Cash (TC). It consists of a dApp that
retrofits the network with privacy, addressing concerns arising from the pseudo-anonymity
(and not anonymity) offered by blockchains: a malicious user could analyze the blockchain

public data for inferring correlations between addresses or even the identity of users behind

some addresses. This result could be achieved with the help of off-chain data, enabling the ma-
licious user to profile other blockchain users and to understand who owns what [2]. Tornado
Cash is part of the family of privacy mixers, solutions born to make funds untraceable. If on
one hand such a solution is legitimately embraced by users who are willing to increase their
privacy over the blockchain, on the other hand the provided untraceability property has led
to the abuse of mixing services for money laundering and committing fraud. These illegal ac-
tions, which pose significant threats to the blockchain ecosystem and financial order [3], have
captured the interest of centralized regulator, leading on August 8th 2022 the US Treasury’s
Office of Foreign Assets Control (OFAC) to place sanctions over TC due to alleged facilitation of
money laundering. OFAC added the T'C website and related blockchain addresses to the Spe-
cially Designated Nationals And Blocked Persons (SDN) list. According to the sanctions, US
citizens are no longer legally allowed to use the TC website or involve any property or interest
transactions with those blacklisted addresses [6]. The sanctions have led to a series of conse-
quences, like miners who stopped processing any TC deposit and withdrawal transactions, as
well as decentralized finance application (DeFi) platforms which started banning addresses that
receive transactions from TC. Such a censorship has greatly reduced the mixer’s daily deposits
but has not completely stopped them [7], implying that they do exist methods to bypass it. At
the frontend level, for instance, DeFi users could interact with the platform smart contracts
through a Command Line Interface (CLI) or could fork the platform project to create their
own frontend interface [8]. Bypassing the censorship makes the problem of the illegal activi-
ties in which mixers could be involved still actual, this is one of the reasons that led researchers
to put their attention into ways to reconstruct the linkability broken by privacy mixers, hence
creating back a correlation between mixer’s users to regain funds traceability. For this purpose,
several heuristics have already been proposed (Chapter 3 for details). The proposed heuristics
lay down on the way TC mixer is approached by users, hence behavioral errors made by users
that make the dApp not express itself at its best. The aim of the current project is that of going
on with the open research in this field, moving the focus to a novel approach that takes into
account fingerprints left by wallets at transaction time to create linkable clusters of users: those
users who have made a transaction through the same wallet software are considered to belong
to the same cluster, hence to be linkable. Translating this into the TC context and moving
under the assumption that when a user makes use of TC he will use the same wallet software
for both his deposit and withdrawal, deposits and withdrawals starting from the same wallet
software are considered to be linkable.

The contributions of this thesis are threefold:

* A new Ethereum privacy concern is identified and validated through empirical testing;

* A new heuristic to create linkable clusters of TC users based on wallet fingerprints has
been built up. This new approach is distinct from the existing ones since it is not directly

related to the user approaching the dApp;

* Existing TC transactions (deposits and withdrawals) covering a time window of about
one month have been analyzed to evaluate the effectiveness of the proposed heuristic.

To provide a comprehensive understanding of the research journey and its contributions,
the remainder of this thesis is structured as follows: Chapter 2 provides the reader with a strong
background on the Ethereum network, elucidating its working and the role of TC within it.
This chapter delves into technical details relevant to the context. Chapter 3 offers a summary
of existing research efforts aimed at reconstructing address linkability disrupted by mixers like
TC. It underscores that previous heuristics primarily focus on how users engage with the TC
dApp. Chapter 4 presents the concrete efforts undertaken in this thesis project. It outlines
the development of a novel approach targeting TC’s anonymity set by leveraging wallet finger-
prints. This chapter details the methodology employed and the rationale behind the proposed
approach. Chapter 5 evaluates the proposed methodology by analyzing its impact on both the
Ethereum network and TC transactions. This evaluation aims to investigate the efficacy and
feasibility of the approach, showcasing the results obtained. Chapter 6 serves as the culmina-
tion of this work, summarizing the content and contributions of the thesis. Additionally, it

offers insights into potential future directions for research in this domain.

Background

Technical details about different blockchains may vary, but intuitively a blockchain is a special
type of database that is shared between nodes in a peer-to-peer network, where a node can be
represented by any user who owns a device running a specific client software to take part to the
blockchain network. The blockchain has to be intended as a ledger made of blocks. Each block
contains some data (e.g., transactions) and is chained to a previous and next block, so forming
a chain of blocks (chain of data). The chaining mechanism takes place since each block, among
the contained data, includes the hash of its previous block’s content. Every transaction one
makes is recorded on the public ledger once validated, with a transaction being initiated upon
the triggering of various events on the blockchain, including but not limited to the transfer
of cryptocurrencies (native network cryptocurrencies or ERC-20 tokens) and the invocation
of smart contracts. Blockchains use different techniques to achieve the same goals of trans-
parency, pseudo-anonymity, decentralization and tamper-proof: it is the case of Bitcoin, Zcash
and Ethereum, that achieve their goals through diverse design. With the Bitcoin network, the
principles and technology of blockchain have been introduced for the first time[9]. Bitcoin’s
purpose is to offer users the possibility of joining a cash system where cryptocurrency trans-
fers occur through anonymous addresses without going through a financial institution. Other
blockchains like Zcash and Ethereum follow the same idea, in particular Ethereum expands it
by proposing itself as the place where dApps can run, where a dApp is a software application
running in a decentralized network by exploiting the blockchain technology. DeFi is a dApp

example, with the purpose of offering financial services.

2.1 ETHEREUM

Etherenm is the most used public blockchain for settling transactions [1]. It employs the ac-
count model (users store their assets in accounts), with two types of accounts available: exzer-
nally owned accounts (EOA) and contract accounts. EOA is managed by an individual user via
an asymmetric cryptographic key pair, consisting of a private key and a corresponding public
key, exclusively held by the user. A user doesn’t need to personally worry about the generation
of these keys since the wallet he will use for interacting with the blockchain will automatically
manage the process. A wallet can be intended as a user interface through which users can sub-
mit transactions to the blockchain. There are several types of cryptocurrency wallets, each
offering different levels of security, accessibility, and convenience. Some of the most common
types of blockchain wallets include software wallets (desktop, mobile or web applications) and
hardware ones (physical devices specifically designed to store cryptocurrency keys offline, pro-
viding an extra layer of security by keeping the keys away from internet-connected devices).
The EOA’s private key enables the account owner to send signed transactions from that ac-
count, a signing to be intended as a digital signature put over the transaction, guaranteeing
authentication, integrity and non-repudiation principles for it. The public key is used to de-
rive an address for the EOA, in particular the public address corresponds to the hash of the
EOA’s public key and has a hexadecimal format. Such an Ethereum address can be mapped to
a human-readable name through the Ethereum Name Service (ENS), a naming system imple-
mented as a smart contract with the purpose of providing a more user-friendly way of trans-
ferring assets on Ethereum. Contract accounts are those related to smart contracts. A smart
contract is a piece of code containing functions that can be triggered over the blockchain. Func-
tions can be interpreted as the smart contract’s action set. Once a smart contract is generated
and published over the blockchain, it is immutable and persistent, meaning that neither its
developer can tamper with it. Smart contracts are identified by their own address, generated
as the hash of their contract code. Contract accounts cannot initiate transactions, but their
address can be used as destination address by a transaction made by EOA: this will trigger the
execution in the EVM of the contract code related to that smart contract. Transactions issued
by EOA can either create a new contract account or call existing accounts (another EOA or
a smart contract). The execution of a transaction comes with a cost known as gas fees. Such
a cost is paid by the transaction issuer, who has a balance in ether (ETH) in the account he
owns, where ether corresponds to the Ethereum native currency. Such a balance is altered by

the transactions occurring. Generating a transaction does not mean having it inserted into the

6

blockchain. Before this happens, the transaction needs to be validated. In the time window be-
tween transaction generation and transaction validation, that transaction lays into a memory
pool (mempool). Validating a transaction means inserting it into a new block of the blockchain.
Blockchain does not increase in size transaction after transaction, but block after block: vali-
dating a transaction involves the addition of a new block to the blockchain, which includes the
verified transaction along with others. The addition of new blocks to the blockchain adheres
to the Proof-of-Work (PoW) consensus protocol, which involves the mining activity carried
out by miners. Miners are individuals or entities responsible for proposing new blocks to the
blockchain (mining blocks), determining the order of transactions within those blocks. They
achieve this by validating the transactions included in the proposed block, subsequently propa-
gating the data across the network. A miner successfully adds a new block to the blockchain by
solving a mathematical problem before other miners do. It essentially becomes a competition
where the winner is who comes first to the solution. Solving the mathematical problem requires
computational effort. The greater a miner’s computational power, the higher his chances of
winning the competition. Groups of miners can combine their computational power (mining
pools) to increase their chance of winning the competition, where winning the competition im-
plies a reward in terms of currencies (in the event of a competition won by a mining pool, the
reward would be distributed among all participants based on the proportion of computational
power each of them has contributed with to the PoW protocol). The mathematical problem
miners must solve in order to create a new block filled with transactions to be inserted into
the blockchain involves finding that numerical value to be appended to the block’s content so
that the resulting hash (of the whole block content) starts with 7 zero-values. The 7 value can
change to adjust the computational complexity required by the PoW protocol: the protocol has
been built in such a way that, on average, a new block is created within a certain timeframe. To
maintain this average, the complexity of the mathematical problem increases linearly with the
available computational power. In simple terms, as more miners participate in mining, hence
more computational power is allocated to the activity, greater computational effort will be re-
quired to add a new block. The miner is the one who selects, among the pending transactions
present in the memory pool, those to be inserted into a new blockchain block. The selection
process considers two main factors: the transaction fee associated with each transaction and
the block gas limit, which specifies the maximum amount of gas units that may be consumed
by dealing with all the transactions within the block (a block can contain a limited number of
transactions). The transaction fee in a quantity whose amount s up to the sender (the user who

issued the transaction). A higher transaction fee set by the sender increases the likelihood of the

miner including that transaction in a new block, as it results in a greater reward for the miner
upon validation. This incentivizes miners to prioritize transactions with higher fees when con-

structing new blocks.

2.2 (GAS FEES

The EVM is where code related to smart contracts deployed over the Ethereum blockchain is
executed. Any operation pursued by the EVM (opcode), based on the complexity of the opera-
tion itself, has several gas units assigned. For each gas unit, there is a gas price to be paid: this
is where transaction gas fees originate. Whenever the smart contract code is executed in the
EVM, that execution consumes a certain amount of gas [10]. At each transaction, the sender
needs to define the maximum amount of gas units the transaction is allowed to consume. This
amount takes the name of gas limit. Each gas unit has a cost named gas price, whose maxi-
mum amount is settled by the user as well. The gas amount is generally expressed in Gwei
(1 Gwei = 10"’ETH). The maximum amount of fees a user will pay for a transaction is then

given by the product of the two quantities:
Max transaction fees = gas limit x gas price

Gas fees (or transaction fees) do not correspond to a fixed quantity, that is since they are up
to the overall Ethereum traffic volume at the time of transaction initiation: the higher the net-
work congestion, the higher the gas fees. Due to the blockchain’s dynamic nature, one does
not know statically how much gas will his transaction burn. In general nowadays, if a trans-
action does not consume all the gas assigned to it, then surplus gas is refunded to the caller
(Section 2.2 for details); however, if a transaction runs out of gas (a transaction validation re-
quires gas that exceeds the set gas limit), an Out-of-Gas exception is thrown by the EVM and
the transaction will fail. The failed transaction would be recorded on-chain and any used gas
would not be refunded to the sender. Since miners’ reward is up to the transaction fees, they are
naturally incentivized to insert transactions with higher gas prices into their blocks. The sender
of a transaction therefore faces a trade-off between timely inclusion and cost of his transaction
[11]: a higher gas price will increase the likelihood of having a transaction included quickly.
To mitigate the risk of overpaying for transaction fees, gas price oracles have been developed.
Among their functions, these oracles provide recommendations for the appropriate gas price

required for a transaction to be included in a block within a specified timeframe. Oracles are

distinguished as on-chain and off-chain. Off-chain oracles are external entities or systems that
provide data to smart contracts from outside the blockchain. These oracles can be servers, APIs,
IoT sensors, or any other external data source. On-chain oracles, on the other hand, are mech-
anisms that operate directly within the blockchain network to provide data to smart contracts.
These oracles can be implemented as smart contracts or protocols that gather and distribute
data within the blockchain. Wallets utilize oracles to generate gas price suggestions for users
who are initiating transactions through the wallet’s interface. For a transaction to be included
in a newly proposed block, its gas price has to be at least as high as the block’s BaseFeePerGas.
This value is not a constant one, it changes from block to block depending on network conges-

tion. All the transactions within the same block are subject to the same base fee.

EIP1559 VS LEGACY TRANSACTIONS

Gas fee details differ according to the type of transaction sent over the blockchain. Etherenm
Improvement Proposal 1559 (EIP-1559)" defines a new standard around the Ethereum proto-
col concerning gas fee setting. Before EIP-1559, the transactions with a smaller gas fee on the
Ethereum chain often remained pending for a long time because the blocks are always filled
with the highest paying transactions. To eliminate this, EIP-1559 introduced a new system
of gas fees with a base fee per block and a tip for the miner, corresponding to his reward for
the transaction inclusion into the block. With EIP-1559, the gas limit of the blocks doubled,
which means there is space for more transactions in one block. The EIP-1559 upgrade is fully
compatible with previous versions, thus transactions not following the standard continue to
function normally as well. This translates into two possible transaction types: Type-o (legacy)
and Type-2 (EIP-1559). The two transaction types differ in the number of parameters related
to gas fees they present®. Type-o transaction has only one parameter for the gas fee setting
(gasPrice, whose meaning is the one already discussed). Type-2 transaction has two parameters

for the same purpose: maxFeePerGas and maxPriorityFeePerGas.

* MaxFeePerGas is the maximum amount of gas fee a user is willing to pay per unit of gas
for a transaction.

* MaxPriorityFeePerGasis the tip a user sets for the miner. The higher is the tip, the higher
will be the desire of the miner to include that transaction in the block. This parameter

"More details concerning EIP-1559 standard here: https: / /www . quicknode . com/ guides /
ethereum-development/transactions/how-to-send-an-eip-1559-transaction

*For details over gas fees related parameters:https @ / / www . quicknode . com / guides /
ethereum-development/transactions/how-to-send-transactions-on-ethereum-using-python

https://www.quicknode.com/guides/ethereum-development/transactions/how-to-send-an-eip-1559-transaction
https://www.quicknode.com/guides/ethereum-development/transactions/how-to-send-an-eip-1559-transaction
https://www.quicknode.com/guides/ethereum-development/transactions/how-to-send-transactions-on-ethereum-using-python
https://www.quicknode.com/guides/ethereum-development/transactions/how-to-send-transactions-on-ethereum-using-python

determines transaction priority.

Once the parameters related to gas fees are set for a transaction, the amount of fees a user will

spend at most is so retrievable:
Max transaction fees = gas limit X gas price

where:

* In Type-o transaction, gas price is the price per gas unit set by the sender, including the
miner’s reward;

* In Type-2 transaction, gasprice = min(BaseFeePerGas + maxPriorityFeePerGas,
maxFeePerGas).

The transaction fees so defined correspond to the amount of fees burnable at most. Consid-
ering the gasUsed as the effective amount of gas unit burnt by a transaction:

* In case of Type-o transactions, once confirmed, the amount truly burnt overall corre-
sponds to transaction fees = gasUsed X gas price,

(® Transaction Fee: 0.0143086275719434 ETH $46.71

(® Gas Price 33.137164363 Gwei (0.000000033137164363 ETH)
@ Ether Price: $3,279.40 / ETH

(® Gas Limit & Usage by Txn: 687,500 431,800 (62.81%)

(® Gas Fees Base: 31.849038271 Gwei

(® Burnt Fees: & Burnt: 0.0137524147254178 ETH ($44.90)

(@ Other Attributes: Txn Type: 0 (Legacy) Nonce: 1709 Position In Block: 175

Figure 2.1: Legacy transaction on Etherscan.

* In case of Type-2 transactions, once it is confirmed, the quantity truly burnt is
transaction fees = gasUsed x gas price with gas price defined as above and the amount
(MaxFeePerGas — (BaseFeePerGas + maxPriorityFeePerGas)) * gasUsed is refunded
back to the sender of the transaction itself (szved fees).

