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Introduction

Higher categories arise in a lot of different situations, from stable homotopy
theory to (derived) algebraic geometry and mathematical physics. Many
authors have tried to tame technical difficulties involved in the definition
and application of higher categories through the introduction of different
models of these structures. This process has, however, tended to lead to a
proliferation of complexity rather than progress towards simplicity. A major
step forward towards a more inclusive theory of higher categories was made
in [Toë05], which contains a very important result that can be rephrased as:

Theorem 1. All models of (∞, 1)-categories define fibrant objects of
Quillen equivalent model categories.

This implies, in particular, that all of their homotopy categories are
equivalent. In this spirit, we focus on two of those models. The first is
given by quasi-categories, which are presumably the most famous model of
(∞, 1)-categories. The second is represented by prederivators and is not ac-
tually a true model, at least not in the classical literature. However, as we
will see at the end of this dissertation, prederivators can be endowed with
a suitable model structure with respect to which they are really a model of
(∞, 1)-categories.

The first chapter of this thesis is devoted to the basic definitions and prop-
erties regarding simplicial sets and quasi-categories, which are particular
simplicial sets. At the end of the first chapter we introduce a model struc-
ture in which the fibrants objects are exactly the quasi-categories. Then, in
the second chapter we present the basics on prederivators. The third and last
chapter is dedicated to the interactions between these two structures. First,
following [Car16], we explain how to construct two kinds of embeddings −
a simplicial and a 2-categorical one − of the theory of quasi-categories into
that of prederivators. As a consequence, following [FKKR18], we describe
the prederivators that emerge as images of quasi-categories and we put a
model structure on prederivators which is equivalent to the model structure
on quasi-categories presented in the first chapter. At the end of the disser-
tation there are two appendices, which are intended to give an overview of
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ii Chapter 0. Introduction

the notions from model category theory and 2-category theory needed in the
text.

Notations and conventions

Categories are assumed to be small throughout this text, unless otherwise
specified. We denote with Cat the (2-)category of small categories and
with CAT the (2-)“category” of categories1. Functor categories are usu-
ally denoted with DC, while the class (or the set) of morphisms between
two objects C,C ′ ∈ C is denoted with C(C,C ′). We write Ĉ for the cat-
egory of presheaves over the category C, and we use the classical notation
hC := Hom(−, C) (resp. hC := Hom(C,−)) for the contravariant (resp. co-
variant) hom-functor. In order to avoid any confusion, following [Car16], we
use C to denote a category, C• a simplicially enriched category and C a 2-
category. However, we drop this notation when the context makes clear the
nature of the category we are dealing with (for instance, in the appendices).

1There are some set-theoretical technicalities here. Nevertheless, we use Grothendieck
universes to avoid the issues involved in this definition.



Chapter 1

Overview of quasi-categories

In this chapter we discuss briefly the theory of simplicial sets, from which
we will find quasi-categories as a special case. Quasi-categories first appeared
in literature with the name weak Kan complexes, in an article written by
Boardman and Vogt. As we said in the Introduction, one should think
of quasi-categories as a model of (∞, 1)-categories, namely ∞-categories in
which every k-morphism is invertible for k > 1. In fact, an actual ∞-
category should have all sorts of higher morphisms, with unitality and as-
sociativity holding only up to higher coherences. These coherences give rise
to a possibly infinite number of diagrams, making the theory very difficult.

1.1 Simplicial sets

Let ∆ be the simplex category, whose objects are finite, non-empty,
totally ordered sets

[n] = (0 < · · · < n), n ≥ 0

and morphisms are order preserving functions [m] → [n], i.e. maps of un-
derlying sets f : {0, 1, . . . ,m} → {0, 1, . . . , n}, such that, for 0 ≤ i ≤ j ≤ m,
we have f(i) ≤ f(j). Note that we may interpret [n] as a category and
a morphism [m] → [n] as a functor. This defines a functor i : ∆ → Cat,
which embeds the simplex category as a full subcategory of Cat.

Definition 1.1.1. A simplicial set is a functor ∆op → Set. In general, if
C is a category then a simplicial object is just a functor ∆op → C.

The functor category with simplicial sets as objects and natural trans-
formations as morphisms (usually called simplicial morphisms) is denoted
by sSet. The category ∆ is endowed with two special sets of morphisms:

dk : [n− 1]→ [n] sk : [n+ 1]→ [n]

j 7−→

{
j, j < k

j + 1, j ≥ k
j 7−→

{
j, j ≤ k
j − 1, j > k

1



2 Chapter 1. Overview of quasi-categories

respectively the unique injective map which does not have k in its image
(coface map) and the unique surjective map which hits k twice (codegeneracy
map), for every 0 ≤ k ≤ n.

Remark 1.1.2. These maps satisfy the following relations (cosimplicial iden-
tities):

djdi = didj−1, i < j

sjsi = sisj+1, i ≤ j

sjdi =


id, i = j, j + 1

disj−1, i < j

di−1sj , i > j + 1

These identities may be verified directly. For example, the first one says that
djdi = didj−1 : [n−1]→ [n+1], so one checks that each side of this equation
is a monotone injection, and that both sides have the same image. Besides,
these sets of morphisms generate every morphism of ∆, in the sense of the
following lemma.

Lemma 1.1.3. In ∆, any arrow f : [m]→ [n] can be uniquely written as

f = di1 ◦ · · · ◦ dik ◦ sj1 ◦ · · · ◦ sjh

where h, k satisfy m − h + k = n, while the strings of subscripts i and j
satisfy

n > i1 > · · · > ik ≥ 0, 0 ≤ j1 < · · · < jh < m− 1

Proof. By induction on i ∈ [m], any monotone f is determined by its image,
a subset of [n], and by the set of those j ∈ [m] at which it does not increase,
i.e. f(j) = f(j + 1). Putting i1, . . . , ik, in reverse order, for those elements
of [n] not in the image and j1, . . . , jh, in order, for the elements j of [m]
where f does not increase, it follows that the functions on both sides of the
lemma are equal. In particular, the composite of any two dk or sk may be
put into the canonical form.

We write Xn = X([n]) for the set of n-simplices of the simplicial set
X and dk = X(dk), sk = X(sk) for the face and degeneracy maps, which
satisfy the following relations (called simplicial identities) by functoriality.

didj = dj−1di, i < j

sisj = sj+1si, i ≤ j

disj =


id, i = j, j + 1

sj−1di, i < j

sjdi−1, i > j + 1

From their definition and the lemma above, it follows that simplicial mor-
phisms are exactly the ones which commute with face and degeneracy maps.



1.1. Simplicial sets 3

Definition 1.1.4. A simplex x ∈ Xn is called degenerate if there exists
i ∈ [n] and y ∈ Xn−1 s.t. x = siy, otherwise it is called non-degenerate.

This definition is important because it allows us to work with only few
simplices, the non-degenerate ones, and then reconstruct the information on
the others by means of degeneracy maps. Because of this, in the following we
will always work with non-degenerate simplices, unless otherwise specified.

Definition 1.1.5. Let C be a category. The nerve of C is the simplicial
set NC whose n-simplices are

(NC)n = Cat(i[n],C)

for every n ≥ 0.

Namely, 0-simplices of the nerve are the objects of the category, 1-
simplices are morphisms, 2-simplices are pairs of composable morphisms
and, in general, elements of (NC)n are given by strings of composable mor-
phisms

C0
f1−→ C1

f2−→ C2 → · · ·
fn−→ Cn

that we can identify with n-tuples (f1, . . . , fn) of morphisms of C such that,
for every 0 < i < n, domfi+1 = codfi. Face maps di compose morphisms at
the ith object (or remove the first/last morphism if i = 0, n) and degeneracy
maps si insert an identity morphism at the ith object. If f : X → Y is a
morphism in C, regarded as an edge of its nerve, then the faces of f are
given by the codomain d0f = Y and the domain d1f = X, respectively.
If X ∈ C, regarded as a vertex of its nerve, then s0(X) = idX : X → X.

Finally, given a diagram C0
φ−→ C1

ψ−→ C2, the edge of NC corresponding to
ψ◦φ may be uniquely characterized by the fact that there exists a 2-simplex
σ ∈ (NC)2 with d2(σ) = φ, d0(σ) = ψ, and d1(σ) = ψ ◦ φ. Note that the
assignment C 7→ NC = Cat(i−,C) is obviously functorial.

Lemma 1.1.6. The nerve functor N : Cat→ sSet is fully faithful.

Proof. We claim that Cat(C,D)
ψ−→ sSet(NC, ND) is bijective for all C

and D, where we set ψ := NC,D (the function on hom-sets induced by the
nerve functor).

This map is clearly injective because a functor is determined by its be-
havior on objects and morphisms, which is precisely the behavior of the
induced simplicial morphism on 0- and 1-simplices of the nerve.

Let us prove now that ψ is surjective. This means that for every simpli-
cial morphism f : NC→ ND we have to find a functor F : C→ D such that
f = ψ(F ). For each n ≥ 0, f determines a map of sets (NC)n → (ND)n,
also denoted by f . When n = 0, this map sends each object C ∈ C to
an object of D, which we will denote by F (C). For every pair of objects
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C,C ′ ∈ C, the map f carries each morphism u : C → C ′ to a morphism f(u)
in the category D. Since f commutes with face maps, the morphism f(u)
has domain F (C) and codomain F (D), and can therefore be regarded as
an element of D(F (C), F (C ′)); we denote this element by F (u). It remains
to show that F is indeed a functor and that f = ψ(F ). In order to prove
the first claim, we note that the compatibility of f with degeneracy maps
implies that we have F (idC) = idF (C) for each C ∈ C. It will therefore
suffice to show that for every pair of composable morphisms u : C → C ′

and v : C ′ → C ′′ in the category C, we have F (v) ◦ F (u) = F (v ◦ u) as
elements of the set D(F (C), F (C ′′)). For this, we observe that the diagram
C

u−→ C ′
v−→ C ′′ can be identified with a 2-simplex σ of NC. Using the

equality di(f(σ)) = f(di(σ)) for i = 0, 2, we see that f(σ) corresponds to

the diagram F (C)
F (u)−−−→ F (C ′)

F (v)−−−→ F (C ′′) in D. We now compute

F (v) ◦ F (u) = d1(f(σ)) = f(d1(σ)) = F (v ◦ u).

This completes the proof of the first statement. To prove the second one, we
must show that f(τ) = ψ(F )(τ) for each n-simplex τ of NC. This follows
by construction in the case n ≤ 1, and follows in general since an n-simplex
of ND is determined by its 1-dimensional faces.

Hence we can regard the category of small categories as a full subcategory
of the category of simplicial sets. Actually, it is possible to go backwards
and define a functor from simplicial sets to small categories, so that this
functor and N form an adjoint pair.

Definition 1.1.7. Let C be a category and P : Cop → Set be a presheaf
over C. The category of elements of P , denoted by Elts(P ) is the category
defined as follows:

• objects are pairs (C, s), where C ∈ C and s ∈ P (C),

• morphisms (C, s)→ (C ′, t) are arrows f : C → C ′ such that Pf(t) = s.

Theorem 1.1.8. Every presheaf is a colimit of representable presheaves,
indexed on its category of elements.

Proof. See [Mac71, Theorem III.7.1] for a reference on the covariant case.
The same proof holds for presheaves, by duality.

