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Abstract

This research presents subgradient methods which are optimization tech-
niques particularly design for non-differentiable functions. In this work sub-
gradients methods are applied to solve the minimization problem arised
during the learning stage of Minimax Risk Classifiers (MRCs). The con-
tribution and innovative aspect of this work lies in the application of these
methods to this scenario. The principal success of this study is to obtain
an efficient method that balances computational efficiency with the quality
of the approximation solution. To develop an effective approach, theoretical
concepts have been studied and applied afterwards in various experiments
in order to tune the parameters defining the algorithms. This process has
been the principal and decisive task of the work. The experiments carried
out provide us information about computational time and solution accu-
racy, so that we can propose the most useful parameters in order to provide
a successful method.
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Introduction

Optimization problems involve finding the best solution from a set of feasible
options, often under specific constraints. These problems are inherently chal-
lenging for several reasons such as the complexity and scale of the problems.
Nevertheless, such problems still need to be solved so various methods have
been developed to address these challenges. These methods for resolution
of optimization problems are classified in two categories: exact methods,
the ones that guarantee finding the optimal solution, and approximation
algorithms, which provide solutions that are close to the optimum. While
exact methods guarantee finding the optimal solution, they can be computa-
tionally expensive and impractical for large-scale problems. Approximation
methods offer a balance between solution quality and computational effi-
ciency; they do not guarantee an optimal solution but can provide good
enough solutions within a reasonable time frame.

Machine learning problems often involve large-scale optimization tasks due
to the high dimensionality of data and the complexity of models. In fact,
as datasets grow in size and feature space, the optimization process must
handle millions of parameters and constraints. This complexity arises from
the need to train models on vast amounts of data to achieve high accuracy
and generalization. Efficient optimization methods are crucial for managing
computational resources, reducing training times, and ensuring that models
can scale effectively with the increasing volume and variety of data encoun-
tered in real-world applications.

Classification is a fundamental machine learning task, where the goal is to
assign labels to instances based on their attributes. It is a type of super-
vised learning that involves training a model on a labeled dataset, so it
can predict the labels for new, unseen instances. For such training process,
large datasets are needed in order to obtain the most accurate predictions,
by providing the model a large quantity of instances. The main goal of a
classification task is to obtain a classifier that fails less. The concept of
failure is represented by a loss function, that is, a function that measures
the success on the performance of the classifier. Then, the definition of the
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loss function determines the classifier. Minimax Risk Classifiers (MRCs) are
specific classifiers minimizing the worst case 0-1 loss (Mazuelas et al., 2023)
that define the objective function for our minimization problem. That is, the
optimization problem given in this work consists in minimizing the function
obtained in the learning step of MRCs.

Subgradient methods (Boyd, 2014) are crucial optimization techniques for
non-differen-tiable functions, particularly useful for those large-scale prob-
lems emerging in machine learning, such as classification. While they do
not guarantee the exact optimum, subgradient methods are especially help-
ful for problems where exact methods are impractical due to computational
constraints.

Traditional gradient-based methods (Boyd and Vandenberghe, 2004) rely on
the smoothness of the objective function, which limits their application to
differentiable functions. In contrast, subgradient methods extend the notion
of gradient to non-differentiable functions by introducing the subgradient
(Boyd et al., 2022), making these methods suitable for a broader range of
optimization tasks. However, these methods typically converge slower than
gradient descent due to the lack of precise gradient information. To mitigate
this, various strategies such as adaptive step sizes and averaging techniques
are employed to enhance convergence rates.

This research presents subgradient methods applied to solve the minimiza-
tion problem that arises during the learning stage of MRCs. The focus is
primarily on the efficiency of these methods: the main point of this work is
to handle the optimization task efficiently. To develop an effective approach,
theoretical concepts have been studied and applied afterwards in various ex-
periments in order to tune the parameters defining the algorithms. This
process has been the principal and decisive task of the work, enabling the
development of a successful and optimized method.

These methods have not been previously applied to solve the specific prob-
lem given from the MRCs. The contribution and innovative aspect of this
work lies in their application to this scenario, aiming to develop an efficient
approach for solving the minimization problem. The principal success of this
study is to obtain an efficient method that balances computational efficiency
with the quality of the approximation solution.

For the purpose of this study, basic theoretical concepts about classification
and supervised learning are introduced in Chapter 1, and the main concepts
of MRCs are described in Chapter 2, in order to introduce the minimization
problem addressed in this work. Chapter 3 deals entirely with the sub-
gradient methods, introducing variants of the method, the algorithms and
the parameters used during the learning stage. Chapter 4, focuses on the
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experimental part, analyzing obtained numerical results. Finally, in Chap-
ter 5 we present the conclusions and some future work. The codes for the
experiments can be found in Appendeces A,B and C.





Chapter 1

Supervised Classification

Classification is a standard learning task that involves assigning a category
to each instance (Mohri, 2018). In this type of task, learning consists of
accurately predicting the label of unseen instances or new items, and the
primary objective of a classification algorithm is to build a model that can
make such predictions.

For example, document classification consists of assigning a category rep-
resenting a topic, such as business, sports or weather, to each document,
while spam detection is the problem of learning to automatically classify
email messages as either spam or non-spam. Note that the first problem
allows several labels for the classification, whereas spam problem has just
two options. If we categorize the classification task according to this rule,
we obtain the following two categories: binary classification tasks for the
ones with just two labels, and multiclass classification with more than two
labels.

1.1 Problem formulation

Classification techniques assign instances in a set X to labels or classes in a
set Y, where X is a Borel subset of Rd, and we say that x has d variables or
features, and Y is a finite set represented by {1, 2, . . . , |Y|}. We denote by
∆(Y) the space of probability distributions over Y, and by ∆(X × Y) the
set of probability distributions over X and Y.

Classifiers can be defined in two ways: they can be represented by functions
from the set of instances to the set of labels, h : X −→ Y, where h(x)
represents the label deterministically assigned to the instance x. Classifiers
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2 1.1. Problem formulation

can also be given by functions from instances to probability distributions
on labels, h : X −→ ∆(Y), and we denote by h(y|x) the set of probabilities
with which h classifies x, for each y ∈ Y. Let T(X ,Y) be the set of all
classification rules, our goal is to find a classification rule h ∈ T(X ,Y). In
the following, we will consider deterministic classification rules h : X −→ Y.