Gas fees are what is burned anytime a smart contract function is triggered. This is the case

of Tornado Cash as well.

I0

@ Transaction Fee 0.000506314462584 ETH ($1.66)

@ Gas Price 24.110212504 Gwei (0.000000024110212504 ETH)

® Gas Limit & Usage by Txn: 21,000 21,000 (100%)
@ Gas Fees: Base: 24.100212504 Gwei | Max: 32.662396736 Gwei | Max Priority: 0.01 Gwei

@ Burnt & Txn Savings Fees: & Burnt: 0.000506104462584 ETH ($1.66) < Txn Savings: 0.000179595868872 ETH ($0.59)

@ Other Attributes Taxn Type: 2 (EIP-1559) Nonce: 0 Position In Block: 223

Figure 2.2: EIP-1559 transaction on Etherscan.

2.3 TorNADO CASH

The Ethereum account model has several implications from a privacy standpoint. Firstly, it
incentivizes the reuse of accounts across multiple transactions, so facilitating the profiling of
transaction histories. To address this issue, users can employ a mixer, a tool designed to protect
the privacy of blockchain addresses by breaking the link between an address and its transaction
history. TC is a dApp belonging to the family of coin mixers and operating across multiple
networks using smart contracts. These networks include Ethereum Mainnet, Binance Smart
Chain, Polygon, Optimism, Arbitrum, Gnosis, and Avalanche Mainnet. Due to the high level
of T'C usage activity on the Ethereum Mainnet, the network is the main focus of this project.

Within the family of coin mixers, TC is categorized as a non-custodial one. Mixers can be

custodial or non-custodial [1]:

* In a custodial mixer, users send their coins to a trusted party, who in return sends back
“clean” coins after some timeout. During mixing a user does not retain ownership of his
coins, hence the trusted mixing party might steal funds.

* A non-custodial mixer replaces the trusted mixing party of custodial ones with a publicly
verifiable smart contract. Non-custodial mixing is a two-step procedure. First, users
deposit equal amounts of ether or other tokens into a mixer contract from address A.
After some user-defined time interval, they can withdraw their deposited coins with a
withdrawal transaction to a fresh address 3. In the withdrawal transaction, users can
prove to the mixer contract that they deposited without revealing which deposit trans-
action was issued by them by using one of several available cryptographic techniques
(zkSNARK in TC context).

TC performs its job through the usage of smart contracts. Each contract has an address
and can be thought as a pool where currencies can be deposited in and withdrawn from. What

TC, and other mixers, do is "mixing” a user transaction with those of others in a pool, making it

II

harder to link deposits and withdrawals from that pool. Each single pool accepts a fixed amount

of the same currency.

Tornado

Cash 1
ETH Mixer

Figure 2.3: Example of the Tornado Cash 1 ETH pool: addresses A through F deposit to and withdraw
from the pool. It quickly becomes impossible to associate withdraw and deposit transactions
given a growing mixer [1].

Currencies accepted by the TC platform in the case of its usage over the Ethereum Mainnet
network correspond to the native one (ETH) plus several Ethereum-based tokens (e.g., DAZ
USDC, wBTC, etc). Each currency has four pools to it related. Among the currencies, ETH is
the most frequently used for transactions within the Tornado Cash ecosystem on the Ethereum
network, thus warranting attention in this project. In TC, users are required to complete the
coin mixing in two steps: deposit and withdraw. Users deposit equal amounts to a TC smart
contract (pool). After some time, users can withdraw their funds from the mixer contract to a
freshly generated EOA by providing a zero-knowledge proof (ZKP) that proves that the with-
drawing user is one of the depositors. At this point, the withdrawing EOA has enhanced its
privacy since it has become unlinkable to any unique depositor EOA. A user’s anonymity is
defined by the number of equal user deposits in a given pool. This is the pool’s Anonymity Set:
the more users deposit in the pool, the greater the number of people that a withdrawal could
come from [1]. The definition of anonymity set implies that any of its members are equally

likely to be the deposit address actually linked to a given withdrawal address.

2.3.1 DEPOSIT

Using Tornado Cash means performing a deposit with respect to one of its pools (smart con-

tracts). Each currency has its own pools. Focusing on the native currency of the Ethereum

I2

mainnet network (ETH), there are four pools a user can deposit into. Each of these pools can
be subject to the deposit of a fixed amount of ether: o.1 ETH, 1 ETH, 10 ETH, 100 ETH.

Deposit Withdraw

ETH

Amount [

——0—0—0—

©.1 EIH 1 ETH 1@ ETH 1ee ETIH

Figure 2.4: TC pools for ETH currency in the Ethereum mainnet network.

If a user wants to deposit 111 ETH, he has to perform a total of three different deposits:
* One deposit towards the smart contract related to the fixed amount of 1 ETH;
* One deposit towards the smart contract related to the fixed amount of 10 ETH;
* One deposit towards the smart contract related to the fixed amount of 100 ETH.

To do so, the depositor has to interact with the related smart contracts, hence with the related

blockchain addresses.

ETH amount Smart contract address Created time (+UTC)
0.1 12D66f87A04A9E220743712cE6dIbBIB5616B8FC 2019-12-1619:08:43
1 47CEOC6eD5B0Ce3d3A51fdb1C52DC66a7c3¢2936 2019-12-1622:17:53
10 910Cbd523D972eb0abf4cAes618aD62622b39DbF 2019-12-16 22:46:55
100 A160cdAB225685dA1d56aa342Ad8841c3b53f291 2019-12-2518:02:56

Figure 2.5: TC smart contracts addresses for ETH currency in the Ethereum mainnet network [2].

At deposit time, the depositor generates two random numbers £, » € B**® with B = {0,1},

k a n-bit nullifier and 7 a #-bit randomness. Both values are known only to the depositor and

13

must remain secret at all times. The depositor hashes the concatenation of the generated values
through the Pedersen hashing function /; [12], so obtaining the commitment C = H; (k||r)
as a 256-bit unsigned integer. The pre-image of the commitment (hence, the concatenation of
the two generated random values) corresponds to a secret note saved on the depositor side in
the form of a.zxz file. The note, corresponding to a sequence of digits, will be needed for the

withdrawal purpose.

E backup-tornado-eth-0.1-5-0xc381i X + - (=} X

File Modifica Visualizza &

ftornado-eth-0.1-5-0xc3817dd3fcee088166737db22f 4358649, 7275fbf5025acf8e5e749¢03d477 fc8oe’ 1cd3de

Figure 2.6: Example of TC secret note, received after a deposit in the Goerli testnet network.

The commitment so made (H(note)) is inserted into a data structure called Merkle Tree as

a new non-zero leaf [13].

MERKLE TREE

A Merkle Tree is a complete binary tree structure in which each leaf node is a hash of a block of
data (Pedersen hash of the note in TC), and each non-leaf node is a hash of its children (MiMC
as used hash function in TC).

R=H(a)llz))
@, = H(z)||zh) zy = H(zy||z))
fl—H(QHCz 2—H(C3||C4 &—Hl [[ze) 4—HI’||TB

/N SN SN N

Figure 2.7: Toy example of a TC Merkle tree with height 3, four deposits C; and four pre-initialized zeros leaf x;.

In TC context, the Merkle tree has height 20, with 220 possible leaves for a single Merkle tree,
hence 2% possible deposits. Each TC pool (smart contract) has its own Merkle Tree. When the

Merkle tree related to a single pool is full, a new one is needed. The Merkle tree is initialized

14

with all leaves being a default value, called zero-leaf. Whenever a new deposit is performed
towards a specific pool, the related Merkle tree leaf content, starting from the most left zero-
leaf, is replaced with the commitment value. By then, the content of all the nodes in the path
from that node to the root is updated as well [14]. The sequence of neighboring nodes required

to update the Merkle tree root after the addition of a new leaf is referred to as the Merkle path®.

2" llal)
"
T, :H(-'l’lllﬂfg) -r_g —H(xngq.
l’l—H(QHCZ Ig—H(CgHC} vy = H(Cs||zs) wy = H(xr||zs)

/NN SN N

Figure 2.8: Toy example of a TC deposit in the Merkle tree (Cs), with related Merkle path {x(,, xﬁ}, x{’}

2.3.2 WITHDRAW

When a user considers the size of the anonymity set as satisfactory, he may proceed to withdraw
his asset from the mixer. To do so, the withdrawer submits the note generated at deposit time
and the recipient address to the TC platform. Once the related smart contract completes the
zkSNARK proof based on the note, through which the withdrawer proves to know the pre-
image of a previously inserted hash leaf in the Merkle tree without revealing the leaf itself, the
amount left after deducting the fee required for the smart contract operations is transferred to

the corresponding receiver.

zZXKSNARK

zk-SNARK is a protocol that lets one party, the prover, prove to another party, the verifier,

that a statement about some privately held information is true without revealing the informa-

3For details: https: //1iden3-docs . readthedocs . io/en/latest/iden3_repos/research/
publications/zkproof-standards-workshop-2/merkle-tree/merkle-tree.html

Is

https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/merkle-tree/merkle-tree.html
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/merkle-tree/merkle-tree.html

tion itself [15]. zkSNARK stands for zero-knowledge, succinct, non-interactive argument of

knowledge. A parsing of the single terms follows [16]:

* Zero-Knowledge: The proof is said to be zero-knowledge if it does not reveal the secret
value or any other information besides the proof that a public statement is true. In the
context of Tornado Cash, a user will be able to construct a proof that he has previously
deposited to the Tornado Cash contract without having to reveal the specific deposit
transaction;

* Non-Interactive: The proof does not require any direct interaction between the prover
and the verifier. In other words, a single message from the prover to the verifier is suffi-
cient;

* Succinct: The proof can be efficiently verified with respect to data size and verification
runtime (large storage data or complex on-chain computations would be infeasible in
the blockchain context);

* Argument of Knowledge: The knowledge of the secret value the proof is built around.

The protocol in TCC takes as input a public statement and a secret one so made:
* PublicStatement = (root, nullifier, recipientAddress), with:

— Root: One of the recent roots of the Merkle Tree, considering that a TC smart
contract saves in its state the history of its last 100 roots [13];

— Nullifier: the Pedersen hash of the % -secret value;

— Recipient address: the blockchain address where funds should be sent to.

o SecretStatement = (k, r, commitment, MerkleProof{commitment)), with:

k: the secret nullifier random value generated at deposit time, it is part of the saved
note;

r: the secret randomness value generated at deposit time, it is part of the saved nore;

— Commitment: the Pedersen hash of the saved note;

MerkleProof(commitment): the Merkle path of the leaf corresponding to the spec-
ified commitment.

16

A Circom circuit will verify that the secret statement is consistent with the public one, if
so the withdrawal is considered as legitim and the related amount can effectively be sent to the
address signaled as the recipient one in the public statement. In particular, the circuit will verify

that:

* The MerkleProof is valid, hence the leaf of interest is truly part of the Merkle Tree whose
recent root is the one specified in the public statement. This validation is achieved by
calculating the root that the Merkle Tree would have if the provided Merkle path (Merkle
proof) was genuinely incorporated into the Merkle Tree. If the computed root matches
the recent root provided in the public statement, the validation yields a positive result;

* The Pedersen hash of the nore (k, 7) truly corresponds to the given commitment;

* The nullifier in the public statement truly corresponds to the Pedersen hash of the pri-
vate value &, part of the note.

Checks made by the circuit aim to make sure that

* Private statement is consistent with the public one;

* Provided nullifier in the public statement has not been submitted before. This prevents
from the attempt to perform a withdrawal providing the same note more than once

(double-spent problem).

RELAYER

A withdrawal from a TC smart contract can be triggered in two different ways [17]:

* The user uses a relayer to make the withdrawal to any Ethereum recipient address with-
out needing to make the wallet connection on the Tornado Cash website. Since the
relayer is in charge of paying for the transaction gas, he will receive a small portion of the
deposit for both a refund and a reward for his job.

* The user links their wallet (Metamask or WalletConnect) to the Tornado Cash website,
and they pay for the gas needed to withdraw the amount deposited.

A relayer is an independent operator that provides an optional service for Tornado Cash
users to help them solve the fee payment dilemma. This dilemma pertains to the challenge

of covering the costs (fees) associated with withdrawing from a mixing pool while preserving

17

anonymity: being able to cover the withdrawing costs translates into having funds associated
with the address requiring the withdrawal, hence having a transaction history. A relayer can
trigger a withdrawal transaction instead of the user, sending the withdrawal amount to a new
account with no ETH balance (fresh address) and deducting the withdrawal fee (both for the
paid gas fee and a reward for the performed action) directly from the transfer amount. In case
a user is interested in the relayer figure along a withdrawal, he needs to select a relayer to create
a withdrawal transaction. The relayer transaction creates two internal transactions: one with-
draws the transaction fee from the mixing pool to the account of the relayer, while the other

transfers the remaining funds to the account of the user [3].

s 1. Note Sharing =
—+ Information Flow ——————————_______r]@___. -
— Fund Flow)
— = 1__ 2 Deposit (& &
"""" * Control Flow Addry | TX | or
3. Note Proofing & 0.1ETH 1ETH

4a. Withdraw -
\/] é
------ » Addr, X, P
l] — 10ETH 100 ETH

Alice Relayer TX, 4b- Withdraw Mixing Contracts

Figure 2.9: TC general working schema [3].

To give a concrete example of relayer employment in TC (72X, and 72X5 in Figure 2.9), a real

TC withdrawal taken from Etherscan blockchain explorer is here reported:

@ From: O reltor.eth

@ To: 0xd90e2f925DA726b50C4Ed8DOFb90Ad053324F31b (Tornado.Cash: Router) o

Transfer 0.96414504910175 ETH From Tornado.Cash: 1 ETH To 0x0d11BD7C...b7ac122a4
Transfer 0.03585495089825 ETH From Tornado.Cash: 1 ETH To 0x4750BCfc...6d28c29C5

@ Value: 4 0ETH (50.00)
@ Transaction Fee: 0.0238933779442636 ETH ($79.36)
@ Gas Price: 55.334363002 Gwei (0.000000055334363002 ETH)

Figure 2.10: Example of a withdrawal from 0.1 ETH pool involving a relayer.

In Figure 2.10, the meanings of the assigned attributes are the following:

* From is the relayer who performs the withdrawal on behalf of the user whose address is

the one specified in the first transaction in To. In this case, the relayer makes use of the
ENS.

18

2.4

To is where the two transactions triggered by the relayer are highlighted: the first trans-
action is the one where the amount transferred from the smart contract to the recipient
address is specified (72X, in Figure 2.9), the second transaction is the one specifying the
amount transferred from the smart contract to the relayer address (72X; in Figure 2.9).
The amounts transferred along the two transactions sum up to 1 ETH (the amount de-
posited). The amount received by the relayer covers both the withdrawal’s Transaction
Fees and the reward for the performed proxy action, corresponding to a percentage of
the withdrawn amount. The amount transferred to the relayer is directly taken from the
amount sent to the recipient.

USEFUL DEFINITIONS

To point the attention to specific concepts the thesis project core deals with, a recapitulation

of some definitions outlined in the background overview are here provided, supplemented by

additional ones considered pertinent for the reader’s comprehension:

Etherscan: an Ethereum blockchain browser that offers access to transaction informa-
tions.

Web3: a library that provides developers with a convenient way to interact with the
Ethereum network.

Infura: a service that allows developers to interact with the Ethereum blockchain with-
out needing to run their own local Ethereum node. Developers can use 7nfura as an
access point to interact with the Etherenm blockchain. In order to do so, a private key
given by infura itself is needed.

Anonimity set: the level of privacy of a specific pool (smart contract) belonging to the
TC platform. It translates into the number of users who has deposited currencies into

that pool.

Ethereum Name Service: a decentralized service based on Ethereum, which translates
blockchain domain names (e.g., Relayer.eth) to blockchain addresses.

Anonymity mining: From December 2020 to December 2021 [18], TC started offer-
ing a reward in anonymity points (AP) that could be exchanged in TORN (TC native
currency) to users employing TC. The reward amount used to be up to the deposited
amount and duration (the time period that amount was left into a TC pool). The aim
of such a reward was to induce more users into making deposits in TC pools, thereby
increasing their anonymity sets.