Proposition 1.1.9. Let F : C→ D be a functor from a small category to
a locally small category which has small colimits. Then the functor

D→ Ĉ

D 7→ D(F (−), D)

has a left adjoint G : Ĉ→ D.
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Proof. Let Elts(X) denote the category of elements of a presheaf X ∈ Ĉ.
Consider the functor

Elts(X)→ D

(C, s) 7→ FC

and define G(X) = colim
(C,s)∈Elts(X)

FC. So we have the following chain of

natural isomorphisms

D(G(X), D) = D

(
colim

(C,s)∈Elts(X)
FC,D

)
∼= lim

(C,s)∈Elts(X)
D(FC,D)

(Y) ∼= lim
(C,s)∈Elts(X)

Ĉ(hC ,D(F (−), D))

∼= Ĉ

(
colim

(C,s)∈Elts(X)
hC ,D(F (−), D)

)
∼= Ĉ(X,D(F (−), D))

and the last isomorphism holds thanks to Theorem 1.1.8. This proves the
claim.

Corollary 1.1.10. The nerve functor has a left adjoint τ1, called the fun-
damental category functor.

Proof. It suffices to apply Proposition 1.1.9 to the inclusion functor i : ∆→
Cat, noticing that ∆̂ = sSet and Cat(i(−),C) = NC.

Remark 1.1.11. The category of elements of a simplicial set X can be also
found in literature under the name category of simplices (∆ ↓ X), since
we can think of it as the category with objects the simplicial morphisms
σ : ∆n → X and with morphisms the commutative triangles

∆n

X

∆m

θ

σ

τ

Remark 1.1.12. More explicitly, given X ∈ sSet we can describe τ1(X) as
the category whose objects are the vertices of X (i.e. Ob(τ1(X)) = X0) and
such that the morphisms are freely generated by X1, modulo the relations
given by X2. Basically, to construct τ1(X) we take the free graph on X0

generated by the arrows in X1 and define the composition in the following
way. Given f, g, h ∈ X1 we put h = g ◦ f if there exists σ ∈ X2 such that
d2(σ) = f , d0(σ) = g, and d1(σ) = h.
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y

x z

g

h

f

It is straightforward to check that the composition defined above is asso-
ciative since it already is at the level of the free graph and that identity
arrows behave like identities with respect to this composition (just take the
degenerate 2-simplices in the image of the degeneracy maps). Thus τ1(X) is
actually a category. It is not difficult to verify that this construction gives
a left adjoint to the nerve functor, hence it agrees with Corollary 1.1.10.

Definition 1.1.13. The standard n-simplex ∆n := ∆(−, [n]) is the image
of [n] under the Yoneda embedding y : ∆ ↪→ Set∆op

= sSet.

∆n contains as subcomplexes the boundary ∂∆n, namely the simplicial
subset generated by non-degenerate simplices in degree less than n and the
kth horn Λnk , obtained from the boundary by removing the k-th face, for all
0 ≤ k ≤ n. We say that a horn Λnk is inner if 0 < k < n, otherwise we call
it outer horn.

Proposition 1.1.14. We can express boundary and horns as suitable col-
imits. In particular it holds that

∂∆n ∼= coeq

 ∐
0≤i<j≤n

∆n−2 ⇒
n∐
i=0

∆n−1


and

Λnk
∼= coeq

 ∐
0≤i<j≤n

∆n−2 ⇒
∐
i 6=k

∆n−1


Proof. By the first cosimplicial identity, the diagram

[n− 2]

di

��

y
dj−1

// [n− 1]

di

��
[n− 1]

dj
// [n]

commutes for each i < j. Moreover it is a pullback in ∆, since the to-
tally ordered set {0, . . . , î, . . . , ĵ, . . . , n} is the intersection of the subsets
{0, . . . , î, . . . , n} and {0, . . . , ĵ, . . . , n} of {0, . . . , n}, and this poset is isomor-
phic to [n − 2]. Since the bifunctor ∆(−,−) is continuous in the covariant
component, the previous pullback induces another pullback diagram

∆n−2

��

y
// ∆n−1

��
∆n−1 // ∆n
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The claim is proved once we consider maps induced on the coproducts. An
analogous proof holds for the horns.

Remark 1.1.15. The category of simplicial sets is a presheaf category, and
so in particular a Grothendieck topos. In particular, it is cartesian closed.
Indeed, given two simplicial sets X and Y we can construct their product
X ×Y componentwise. The exponential (or internal hom) is defined thanks
to the Yoneda Lemma and the product-hom adjunction. Its n-simplices are

Y X
n
∼= sSet(∆n, Y X) ∼= sSet(∆n ×X,Y ),

and the action on morphisms is the obvious one. This is known as the
simplicial mapping space (for details see [GJ99, §1.5]).

Remark 1.1.16. Cat is cartesian closed, with the product given by the usual
product of categories and the exponentials being functor categories. The
adjunction between products and exponentials in Cat is the classic tensor-
hom adjunction adjusted for small categories.

Proposition 1.1.17. The functor τ1 : sSet → Cat preserves finite prod-
ucts.

Proof. Because τ1 is a left adjoint and sSet and Cat are cartesian closed, the
bifunctors (τ1−)× (τ1−) and τ1(−×−) preserve colimits in both variables.
Since every presheaf is colimit of representables, it suffices to prove the claim
for standard n-simplexes. We know that ∆n = ∆(−, [n]) ∼= Cat(i−, i[n]) =
N(i[n]), since i is fully faithful. Then we have

(τ1∆n)× (τ1∆m) ∼= (τ1N(i[n]))× (τ1N(i[m]))
∼= i[n]× i[m]
∼= τ1N(i[n]× i[m])
∼= τ1(N(i[n])×N(i[m]))
∼= τ1(∆n ×∆m).

where the second isomorphism holds because N is fully faithful (hence the
counit is a natural isomorphism) and the fourth holds because N commutes
with products since it is a right adjoint.

For any pair of simplicial sets (X,Y ), we put τ1(X,Y ) := τ1(Y X). Thus,
by Proposition 1.1.17, if we apply the functor τ1 to the composition map
ZY ×Y X → ZX we obtain a composition law τ1(Y,Z)×τ1(X,Y )→ τ1(X,Z)
for a 2-category sSetτ1 , where we put sSetτ1(X,Y ) := τ1(X,Y ). This leads
to the following definition.

Definition 1.1.18. We define sSetτ1 to be the 2-category with

• 0-cells: simplicial sets X,Y, . . .
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• 1-cells: simplicial morphisms f : X → Y

• 2-cells: f ⇒ g : X → Y morphisms in the category τ1(X,Y )

Definition 1.1.19. A simplicial morphism f : X → Y is a categorical equiv-
alence if it is an equivalence in the 2-category sSetτ1 .

The definition above is the one given by Joyal in [Joy08a]. Lurie (in his
book [Lur17]) calls categorical equivalences what we will call weak categorical
equivalences, following Joyal’s notes.

Definition 1.1.20. A simplicial set X is a Kan complex if it satisfies the
Kan condition: every horn Λnk → X, for 0 ≤ k ≤ n, has a filler ∆n → X,
i.e.

Λnk X

∆n

∀

∃

commutes.

Example 1.1.21. Given a topological space Y , we define the following
functor

Top→ sSet

Y 7→ Sing(Y )

where

Sing(Y ) : ∆op → Set

[n] 7→ Top(|∆n|, Y )

and

|∆n| =

{
(x0, . . . , xn) ∈ Rn+1 : 0 ≤ xi ≤ 1,

∑
i

xi = 1

}
is the geometric n-simplex. For each morphism f : [m] → [n], we define a
continuous map f∗ : |∆m| → |∆n|, (t0, t1, . . . , tm) 7→ (s0, s1, . . . , sn) with

si =

{
0, if f−1(i) = ∅∑

j∈f−1(i) tj , else.

Sing(Y ) is called the singular set of Y .

Remark 1.1.22. Note that we can define a functor ∆→ Top, [n] 7→ |∆n|, on
which we can apply Proposition 1.1.9, getting a left adjoint to the singular
set. This is called the geometric realization and can be expressed as the
colimit

|X| ∼=
∣∣∣colim
∆n→X

∆n
∣∣∣ ∼= colim

∆n→X
|∆n|

using that left adjoints commute with colimits.
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Proposition 1.1.23. The singular set of a topological space X is a Kan
complex.

Proof. For every 0 ≤ k ≤ n the extension problem

Λnk Sing(X)

∆n

f

is equivalent to the adjoint extension problem

|Λnk | X

|∆n|

i

f̃

r

which can be solved because horns are retracts of the geometric n-simplex.
This means that we get a continuous map r : |∆n| → |Λnk | with r ◦ i = id,
hence we can take f̃ ◦ r to obtain an extension.

Proposition 1.1.24. A simplicial set X is isomorphic to the nerve of a
category if and only if every inner horn has a unique filler.

Proof. First of all, let us take X ∼= NC, C ∈ Cat, and prove that every
inner horn has a unique filler. Let f0 : Λnk → X be a simplicial morphism,
where 0 < k < n. We wish to show that f0 can be extended uniquely to a
map f : ∆n → X, that is (by Yoneda) a n-simplex of NC. For 0 ≤ i ≤ n, let
Ci ∈ C denote the image under f0 of the ith vertex of Λnk . We first consider
the case where n ≥ 3. In this case, Λnk contains every edge of ∆n. For
0 ≤ i ≤ j ≤ n, let fi,j : Ci → Cj denote the 1-simplex of NC obtained by
evaluating f0 on the edge of ∆n corresponding to the pair (i, j). We claim
that the construction

[n]→ C

i 7→ Ci

(i ≤ j) 7→ (Ci
fi,j−−→ Cj)

determines a functor [n]→ C, which we can then identify with an n-simplex
of NC having the desired properties. It is easy to see that fi,i = idCi for
each 0 ≤ i ≤ n, so it will suffice to show that fj,l ◦ fi,j = fi,l for every triple
0 ≤ i ≤ j ≤ l ≤ n. The triple (i, j, l) determines a 2-simplex τ of ∆n.

If τ is contained in Λnk , then τ ′ = f0(τ) is a 2-simplex of NC satisfying
d0(τ ′) = fj,l, d1(τ ′) = fi,l and d2(τ ′) = fi,j so that

fi,l = d1(τ ′) = d0(τ ′) ◦ d2(τ ′) = fj,l ◦ fi,j
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It will therefore suffice to treat the case where the simplex τ does not belong
to Λnk . In this case, our assumption that n ≥ 3 guarantees that we must
have {i, j, l} = [n]\{k}. It follows that n = 3, so that either k = 1 or
k = 2. We will treat the case k = 1 (the case k = 2 follows by a similar
argument). Note that Λ3

1 contains all of the non-degenerate 2-simplices of
∆3 other than τ ; applying the map f0, we obtain 2-simplices of NC which
witness the identities

f0,3 = f1,3 ◦ f0,1, f1,3 = f2,3 ◦ f1,2, f0,2 = f1,2 ◦ f0,1

We now compute

f0,3 = f1,3 ◦ f0,1 = (f2,3 ◦ f1,2) ◦ f0,1 = f2,3 ◦ (f1,2 ◦ f0,1) = f2,3 ◦ f0,2

so that fj,l ◦fi,j = fi,l, as desired. It remains to treat the case n = 2, so that
we must also have k = 1. In this situation, the map f0 : Λnk → NC deter-
mines a pair of composable morphisms f0,1 : C0 → C1 and f1,2 : C1 → C2.
This data extends uniquely to a 2-simplex σ of NC satisfying d1(σ) =
f1,2 ◦ f0,1.

For the converse implication, suppose that the simplicial set X satisfies the
condition on fillers. We will find a small category C and an isomorphism of
simplicial sets φ : X → NC. Since the nerve functor is fully faithful then
the category C is uniquely determined (up to isomorphism). We construct
the category C, as usual, in the following way

(i) Ob(C) = X0,

(ii) C(C,C ′) = {e ∈ X1|d0(e) = C ′ and d1(e) = C} for every C,C ′ ∈ C,

(iii) idC = s0(C) is the identity on the object C,

(iv) if f and g are a pair of composable morphisms in C, then f and g
together determine a map Λ2

1 → X. By the hypothesis, this map can
be extended uniquely to a 2-simplex σ : ∆2 → X, satisfying d2(σ) = f
and d0(σ) = g. We define the composition g ◦ f to be the edge d1(σ).

