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Abstract

Tornado Cash is a decentralized application (dApp) that runs on Ethereum Virtual Machine
(EVM) compatible networks to enhance users’ privacy in terms of user transaction history over
the blockchain. The dApp achieves this goal by enabling users to deposit currencies into des-
ignated pools and subsequently withdraw them, severing the link between depositor and with-
drawer addresses. At deposit time, Tornado Cash communicates to users the level of privacy
they will benefit from (anonymity set) by depositing currencies into one of its pools. Existing
analyses have indicated discrepancies between the claimed anonymity set and the actual level of
privacy provided, primarily attributed to users’ incorrect utilization of the dApp. The current
project aims to explore a new way to challenge the dApp proposed anonymity set by examin-
ingwallet fingerprints, a factor not directly related to user behaviorwithin the application. The
findings of this research shed light on the potential for creating links between clusters of users in
TC according to the new proposed approach and raise a privacy concern within the Ethereum
network.
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1
Introduction

Blockchains are public, decentralized, distributed, append-only immutable ledgers that pro-
vide users with pseudo-anonymity, enabling them to trigger some events that are recorded in
the form of a new transaction written on the ledger. Money transfer is an event example over
the blockchain. The term blockchain itself refers to the ledger structure: a chain of blocks, with
each block containing transactions and other data. This chain is made in such a way that any-
one can get in it and look at its content (public), there is not a single entity that detains control
over it (decentralized), anyone can have a copy of it according to a peer-to-peer protocol (dis-
tributed) and new content can take part of it considering that, once added, no modification is
allowed (append-only). Users are drawn to blockchains for their decentralized nature, freeing
assets from centralized authorities like banks, and for the pseudo-anonymity they offer, with
each user identified by one or more hexadecimal addresses. Bitcoin [4] is the first blockchain
system to go live, enabling parties to engage in money transfers using the native currency of
the blockchain. Bitcoin has been followed up by Ethereum, a blockchain offering enhanced
capabilities by enabling the execution of decentralized applications (dApps) directly within its
blockchain network through the deployment of smart contracts [5]. Smart contracts consist
of programs runnable over the blockchain, there identified by their unique address. An exam-
ple of smart contract running over Ethereum is Tornado Cash (TC). It consists of a dApp that
retrofits the network with privacy, addressing concerns arising from the pseudo-anonymity
(and not anonymity) offered by blockchains: a malicious user could analyze the blockchain
public data for inferring correlations between addresses or even the identity of users behind
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some addresses. This result could be achieved with the help of off-chain data, enabling the ma-
licious user to profile other blockchain users and to understand who owns what [2]. Tornado
Cash is part of the family of privacy mixers, solutions born to make funds untraceable. If on
one hand such a solution is legitimately embraced by users who are willing to increase their
privacy over the blockchain, on the other hand the provided untraceability property has led
to the abuse of mixing services for money laundering and committing fraud. These illegal ac-
tions, which pose significant threats to the blockchain ecosystem and financial order [3], have
captured the interest of centralized regulator, leading on August 8th 2022 the US Treasury’s
Office of ForeignAssets Control (OFAC) to place sanctions over TCdue to alleged facilitation of
money laundering. OFAC added the TC website and related blockchain addresses to the Spe-
cially Designated Nationals And Blocked Persons (SDN) list. According to the sanctions, US
citizens are no longer legally allowed to use the TC website or involve any property or interest
transactions with those blacklisted addresses [6]. The sanctions have led to a series of conse-
quences, like miners who stopped processing any TC deposit and withdrawal transactions, as
well as decentralized finance application (DeFi) platforms which started banning addresses that
receive transactions from TC. Such a censorship has greatly reduced the mixer’s daily deposits
but has not completely stopped them [7], implying that they do exist methods to bypass it. At
the frontend level, for instance, DeFi users could interact with the platform smart contracts
through a Command Line Interface (CLI) or could fork the platform project to create their
own frontend interface [8]. Bypassing the censorship makes the problem of the illegal activi-
ties in which mixers could be involved still actual, this is one of the reasons that led researchers
to put their attention into ways to reconstruct the linkability broken by privacy mixers, hence
creating back a correlation betweenmixer’s users to regain funds traceability. For this purpose,
several heuristics have already been proposed (Chapter 3 for details). The proposed heuristics
lay down on the way TC mixer is approached by users, hence behavioral errors made by users
that make the dApp not express itself at its best. The aim of the current project is that of going
on with the open research in this field, moving the focus to a novel approach that takes into
account fingerprints left by wallets at transaction time to create linkable clusters of users: those
users who have made a transaction through the same wallet software are considered to belong
to the same cluster, hence to be linkable. Translating this into the TC context and moving
under the assumption that when a user makes use of TC he will use the same wallet software
for both his deposit and withdrawal, deposits and withdrawals starting from the same wallet
software are considered to be linkable.
The contributions of this thesis are threefold:
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• A new Ethereum privacy concern is identified and validated through empirical testing;

• A new heuristic to create linkable clusters of TC users based on wallet fingerprints has
been built up. This new approach is distinct from the existing ones since it is not directly
related to the user approaching the dApp;

• Existing TC transactions (deposits and withdrawals) covering a time window of about
one month have been analyzed to evaluate the effectiveness of the proposed heuristic.

To provide a comprehensive understanding of the research journey and its contributions,
the remainder of this thesis is structured as follows: Chapter 2 provides the readerwith a strong
background on the Ethereum network, elucidating its working and the role of TC within it.
This chapter delves into technical details relevant to the context. Chapter 3 offers a summary
of existing research efforts aimed at reconstructing address linkability disrupted by mixers like
TC. It underscores that previous heuristics primarily focus on how users engage with the TC
dApp. Chapter 4 presents the concrete efforts undertaken in this thesis project. It outlines
the development of a novel approach targeting TC’s anonymity set by leveraging wallet finger-
prints. This chapter details the methodology employed and the rationale behind the proposed
approach. Chapter 5 evaluates the proposedmethodology by analyzing its impact on both the
Ethereum network and TC transactions. This evaluation aims to investigate the efficacy and
feasibility of the approach, showcasing the results obtained. Chapter 6 serves as the culmina-
tion of this work, summarizing the content and contributions of the thesis. Additionally, it
offers insights into potential future directions for research in this domain.
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2
Background

Technical details about different blockchains may vary, but intuitively a blockchain is a special
type of database that is shared between nodes in a peer-to-peer network, where a node can be
represented by any user who owns a device running a specific client software to take part to the
blockchain network. The blockchain has to be intended as a ledgermade of blocks. Each block
contains some data (e.g., transactions) and is chained to a previous and next block, so forming
a chain of blocks (chain of data). The chainingmechanism takes place since each block, among
the contained data, includes the hash of its previous block’s content. Every transaction one
makes is recorded on the public ledger once validated, with a transaction being initiated upon
the triggering of various events on the blockchain, including but not limited to the transfer
of cryptocurrencies (native network cryptocurrencies or ERC-20 tokens) and the invocation
of smart contracts. Blockchains use different techniques to achieve the same goals of trans-
parency, pseudo-anonymity, decentralization and tamper-proof: it is the case of Bitcoin, Zcash
and Ethereum, that achieve their goals through diverse design. With the Bitcoin network, the
principles and technology of blockchain have been introduced for the first time[9]. Bitcoin’s
purpose is to offer users the possibility of joining a cash system where cryptocurrency trans-
fers occur through anonymous addresses without going through a financial institution. Other
blockchains like Zcash and Ethereum follow the same idea, in particular Ethereum expands it
by proposing itself as the place where dApps can run, where a dApp is a software application
running in a decentralized network by exploiting the blockchain technology. DeFi is a dApp
example, with the purpose of offering financial services.
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2.1 Ethereum

Ethereum is the most used public blockchain for settling transactions [1]. It employs the ac-
count model (users store their assets in accounts), with two types of accounts available: exter-
nally owned accounts (EOA) and contract accounts. EOA is managed by an individual user via
an asymmetric cryptographic key pair, consisting of a private key and a corresponding public
key, exclusively held by the user. A user doesn’t need to personally worry about the generation
of these keys since the wallet he will use for interacting with the blockchain will automatically
manage the process. A wallet can be intended as a user interface through which users can sub-
mit transactions to the blockchain. There are several types of cryptocurrency wallets, each
offering different levels of security, accessibility, and convenience. Some of the most common
types of blockchain wallets include software wallets (desktop, mobile or web applications) and
hardware ones (physical devices specifically designed to store cryptocurrency keys offline, pro-
viding an extra layer of security by keeping the keys away from internet-connected devices).
The EOA’s private key enables the account owner to send signed transactions from that ac-
count, a signing to be intended as a digital signature put over the transaction, guaranteeing
authentication, integrity and non-repudiation principles for it. The public key is used to de-
rive an address for the EOA, in particular the public address corresponds to the hash of the
EOA’s public key and has a hexadecimal format. Such an Ethereum address can be mapped to
a human-readable name through the Ethereum Name Service (ENS), a naming system imple-
mented as a smart contract with the purpose of providing a more user-friendly way of trans-
ferring assets on Ethereum. Contract accounts are those related to smart contracts. A smart
contract is a piece of code containing functions that can be triggered over the blockchain. Func-
tions can be interpreted as the smart contract’s action set. Once a smart contract is generated
and published over the blockchain, it is immutable and persistent, meaning that neither its
developer can tamper with it. Smart contracts are identified by their own address, generated
as the hash of their contract code. Contract accounts cannot initiate transactions, but their
address can be used as destination address by a transaction made by EOA: this will trigger the
execution in the EVM of the contract code related to that smart contract. Transactions issued
by EOA can either create a new contract account or call existing accounts (another EOA or
a smart contract). The execution of a transaction comes with a cost known as gas fees. Such
a cost is paid by the transaction issuer, who has a balance in ether (ETH) in the account he
owns, where ether corresponds to the Ethereum native currency. Such a balance is altered by
the transactions occurring. Generating a transaction does not mean having it inserted into the
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blockchain. Before this happens, the transaction needs to be validated. In the time window be-
tween transaction generation and transaction validation, that transaction lays into a memory
pool (mempool). Validating a transactionmeans inserting it into a new block of the blockchain.
Blockchain does not increase in size transaction after transaction, but block after block: vali-
dating a transaction involves the addition of a new block to the blockchain, which includes the
verified transaction along with others. The addition of new blocks to the blockchain adheres
to the Proof-of-Work (PoW) consensus protocol, which involves the mining activity carried
out by miners. Miners are individuals or entities responsible for proposing new blocks to the
blockchain (mining blocks), determining the order of transactions within those blocks. They
achieve this by validating the transactions included in the proposed block, subsequently propa-
gating the data across the network. Aminer successfully adds a new block to the blockchain by
solving a mathematical problem before other miners do. It essentially becomes a competition
where thewinner iswho comesfirst to the solution. Solving themathematical problem requires
computational effort. The greater a miner’s computational power, the higher his chances of
winning the competition. Groups of miners can combine their computational power (mining
pools) to increase their chance of winning the competition, where winning the competition im-
plies a reward in terms of currencies (in the event of a competition won by a mining pool, the
reward would be distributed among all participants based on the proportion of computational
power each of them has contributed with to the PoW protocol). The mathematical problem
miners must solve in order to create a new block filled with transactions to be inserted into
the blockchain involves finding that numerical value to be appended to the block’s content so
that the resulting hash (of the whole block content) starts with n zero-values. The n value can
change to adjust the computational complexity required by thePoWprotocol: the protocol has
been built in such a way that, on average, a new block is created within a certain timeframe. To
maintain this average, the complexity of the mathematical problem increases linearly with the
available computational power. In simple terms, as more miners participate in mining, hence
more computational power is allocated to the activity, greater computational effort will be re-
quired to add a new block. The miner is the one who selects, among the pending transactions
present in the memory pool, those to be inserted into a new blockchain block. The selection
process considers two main factors: the transaction fee associated with each transaction and
the block gas limit, which specifies the maximum amount of gas units that may be consumed
by dealing with all the transactions within the block (a block can contain a limited number of
transactions). The transaction fee in a quantitywhose amount is up to the sender (the userwho
issued the transaction). A higher transaction fee set by the sender increases the likelihood of the
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miner including that transaction in a new block, as it results in a greater reward for the miner
upon validation. This incentivizes miners to prioritize transactions with higher fees when con-
structing new blocks.