19

Gas price: the amount of Gwei a user will pay per gas unit for the initiated transaction.
Gas limit: the maximum amount of gas unit a user is willing to pay for his transaction.

MaxFeePerGas: In EIP-1559 transactions, is the maximum amount of Gwei a user is
willing to pay per unit of gas. It includes the MaxPriorityFeePerGas value.

MaxPriorityFeePerGas: In EIP-1559 transactions, it is the amount of gas reserved as
a reward for the miner.

BaseFeePerGas: A block-related parameter that establishes the minimum gas price paid
by all the transactions validated in that block.

Wallet Connect:a protocol that enables interaction between dApps and mobile wallets,
without compromising their private keys.

20

Related works

In Section 2.3 insights of the Tornado Cash platform have been given, in particular the anonymity
set, corresponding to the level of privacy guaranteed to a user who is willing to perform a deposit
towards a specific pool, has been defined as the number of equal user deposits in that pool. Care-
less TC usage tends to reveal links between deposits and withdraws, impacting the anonymity
of other users. That is since if a deposit can be linked to a withdrawal, it will no longer truly
contribute to the claimed anonymity set. Ethereum privacy in terms of address correlation is
a research concern. In general, existing address correlation methods on Ethereum involve two
major categories [2]. One is using machine learning and node embedding methods to cluster
transaction behavior patterns or user accounts with similar characteristics [19][20][21], the
other is using heuristic or graph-based clustering algorithms to link addresses that participated
in certain transactions[22]. In the TC optic, starting from on-chain data, [2] proposes three
heuristic clustering rules to achieve address correlation for Tornado coin mixing transactions

based on the time interval features:

* Heuristic 1: Given a depositd , a withdrawal w and a time interval between the two o, if
d < 180s and both d and w refer to the same TC smart contract (pool), then the addresses
the deposit started from and the withdrawal amount will be delivered to belong to the
same user;

* Heuristic 2: Given multiple single deposits and withdrawals related to the same TC
pool {(d1, w1, duuw), (das W2, duus)s - - -+ (s W, O,) } With 4, corresponding to the
timeinterval betweend,; and w,, when n > 2,itV{d;,d; ..} C {d\,d>,....d,}, {w; w; 11}

21

CA{w,w, ..., w,}, 000 = dipy.timestamp — w;.timestamp one of the following con-
ditions is satisfied:

— d;from = d;y.from, and s, daw(i+1) < 20 min, J,y > 0, with d;.from
corresponding to the address who triggered that deposit;

— w;.input.recipient = w,;.input.recipient, and Jyu(;41) > 0, dgwy < 20 min,
dwa < 20 min, with w,.input.recipient corresponding to the address that is asking
for the amount to be withdrawn;

— d;from = d;y;.from, and w;input.recipient = w,,;.input.recipient,
é\wd) ‘;dwz'a é\dw(z'Jrl) >0

then the addresses all the deposits involved started from and all the withdrawals involved
are directed to in these transactions belong to the same user.

* Heuristic 3: Given aset D = {dy,d,,...,d,} of n > 2 deposits and a set W =
{wy, w, ..., w,} of n > 2 withdrawals with a time interval between the occurring of
the last depositin D (d,.timestamp) and the first withdrawal in W (w;.timestamp) equal
to A (A = wy.timestamp — d,.timestamp), if it simultaneously happens that:

— All the deposits of the first set (D) have been triggered by the same address,
— All the withdrawals of the second set (VW) have the same address recipient,

— 94,0y < 10minand A < #x12h, withd; = max{d;;,.timestamp—d,.timestamp |
d;,diy € D}, 9, = max{w,;.timestamp — w;.timestamp | w;, w41 € W}

then the addresses all the deposits involved started from and all the withdrawals involved
are directed to in the 7 transactions belong to the same user.

Authors of [1] increase the number of heuristics related to the same purpose. They propose a
tool named Tutela, funded by the Tornado Cash community itself. The application combines
five heuristics (state-of-the-art heuristics plus new proposed) to compute a true anonymity set

for each TC pool. The heuristics in place correspond to:

* Heuristic 1: Suppose the address making a deposit transaction to a Tornado Cash pool
matches the address making a withdrawal transaction from the same pool. In that case,
the two transactions can be linked.

22

=)
{AEm]

Figure 3.1: Heuristic 1 schema: a single address A4 withdrawing and depositing to the same TC pool [1].

* Heuristic 2: Suppose the address making a deposit transaction to a Tornado Cash pool
specifies a custom-set gas price that perfectly matches the one specified by the address
making a withdrawal transaction from the same pool. In that case, the two transactions

can be linked.

Figure 3.2: Heuristic 2 schema: two addresses (.4 and D) depositing to and withdrawing from the same
TC pool with an equal custom-set gas price [1].

* Heuristic 3: This heuristic aims to link withdrawal and deposit transactions on Tor-
nado Cash by inspecting ETH non-Tornado Cash interactions. This is done by con-
structing two sets, one corresponding to the unique Tornado Cash deposit addresses
and one to the unique Tornado Cash withdraw addresses, to then make a query to re-
veal transactions between addresses of each set: when at least three such transactions are
found for a pair, the withdrawal and deposit addresses will be considered heuristically
linked in Tornado Cash. The more transactions are found, the more confident the link.

23

Figure 3.3: Heuristic 3 schema: addresses 4 and D deposit and withdraw from the same TC pool,
moreover interactions in terms of transactions do exist between them out of TC [1].

* Heuristic 4: The portfolio of an address’ withdrawals across Tornado Cash pools is
studied. Then the point is to search for all addresses whose portfolio of deposit transac-
tions is exactly the same as the first address’ withdrawal portfolio. To put it simply: the
heuristic looks for two addresses 4 and D who deposit and withdraw the same number
of times from the same Tornado Cash pools.

10
ETH
Pool

A@ @A

ETH
Pool

Figure 3.4: Heuristic 4 schema: addresses 4 and D deposit and withdraw the same number
of times from the same three Tornado Cash pools [1].

* Heuristic 5: Thanks to anonymity mining, after withdrawing assets, users could claim
anonymity points. Due to the reward dependency on the deposit amount and period,

24

one can calculate the Ethereum blocks that separate the deposit and withdrawal transac-
tions of that asset. If there is a unique deposit/withdrawal combination in a pool sepa-
rated by the calculated number of Ethereum blocks, the transactions are assumed linked.
Because of the ending of the anonymity mining program in December 2021, this heuris-
tic does not hold for TC transactions made after that.

1ETH
Pool

AR\

Figure 3.5: Heuristic 5 schema: address D performs a withdrawal from the 1 ETH pool,
obtaining a reward implying that the deposit has been in the pool for 7 blocks. The only
deposit present in the prior 7 block is the one made by A4, so the two addresses are
linked [1].

According to the five mentioned heuristics, authors of [1] identified 42.8k potentially com-
promised transactions over 97.3k Tornado Cash user deposits. Splitting the result by pools
translates into a reduction of the anonymity set of the time by 37%.

Some of the explored heuristics have been used in [10] to build a ground truth in order
to measure how well their proposed technique based on time-of-day transaction activity, gas
price distribution and transaction graph analysis identifies the linked withdraw-deposit address
pairs. Evaluation on heuristically linked mixing participants showed that profiling techniques,
especially node embedding algorithms, can reduce the anonymity set sizes of the mixing parties.

Authors of [3] tackle the mixing address correlation problem using graph feature learning
technique. They have first built an interaction graph whose vertices represent user accounts
and links represent mixing transactions. They have then designed a GNN-based link predic-
tion mechanism, which can automatically extract deeper neighborhood features from the in-
teraction graph, and create new links between accounts by mapping them to different represen-

tations in embedding space, hence calculating the probability of correlation between account

25

nodes through node embeddings. With their approach, the mixing transaction address correla-
tion problem has been transformed into a link prediction task. According to their experiment,
their technique allows to improve the correlation score over the state-of-the-art methods.

In [7] it is pointed out that anonymity mining does not necessarily improve the quality of
a mixer’s anonymity set: the reward attracts privacy-ignorant users with a primary interest in
mining rewards, who then do not contribute to truly improving the privacy of other mixer
users since they can be told apart through heuristics. In particular, authors have empirically
shown that after the introduction of anonymity mining, the number of users who reuse the
same address for both deposits and withdrawals has increased, leading to a rise in the capability
of the address reuse heuristic (Figure 3.1) in terms of reduction of the anonymity set from 7%
(before AM launch) to 13.5% (after AM launch) on average.
The related works have explored some platform usage patterns that can be used to link deposits
and withdraw, revealing that TC’s proposed anonymity sets are mostly inaccurate. Apart from
showing the inaccuracy of the TC anonymity set, the need to break the anonymity of TC by
correlating back transaction addresses comes from Tornado Cash’s involvement in cybercrime
activities, such as money laundering.
Related works converge in a single concern: immature user behavior in Tornado Cash prevents
it from achieving its highest attainable privacy guarantee. The explored heuristics appear to be
reliant on the user’s behavior within the TC mixing scenario. Due to their simplicity, there
may be occurrences of false positives in practice (addresses wrongly grouped in a cluster or un-
trustworthy links) [1]. Approaches that reveal connections between deposits and withdrawals
in presence of a privacy-conscious usage of the TC platform by its users have not been thor-

oughly investigated yet.

26

Project core

On any public blockchain, the cost of creating a new EOA is virtually zero, enabling the same
entity to manage several pseudonymous addresses from which transactions can start[1]. A new
transaction inserted into the blockchain implies the burning of the related transaction fees,
where fees could be suggested by the wallet itself. Wallets provide customers with the ability to
send and receive virtual currency, tuning their balance through interaction with blockchains.
Unlike traditional pocket wallets, cryptocurrencies are not stored in the crypto wallets. Cryp-
tocurrencies are neither stored in any single area nor exist anywhere in any bodily form, but
exist as data of transactions stored on the blockchain. Wallets facilitate user to create an ac-
count, i.e. a pair of private key and public key stored in a wallet software. Wallets are catego-
rizable in software or hardware wallets. Software wallets are downloadable desktop or mobile
software programs, as well as web applications. Hardware wallets are physical devices like USB
drives. Wallets belonging to different categories differ in the way the EOA-related key pair is
managed|23]. Within the Ethereum ecosystem, users have the option to choose from a variety
of wallets. At transaction time, gas fees are typically suggested to the user by wallets according
to specific algorithms. The objective of the thesis is to delve into the source code of various wal-
lets in order to examine the algorithms they employ for suggesting gas fees. The ultimate goal is
to establish a connection between transactions on the blockchain and the specific wallet from
which they originated. This approach, that can be encapsulated by the term wallet fingerprints,
hides:

27

* A privacy concern over the Ethereum blockchain;

* The potential to reduce the anonymity set of Tornado Cash pools [1]: a withdrawal
transaction initiated with wallet software X will only be indistinguishable from deposit
transactions initiated by users employing the same wallet software X.

The thesis moves under the assumption that if a user 4 performs a deposit through the wallet
software X (e.g., Metamask), the same wallet software will be utilized during the withdrawal

process.

4.1 WALLET ANALYSIS

Among the Ethereum-compatible wallets, according to the purpose of the project, attention
has been put on those respecting some specific requirements. In particular, wallets taken into

consideration are:

* Software wallets: considered more user-friendly, consequently attracting a larger num-
ber of users;

* Open source: allowing their source code analysis, necessary for the identification of the
algorithm in use for the gas fee suggestions;

* WalletConnect compatible: wallet supporting the WalletConnect protocol are those us-
able within the TC dApp.

Among those wallets respecting the above-mentioned requisites, those analyzed in the cur-
rent project correspond to: Metamask, Trust Wallet, OneKey, Rainbow, Unstoppable Wallet
and ShapeShift Wallet. For each wallet, the source code related to the same pattern has been

checked: retrieval of gas fee suggestions at the time of ETH currency transfer.

4.1.1 METAMASK

MetaMask is a software wallet available as both a web extension (compatible with browsers
such as Chrome, Firefox, Edge, and Opera) and a mobile application (for Android and :OS).
With over 1o million downloads on the Android platform alone, its widespread adoption serves

as a testament to its popularity. It allows several operations, among which:

2.8

Buy & Sell Send Swap Bridge

Figure 4.1: Metamask features at frontend level.

* Buy: allows a user to purchase new currencies by selecting a provider. Payment methods
are up to the provider and could include debit and credit cards, Apple pay, Google pay and

more. Each provider proposes personalized transaction fees for the buying operation.
* Sell: allows a user to sell his cryptocurrencies.

* Send: allows a user to perform the transfer of a certain amount of his asset towards a
specified recipient address. It consists of the transfer operation.

* Swap: allows a user to swap his cryptocurrencies into another token (e.g., from ETH to
MATIC).

* Bridge: allows a user to move his funds from a blockchain network to another one (e.g.,
from Ethereum to Polygon), with the possibility of asking for a swap along the transfer.

The sending operation is the one involving cryptocurrency transfer from one EOA to an-
other one. At the frontend level, along with an ETH transfer, Metamask prompts the user
with three different gas fee suggestion levels: low, market and aggressive. The higher the level
(from Jow to aggressive) the higher the gas fee suggestion (in terms of MaxFeePerGas and Max-
PriorityFeePerGas for type-2 transactions or gasPrice for type-o transactions), hence the higher
the priority attributed to the transaction. The wallet allows its users to customize the gas fees.
The source code’ of the Metamask wallet present on GitHub has been analyzed, looking for
that snippet concerned with the assignment of values to the gas fee parameters for the three pre-
sented levels during a send operation. The entry point of the function related to the ETH trans-
fer has been identified at first, localized in the packages path metamask-extension/uifcomponents

Japp/wallet-overview /eth-overview.js* as a javascript file.

Metamask open source code: https://github.com/MetaMask
*For details: https: // github . com/MetaMask / metamask-extension / blob / develop / ui /
components/app/wallet-overview/eth-overview.js

29

https://github.com/MetaMask
https://github.com/MetaMask/metamask-extension/blob/develop/ui/components/app/wallet-overview/eth-overview.js
https://github.com/MetaMask/metamask-extension/blob/develop/ui/components/app/wallet-overview/eth-overview.js

onClick={() => {
trackEvent({
event: MetaMetricsEventName.NavSendButtonClicked,
category: MetaMetricsEventCategory.Navigation,
properties: {
token symbol: "ETH',
location: 'Home',
text: 'Send’,
chain id: chainId,
s
15
dispatch(
startNewDraftTransaction({ type: AssetType.native }),
).then(({) => {
history.push(SEND ROUTE);
15
b

Figure 4.2: Metamask entry point for the send transaction button.

From Figure 4.2 (frontend side), the flow of the internal called functions has been followed,
crossing the connection between frontend and backend. The function identified as the one be-
ing in charge of computing and updating the gas fee values for the three priority levels is the one
defined in the typescript file core/packages/gas-feecontroller/src/determineGasFeeCalculations.ts® .
What the function does is checking the type of transaction (type-o or type-2) and delegating

the gas fees computation accordingly. In particular:
if (iseIp1s559Compatible) {

let estimates: GasFeeEstimates;

try (

} else if (islLegacyGasAPICompatible) {

const estimates = await fetchlegacyGasPriceEstimates(

estimates = await fetchGasEstimates(fetchGasEstimatesurl, clientId); fetchLegacyGasPriceEstimatesurl,
} catch { infuraAPIKey,
estimates = await fetchGasEstimatesviaEthFeeHistory(ethQuery); clientId,
});
Figure 4.3: Metamask’s code flow in case of gas fee sugges- Figure 4.4: Metamask’s code flow in case of gas fee
tions for type-2 transactions. suggestions for type-0 transactions.