We claim that C is a category, so let us verify the axioms:

(a) For every C ∈ C, the identity idC is a unit with respect to composition.
In fact for every morphism f : C → C ′, we construct two degenerate
2-simplices σ = s1(f) and τ = s0(f) s.t. d0(σ) = d0s1(f) = s0d0(f) =
s0(C ′) = idC′ , d1(σ) = d1s1(f) = f = d2s1(f) = d2(σ) and (with
analogous calculations based on simplicial identities) d0(τ) = d1(τ) =
f and d2(τ) = idC . Hence

idC′ ◦ f = d0(σ) ◦ d2(σ) = d1(σ) = f = d1(τ) = d0(τ) ◦ d2(τ) = f ◦ idC
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(b) Composition is associative. That is, for every sequence of composable
morphisms

C0
f−→ C1

g−→ C2
h−→ C3,

we have h ◦ (g ◦ f) = (h ◦ g) ◦ f . To prove this, one has to apply
repeatedly the hypothesis on existence and unicity of fillers (for inner
horns). First of all, let us choose 2-simplices σ012 and σ123 as below:

C2

C0 C1
f

g◦f g

C3

C1 C2
g

h◦g h

Now choose a 2-simplex σ023 corresponding to a diagram

C3

C0 C2
g◦f

h◦(g◦f) h

These three 2-simplices together define a map Λ3
2 → X, that we can

extend to a 3-simplex ∆3 → X, as in the diagram below

C3

C2

C0 C1

h

f

g◦f

h◦(g◦f)=(h◦g)◦f

g

h◦g

with the 2-simplex σ013 that witnesses the associativity axiom h ◦ (g ◦
f) = (h ◦ g) ◦ f .

It follows that C is a well-defined category. Note that every n-simplex
σ : ∆n → X determines a functor [n]→ C, given on objects by the values of
σ on the vertices of ∆n and on morphisms by the values of σ on the edges
of ∆n. This construction determines a map of simplicial sets φ : X → NC,
which is clearly bijective on simplices of dimension ≤ 1. To complete the
proof, we will show by induction on n ≥ 0, that φ induces a bijection
sSet(∆n, X) → sSet(∆n, NC). For n = 0 and n = 1, as we said, this
is obvious from the construction. Assume therefore that n ≥ 2 and choose
an integer k such that 0 < k < n. We have a commutative diagram

sSet(∆n, X) sSet(∆n, NC)

sSet(Λnk , X) sSet(Λnk , NC)
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Since X and NC both satisfy the extension condition, the vertical maps are
bijective and the lower horizontal map is bijective by virtue of our induc-
tive hypothesis, knowing that inner horns are particular colimits of lower
dimensional standard simplices and having in mind that contravariant hom
functors send colimits in limits. It follows that the upper horizontal map is
also bijective, as desired.

Proposition 1.1.25. A simplicial set X is isomorphic to the nerve of a
groupoid if and only if every horn has a unique filler.

Proof. Let us prove the “if” first. By the previous proposition, if every
horn has a unique filler then, in particular this holds true for inner ones,
so that X ∼= NC, for some C ∈ Cat. It remains to show that C is indeed
a groupoid. Let f : C → C ′ be a 1-simplex in NC. Using the surjectivity
of the map sSet(∆2, NC) → sSet(Λ2

2, NC), we see that there exists a 2-
simplex σ of NC satisfying d0(σ) = f and d1(σ) = idC′ . Setting g = d2(σ),
we conclude that f ◦ g = idC′ : that is, g is a left inverse to f . Similarly,
the surjectivity of the map sSet(∆2, NC) → sSet(Λ2

0, NC) allows us to
construct a map h : C ′ → C satisfying h ◦ f = idC . The calculation

g = idC ◦ g = (h ◦ f) ◦ g = h ◦ (f ◦ g) = h ◦ idC′ = h

shows that g = h is an inverse of f , so that f is invertible as desired.
Now suppose that C is a groupoid. We wish to show that, for 0 ≤ k ≤ n,
every map σ0 : Λnk → NC can be extended to an n-simplex σ : ∆n → NC.
For inner horns, this follows from Proposition 1.1.24. We will treat the case
where k = 0; the case k = n follows by similar reasoning. We consider
several cases:

• In the case n = 0, we have Λn0 = ∆n, so we can take σ = σ0.

• In the case n = 1, the map σ0 : Λn0 → NC can be identified with
an object C ∈ C. In this case, we can take σ to be an edge of NC
corresponding to any morphism with codomain C (e.g. idC).

• In the case n = 2, we can identify σ0 with a pair of morphisms in C
having the same domain, which we can depict as a diagram

D

C E
g

f

Our assumption that C is a groupoid guarantees that we can ex-
tend this diagram to a 2-simplex of C, by means of the morphism
g ◦ f−1 : D → E.
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• In the case n ≥ 3, the map σ0 determines a collection of objects
{Ci}0≤i≤n and morphisms fi,j : Ci → Cj for i ≤ j (as in the proof of
Proposition 1.1.24). We wish to show that these morphisms determine
a functor [n] → C (which we can then identify with an n-simplex σ
of NC satisfying σ|Λn0 = σ0). For this, we must verify the identity
fj,l ◦ fi,j = fi,l for 0 ≤ i ≤ j ≤ l ≤ n. Note that this identity is
satisfied whenever the triple (i ≤ j ≤ l) determines a 2-simplex of
∆n belonging to the horn Λn0 . This is automatic unless n = 3 and
(i, j, l) = (1, 2, 3). To handle this exceptional case, we compute

(f2,3 ◦ f1,2) ◦ f0,1 = f2,3 ◦ (f1,2 ◦ f0,1)

= f2,3 ◦ f0,2

= f0,3

= f1,3 ◦ f0,1.

Since C is a groupoid, composing with f−1
0,1 on the right yields the

desired identity f2,3 ◦ f1,2 = f1,3.

Remark 1.1.26. In particular, a category is a groupoid if and only if its nerve
is a Kan complex.

Remark 1.1.27. Uniqueness of the filler for nerves of categories or groupoids
reflects the definition of a category, in which the composition of two mor-
phisms is uniquely defined.

1.2 Quasi-categories

We would like to have a notion generalizing both Kan complexes and
(nerve of) categories. In order to do that we have to drop the unicity of the
filler and the extension condition for outer horns.

Definition 1.2.1. A simplicial set C is a quasi-category or, with a little
abuse of notation, an ∞-category if every inner horn has a filler.

Definition 1.2.2. Let C,D be two quasi-categories. A functor F : C → D
is just a map of simplicial sets.

Definition 1.2.3. If C and D are two quasi-categories and F,G : C → D
are two functors, a natural transformation from F to G is a morphism
H : C ×∆1 → D such that H|C×{0} = F and H|C×{1} = G.

Mimicking what we have done for nerves of small categories, if we have
a quasi-category C we say that an element of C0 is an object of C and that
an element of C1 is a morphism. Face maps s = d1, t = d0 : C1 ⇒ C0 are
the source and target map. In analogy with ordinary category theory we
write f : x → y if s(f) = x and t(f) = y. Hence we can define the set of
morphisms from x to y as the pullback
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HomC(x, y) //

��

y
C1

(s,t)

��
∗

(x,y)
// C0 × C0

The identity map is id = s0 : C0 → C1, and in fact from the simplicial iden-
tities d0s0 = d1s0 = idC0 it follows that idx = s0x : x → x. Compositions
of morphisms are defined thanks to the Kan condition for inner horns, but
the choice of a composition is not unique in general. This issue is fixed by
asking that the space of all such choices (which is a Kan complex thanks to
Proposition 1.2.2.3 of [Lur17]) has to be contractible, namely homotopic (in
the simplicial sense of Definition 1.2.9) to the point ∆0.

As one would expect, quasi-categories are a meaningful tool for encoding
higher dimensional informations, e.g. we can define homotopies between
morphisms.

Definition 1.2.4. Two edges f, g : x → y in a quasi-category C are said
to be homotopic (f ∼ g) if there exists a 2-simplex σ : ∆2 → C such that
d2(σ) = idx, d0(σ) = g and d1(σ) = f .

x

x y

gidx

f

There is an analogous definition of homotopy with the identity on the
right side.

Proposition 1.2.5. Suppose that there exist 2-simplices as in the following
pictures.

x

x y

fidx

g

y

x y

idyf

g

y

x y

idyg

f

Each of these 2-simplices defines a relation on the edges appearing in the
boundary, but all these relations coincide with the homotopy relation.

Proof. See [Cis18, Lemma 1.6.4].
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Proposition 1.2.6. The homotopy relation is an equivalence relation on
hom-sets.

Proof. Let φ : ∆1 → C be an edge. Then s1(φ) is a homotopy from φ to itself.
Thus homotopy is a reflexive relation. Suppose next that φ, φ′, φ′′ : C → C ′

are edges with the same source and target. Let σ be a homotopy from φ to
φ′, and σ′ a homotopy from φ to φ′′. Let σ′′ : ∆2 → C denote the constant
map at the vertex C ′. These three maps determine a simplicial morphism
Λ3

1 → C. Since C is a quasi-category, there exists a 3-simplex τ : ∆3 → C
extending the map defined before. It is easy to see that d1(τ) is a homotopy
from φ′ to φ′′. If we take φ = φ′′ we recover the symmetry of the homotopy
relation. By a similar argument it follows that this relation is also transitive.
Then it is an equivalence relation.

The homotopy class of a morphism f : x→ y will be denoted [f ]. Hence
we can define the homotopy category Ho(C) of a quasi-category C by passing
to homotopy classes of morphisms.

Proposition 1.2.7. Let C be a quasi-category. If we define

[g] ◦ [f ] := [g ◦ f ] and idx := [idx] = [s0x]

for a couple of morphisms f, g and a object x in C, then Ho(C) is a category.
Moreover, there exists an isomorphism of categories τ1(C) ∼= Ho(C).

Proof. The proof is a straightforward verification (see for example [Cis18,
Theorem 1.6.6]).

Definition 1.2.8. A morphism f : x → y in a quasi-category C is an
equivalence if [f ] : x→ y is an isomorphism in Ho(C).

We can also define homotopy between maps of simplicial sets.

Definition 1.2.9. Let f, g : X → Y be simplicial maps. A simplicial homo-
topy H : f ' g is a map making the following diagram

X ×∆0 ∼= X

X ×∆1 Y

X ×∆0 ∼= X

f
1×d1

H

g1×d0

commute.

In particular we are interested in relative homotopy, a fundamental re-
quirement for the definition of simplicial homotopy groups.
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Definition 1.2.10. Let i : L ⊂ X be an inclusion such that the restrictions
of f and g to L coincide. We say that there is a simplicial homotopy from
f to g relative to L (notation: f

'−→ g (rel L)) if the diagram above exists
and the following

L×∆1 L

X ×∆1 Y

prL

i×1 f |L=g|L

H

is commutative as well.

Homotopy relation between simplicial maps is not an equivalence relation
in general, but it is in a lot of interesting cases. Suppose we have chosen a
model structure on simplicial sets (see next section for details).

Proposition 1.2.11. If Y is fibrant, then homotopy of maps X → Y and
X → Y (rel L) are equivalence relations.

Proof. See [GJ99, Corollary 6.2].

Definition 1.2.12. Let X be a fibrant simplicial set and v ∈ X0 a vertex
of X. We define πn(X, v), n ≥ 0, as the set of homotopy classes of maps
α : ∆n → X (rel ∂∆n) for α fitting into the diagram

∂∆n ∆0

∆n X

v

α

In particular, π0(X) is the set of homotopy classes of vertices of X, that
is the set of path components of X.