2.2 Gas fees

The EVM is where code related to smart contracts deployed over the Ethereum blockchain is
executed. Any operation pursued by the EVM (opcode), based on the complexity of the opera-
tion itself, has several gas units assigned. For each gas unit, there is a gas price to be paid: this
is where transaction gas fees originate. Whenever the smart contract code is executed in the
EVM, that execution consumes a certain amount of gas [10]. At each transaction, the sender
needs to define the maximum amount of gas units the transaction is allowed to consume. This
amount takes the name of gas limit. Each gas unit has a cost named gas price, whose maxi-
mum amount is settled by the user as well. The gas amount is generally expressed in Gwei
(1 Gwei = 10−9ETH). The maximum amount of fees a user will pay for a transaction is then
given by the product of the two quantities:

Max transaction fees = gas limit× gas price

Gas fees (or transaction fees) do not correspond to a fixed quantity, that is since they are up
to the overall Ethereum traffic volume at the time of transaction initiation: the higher the net-
work congestion, the higher the gas fees. Due to the blockchain’s dynamic nature, one does
not know statically how much gas will his transaction burn. In general nowadays, if a trans-
action does not consume all the gas assigned to it, then surplus gas is refunded to the caller
(Section 2.2 for details); however, if a transaction runs out of gas (a transaction validation re-
quires gas that exceeds the set gas limit), an Out-of-Gas exception is thrown by the EVM and
the transaction will fail. The failed transaction would be recorded on-chain and any used gas
would not be refunded to the sender. Sinceminers’ reward is up to the transaction fees, they are
naturally incentivized to insert transactionswith higher gas prices into their blocks. The sender
of a transaction therefore faces a trade-off between timely inclusion and cost of his transaction
[11]: a higher gas price will increase the likelihood of having a transaction included quickly.
To mitigate the risk of overpaying for transaction fees, gas price oracles have been developed.
Among their functions, these oracles provide recommendations for the appropriate gas price
required for a transaction to be included in a block within a specified timeframe. Oracles are
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distinguished as on-chain and off-chain. Off-chain oracles are external entities or systems that
provide data to smart contracts fromoutside the blockchain. These oracles canbe servers, APIs,
IoT sensors, or any other external data source. On-chain oracles, on the other hand, are mech-
anisms that operate directly within the blockchain network to provide data to smart contracts.
These oracles can be implemented as smart contracts or protocols that gather and distribute
data within the blockchain. Wallets utilize oracles to generate gas price suggestions for users
who are initiating transactions through the wallet’s interface. For a transaction to be included
in a newly proposed block, its gas price has to be at least as high as the block’s BaseFeePerGas.
This value is not a constant one, it changes from block to block depending on network conges-
tion. All the transactions within the same block are subject to the same base fee.

EIP1559 vs legacy transactions

Gas fee details differ according to the type of transaction sent over the blockchain. Ethereum
Improvement Proposal 1559 (EIP-1559)1 defines a new standard around the Ethereum proto-
col concerning gas fee setting. Before EIP-1559, the transactions with a smaller gas fee on the
Ethereum chain often remained pending for a long time because the blocks are always filled
with the highest paying transactions. To eliminate this, EIP-1559 introduced a new system
of gas fees with a base fee per block and a tip for the miner, corresponding to his reward for
the transaction inclusion into the block. With EIP-1559, the gas limit of the blocks doubled,
which means there is space for more transactions in one block. The EIP-1559 upgrade is fully
compatible with previous versions, thus transactions not following the standard continue to
function normally as well. This translates into two possible transaction types: Type-0 (legacy)
and Type-2 (EIP-1559). The two transaction types differ in the number of parameters related
to gas fees they present2. Type-0 transaction has only one parameter for the gas fee setting
(gasPrice, whose meaning is the one already discussed). Type-2 transaction has two parameters
for the same purpose: maxFeePerGas andmaxPriorityFeePerGas.

• MaxFeePerGas is the maximum amount of gas fee a user is willing to pay per unit of gas
for a transaction.

• MaxPriorityFeePerGas is the tip auser sets for theminer. Thehigher is the tip, thehigher
will be the desire of the miner to include that transaction in the block. This parameter

1More details concerning EIP-1559 standard here: https : / / www . quicknode . com / guides /
ethereum-development/transactions/how-to-send-an-eip-1559-transaction

2For details over gas fees related parameters:https : / / www . quicknode . com / guides /
ethereum-development/transactions/how-to-send-transactions-on-ethereum-using-python
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determines transaction priority.

Once the parameters related to gas fees are set for a transaction, the amount of fees a user will
spend at most is so retrievable:

Max transaction fees = gas limit× gas price

where:

• In Type-0 transaction, gas price is the price per gas unit set by the sender, including the
miner’s reward;

• In Type-2 transaction, gasprice = min(BaseFeePerGas+maxPriorityFeePerGas,
maxFeePerGas).

The transaction fees so defined correspond to the amount of fees burnable at most. Consid-
ering the gasUsed as the effective amount of gas unit burnt by a transaction:

• In case of Type-0 transactions, once confirmed, the amount truly burnt overall corre-
sponds to transaction fees = gasUsed× gas price,

Figure 2.1: Legacy transaction on Etherscan.

• In case of Type-2 transactions, once it is confirmed, the quantity truly burnt is
transaction fees = gasUsed × gas price with gas price defined as above and the amount
(MaxFeePerGas − (BaseFeePerGas + maxPriorityFeePerGas)) ∗ gasUsed is refunded
back to the sender of the transaction itself (saved fees).

Gas fees are what is burned anytime a smart contract function is triggered. This is the case
of Tornado Cash as well.
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Figure 2.2: EIP‐1559 transaction on Etherscan.

2.3 Tornado Cash

The Ethereum account model has several implications from a privacy standpoint. Firstly, it
incentivizes the reuse of accounts across multiple transactions, so facilitating the profiling of
transaction histories. To address this issue, users can employ amixer, a tool designed to protect
the privacy of blockchain addresses by breaking the link between an address and its transaction
history. TC is a dApp belonging to the family of coin mixers and operating across multiple
networks using smart contracts. These networks include Ethereum Mainnet, Binance Smart
Chain, Polygon, Optimism, Arbitrum, Gnosis, and AvalancheMainnet. Due to the high level
of TC usage activity on the EthereumMainnet, the network is the main focus of this project.
Within the family of coin mixers, TC is categorized as a non-custodial one. Mixers can be
custodial or non-custodial [1]:

• In a custodial mixer, users send their coins to a trusted party, who in return sends back
“clean” coins after some timeout. Duringmixing a user does not retain ownership of his
coins, hence the trusted mixing party might steal funds.

• Anon-custodialmixer replaces the trustedmixing party of custodial oneswith a publicly
verifiable smart contract. Non-custodial mixing is a two-step procedure. First, users
deposit equal amounts of ether or other tokens into a mixer contract from address A.
After some user-defined time interval, they can withdraw their deposited coins with a
withdrawal transaction to a fresh address B. In the withdrawal transaction, users can
prove to the mixer contract that they deposited without revealing which deposit trans-
action was issued by them by using one of several available cryptographic techniques
(zkSNARK in TC context).

TC performs its job through the usage of smart contracts. Each contract has an address
and can be thought as a pool where currencies can be deposited in and withdrawn from. What
TC, and othermixers, do is ”mixing” a user transactionwith those of others in a pool,making it
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harder to link deposits andwithdrawals from that pool. Each single pool accepts a fixed amount
of the same currency.

Figure 2.3: Example of the Tornado Cash 1 ETH pool: addresses A through F deposit to and withdraw
from the pool. It quickly becomes impossible to associate withdraw and deposit transactions

given a growing mixer [1].

Currencies accepted by the TC platform in the case of its usage over the EthereumMainnet
network correspond to the native one (ETH) plus several Ethereum-based tokens ( e.g., DAI,
USDC, wBTC, etc). Each currency has four pools to it related. Among the currencies, ETH is
themost frequently used for transactionswithin theTornadoCash ecosystemon theEthereum
network, thus warranting attention in this project. In TC, users are required to complete the
coin mixing in two steps: deposit and withdraw. Users deposit equal amounts to a TC smart
contract (pool). After some time, users can withdraw their funds from the mixer contract to a
freshly generated EOA by providing a zero-knowledge proof (ZKP) that proves that the with-
drawing user is one of the depositors. At this point, the withdrawing EOA has enhanced its
privacy since it has become unlinkable to any unique depositor EOA. A user’s anonymity is
defined by the number of equal user deposits in a given pool. This is the pool’sAnonymity Set:
the more users deposit in the pool, the greater the number of people that a withdrawal could
come from [1]. The definition of anonymity set implies that any of its members are equally
likely to be the deposit address actually linked to a given withdrawal address.

2.3.1 Deposit

Using Tornado Cash means performing a deposit with respect to one of its pools (smart con-
tracts). Each currency has its own pools. Focusing on the native currency of the Ethereum
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mainnet network (ETH), there are four pools a user can deposit into. Each of these pools can
be subject to the deposit of a fixed amount of ether: 0.1 ETH, 1 ETH, 10 ETH, 100 ETH.

Figure 2.4: TC pools for ETH currency in the Ethereum mainnet network.

If a user wants to deposit 111 ETH, he has to perform a total of three different deposits:

• One deposit towards the smart contract related to the fixed amount of 1 ETH;

• One deposit towards the smart contract related to the fixed amount of 10 ETH;

• One deposit towards the smart contract related to the fixed amount of 100 ETH.

Todo so, the depositor has to interactwith the related smart contracts, hencewith the related
blockchain addresses.

Figure 2.5: TC smart contracts addresses for ETH currency in the Ethereum mainnet network [2].

At deposit time, the depositor generates two random numbers k, r ∈ B248 with B = {0, 1},
k a n-bit nullifier and r a n-bit randomness. Both values are known only to the depositor and
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must remain secret at all times. The depositor hashes the concatenation of the generated values
through the Pedersen hashing function H1 [12], so obtaining the commitment C = H1(k||r)
as a 256-bit unsigned integer. The pre-image of the commitment (hence, the concatenation of
the two generated random values) corresponds to a secret note saved on the depositor side in
the form of a .txt file. The note, corresponding to a sequence of digits, will be needed for the
withdrawal purpose.

Figure 2.6: Example of TC secret note, received after a deposit in the Goerli testnet network.

The commitment so made (H1(note)) is inserted into a data structure called Merkle Tree as
a new non-zero leaf [13].

Merkle Tree

AMerkle Tree is a complete binary tree structure in which each leaf node is a hash of a block of
data ( Pedersen hash of the note in TC), and each non-leaf node is a hash of its children (MiMC
as used hash function in TC).

Figure 2.7: Toy example of a TC Merkle tree with height 3, four deposits Ci and four pre‐initialized zeros leaf xi.