We want classification rules with small losses, that is, functions that measure
the difference, or loss, between a predicted and a true label. We denote by
ℓ(h, (x, y)) the loss corresponding to the classifier h giving the predicted
value for x, whose real label is y.

The most common and intuitive loss function used for classification is the
0-1 loss: 0 if the classifier success, that is, if the prediction coincides with
the true label, 1 if it fails. That is,

ℓ0-1(h, (x, y)) = I{h(x) 6= y}. (1.1)

The risk of a classification rule h ∈ T(X ,Y) is its expected loss. That is,
the risk related to the instance-label pair (x, y) following the underlying
distribution p∗(x, y) ∈ ∆(X × Y), i.e., the true distribution that generates
the data, is

R(h) = Ep∗(x,y)ℓ(h, (x, y)) ∈ R.

In particular, the risk related to the 0-1 loss represents the error probability
of the classifier h.

Finding the best rule is equivalent to minimizing the possible error probabil-
ity, so, for the 0-1 loss, the problem lies in solving the following minimization
problem:

min
h:X→Y

Ep∗(x,y)ℓ0-1(h, (x, y)) = min
h:X→Y

∑

x∈X ,y∈Y

p∗(x, y)I{h(x) 6= y}

=
∑

x∈X

min
h(x)∈Y





∑

y∈Y

p∗(x, y)I{h(x) 6= y}





=
∑

x∈X

min
h(x)∈Y





∑

y∈Y

p∗(x)p∗(y|x)I{h(x) 6= y}





=
∑

x∈X

p∗(x) min
h(x)∈Y

∑

y∈Y

p∗(y|x) (1− I{h(x) = y})

=
∑

x∈X

p∗(x) min
h(x)∈Y



1−
∑

y∈Y

p∗(y|x)I{h(x) = y}



 .

(1.2)
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The equalities are justified by basic probability theory.

Then, the best rule is the so called Bayes’ rule, h : X → Y assigning the
image

h(x) = argmax
y∈Y

p∗(y|x)

to a fixed x ∈ X , and the best error probability is

∑

x∈X

p∗(x)

(

1−max
y∈Y

p∗(y|x)
)

= 1−
∑

x∈X

max
y∈Y

p∗(x, y),

also known as Bayes’ risk.

1.2 Supervised scenario

There are different machine learning scenarios that differ in the types of
training data available to the learner, the order and method by which data
is received, and the test data used to evaluate the learning algorithm. The
most common scenario associated with classification is supervised learning,
where the learner receives a set of labeled samples as training data and
makes predictions for all unseen instances. The spam detection problem
discussed in the previous section is an example of this situation.

Let (x1, y1), (x2, y2), . . . , (xn, yn) be n training instance-label pairs i.i.d. drawn
from the underlying distribution p∗. Learning means obtaining the classifier
h from the given instances.

For example, given the previous data, the nearest neighbor method clas-
sifies a new instance x with the label of the closest training instance xi,
that is, the classifier h assigns to instance x the image h(x) = yi, where
i ∈ arg min

j=1,...,n
‖x− xj‖. Note that this example does not do any optimiza-

tion.

In general, we would like to solve the optimization problem given in (1.2)
in order to find the Bayes’ rule. However, this is not possible because p∗

is unknown. Instead of minimizing the true expectation, an alternative is
minimizing the average of the losses of the training samples.

This approach is called the Empirical Risk Minimization (ERM), and it
is the most common approach for learning (Mohri, 2018; Vapnik, 1998;
Shalev-Shwartz and Ben-David, 2014). ERM seeks to minimize the error
on the training sample by solving

min
h:X→Y

1

n

n
∑

i=1

ℓ(h, (xi, yi)). (1.3)
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1.2.1 Linear rules

By definition, a classification rule is any function from X to Y. In order to
easily illustrate these rules, let us consider the binary situation where the
label space is Y = {−1,+1}. We define a classifier h : X −→ Y for a new
instance x and a fixed µ ∈ R

d as h(x) = sign(xTµ), and we consider as
positive if the argument is 0.

Intuitively, we can think of a classifier as a hyperplane that classifies x with
label −1 or 1 based on its relative position to the hyperplane.

Note that, in this case, the 0-1 loss is

ℓ0-1(h, (x, y)) = I{yxTµ ≤ 0}

and the ERM is the solution of

min
µ∈Rd

n
∑

i=1

I{yixTi µ ≤ 0}.

But the objective function is not convex, so this results on an NP-hard
problem (Garey and Johnson, 1990), making the achievement of an exact
solution computationally infeasible for large scale instances. Then, using
the 0-1 loss is not an effective option.

Instead, surrogate losses are used: different loss functions which are convex
and approximate the 0-1 loss (Bartlett et al., 2006). One specific way of
doing this approximation is by the logistic loss:

ℓ(µ, (x, y)) = log(1 + exp(−yxTµ)).

By using this logistic loss to compute the ERM, we obtain the so called
logistic regression as learning method. So the learning stage consists of
solving the convex optimization problem

min
µ∈Rd

1

n

n
∑

i=1

log(1 + exp(−yxTµ)),

and the best classifier is

h(x) = sign(xTµ∗),

where µ∗ is the solution of the previous minimization problem.
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1.2.2 Multiclass case

Classifying according to the sign does no longer work in cases with more
than two classes. Instead, in this situation, we use one-hot-encodings,

Φ(x, y) = ey ⊗ x ∈ R
m, (1.4)

where ey is the y-th element of the canonical basis of R|Y| and ⊗ denotes
the Kronecker product.

We can now consider classification rules determined as

h(x) ∈ argmax
y∈Y

Φ(x, y)Tµ

for a fixed µ.

For the binary case, where Y = {1, 2}, we consider µ = [µ1
T ,µ2

T ]T . Then,

h(x) ∈ argmax{Φ(x, y = 1)Tµ,Φ(x, y = 2)Tµ}
= argmax{xTµ1, x

Tµ2}, (1.5)

so we have label 1 if xT (µ1 − µ2) ≥ 0, and label 2 otherwise.

1.3 Performance evaluation

Recalling our problem, we have the i.i.d. samples (x1, y1), (x2, y2), . . . , (xn, yn)
drawn from the distribution p∗ as the training samples and we want to find
a classifier h : X → Y such that R(h) = Ep∗ℓ(h, (x, y)) is small.