Proposition 1.2.13. With these definitions, πn(X, v) is a group for n ≥ 1,
which is abelian if n ≥ 2.

Proof. See [GJ99, Theorem 7.2].

1.3 Model structure for quasi-categories

Definition 1.3.1. A map of simplicial sets f : X → Y is a Kan fibration
if it has the right lifting property (from now on RLP) with respect to the
inclusion Λnk ↪→ ∆n, for every n > 0 and k ∈ [n].

Λnk X

∆n Y

f
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A map of simplicial sets is called inner Kan fibration if it has the RLP with
respect to the inclusion of inner horns.

Definition 1.3.2. A map of simplicial sets is a trivial Kan fibration if it
has the RLP with respect to the inclusions ∂∆n ↪→ ∆n for every n ≥ 0.

∂∆n X

∆n Y

f

In the following, we introduce an important class of morphisms, very
useful to determine if a simplicial morphism is a fibration.

Definition 1.3.3. A morphism i : A→ B which has the left lifting property
(LLP) with respect to every Kan fibration is said to be anodyne (or even
anodyne extension). It is called inner anodyne if it has LLP with respect to
inner ones.

There exists another equivalent manner to define anodyne morphisms,
but first we need the following definition.

Definition 1.3.4. A class of morphisms in a cocomplete category is called
saturated if it closed under pushouts, retracts (in the arrow category) and
transfinite compositions.

It is trivial to show that the class Mp of all morphisms which have the
LLP with respect to a fixed simplicial map p : X → Y is saturated. If we
have a class of monomorphisms B, we can define its saturation MB or the
saturated class generated by B as the intersection of all saturated classes M
containing B. This leads to an alternative definition of anodyne extensions.

Definition 1.3.5. The class of anodyne extensions is the saturated class
generated by the set of all inclusions Λnk ⊂ ∆n, 0 ≤ k ≤ n.

The equivalence between the two definitions is straightforward. The
importance of anodyne extensions lies on the following proposition.

Proposition 1.3.6. A map of simplicial sets is a fibration if it has the right
lifting property with respect to all anodyne extensions.

Proof. See [GJ99, Corollary 4.3]

Remark 1.3.7. This specializes to the case of inner Kan fibrations. In this
case one proves that a simplicial set X is a quasi-category if and only if the
projection X → ∆0 has the RLP with respect to every inner anodyne map
of simplicial sets.
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Proposition 1.3.8. A simplicial set X is a quasi-category if and only if the
inclusion of simplicial sets Λ2

1 ↪→ ∆2 induces a trivial Kan fibration

p : X∆2 → XΛ2
1

Proof. We know that p is a trivial Kan fibration if and only if every lifting
problem

∂∆m X∆2

∆m XΛ2
1

p

admits a solution. Using the fact that sSet is cartesian closed it is easy to
show that the previous lifting problem is equivalent to

(∆m × Λ2
1)
∐
∂∆m×Λ2

1
(∂∆m ×∆2) X

∆m ×∆2 ∆0

which is obtained by the universal property of the pushout. Let T be the col-
lection of all morphisms of simplicial sets which have the left lifting property
with respect to the projection X → ∆0. Then p is a trivial Kan fibration if
and only if T contains each of the inclusion maps

(∆m × Λ2
1)

∐
∂∆m×Λ2

1

(∂∆m ×∆2) ⊆ ∆m ×∆2

Since T is saturated by a previous observation, this is equivalent to the re-
quirement that T contains all inner anodyne morphisms (see [Lur17, Propo-
sition 2.3.2.1]), which is in turn equivalent to the requirement that X is an
quasi-category (by the Remark 1.3.7).

Classically one gives a model structure on the category of small cate-
gories in a way such that weak equivalences are categorical equivalences.
This allows us to recover information also on equivalence of simplicial sets,
using a suitable Quillen equivalence between the two model structures. On
simplicial sets there are two “natural” model structures, one having Kan
complexes as fibrant objects and the other whose fibrant object are quasi-
categories.

Definition 1.3.9. Let C and D be small categories and F : C → D a
functor between them. We call F an isofibration if every isomorphism
u : FC → D in D can be lifted to an isomorphism v : C → C ′ in C with
F (v) = u.



1.3. Model structure for quasi-categories 19

With this definition in mind we can construct the following model struc-
ture, which is actually the unique model structure on Cat such that the
weak equivalences are the categorical equivalences (see [SP12]).

Proposition 1.3.10. The category Cat of small categories and functors
between them admits a model structure (W, Cof, Fib), where:

• W are equivalences of categories,

• Cof are functors injective on the sets of objects,

• Fib are isofibrations.

This is called the folk (or canonical) model structure.

Proof. See [Bal12, Proposition 5.4]

Proposition 1.3.11. sSet admits a model structure (W, Cof, Fib) in which

• W are weak homotopy equivalences, i.e. morphisms whose geometric
realization is a weak homotopy equivalence of topological spaces1,

• Cof are monomorphisms, i.e. morphisms of simplicial sets f : X → Y
such that fn : Xn → Yn is an injection of sets for all n ∈ N,

• Fib are Kan fibrations.

This is called the Quillen model structure.

Proof. See [GJ99, Theorem 11.3]

In this model structure fibrant objects are Kan complexes. The following
result explains the reason why we called “trivial Kan fibrations” exactly like
that.

Proposition 1.3.12. Trivial Kan fibrations are trivial fibrations in the
Quillen model structure.

Proof. See [GJ99, Theorem 11.2].

In Remark A.2.10 we say that sSet admits left Bousfield localization.
Notably, we will see that Quillen model structure is the localization of an-
other model structure in which fibrant objects are quasi-categories, known
as the Joyal model structure. Let us first define τ0 : sSet → Set to be the
functor that sends a simplicial set X to the set of isomorphism classes of

1Namely, a morphism that induces isomorphisms between the homotopy groups of the
two topological spaces.
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objects in the category τ1(X). We know that τ1 preserves finite products
(Proposition 1.1.17), and moreover τ0 is easily shown to be the composite

sSet
τ1−→ Cat

J−→ Gpd ↪→ Cat
N−→ sSet

π0−→ Set

where π0 takes a simplicial set X to the set of path components of vertices
and J sends a category to its groupoid of isomorphisms. Since π0 clearly
respects products and all the other functors are right adjoints, we deduce
that τ0 preserves products too. Then, with a construction similar to the
one presented in Definition 1.1.18, we can define the category sSetτ0 whose
objects are simplicial sets and such that, for any two objects A,B there is
an hom-set τ0(A,B) := τ0(BA).

Definition 1.3.13. A weak categorical equivalence is a morphism of simpli-
cial sets u : A→ B such that the map

τ0(u,X) : τ0(B,X)→ τ0(A,X)

is bijective for every quasi-category X.

Proposition 1.3.14. There is a model structure on sSet for which

• W are weak categorical equivalences,

• Cof are monomorphisms,

• fibrant objects are quasi-categories.

This is called the Joyal model structure.

Proof. See [Ste18, Theorem 6.6].

Remark 1.3.15. Both in the Quillen and in the Joyal model structure every
simplicial set is cofibrant.

What follows is a particular case of the so-called Leibniz construction
(see [Rie14, Construction 11.1.7]).

Definition 1.3.16. Let A be a category enriched over a monoidal category
V. Assume that V has pullbacks and consider two morphisms j : A → A′

and f : B → B′ of A. We define the pullback-hom Hom(j, f) to be the
morphism obtained by the UP of the following pullback in V

Hom(A′, B)

P Hom(A,B)

Hom(A′, B′) Hom(A,B′)

j∗

f∗

Hom(j,f)

f∗

j∗
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In this context A is just sSet enriched over itself, since it is monoidal
with respect to the product of simplicial sets (it is cartesian closed).

Proposition 1.3.17. The pullback-hom of a cofibration with an inner fi-
bration is an inner fibration.

Proof. See [Rie14, Remark 15.2.2]

As a corollary of this technical result, we are able to prove that quasi-
categories form a cartesian closed category.

Corollary 1.3.18. qCat, the full subcategory of sSet spanned by quasi-
categories, is cartesian closed.

Proof. We have to prove that if A is a simplicial set and X is a quasi-
category, then XA is a quasi-category. This is true because the pullback-hom
of ∅ → A and X → ∆0 ∼= ∗ is XA → ∗.

Since every Kan complex is a quasi-category, it follows that Joyal model
structure has more fibrant objects. Furthermore both model structures have
the same cofibrations. It follows that Joyal model structure has a smaller
class of weak equivalences. This means that the Quillen model structure is
a left Bousfield localization of the Joyal model structure. In particular, a
weak categorical equivalence is necessarily a weak homotopy equivalence.

Lemma 1.3.19. The nerve and its left adjoint define a Quillen adjunction
τ1 : sSet� Cat : N between the Joyal model structure on sSet and the folk
model structure on Cat.

Proof. See [Rie14, Lemma 15.3.8]

Corollary 1.3.20. If f : X → Y is a categorical equivalence, then the
induced functor τ1(f) : τ1(X) → τ1(Y ) is an equivalence of categories. If
F : C → D is an equivalence of categories, then NF : NC → ND is a
categorical equivalence.

Proof. This follows from Lemma 1.3.19 and Ken Brown’s lemma (Proposi-
tion A.1.6).



Chapter 2

Prederivators

The first appearence of the notion of derivator (i.e., roughly speaking,
“bicomplete prederivator”) dates back to the well-known 1983 manuscript
Pursuing Stacks by Alexander Grothendieck. Derivator theory was later de-
veloped by him in the 1991 manuscript Les Dérivateurs and by several other
people since then. In the following we won’t need to work with derivators,
but instead it will suffice to use prederivators that satisfy only part of the
axioms defining derivators (see [Gro12, §1]).

2.1 Preliminary results

In the following, for the sake of simplicity, we will confuse [n] with its

image through the inclusion functor ∆
i
↪−→ Cat. From the context will be

clear if we consider [n] as a set or as a category.

Definition 2.1.1. A prederivator is a strict 2-functor D : Catop → CAT.

For each functor J
u−→ K between two small categories we use u∗ to

denote its image through D and we call D([0]) the underlying category of D.
The very first example of prederivator comes from ordinary category theory.

Example 2.1.2. Let C be a category, then we can consider the following
prederivator

yC : Catop → CAT

J 7→ CJ

called the prederivator represented by C.

Example 2.1.3. In Corollary 1.3.18 we showed that the simplicial mapping
space CK• := sSet(∆•×K, C) is a quasi-category whenever C is so. Hence we
can define the prederivator HoC associated to the quasi-category C as follows

HoC : Catop → CAT

J 7→ Ho(CN(J))

22
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where N(J) is the nerve of J and the functoriality of this construction is
ensured by [Joy08b, Theorem 5.14].

Example 2.1.4. Let D be a prederivator and let M be a fixed category. Then

DM : Catop → CAT

J 7→ DM (J) = D(M × J)

is again a prederivator, called the shifted prederivator.

Remark 2.1.5. Let K ∈ Cat, k ∈ K and consider the (unique) functor
k : [0]→ K picking k. After we apply the prederivator D to it we obtain the
evaluation functor

k∗ : D(K)→ D([0])

X 7→ Xk

X
f−→ Y 7→ Xk

fk−→ Yk.

Furthermore, a natural transformation of the form

[0] K

j

k

α

is just a map α : j → k (where j and k are the objects of K choosen by the
morphisms with their same name), which in turn determines a morphism
Xα := α∗X : Xi → Xj in the underlying category of D.