In case of a type-2 transaction (hence EIP-1559 compatible, Figure 4.3) a try-catch block
follows. In the #7y branch, an HTTPS request is performed towards the URL specified as pa-
rameter (fetchGasEstimatesUrl). This translates into an API call. The specific URL value is up

to the live setting of an environment variable, opening the way to two possible assignments for

3For details: https://github.com/MetaMask/core/blob/main/packages/gas-fee-controller/
src/determineGasFeeCalculations.ts

30

https://github.com/MetaMask/core/blob/main/packages/gas-fee-controller/src/determineGasFeeCalculations.ts
https://github.com/MetaMask/core/blob/main/packages/gas-fee-controller/src/determineGasFeeCalculations.ts

it. Being the environment variable value unknown a priori, both the possible values are taken
in consideration for the purposes of the project. This translates into two possible HT'TPS re-
quests (API calls) to pay attention to in the #y branch, among which only one will be truly

made:

* brtps://gas.api.cx.metamask.io/networks/lsuggested GasFees

* bttps://gas.uat-api.cx.metamask.io/networks//suggested GasFees

The numerical value present in both the URL:s refers to the chain-id of the network of inter-
est, with the chain-id corresponding to the unique identifier of a blockchain network. In this
case, the integer value appearing is the 1 integer, referring to the Etherenm Mainnet network.
In Figure 4.3’s catch branch, several Remote Procedure Calls (RPCs) are performed. The most
relevant is the ezh_feeHistory* RPC. The method returns a collection of historical gas informa-
tion related to a sequence of blocks of interest, taking as input: an integer value representing
how many sequential blocks are we interested in, the highest block number in the sequence, an
optional array of percentiles. Eth_feeHistory method, for each block it is considering, will first
sort all transactions by the priority fee. It will then go through each transaction and add the
total amount of gas paid for that transaction to a bucket which maxes out at the total gas used
for the whole block. As the bucket fills, it will cross percentages which correspond to the per-
centiles. Whenever a specified percentile in the optional input array is reached, the priority fees
of the first transactions that cause it to reach those percentages will be recorded. The recorded
priority fees represent the priority fees of transactions at key gas-used contribution levels, where
earlier levels have smaller contributions and later levels have higher contributions [24]. Re-
sults of the method include the baseFeePerGas of each block of interest as well. In Metamask
scenario, the history of the last five newest blocks is considered, with priority fees taken from
each block corresponding to those at percentiles [10, 20, 30]. Results of the method invoca-
tion are formatted and, lastly, given as input to the calculateEstimatesForPriorityLevels func-
tion, defined in the #ypescript file present in the path of the packages core/packages/gas — fee —
controller/src/ fetchGasEstimatesViaEthFeeHistory [calculateGasFeeEstimatesFor PriorityLe —
vels.ts. The function, based on the eth_feeHistory formatted output (blocks in Figure 4.5), per-
forms some computations to generate gas fee suggestions for each priority level (low, market,

aggressive).

+For details: https://docs.alchemy.com/reference/eth-feehistory.

sFor details: https : / / github . com / MetaMask / core / blob /
8769bd80eb9al31f9fb7Sae5f85491eedfcl9e62 / packages / gas-fee-controller / src /
fetchGasEstimatesViaEthFeeHistory/calculateGasFeeEstimatesForPrioritylLevels.ts

31

https://docs.alchemy.com/reference/eth-feehistory
https://github.com/MetaMask/core/blob/8769bd80eb9a131f9fb75ae5f85491eedfc19e62/packages/gas-fee-controller/src/fetchGasEstimatesViaEthFeeHistory/calculateGasFeeEstimatesForPriorityLevels.ts
https://github.com/MetaMask/core/blob/8769bd80eb9a131f9fb75ae5f85491eedfc19e62/packages/gas-fee-controller/src/fetchGasEstimatesViaEthFeeHistory/calculateGasFeeEstimatesForPriorityLevels.ts
https://github.com/MetaMask/core/blob/8769bd80eb9a131f9fb75ae5f85491eedfc19e62/packages/gas-fee-controller/src/fetchGasEstimatesViaEthFeeHistory/calculateGasFeeEstimatesForPriorityLevels.ts

function calculateEstimatesForPriorityLevel(canst SETTINGS_BY_PRIORITY_LEVEL = {
Touw: {

percentile: 16 as Percentile,

prioritylevel: Prioritylevel,

blocks: FeeHistoryBlock<Percentile>[],
baseFeePercentageMultiplier: new BN(118),

: Eipl55%GasFee {

riorityFeePer tageMultiplier: w BN(94
const settings = SETTINGS BY PRIORITY LEVEL[prioritylevel]; priorityfeepercentageliultiplier: new BN(24),

minSuggestedMaxPriorityFeePerGas: new BN(1_eee_88e_seee),

R estimatedWaitTimes: {

const latestBaseFeePerGas = blocks[blocks.length - 1].baseFeePerGas; . .)
minWaitTimeEstimate: 15_eee,

maxWaitTimeEstimate: 38_eee,

const adjustedBaseFes = latestBaseFssPerGas

.mul({settings.baseFeePercentageMultiplier) },}'
.divn(lea); medium: {
const priorityFees = blocks percentile: 28 as Percentile,
-map((black) => { baseFesPercentageMultiplier: nsw BN(128),
return ‘priorityFeesByPercentile’ in block priorityFeePercentageMultiplier: new BN(97),
? block.priorityFeesByPercentile[settings.percentile] minsuggestediaxPriorityFeePerGas: new BN(1_S8@_860_0e0),
: null; estimatedWaitTimes: {
) minWaitTimeEstimate: 15_eee,
.filter(BN.isBN); maxWaitTimeEstimate: 45_6@e,
const medianPriorityFee = medianOf(priorityFees); s
const adjustedPriorityFee = medianPriorityfee I8
high: {

.mul({settings.priorityFeePercentageMultiplier)

Ldivn(188); percentile: 2@ as Percentile,
baseFeePercentageMultiplier: new BN(125),
priorityFeePercentageMultiplier: new BN(98),

const suggestedMaxPriorityFeePerGas = BN.max(
minSuggestedMaxPriorityFeePerGas: new BN(2_oee_880_seee),

adjustedPriorityFee,
estimatedWaitTimes: {

settings.minSuggestedMaxPriorityFeePerGas,
)s

const suggestedMaxFeePerGas = adjustedBaseFee.add(

minWaitTimeEstimate: 15_eee,

maxWaitTimeEstimate: 68_668,
b
suggestedMaxPriorityFeePerGas, 3

) b

Figure 4.5: Figure 4.3's catch branch ending flow, repeated Figure 4.6: Figure 4.5 additionals.
for each priority level.

In case of type-0 transaction (hence legacy, Figure 4.4) an HTTPS request is performed to-
wards the URL specified as parameter (fetchLegacyGasPriceEstimates). The URL value, once
again, is up to the live setting of an environment variable, opening the way to two possible

assignments for it:

o https://gas.api.cx.metamask.io/networks/1/gasPrices

o https://gas.uat-api.cx.metamask.io/networks/1/gasPrices

One could simply copy and paste the given URLs to a web browser to see what Metamask is
suggesting in real-time to those users involved in currency transfer operations over the Ethereum
Mainnet network.

In case any problem occurs while dealing with one of the two snippets of code just discussed
(Figure 4.3 or Figure 4.4), gas fee parameters are filled with the result coming from eth_gasPrice®
RPC.

¢For details: https://getblock.io/docs/eth/json-rpc/eth_eth_gasprice/

32

https://getblock.io/docs/eth/json-rpc/eth_eth_gasprice/

A visualization of what results from the retrieved logic follows:

Gas option Time Max fee
& Low 30 sec 0£'$E|02473 () HTTPS requests in range 2024-04-07 02:01:29 - 2024-04-07 02:01:47
. URL_1
. Market Low : 0.0428956
i
y R Use Low to wait for a cheaper Medium: 0.0456
h Aggressive
price. Time estimates are .
High: 0.0
much less accurate as prices
Advanced are somewhat unpredictable. URL_2
Low : 0.042895631 11.481562131
Max base fee 11.7761
PriorityFee 0.0429 Medium: 0.04563365 15.487833425
Gaslimi 2i00C High: 0.098 19.54373305
Figure 4.7: Metamask frontend gas fee Figure 4.8: Collection of Metamask gas fee suggestions from the two
suggestions for the low priority level URLS inherent to a type-2 transaction.

along a type-2 transaction.

* Figure 4.7 shows gas fee suggestions made by Metamask wallet at sending ETH time.
Among the three priority levels present, values associated with low priority level (Max
base fee and Priority Fee) are highlighted.

* Figure 4.8 shows the results of the HT'TPS requests (API calls) made for retrieving Meta-
mask gas fee suggestions for type-2 transactions according to the source code. Results
have been collected through a python script.

Looking at Figure 4.7 and Figure 4.8, one can notice the match between parameters sug-
gested for the low priority level at frontend side (with maxPriorityFee parameter rounded) and
the data obtained by performing the HTTPS request towards URL_1 (betps://gas.api.cx.meta-
mask.io/networks/1/suggested GasFees).

For the purpose of the project, type-0 transaction gas fee suggestions are not needed (Section 4.2

for details): source code related to their computation will be skipped for the next wallets.

4.1.2 TRUST WALLET

Trust Wallet is a software wallet available as both a web extension (more limited) and a mobile
application (for Android and 7OS). It counts over 10 million downloads on the Android plat-
form alone, showingits spread usage. If Metamask supports cryptocurrencies on the Etherenm,
Arbitrum, Binance Smart Chain, Optimism, Polygon, and Avalanche networks, Trust Wallet
supports all of these networks, plus dozens more. Features oftered by Metamask (Figure 4.1)

33

are offered by Trust Wallet as well. At the frontend level, along with an ETH transfer, Trust
Wallet prompts the user with one only gas fee suggestion level, specifying for it the maxFeeP-
erGas and maxPriorityFee (miner’s tip). By inspecting the application’s source code” and with
the help of the Trust Wallet Support Team, it has been possible identifying the RPCs made in
order to obtain those values then associated to the aforementioned parameters. The methods
in question are eth_feeHistory and eth_getBlockByNumber. The first has been already discussed
in Subsection 4.1.1, but a deeper discussion reveals to be necessary in this new app-related sce-

nario.

* cth_feeHistory is used for the maxPriorityFee value assignment along an ETH transfer ac-
tivity of a type-2 transaction. The method invocation occurs according to the following
parameters:

"id":1,
"jsonrpc™:"2.0",
"method"”:"eth_feeHistory",
"params": [

10,

"latest”,

[5]

Figure 4.9: Trust Wallet's RPC parameters.

meaning that for each of the last ten blocks mined over the blockchain, the 5¢b percentile
will be extracted (see Subsection 4.1.1 for clarifications). According to the RPC results,
an array containing the maxPriorityFee corresponding to the 5¢b for each block has been
built. The computation of the median of the obtained array corresponds to the maxPri-
orityFee (miner tip).

* eth_getBlockByNumber® RPC is performed according to the structure in Figure 4.10.

7For details: https://github.com/trustwallet
8For details: https://docs.alchemy.com/reference/eth-getblockbynumber

34

https://github.com/trustwallet
https://docs.alchemy.com/reference/eth-getblockbynumber

eth getBlockByNumber = {
"jsonrpc": "Z2.0"
: "eth getBlockByNumber",

Figure 4.10: Trust Wallet's RPC parameters.

It will return informations about the last block mined into the Ethereum blockchain, in

particular its baseFeePerGas.

Once these RPCs are performed (they could be emulated in Python, Javascript, Postman and
more) and their results are retrieved, the maxFeePerGas parameter is obtained by increasing

the retrieved baseFeePerGas of the 20%, then adding to the computed amount the miner’s tip

(maxPriorityFee). It translates into the formula

MaxFeePerGas = (BaseFeePerGas x 1.2) + MaxPriorityFee

Figure 4.11 and Figure 4.12 show the perfect match between frontend proposed and script

collected gas fees parameters.

Current Base Fee (Gwei)
0001 \ round ongoing
’ maxPriorityFee= 0.001
L b baseFeePerGas= 12.036584746
14,444501675 maxFeePerGas= 14.444901695

Figure 4.12: Collection of Trust Wallet gas fee suggestion for
a type-2 transaction through a python script emulating the
logic of Trust Wallet.

Figure 4.11: Trust Wallet frontend gas
fee suggestions for a type-2 transaction.

35

4.1.3 SHAPESHIFT WALLET

ShapeShift Wallet is a software wallet available as mobile application (for Android and 70S)
and web application®. It counts over 500k downloads on the Android platform alone. At the
frontend level, along with an ETH transfer, ShapeShift Wallet prompts the user with three
different gas fee suggestion levels: slow, average and fast. As well as in Metamask (Subsec-
tion 4.1.1), the higher the level (from slow to fast) the higher the gas fee suggestion in terms
of MaxFeePerGas and MaxPriorityFee. The wallet does not offer the possibility for the user
to customize the gas fees. The source code of the ShapeShift Wallet*® present on GitHub has

been analyzed. From it, the API necessary for the gas fee suggestions retrieval has been found:
bttps://api.ethereum.shapeshift.com/api/vl/gas/fees
Results coming from the API have the following form:

@Example<GasFees>({
gasPrice: '77125288868",
baseFeePerGas: '77654025212°,
maxPriorityFeePerGas: ‘94000001,
slow: {
gasPrice: '77189280451",
maxFeePerGas: '77744243213°,
maxPriorityFeePerGas: '90218001°,
b
average: {
gasPrice: '78637140239',
maxFeePerGas: 79158075213,
maxPriorityFeePerGas: '1504050001°,
¥
fast: {
gasPrice: '85079071846',
maxFeePerGas: '89883761218",
maxPriorityFeePerGas: '12229736086",
¥
b

Figure 4.13: Example of results coming from the ShapeShift Wallet API.

In Figure 4.13, for each priority level three parameters are indicated: gasPrice, maxFeePer-
Gas, maxPriorityFeePerGas. For each priority level, the wallet will suggest as official maxFeeP-
erGas for the type-2 transaction the output of max{gasPrice, maxFeePerGas}, with the official

maxPriorityFeePerGas for the type-2 transaction equal to the one retrieved by the AP itself.

°For having access to it: https://app.shapeshift.com
°For details: https://github.com/shapeshift

36

https://app.shapeshift.com
https://github.com/shapeshift

At the frontend level, what a user will see when involved in a transtfer operation is:

Send Ethereum

QETH

$0.00

Send From Account #0 0x8891...fc44
Send To 0x186B...838c¢
Transaction Fee

O Slow
0.000222 ETH

$0.761

Total $0.761
Amount + Transaction Fee Q ETH + 0.00022176 ETH

Confirm

Figure 4.14: ShapeShift Wallet gas fee suggestions at the frontend level along a transfer operation.

with the gas fee-related values matching with those retrieved through a Python script built

following the discussed logic:

SHAPESHIFT WALLET:

SLOW : 0.000197001 10.560022863 hence transaction fee= 0.000222ETH
STANDARD: 0.69707696 11.336838995 hence transaction fee= 0.00023BETH
FAST: 3.082756627 14.026908415 hence transaction fee= 0.000295ETH

Figure 4.15: ShapeShift Wallet gas fee suggestions retrieved through a Python script.

4.1.4 RAINBOW

Rainbow is software wallet available as both mobile application (for Android and 70S) and web
extension (e.g., Chrome, Edge, Safari, Firefox'"). It counts over 100k downloads on the An-
droid platform alone. At the frontend level, along with an ETH transfer, Rainbow prompts

the user with three different gas fee suggestion levels: normal, fast and urgent. The higher

For download: https://rainbow.me/download

37

https://rainbow.me/download

the level, the higher the gas fee suggestion in terms of MaxFeePerGas and MaxPriorityFee.
The wallet offers the possibility for the user to customize the gas fees. The source code of
the Rainbow wallet'* present on GitHub has been analyzed, identifying the packages path
rainbow /src/bandlers/gasFees.ts"* as the one containing a rypescript file defining the URL to

be reached for obtaining gas fee-related informations.

1 import { Network } from '@/ helpers’;

2 import { RainbowFetchClient } from '../rainbow-fetch';
3

4 const rainbowMeteorologyApi = new RainbowFetchClient({
5 baseURL: ‘https://metadata.p.rainbow.me’,

6 headers: {

7 "Accept’: ‘application/json’,

8 ‘Content-Type': “application/json®,

2 b

10 timeout: 30000, // 30 secs

1 s

12

13 export const rainbowMeteorologyGetData = (network: Network) => rainbowMeteorologyApi.get (™ /meteorology/vi/gas/${network}™, {});

Figure 4.16: Rainbow’s source code snippet with the reference to the APl involved in the gas fee suggestions.