There are different methods to compute the risk.

(i) We can approximate the quantity by averages of training samples.

Ep∗ℓ(h, (x, y)) ≈
1

n

n
∑

i=1

ℓ(h, (xi, yi)).

However, the terms in the sum are not independent, resulting in a
biased estimator.

(ii) Leave one-out method. We can use just (x1, y1), (x2, y2), . . . , (xn−1, yn−1)
to train the classifier h, and then estimate the risk in the following way

Ep∗ℓ(h, (x, y)) ≈ ℓ(h, (xn, yn)).

This time, the estimator is unbiased, so it will be a suitable method,
even though in this case, the classifier h will differ slightly.



6 1.3. Performance evaluation

(iii) Leave p-out method. Follows the idea of the previous method using p
training samples.

(iv) Hold out method. Follows the idea of the leave one-out method, di-
viding samples into training and testing sets. This time, each set is
built by adding a percentage of samples.

(v) k-fold method. This method randomly divides the samples into k
blocks. For each repetition, we train the classifier with k − 1 blocks
and test it with the remaining one.



Chapter 2

Minimax Risk Classifiers

Most learning methods are based on the ERM approach that minimizes
the empirical expected loss over the training samples. In this chapter, we
introduce Minimax Risk Classifiers (MRCs), that minimize the worst-case
0-1 loss over general classification rules.

Recall the ERM approach aiming to solve (1.3). That is, given a training
set of n samples (x1, y1), (x2, y2), . . . , (xn, yn), we want to find a classifier h
that minimizes the error over the training set, i.e.,

h ∈ arg min
h:X→Y

1

n

n
∑

i=1

ℓ(h, (xi, yi)).

The ideal solution for solving the optimization problem defining the ERM
consists of finding the Bayes’ rule according to Section 1.1. Equivalently, we
have to solve

P
∗ : min

h∈T(X ,Y)
Ep∗ℓ(h, (x, y)).

In practice, solving this problem is not possible, since the underlying distri-
bution p∗ is unknown. So instead of minimizing the true expectation, the
problem P∗ can be approximated in different ways, and the optimization
problem becomes

P : min
h∈F

sup
p∈U

EpL(h, (x, y)),

where F is a family of classification rules, U an uncertainty set of distribu-
tions, and L a surrogate loss function.

The ERM considers uncertainty sets containing only the empirical distribu-
tion of training samples. It is a very useful approach, but strongly relies on
the specific training samples available. So it is not clear how to handle situ-
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ations with corrupted samples or distribution shifts. Moreover, the quantity
optimized at learning is not very meaningful.

For instance, we introduce the context of adversarial manipulation, that
involves creating scenarios where an adversary intentionally manipulates
input data to deceive a model. This technique is used to test and improve
the robustness of machine learning algorithms. By introducing adversarial
examples in order to make trouble in our learning procedure with the ERM,
the computed learning procedure would not be efficient for this modified
version; that is, could not classify the corrupted instances properly.

Another approach that makes these situations tractable, in order to develop
a successful learning, is the Robust Risk Minimization (RRM), also known
as distributionally robust learning (Farnia and Tse, 2016; Fathony et al.,
2016). The main idea is to consider multiple scenarios which are consistent
with the data, and to choose a rule with small error in the worst scenario.

RRM minimizes the worst-case expected loss with respect to an uncertainty
set of distributions, i.e. aims to find the classifier

h ∈ argmin
h

max
p∈U(zn)

Epℓ(h, (x, y)),

where U(zn) is an uncertainty set corresponding to the training set of n
samples

zn = {(x1, y1), (x2, y2), . . . , (xn, yn)}.
RRM approach do not require that the training samples follow the same
distribution as the testing samples, so this method is capable to deal with
corrupted samples or distribution shifts. Moreover, if the true scenario is
one of the scenarios considered, the error on the worst case would be an
upper bound of the actual error. Nevertheless, this approach can be too
pessimistic if too many scenarios are considered.

Note that the approximation of problem P∗ by P depends on the choice
of the uncertainty set. We want general enough sets in order to contain the
underlying distribution, but reduced enough to provide a tight upper bound.
This trade-off relies on parameters related to the size of the uncertainty set.

The uncertainty set considered by the MRCs can contain the true underlying
distribution with certain confidence. Such uncertainty sets are defined by
constraints on the expectations of a function Φ : X × Y → R

m, denoted as
feature mapping, as

U = {p ∈ ∆(X × Y) : |Ep{Φ} − τ | � λ} , (2.1)

where | · | is the componentwise absolute value, τ denotes the mean vec-
tor estimation corresponding to Φ, and λ � 0 is a confidence vector for
inaccuracies in the estimate (Mazuelas et al., 2023).
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The goal of MRCs is to find a classifier that minimizes the maximum ex-
pected loss over these uncertainty sets, using estimates of expectation τ and
confidence vector λ.

2.1 MRCs with 0-1 loss

In this work we focus on MRCs with 0-1 loss, recall it from (1.1). It can
also be represented as ℓ(h, (x, y)) = 1 − h(y|x), and it is specially suitable
for classification tasks since it quantifies the classification error. The MRC
minimizes the worst-case expected 0-1 loss with respect to distributions in
uncertainty sets U defined in (2.1).

The mean vector τ = [τ (1), τ (2), . . . , τ (m)]T is an estimate on the expectation
with respect to the true underlying distribution p∗ of the feature mapping
Ep∗(x,y)Φ(x, y). We will consider expectation estimates obtained as the sam-
ple average, where each component j = 1, . . . ,m is calculated as

τ (j) =
1

n

n
∑

i=1

Φ(j)(xi, yi)

obtained from the n training samples (x1, y1), (x2, y2), . . . , (xn, yn), assumed
to be independent samples drawn from p∗. The feature mapping we will use
is linear and is obtained by the one-hot-encoding introduced in (1.4), so the
dimension m is the product between the length of each sample d, and the
number of possible labels |Y|.

The confidence vector λ = [λ(1), λ(2), . . . , λ(m)]T is an estimate of the mean
vector accuracy, and controls the size of the uncertainty set. We consider
the sample standard deviation, and it can be obtained using the training
sample as

λ(j) =

√

∑n
i=1(Φ

(j)(xi, yi)− τ (j))2

n
component-wise for j = 1, . . . ,m.