Definition 2.1.6. We define the underlying diagram functor of D at K as
the following functor

diaK : D(K)→ D([0])K

X 7→ diaKX

where

diaKX : K → D([0])

j 7→ Xj

j
α−→ k 7→ Xj

Xα−−→ Xk

Remark 2.1.7. Given another category J and j ∈ J , we can consider the
corresponding functor

j × idK : K ∼= [0]×K −→ J ×K

giving a partial underlying diagram functor

diaJ,K : D(J ×K) −→ D(K)J .
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This definition is basically the same as the previous one, with the only dif-
ference being that this time we use the shifted prederivator. We require that
prederivators satisfy the following axioms, which are the first two axioms of
derivators and a strictification of the axiom defining strong derivators (see
[Gro12]).

(Der 1) for every set of small categories {Ji}i∈I the canonical map

D

(∐
i∈I

Ji

)
→
∏
i∈I

D(Ji)

is an equivalence of categories,

(Der 2) f : X → Y is an isomorphism in D(J) if and only if fj : Xj → Yj is an
isomorphism in D([0]) ∀j ∈ J , that is

diaJ : D(J)→ D([0])J

is conservative,

(Der 5’) the partial underlying diagram functor

dia[1],J : D([1]× J) −→ D(J)[1]

is full and surjective on objects for each category J .

Proposition 2.1.8. HoC satisfies the list of axioms introduced in the Re-
mark 2.1.7.

Proof. The first axiom is satisfied since sSet(N(−), C) sends coproducts in
products, which are preserved by Ho. The surjectivity of dia[1],J follows from
the definition of the homotopy category and the other axioms are proven in
Lemma 1.3 and Lemma 1.6 of [Car16].

2.2 The 2-category PDer

Definition 2.2.1. Let D and D′ be prederivators. A morphism of pred-
erivators F : D→ D′ is a pseudonatural transformation between them.

Remark 2.2.2. Unraveling the definition, this morphism is given by a collec-
tion of functors

FJ : D(J)→ D′(J), J ∈ Cat

and a family of natural isomorphisms

γu : u∗ ◦ FK
∼=
=⇒ FJ ◦ u∗, u : J → K.

This means that the following square commutes up to (natural) isomor-
phism.
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J D(K) D′(K)

K D(J) D′(J)

u u∗

FK

u∗γu

FJ

These morphisms have to satisfy the following conditions:

(i) γidJ = idFJ ,

(ii) for every w : K → L we have γwu = γu ◦ γw,

(iii) for every u, v : J → K and α : u⇒ v we have

u∗ ◦ FK FJ ◦ u∗

v∗ ◦ FK FJ ◦ v∗

γu

α∗ α∗

γv

Definition 2.2.3. A morphism of prederivators is called strict if γu = id
for every u.

Definition 2.2.4. Let F,G : D → D′ be morphisms of prederivators. A
natural transformation τ : F ⇒ G is a modification of the pseudonatural
transformations F and G.

This means we have a family {τI : FI → GI}I∈Cat of natural transfor-
mations such that, for every functor u : J → K, the following diagram

u∗ ◦ FK FJ ◦ u∗

u∗ ◦GK GJ ◦ u∗

γu

τk τJ

γu

commutes. At this point, we can define the 2-category PDer.

Definition 2.2.5. PDer is the 2-category with

• 0-cells : prederivators D,D′, . . .

• 1-cells : morphisms of prederivators F : D→ D′

• 2-cells : natural transformations τ : F ⇒ G between 1-cells.

The sub-2-category of prederivators, strict morphisms and natural trans-
formations between them is usually denoted by PDerst. As an example, we
can see that there is a 2-categorical embedding of Cat into it.
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Remark 2.2.6. Every functor F : C → D determines a strict morphism of
prederivators yC → yD by precomposition. The morphisms in the image
are 2-natural transformations. Thus, as a special case of the 2-categorical
Yoneda lemma (see Theorem B.2.12), we get a fully faithful 2-functor

y : Cat→ PDerst

C 7→ yC

C
F−→ D 7→ F ◦ −

F
α
=⇒ G 7→ α ◦ −

Remark 2.2.7. Every functor between two categories induces a morphism of
the prederivators defined in Example 2.1.4. In fact, given a prederivator D
and a functor v : L→M , we consider the functor

v × idK : L×K →M ×K,

for K a generic category. Then we apply D to this functor and we obtain
the morphism

D(v × idK) : D(M ×K) = DM (K)→ DL(K) = D(L×K).

These data assemble into a morphism of prederivators DM → DL. A simi-
lar argument holds for natural transformations, hence every prederivator D
induces a 2-functor D(−) : Catop → PDer.

Definition 2.2.8. Given a prederivator D, we define the functor

Ob(D) : Catop → Set

J 7→ Ob(D(J))

I
u−→ J 7→ Ob(D(J))

D(u)−−−→ Ob(D(I))

where by D(u) we mean the associated function on objects.

Remark 2.2.9. As a matter of fact, the target of the previous functor is
not a small category, since the image of a small category with respect to the
action of a prederivator is no longer a small category. However, we follow the
general practice to avoid size issues invoking a bigger Grothendieck universe
with regard to which it is actually small.

As we said in Remark 2.1.7, we will assume implicitly that prederivators
satisfy axioms (Der 1-2) and (Der 5′). Hence, with a little abuse of notation,
we will also write PDer to denote the category having them as objects. We
can define a functor which acts by restricting a prederivator (satisfying the
aforementioned axioms) to its action on the objects of the categories in its
image as follows.
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Definition 2.2.10. The restriction functor is defined as

Ob: PDerst → SetCatop

D1 7→ Ob(D1)

D1
F−→ D2 7→ Ob(D1)

Ob(F )−−−−→ Ob(D2)

where Ob(F ) is given componentwise by the function

Ob(D1(J))→ Ob(D2(J))

induced on objects from the functors FJ : D1(J)→ D2(J) for every J ∈ Cat.

Proposition 2.2.11. The restriction functor Ob: PDerst → SetCatop
is

faithful.

Proof. A strict morphism F : D→ D′ is determined by its value on J ∈ Cat,
since coherence conditions are trivially fulfilled. To show that the functor
is faithful, let us take a family of functions rJ : Ob(D(J)) → Ob(D′(J))
and prove that there is at most one strict morphism of prederivators with
components FJ : D(J) → D′(J) such that Ob(FJ) = rJ . Indeed if we take
F as above, and we consider a morphism f : X → Y in D(J), by (Der 5′) we
can find f̂ ∈ D([1]× J) such that f = dia[1],J(f̂). Since dia[1],J is defined as
the action of a prederivator on the unique natural transformation between
the functors [0] ⇒ [1], each of which chooses one of the two objects of [1],
we get a commutative square

D([1]× J) D′([1]× J)

D(J)[1] D′(J)[1]

F[1]×J

dia[1],J dia[1],J

FJ

corresponding componentwise to the coherence conditions for 2-cells of Re-
mark 2.2.2, (iii). It follows that FJ(f) = FJ(dia[1],J(f̂)) = dia[1],J(r[1]×J(f̂)).
Therefore two strict morphisms of derivators with the same restrictions must
coincide.

2.3 The simplicially enriched category PDer•

We can define a simplicially enriched category having prederivators as
objects in the following way.

Definition 2.3.1. We define PDer• as the simplicially enriched category
such that, for every pair of prederivators D1,D2, the simplicial set of mor-
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phisms is

PDer(D1,D2) : ∆op → Set

[n] 7→ PDerst(D1,D
[n]
2 )

([m]→ [n]) 7→ PDerst(D1,D
[n]
2 )→ PDerst(D1,D

[m]
2 )

Notice that we are using the result found in Example 2.2.7 and then
taking the morphism on hom-sets induced by the hom-functor PDer(D1,−).
We ask ourselves what the composition of two morphisms should be. Thus
we want to construct a map

PDern(D1,D2)×PDern(D2,D3)→ PDern(D1,D3) = PDerst(D1,D
[n]
3 )

(f, g) 7→ g ◦ f

This can be built from f and g by means of the composition

D1
f−→ D[n]

2
g[n]

−−→ (D[n]
3 )[n] ∼= D[n]×[n]

3

D
diag[n]

3−−−−→ D[n]
3

where diagI : I × I → I, I ∈ Cat is the diagonal functor.
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Embedding theorems

In this chapter we discuss the results proved in [Car16] and [FKKR18].

3.1 The simplicial embedding

Definition 3.1.1. Let us define the functor

Ho : qCat→ PDerst

C 7→ HoC

(C → C′) 7→ HoC → HoC′

where the action on morphisms is obtained componentwise by applying the
functor (−)N(J) and then the functor Ho, for every J ∈ Cat.

Definition 3.1.2. We define qCat• as the simplicially enriched category
such that, for every pair of quasi-categories C, C′, the simplicial set of mor-
phisms is

qCat(C, C′) : ∆op → Set

[n] 7→ qCat(C, C′∆
n

)

([m]→ [n]) 7→ qCat(C, C′∆
n

)→ qCat(C, C′∆
m

)

Lemma 3.1.3. Ho extends to a simplicial functor Ho• : qCat• → PDer•.

Proof. The proof is straightforward. The action on objects is given by that
of Ho, and to define the action on the simplicial sets of morphisms we just
consider the action of the functor Ho between the set of morphisms of the
categories qCat and PDer as follows:

qCat(C, C′∆
n

)
Ho−−→ PDer(HoC ,HoC′∆n ).

29
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Then we notice that qCat(C, C′∆
n

) = qCatn(C, C′) by definition and more-
over there is a chain of isomorphisms

HoC′∆n = Ho((C′∆
n

)N(−))

∼= Ho(C′N(−)×∆n

)

∼= Ho(C′N(−)×N([n])
)

∼= Ho(C′N(−×[n])
)

= HoC′(−× [n])

= Ho
[n]
C′

which gives an isomorphism PDer(HoC ,HoC′∆n ) ∼= PDer(HoC ,Ho
[n]
C′ ) =

PDern(HoC ,HoC′). Hence it suffices to define the action of the simplicial
functor Ho• in such a way that at the level of the sets of n-simplices it
agrees with Ho.

Recall the following two important results (see [Bor94a, §3.7] or [Rie14,
§1.3]) in the theory of Kan extensions.

Proposition 3.1.4. Let F : C → E and G : C → D be two functors. If C
is small and E is complete, then the right Kan extension of F along G exists
and can be computed using the following formula

RanGF (d) ∼= lim((d ↓ G)
πd−→ C

F−→ E)

where πd : (d ↓ G)→ C, (c, f : d→ Gc) 7→ c is the projection functor.

Corollary 3.1.5. When G is fully faithful, the counit RanGF ◦ G ⇒ F is
an isomorphism.

These considerations are especially helpful in proving the next facts.

Lemma 3.1.6. Let C be a quasi-category, and j : ∆op → Catop be the
opposite of the inclusion functor. Then Ob(HoC) is the right Kan extension
of C along j.

Proof. We know that ∆op is small and Set is complete, hence it suffices to
show that

Ob(HoC)(J) ∼= lim((J ↓ j) πJ−→∆op C−→ Set).

As an immediate consequence of Definition 2.2.8,

Ob(HoC)(J) = Ob(HoC(J))

= Ob(Ho(CN(J)))

= sSet(N(J), C)
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since the objects of the homotopy category Ho(CN(J)) are the simplicial
morphisms between N(J) and C. The result follows easily once we express
N(J) as the colimit of its simplices, i.e. the colimit indexed over its category
of elements (see [Car16, Lemma 2.8]).

Proposition 3.1.7. Ho : qCat→ PDerst is fully faithful.