In particular, according to Figure 4.16, the URL to be reached in case of the Ethereum Main-

net network corresponds to:
bttps://metadata.p.rainbow.me/meteorology/vl/gas/mainnet

The informations retrievable from the addressed URL have the following form:

export interface RainbowMeteorologyData {

data: {
currentBaseFee: string;
baseFeeSuggestion: string;
baseFeeTrend: number;
blocksToConfirmationByPriorityFee: BlocksToConfirmationByPriorityFee;
blocksToConfirmationByBaseFee: BlocksToConfirmationByBaseFee;
maxPriorityFeeSuggestions: MaxPriorityFeeSuggestions;
secondsPerNewBlock: number;

Iy

meta: {
blockNumber: number;
provider: string;

i

Figure 4.17: Output form of the Figure 4.16’s API call.

"2For details: https://github.com/rainbow-me/rainbow
BFor details: https : / / github . com / rainbow-me / rainbow / blob /
77ef889186c89039e5152ecl2b44fade8alcfa44/src/handlers/gasFees. ts

38

https://github.com/rainbow-me/rainbow
https://github.com/rainbow-me/rainbow/blob/77ef889186c89039e5152ec12b44fade8a1cfa44/src/handlers/gasFees.ts
https://github.com/rainbow-me/rainbow/blob/77ef889186c89039e5152ec12b44fade8a1cfa44/src/handlers/gasFees.ts

Among the resulting data structured according to Figure 4.17, those taken into considera-

tion by the Rainbow Wallet for the three priority levels gas fee suggestions are:

* baseFeeSuggestion: the expected baseFeePerGas of the future next mined block;

* maxPriorityFeeSuggestions: an array of suggestions for the maxPriorityFee parameter for
each of the proposed priority level.

Once data of interest are extracted, the maxFeePerGas associated with each proposed pri-
ority level is retrieved by incrementing the extracted baseFeeSuggestion of some percentages,

according to what is reported in Figure 4.18.

const getBaseFeeMultiplier = (speed: string) => {
switch (speed) {
case URGENT:
return 1.1;
case FAST:
return 1.85;
case NORMAL:
default:

return 1;

Figure 4.18: Priority levels multipliers.

According to Figure 4.18:

* maxFeePerGas for the normal level is equal to baseFeeSuggestion;

* maxFeePerGas for the fast level is obtained incrementing baseFeeSuggestion of its 5%;

* maxFeePerGasfor the urgent level is obtained incrementing baseFeeSuggestion of its 10%.
The final maxFeePerGas suggested to the user for each priority level is finally modeled ac-

cording to the nearest integer of the value obtained after the multiplication occurs. Figure 4.19,

Figure 4.20 and Figure 4.21 show what a user sees at the frontend for each priority level.

39

Current base fee 16 Gwei Current base fee 16 Gwei Current base fee 16 Gwei

Max base fee @ 19Gwei © Max base fee © 20/Gwei © Max base fee © 21Gwei Q©
Miner tip © 1G6wei © Miner tip @ 15Gwei © Miner tip ©®@ 2Gwei ©
Max transaction fee $1.45 Max transaction fee $1.56 Max transaction fee $1.65
@ Fast Urgent Custom Normal @ Urgent Custom Normal Fast @ Custom

Figure 4.19: Rainbow wallet sugges- Figure 4.20: Rainbow wallet sugges-
tions for the normal level. tions for the fast level.

Figure 4.21: Rainbow wallet sugges-
tions for the urgent level.

By comparing suggestions received from the frontend with a collection of the suggested fees
coming from an emulation of the explained steps, one can notice perfect matches in terms of

maxFeePerGas and maxPriorityFee.

FAINBOW WALLET:

Figure 4.22: Rainbow gas fee predictions retrieved through a Python script.
For the maxFeePerGas parameter, the picture shows both the float value
and its rounding to the nearest integer.

4.1.5 ONEKEY

OneKey is a wallet available as mobile application (for Android and 70S), desktop application
(for macOS, Windows and Linux'*), web extension (for Chrome, Edge and Brave's) and hard-
ware device. It counts over 50k downloads on the Android platform alone. At the frontend
level, along with an ETH transfer, Onekey prompts the user with three different gas fee sugges-
tion levels: Jow, normal and high. The higher the level (from Jow to high) the higher the gas fee
suggestion in terms of MaxFeePerGas and MaxPriorityFee. The wallet offers the possibility for

the user to customize the gas fees. The source code of the OneKey wallet'® present on GitHub

4For download: https://onekey.so/download/
SFor download: https://onekey.so/download/?client=browserExtension
For details: https://github.com/OneKeyHQ

40

https://onekey.so/download/
https://onekey.so/download/?client=browserExtension
https://github.com/OneKeyHQ

has been analyzed, finding out that the developers rely on the Blocknative'” platform for the gas
fee suggestion task. Blocknative is a real-time observability platform that offers several services,
including a gas prediction tool. The tool makes its predictions based on real-time data coming
from the mempool and predictive machine learning-based models. The combination of the two,
allows the platform to predict the next block’s minimum gas price as close as possible, avoiding
overspend. Since different users have different degrees of urgency for getting transactions into
the next block, the platform provides a range of confidence levels for next-block inclusion as
well[25]:

* Ifauser needs a high probability of being confirmed within the next block at the expense
of spending extra gas, he can use the 99% probability prediction.

* Ifauser does not mind if the transaction takes 2-3 blocks to be confirmed if it saves some
gas, he can use the 70% probability prediction.

The two probability percentages are the extremes of a wider range of five: 99%, 95%, 90%,
80%, 70%. The smaller the probability, the smaller the associated gas fee predictions in terms
of MaxFeePerGas and MaxPriorityFee. The HTTPS request necessary to retrieve the sugges-

tions related to all the probability predictions corresponds to:

bttps://api.blocknative.com/gasprices/blockprices

A comparison of what a user sees at the frontend level by using the OneKey wallet and what

has been retrieved from the Blocknative plattorm follows.

& Edit Fee & Edit Fee ' e Edit Fee
Use "Low" to wait for a cheaper © cthereum O cthereum
price. Time estimates are much less
accurate as prices are somewhat 0.00041501ETH 0.00041801ETH
unpredictable. $1.41 $1 41
piax1 Max Fee 23.58 Max F "
0 Max P.ric?rity Fee 0.08 Use "Normal" for fast processing at Max Fee;31:68(0.00049539ETH)
Gas Limit 21000 current market price.
o $1.41 S Max Fee 23.59 K "High"
®‘)® Low T o S® Low Max Priority Fee 0.09 G‘)?@ Low Use "High t? handle surges in .
Gas Limit 21000 rlwetwork traffic due}to emergencies
like popular NFT mint.
: $1.41 & N $1.41 . Max Fee 23.59
Y ' Normal 3
ﬁ Normal ~ 30 seconds o oo ~ 30 seconds 6% Narmz Max Priority Fee 0.09
Gas Limit 21000
. $1.41 S $1.41 _ $1.41
o ~ High = 0 5
< High 215 seconds e A N9 <15 seconds Ga High <15 seconds
}:Q Custom (])@ Custom (] ‘,O Custom (i)
Figure 4.23: OneKey wallet sugges- Figure 4.24: OneKey wallet sugges- Figure 4.25: OneKey wallet sugges-
tions for the low level. tions for the normal level. tions for the high level.

"7For details: https://www.blocknative.com/gas-estimator

41

https://www.blocknative.com/gas-estimator

Figure 4.23, Figure 4.24 and Figure 4.25 show the gas fees suggested by the OneKey wallet at
ETH transfer time for each priority level presented. By comparing images’ content with what
is retrieved by the Blocknative plattorm (Figure 4.26) through the HTTPS request, parameters

show to match.

ONE EEY WALLET:

{0.07, 23.57]

Figure 4.26: Blocknative gas fee predictions for ranges of confidence in descending order (from 90% to 70%).

4.1.6 UNSTOPPABLE WALLET

Unstoppable Wallet is a software wallet available as mobile application for Android and 70S. It
counts over 50k downloads on the Android platform alone. At the frontend level, along with
an ETH transter, Unstoppable Wallet prompts the transaction fee the transfer action will be
subject to. The wallet offers the possibility for the user to customize the gas fees. The source
code of the Unstoppable Wallet™ present on GitHub has been analyzed. According to it, the
main point of the gas fee suggestion made by the wallet relies on the ezh_feeHistory RPC, called

with the following parameters:

BFor details: https://github.com/horizontalsystems

42

https://github.com/horizontalsystems

"id": 1,
"jsonrpc": "2.0",
"method": "eth_feeHistoxy",

“params": [
10",
"latest",
[50]

§

Figure 4.27: Unstoppable Wallet RPC parameters.

According to Figure 4.27, informations concerning the last 10 blocks mined over the Etherenm
blockchain are retrieved, with attention pointed over that priorityFee corresponding to the 5025
percentile for each block (Subsection 4.1.1 for details). Results of the RPC are then handled
according to the following code snippet, localized in the path of the packages unstoppable —
wallet—andyroid | app | src/main java/io | borizontalsystems | bankwallet | modules | evmfee | eip
1559/ Eip1559GasPriceService kt:

private fun handle(feeHistory: FeeHistory) {
val recommendedBaseFee = max(recommendedBaseFee(feeHistory), minBaseFee ?: @)

currentBaseFee = recommendedBaseFee

val recommendedPriorityFee = max(recommendedPriorityFee(feeHistory), minPriorityFee ?: @)

currentPriorityFee = recommendedPriorityFee
val newRecommendGasPrice = GasPrice.Eip1559(recommendedBaseFee + recommendedPriorityFee, recommendedPriorityree)
recommendedGasPrice = newRecommendGasPrice
if (recommendedGasPriceselected) {
state = validatedGasPriceInfoState(newRecommendGasPrice)
} else {
state.dataornull?.let {

state = validatedGasPriceInfoState(it.gasPrice)

}

Figure 4.28: Figure 4.27's results handling.

According to what showed in Figure 4.28:
* maxFeePerGas parameter (newRecommendedGasPrice in the snippet) is computed as

the max between two values (one of which is to be considered as zero), summed up
to the computed maxPriorityFee (recommended PriorityFee in the snippet). In order to

43

retrieve the arguments of the max function, the code of the function called inside it is

needed.

private fun recommendedBaseFee(feeHistory: FeeHistory): Long {
val lastNRecommendedBaseFeesList = feeHistory.baseFeePerGas.takeLast(lasthNRecommendedBaseFees)
return java.util.Collections.max(lastNRecommendedBaseFeesList)

Figure 4.29: Definition of recommendedBaseFee function in Figure 4.28.

According to Figure 4.29, one of the argument of the 7ax function is retrieved by taking
the baseFeePerGas information of the last two blocks coming from the eth_feeHistory
RPC and choosing the highest one between them.

* maxPriorityFee parameter (newRecommended PriorityFee in the snippet) is computed
as the max between two values (one of which is to be considered as zero), with the first
argument delivered as result of the function recommended PriorityFee.

private fun recommendedPriorityFee(feeHistory: FeeHistory): Long {
var priorityFeessum = oL
var priorityFeesCount = @
feeHistory.reward.forEach { priorityFeeéArray ->
priorityFeeArray.firstornull()?.let { priorityFee -»
priorityFeesSum += priorityFee

priorityFeesCount += 1

¥
return if (priorityFeesCount > @)
priorityFeesSum / priorityFeesCount
else
@

Figure 4.30: Definition of recommendedPriorityFee function in Figure 4.28.

According to Figure 4.30, the first argument of the max function is retrieved by sum-
ming up the percentiles coming from each of thelast ro blocks as result of the eth_feeHisotry
RPC and dividing the value obtained by the number of blocks (hence, 10).

At the frontend level, what a user will see when involved in transfer activity is:

44

Advanced

0,0002431ETH

0,8362 $

Network Fee ()

Gas Limit & 21000
Base Fee 11 Gwei
Max Fee Rate (Gwei) ®
11,5676932544 — 4+
Max Priority Fee (Gwei) ®
0,504221698 — +

Figure 4.31: Unstoppable Wallet gas fee suggestions at frontend level.

whose gas fee parameters match with what is obtained by building a python script following

the described logic:

UNSTOFPPABLE WALLET:

0.504221698 11.576932544

Figure 4.32: Unstoppable Wallet gas fee suggestions retrieved through a python script.

4.2 TORNADO CASH ANALYSIS

As seen in Subsection 2..3.2, a withdrawal from a TC smart contract can be triggered in two

different ways:

* Byinvolvinga relayer, without any need for the user to connect his wallet to the platform;

* Without involving a relayer, with the need for the user to connect his wallet to the plat-
form.

In both cases, Tornado Cash makes its own gas fee suggestions (prompted as network sugges-
tion), corresponding to the default one. In order to identify those transactions related to the

TC platform whose assigned fees have no chance to come by any user wallet since proposed

45

by TC itself, the dApp open source code' has been analyzed as well. The starting point of
the analysis have been the deposit and withdrawal functions, both present in the .so/ file in the
packages path tornado-core/contracts/Tornado.sol. Both the functions implementation, along
an ETH transfer (deposit or withdrawal), call the generate Transaction* tunction, with a code

portion as follow:

async function generateTransaction(to, encodedData, value = @) {

const nonce = await web3.eth.getTransactionCount(senderAccount);

let gasPrice = await fetchGasPrice();
let gaslLimit;
.
function txoptions() {
[/ Generate EIP-1559 transaction
if (netld == 1) {

return {

to : to,

value : value,

nonce : nonce,

maxFeePerGas : gasPrice,

maxPriorityFeePerGas : web3.utils.toHex(web3.utils.toWei('3', 'gwei')),
gas : gasLimit,

data : encodedData

Figure 4.33: Portion of code related to the Tornado Cash’s generateTransaction function.

According to Figure 4.33, the maxFeePerGas parameter for a TC deposit or withdrawal
transaction is obtained by a call towards another function (fetchGasPrice), while maxPriori-
tyFeePerGas is set as a constant, equal to the 3 value. The implementation of the ferchGasPrice

function follows:

For details: https://github.com/tornadocash
°For details: https : / / github . com / tornadocash / tornado-cli / blob /
378ddf8b8b922a4924037d7b64a94dbfdSa’7dd6e8/cli.js

46

https://github.com/tornadocash
https://github.com/tornadocash/tornado-cli/blob/378ddf8b8b92a4924037d7b64a94dbfd5a7dd6e8/cli.js
https://github.com/tornadocash/tornado-cli/blob/378ddf8b8b92a4924037d7b64a94dbfd5a7dd6e8/cli.js

async function fetchGasPrice() {
try {
const options = {

chainId: netId

1
I

// Bump fees for Ethereum network

if (netId == 1) {
const oracle = new GasPriceOracle(options);
const gas = await oracle.gasPrices();
return gasPricesETH(gas.instant);

else if (netld == || isTestrRPC) {

const web3GasPrice = await web3.eth.getGasPrice();
return web3GasPrice;

else {

const oracle = new GasPriceOracle(options);
const gas = await oracle.gasPrices();
return gasPrices(gas.instant);
3
} catch (err) {

throw new Error(Method fetchGasPrice has error ${err.message}”);

Figure 4.34: Portion of code related to the Tornado Cash'’s fetchGasPrice function.

From Figure 4.3 4, one can see that the task of the maxFeePerGas computation is delegated to
another function (gasPrices), in particular the function is invoked over an object belonging to
the external library gas-price-oracle**. After obtaining the outcome from the entity within the
external library, the outcome’s 7nstant attribute is further processed through the gasPricesETH

function, whose code follows:

function gasPricesETH(value = 80) {
const tenPercent = (Number(value) * 5) / 100;
const max = Math.max(tenPercent, 3);
const bumped = Math.floor(Number(value) + max);

return toHex(towei(bumped.tostring(), 'gwel'));

Figure 4.35: Portion of code related to the Tornado Cash’s gasPriceETH function.

2'For details: https : / / github . com / peppersec / gas-price-oracle / tree /
4861f36c56al12c8618141adcc55028d976fad7cd

47

https://github.com/peppersec/gas-price-oracle/tree/4861f36c56a12c8618141adcc55028d976fad7cd
https://github.com/peppersec/gas-price-oracle/tree/4861f36c56a12c8618141adcc55028d976fad7cd

The code belonging to the external library has been dug in to understand what the input of
the gasPricesETH function is. The external library function the attention has been put over
is gasPrices, according to Figure 4.34. The function code has been divided into three code

snippets for its presentation.

public async gasPrices(fallbackGasPrices?: GasPrice, shouldGetMedian = true): Promise<GasPrice> {

if (!this.lastGasPrice) {

this,lastGasPrice = fallbackGasPrices || this.configuration.fallbackGasPrices

}

const cacheKey = this.LEGACY_KEY(this.configuration.chainId)

const cachedFees = await this.cache.get(cacheKey)

if (cachedrees) {

return cachedFees

if (object.keys(this.offChainoracles).length > @) {
try {
this.lastGasPrice = await this.fetchGasPricesoffChain(shouldGetMedian)
if (this.configuration.shouldCache) {

await this.cache.set(cachekKey, this.lastGasPrice)

}

return this.lastGasPrice
} catch (e) {
console.error('Failed to fetch gas prices from offchain oracles...")