The minimax risk optimization problem for 0-1 loss

PMRC : min
h∈F

sup
p∈U

Epℓ(h, (x, y))

for U in (2.1), determines the learning stage of MRCs.

Definition 2.1.1. (Mazuelas et al., 2023) A classification rule hU is a 0-1
MRC for the uncertainty set U if

hU ∈ arg inf
h∈T(X ,Y)

sup
p∈U

ℓ(h, p).
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Moreover, the following theorem from (Mazuelas et al., 2023) shows how
0-1 MRCs can be determined by a linear-affine combination of the feature
mapping, and the coefficients of such combination can be obtained by solving

min
µ

1 − τTµ+ λT|µ|+ϕ(µ), (2.2)

where µ is the learning parameter in R
m and

ϕ(µ) = max
x∈X ,C⊆Y

(

∑

y∈C Φ(x, y)
Tµ− 1

|C|

)

, (2.3)

implicitly assuming C 6= ∅.

Theorem 2.1.1. Let µ∗ be a solution of the optimization problem in (2.2),
and U be an uncertainty set of the form (2.1) that satisfies one of the fol-
lowing statements:

(i) The set X is finite and there exists a probability measure p in U .

(ii) There exists a probability measure p in U such that
|Ep{Φ(x, y)(i)} − τ (i)| < λ(i) for any i ∈ {1, 2, . . . ,m} with λ(i) > 0
and

(a) λ(i) > 0 for all i ∈ {1, 2, . . . ,m} or
(b) the support of the r.v. Φ(x, y) for (x, y) ∼ p is not contained in

a proper affine subspace of Rm.

If a classification rule hU ∈ T(X ,Y) satisfies

hU(y|x) ≥ Φ(x, y)Tµ∗ − ϕ(µ∗), ∀x ∈ X , y ∈ Y,

then hU(y|x) is a 0-1 MRC for U .

Proof. See Appendix B in (Mazuelas et al., 2023).

2.2 MRCs with 0-1 loss and fixed marginals

The uncertainty set can also include an additional constraint that fixes the
instances’ marginal distribution px with the empirical marginal distribution
pnx as

V = {p ∈ ∆(X × Y) : |Ep{Φ} − τ | � λ and px = pnx}. (2.4)
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In this case, the MRC classifier and its corresponding optimization problem
in order to obtain it are given in the following result from (Mazuelas et al.,
2023):

Theorem 2.2.1. Let τ ,λ ∈ R
m be such that the uncertainty set V in (2.4)

is not empty. If µ∗ is a solution of the optimization problem

min
µ

1 − τTµ+ λT|µ|+ 1

n

n
∑

i=1

ϕ(µ, xi), (2.5)

where

ϕ(µ, x) = max
C⊆Y

(

∑

y∈C Φ(x, y)
Tµ− 1

|C|

)

, (2.6)

and hV is the classification rule

hV(y|x) =
(

Φ(x, y)Tµ∗ −ϕ(µ∗, x)
)

+
, ∀x ∈ X , y ∈ Y,

where the subscript v+ denotes the vector given by the component-wise pos-
itive part of v, then, hV is a 0-1 MRC for V, that is

hV ∈ arg inf
h∈T(X ,Y)

sup
p∈V

ℓ(h, p).

Proof. See Appendix C in (Mazuelas et al., 2023).
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Chapter 3

Subgradient methods

The subgradient method is a simple algorithm for minimizing a nondifferen-
tiable convex function. It follows the idea of the ordinary gradient method
for differentiable functions.

3.1 Gradient descent method

The gradient descent (GD) is an iterative optimization algorithm used to
find a global minimum/maximum of a given function. However, this method
does not work for all functions. In order to minimize, it needs to satisfy
the following conditions: differentiability and convexity. The first condition
guarantees a derivative for each point in the domain of the function, whereas
the second one implies that a local minimum is also a global one. For a
maximum, concavity is required instead of convexity.

Since the gradient can be interpreted as the fastest increasing direction of
the function, this method iteratively calculates the next point by moving on
the inverse direction in order to minimize.

Suppose f is the function we want to minimize, i.e., find the vector x∗ such
that

x∗ ∈ argmin
x

f(x).

Algorithm 1 describes the pseudocode for the gradient descent. It starts from
the point x0 and iterates until the gradient of the objective function at the
current point, ∇f(x(k)), is zero. Each iteration k comprises the computation
of the descent direction, pk, the one determined by the opposite direction of
the gradient, and the step αk, determining how much to move. Then, the

13



14 3.2. Subgradients

update consists of determining the new point x(k+1) by moving αk units on
the descent direction, from the current point x(k), and updating the iteration
number by k + 1.

Algorithm 1 Gradient descent

1: k = 0, x(k) ∈ R
n

2: repeat

3: Compute the descent direction pk ← −∇f(x(k))
4: Compute the step of descent αk

5: Update x(k+1) ← xk + αkpk
6: k ← k + 1
7: until ∇f(x(k) = 0

The definition of the descent step is also known as line search, since the
selection of the step size determines where along the line {x+αp | α ∈ R

+}
will be the next iterate.

However, the functions we want to minimize described in (2.2) and (2.5) are
not differentiable, so that we cannot compute the gradient for every point.
Instead, as its name suggests, the subgradient method uses subgradients in
order to compute the new points at each iteration.

3.2 Subgradients

The subgradient is an extension of the notion of gradient for the cases where
the latter cannot be computed, that is, where the function is not differen-
tiable.

Definition 3.2.1. A vector g ∈ R
n is a subgradient of f : Rn −→ R at

x ∈ domf if for all z ∈ domf ,

f(z) ≥ f(x) + gT(z − x). (3.1)

The set of subgradients of f at the point x is called the subdifferential of f
at x, and is denoted by ∂f(x).

The definition of subdifferential is motivated by cases such as the one shown
in Figure 3.1. We can see in the figure that in x1, where the function
f is differentiable, its gradient is a subgradient and, in fact, it is unique.
Whereas in x2, where the function is not differentiable, there are illustrated
two subgradients, g2, g3, and actually there are infinitely many.
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Furthermore, if f is convex and ∂f(x) = {g}, then f is differentiable at x
and g = ∇f(x), where ∇ indicates the gradient of f . A function f is called
subdifferentiable at x if there exists at least one subgradient at x.

g1
g2

g3

x2x1

f

Figure 3.1: This figure shows the different subgradients of the convex func-
tion f according to different points. At x1, the convex function f is differ-
entiable, and g1 is the unique subgradient at x1. At the point x2, f is not
differentiable and has infinitely many subgradients. Two of them are g2 and
g3.