Proof. The claim is equivalent to qCat(C, C′) ∼= PDerst(Ho(C),Ho(C′)).
We show that Ho induces a bijection on hom-sets by finding an inverse.
First notice that

Ob(HoC) ◦ j ∼= RanjC ◦ j ∼= C : ∆op → Set

since j is fully faithful (Corollary 3.1.5). Therefore, we define a functor
Res which sends a prederivator of the form Ho(C) to its restriction to C
(using Ob and j as above) and a map of prederivators to a map of quasi-
categories in a similar manner. For every f : C → C′ in qCat, we know that
Ho(f) = Ho ◦ (fN(−)). Hence Res(Ho(f)) = Ob(Ho(f)) ◦ j ∈ sSet and its
n-simplices are

Res(Ho(f))[n] = Ob(Ho(f)) ◦ j[n]

= Ob(Ho(fN [n]))

= Ob(Ho(f∆n
))

with Ob(Ho(f∆n
)) : Ob(Ho(C∆n

))→ Ob(Ho(C′∆
n

)). We can rewrite the for-
mer as Ob(Ho(C∆n

)) = sSet(∆n, C), while the latter is equal to sSet(∆n, C′).
The Yoneda lemma implies that the morphism between those two are in bi-
jection with the simplicial maps C → C′, so that we find Res(Ho(f)) = f .
On the other hand, we have to prove that Ho(Res(F )) = F for every mor-
phism F : HoC → HoC′ . By Proposition 2.2.11, it suffices to show that the
restrictions of Ho(Res(F )) and F to functors in SetCatop

do coincide. This
follows from Lemma 3.1.6 and the adjunction j∗ a Ranj , since

SetCatop

(Ob(HoC),Ob(HoC′)) ∼= SetCatop

(RanjC,RanjC′)
∼= sSet(j∗RanjC, C′)
∼= sSet(C, C′)

Hence a morphism between Ob(HoC) and Ob(HoC′) is completely deter-
mined by its restriction to a morphism C → C′. It remains to check that
Res(Ho(Res(F))) = Res(F ), but this is true since Res ◦Ho is the identity
on sSet(C, C′).
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Theorem 3.1.8. Ho• : qCat• → PDer• is simplicially fully faithful.

Proof. This is indeed a consequence of the previous Proposition, once we
extend Ho to a simplicially enriched functor, following the construction
presented in the proof of Lemma 3.1.3. In fact, we have isomorphisms of
simplicial sets which specialise as follows at the level of n-simplices:

PDern(HoC ,HoC′) = PDerst(HoC ,Ho
[n]
C′ )

∼= qCat(C, C′∆
n

)

= qCatn(C, C′)

In particular, this construction respects simplicial composition laws of qCat•
and PDer•.

3.2 The 2-categorical embedding

Lemma 3.2.1. Ho extends to a 2-functor Ho : qCat→ PDer.

Proof. The idea is to prove that the assignment C 7→ Ho(CN(−)) is a 2-
functor looking at the image, or in other words to give an explicit and
componentwise construction of the 2-functors Ho(CN(J)), J ∈ Cat, assum-
ing that at the level of 0-cells Ho is defined just like Ho. Therefore, the
next step is to define a functor

qCat(C, C′)→ PDer(Ho(C),Ho(C′))

To this end, we first construct a 2-functor Ho: qCat → Cat that sends a
quasi-category to its homotopy category. The action on morphism categories
is given by the product-hom adjunction. In particular, we consider the counit

ev : (−)C × C = (−× C) ◦ (−)C ⇒ idqCat

of the adjunction −×C a (−)C , then we take the component at C′ obtaining

evC′ : C′
C × C → C′.

Now we apply the usual functor Ho, which commutes with finite products,

Ho(evC′) : Ho(C′C × C) ∼= Ho(C′C)×Ho(C)→ Ho(C′).

Then

qCat(C, C′) = Ho(C′C)→ Ho(C′)Ho(C) = Cat(Ho(C),Ho(C′))

is the image of Ho(evC′) through the natural isomorphism defining the
product-hom adjunction in Cat. It remains to show that the nerve functor
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can be enhanced to a 2-functor N : Cat→ qCat. We define it on morphisms
through the following chain of natural isomorphisms

Cat(K,J) = JK

∼= Ho(N(JK))

∼= Ho(N(J)N(K))

in which the first isomorphism is the inverse of the counit of the adjunction
Ho a N (invertible since N is fully faithful) and the second one holds since
for any two categories A and B the canonical map N(BA)→ N(B)N(A) is
an isomorphim (see [Joy08b, Proposition B.0.16]).

Definition 3.2.2. We say that a simplicial set is small if it is isomorphic
to a small colimit of standard n-simplices. A quasi-category is called small
if it is a small simplicial set.

Remark 3.2.3. For example, this is the case of the quasi-categories arising
as the nerve of small categories.

The following result, whose proof can be found in [Car16], is important
since extends the embedding of quasi-categories into prederivators to the
world of 2-categories.

Theorem 3.2.4. The restriction of the 2-functor Ho to the 2-category
of small quasi-categories is bicategorically fully faithful.

Definition 3.2.5. A category is called homotopy finite if its nerve has
finitely many nondegenerate simplices.

Remark 3.2.6. The condition of being homotopy finite is stronger than the
one of being finite. For instance, we can consider a finite group G seen as a
groupoid with only one object. It is a finite category since it has one object
and a finite number of morphisms, namely the group of endomorphisms of its
only object. However, its nerve has infinitely many nondegenerate simplices.
In fact, the nondegenerate simplices of this simplicial set are strings of non-
identity arrows corresponding to the non-identity elements of the group.
Hence n-simplices coincide with the elements of size n of the free group on
G. Face maps act as a composition according to the group law of G, and
degeneracy maps add copies of the identity element of G. Fortunately, a
more workable characterization of homotopy finite categories is available.
Indeed, a category is homotopy finite if and only if it is finite, skeletal and
admits no nontrivial endomorphisms (see [Car16, Definition 0.3]).

Remark 3.2.7. Homotopy finite categories assemble into a 2-category which
we will denote by HFin.

Example 3.2.8. Any ordinal category [n] is homotopy finite.
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Proposition 3.2.9. HFin is a small 2-category.

Proof. Notice that for small 2-category we mean that n-cells assemble into
a set, for n = 0, 1, 2. First of all, we notice that the class of objects (in the
sense of 0-cells) is countable and hence a set. In fact, one can write

Ob(HFin) =
∐
m,n

Cm,n

where Cm,n is the set of homotopy finite categories with exactly m objects
and n morphisms. Given that this is a coproduct of finite sets indexed by a
countable set, it has to be countable. In a similar way we see that the class of
functors between two homotopy finite categories J and K and strict natural
transformations between functors F and G are actually sets, being subsets
of, respectively, Set(Mor(J),Mor(K)) and Set(Ob(J),Mor(K)).

In the following, we replace the target 2-category PDer with the 2-category
of prederivators defined on homotopy finite categories. Another deep insight
about the behaviour of the functor realizing the 2-categorical embedding is
witnessed by the following theorem (which is Theorem 4.1 of [Car16]).

Theorem 3.2.10. The restriction of Ho to the 2-category of Kan com-
plexes reflects equivalences.

3.3 A new model for (∞, 1)-categories

In this section we present the results achieved by the authors in the paper
[FKKR18]. Throughout this section we consider PDerst

hfin as the ordinary
category of 2-functors HFinop → Cat and strict natural transformations.

Proposition 3.3.1. PDerst
hfin is a locally small category.

Proof. It is well known that Cat is locally small and, moreover, HFin is a
small 2-category by Proposition 3.2.9. A standard result in enriched cate-
gory theory ensures that the functor category PDerst

hfin is locally small.

Remark 3.3.2. From its very definition it follows that PDerst
hfin is complete

and cocomplete since this is the case for Cat and limits and colimits are
computed pointwise in Cat.

From now on PDer will be used to denote prederivators defined on
homotopy finite categories instead of PDerhfin, hence in particular we will
use the notation PDerst instead of PDerst

hfin.

Definition 3.3.3. We define the underlying simplicial set functor

R : PDerst → sSet

D 7→ Ob(D)
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sending a prederivator D to the composite Ob ◦ D ◦j : ∆op → Set, where j
is the opposite of the functor which includes the simplex category into the
category of homotopy finite categories and Ob sends1 a small category to
its set of objects2.

Proposition 3.3.4. R has both a left and a right adjoint.

Proof. First of all, notice that R can be written as the composition

PDerst = Hom(HFinop,Cat)
j∗−→ Hom(∆op,Cat)

Ob∗−−→ Hom(∆op,Set) = sSet

in which ∆op and Set are regarded as discrete 2-categories (i.e. if the only
2-cells are identities). Formal arguments based on the completeness and
cocompleteness of Cat and Set show that each functor has both a left and
a right adjoint, given by suitable Kan extensions. These compose into a
right and a left adjoint for R.

Remark 3.3.5. Using the formula for calculate left Kan extensions, we can
explicitly define the left adjoint L : sSet→ PDerst of R as

LX = colim
∆n→X

Cat(−, [n]), X ∈ sSet

Lemma 3.3.6. The unit of the adjunction L a R is an isomorphism.

Proof. We have to prove that ηX : X ∼= RL(X) for every X ∈ sSet. An easy
calculation (see [FKKR18, Proposition 1.18]) shows that the isomorphism
holds for representable presheaves. Hence, since both L and R are left
adjoints and then preserve colimits we have

RL(X) ∼= RL(colim ∆n)
∼= colim(RL∆n)
∼= colim ∆n

∼= X.

Remark 3.3.7. There is an isomorphism of prederivators yJ ∼= Ho(NJ),
which is a consequence of the isomorphism Ho(NJ) ∼= J in Cat. Indeed, as
mentioned in Lemma 3.2.1, N(JK) ∼= (NJ)NK holds, hence

yJ(K) = JK ∼= Ho(N(JK)) ∼= Ho((NJ)NK) = Ho(NJ)(K),

naturally in K.

Lemma 3.3.8. R is a left inverse for Ho, when we restrict the image of R
to quasi-categories.

1This is not to be confused with the functor introduced in Definition 2.2.10.
2Notice that we are treating D as an ordinary functor by ignoring its action on 2-cells.

Otherwise the composition Ob ◦ D ◦j would not make sense.
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Proof. This is a simple computation. In fact, at the level of n-simplices we
have

(RHo(X))n = Ob(Ho(X)[n])

= Ob(Ho(XN [n]))

= Ob(Ho(X∆n
))

= (X∆n
)0

= Xn

in which the last step is the Yoneda lemma. From this one gets an isomor-
phism RHo(X) ∼= X.

In summary, there exists a diagram (which is not commutative) of cate-
gories and functors as follows.

sSet PDerst

qCat

L

R

a

Ho

We would like to transfer the Joyal model structure on simplicial sets to
prederivators, via the functor R. That is to say, we define a morphism
F : D→ D′ in PDerst to be a weak equivalence (or a fibration) if and only
if RF : RD→ RD′ is a weak equivalence (or a fibration) in the Joyal model
structure and we show that L a R is a Quillen equivalence. In this case
one says that the model structure obtained using R is transferred from the
previous one, and that R creates weak equivalences and fibrations.

Theorem 3.3.9. PDerst with the transferred model structure is Quillen
equivalent to sSet with the Joyal model structure.

Proof. First we have to prove that L a R is a Quillen adjunction. This can
be done using a classic result due to Kan, which can be found e.g. in [Hir09,
Theorem 11.3.2], that allows us to transfer a model structure when a set of
conditions are met. In order to use Kan’s theorem it is enough to show that

• the Joyal model structure on simplicial sets is cofibrantly generated
(see [Hov07, §2] for the definition and [Ste18, Theorem 5.12] for a
proof of this fact),

• PDerst is complete and cocomplete, which is the case since it is a
presheaf category,
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• R preserves filtered colimits, since it preserves all colimits by Propo-
sition 3.3.4,

• the unit of the adjunction is an isomorphism, by Proposition 3.3.6.