Figure 4.36: Code snippet 1 of the gasPrice function in gas-price-oracle external library.

Figure 4.36 shows the first code snippet related to the gasPrices function. According to this
path, the gas fee suggestions are retrieved by considering the outputs of some off-chain oracles

(Section 2.2 for details), here corresponding to:

const ethgasstation: offChainoracle = { const etherchain: offchainOracle = {
name: ‘ethgasstation’, name: ‘etherchain’,
url: ‘https://ethgasstation.info/json/ethgasAPI.json’, url: "https://etherchain.org/api/gasnow’,
instantPropertyName: 'fastest', instantPropertyName: 'rapid’,
fastPropertyName: 'fast’', fastPropertyhame: 'fast’,
standardPropertynName: "average', standardPropertyName: 'standard’,
lowPropertyName: ‘safelow’, lowPropertyName: ‘slow’,
denominator: 1@, denominator: 1e9,
additionalDataProperty: null, additionalDataProperty: ‘data‘,
} }
Figure 4.37: Oracle 1 taken into account by snippet in Fig- Figure 4.38: Oracle 2 taken into account by
ure 4.36. snippet in Figure 4.36.

48

Oracle in Figure 4.37 is down from July 1st 2023**, so results are retrieved from Oracle in
Figure 4.38 only. In particular, the API to be reached for the Oracle gas fee suggestion has been
updated to :

https://beaconcha.in/api/vl/execution/gasnow

if (object.keys(this.onChainoOracles).length > @) {
try {

const fastGas = awailt this.fetchGasPricesOnChain()

this.lastGasPrice = LegacyGasPriceOracle.getCategorize(fastGas)
if (this.configuration.shouldCache) {

await this.cache.set(cacheKey, this.lastGasPrice)

¥

return this.lastGasPrice
} catch (e) {

console.error('Failed to fetch gas prices from onchain oracles...")

Figure 4.39: Code snippet 2 of the gasPrice function in gas-price-oracle external library.

Figure 4.39 shows the second code snippet related to the gasPrices function. According to
this path, the gas fee suggestions are retrieved by considering the outputs of some on-chain

oracles, here corresponding only to:

const chainlink: onChainOracle = {
name: 'chainlink’,
callData: '@x50d25bcd’,
contract: '"@x169E633A2D1E6C10dD91238Ballc4A7@8dTEF37C",
denominator: 'looeceeece’,

Figure 4.40: Oracle taken into account by snippet in Figure 4.39.

According to Figure 4.40, a RPC towards the specified smart contract address is performed,

in particular the aim is that of triggering the smart contract’s function identified by the value

*2For details: https://ethgasstation.info/

49

https://ethgasstation.info/

in callData parameter. Following up with Figure 4.39, the on-chain oracle output is then sep-
arately multiplied with different constants, in order to create several priority levels for the sug-

gestion. Multipliers involved are those reported in Figure 4.41.

const MULTIPLIERS = [
instant: 1.3,
fast: 1.2,
standard: 1.1,

low: 1,

LS

Figure 4.41: Multipliers for different priority levels generation valid for both Figure 4.39 and Figure 4.42 snippets.

GasPrice implementation ends up with the third reported snippet:

try {

const fastGas = await this.fetchGasPriceFromRpc()

this.lastGasPrice = LegacyGasPriceOracle.getCategorize(fastGas)
if (this.configuration.shouldcache) {
await this.cache.set(cacheKey, this.lastGasPrice)
}
return this.lastGasPrice
catch (e) {
console.error('Failed to fetch gas prices from default RPC. Last known gas will be returned')
}

return LegacyGasPriceOracle.normalize(this.lastGasPrice)

—

Figure 4.42: Code snippet 3 of the gasPrice function in gas-price-oracle external library.

Following the functions calling flow of Figure 4.42 leads to the eth_gasPrice RPC for the gas
fee suggestions. Its output is subject to the multipliers in Figure 4.41 for the generation of the
different priority levels.

Assaid, Figure 4.36, Figure 4.39 and Figure 4.42 are the three snippets composing the gasPrice
function called in Figure 4.34. One of their outputs will be the one given as input to the func-
tion shown in Figure 4.3 5, where it will be summed up to the max between the 5% of the value
itself and the 3 value, corresponding to the fixed maxPriorityFee parameter set by default by
the TC platform, as shown in Figure 4.3 3.

50

Despite the made portrait, empirically it has been seen that some TC gas fee suggestions

follow the following formula instead:
eth_gasPrice +3 — 0.01

where:

* eth_gasPrice is the value resulting from the homonymous RPC;
* the 3 value corresponds to the amount assigned to maxPriorityFee parameter;

* the 0.01 value has been retrieved empirically.

An example of a TC transaction (withdrawal) involving a relayer and matching the TC sug-

gested fee retrieved according to the just showed empirically retrieved formula follows:

@ Transaction Hash: Oxc41e629a9987c7093ad9510003cled4/7778abeba1fc0cl2b122336268d8107
v
2 Block © 19456110 651 Black Confirmations

@ Timestamp © 2 hrs ago (Mar-17-2024 05:40:35 PM +UTC)

¢ Transaction Action: Call windraw Function by 0x155301¢5.. 90ED13424 on [Tornado.Cash: Router

HUGED o wiNNINGS ARE WATING FOR YOU!

PLAY NOW

©

4 DETH ($0.00

@ Transaction Fee: 0.012994176824610592 ETH (347 .40

31.746386191 Gwei (0.000000031746386191 ETH)

Figure 4.43: Example of a withdrawal involving a relayer and the 100 ETH smart contract.

Figure 4.44: Tornado Cash gas fee suggestions according to the above formula.

In particular:

ST

* The transaction present in Figure 4.43 is alegacy one (type-0), with a gasPrice parameter
as specified. Generally, withdrawals involving a relayer are type-0 transactions, whereas
withdrawals not involving a relayer (hence, those of interest for the project), are type-2
transactions. This is why the analysis of wallets has been centered around type-2 trans-
actions.

* The three values present in Figure 4.44 correspond, respectively, to the eth_gasPrice
RPCs result, eth_gasPrice + 3, eth_gasPrice + 3 — 0.01. The last of the three values is
the one following the empirically retrieved formula and matching the TC transaction’s
gasPrice present in Figure 4.43 as well.

4.3 ADDITIONAL WORK

The analysis seen until now is all related to the Etherenm mainnet network (chainld=1), cho-
sen because of its high usage within the T'C platform. The high usage information comes from
the visualization of the related smart contracts activity, hence the daily occurrences of deposit-

s/withdrawals towards/from one of the ETH currency-related pools.

Deposit Withdraw Statistics [1eem |

Anonymity set @

ETH 52505 equal user deposits

Latest deposits

Amount €
525@5. 2 hours ago 52500. 6 hours ago
O O O O 52504. 2 hours ago 52499. 6 hours ago

0.1 ETH 1 ETH 10 ETH 100 ETH 52503. 6 hours ago 52498. 9 hours ago

52502. 6 hours ago 52497. 9 hours ago
Deposit
52501. 6 hours ago 52496. 9 hours ago

Figure 4.45: Example of TC activity concerning its 10 ETH pool in Ethereum Mainnet network.

Polygon network is second to Etherenm Mainnet in terms of its usage within the TC plat-

form, with MATIC as its native currency.

52

Deposit Withdraw Statistics | 100 mrc

Token Anonymity set @

MATIC 10201 equal user deposits

Latest deposits
Amount @

——0—0—0—

100 MATIC 1K MATIC 10K MATIC 100K MATIC

10201. a day ago 16196. 5 days ago
10200. 5 days ago 10195. 5 days ago

10199. 5 days ago 10194. 5 days ago

10198. 5 days ago 10193. 5 days ago
Deposit
10197. 5 days ago 10192. 5 days ago

Figure 4.46: Example of TC activity concerning its 100 MATIC pool in Polygon network.

With the aim of examining how wallets retrieve those values then suggested as gas fees to
users involved in a MATIC transfer employing the Polygon network, the open source code of
several WallerConnect compatible software wallets has been analyzed for this circumstance as
well. Wallets analyzed are some of those already discussed for the Etherenm scenario, plus an
additional one. This conveys in the following analyzed wallets for the Polygon case: Metamask,
OneKey, Rainbow, ShapeShift Wallet and Rabby Wallet

MEeTAaMASK Aswellasin the Ethereum case, suggestions for MATIC transfer occurring through
Metamask come from two possible APIs, according to the real-time setting of an environment

variable (see Subsection 4.1.1 for details). In this case, the two possible APIs correspond to:
bttps://gas.api.cx.metamask.io/networks/13 7/suggested GasFees

bttps://gas.uat-api.cx.metamask.io/networks/13 7/suggested GaskFees

From both the APIs, gas fee suggestions in terms of maxFeePerGas and maxPriorityFeePerGas

for the low, medinm and high priority levels are retrievable.

ONEKEY Gas fee suggestions are made by the OneKey wallet by relying on the Blocknative
platform (see Subsection 4.1.5 for details). In Polygon case, suggestions coming from the plat-
form are retrievable through the API reachable by the following URL:

bttps://api.blocknative.com/gasprices/blockpricesichainid=13 7

The API returns the maxFeePerGas and maxPriorityFeePerGas for several levels of confi-

dence, to be intended as priority levels.

53

RainBow Gas fee suggestions are made by the Rainbow wallet by relying on the following:

bttps://metadata.p.rainbow.me/meteorology/vi/gas/polygon

The output consists of three gas prices, each for a different priority level (see Subsection 4.1.4
for details). The Rainbow wallet multiplies each of the retrieved gas prices with the 1.05 multi-

plier and suggests to the user the ceiling of that.

SHAPESHIFT WALLET Gas fee suggestions are made by the ShapeShift wallet by relying on
the following API:

bttps://api.polygon.shapeshift.com/apifvi/gas/fees

The output consists of three gas fee suggestions (see Subsection 4.1.3 for details), one for each
proposed priority level. In particular, each result’s row is made of three parameters: gasPrice,
maxFeePerGas and maxPriorityFeePerGas. According to these values, a gas fee suggestion

made by the wallet for each priority level corresponds to:

maxFeePerGas_official = max(maxFeePerGas, gasPrice),

maxPriorityFeePerGas_official = maxPriorityFeePerGas

RaBBY WALLET Rabby Wallet is a software wallet available as mobile application (for Azn-
droid and i0S), web extension for Chrome** and desktop application. It counts over 1ok down-
loads on the Android platform alone. At the frontend level, along with a MATIC transfer,
Rabbit Wallet prompts the user with three different gas fee suggestion levels: standard, fast
and 7nstant. The higher the level, the higher the gas fee suggestion. The wallet offers the pos-
sibility for the user to customize the gas fees. The source code of the Rabbit Waller** present
on GitHub has been analyzed, resulting in the following API as the one used for the gas fee

suggestions retrieval:

bttps://api.rabby.io/vl/wallet/gas_marketichain_id=matic

3 For download: https://rabby.i0/
*4For details https://github.com/RabbyHub/Rabby

54

https://rabby.io/
https://github.com/RabbyHub/Rabby

A comparison of what is seen by a user at the frontend level and what retrieved by the above

API follows, showing a match between the two:

hd @ spirabbyicfvliwallet/gas_s ® +
&« (&} °s apirabbyiofvi/wallet/ga.. Bg ¥
Gas 0.001911 MATIC =$0.00 More >
‘ormatta il codice [
Standard Fast Instant Custom Cim . m P " . e w
{"level™: "slow", "front_tx_count": @, "price": Z30000000032.0
88 91 99 0 Mlevel™: "normal”, "front_tx_count": @, “price": 2léeee0oeze.e

f"level": "fast", "front_tx_count™: @, "price™: 9%000002000.8

Figure 4.48: Rabby Wallet suggested fees in wei retrieved through

Figure 4.47: Rabby Wallet suggested fees at
the API.

frontend level.

55

56

Results

Each of the analyzed wallet in Chapter 4 follows its own approach for the gas fee suggestions
task: it does not happen for two different wallets to propose the same suggestions. A gas fee
suggestion is considered as associated with a single wallet according to a one-to-one relation-
ship. A Python script (python version 3.12.1) has been written up to emulate the logic that each
analyzed wallet exploits for the gas fee suggestions. The python script has been run over a re-
mote server (a virtual machine reached through the ssh/ command) for a time window covering
about one month: from 01/02/2024 to 09/04/2024. The python script execution results in
a.xt file filled with a collection of the gas fee suggestions made by each wallet, in particular,
the suggestions have been collected, on average, every 15 seconds. The short time slot between
a collection and the next one is due to the dynamic nature of the Ethereum network, whose
congestion changes second after second with gas fee suggestions following such a flow. Each
single collection (a single emulation, at a specific time, of the gas fee suggested by each ana-
lyzed wallet) is to be intended as the one for a type-2 transaction (both the maxPriorityFee and

maxFeePerGas parameters are retrieved) and is made up of the following data:

* The timestamp (+UTC) of the emulation occurrence. The information has been saved
according to the Universal Time Coordinated (UTC) since it is the one transactions in
Etherscan are recorded with.

* Collection of gas fee suggestions performed by the AMeramask Wallet for all of the three
proposed priority levels (Jow,medinm and high). Suggestions are collected for both the
potential APIs reached by the wallet (see Subsection 4.1.1 for details).

57

* Collection of gas fee suggestions performed by the OneKey Wallet for all of the proposed
confidence intervals (99%, 95%, 90%, 80%, 70%, see Subsection 4.1.5 for details).

* Collection of gas fee suggestions performed by the Raznbow Wallet for all of the three
proposed priority levels (normal, fast and urgent).

* Collection of gas fee suggestions performed by Trust Wallet.

* Collection of gas fee suggestions performed by the ShapeShift Wallet for all of the three
proposed priority levels (slow, standard and fast).

An example of a one-shot collection made by the Python script follows, with the maxPriori-
tyFee corresponding always to the first collected value and maxFeePerGas corresponding always

to the second one:

HTTPS requests in range 2024-82-84 12:57:5%4 UTC - 2024-83-84 12:58:88 UTC
METAMASK WALLET:

Low : ©.00188298 70.173773954

Medium: ©.01979399266 94.753034808

High: ©.85363298332 119.34734364

Low : ©.00180293 70.173773954
Medium: @.81979399266 94.753834808
High: ©.85363298332 119.34734364

ONE KEY WALLET:
{8.1, 89.63}
{0.09, 89.62}
{0.09, 89.62}
{0.08, 89.61}
{0.07, 89.6}

RAINBOW WALLET:

1.8 86.418931759

1.5 98.73987834695681
2.8 95.06882493490001

TRUST WALLET:
9.0811354350000000001 B85.345630361

UNSTOPPABLE WALLET:
0.924810872 74.8836945902

SHAPESHIFT WALLET:

SLOW : ©.208241181 73.35912521
STANDARD: 4.355288649 77.514172678
FAST: 1©.819666119 83.178550148

Figure 5.1: Example of gas fee suggestions collected at a specific UTC time by the built Python script.

58

Informations present in the.zxz file collecting multiple elements following the format shown
in Figure 5.1 have been compared with the gas fees associated with transactions present over the
Ethereum blockchain. Transactions initiated within the Etherenm network have been explored

using Etherscan. In particular, transactions of interest are:

* Transactions involved in a transfer of currencies over the whole Ethereum network;

¢ Transactions involved in interactions with one of the Tornado Cash smart contracts re-
lated to the ETH currency over the Etherenm network.