Example 3.2.1. Let us consider the absolute value f(x) = |x|. For x < 0
and x > 0, the absolute value is differentiable so the subgradient is unique:

∂f(x) = {∇(−x)} = {−1}, if x < 0,

∂f(x) = {∇x} = {1}, if x > 0.

At x = 0 the subdifferential is defined by the inequality |z| ≥ gz for all z,
which is satisfied if and only if g ∈ [−1, 1]. Therefore,

∂f(0) = [−1, 1].

The whole set of inequalities (3.1) for z ∈ domf can be seen as a set of
linear constraints defining the set ∂f(x). Therefore, by definition, the sub-
differential is a closed convex set.

3.2.1 Existence of subgradients

From Figure 3.1 we can see that for any point x in the domain of f a
subgradient can be defined. In fact, we claim that for a convex function f ,
there is at least a subgradient for any point in the interior of its domain.
Equivalently, the subdifferential of a convex function is nonempty. In order
to prove these statements, we recall the supporting hyperplane theorem from
(Boyd and Vandenberghe, 2004).
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Definition 3.2.2. The epigraph of a function f : Rn → R is defined as

epif = {(x, t) : x ∈ domf, f(x) ≤ t},

which is a subset of Rn+1.

Definition 3.2.3. A supporting hyperplane of a set C ⊆ R
n at a boundary

point x0 ∈ bd(C) = cl(C)\int(C) is the hyperplane

{x | aTx = aTx0}

for a fixed a 6= 0 satisfying aTx ≤ aTx0 for all x ∈ C.

Figure 3.2: The line illustrated in this figure defined by {x | aTx = aTx0}
is a hyperplane for the set C at x0. Also said as {x | aTx = aTx0} supports
C.

In other words, this means that the set C is tangent to the hyperplane
{x | aTx = aTx0} at x0, and the set is entirely contained in one of the half-
spaces bounded by the hyperplane {x | aTx = aTx0}, that is, C is contained
in {x | aTx ≤ aTx0}, as illustrated in Figure 3.2.

The connection between convex sets and convex functions is via their epi-
graph: a set C is convex if and only if its epigraph is a convex set. In order
to prove the existence of subgradients, or, equivalently, the nonemptyness of
the subdifferential, we can analyze the subdifferential of a convex function
as a convex set. In fact, the following theorem describes the existence of a
supporting hyperplane for convex sets:

Theorem 3.2.1. Supporting hyperplane theorem. For any convex set
C and any boundary point x0 ∈ bd(C), there exists a supporting hyperplane
for C at x0.

The proof of this theorem requires the separation theorem and can be found
in Section 2.5.2 from (Boyd and Vandenberghe, 2004).
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The following theorem in (Boyd et al., 2022) proves the existence of subgra-
dients:

Theorem 3.2.2. Let f : Rn → R be a convex function. Then, ∂f(x) is
nonempty for any x ∈ int(domf), where x is an interior point.

Proof. Since f is convex, epif is a convex set. Let (x, f(x)) be a boundary
point of the epigraph and apply Theorem 3.2.1 to epif at (x, f(x)). That
is, there exist (a, b) ∈ R

n × R, not both zero, such that

[

a
b

]T ([
z
t

]

−
[

x
f(x)

])

= 0

for all (z, t) ∈ epif . In particular, for (z, f(z)) ∈ epif , we have

aT (z − x) + b(f(z)− f(x)) ≤ 0. (3.2)

If b 6= 0, dividing by b in (3.2), we have that

f(x) ≥ f(z) +
(

−a

b

)T

(z − x).

Then, by definition, this implies that −a/b is a subgradient of f at x, i.e.,
−a/b ∈ ∂f(x). So that we found a subgradient for an arbitrary point
x ∈ int(domf).

If b = 0, the inequality (3.2) simplifies to

aT (z − x) ≤ 0 (3.3)

for all z ∈ domf . In particular for those z in a neighborhood of x. If x
is an interior point, the inequality in (3.3) implies that a = 0. But this
contradicts the assumption since both a and b would be zero.

Therefore, b must be nonzero and then we already proved that the subdif-
ferential of f at an arbitrary point x is nonempty.

3.2.2 Calculus of subgradients

Describing the complete subdifferential is generally a hard task, but many
algorithms for nondifferentiable convex optimization require only one sub-
gradient at each step. The subgradient method is one of them.

In this section, we introduce some necessary rules for the calculus of a sub-
gradient in our problem. The proofs involve support functions and direc-
tional derivatives theory not introduced in these pages. This machinery is
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detail in Section C2 and Section D1 from (Hiriart-Urruty and Lemaréchal,
2004). The following theorem, Theorem 4.1.1 from (Hiriart-Urruty and Lemaréchal,
2004), explains the behavior of subdifferentials when positive combinations
of functions are given.

Theorem 3.2.3. Let f1, f2 be two convex function from R
n to R and t1, t2

be positive. Then

∂(t1f1 + t2f2)(x) = t1∂f1(x) + t2∂f2(x), ∀x ∈ R
n.

Theorem 3.2.3 proves the following (i) and (ii) rules.

(i) Nonnegative scaling. For α ≥ 0,

∂(αf)(x) = α∂f(x).

(ii) Sum. Let f1, f2, . . . , fm be convex functions. Then,

∂

(

m
∑

i=1

fi(x)

)

=
m
∑

i=1

∂fi(x).

We will consider one additional rule to compute a subgradient for the prob-
lem given either by (2.2)-(2.3) or (2.5)-(2.6). This rule determines how to
calculate a subgradient of the maximum of convex functions.

(iii) Pointwise maximum. Let f be the pointwise maximum of convex
functions f1, f2, . . . , fm, i.e.,

f = max
i=1,...,m

fi

where fi is subdifferentiable for all i. Let k be an index where the
functions take the maximum at point x, that is fk(x) = f(x), and let
g ∈ ∂fk(x). Then,

g ∈ ∂f(x).