InTC context, theMerkle tree has height 20, with 220 possible leaves for a singleMerkle tree,
hence 220 possible deposits. EachTCpool (smart contract) has its ownMerkle Tree. When the
Merkle tree related to a single pool is full, a new one is needed. The Merkle tree is initialized
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with all leaves being a default value, called zero-leaf. Whenever a new deposit is performed
towards a specific pool, the related Merkle tree leaf content, starting from the most left zero-
leaf, is replaced with the commitment value. By then, the content of all the nodes in the path
from that node to the root is updated aswell [14]. The sequence of neighboring nodes required
to update theMerkle tree root after the addition of a new leaf is referred to as theMerkle path3.

Figure 2.8: Toy example of a TC deposit in the Merkle tree (C5 ), with related Merkle path {x6, x′4, x′′1 }

2.3.2 Withdraw

When a user considers the size of the anonymity set as satisfactory, hemay proceed towithdraw
his asset from the mixer. To do so, the withdrawer submits the note generated at deposit time
and the recipient address to the TC platform. Once the related smart contract completes the
zkSNARK proof based on the note, through which the withdrawer proves to know the pre-
image of a previously inserted hash leaf in the Merkle tree without revealing the leaf itself, the
amount left after deducting the fee required for the smart contract operations is transferred to
the corresponding receiver.

zkSNARK

zk-SNARK is a protocol that lets one party, the prover, prove to another party, the verifier,
that a statement about some privately held information is true without revealing the informa-

3For details: https : / / iden3-docs . readthedocs . io / en / latest / iden3 _ repos / research /
publications/zkproof-standards-workshop-2/merkle-tree/merkle-tree.html
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tion itself [15]. zkSNARK stands for zero-knowledge, succinct, non-interactive argument of
knowledge. A parsing of the single terms follows [16]:

• Zero-Knowledge: The proof is said to be zero-knowledge if it does not reveal the secret
value or any other information besides the proof that a public statement is true. In the
context of Tornado Cash, a user will be able to construct a proof that he has previously
deposited to the Tornado Cash contract without having to reveal the specific deposit
transaction;

• Non-Interactive: The proof does not require any direct interaction between the prover
and the verifier. In other words, a single message from the prover to the verifier is suffi-
cient;

• Succinct: The proof can be efficiently verified with respect to data size and verification
runtime (large storage data or complex on-chain computations would be infeasible in
the blockchain context);

• Argument of Knowledge: The knowledge of the secret value the proof is built around.

The protocol in TC takes as input a public statement and a secret one so made:

• PublicStatement = (root, nullifier, recipientAddress), with:

– Root: One of the recent roots of the Merkle Tree, considering that a TC smart
contract saves in its state the history of its last 100 roots [13];

– Nullifier: the Pedersen hash of the k -secret value;

– Recipient address: the blockchain address where funds should be sent to.

• SecretStatement = (k, r, commitment,MerkleProof(commitment)), with:

– k: the secret nullifier random value generated at deposit time, it is part of the saved
note;

– r: the secret randomness value generated at deposit time, it is part of the saved note;

– Commitment: the Pedersen hash of the saved note;

– MerkleProof(commitment): theMerkle pathof the leaf corresponding to the spec-
ified commitment.
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A Circom circuit will verify that the secret statement is consistent with the public one, if
so the withdrawal is considered as legitim and the related amount can effectively be sent to the
address signaled as the recipient one in the public statement. In particular, the circuitwill verify
that:

• TheMerkleProof is valid, hence the leaf of interest is truly part of theMerkle Treewhose
recent root is the one specified in the public statement. This validation is achieved by
calculating the root that theMerkleTreewouldhave if the providedMerkle path (Merkle
proof) was genuinely incorporated into theMerkle Tree. If the computed root matches
the recent root provided in the public statement, the validation yields a positive result;

• The Pedersen hash of the note (k, r) truly corresponds to the given commitment;

• The nullifier in the public statement truly corresponds to the Pedersen hash of the pri-
vate value k, part of the note.

Checks made by the circuit aim to make sure that

• Private statement is consistent with the public one;

• Provided nullifier in the public statement has not been submitted before. This prevents
from the attempt to perform a withdrawal providing the same note more than once
(double-spent problem).

Relayer

A withdrawal from a TC smart contract can be triggered in two different ways [17]:

• The user uses a relayer to make the withdrawal to any Ethereum recipient address with-
out needing to make the wallet connection on the Tornado Cash website. Since the
relayer is in charge of paying for the transaction gas, he will receive a small portion of the
deposit for both a refund and a reward for his job.

• The user links their wallet (Metamask or WalletConnect) to the Tornado Cash website,
and they pay for the gas needed to withdraw the amount deposited.

A relayer is an independent operator that provides an optional service for Tornado Cash
users to help them solve the fee payment dilemma. This dilemma pertains to the challenge
of covering the costs (fees) associated with withdrawing from a mixing pool while preserving
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anonymity: being able to cover the withdrawing costs translates into having funds associated
with the address requiring the withdrawal, hence having a transaction history. A relayer can
trigger a withdrawal transaction instead of the user, sending the withdrawal amount to a new
account with no ETH balance (fresh address) and deducting the withdrawal fee (both for the
paid gas fee and a reward for the performed action) directly from the transfer amount. In case
a user is interested in the relayer figure along a withdrawal, he needs to select a relayer to create
a withdrawal transaction. The relayer transaction creates two internal transactions: one with-
draws the transaction fee from the mixing pool to the account of the relayer, while the other
transfers the remaining funds to the account of the user [3].

Figure 2.9: TC general working schema [3].

To give a concrete example of relayer employment in TC (TX2 andTX3 in Figure 2.9), a real
TC withdrawal taken from Etherscan blockchain explorer is here reported:

Figure 2.10: Example of a withdrawal from 0.1 ETH pool involving a relayer.

In Figure 2.10, the meanings of the assigned attributes are the following:

• From is the relayer who performs the withdrawal on behalf of the user whose address is
the one specified in the first transaction in To. In this case, the relayer makes use of the
ENS.
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• To is where the two transactions triggered by the relayer are highlighted: the first trans-
action is the one where the amount transferred from the smart contract to the recipient
address is specified (TX2 in Figure 2.9), the second transaction is the one specifying the
amount transferred from the smart contract to the relayer address ( TX3 in Figure 2.9).
The amounts transferred along the two transactions sum up to 1 ETH ( the amount de-
posited). The amount received by the relayer covers both the withdrawal’sTransaction
Fees and the reward for the performed proxy action, corresponding to a percentage of
thewithdrawn amount. The amount transferred to the relayer is directly taken from the
amount sent to the recipient.

2.4 Useful definitions

To point the attention to specific concepts the thesis project core deals with, a recapitulation
of some definitions outlined in the background overview are here provided, supplemented by
additional ones considered pertinent for the reader’s comprehension:

• Etherscan: an Ethereum blockchain browser that offers access to transaction informa-
tions.

• Web3: a library that provides developers with a convenient way to interact with the
Ethereum network.

• Infura: a service that allows developers to interact with the Ethereum blockchain with-
out needing to run their own local Ethereum node. Developers can use infura as an
access point to interact with the Ethereum blockchain. In order to do so, a private key
given by infura itself is needed.

• Anonimity set: the level of privacy of a specific pool (smart contract) belonging to the
TC platform. It translates into the number of users who has deposited currencies into
that pool.

• Ethereum Name Service: a decentralized service based on Ethereum, which translates
blockchain domain names (e.g.,Relayer.eth) to blockchain addresses.

• Anonymity mining: From December 2020 to December 2021 [18], TC started offer-
ing a reward in anonymity points (AP) that could be exchanged in TORN (TC native
currency) to users employing TC. The reward amount used to be up to the deposited
amount and duration (the time period that amount was left into a TC pool). The aim
of such a reward was to induce more users into making deposits in TC pools, thereby
increasing their anonymity sets.
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• Gas price: the amount of Gwei a user will pay per gas unit for the initiated transaction.

• Gas limit: the maximum amount of gas unit a user is willing to pay for his transaction.

• MaxFeePerGas: In EIP-1559 transactions, is the maximum amount of Gwei a user is
willing to pay per unit of gas. It includes theMaxPriorityFeePerGas value.

• MaxPriorityFeePerGas: In EIP-1559 transactions, it is the amount of gas reserved as
a reward for the miner.

• BaseFeePerGas: A block-related parameter that establishes theminimum gas price paid
by all the transactions validated in that block.

• WalletConnect:a protocol that enables interaction between dApps and mobile wallets,
without compromising their private keys.
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3
Related works

In Section2.3 insights of theTornadoCashplatformhavebeengiven, inparticular the anonymity
set, corresponding to the level of privacy guaranteed to auserwho iswilling toperformadeposit
towards a specificpool, has beendefined as thenumber of equal user deposits in that pool. Care-
less TC usage tends to reveal links between deposits and withdraws, impacting the anonymity
of other users. That is since if a deposit can be linked to a withdrawal, it will no longer truly
contribute to the claimed anonymity set. Ethereum privacy in terms of address correlation is
a research concern. In general, existing address correlation methods on Ethereum involve two
major categories [2]. One is using machine learning and node embedding methods to cluster
transaction behavior patterns or user accounts with similar characteristics [19][20][21], the
other is using heuristic or graph-based clustering algorithms to link addresses that participated
in certain transactions[22]. In the TC optic, starting from on-chain data, [2] proposes three
heuristic clustering rules to achieve address correlation for Tornado coin mixing transactions
based on the time interval features:

• Heuristic 1: Given a deposit d , a withdrawalw and a time interval between the two δ, if
δ ≤ 180s and both d andw refer to the sameTC smart contract (pool), then the addresses
the deposit started from and the withdrawal amount will be delivered to belong to the
same user;

• Heuristic 2: Given multiple single deposits and withdrawals related to the same TC
pool {⟨d1,w1, δdw1⟩, ⟨d2,w2, δdw2⟩, . . . , ⟨dn,wn, δdwn⟩} with δdwi corresponding to the
time interval betweendi andwi, whenn≥2, if∀{di, di+1} ⊆ {d1, d2, . . . , dn}, {wi,wi+1}
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⊆ {w1,w2, . . . ,wn}, δwd = di+1.timestamp − wi.timestamp one of the following con-
ditions is satisfied:

– di.from = di+1.from, and δdwi, δdw(i+1) ≤ 20 min, δwd > 0, with di.from
corresponding to the address who triggered that deposit;

– wi.input.recipient = wi+1.input.recipient, and δdw(i+1) > 0, δdwi ≤ 20 min,
δwd ≤ 20 min, withwi.input.recipient corresponding to the address that is asking
for the amount to be withdrawn;

– di.from = di+1.from, and wi.input.recipient = wi+1.input.recipient,
δwd, δdwi, δdw(i+1) > 0

then the addresses all the deposits involved started from and all the withdrawals involved
are directed to in these transactions belong to the same user.

• Heuristic 3: Given a set D = {d1, d2, . . . , dn} of n > 2 deposits and a set W =
{w1,w2, . . . ,wn} of n > 2 withdrawals with a time interval between the occurring of
the last deposit inD (dn.timestamp) and the firstwithdrawal inW (w1.timestamp) equal
to Δ (Δ = w1.timestamp− dn.timestamp), if it simultaneously happens that:

– All the deposits of the first set (D) have been triggered by the same address,

– All the withdrawals of the second set (W) have the same address recipient,

– δd, δw ≤ 10min andΔ ≤ n×12h,with δd = max{di+1.timestamp−di.timestamp |
di, di+1 ∈ D}, δw = max{wi+1.timestamp− wi.timestamp | wi,wi+1 ∈ W}

then the addresses all the deposits involved started from and all the withdrawals involved
are directed to in the n transactions belong to the same user.