Transactions involved in a transfer of currencies over the whole Etherenm network have been
analyzed with the purpose of revealing the potentiality of the used approach. The final aim of
the project is to reveal if the heuristic concerning wallet fingerprints is a valid one for reduc-
ing the Tornado Cash pools’ anonymity set, by checking the feasibility of associating made
transactions with the wallet they come from. Once the association is made, withdrawals per-
formed through a specific wallet are considered indistinguishable among deposits coming from
the same wallet only. Analyzing the approach on a general scenario first (whole Ethereum net-
work) and on the specific one afterward (Tornado Cash) works as a verification step: we make
sure that the approach is valid in general, hence that in general it is possible to link a transac-
tion involved in a cryptocurrency transfer with the wallet it has been initialized from. Once
this is proven, it is possible to move on to the more specific scenario. The number of trans-
actions implying a transfer action over the Etherenm blockchain in the time window going
from 01/03/2024 to 09/04/2024 is very large. To prove the feasibility of the approach, a
smaller time window has been taken into account: the one going from 09/04/2024 08:02:00
pm to 09/04/2024 11:28:47 pm, covering more than three hours. Transactions present over
the Etherenm blockchain in the specified time window have been filtered according to those
triggered by a transfer action, identified by the action id 0x29059¢bb, present in the input field
of the transaction itself. This has been done since the collected gas fees are those related to the
occurrence of ETH transfers over the blockchain (transactions triggered by different actions
could imply a different approach for the gas fee suggestions followed by the wallet itself). Trans-
actions covering the specified time window have been identified as those present in blocks going
from 19620335 t019621362. A javascript file has been built up to query each block in the range
to extract transactions triggered by a transfer action. This has been possible by exploiting the

Webs library and a private /nfura key. An overview of the synthesized script follows:

59

endBlock) {
blockNumber++

aPe a
on.maxPrio

+ " + m

main() {

main();

Figure 5.2: Javascript code snippet for retrieving (and filter) transactions from the Ethereum blockchain.

Through the javascript code in Figure 5.2, 66948 transactions have been extracted from
the blockchain, in particular their hash and related gas fees have been saved in a new .zxz file.
A python script has been built up to compare the gas fees attached to each of the extracted
transactions with the collected suggestions, coming from the analyzed wallet in the same time

window. The comparison resulted in 13203 full matches, where a full match is obtained when:

* maxPriorityFee and maxFeePerGas parameters attached to a transaction are equal to
those suggested by an analyzed wallet;

* the gas fee suggestion collection has occurred a few seconds before the transaction val-
idation (the validation time, hence the time between the transaction triggering and its
validation over the blockchain, is taken into account).

Examples of full matches follow:

6o

@ Timestamp:

Transaction Action:

® Etherprice

imit & Usage by Txn

ees:

0x01decf1d4306aef 428548722129431017 132

os

©10337422 295460 Block Confrmations

©41 days ago (Mar-01-2024 02:44:23 AM +UTC)

Transfer 0.15 ETH To 0xc204222a..F4;

Blockscan Chat o (=] start Chat

$0.15ETH Ssz717

0.000861465203241 ETH $3.03

41.022156821 Gwel (0.000000041022156821 ETH

$3,435.00 / ETH
21,000 | 21,000 (100%)

Base: 41021215021 Gwel | Max: 66.077773757 Gwel | Max Priority: 0.0000409 Gwei

Figure 5.3: Example of a real transaction validated over the

Ethereum Blockchain.

HTTPS requests in range 2024-83-81 ©2:43:53 UTC - 2024-83-81 02:44:81 UTC
METAMASK WALLET:

Low : ©.2088B4446 48.946686562

Medium: ©.8009409 66.677773757

High: ©.0099506 83.208814198

Low : ©.00988444882 45,912377626
Medium: ©.0909409 61,981456689
High: ©.95311392632 78.102652328

ONE KEY WALLET:
{e.1, 53.55}
{0.09, 53.54}
{0.09, 53.54}
{0.08, 53.53}
{e.07, 53.52}

RAINBOW WALLET:

1.8 54.232951315

1.5 56.94459888075
2.8 59.656246446500006

TRUST WALLET:
8.00@97 55.094761812

UNSTOPPABLE WALLET:
0.221805631 46.133298808

SHAPESHIFT WALLET:

SLOW : 2.000319913 46.755769169
STANDARD: ©.891625649 47.899143244
FAST: 3.685007884 53.015448742

Figure 5.4: Gas fee suggestion collections com-
ing from the analyzed wallets for a timestamp
consistent with the transaction in Figure 5.3.

Figure 5.3 and Figure 5.4 show a full match occurring between gas fee attached to a transac-

tion over the Ethereum blockchain (in terms of maxFeePerGas and MaxPriorityFee) and the

suggestions for the same values coming from the Metamask wallet.

@ Transaction Hash:

@ Timestamp:

Transaction Action

1152

°

© 19357422 235477 ek canfmatans

© 41 days ago (Mar01-2024 02:4423 AM +UTE)

Transfer 25615.271.20434857115575775 @ SHI To 0x3292EDB3.. 26858

B Biockscan Chat (5 start Chat

(sniba Inu: SHIB Token)

AiTransrers [RTSIRNES

From 0:0AB0F198..2909048

OETH (50.00
0.002129830870832393 ETH s7.67

41022185921 Gwei (0.000

041022185921 ETH)

$343590/ETH
77878 | 51919 (66.67%)

Base: 41.021215921 Gwel | Max 51685174614 Gwel | Max Prioriy: 0.00087 Guwel

Figure 5.5: Example of a real transaction validated over the

Ethereum Blockchain.

b4 For 25615271 20434857115575775 427 @ SHIBA INU(SHIE

HTTPS requests in range 2024-03-81 82:44:89 UTC - 2024-83-081 ©2:44:15 UTC
METAMASK WALLET:

Low : ©.00088444882 43.871854961

Medium: ©.8009489 58.145671092

High: ©.85311392632 73.272403797

Low : ©.00888444882 43.871054961
Medium: ©.0009409 58.145671092
High: ©.85311392632 73.272483797

ONE KEY WALLET:
{0.1, 53.85}
{0.09, 53.84}
{0.09, 53.84}
{e.e8, 53.83}
{e.e7, 53.82}

RAINBOW WALLET:

1.9 49.538097367

1.5 52.81500276835
2.9 54.491907653700004
TRUST WALLET:

9.00097 51.685174614

UNSTOPPABLE WALLET:
0.366805631 43.436976143

SHAPESHIFT WALLET:

SLOW : 9.000318545 46.5455143

STANDARD: ©.841672694 47.668891271

FAST: 5.929410219 53.008813981

Figure 5.6: Gas fee suggestion collections com-
ing from the analyzed wallets for a timestamp

consistent with the transaction in Figure 5.5.

Figure 5.5 and Figure 5.6 show a full match occurring between gas fee attached to a transac-

61

tion over the Ethereum blockchain (in terms of maxFeePerGas and MaxPriorityFee) and the

suggestions for the same values coming from Trust Wallet.

HTTPS requests in range 2024-83-01 02:44:15 UTC - 2024-03-01 02:44:23 UTC
METAMASK WALLET:

Low : 9.00088444882 43.071054961

Medium: ©.8069409 58.145671092

High: @.05311392632 73.272403797

Low : @.00088444882 43.071054961
@ Transaction Hash 0 5951049147531dc6cbad 10619€671b4535159 Medium: ©.0009409 58145671092
High: ©.85311392632 73.272403797

@ status © Success

© 19337422 295483 Block Confrmations
ONE KEY WALLET:

© 41 days ago (Mar-012024 02:44:23 AM +UTC) {0.13, 56.4}
{8.89, 56.36}
{e.09, 56.36}
{8.88, 56.35}
{0.07, 56.34}

Transaction Actios ansfer 0.00107136545270634 ETH To OxF523ac B6e579589

B Biockscan Chat | Wallet-to-wallet instant messaging platform. (5 start Chat RATNBOW WALLET:

1.0 49.538097867

1.5 52.81500276635
2.9 54.491907653760004

TRUST WALLET:
©.00097 50.32538688
@ value: 4 0.00107136545270634 ETH 8376
0.000863125534341 ETH $3.03
UNSTOPPABLE WALLET:
01215921 ET ©9.454742069 42.391756136

41101215921 Gwei (0.00

SHAPESHIFT WALLET:

@ Ether Price $3435.00/ ETH
SLOW : ©.000318545 46.5455143

& Usage by Txn: 23100 | 21,000(90.91%) STANDARD: ©.845625649 47.713891271
@ Gas Fees: Base: 41.021215921 Gwei | Max: 56.35 Gwei | Max Priority: 0.08 Gwei EAST:REC020 11021005208 12321006
Figure 5.7: Example of a real transaction validated over the Figure 5.8: Gas fee suggestion collections com-
Ethereum Blockchain. ing from the analyzed wallets for a timestamp

consistent with the transaction in Figure 5.7.

Figure 5.7 and Figure 5.8 show a full match occurring between gas fee attached to a transac-
tion over the Ethereum blockchain (in terms of maxFeePerGas and MaxPriorityFee) and the
suggestions for the same values coming from OneKey Wallet.

According to the results, 13203 transactions over 66248 present gas fee parameters matching
with those collected, meaning that for each of the 13203 transactions, the wallet that transac-
tion has been initiated from is now a public information. This not only serves as a support
for the approach application over the more specific scenario of Tornado Cash, but represents a
privacy concern over the Etherenm blockchain: information related to the wallet used by a user
to perform a transaction is not a public one, but the followed approach allows to retrieve such
information for some transactions. In particular, the 66248 - 13203 transactions not matching

the collection are due to:

* Customized gas fees: if a user decides not to accept the wallet-suggested gas fees but to
set fees by himself, the approach does not work.

* Other wallets: the collection is made up of the gas fee suggestions coming from the 6
analyzed wallets. Wallets usable over Ethereum are far away more than 6, implying that
users employing a not analyzed wallet are undetected.

62

Given the support provided for the approach by testing it over transactions validated within
the Ethereum network in general, the heuristic has been tested over transactions addressing
Tornado Cash smart contracts (pools) as well. In particular, transactions interacting with one
of the Tornado Cash pools existing over the Ethereum Mainnet network (0.1 ETH, 1 ETH,
10 ETH, 100 ETH) and involving the ETH cryptocurrency transfer are those interacting with

the contract address
oxdgoe2f925DA726bsoC4Ed8DoFbooAdos3324F31b

The address is that belonging to the Torrnado.Cash: Router. Over a time window of about
one month (from 01/03/2024 to 09/04,/2024), 4579 transactions have occurred with respect

to the contract address. Among the 4579 transactions:
* 2210 are deposits,
* 2088 are withdrawals involving a relayer,
* 281 are withdrawals not involving a relayer.

The total number of transactions involving the ETH currency on the Ethereum network

through the Tornado Cash platform has been acquired through:

1. Manually downloading the .csv files in Etherscan once in the contract related page’,

2. Extracting from each .csv file the hash of each present transaction through the usage of
Excel, then appending it to a purposely generated .zxz file,

3. Gaining informations about each transaction present in the generated .zt file using its
related hash as starting point. A javascript file has been built up for the purpose.

The javascript file that extracts informations about Tornado Cash related transactions us-
ing their hash as starting point has the following logic, exploiting, once again, web3 and infura:
the script takes as input a .z« file containing transactions hash only. For each hash, consid-
ered a unique identifier for a transaction over the blockchain, the following informations are

retrieved:

* Tornado.Cash: Router in Etherscan: https : / / etherscan . dio / address /
0xd90e21925da726b50c4ed8d0fb90ad053324f31b

63

https://etherscan.io/address/0xd90e2f925da726b50c4ed8d0fb90ad053324f31b
https://etherscan.io/address/0xd90e2f925da726b50c4ed8d0fb90ad053324f31b

* Gas fees attached to the transaction identified by the given hash. For the purpose, the
type of each transaction has been extracted (type-0 or type-2) in order to know the num-
ber of gas-related parameters associated with the transaction itself;

* The nature of the transaction, hence if it is a deposit or a withdrawal. The information
has been gained by considering the 7d of the action triggering the transaction, reported
in the transaction input field together with other parameters. In this case, 0x6438689f
represents a withdrawal while 0x13498413 represents a deposit;

* In case of withdrawal transactions, the script tells apart those involving a relayer and
those that do not. This is done by digging into the input field content of the transaction
itself. In the case of a relayer involved, his address over the blockchain and the amount of
currency to him dedicated is expressed inside the transaction input field, otherwise the
parameters leave space for zeros value. This translated into checking if specific positions
inside the input field of a withdrawal transaction are filled with zero values or not.

As seen in Subsection 2.3.2, when a relayer is involved in a withdrawal transaction there is no
need for the user to connect his wallet to the Tornado Cash platform. This is because the relayer
will pay the fees on his own and send the remaining amount to the recipient’s address through
an ETH transfer. The situation is different when a relayer is not involved in a withdrawal trans-
action: in this case the withdrawer has to pay the transaction fees on his own, making it neces-
sary to connect his wallet to the Tornado Cash platform. The case of withdrawal transactions
not involving a relayer is the one wallet fingerprints heuristic can have an effect on. This means
that among the 4579 TC-related transactions that occurred in the ~one-month time window,
those where the wallet fingerprints heuristic could have any effect are 4579-2088, hence with-
drawals involving a relayer are out of the heuristic coverage. This turns into 2491 transactions
to be analyzed. A python script has been built up for the purpose of comparing the TC-related
transactions of interest (2210 deposits and 281 withdrawals not involving a relayer) with the

collected gas fee suggestions by the analyzed wallet. The script execution turned in:
* 91 full matches with deposits,
* 22 full matches with withdrawals not involving a relayer;

* 0 full matches with withdrawals involving a relayer, as expected (when a relayer is in-
volved, the user does not connect his own wallet to the dApp).

All deposits full matches and withdrawals full matches come from the same wallet: Meza-
mask. Examples of full matches for both a deposit and a withdrawal concerning the same Tor-

nado Cash smart contract (pool) follow:

64

® Transaction Hash: 0X17004ff7f8702f0ceof: 1abcdct
© succes:
© 19546906 55903 Block Confirmatons
® Timestamp. ©12 days ago (Mar-30-2024 12:55:59 PM +UTC)
Action: Call epostt Function by 0XAC05e430... A4FOCC Tomado.Cash: Router 2

Bl Blockscan Chat | Walet-to-wallet instant messaging platform. (5] Start Chat

4F31b (Tornado.Cash: Router) 0 @

ash: 100 ETH

D Value: 4 100ETH sss13s281
0.018520505001571156 ETH 86510

10.400640493 Gwe 00010490640493 ETH

$3,507.56 / ETH

e by Txn 1018118 | 950,692 (03.38%)

10.475364688 Gwei | Max: 28630523015 Gwei | Max Priority: 0.015275805 Gwei

Figure 5.9: Example of a real deposit transaction validated over the
Ethereum Blockchain. TC pool involved is 100 ETH.

5 3560e4: 76f6

® Transaction Hash: 0xa4c27d

d within 55 mins

B Biockscan Chat | walet-to- ing platform. (=] Start Chat

boDAG053324F31b (Tornado.Cash: Router) © @

00 ETH To 0x22169690..099C746/

$0ETH

0.006211796431102076 ETH $21.77

17.705427328 Gwei (

0017

$3,505.52/ ETH

by T 424369 | 349,067 (

26%)

17.794487328 Gwei | Max: 18.002777584 Gwel 0.00004 Gwei

Figure 5.11: Example of a real withdrawal transaction validated
over the Ethereum Blockchain. TC pool involved is 100 ETH.

65

HTTPS requests in range 282
METAMASK WALLE

438888

High

ONE KEY

SHAPESHIFT WALLET:
SLOW : @.2011

Figure 5.10: Full match in terms of gas fee sug-
gestions coming from the Metamask wallet for
a timestamp consistent with the transaction in
Figure 5.9.

METAMASK WALLET
L 0094 18.0027775!
Medium: ©.e

Low
Medium:

SHAPESHIFT WALLET
: ©.15¢ 22
STANDARD: 1.17627

Figure 5.12: Full match in terms of gas fee sug-
gestions coming from the Metamask wallet for
a timestamp consistent with the transaction in
Figure 5.11.

Being the deposit in Figure 5.9 and withdrawal in Figure .11 related to the same Tornado
Cash pool and since the deposit has occurred before the withdrawal itself, the users related
to these transactions are considered heuristically linkable according to the wallet fingerprints
heuristic. The reason behind a so small number of full matches in the Tornado Cash scenario

relies on:

* Possibility for the user to customize gas fees;
* Usage of other wallets with respect to those analyzed;

* Suggestions coming from the Tornado Cash platform itself.