Proof. Let f and fk be two functions defined as before. Then, for all
z ∈ domf ,

f(z) ≥ fk(z) ≥ fk(x) + gT(z − x) = f(x) + gT(z − x).

In order to find a subgradient of the maximum, it is enough to find a
subgradient of a function taking the maximum at the point.
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Example 3.2.2. Let f1(x) = (x + 1)2, f2(x) = (x − 1)2 and define their
maximum as h(x) = max

x
{f1(x), f2(x)}. In order to find a subgradient of h

at x we need to see which of the functions achieves the maximum at x.

If x < 0, we have f2(x) > f1(x) so h(x) = f2(x). Then, if g ∈ ∂f2(x) we
have that g ∈ ∂h(x). Since f2(x) is differentiable, its subdifferential consists
of its gradient, so g(x) = ∇f2(x) = 2(x− 1).

Similarly when x > 0, we have g(x) = ∇f1(x) = 2(x+ 1).

At x = 0, we have h(0) = f1(0) = f2(0) so we can choose either a subgradient
of f1 or f2 at x = 0 in order to obtain a subgradient of the maximum. So,
for instance, we have 2(x+ 1) ∈ ∂h(0).

3.3 Subgradient method

The main difference of the subgradient method with respect to the GD is
the direct application to nondifferentiable functions. Unlike the GD, the
subgradient method is not a descendent one; the function value can, and
often does, increase.

On its basic case, the subgradient method uses the simple iteration

x(k+1) = x(k) − αkg
(k),

where x(k) is the point at iteration k, g(k) is any subgradient of f at x(k),
i.e., g(k) ∈ ∂f(x(k)), and αk > 0 is the k-th step size. At each iteration we
take a step in the direction of a negative subgradient.

Recall that when f is differentiable, the unique subgradient is the gradient
itself, so the subgradient method reduces to GD.

It can happen that −g(k) is not a descending direction for f at x(k), so we
have f(x(k+1)) > f(x(k)). Therefore, as mentioned before, the subgradi-
ent method is not a descendent method and an iteration can increase the
objective function value.

Exactly for this reason, different aspects about the algorithm might be tuned
in order to obtain a proper approximation of the solution. It is important
to remark that this method is not an exact one, so the result we obtain
will be an approximation to the real solution. In fact, we will see how the
following elements might influence the convergence of the algorithm to the
real solution.
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3.3.1 Evaluation approaches

As we mentioned, the subgradient method may worsen the result obtained
in the previous iteration. Then, there are another approaches to evaluate
the objective function that may perform better. For instance, a common
approach is to keep track of the best point found so far, the one with smallest
objective value.

Instead of using the last iterate as the solution, the best point technique
selects the best iterate obtained so far, according to the objective function
value. At each iteration k, the subgradient method computes the point x(k),
calculates its corresponding objective function value, and compares it to
the previous values corresponding to the previous points, choosing the best
among all, i.e.,

f
(k)
best = min{f(x(0)), . . . , f(x(k))}.

In fact, it is not necessary to store all the values f(x(0)), f(x(1)), . . . , f(x(k))
at each iteration, note that the best objective function value can be itera-
tively computed as

f
(k)
best = min{f(x(k−1)

best ), f(x(k))}.

We describe the best point evaluation method in Algorithm 2. The best

Algorithm 2 Subgradient method for best point evaluation

1: k = 0, x(k) ∈ R
n f

(k)
best ← f(x(k))

2: repeat

3: Find a subgradient g(k) ∈ ∂f(x(k))
4: Update x(k+1) ← x(k) + αkg

(k)

5: Calculate f
(k+1)
best ← min{f(x(k+1)), f

(k)
best}

6: k ← k + 1
7: until Stopping criterion is satisfied

point evaluation has several advantages: it obtains an improved solution
quality by keeping track of the best objective function value. In this form,
the final output is the best iterate obtained during the optimization pro-
cess, leading to potentially better solutions. Moreover, it provides robust-
ness against fluctuations and poor performance of some iterates, which is
specially useful in non-smooth optimization scenarios.

Nevertheless, the computation of the objective function at each iteration
requires much time. Additionally, if at some iteration the solution is worse,
the subgradient is computed again, even if it is the same as the previous
one. Moreover, if the algorithm returns a sequence of increasing objective
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function values, the minimum will be achieved during the first iterations. In
this case, we will not improve anymore and making more iterations results
useless.

In order to exploit the subgradient method and take some improvement still
during the last iterations, and to improve the time complexity, there are
some other methods such as evaluating the mean of all the points found so
far, also known as averaging technique.

The points generated by the algorithm can be averaged to produce a more
stable sequence that converges better. The idea is to compute the average
of all points up to the current iteration, rather than just relying on the
last one as described in the pseudocode of Algorithm 3. Averaging process
reduces the variance of the iterates, leading to a smoother convergence path,
particularly useful in non-smooth optimization where subgradients can cause
significant fluctuations. In any event, the choice of the evaluation approach

Algorithm 3 Subgradient method for averaging approach

1: k = 0, x(k) ∈ R
n, x

(k)
avg ← x(k)

2: repeat

3: Find a subgradient g(k) ∈ ∂f(x(k))
4: Update x(k+1) ← x(k) + αg(k)

5: Update x
(k+1)
avg ← k/(k + 1) · x(k)avg + 1/(k + 1) · x(k+1)

6: k ← k + 1
7: until Stopping criterion is satisfied

must be made by previously analyzing the behavior of the real objective
function value, the one obtained by the points given by the subgradient
method, even if not descendent ones. For example, we can see in Figure 3.3
the comparison of the objective function values for Haberman dataset with
α = 1.5/

√
i and 104 number of iterations, considering the function given in

(2.5)-(2.6), obtained by the subgradient method with previously described
evaluation approaches (the usual method in blue, best point approach in
yellow, and averaging technique in red).

This illustrates how using the mean gives a more stable value, without fluctu-
ations, so that we obtain a good approximation of the minimum. Moreover,
computing the mean does not require much time. Instead, choosing the best
value obtained so far gives also a good approximation, but it is the most ex-
pensive option in terms of computational time, since it requires to compute
the objective function at each iteration.
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Figure 3.3: This figure shows the value of the objective function on the y
axis, during the iterations, x axis. It is used the Haberman dataset with
α = 1.5/

√
i and 104 number of iterations. The blue line shows the objective

function value obtained by evaluating each point given by the algorithm;
the red line, the function value using the mean of all the points obtained so
far; and the yellow one, the objective function value obtained by choosing
the best value found so far, i.e., the minimum.