Authors of [1] increase thenumber of heuristics related to the samepurpose. Theypropose a
tool namedTutela, funded by the TornadoCash community itself. The application combines
five heuristics (state-of-the-art heuristics plus new proposed) to compute a true anonymity set
for each TC pool. The heuristics in place correspond to:

• Heuristic 1: Suppose the address making a deposit transaction to a Tornado Cash pool
matches the address making a withdrawal transaction from the same pool. In that case,
the two transactions can be linked.
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Figure 3.1: Heuristic 1 schema: a single address A withdrawing and depositing to the same TC pool [1].

• Heuristic 2: Suppose the address making a deposit transaction to a Tornado Cash pool
specifies a custom-set gas price that perfectly matches the one specified by the address
making a withdrawal transaction from the same pool. In that case, the two transactions
can be linked.

Figure 3.2: Heuristic 2 schema: two addresses ( A andD) depositing to and withdrawing from the same
TC pool with an equal custom‐set gas price [1].

• Heuristic 3: This heuristic aims to link withdrawal and deposit transactions on Tor-
nado Cash by inspecting ETH non-Tornado Cash interactions. This is done by con-
structing two sets, one corresponding to the unique Tornado Cash deposit addresses
and one to the unique Tornado Cash withdraw addresses, to then make a query to re-
veal transactions between addresses of each set: when at least three such transactions are
found for a pair, the withdrawal and deposit addresses will be considered heuristically
linked in Tornado Cash. The more transactions are found, the more confident the link.
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Figure 3.3: Heuristic 3 schema: addresses A andD deposit and withdraw from the same TC pool,
moreover interactions in terms of transactions do exist between them out of TC [1].

• Heuristic 4: The portfolio of an address’ withdrawals across Tornado Cash pools is
studied. Then the point is to search for all addresses whose portfolio of deposit transac-
tions is exactly the same as the first address’ withdrawal portfolio. To put it simply: the
heuristic looks for two addresses A andDwho deposit and withdraw the same number
of times from the same Tornado Cash pools.

Figure 3.4: Heuristic 4 schema: addresses A andD deposit and withdraw the same number
of times from the same three Tornado Cash pools [1].

• Heuristic 5: Thanks to anonymity mining, after withdrawing assets, users could claim
anonymity points. Due to the reward dependency on the deposit amount and period,
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one can calculate the Ethereum blocks that separate the deposit and withdrawal transac-
tions of that asset. If there is a unique deposit/withdrawal combination in a pool sepa-
rated by the calculated number of Ethereumblocks, the transactions are assumed linked.
Because of the ending of the anonymitymining program inDecember 2021, this heuris-
tic does not hold for TC transactions made after that.

Figure 3.5: Heuristic 5 schema: addressD performs a withdrawal from the 1 ETH pool,
obtaining a reward implying that the deposit has been in the pool for n blocks. The only
deposit present in the prior n block is the one made by A, so the two addresses are

linked [1].

According to the five mentioned heuristics, authors of [1] identified 42.8k potentially com-
promised transactions over 97.3k Tornado Cash user deposits. Splitting the result by pools
translates into a reduction of the anonymity set of the time by 37%.
Some of the explored heuristics have been used in [10] to build a ground truth in order

to measure how well their proposed technique based on time-of-day transaction activity, gas
price distribution and transaction graph analysis identifies the linkedwithdraw-deposit address
pairs. Evaluation on heuristically linked mixing participants showed that profiling techniques,
especially node embedding algorithms, can reduce the anonymity set sizes of themixing parties.

Authors of [3] tackle the mixing address correlation problem using graph feature learning
technique. They have first built an interaction graph whose vertices represent user accounts
and links represent mixing transactions. They have then designed a GNN-based link predic-
tion mechanism, which can automatically extract deeper neighborhood features from the in-
teraction graph, and create new links between accounts bymapping them to different represen-
tations in embedding space, hence calculating the probability of correlation between account
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nodes through node embeddings. With their approach, themixing transaction address correla-
tion problem has been transformed into a link prediction task. According to their experiment,
their technique allows to improve the correlation score over the state-of-the-art methods.
In [7] it is pointed out that anonymity mining does not necessarily improve the quality of

a mixer’s anonymity set: the reward attracts privacy-ignorant users with a primary interest in
mining rewards, who then do not contribute to truly improving the privacy of other mixer
users since they can be told apart through heuristics. In particular, authors have empirically
shown that after the introduction of anonymity mining, the number of users who reuse the
same address for both deposits and withdrawals has increased, leading to a rise in the capability
of the address reuse heuristic (Figure 3.1) in terms of reduction of the anonymity set from 7%
(before AM launch) to 13.5% (after AM launch) on average.
The related works have explored some platform usage patterns that can be used to link deposits
andwithdraw, revealing that TC’s proposed anonymity sets are mostly inaccurate. Apart from
showing the inaccuracy of the TC anonymity set, the need to break the anonymity of TC by
correlating back transaction addresses comes fromTornado Cash’s involvement in cybercrime
activities, such as money laundering.
Relatedworks converge in a single concern: immature user behavior in TornadoCash prevents
it from achieving its highest attainable privacy guarantee. The explored heuristics appear to be
reliant on the user’s behavior within the TC mixing scenario. Due to their simplicity, there
may be occurrences of false positives in practice (addresses wrongly grouped in a cluster or un-
trustworthy links) [1]. Approaches that reveal connections between deposits and withdrawals
in presence of a privacy-conscious usage of the TC platform by its users have not been thor-
oughly investigated yet.
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4
Project core

On any public blockchain, the cost of creating a new EOA is virtually zero, enabling the same
entity tomanage several pseudonymous addresses fromwhich transactions can start[1]. A new
transaction inserted into the blockchain implies the burning of the related transaction fees,
where fees could be suggested by the wallet itself. Wallets provide customers with the ability to
send and receive virtual currency, tuning their balance through interaction with blockchains.
Unlike traditional pocket wallets, cryptocurrencies are not stored in the crypto wallets. Cryp-
tocurrencies are neither stored in any single area nor exist anywhere in any bodily form, but
exist as data of transactions stored on the blockchain. Wallets facilitate user to create an ac-
count, i.e. a pair of private key and public key stored in a wallet software. Wallets are catego-
rizable in software or hardware wallets. Software wallets are downloadable desktop or mobile
software programs, as well as web applications. Hardware wallets are physical devices like USB
drives. Wallets belonging to different categories differ in the way the EOA-related key pair is
managed[23]. Within the Ethereum ecosystem, users have the option to choose from a variety
of wallets. At transaction time, gas fees are typically suggested to the user by wallets according
to specific algorithms. The objective of the thesis is to delve into the source code of various wal-
lets in order to examine the algorithms they employ for suggesting gas fees. The ultimate goal is
to establish a connection between transactions on the blockchain and the specific wallet from
which they originated. This approach, that can be encapsulated by the termwallet fingerprints,
hides:
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• A privacy concern over the Ethereum blockchain;

• The potential to reduce the anonymity set of Tornado Cash pools [1]: a withdrawal
transaction initiated with wallet software Xwill only be indistinguishable from deposit
transactions initiated by users employing the same wallet software X.

The thesismoves under the assumption that if a userAperforms a deposit through thewallet
software X (e.g., Metamask), the same wallet software will be utilized during the withdrawal
process.

4.1 Wallet analysis

Among the Ethereum-compatible wallets, according to the purpose of the project, attention
has been put on those respecting some specific requirements. In particular, wallets taken into
consideration are:

• Software wallets: considered more user-friendly, consequently attracting a larger num-
ber of users;

• Open source: allowing their source code analysis, necessary for the identification of the
algorithm in use for the gas fee suggestions;

• WalletConnect compatible: wallet supporting theWalletConnect protocol are those us-
able within the TC dApp.

Among those wallets respecting the above-mentioned requisites, those analyzed in the cur-
rent project correspond to: Metamask, Trust Wallet, OneKey, Rainbow, Unstoppable Wallet
and ShapeShift Wallet. For each wallet, the source code related to the same pattern has been
checked: retrieval of gas fee suggestions at the time of ETH currency transfer.

4.1.1 Metamask

MetaMask is a software wallet available as both a web extension (compatible with browsers
such as Chrome, Firefox, Edge, and Opera) and a mobile application (for Android and iOS).
With over 10million downloads on theAndroidplatform alone, its widespread adoption serves
as a testament to its popularity. It allows several operations, among which:
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Figure 4.1: Metamask features at frontend level.

• Buy: allows a user to purchase new currencies by selecting a provider. Paymentmethods
are up to the provider and could include debit and credit cards,Apple pay,Google pay and
more. Each provider proposes personalized transaction fees for the buying operation.

• Sell: allows a user to sell his cryptocurrencies.

• Send: allows a user to perform the transfer of a certain amount of his asset towards a
specified recipient address. It consists of the transfer operation.

• Swap: allows a user to swap his cryptocurrencies into another token (e.g., from ETH to
MATIC).

• Bridge: allows a user to move his funds from a blockchain network to another one (e.g.,
from Ethereum to Polygon), with the possibility of asking for a swap along the transfer.

The sending operation is the one involving cryptocurrency transfer from one EOA to an-
other one. At the frontend level, along with an ETH transfer, Metamask prompts the user
with three different gas fee suggestion levels: low, market and aggressive. The higher the level
(from low to aggressive) the higher the gas fee suggestion (in terms ofMaxFeePerGas andMax-
PriorityFeePerGas for type-2 transactions or gasPrice for type-0 transactions), hence the higher
the priority attributed to the transaction. The wallet allows its users to customize the gas fees.
The source code1 of theMetamask wallet present on GitHub has been analyzed, looking for
that snippet concernedwith the assignment of values to the gas fee parameters for the three pre-
sented levels during a send operation. The entry point of the function related to the ETH trans-
fer has been identified at first, localized in the packages pathmetamask-extension/ui/components
/app/wallet-overview /eth-overview.js2 as a javascript file.

1Metamask open source code: https://github.com/MetaMask
2For details: https : / / github . com / MetaMask / metamask-extension / blob / develop / ui /

components/app/wallet-overview/eth-overview.js
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Figure 4.2: Metamask entry point for the send transaction button.

From Figure 4.2 (frontend side), the flow of the internal called functions has been followed,
crossing the connection between frontend and backend. The function identified as the one be-
ing in charge of computing and updating the gas fee values for the three priority levels is the one
defined in the typescript file core/packages/gas-feecontroller/src/determineGasFeeCalculations.ts3.
What the function does is checking the type of transaction (type-0 or type-2) and delegating
the gas fees computation accordingly. In particular:

Figure 4.3: Metamask’s code flow in case of gas fee sugges‐
tions for type‐2 transactions.

Figure 4.4: Metamask’s code flow in case of gas fee
suggestions for type‐0 transactions.