In the Tornado Cash scenario, gas fees attached to a transaction can not only come as sug-
gestions from a wallet or being customized, but the dApp itself makes its own suggestions. In
particular, according to the empirically retrieved formula for gas fee suggestions coming from
Tornado Cash, in a time window covering the period going from 17/03 /2024 05:28:55 pm to
09/04/2024 11:28:47 pm (a subset of the time window previously analyzed) it happens that:

* 2856 transactions are collected: 1454 deposits and 1402 withdrawals, 162 of which do
not involve a relayer;

* Over the 1454 deposits, 140 are full matches with the output of the empirically retrieved
formula concerning gas fee suggestions coming from Tornado Cash itself;

* Over 1402 withdrawals, both involving a relayer or not, 253 are full matches with the
output of the empirically retrieved formula concerning gas fee suggestions coming from
Tornado Cash itself. In particular, 11 full matches concern withdrawals without a relayer
involved.

It has to be noticed that gas fee suggestions coming from the Tornado Cash platform have
no dependency on the wallet used at transaction time, hence they hold for both withdrawals
with and without a relayer involved. Examples of gas fees matching between Tornado Cash
suggestions according to the empirically retrieved formula and transactions within Tornado

Cash follow:

66

® Transaction Hash: 151341 71ddbf2f2796549d550
@ status © Success

©19460040 172975 Block Confimations

®24 days ago (Mar-18-2024 06:56:35 AM +UTC)

Transaction Action Call Deposit_ Function by Heco Bridge Exploiter... on B Tomado.Cash: Router

B Blockscan Chat | Wallet-to-wallet instant o (5) start Chat

HTTPS requests in range 2024-83-18 06:55:45 - 2024-083-18 06:55:46
208.430781601000003
1e3008Bc3109907e6DFf4d041F933493411 (Heco Bridge Exploiter 8) 23.430701601000003

@Fn 0
@To d b (Tornado.Cash: Router) (0 @ S PR
4 100ETH $35063275
o.az0e7259ee7e010308 €74 G Figure 5.14: Gas fee suggestion collections
® Gas Price: 21.986004168 Gwel (0. 0021986094168 ETH; . .
coming from the TC platform according to the
$352031/€TH empirically retrieved formula for a timestamp
U 596956 | 940276 0431%) . . -
Base: 10986094168 Gwel | Max: 23.420701601 Gwel | Max Priariy: 3 Gwel consistent with the transaction in Figure 5.13.
Figure 5.13: Example of a real Tornado Cash deposit transaction
validated over the Ethereum Blockchain.
® Transaction Has| Oxacaf17fb1c0aa586e31c528cceff50e4140192e418222ec174061151ece2c0
e
© 19544 188929 Block Confirmations.
@ Timestam ©® 12 days ago (Mar-30-2024 03:44:23 AM +UTC) | & Confirmed within 17 secs
ol (s] Function by G retoceth on @ Tomado Cash: Router 7 HTTPS requests in range 2024-93-30 03:44:3 - 2024-@3-30 03:44:03

19.042290188000003
22.942290188000003

@ sponsored
Blockscan Chat () start Chat 22.032290188

@From Oreltoreth

oo x490621925DA726050CAEGBDOF! 24F31b (Tomado.Cash: Router)) @ Figure 5.16: Gas fee Suggesﬁon collections

Tt OET RS coming from the TC platform according to the
¢ 0ETH (0.0 empirically retrieved formula for a timestamp
000m9624TI 26099144 ETH $9182 .] R

consistent with the transaction in Figure 5.15.

22.032290188 Gwel (¢ 022032290188 ETH

Figure 5.15: Example of a real Tornado Cash withdrawal transac-
tion with relayer involved validated over the Ethereum Blockchain.

67

© 19458746 174224 Block Confimations

© 24 days ago (Mar-18-2024 02:35:11 AM +UTC)

Transaction Actio Call witrow_ Function by 0x72097c69...F635DDEST on (3 Tornado.Cash: Router 2

B Biockscan Chat | v -w g platform. (] start Chat
HTTPS requests in range 2024-03-18 02:34:46 - 2024-03-18 02:34:47
25.089912325
. 28.889912325
©rrem 28.079912325
@To: o
® Value # 0ETH (50.00)
o ovaendssTaseracTsET Gl Figure 5.18: Gas fee suggestion collections
@ Gas Price: 28.079912325 Gwei (0.000000028079912325 ETH)
coming from the TC platform according to the
©terpice sszn /e empirically retrieved formula for a timestamp
® Gas Limit & Usage by Txn; 550,000 | 349,055 (63.46%)

©casess ate 258156044 owel | Mac 2879912325 el | M Py 8 Gl consistent with the transaction in Figure 5.17.

Figure 5.17: Example of a real Tornado Cash withdrawal trans-
action with no relayer involved validated over the Ethereum
Blockchain.

68

Conclusion

Tornado Cash is a dApp retrofitting with privacy several networks, with Ethereum as the main
one. The privacy added by the mixer over Ethereum has been challenged by several heuristics
(see Chapter 3 for details), which analyze mainly the user behavior within the Tornado Cash
platform. This project introduces and evaluates a novel heuristic that diverges from focusing
solely on user interactions with the dApp. Instead, it targets the typical operational flow of Tor-
nado Cash. Termed as wallet fingerprints [1][10], this heuristic aims to establish a connection
between blockchain transactions and the originating wallet. Applying this concept within the
Tornado Cash ecosystem: transactions, including withdrawals and deposits, can be categorized
(clustered) based on the wallet they have been initialized from. A cluster of withdrawals is con-
sidered linkable to a cluster of deposits when they share the same originating wallet across both
clusters. Analysis of the logic behind real-time gas fees suggested by several wallets has been
necessary for the purpose. The wallet fingerprints approach has been tested in the Ethereum
network generic scenario first for support reasons. Testing conducted in this general case has
revealed that out of a collection of 66,948 transactions validated on the Ethereum blockchain,
~ 20% yields to full matches with the data obtained from the analyzed wallets. The ability
to link a blockchain transaction to the originating wallet raises a privacy concern, as it involves
retrieving non-public information. After achieving positive results on the Ethereum network
as a whole, the wallet fingerprints heuristic has been further tested specifically on transactions
involving Tornado Cash smart contracts (pools) on Ethereum (with deposit amounts of 0.1
ETH, 1ETH, 10 ETH, 100 ETH). This testing has revealed that out of a subset of 2,491 eligi-

69

ble Tornado Cash-related transactions within a one-month timeframe (excluding withdrawals
involving a relayer), &~ 4, 5% results in full matches with respect to the collected wallet data.
In particular, the full matches include 91 deposits and 22 withdrawals, with the implication
that deposits and withdrawals initiated by the same wallet and interacting with the same Tor-
nado Cash pool are considered heuristically linkable, provided that the deposit precedes the
withdrawal in terms of timestamp. An analysis of the gas fee suggestions provided by the Tor-
nado Cash platform itself has been conducted as well. This analysis has led to the empirical
derivation of a formula representing one of the methods through which TC generates network
suggestions. According to this empirically derived gas fee suggestions formula, out of 2,856
transactions occurring within TC’s Ethereum-related pools, 343 (= 12%) are full matches, in-
dicating that their gas fee parameters are set according to the suggestions provided by the dApp.

Transactions not covered by the approach are due to:

* Customized gas fee;
* Gas fee set by wallets not analyzed yet;

* Gas fee suggested by TC according to a logic difterent from the empirically retrieved one.

The proposed approach demonstrates its impact both in the Ethereum blockchain, with
the rise of a privacy concern, and in TC, taking into account that in the last scenario only with-
drawals not involving a relayer have any chance to be affected by the heuristic. Moreover, for
the heuristic to be effective, a dynamic collection of gas fees suggested by each wallet must be
created and regularly updated. Transactions occurring in a time window not covered by the
collection can not be affected by the proposed wallet fingerprints heuristic. The fingerprints
are comprised of gas fee suggestions collected in real-time from the following analyzed wal-
lets:Metamask, Trust Wallet, Rainbow, OneKey Wallet, ShapeShift Wallet and Unstoppable
Waller.

The same wallet can support different blockchain networks (e.g., Bitcoin, Etherenm, Arbi-
trum, Gnosis, Polygon), providing for each of them different gas fee suggestions. Additional
work has been dedicated to uncovering the gas fee suggestion logic employed by several ana-
lyzed wallets specifically for the Polygon network. The wallets analyzed for the purpose include
Metamask, OneKey, Rainbow, ShapeShift Wallet, and Rabby Wallet. A collection of the gas
fees suggested by each mentioned wallet for a time window of one month in the case of the

Polygon network has been made as well. Future efforts could be put in:

70

* Testing the additional obtained collection in both the Polygon network and the Tornado
Cash smart contracts to the network related, hence repeating the steps performed in this
project but changing the main character. This could be done in order to reveal a pri-
vacy concern over the Polygon network, as well as revealing clusters of users employing
Tornado Cash platform within Polygon, second to Ethereum in terms of Tornado Cash
platform usage.

* Digginginto thelogic exploited by the already analyzed wallet concerning other blockchain
networks, e.g., Arbitrum, Gnosis, Avalanche.

* Extending the wallets analysis in the Ethereum case to other open source wallets, e.g.,
Torus Wallet, MEW Wallet, Guarda Wallet, MyCrypto Wallet. This expansion would
likely lead to an increase in the number of full matches observed in both the Etherenm
general case and the Tornado Cash scenario.

Each of the proposed future directions represents a meaningful extension of the current

project, contributing to its overall value and relevance.

71

72

Acknowledgments

I express my gratitude towards the Trust Wallet support team, because of their patience, at-
tention and meticulousness in following up with me in details concerning the wallet source

code.

73

74

References

[1] M. Wu, W. McTighe, K. Wang, I. Seres, N. Bax, M. Puebla, M. Mendez, F. Carrone,
T. Mattey, H. Obst Demaestri, M. Nicolini, and P. Fontana, “Tutela: An open-source

tool for assessing user-privacy on ethereum and tornado cash,” o1 2022.

[2] Y.Tang, C.Xu, C.Zhang, Y. Wu, and L. Zhu, “Analysis of address linkability in tornado
cash on ethereum,” in Cyber Security, W. Lu, Y. Zhang, W. Wen, H. Yan, and C. Li, Eds.
Singapore: Springer Nature Singapore, 2022, pp. 39—50.

[3] H.Du,Z. Che, M. Shen, L. Zhu, and]. Hu, “Breaking the anonymity of ethereum mix-
ing services using graph feature learning,” IEEE Transactions on Information Forensics

and Security, vol. PP, pp. 1-1, o1 2023.

[4] S.Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” Cryprography Mailing
list at brtps://metzdowd.com, 03 2009.

[s] M. Dotan, A. Lotem, and M. Vald, “Haze: A compliant privacy mixer,” Cryptology
ePrint Archive, Paper 2023/1152, 2023, https://eprint.iacr.org/2023/1152. [Online].
Available: https://eprint.iacr.org/2023/1152

[6] Chainalysis. (2022) Tornado cash: Sanctions challenges. [Online]. Available: https:

//www.chainalysis.com/blog/tornado-cash-sanctions-challenges/

[7] Z.Wang, S. Chaliasos, K. Qin, L. Zhou, L. Gao, P. Berrang, B. Livshits, and A. Gervais,
“On how zero-knowledge proof blockchain mixers improve, and worsen user privacy,”

OI 2022.

[8] Z. Wang, X. Xiong, and W. J. Knottenbelt, “Blockchain transaction censorship:
(in)secure and (in)efficient?” Cryptology ePrint Archive, Paper 2023/786, 2023, https:
//eprint.iacr.org/2023/786. [Online]. Available: https://eprint.iacr.org/2023/786

[9] Y.Zhou,]J. Wu, and S. Zhang, “Anonymity analysis of bitcoin, zcash and ethereum,” in
2021 IEEE 2nd International Conference on Big Data, Artificial Intelligence and Inter-
net of Things Engineering (ICBAIE), 2021, pp. 45—48.

75

https://eprint.iacr.org/2023/1152
https://eprint.iacr.org/2023/1152
https://www.chainalysis.com/blog/tornado-cash-sanctions-challenges/
https://www.chainalysis.com/blog/tornado-cash-sanctions-challenges/
https://eprint.iacr.org/2023/786
https://eprint.iacr.org/2023/786
https://eprint.iacr.org/2023/786

[x0]

[x1]

[20]

F. Béres, I. A. Seres, A. A. Benczur, and M. Quintyne-Collins, “Blockchain is watching
you: Profiling and deanonymizing ethereum users,” in 2021 IEEE International Con-
ference on Decentralized Applications and Infrastructures (DAPPS), 2021, pp. 69-78.

S. Werner, P. Pritz, and D. Perez, Step on the Gas? A Better Approach for Recommending
the Ethereum Gas Price, 10 2020, pp. 161-177.

(2019) DPedersen hash. [Online]. Available: https://iden3-docs.readthedocs.
io/en/latest/iden3 _repos/ research / publications / zkproof-standards-workshop-2 /
pedersen-hash/pedersen.html

R. S. Alexey Pertsev, Roman Semenov, “Tornado cash privacy solution,” December

2019, version I.4.

J. Yang, S. Gao, G. Li, R. Song, and B. Xiao, “Reducing gas consumption of tornado
cash and other smart contracts in ethereum,” in 202z IEEE International Conference

on Trust, Security and Privacy in Computing and Communications (TrustCom), 2022,

pp- 921-926.
T. Chen, H. Lu, T. Kunpittaya, and A. Luo, “A review of zk-snarks,” 02 2022.

M. Nadler and F. Schir, “Tornado cash and blockchain privacy: A primer for

economists and policymakers,” Review, vol. 105, 01 2023.

S. Bistarelli, B. Montalvo, I. Mercanti, and F. Santini, An E-Voting System Based on Tor-

nado Cash, o1 2023, pp. 120-135.

Tornado cash classic anonymity mining. [Online]. Available: https://github.com/

tornadocash/docs/blob/en/tornado-cash-classic/anonymity-mining.md

H. Sun, N. Ruan, and H. Liu, “Ethereum analysis via node clustering,” in
International Conference on Network and System Security, 2019. [Online]. Available:
https://api.semanticscholar.org/CorpusID:209325123

T. Hu, X. Liu, T. Chen, X. Zhang, X. Huang, W. Niu, J. Lu, K. Zhou, and Y. Liu,
“Transaction-based classification and detection approach for ethereum smart contract,”
Information Processing Management, vol. s8, no. 2, p. 102462, 2021. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S0306457320309547

76

https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://iden3-docs.readthedocs.io/en/latest/iden3_repos/research/publications/zkproof-standards-workshop-2/pedersen-hash/pedersen.html
https://github.com/tornadocash/docs/blob/en/tornado-cash-classic/anonymity-mining.md
https://github.com/tornadocash/docs/blob/en/tornado-cash-classic/anonymity-mining.md
https://api.semanticscholar.org/CorpusID:209325123
https://www.sciencedirect.com/science/article/pii/S0306457320309547

[21]

M. S. Bhargavi, S. Katti, M. Shilpa, V. Kulkarni, and S. Prasad, “Transactional data an-

alytics for inferring behavioural traits in ethereum blockchain network,” 09 2020, pp.

485—490.

W. Chan and A. Olmsted, “Ethereum transaction graph analysis,” in 2017 12th Inter-
national Conference for Internet Technology and Secured Transactions (ICITST), 2017,

pPp- 498—500.

S. Suratkar, M. Shirole, and S. Bhirud, “Cryptocurrency wallet: A review,” in zoz0

4th International Conference on Computer, Communication and Signal Processing (IC-
CCSP), 2020, pp. 1-7.

MetaMask, “Metamask core repository,” https://github.com/MetaMask/core, Last ac-
cess: 2024-02-14, fetchBlockFeeHistory.ts - Line 136.

Blocknative. (s.d.) Blocknative documentation. [Online]. Awvailable: https://docs.

blocknative.com/

77

https://github.com/MetaMask/core
https://docs.blocknative.com/
https://docs.blocknative.com/

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Background
	Ethereum
	Gas fees
	Tornado Cash
	Deposit
	Withdraw

	Useful definitions

	Related works
	Project core
	Wallet analysis
	Metamask
	Trust Wallet
	ShapeShift Wallet
	Rainbow
	OneKey
	Unstoppable Wallet

	Tornado Cash analysis
	Additional work

	Results
	Conclusion
	Acknowledgments
	References