3.3.2 Stopping criterion

The stopping criterion is a critical aspect that determines when the algo-
rithm should terminate. Selecting an appropriate stopping criterion ensures
that the algorithm stops after a reasonable amount of computational time,
while still providing a good approximation to the optimal solution.

The most common stopping criteria are the maximum number of iterations
and the improvement of the objective function. The first one sets a maxi-
mum number of iterationsK after which the algorithm stops, as shown in Al-
gorithm 4, regardless of whether it has converged. The second one, instead,
terminates the algorithm when the improvement in the objective function
value between iterations falls below a certain threshold ǫ, see Algorithm 5.

The maximum number of iterations approach is simple to implement and
ensures that the algorithm stops within a known time frame. Nevertheless,
it does not guarantee convergence to the optimal solution and may stop too
early or run unnecessarily long.

On the other hand, the improvement method focuses on the actual improve-
ment of the solution. It can avoid unnecessary iterations by stopping early

https://archive.ics.uci.edu/dataset/43/haberman+s+survival
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Algorithm 4 Stopping criterion: Maximum number of iterations

1: k = 0
2: repeat

3: Find a subgradient g(k) ∈ ∂f(x(k))
4: Update x(k+1) ← x(k) + αkg

(k)

5: k ← k + 1
6: until k = K

Algorithm 5 Stopping criterion: Improvement of the objective function

1: k = 0, x(k) ∈ R
n, fcurrent ← f(x(k))

2: repeat

3: Update fprev ← fcurrent
4: Find a subgradient g(k) ∈ ∂f(x(k))
5: Update x(k+1) ← x(k) + αkg

(k)

6: Evaluate fcurrent ← f(x(k+1))
7: k ← k + 1
8: until |fcurrent − fprev| < ǫ

if significant progress is made, but it may take too long if the objective
function improves slowly. Moreover, this method requires careful selection
of the threshold ǫ.

Stopping criteria based on the duality gap

The duality gap is a concept used in optimization to measure the difference
between the objective values of the primal and dual problems, for duality
basic theory see Chapter 5 from (Boyd and Vandenberghe, 2004). From this
chapter, recall the Lagrange duality problem: consider the following primal
minimization problem

minimize
x

cTx (3.4)

subject to Ax = b,

x ≥ 0.

Then, after computing its Lagrange dual function, the dual problem is ex-
plicitly

maximize
ν

− bT ν (3.5)

subject to AT ν − c ≥ 0.

Let p⋆ and d⋆ be the optimal values of the minimization problem (3.4)
(the primal) and its Langrange dual problem (3.5), respectively. Then, by



24 3.3. Subgradient method

definition, d⋆ is the best lower bound for p⋆. In particular, the weak duality
property is satisfied:

d⋆ ≤ p⋆.

We define as duality gap the difference between these optimal values, i.e.,
p⋆−d⋆, always nonnegative. The duality gap measures the difference between
the best objective function value obtained (in the primal problem) and the
best lower bound (from the dual problem).

This bound can be used to find a lower bound on the optimal value of a
problem that is difficult to solve, since the dual problem is always convex,
and in many cases can be solved efficiently. This criterion, defined by using
these bounds, is more rigorous than simply observing the improvement in
the objective function because it provides a direct measure of how much
improvement is possible.

In Section 3.3 from (Boyd, 2014), we can find some lower bounds for the
optimal value of the principal optimization problem. The main idea is to
obtain a lower bound lk at each iteration,

lk ≤ p⋆, ∀k.
The sequence l1, l2, . . . needs not increase, so we can keep track of the best
lower bound found, the tighter one, that is,

l
(k)
best = max{l1, . . . , lk}.

We can use this information to define a stopping rule and terminate the

algorithm when the difference f
(k)
best − l

(k)
best is smaller than some threshold

ǫ, where f
(k)
best represents the best objective function value obtained until

iteration k, the minimum one.

The pseudocode for this stopping criterion is shown in Algorithm 6. At each
iteration, it computes the point by the subgradient method, its objective
value and the respective lower bound. In both cases, it compares these two
values iteratively to the ones obtained in the previous iteration, in order
to choose the best one. The method performs while the difference between
these values is smaller than some threshold ǫ.

This stopping criterion ensures that the algorithm stops when a near-optimal
solution is found. It is based on the duality gap defined before, which pro-
vides a measure of how close the current solution is to the optimal solution.

Nevertheless, selecting the appropriate stopping criterion for subgradient
methods depends on the specific problem at hand, computational resources,
and desired solution accuracy. Often, a combination of criteria (e.g., max-
imum iterations and improvement threshold) is used to balance between
convergence guarantee and computational efficiency.
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Algorithm 6 Stopping criterion: Based on duality gap

1: k = 0, x(k) ∈ R
n, f

(k)
best ← f(x(k)), l

(k)
best ← −ǫ

2: repeat

3: Find a subgradient g(k) ∈ ∂f(x(k))
4: Update x(k+1) ← x(k) + αkg

(k)

5: Compute lower bound of the solution lk+1

6: Evaluate fk+1 ← f(x(k+1))

7: Update lower bound l
(k+1)
best ← max{lk+1, l

(k)
best}

8: Update best objective function value f
(k+1)
best ← min{fk+1, f

(k)
best}

9: k ← k + 1
10: until |f (k)

best − l
(k)
best| ≤ ǫ

3.3.3 Step size

In subgradient methods, choosing an appropriate step size is crucial for
the convergence and efficiency of the algorithm. The step size determines
how far the algorithm moves along the direction of the subgradient at each
iteration. The most common step size strategies are the following:

(i) Constant step size. A positive constant, independent of the itera-
tion k,

αk = α > 0.

The step size is fixed throughout the iterations. It is simple to imple-
ment but might not converge to the optimal solution so it is effective
for problems where an approximate solution is acceptable.

Choosing the right step size is crucial: if it is too large, the algorithm
may oscillate or diverge; if it is too small, the algorithm may con-
verge very slowly. Typically it requires experimentation or domain
knowledge to set an appropriate α.

(ii) Constant step length.