In case of a type-2 transaction (hence EIP-1559 compatible, Figure 4.3) a try-catch block
follows. In the try branch, an HTTPS request is performed towards the URL specified as pa-
rameter (fetchGasEstimatesUrl). This translates into an API call. The specific URL value is up
to the live setting of an environment variable, opening the way to two possible assignments for

3For details: https://github.com/MetaMask/core/blob/main/packages/gas-fee-controller/
src/determineGasFeeCalculations.ts
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it. Being the environment variable value unknown a priori, both the possible values are taken
in consideration for the purposes of the project. This translates into two possible HTTPS re-
quests (API calls) to pay attention to in the try branch, among which only one will be truly
made:

• https://gas.api.cx.metamask.io/networks/1/suggestedGasFees

• https://gas.uat-api.cx.metamask.io/networks/1/suggestedGasFees

The numerical value present in both theURLs refers to the chain-id of the network of inter-
est, with the chain-id corresponding to the unique identifier of a blockchain network. In this
case, the integer value appearing is the 1 integer, referring to the EthereumMainnet network.
In Figure 4.3’s catch branch, severalRemote Procedure Calls (RPCs) are performed. The most
relevant is the eth_feeHistory4 RPC. The method returns a collection of historical gas informa-
tion related to a sequence of blocks of interest, taking as input: an integer value representing
howmany sequential blocks are we interested in, the highest block number in the sequence, an
optional array of percentiles. Eth_feeHistorymethod, for each block it is considering, will first
sort all transactions by the priority fee. It will then go through each transaction and add the
total amount of gas paid for that transaction to a bucket which maxes out at the total gas used
for the whole block. As the bucket fills, it will cross percentages which correspond to the per-
centiles. Whenever a specified percentile in the optional input array is reached, the priority fees
of the first transactions that cause it to reach those percentages will be recorded. The recorded
priority fees represent the priority fees of transactions at key gas-used contribution levels, where
earlier levels have smaller contributions and later levels have higher contributions [24]. Re-
sults of the method include the baseFeePerGas of each block of interest as well. InMetamask
scenario, the history of the last five newest blocks is considered, with priority fees taken from
each block corresponding to those at percentiles [10, 20, 30]. Results of the method invoca-
tion are formatted and, lastly, given as input to the calculateEstimatesForPriorityLevel5 func-
tion, defined in the typescript file present in the path of the packages core/packages/gas− fee−
controller/src/fetchGasEstimatesViaEthFeeHistory/calculateGasFeeEstimatesForPriorityLe−
vels.ts. The function, based on the eth_feeHistory formatted output (blocks in Figure 4.5), per-
forms some computations to generate gas fee suggestions for each priority level (low, market,
aggressive).

4For details: https://docs.alchemy.com/reference/eth-feehistory.
5For details: https : / / github . com / MetaMask / core / blob /

8769bd80eb9a131f9fb75ae5f85491eedfc19e62 / packages / gas-fee-controller / src /
fetchGasEstimatesViaEthFeeHistory/calculateGasFeeEstimatesForPriorityLevels.ts
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Figure 4.5: Figure 4.3’s catch branch ending flow, repeated
for each priority level.

Figure 4.6: Figure 4.5 additionals.

In case of type-0 transaction (hence legacy, Figure 4.4) an HTTPS request is performed to-
wards the URL specified as parameter (fetchLegacyGasPriceEstimates). The URL value, once
again, is up to the live setting of an environment variable, opening the way to two possible
assignments for it:

• https://gas.api.cx.metamask.io/networks/1/gasPrices

• https://gas.uat-api.cx.metamask.io/networks/1/gasPrices

One could simply copy and paste the givenURLs to a web browser to see whatMetamask is
suggesting in real-time to thoseusers involved in currency transfer operationsover theEthereum
Mainnet network.

In case any problem occurs while dealing with one of the two snippets of code just discussed
(Figure 4.3 or Figure 4.4), gas fee parameters are filledwith the result coming from eth_gasPrice6

RPC.

6For details: https://getblock.io/docs/eth/json-rpc/eth_eth_gasprice/
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A visualization of what results from the retrieved logic follows:

Figure 4.7: Metamask frontend gas fee
suggestions for the low priority level
along a type‐2 transaction.

Figure 4.8: Collection ofMetamask gas fee suggestions from the two
URLS inherent to a type‐2 transaction.

• Figure 4.7 shows gas fee suggestions made by Metamask wallet at sending ETH time.
Among the three priority levels present, values associated with low priority level (Max
base fee and Priority Fee) are highlighted.

• Figure 4.8 shows the results of theHTTPS requests (API calls)made for retrievingMeta-
mask gas fee suggestions for type-2 transactions according to the source code. Results
have been collected through a python script.

Looking at Figure 4.7 and Figure 4.8, one can notice the match between parameters sug-
gested for the low priority level at frontend side (withmaxPriorityFee parameter rounded) and
the data obtained by performing theHTTPS request towards URL_1 ( https://gas.api.cx.meta-
mask.io/networks/1/suggestedGasFees).
For thepurposeof theproject, type-0 transactiongas fee suggestions arenotneeded (Section4.2
for details): source code related to their computation will be skipped for the next wallets.

4.1.2 TrustWallet

TrustWallet is a software wallet available as both a web extension (more limited) and a mobile
application (for Android and iOS). It counts over 10 million downloads on the Android plat-
formalone, showing its spreadusage. IfMetamask supports cryptocurrencies on theEthereum,
Arbitrum, Binance Smart Chain, Optimism, Polygon, and Avalanche networks, Trust Wallet
supports all of these networks, plus dozens more. Features offered byMetamask (Figure 4.1)
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are offered by Trust Wallet as well. At the frontend level, along with an ETH transfer, Trust
Wallet prompts the user with one only gas fee suggestion level, specifying for it themaxFeeP-
erGas andmaxPriorityFee (miner’s tip). By inspecting the application’s source code7 and with
the help of the TrustWallet Support Team, it has been possible identifying the RPCs made in
order to obtain those values then associated to the aforementioned parameters. The methods
in question are eth_feeHistory and eth_getBlockByNumber. The first has been already discussed
in Subsection 4.1.1, but a deeper discussion reveals to be necessary in this new app-related sce-
nario.

• eth_feeHistory is used for themaxPriorityFee value assignment along anETHtransfer ac-
tivity of a type-2 transaction. Themethod invocation occurs according to the following
parameters:

Figure 4.9: Trust Wallet’s RPC parameters.

meaning that for each of the last ten blocksmined over the blockchain, the 5thpercentile
will be extracted (see Subsection 4.1.1 for clarifications). According to the RPC results,
an array containing themaxPriorityFee corresponding to the 5th for each block has been
built. The computation of themedian of the obtained array corresponds to themaxPri-
orityFee (miner tip).

• eth_getBlockByNumber8 RPC is performed according to the structure in Figure 4.10.

7For details: https://github.com/trustwallet
8For details: https://docs.alchemy.com/reference/eth-getblockbynumber

34

https://github.com/trustwallet
https://docs.alchemy.com/reference/eth-getblockbynumber


Figure 4.10: Trust Wallet’s RPC parameters.

It will return informations about the last blockmined into the Ethereum blockchain, in
particular its baseFeePerGas.

Once theseRPCs are performed (they could be emulated inPython, Javascript,Postman and
more) and their results are retrieved, the maxFeePerGas parameter is obtained by increasing
the retrieved baseFeePerGas of the 20%, then adding to the computed amount the miner’s tip
(maxPriorityFee). It translates into the formula

MaxFeePerGas = (BaseFeePerGas× 1.2) +MaxPriorityFee

Figure 4.11 and Figure 4.12 show the perfect match between frontend proposed and script
collected gas fees parameters.

Figure 4.11: Trust Wallet frontend gas
fee suggestions for a type‐2 transaction.

Figure 4.12: Collection of Trust Wallet gas fee suggestion for
a type‐2 transaction through a python script emulating the
logic of Trust Wallet.
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4.1.3 ShapeShiftWallet

ShapeShift Wallet is a software wallet available as mobile application (for Android and iOS)
and web application9. It counts over 500k downloads on the Android platform alone. At the
frontend level, along with an ETH transfer, ShapeShift Wallet prompts the user with three
different gas fee suggestion levels: slow, average and fast. As well as in Metamask (Subsec-
tion 4.1.1), the higher the level (from slow to fast) the higher the gas fee suggestion in terms
ofMaxFeePerGas andMaxPriorityFee. The wallet does not offer the possibility for the user
to customize the gas fees. The source code of the ShapeShift Wallet10 present on GitHub has
been analyzed. From it, the API necessary for the gas fee suggestions retrieval has been found:

https://api.ethereum.shapeshift.com/api/v1/gas/fees

Results coming from the API have the following form:

Figure 4.13: Example of results coming from the ShapeShift Wallet API.

In Figure 4.13, for each priority level three parameters are indicated: gasPrice, maxFeePer-
Gas, maxPriorityFeePerGas. For each priority level, the wallet will suggest as officialmaxFeeP-
erGas for the type-2 transaction the output of max{gasPrice,maxFeePerGas}, with the official
maxPriorityFeePerGas for the type-2 transaction equal to the one retrieved by the API itself.

9For having access to it: https://app.shapeshift.com
10For details: https://github.com/shapeshift
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At the frontend level, what a user will see when involved in a transfer operation is:

Figure 4.14: ShapeShift Wallet gas fee suggestions at the frontend level along a transfer operation.

with the gas fee-related values matching with those retrieved through a Python script built
following the discussed logic:

Figure 4.15: ShapeShift Wallet gas fee suggestions retrieved through a Python script.

4.1.4 Rainbow

Rainbow is softwarewallet available as bothmobile application (forAndroid and iOS) andweb
extension (e.g., Chrome, Edge, Safari, Firefox11). It counts over 100k downloads on the An-
droid platform alone. At the frontend level, along with an ETH transfer, Rainbow prompts
the user with three different gas fee suggestion levels: normal, fast and urgent. The higher

11For download: https://rainbow.me/download
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the level, the higher the gas fee suggestion in terms of MaxFeePerGas and MaxPriorityFee.
The wallet offers the possibility for the user to customize the gas fees. The source code of
the Rainbow wallet12 present on GitHub has been analyzed, identifying the packages path
rainbow/src/handlers/gasFees.ts13 as the one containing a typescript file defining the URL to
be reached for obtaining gas fee-related informations.

Figure 4.16: Rainbow’s source code snippet with the reference to the API involved in the gas fee suggestions.

In particular, according to Figure 4.16, theURL tobe reached in case of theEthereumMain-
net network corresponds to:

https://metadata.p.rainbow.me/meteorology/v1/gas/mainnet

The informations retrievable from the addressed URL have the following form:

Figure 4.17: Output form of the Figure 4.16’s API call.

12For details: https://github.com/rainbow-me/rainbow
13For details: https : / / github . com / rainbow-me / rainbow / blob /

77ef889186c89039e5152ec12b44fade8a1cfa44/src/handlers/gasFees.ts
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Among the resulting data structured according to Figure 4.17, those taken into considera-
tion by theRainbowWallet for the three priority levels gas fee suggestions are:

• baseFeeSuggestion: the expected baseFeePerGas of the future next mined block;

• maxPriorityFeeSuggestions: an array of suggestions for themaxPriorityFeeparameter for
each of the proposed priority level.

Once data of interest are extracted, the maxFeePerGas associated with each proposed pri-
ority level is retrieved by incrementing the extracted baseFeeSuggestion of some percentages,
according to what is reported in Figure 4.18.

Figure 4.18: Priority levels multipliers.

According to Figure 4.18:

• maxFeePerGas for the normal level is equal to baseFeeSuggestion;

• maxFeePerGas for the fast level is obtained incrementing baseFeeSuggestion of its 5%;

• maxFeePerGas for theurgent level is obtained incrementing baseFeeSuggestionof its 10%.

The final maxFeePerGas suggested to the user for each priority level is finally modeled ac-
cording to the nearest integer of the value obtained after themultiplication occurs. Figure 4.19,
Figure 4.20 and Figure 4.21 show what a user sees at the frontend for each priority level.
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Figure 4.19: Rainbow wallet sugges‐
tions for the normal level.

Figure 4.20: Rainbow wallet sugges‐
tions for the fast level.