Therefore this adjunction is actually a Quillen one. It remains to prove
that it is also a Quillen equivalence, hence a morphism f : LX → Y is a
weak equivalence if and only if the corresponding morphism through the
adjunction f ] : X → RY is a weak equivalence. The double implication
holds because, using the definition of right adjoints via universal arrows, we
see that f ] = R(f) ◦ ηX . But since ηX is an isomorphism, f ] is a w.e. iff
R(f) is a w.e. iff f is a w.e. (since R creates w.e.).

Although this result is in itself meaningful, it would be nice to know which
prederivators are images of quasi-categories via the functor Ho, at least up
to isomorphism. In the attempt to study the essential image of the above-
mentioned functor, the authors of [FKKR18] introduce the following class
of prederivators.

Definition 3.3.10. A prederivator is quasi-representable if it satisfies the
following conditions.

1. Given an homotopy finite category J , the counit of the adjunction
L a R evaluated at Ho(NJ),

LNJ ∼= LRHo(NJ)
εHo(NJ)−−−−−→ Ho(NJ) ∼= yJ

induces a bijection

PDerst(yJ,D)
ε∗
Ho(NJ)−−−−−→ PDerst(LNJ,D)

2. For any homotopy finite category J , there is a coequalizer

Ob(D(J × [2])×D(J×[1]) D(J))⇒ Ob(D(J × [1]))→ Ob(D(J)[1])

3. RD is a quasi-category.

Remark 3.3.11. This definition is is quite technical, but roughly speaking we
are asking that these prederivators act on objects in a way that commutes
with certain colimits. On morphisms they are determined by the value that
they assume on objects in a suitable sense (i.e. in a way that is compatible
with homotopies). Furthermore, we ask that their underlying simplicial sets
are quasi-categories.

Finally, thanks to the next theorem, we are able to conclude that these
prederivators are precisely those in the essential image of Ho.
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Theorem 3.3.12. A prederivator is quasi-representable if and only if it is
isomorphic to one of the form Ho(C), for a quasi-category C.

Proof. First of all, let us prove that if a prederivator D is quasi-representable,
then there is an isomorphism of prederivators D ∼= Ho(RD). From the
definition of a quasi-representable prederivator, we know that RD is a
quasi-category. By Lemma 3.3.8 we have an isomorphism of simplicial sets
RHo(RD) ∼= RD, then we get Ho(RD) ∼= D using that R reflects isomor-
phisms between quasi-representable prederivators (see [FKKR18, Lemma
2.17]). For the other implication, see [FKKR18, Proposition 2.9].



Appendix A

Model categories

Model categories were first introduced by Daniel Quillen in 1967 in his
book Homotopical algebra. They provide a setting for homotopy theory
which generalize many of the classical features of the homotopy theory of
(good) topological spaces. In this appendix we recall the very basics of model
category theory. More advanced topics, such as the small object argument or
cofibrantly generated model categories or even model structures on functor
categories (for instance, the Reedy model structure), can be found in e.g.
[Dyc19, §2], [Rie19] or in the classics [Hov07] and [Hir09].

A.1 Generalities

First, let us recall the definition of the arrow category C[1] of a category
C. This is the category whose objects are morphisms of C and whose
morphisms are commutative squares.

Definition A.1.1. A functorial factorization is an ordered pair (α, β) of
functors C[1] → C[1] such that f = β(f) ◦ α(f) for all f ∈ C[1].

Definition A.1.2. A model structure (W, Cof, Fib) on C consists of three
subcategories of C[1] called weak equivalences (w.e. for short), cofibrations
and fibrations, and two functorial factorizations (α, β) and (γ, δ) satisfying
the following properties.

1. (2-out-of-3 ) If the following diagram

X Y

Z
h

g

f

commutes in C and any two of f, g and h are weak equivalences, then
so is the third.
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2. (Retracts) W, Cof and Fib are stable under retracts. Namely, if
f : X → Y is a weak equivalence (resp. cofibration, fibration) and
the following diagram

A X A

B Y B

g f g

commutes, then g is a weak equivalence (resp. cofibration, fibration).

3. (Lifting) Suppose we have a commutative diagram of solid arrows

A X

B Y

i p

where i ∈ Cof and p ∈ Fib. Then the dotted arrow exists and makes
the diagram commute if either i or p is also a weak equivalence.

4. (Factorization) For every morphism f , we have that α(f) ∈ Cof, β(f) ∈
W ∩ Fib, γ(f) ∈ W ∩ Cof and δ(f) ∈ Fib.

Definition A.1.3. A model category is a complete and cocomplete category
endowed with a model structure.

Given a model category, we will say that a morphism is a trivial fibration
(resp. trivial cofibration) if it is both a weak equivalence and a fibration
(resp. cofibration). We will say, moreover, that an object X is cofibrant if
the unique morphism ∅ → X from the initial object to X is a cofibration
and we will call it fibrant if the unique morphism X → ∗ from X to the
terminal object is a fibration.

Definition A.1.4. Let C and D be model categories.

1. A functor F : C → D (resp. G : D → C) is called left Quillen (resp.
right Quillen) if it is a left adjoint and preserves cofibrations and trivial
cofibrations (resp. if it is a right adjoint and preserves fibrations and
trivial fibrations).

2. An adjunction between two model categories in which the left adjoint
is a left Quillen functor is called a Quillen adjunction.

3. A Quillen adjunction is a Quillen equivalence if a morphism FX → Y
is a w.e. if and only if the corresponding morphism X → GY through
the adjunction is a w.e., for all cofibrants X ∈ C and fibrants Y ∈ D.
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Given a model category M, we would like to treat weak equivalences as
they were isomorphisms. This task is overcome by “formally inverting” weak
equivalences, constructing the homotopy category Ho(M) which comes with
a localization functor γM : M→ Ho(M) (see [Hov07, §1.2]).

Definition A.1.5. Suppose we have given two model categories M,N and
a category D. Let F : M→ D and G : M→ N be functors.

1. The left derived functor LF : Ho(M) → D of F (if it exists) is the
right Kan extension of F along γM.

2. The total left derived functor L(G) : Ho(M)→ Ho(N) of G is the left
derived functor of γN ◦G.

Dually, we can define right derived functors by means of left Kan extensions
and so on. It is a classical result in homotopical algebra that left (resp. right)
Quillen functors always admit total left (resp. total right) derived functors.

Proposition A.1.6 (Ken Brown’s lemma). Suppose M is a model category
and N is a category equipped with a subcategory of arrows which satisfies
the 2-out-of-3 axiom. We call these arrows weak equivalences, for simplicity.

i) If F : M→ N is a functor which takes trivial cofibrations between cofi-
brant objects to weak equivalences, then F takes all weak equivalences
between cofibrant objects to weak equivalences.

ii) If F takes trivial fibrations between fibrant objects to weak equiva-
lences, then F takes all weak equivalences between fibrant objects to
weak equivalences.

Proof. The result is classical. A proof is contained in the first chapter of
[Hov07].

A.2 Bousfield localization

In the following we will see how the Bousfield localization can be used to
produce new model structures out of given ones. The theory is quite compli-
cated and lies on the so-called Reedy model structure, a well-behaved model
structure one can put on certain functor categories (see [Rie14, Chapter 14]
for details).

Definition A.2.1. A fibrant approximation to an object Y of a model cat-
egory M is a couple (Ŷ , j) where Ŷ is a fibrant object and j : Y → Ŷ is
a weak equivalence. Similarly, a cofibrant approximation of X ∈ M is the
datum of (X̃, i), where X̃ is cofibrant and i : X̃ → X is a weak equivalence.

Definition A.2.2. Let M be a model category and X,Y ∈ M. A left
homotopy function complex from X to Y is a triple (X̃, Ŷ ,M(X̃, Ŷ )) where:
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(i) X̃ is a cosimplicial resolution1 of X, namely a cofibrant approximation
X̃ → cc∗X in the Reedy model structure on M∆.

(ii) Ŷ is a fibrant approximation to Y

(iii) M(X̃, Ŷ ) is the simplicial set defined by M(X̃, Ŷ )n = M(X̃([n]), Ŷ )

One can define also right homotopy function complexes by means of
cofibrant approximation of the first object and simplicial resolution of the
second one and two-sided homotopy function complexes which are a combi-
nation of the two (an explicit description can be found in [Hir09]).

Remark A.2.3. Once we choose a type of homotopy function complex, it is
customary to denote Map(X,Y ) := M(X̃, Ŷ ). The idea behind this con-
struction is to associate a simplicial set of morphisms to every couple of
objects in the model category, just as in ordinary (locally small) categories
one has a set of morphisms for each pair of objects. This analogy goes on,
in the sense that (see [Hir09, §17.5]).

1) we can define functorial homotopy function complexes, i.e. functors
Map(−,−) : Mop ×M → sSet sending a couple of objects to their
(left, right or two-sided) homotopy function complex,

2) for every morphism g : X → Y in M and object A ∈ M there exist,
by functoriality, two induced maps g∗ : Map(Y,A) → Map(X,A) and
g∗ : Map(A,X)→ Map(A, Y ).

In the rest of this subsection M will denote a model category and C a
class of maps in M.

Definition A.2.4. An object W ∈ M is called C-local if it is fibrant and
for every f : A→ B of C the induced map f∗ : Map(B,W )→ Map(A,W ) is
a weak equivalence.

Definition A.2.5. A morphism g : X → Y of M is a C-local equivalence if
for every C-local object W the induced map of homotopy function complexes
g∗ : Map(Y,W )→ Map(X,W ) is a weak equivalence.

As usual one can dualize the previous two definitions. Nevertheless we
won’t need these dual notions, since we will treat only the left Bousfield
localization of a model category. Colocal objects and colocal equivalences
lead to the definition of right Bousfield localization, for which dual versions
of the results given for the left one hold true.

Definition A.2.6. The left Bousfield localization of M with respect to C
(if it exists) is a model category structure LCM on the underlying category
of M such that

1A cosimplicial object in a category C is just a functor ∆→ C. The constant cosim-
plicial object at X will be denoted by cc∗X.
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(a) the class of weak equivalences of LCM equals the class of C-local equiv-
alences of M,

(b) the class of cofibrations of LCM equals the class of cofibrations of M
and

(c) the class of fibrations of LCM is the class of maps with the right lifting
property with respect to those maps that are both cofibrations and C-
local equivalences.

Roughly speaking, the (left) Bousfield localization allows us to “invert”
more maps, i.e. construct a model structure with a class of weak equivalences
that strictly contains the class of weak equivalences of the original model
category, but that has the same cofibrations (the fibrations being determined
by RLP with respect to trivial cofibrations), in the sense of the following
proposition.

Proposition A.2.7. If LCM is the left Bousfield localization of M with
respect to C, then every weak equivalence of M is a weak equivalence of
LCM.

Proof. See [Hir09, Proposition 3.3.3.]

Bousfield localizations are localizations in the sense that they can be
characterized with a universal property that is similar to the one satisfied
by localizations of categories.

Proposition A.2.8. The left Bousfield localization LCM is such that there
is a left Quillen functor M→ LCM whose total left derived functor sends all
morphisms in C to weak equivalences and any left Quillen functor M → N
whose total left derived functor sends C to weak equivalences factors uniquely
through M→ LCM.

Proof. See [Hir09, Proposition 3.3.18.].

As we said, not every model category admits a Bousfield localization, in
general. Anyway, many model categories used in practice can be localized
in the sense of Bousfield, as the following theorem shows.

Theorem A.2.9. Let M be a left proper cellular model category (see [Hir09,
Definition 13.1.1 and Definition 12.1.1] for details) and let C be a set of maps
in M. Then the left Bousfield localization of M with respect to C does exist
and the fibrant objects of LCM are the C-local objects of M.

Proof. See [Hir09, Theorem 4.1.1.].