Figure 4.21: Rainbow wallet sugges‐
tions for the urgent level.

By comparing suggestions received from the frontend with a collection of the suggested fees
coming from an emulation of the explained steps, one can notice perfect matches in terms of
maxFeePerGas andmaxPriorityFee.

Figure 4.22: Rainbow gas fee predictions retrieved through a Python script.
For the maxFeePerGas parameter, the picture shows both the float value

and its rounding to the nearest integer.

4.1.5 OneKey

OneKey is a wallet available as mobile application (for Android and iOS), desktop application
(formacOS,Windows and Linux14), web extension (for Chrome, Edge and Brave15) and hard-
ware device. It counts over 50k downloads on the Android platform alone. At the frontend
level, along with an ETH transfer,Onekey prompts the user with three different gas fee sugges-
tion levels: low, normal and high. The higher the level (from low to high) the higher the gas fee
suggestion in terms ofMaxFeePerGas andMaxPriorityFee. Thewallet offers the possibility for
the user to customize the gas fees. The source code of theOneKeywallet16 present on GitHub

14For download: https://onekey.so/download/
15For download: https://onekey.so/download/?client=browserExtension
16For details: https://github.com/OneKeyHQ
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has been analyzed, finding out that the developers rely on theBlocknative17 platform for the gas
fee suggestion task. Blocknative is a real-time observability platform that offers several services,
including a gas prediction tool. The tool makes its predictions based on real-time data coming
from themempool andpredictivemachine learning-basedmodels. The combinationof the two,
allows the platform to predict the next block’s minimum gas price as close as possible, avoiding
overspend. Since different users have different degrees of urgency for getting transactions into
the next block, the platform provides a range of confidence levels for next-block inclusion as
well[25]:

• If a user needs a high probability of being confirmedwithin the next block at the expense
of spending extra gas, he can use the 99% probability prediction.

• If a user does notmind if the transaction takes 2-3 blocks to be confirmed if it saves some
gas, he can use the 70% probability prediction.

The two probability percentages are the extremes of a wider range of five: 99%, 95%, 90%,
80%, 70%. The smaller the probability, the smaller the associated gas fee predictions in terms
ofMaxFeePerGas andMaxPriorityFee. The HTTPS request necessary to retrieve the sugges-
tions related to all the probability predictions corresponds to:

https://api.blocknative.com/gasprices/blockprices

A comparison of what a user sees at the frontend level by using theOneKeywallet and what
has been retrieved from the Blocknative platform follows.

Figure 4.23: OneKey wallet sugges‐
tions for the low level.

Figure 4.24: OneKey wallet sugges‐
tions for the normal level.

Figure 4.25: OneKey wallet sugges‐
tions for the high level.

17For details: https://www.blocknative.com/gas-estimator
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Figure 4.23, Figure 4.24 and Figure 4.25 show the gas fees suggested by theOneKeywallet at
ETH transfer time for each priority level presented. By comparing images’ content with what
is retrieved by the Blocknative platform (Figure 4.26) through theHTTPS request, parameters
show to match.

Figure 4.26: Blocknative gas fee predictions for ranges of confidence in descending order (from 90% to 70%).

4.1.6 UnstoppableWallet

UnstoppableWallet is a software wallet available as mobile application forAndroid and iOS. It
counts over 50k downloads on the Android platform alone. At the frontend level, along with
an ETH transfer, Unstoppable Wallet prompts the transaction fee the transfer action will be
subject to. The wallet offers the possibility for the user to customize the gas fees. The source
code of the Unstoppable Wallet18 present on GitHub has been analyzed. According to it, the
main point of the gas fee suggestionmade by the wallet relies on the eth_feeHistoryRPC, called
with the following parameters:

18For details: https://github.com/horizontalsystems

42

https://github.com/horizontalsystems


Figure 4.27: Unstoppable Wallet RPC parameters.

According toFigure 4.27, informations concerning the last 10blocksminedover theEthereum
blockchain are retrieved,with attentionpointedover that priorityFee corresponding to the 50th
percentile for each block (Subsection 4.1.1 for details). Results of the RPC are then handled
according to the following code snippet, localized in the path of the packages unstoppable −
wallet−android/app/src/main/java/io/horizontalsystems/bankwallet/modules/evmfee/eip
1559/Eip1559GasPriceService.kt:

Figure 4.28: Figure 4.27’s results handling.

According to what showed in Figure 4.28:

• maxFeePerGas parameter (newRecommendedGasPrice in the snippet) is computed as
the max between two values (one of which is to be considered as zero), summed up
to the computedmaxPriorityFee (recommendedPriorityFee in the snippet). In order to
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retrieve the arguments of themax function, the code of the function called inside it is
needed.

Figure 4.29: Definition of recommendedBaseFee function in Figure 4.28.

According to Figure 4.29, one of the argument of themax function is retrieved by taking
the baseFeePerGas information of the last two blocks coming from the eth_feeHistory
RPC and choosing the highest one between them.

• maxPriorityFee parameter (newRecommendedPriorityFee in the snippet) is computed
as the max between two values (one of which is to be considered as zero), with the first
argument delivered as result of the function recommendedPriorityFee.

Figure 4.30: Definition of recommendedPriorityFee function in Figure 4.28.

According to Figure 4.30, the first argument of the max function is retrieved by sum-
mingup thepercentiles coming fromeachof the last 10blocks as result of the eth_feeHisotry
RPC and dividing the value obtained by the number of blocks (hence, 10).

At the frontend level, what a user will see when involved in transfer activity is:
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Figure 4.31: Unstoppable Wallet gas fee suggestions at frontend level.

whose gas fee parameters match with what is obtained by building a python script following
the described logic:

Figure 4.32: Unstoppable Wallet gas fee suggestions retrieved through a python script.

4.2 Tornado Cash analysis

As seen in Subsection 2.3.2, a withdrawal from a TC smart contract can be triggered in two
different ways:

• By involving a relayer, without anyneed for the user to connect hiswallet to the platform;

• Without involving a relayer, with the need for the user to connect his wallet to the plat-
form.

In both cases, Tornado Cashmakes its own gas fee suggestions (prompted as network sugges-
tion), corresponding to the default one. In order to identify those transactions related to the
TC platform whose assigned fees have no chance to come by any user wallet since proposed
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by TC itself, the dApp open source code19 has been analyzed as well. The starting point of
the analysis have been the deposit and withdrawal functions, both present in the .sol file in the
packages path tornado-core/contracts/Tornado.sol. Both the functions implementation, along
an ETH transfer (deposit or withdrawal), call the generateTransaction20 function, with a code
portion as follow:

Figure 4.33: Portion of code related to the Tornado Cash’s generateTransaction function.

According to Figure 4.33, the maxFeePerGas parameter for a TC deposit or withdrawal
transaction is obtained by a call towards another function (fetchGasPrice), while maxPriori-
tyFeePerGas is set as a constant, equal to the 3 value. The implementation of the fetchGasPrice
function follows:

19For details: https://github.com/tornadocash
20For details: https : / / github . com / tornadocash / tornado-cli / blob /

378ddf8b8b92a4924037d7b64a94dbfd5a7dd6e8/cli.js
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Figure 4.34: Portion of code related to the Tornado Cash’s fetchGasPrice function.

FromFigure 4.34, one can see that the task of themaxFeePerGas computation is delegated to
another function (gasPrices), in particular the function is invoked over an object belonging to
the external library gas-price-oracle21. After obtaining the outcome from the entity within the
external library, the outcome’s instant attribute is further processed through the gasPricesETH
function, whose code follows:

Figure 4.35: Portion of code related to the Tornado Cash’s gasPriceETH function.

21For details: https : / / github . com / peppersec / gas-price-oracle / tree /
4861f36c56a12c8618141adcc55028d976fad7cd
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The code belonging to the external library has been dug in to understand what the input of
the gasPricesETH function is. The external library function the attention has been put over
is gasPrices, according to Figure 4.34. The function code has been divided into three code
snippets for its presentation.

Figure 4.36: Code snippet 1 of the gasPrice function in gas‐price‐oracle external library.

Figure 4.36 shows the first code snippet related to the gasPrices function. According to this
path, the gas fee suggestions are retrieved by considering the outputs of some off-chain oracles
(Section 2.2 for details), here corresponding to:

Figure 4.37: Oracle 1 taken into account by snippet in Fig‐
ure 4.36.

Figure 4.38: Oracle 2 taken into account by
snippet in Figure 4.36.
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Oracle in Figure 4.37 is down from July 1st 202322, so results are retrieved from Oracle in
Figure 4.38 only. In particular, the API to be reached for theOracle gas fee suggestion has been
updated to :

https://beaconcha.in/api/v1/execution/gasnow

Figure 4.39: Code snippet 2 of the gasPrice function in gas‐price‐oracle external library.

Figure 4.39 shows the second code snippet related to the gasPrices function. According to
this path, the gas fee suggestions are retrieved by considering the outputs of some on-chain
oracles, here corresponding only to:

Figure 4.40: Oracle taken into account by snippet in Figure 4.39.

According to Figure 4.40, a RPC towards the specified smart contract address is performed,
in particular the aim is that of triggering the smart contract’s function identified by the value

22For details: https://ethgasstation.info/
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in callData parameter. Following up with Figure 4.39, the on-chain oracle output is then sep-
arately multiplied with different constants, in order to create several priority levels for the sug-
gestion. Multipliers involved are those reported in Figure 4.41.

Figure 4.41: Multipliers for different priority levels generation valid for both Figure 4.39 and Figure 4.42 snippets.

GasPrice implementation ends up with the third reported snippet:

Figure 4.42: Code snippet 3 of the gasPrice function in gas‐price‐oracle external library.

Following the functions calling flow of Figure 4.42 leads to the eth_gasPriceRPC for the gas
fee suggestions. Its output is subject to the multipliers in Figure 4.41 for the generation of the
different priority levels.

As said, Figure 4.36, Figure 4.39 andFigure 4.42 are the three snippets composing the gasPrice
function called in Figure 4.34. One of their outputs will be the one given as input to the func-
tion shown in Figure 4.35, where it will be summed up to themax between the 5% of the value
itself and the 3 value, corresponding to the fixed maxPriorityFee parameter set by default by
the TC platform, as shown in Figure 4.33.
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Despite the made portrait, empirically it has been seen that some TC gas fee suggestions
follow the following formula instead:

eth_gasPrice+ 3− 0.01

where:

• eth_gasPrice is the value resulting from the homonymous RPC;

• the 3 value corresponds to the amount assigned tomaxPriorityFee parameter;

• the 0.01 value has been retrieved empirically.

An example of a TC transaction (withdrawal) involving a relayer and matching the TC sug-
gested fee retrieved according to the just showed empirically retrieved formula follows:

Figure 4.43: Example of a withdrawal involving a relayer and the 100 ETH smart contract.

Figure 4.44: Tornado Cash gas fee suggestions according to the above formula.

In particular:
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• The transaction present in Figure 4.43 is a legacy one (type-0), with a gasPrice parameter
as specified. Generally, withdrawals involving a relayer are type-0 transactions, whereas
withdrawals not involving a relayer (hence, those of interest for the project), are type-2
transactions. This is why the analysis of wallets has been centered around type-2 trans-
actions.

• The three values present in Figure 4.44 correspond, respectively, to the eth_gasPrice
RPC’s result, eth_gasPrice+ 3, eth_gasPrice+ 3− 0.01. The last of the three values is
the one following the empirically retrieved formula and matching the TC transaction’s
gasPrice present in Figure 4.43 as well.

4.3 Additional work

The analysis seen until now is all related to the Ethereum mainnet network (chainId=1), cho-
sen because of its high usage within the TC platform. The high usage information comes from
the visualization of the related smart contracts activity, hence the daily occurrences of deposit-
s/withdrawals towards/from one of the ETH currency-related pools.

Figure 4.45: Example of TC activity concerning its 10 ETH pool in Ethereum Mainnet network.

Polygon network is second to Ethereum Mainnet in terms of its usage within the TC plat-
form, withMATIC as its native currency.
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Figure 4.46: Example of TC activity concerning its 100 MATIC pool in Polygon network.

With the aim of examining how wallets retrieve those values then suggested as gas fees to
users involved in a MATIC transfer employing the Polygon network, the open source code of
severalWalletConnect compatible software wallets has been analyzed for this circumstance as
well. Wallets analyzed are some of those already discussed for the Ethereum scenario, plus an
additional one. This conveys in the following analyzed wallets for the Polygon case: Metamask,
OneKey, Rainbow, ShapeShiftWallet and RabbyWallet

Metamask Aswell as in theEthereum case, suggestions forMATICtransfer occurring through
Metamask come from two possible APIs, according to the real-time setting of an environment
variable (see Subsection 4.1.1 for details). In this case, the two possible APIs correspond to:

https://gas.api.cx.metamask.io/networks/137/suggestedGasFees

https://gas.uat-api.cx.metamask.io/networks/137/suggestedGasFees

Fromboth the APIs, gas fee suggestions in terms ofmaxFeePerGas andmaxPriorityFeePerGas
for the low, medium and high priority levels are retrievable.

OneKey Gas fee suggestions are made by the OneKey wallet by relying on the Blocknative
platform (see Subsection 4.1.5 for details). In Polygon case, suggestions coming from the plat-
form are retrievable through the API reachable by the following URL:

https://api.blocknative.com/gasprices/blockprices?chainid=137

The API returns the maxFeePerGas and maxPriorityFeePerGas for several levels of confi-
dence, to be intended as priority levels.
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Rainbow Gas fee suggestions are made by theRainbowwallet by relying on the following:

https://metadata.p.rainbow.me/meteorology/v1/gas/polygon

The output consists of three gas prices, each for a different priority level (see Subsection 4.1.4
for details). TheRainbowwallet multiplies each of the retrieved gas prices with the 1.05 multi-
plier and suggests to the user the ceiling of that.

ShapeShift Wallet Gas fee suggestions are made by the ShapeShift wallet by relying on
the following API:

https://api.polygon.shapeshift.com/api/v1/gas/fees

The output consists of three gas fee suggestions (see Subsection 4.1.3 for details), one for each
proposed priority level. In particular, each result’s row is made of three parameters: gasPrice,
maxFeePerGas and maxPriorityFeePerGas. According to these values, a gas fee suggestion
made by the wallet for each priority level corresponds to:

maxFeePerGas_official = max(maxFeePerGas, gasPrice),

maxPriorityFeePerGas_official = maxPriorityFeePerGas

Rabby Wallet Rabby Wallet is a software wallet available as mobile application (for An-
droid and iOS), web extension forChrome23 and desktop application. It counts over 10k down-
loads on the Android platform alone. At the frontend level, along with a MATIC transfer,
Rabbit Wallet prompts the user with three different gas fee suggestion levels: standard, fast
and instant. The higher the level, the higher the gas fee suggestion. The wallet offers the pos-
sibility for the user to customize the gas fees. The source code of the Rabbit Wallet24 present
on GitHub has been analyzed, resulting in the following API as the one used for the gas fee
suggestions retrieval:

https://api.rabby.io/v1/wallet/gas_market?chain_id=matic

23For download: https://rabby.io/
24For details https://github.com/RabbyHub/Rabby
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A comparison of what is seen by a user at the frontend level and what retrieved by the above
API follows, showing a match between the two:

Figure 4.47: Rabby Wallet suggested fees at
frontend level.

Figure 4.48: Rabby Wallet suggested fees in wei retrieved through
the API.
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5
Results

Each of the analyzed wallet in Chapter 4 follows its own approach for the gas fee suggestions
task: it does not happen for two different wallets to propose the same suggestions. A gas fee
suggestion is considered as associated with a single wallet according to a one-to-one relation-
ship. A Python script (python version 3.12.1) has been written up to emulate the logic that each
analyzed wallet exploits for the gas fee suggestions. The python script has been run over a re-
mote server (a virtual machine reached through the ssh command) for a time window covering
about one month: from 01/02/2024 to 09/04/2024. The python script execution results in
a .txt file filled with a collection of the gas fee suggestions made by each wallet, in particular,
the suggestions have been collected, on average, every 15 seconds. The short time slot between
a collection and the next one is due to the dynamic nature of the Ethereum network, whose
congestion changes second after second with gas fee suggestions following such a flow. Each
single collection (a single emulation, at a specific time, of the gas fee suggested by each ana-
lyzed wallet) is to be intended as the one for a type-2 transaction (both themaxPriorityFee and
maxFeePerGas parameters are retrieved) and is made up of the following data:

• The timestamp (+UTC) of the emulation occurrence. The information has been saved
according to the Universal Time Coordinated (UTC) since it is the one transactions in
Etherscan are recorded with.

• Collection of gas fee suggestions performed by the MetamaskWallet for all of the three
proposed priority levels (low,medium and high). Suggestions are collected for both the
potential APIs reached by the wallet (see Subsection 4.1.1 for details).
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• Collection of gas fee suggestions performed by theOneKeyWallet for all of the proposed
confidence intervals (99%, 95%, 90%, 80%, 70%, see Subsection 4.1.5 for details).

• Collection of gas fee suggestions performed by the RainbowWallet for all of the three
proposed priority levels (normal, fast and urgent).

• Collection of gas fee suggestions performed by TrustWallet.

• Collection of gas fee suggestions performed by the ShapeShiftWallet for all of the three
proposed priority levels (slow, standard and fast).

An example of a one-shot collection made by the Python script follows, with themaxPriori-
tyFee corresponding always to the first collected value andmaxFeePerGas corresponding always
to the second one:

Figure 5.1: Example of gas fee suggestions collected at a specific UTC time by the built Python script.
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Informations present in the .txt file collectingmultiple elements following the format shown
in Figure 5.1 have been comparedwith the gas fees associatedwith transactions present over the
Ethereum blockchain. Transactions initiated within theEthereum network have been explored
using Etherscan. In particular, transactions of interest are:

• Transactions involved in a transfer of currencies over the whole Ethereum network;

• Transactions involved in interactions with one of the Tornado Cash smart contracts re-
lated to the ETH currency over the Ethereum network.

Transactions involved in a transfer of currencies over thewholeEthereumnetwork have been
analyzed with the purpose of revealing the potentiality of the used approach. The final aim of
the project is to reveal if the heuristic concerning wallet fingerprints is a valid one for reduc-
ing the Tornado Cash pools’ anonymity set, by checking the feasibility of associating made
transactions with the wallet they come from. Once the association is made, withdrawals per-
formed through a specificwallet are considered indistinguishable among deposits coming from
the same wallet only. Analyzing the approach on a general scenario first (whole Ethereum net-
work) and on the specific one afterward ( Tornado Cash) works as a verification step: we make
sure that the approach is valid in general, hence that in general it is possible to link a transac-
tion involved in a cryptocurrency transfer with the wallet it has been initialized from. Once
this is proven, it is possible to move on to the more specific scenario. The number of trans-
actions implying a transfer action over the Ethereum blockchain in the time window going
from 01/03/2024 to 09/04/2024 is very large. To prove the feasibility of the approach, a
smaller time window has been taken into account: the one going from 09/04/2024 08:02:00
pm to 09/04/2024 11:28:47 pm, covering more than three hours. Transactions present over
the Ethereum blockchain in the specified time window have been filtered according to those
triggered by a transfer action, identified by the action id 0xa9059cbb, present in the input field
of the transaction itself. This has been done since the collected gas fees are those related to the
occurrence of ETH transfers over the blockchain (transactions triggered by different actions
could imply a different approach for the gas fee suggestions followed by thewallet itself). Trans-
actions covering the specified timewindowhave been identified as those present in blocks going
from19620335 to 19621362. A javascript file has beenbuilt up toquery eachblock in the range
to extract transactions triggered by a transfer action. This has been possible by exploiting the
Web3 library and a private infura key. An overview of the synthesized script follows:
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Figure 5.2: Javascript code snippet for retrieving (and filter) transactions from the Ethereum blockchain.

Through the javascript code in Figure 5.2, 66948 transactions have been extracted from
the blockchain, in particular their hash and related gas fees have been saved in a new .txt file.
A python script has been built up to compare the gas fees attached to each of the extracted
transactions with the collected suggestions, coming from the analyzed wallet in the same time
window. The comparison resulted in 13203 full matches, where a full match is obtained when:

• maxPriorityFee and maxFeePerGas parameters attached to a transaction are equal to
those suggested by an analyzed wallet;

• the gas fee suggestion collection has occurred a few seconds before the transaction val-
idation (the validation time, hence the time between the transaction triggering and its
validation over the blockchain, is taken into account).

Examples of full matches follow:
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Figure 5.3: Example of a real transaction validated over the
Ethereum Blockchain.

Figure 5.4: Gas fee suggestion collections com‐
ing from the analyzed wallets for a timestamp
consistent with the transaction in Figure 5.3.

Figure 5.3 and Figure 5.4 show a full match occurring between gas fee attached to a transac-
tion over the Ethereum blockchain (in terms ofmaxFeePerGas andMaxPriorityFee) and the
suggestions for the same values coming from theMetamaskwallet.

Figure 5.5: Example of a real transaction validated over the
Ethereum Blockchain.

Figure 5.6: Gas fee suggestion collections com‐
ing from the analyzed wallets for a timestamp
consistent with the transaction in Figure 5.5.

Figure 5.5 and Figure 5.6 show a full match occurring between gas fee attached to a transac-
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tion over the Ethereum blockchain (in terms ofmaxFeePerGas andMaxPriorityFee) and the
suggestions for the same values coming from TrustWallet.

Figure 5.7: Example of a real transaction validated over the
Ethereum Blockchain.

Figure 5.8: Gas fee suggestion collections com‐
ing from the analyzed wallets for a timestamp
consistent with the transaction in Figure 5.7.

Figure 5.7 and Figure 5.8 show a full match occurring between gas fee attached to a transac-
tion over the Ethereum blockchain (in terms ofmaxFeePerGas andMaxPriorityFee) and the
suggestions for the same values coming fromOneKeyWallet.
According to the results, 13203 transactions over 66248present gas fee parametersmatching

with those collected, meaning that for each of the 13203 transactions, the wallet that transac-
tion has been initiated from is now a public information. This not only serves as a support
for the approach application over themore specific scenario of TornadoCash, but represents a
privacy concern over theEthereum blockchain: information related to the wallet used by a user
to perform a transaction is not a public one, but the followed approach allows to retrieve such
information for some transactions. In particular, the 66248 - 13203 transactions notmatching
the collection are due to:

• Customized gas fees: if a user decides not to accept the wallet-suggested gas fees but to
set fees by himself, the approach does not work.