Remark A.2.10. sSet, Top, sSet∗ and Top∗ are left proper cellular model
categories ([Hir09, Proposition 4.1.4.]), hence all these categories admit a
(left) Bousfield localization for every set of maps C.
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2-categories

Already at the level of ordinary category theory, there are plenty of ex-
amples of categories in which the hom-sets have a richer structure. For
instance, they can be abelian groups (as in additive categories), or topolog-
ical spaces or simplicial sets. Even more, as it happens for the category of
small categories, each hom-set can be a category itself (e.g. functor cate-
gories). These examples are all instances of the same concept, i.e. they are
all enriched categories. The last example is particularly significant, since it
extends in a suitable sense the notion of a category by adding “morphisms
between morphisms”. These will be called 2-categories.

B.1 Setting the stage

Definition B.1.1. A monoidal category V is the datum of

1) a category V0, called the underlying category of V;

2) a bifunctor ⊗ : V0×V0 → V0, called the tensor product (the image of
the pair (X,Y ) under the action of ⊗ will be denoted by X ⊗ Y );

3) an object I ∈ V0, called the unit ;

4) a family of isomorphisms (called associativities) α with components

αX,Y,Z : (X ⊗ Y )⊗ Z → X ⊗ (Y ⊗ Z)

which are natural in all their arguments and two families of natural
isomorphisms l and r with components respectively lX : I ⊗ X → X
and rX : X ⊗ I → X (called left and right identities).

These data must satisfy the following coherence conditions on associativities
and identities.
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((X ⊗ Y )⊗ Z)⊗ T

(X ⊗ (Y ⊗ Z))⊗ T

X ⊗ ((Y ⊗ Z)⊗ T ) X ⊗ (Y ⊗ (Z ⊗ T ))

(X ⊗ Y )⊗ (Z ⊗ T )

αX,Y,Z⊗1

αX,Y⊗Z,T

1⊗αY,Z,T

αX,Y,Z⊗T

αX⊗Y,Z,T

(X ⊗ I)⊗ Y X ⊗ (I ⊗ Y )

X ⊗ Y
rX⊗1

αA,I,Y

1⊗lY

We refer to [Bor94b, §6.1] for further details on monoidal categories as
well as for the definition of symmetric monoidal closed category. Crucial
examples of symmetric monoidal closed categories are the cartesian closed
categories (e.g. Set or any elementary topos), with the cartesian product as
a tensor product.

Definition B.1.2. Let V be a monoidal category. A category enriched over
V or V-category C consists of:

1. a class Ob(C) of objects;

2. for every pair of objects X,Y ∈ Ob(C), an object C(X,Y ) ∈ V;

3. for every triple X,Y, Z ∈ Ob(C) of objects, a composition morphism

cXY Z : C(X,Y )⊗C(Y, Z)→ C(X,Z)

in V;

4. for every object X ∈ Ob(C), a unit morphism uX : I → C(X,X) in
V.

These data must satisfy the following axioms:

• the composition is associative, i.e. the following diagram
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(C(X,Y )⊗C(Y,Z))⊗C(Z, T )

C(X,Y )⊗ (C(Y,Z)⊗C(Z, T ))

C(X,Y )⊗C(Y, T ) C(X,T )

C(X,Z)⊗C(Z, T )

αC(X,Y ),C(Y,Z),C(Z,T )

1⊗cY ZT

cXY T

cXZT

cXY Z⊗1

commutes for every object X,Y, Z, T in C.

• uX behaves like a unit for the composition, i.e. the following diagram

I ⊗C(X,Y ) C(X,Y ) C(X,Y )⊗ I

C(X,X)⊗C(X,Y ) C(X,Y ) C(X,Y )⊗C(Y, Y )

uX⊗1

lC(X,Y )

1⊗uY

rC(X,Y )

cXXY cXY Y

commutes for every object X,Y in C.

Example B.1.3. Enriched categories are found in nature with a lot of different
names. For instance, a category enriched over Top (where Top is a nice
category of topological spaces, e.g. the category of CW complexes or the
category of compactly generated and weakly Hausdorff spaces) is called a
topological category.

One kind of enriched category, used throughout the text, is the following.

Definition B.1.4. A category enriched over sSet is called a simplicially
enriched category or also simplicial category1.

Definition B.1.5. A V-functor F : A → B (also called enriched functor)
between two V-categories A and B consist of

(i) a map which assigns to every object X ∈ A an object FX ∈ B,

(ii) for every pair of objects X,Y ∈ A, a morphism

FXY : A(X,Y )→ B(FX,FY )

which makes following diagrams

A(X,Y )⊗A(Y,Z) A(X,Z) I A(X,X)

B(FX,FY )⊗B(FY, FZ) B(FX,FZ) B(FX,FX)

FXY ⊗FY Z

cXY Z

FXZ

uX

uFX FXX

cFXFY FZ

1The latter name can be confusing, since simplicially enriched categories and simplicial
objects of Cat are different in general. Hence we prefer to stick with the former name.
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commute.

Definition B.1.6. A simplicial functor is precisely defined to be a sSet-
functor.

Definition B.1.7. We say that a V-functor is fully faithful when FXY is an
isomorphism in V for every X and Y .

We can also define V-natural transformations in a similar fashion. They
are subject to an hexagonal coherence diagram and they can be composed
in an “horizontal” and in a “vertical” way, just like ordinary natural trans-
formations (see [Bor94b, §6.2]).

B.2 Basics on 2-categories

With the previous section in mind, it is really easy to say what a 2-category
should be.

Definition B.2.1. A 2-category is a Cat-enriched category, with the tensor
product given by the product of categories and the terminal category as unit.

Remark B.2.2. Spelling out the definition above, a 2-category C consist of

• a class of objects Ob(C),

• for any pair X,Y ∈ C a small category C(X,Y ),

• for any triple X,Y, Z ∈ C a functor µ : C(X,Y )×C(Y, Z)→ C(X,Z)
called composition law,

• a unit functor [0]→ C(X,X), that is to say an object idX ∈ C(X,X)
for every object X ∈ C.

Furthermore, these data are subject to the following conditions

1. for every X ∈ C, the functors

µ(−, idY ) : C(X,Y )→ C(X,Y )

and
µ(idX ,−) : C(X,Y )→ C(X,Y )

are the identity functors,

2. for every X,Y, Z,W ∈ C, the diagram

C(X,Y )×C(Y, Z)×C(Z,W ) C(X,Z)×C(Z,W )

C(X,Y )×C(Y,W ) C(X,W )

µ×id

id×µ µ

µ
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commutes.

The elements of Ob(C) are called 0-cells, the objects of C(X,Y ) are called
1-cells and the morphisms of C(X,Y ) are called 2-cells. The notations are
the same as for categories, functors and natural transformations in Cat,
which is the prototypical example of 2-category.

Remark B.2.3. The vertical composition of 2-cells is defined by means of
the composition law of the hom-categories, while the functor µ recovers the
composition of 1-cells and the horizontal composition of 2-cells. Moreover,
the functoriality of µ can be used to prove the interchange law for 2-cells
(see [VP19, §3] for further details).

Remark B.2.4. Since in 2-categories there are two kinds of arrows, namely
1-cells and 2-cells, we have three different ways to construct a dual category
of a given 2-category C. We can indeed reverse only 1-cells, only 2-cells or
both, obtaining respectively the 2-categories Cop, Cco and Ccoop.

Definition B.2.5. A 1-cell f : X → Y inside a 2-category C is said to be
an equivalence if there exists another 1-cell g : Y → X together with two
invertible 2-cells 1X ⇒ gf and fg ⇒ 1Y .

As we have seen, a 2-category is a particular enriched category, when
V = Cat. Naturally, the next step is to describe how the notion of enriched
functor specializes to this case.

Definition B.2.6. Let C, D be two 2-categories. A 2-functor F : C → D
is the datum of

(1) an assignment X 7→ FX for every X ∈ Ob(C),

(2) a functor FXY : C(X,Y ) → D(FX,FY ) subject to the coherence
conditions of Definition B.1.5

Remark B.2.7. The previous is also known as strict 2-functor, to distinguish
it from other weak versions of 2-functors between 2-categories. Indeed, the
second point of Definition B.2.6 tells us that a 2-functor sends identities to
identities and respect compositions, just as an ordinary functor does, with
an extra action on 2-cells. Nevertheless, it makes sense to ask for a weak
version of the coherences, whose diagrams commute only up to a 2-cell. If
these 2-cells are invertible we get a pseudofunctor, otherwise we have a lax
or colax functor (depending on the direction of the 2-cell). Further details
can be found in [Bor94a, §7.5]

Example B.2.8. The very first example of 2-functors are the 2-dimensional
analogues of the hom-functors. For instance, let us take the covariant case
C(X,−) : C → Cat, with X ∈ Ob(C). The action of this functor is really
simple:
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(i) it sends every 0-cell Y to the small category C(X,Y ),

(ii) it maps every 1-cell f : Y → Z to the functor

f ◦ − : C(X,Y )→ C(X,Z)

g 7→ f ◦ g
(γ : g ⇒ g′) 7→ 1f ∗ γ

where ∗ is the horizontal composition of 2-cells.

(iii) and finally it sends every 2-cell α : f ⇒ g to the horizontal post-
composition α ∗ −.

The contravariant case C(−, Y ) : Cop → Cat is completely analogous.

Definition B.2.9. A 2-functor is called fully faithful if it induces isomor-
phisms of hom-categories. We call a 2-functor bicategorically fully faithful if
it induces equivalences of hom-categories.

Definition B.2.10. Let F,G : C → D be 2-functors between 2-categories.
A 2-natural transformation α : F ⇒ G is the datum of a 1-cell

αC : FC → GC

for every C ∈ C, in such a way that the following diagram

C(C,C ′) D(FC,FC ′)

D(GC,GC ′) D(FC,GC ′)

GCC′

FCC′

αC′◦−

−◦αC

commutes.

In Remark B.2.7 we said that 2-functors have weaker counterparts, namely
pseudofunctors and lax functors. So it happens for 2-natural transforma-
tions, which in turn can be weakened into pseudonatural transformations
and lax natural transformations. For the sake of simplicity, we prefer to give
the definitions in the strict case. An explicit definition can be found, again,
in [Bor94a, §7.5]. As a particular case of a pseudonatural transformation,
for instance, one recovers the notion of morphism of prederivators, whose
definition can be found in details in Remark 2.2.2. Finally, we have a notion
of “morphism between 2-natural transformations”.

Definition B.2.11. Let F,G : C → D be 2-functors and α, β : F ⇒ G
2-natural transformations. A modification Ξ: αV β is a family of 2-cells

ΞC : αC ⇒ βC

such that for any two 1-cells f, g : C ⇒ C ′ and any 2-cell γ : f ⇒ g, we have
that

ΞC′ ∗ Fγ = Gγ ∗ ΞC
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The definition above applies, basically unchanged, also to pseudonatural
and lax natural transformations. By its very definition, a modification is a
kind of “morphism of order three”. Hence, it is natural to “go higher” and
introduce the notion of 3-category, in which morphisms are now adding up
to a 2-category (see [Bor94a, §7.3]). In this setting it holds a more general
version of Yoneda lemma (see [Hed16, §6.9]).

Theorem B.2.12. Let C be a 2-category, F : C→ Cat a 2-functor and C
a 0-cell in C, then there exist an isomorphism of categories

Hom(C(C,−), F ) ∼= FC

where Hom(C(C,−), F ) is the category whose objects are the 2-natural
transformations C(C,−) ⇒ F and with the modifications between those
2-natural transformations as morphisms.

From here we get a 2-categorical Yoneda embedding y : C→ Hom(Cop,Cat),
sending an object of the 2-category C into the representable contravariant 2-
functor and acting in the natural way at the level of 1-cells and 2-cells. When
C = Cat, this embedding reduces to the embedding of the 2-category of
small categories into the 2-categories of prederivators and strict morphisms
(see Remark 2.2.6).
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