• Other wallets: the collection is made up of the gas fee suggestions coming from the 6
analyzed wallets. Wallets usable over Ethereum are far away more than 6, implying that
users employing a not analyzed wallet are undetected.
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Given the support provided for the approach by testing it over transactions validated within
the Ethereum network in general, the heuristic has been tested over transactions addressing
Tornado Cash smart contracts (pools) as well. In particular, transactions interacting with one
of the Tornado Cash pools existing over the Ethereum Mainnet network (0.1 ETH, 1 ETH,
10 ETH, 100 ETH) and involving the ETH cryptocurrency transfer are those interacting with
the contract address

0xd90e2f925DA726b50C4Ed8D0Fb90Ad053324F31b

The address is that belonging to the Tornado.Cash: Router. Over a time window of about
onemonth (from01/03/2024 to 09/04/2024), 4579 transactions have occurredwith respect
to the contract address. Among the 4579 transactions:

• 2210 are deposits,

• 2088 are withdrawals involving a relayer,

• 281 are withdrawals not involving a relayer.

The total number of transactions involving the ETH currency on the Ethereum network
through the Tornado Cash platform has been acquired through:

1. Manually downloading the .csv files in Etherscan once in the contract related page1,

2. Extracting from each .csv file the hash of each present transaction through the usage of
Excel, then appending it to a purposely generated .txt file,

3. Gaining informations about each transaction present in the generated .txt file using its
related hash as starting point. A javascript file has been built up for the purpose.

The javascript file that extracts informations about Tornado Cash related transactions us-
ing their hash as starting point has the following logic, exploiting, once again, web3 and infura:
the script takes as input a .txt file containing transactions hash only. For each hash, consid-
ered a unique identifier for a transaction over the blockchain, the following informations are
retrieved:

1Tornado.Cash: Router in Etherscan: https : / / etherscan . io / address /
0xd90e2f925da726b50c4ed8d0fb90ad053324f31b
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• Gas fees attached to the transaction identified by the given hash. For the purpose, the
type of each transaction has been extracted (type-0 or type-2) in order to know the num-
ber of gas-related parameters associated with the transaction itself;

• The nature of the transaction, hence if it is a deposit or a withdrawal. The information
has been gained by considering the id of the action triggering the transaction, reported
in the transaction input field together with other parameters. In this case, 0xb438689f
represents a withdrawal while 0x13d98d13 represents a deposit;

• In case of withdrawal transactions, the script tells apart those involving a relayer and
those that do not. This is done by digging into the input field content of the transaction
itself. In the case of a relayer involved, his address over the blockchain and the amount of
currency to him dedicated is expressed inside the transaction input field, otherwise the
parameters leave space for zeros value. This translated into checking if specific positions
inside the input field of a withdrawal transaction are filled with zero values or not.

As seen in Subsection 2.3.2, when a relayer is involved in awithdrawal transaction there is no
need for the user to connect hiswallet to theTornadoCash platform. This is because the relayer
will pay the fees on his own and send the remaining amount to the recipient’s address through
an ETH transfer. The situation is different when a relayer is not involved in a withdrawal trans-
action: in this case the withdrawer has to pay the transaction fees on his own, making it neces-
sary to connect his wallet to the Tornado Cash platform. The case of withdrawal transactions
not involving a relayer is the one wallet fingerprints heuristic can have an effect on. This means
that among the 4579 TC-related transactions that occurred in the≈one-month time window,
those where the wallet fingerprints heuristic could have any effect are 4579-2088, hence with-
drawals involving a relayer are out of the heuristic coverage. This turns into 2491 transactions
to be analyzed. A python script has been built up for the purpose of comparing the TC-related
transactions of interest (2210 deposits and 281 withdrawals not involving a relayer) with the
collected gas fee suggestions by the analyzed wallet. The script execution turned in:

• 91 full matches with deposits,

• 22 full matches with withdrawals not involving a relayer;

• 0 full matches with withdrawals involving a relayer, as expected (when a relayer is in-
volved, the user does not connect his own wallet to the dApp).

All deposits full matches and withdrawals full matches come from the same wallet: Meta-
mask. Examples of full matches for both a deposit and a withdrawal concerning the same Tor-
nado Cash smart contract (pool) follow:
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Figure 5.9: Example of a real deposit transaction validated over the
Ethereum Blockchain. TC pool involved is 100 ETH.

Figure 5.10: Full match in terms of gas fee sug‐
gestions coming from theMetamask wallet for
a timestamp consistent with the transaction in
Figure 5.9.

Figure 5.11: Example of a real withdrawal transaction validated
over the Ethereum Blockchain. TC pool involved is 100 ETH.

Figure 5.12: Full match in terms of gas fee sug‐
gestions coming from theMetamask wallet for
a timestamp consistent with the transaction in
Figure 5.11.
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Being the deposit in Figure 5.9 and withdrawal in Figure 5.11 related to the same Tornado
Cash pool and since the deposit has occurred before the withdrawal itself, the users related
to these transactions are considered heuristically linkable according to the wallet fingerprints
heuristic. The reason behind a so small number of full matches in the Tornado Cash scenario
relies on:

• Possibility for the user to customize gas fees;

• Usage of other wallets with respect to those analyzed;

• Suggestions coming from the Tornado Cash platform itself.

In the Tornado Cash scenario, gas fees attached to a transaction can not only come as sug-
gestions from a wallet or being customized, but the dApp itself makes its own suggestions. In
particular, according to the empirically retrieved formula for gas fee suggestions coming from
TornadoCash, in a time window covering the period going from 17/03/2024 05:28:55 pm to
09/04/2024 11:28:47 pm (a subset of the time window previously analyzed) it happens that:

• 2856 transactions are collected: 1454 deposits and 1402 withdrawals, 162 of which do
not involve a relayer;

• Over the 1454 deposits, 140 are full matches with the output of the empirically retrieved
formula concerning gas fee suggestions coming from Tornado Cash itself;

• Over 1402 withdrawals, both involving a relayer or not, 253 are full matches with the
output of the empirically retrieved formula concerning gas fee suggestions coming from
TornadoCash itself. In particular, 11 fullmatches concernwithdrawalswithout a relayer
involved.

It has to be noticed that gas fee suggestions coming from the Tornado Cash platform have
no dependency on the wallet used at transaction time, hence they hold for both withdrawals
with and without a relayer involved. Examples of gas fees matching between Tornado Cash
suggestions according to the empirically retrieved formula and transactions within Tornado
Cash follow:
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Figure 5.13: Example of a real Tornado Cash deposit transaction
validated over the Ethereum Blockchain.

Figure 5.14: Gas fee suggestion collections
coming from the TC platform according to the
empirically retrieved formula for a timestamp
consistent with the transaction in Figure 5.13.

Figure 5.15: Example of a real Tornado Cash withdrawal transac‐
tion with relayer involved validated over the Ethereum Blockchain.

Figure 5.16: Gas fee suggestion collections
coming from the TC platform according to the
empirically retrieved formula for a timestamp
consistent with the transaction in Figure 5.15.
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Figure 5.17: Example of a real Tornado Cash withdrawal trans‐
action with no relayer involved validated over the Ethereum
Blockchain.

Figure 5.18: Gas fee suggestion collections
coming from the TC platform according to the
empirically retrieved formula for a timestamp
consistent with the transaction in Figure 5.17.
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6
Conclusion

TornadoCash is a dApp retrofitting with privacy several networks, with Ethereum as themain
one. The privacy added by the mixer over Ethereum has been challenged by several heuristics
(see Chapter 3 for details), which analyze mainly the user behavior within the Tornado Cash
platform. This project introduces and evaluates a novel heuristic that diverges from focusing
solely on user interactionswith the dApp. Instead, it targets the typical operational flowofTor-
nado Cash. Termed as wallet fingerprints [1][10], this heuristic aims to establish a connection
between blockchain transactions and the originating wallet. Applying this concept within the
TornadoCash ecosystem: transactions, includingwithdrawals and deposits, can be categorized
(clustered) based on the wallet they have been initialized from. A cluster of withdrawals is con-
sidered linkable to a cluster of deposits when they share the same originating wallet across both
clusters. Analysis of the logic behind real-time gas fees suggested by several wallets has been
necessary for the purpose. The wallet fingerprints approach has been tested in the Ethereum
network generic scenario first for support reasons. Testing conducted in this general case has
revealed that out of a collection of 66,948 transactions validated on the Ethereum blockchain,
≈ 20% yields to full matches with the data obtained from the analyzed wallets. The ability
to link a blockchain transaction to the originating wallet raises a privacy concern, as it involves
retrieving non-public information. After achieving positive results on the Ethereum network
as a whole, the wallet fingerprints heuristic has been further tested specifically on transactions
involving Tornado Cash smart contracts (pools) on Ethereum (with deposit amounts of 0.1
ETH, 1 ETH, 10 ETH, 100 ETH). This testing has revealed that out of a subset of 2,491 eligi-
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ble Tornado Cash-related transactions within a one-month timeframe (excluding withdrawals
involving a relayer), ≈ 4, 5% results in full matches with respect to the collected wallet data.
In particular, the full matches include 91 deposits and 22 withdrawals, with the implication
that deposits and withdrawals initiated by the same wallet and interacting with the same Tor-
nado Cash pool are considered heuristically linkable, provided that the deposit precedes the
withdrawal in terms of timestamp. An analysis of the gas fee suggestions provided by the Tor-
nado Cash platform itself has been conducted as well. This analysis has led to the empirical
derivation of a formula representing one of themethods throughwhichTC generates network
suggestions. According to this empirically derived gas fee suggestions formula, out of 2,856
transactions occurring within TC’s Ethereum-related pools, 343 (≈ 12%) are full matches, in-
dicating that their gas fee parameters are set according to the suggestions provided by the dApp.
Transactions not covered by the approach are due to:

• Customized gas fee;

• Gas fee set by wallets not analyzed yet;

• Gas fee suggested byTC according to a logic different from the empirically retrieved one.

The proposed approach demonstrates its impact both in the Ethereum blockchain, with
the rise of a privacy concern, and in TC, taking into account that in the last scenario only with-
drawals not involving a relayer have any chance to be affected by the heuristic. Moreover, for
the heuristic to be effective, a dynamic collection of gas fees suggested by each wallet must be
created and regularly updated. Transactions occurring in a time window not covered by the
collection can not be affected by the proposed wallet fingerprints heuristic. The fingerprints
are comprised of gas fee suggestions collected in real-time from the following analyzed wal-
lets:Metamask, Trust Wallet, Rainbow, OneKey Wallet, ShapeShift Wallet and Unstoppable
Wallet.

The same wallet can support different blockchain networks (e.g., Bitcoin, Ethereum, Arbi-
trum, Gnosis, Polygon), providing for each of them different gas fee suggestions. Additional
work has been dedicated to uncovering the gas fee suggestion logic employed by several ana-
lyzedwallets specifically for the Polygon network. Thewallets analyzed for the purpose include
Metamask, OneKey, Rainbow, ShapeShift Wallet, and RabbyWallet. A collection of the gas
fees suggested by each mentioned wallet for a time window of one month in the case of the
Polygon network has been made as well. Future efforts could be put in:
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• Testing the additional obtained collection in both thePolygon network and theTornado
Cash smart contracts to the network related, hence repeating the steps performed in this
project but changing the main character. This could be done in order to reveal a pri-
vacy concern over the Polygon network, as well as revealing clusters of users employing
TornadoCash platformwithin Polygon, second to Ethereum in terms of TornadoCash
platform usage.

• Digging into the logic exploitedby the already analyzedwallet concerningother blockchain
networks, e.g., Arbitrum, Gnosis, Avalanche.

• Extending the wallets analysis in the Ethereum case to other open source wallets, e.g.,
TorusWallet,MEWWallet,GuardaWallet,MyCryptoWallet. This expansion would
likely lead to an increase in the number of full matches observed in both the Ethereum
general case and the Tornado Cash scenario.

Each of the proposed future directions represents a meaningful extension of the current
project, contributing to its overall value and relevance.
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