αk = γ/‖g(k)‖2,

where γ > 0 and g(k) is the subgradient used at the moment. This
means that the distance between each step is always γ, that is

‖x(k+1) − x(k)‖2 = ‖x(k) −
γ

‖g(k)‖2
g(k) − x(k)‖2 = γ.

This step provides a way to maintain consistent progress by ensuring
each iteration moves the same distance in the direction of the subgra-
dient. While it may not guarantee convergence to the exact optimal
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solution, it offers a practical balance between simplicity and effective
progress. The key challenge lies in selecting an appropriate step length
γ, which requires careful consideration of the problem’s characteristics.

(iii) Square summable but not summable. The step sizes satisfy

αk ≥ 0,

∞
∑

k=1

α2
k <∞,

∞
∑

k=1

αk =∞.

One typical example is αk = a/(b+ k), where a > 0 and b ≥ 0.

This approach obtains a balance ensuring the algorithm makes steady
progress towards the optimal solution while gradually refining the steps
to converge accurately. Larger initial steps help explore the solution
space, while diminishing steps allow the algorithm to exploit and fine-
tune the solution as it progresses.

(iv) Nonsummable diminishing step size. The step sizes satisfy

αk ≥ 0, lim
k→∞

αk = 0,

∞
∑

k=1

αk =∞.

Step sizes that satisfy this condition are called diminishing step size
rules. A typical example is αk = a/

√
k, where a > 0.

Similar to the previous case, the divergent behaviour of the sum of the
steps guarantees the progress of the algorithm. While the diminishing
nature ensures that the steps become smaller over time, allowing the
algorithm to refine the solution and avoid overshooting.

(v) Nonsummable diminishing step length. The step sizes are chosen
as αk = γk/‖g(k)‖2, where

γk ≥ 0, lim
k→∞

γk = 0,

∞
∑

k=1

γk =∞.

Follows the same idea as previous approaches, its nonsummable prop-
erty ensures the progress while the diminishing property tunes the step
in order to obtain more accuracy.

Note that these step sizes are already determined before the algorithm is
run, and they do not depend on any data computed during the algorithm,
apart from the current subgradient. This is very different from the exact line
search used in GD, which depends on the current point and search direction.
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3.3.4 Convergence results

The convergence behavior of subgradient methods depends significantly on
the parameters previously defined during this chapter. Mainly, the choice
of the step size. Different types of step size rules can lead to different
convergence rates and properties. Understanding these properties helps in
selecting the appropriate step size strategy for different types of optimization
problems.

In this section we discuss the convergence results for previously introduced
step sizes. For constant step size and constant step length the following is
satisfied:

lim
k→∞

f
(k)
best − p⋆ < ǫ,

where p⋆ denotes the optimal value of the primal problem, and ǫ is a function
of the step size parameter α, and decreases with it. Then, the subgradient
method is guaranteed to find an ǫ-suboptimal point within a finite number
of steps, meaning that the objective function value corresponding to that
point differs in ǫ units from the optimal value p⋆. So the method does not
guarantee convergence to the exact optimal solution, but an ǫ-suboptimal
solution provides a practical way to obtain a solution that is close to optimal
within a predefined tolerance; by letting ǫ be small enough we can obtain a
better approximation.

For the diminishing step size and step length rules, and therefore also the
square summable but not summable one, the method is guaranteed to con-
verge to the optimal value, i.e.,

lim
k→∞

f(x(k)) = p⋆.

Convergence proof

We present the convergence proofs described in Section 3 from (Boyd, 2014).
For these proofs some assumptions are needed. We will assume there is a
minimizer x⋆ of f , and that the norm of the subgradients is bounded. That
is, there exists a G such that

‖g(k)‖2 ≤ G, ∀k.

We also assume that there is a real value R satisfying

R ≥ ‖x(1) − x⋆‖2,

that can be interpreted as an upper bound on the distance from x(1) to the
optimal set X⋆, that is, the set of all optimal solutions: dist(x(1), X⋆).
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For the subgradient methods, the convergence proofs are based on the Eu-
clidean distance to the optimal set, instead of focusing on the objective func-
tion value, which often increases.

We now present some inequalities. For x⋆ an arbitrary optimal point, and
exploiting the property of the euclidean norm ‖v‖22 = vTv for a vector v,
we have the following:

‖x(k+1) − x⋆‖22 = ‖x(k) − αkg
(k) − x⋆‖22

= (x(k) − x⋆ − αkg
(k))T (x(k) − x⋆ − αkg

(k))

= (x(k) − x⋆)T (x(k) − x⋆)− 2(x(k) − x⋆)Tαkg
(k)+

(αkg
(k))T (αkg

(k))

= ‖x(k) − x⋆‖22 − 2αkg
(k)T (x(k) − x⋆) + α2

k‖g(k)‖22
≤ ‖x(k) − x⋆‖22 − 2αk(f(x

(k) − p⋆) + α2
k‖g(k)‖22,

where p⋆ = f(x⋆). The last inequality follows from the definition of the
subgradient, for x⋆, x(k) ∈ domf . Applying this inequality recursively, we
obtain

‖x(k+1) − x⋆‖22 ≤ ‖x(1) − x⋆‖22 − 2
k
∑

i=1

αi(f(x
(i))− p⋆) +

k
∑

i=1

α2
i ‖g(i)‖22.

Reordering and using the bound R,

2
k
∑

i=1

αi(f(x
(i))− p⋆) ≤ 2

k
∑

i=1

αi(f(x
(i))− p⋆) + ‖x(k+1) − x⋆‖22

≤ ‖x(1) − x⋆‖22 +
k
∑

i=1

α2
i ‖g(i)‖22

≤ R2 +
k
∑

i=1

α2
i ‖g(i)‖22.

In particular,

2
k
∑

i=1

αi(f(x
(i))− p⋆) ≤ R2 +

k
∑

i=1

α2
i ‖g(i)‖22, (3.6)

and combining (3.6) with

k
∑

i=1

αi(f(x
(i))− p⋆) ≥

(

k
∑

i=1

αi

)

min
i=1,...,k

(f(x(i))− p⋆) =

(

k
∑

i=1

αi

)

(f
(k)
best − p⋆)
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we obtain the inequality

f
(k)
best − p⋆ = min

i=1,...,k
f(x(i))− p⋆ ≤ R2 +

∑k
i=1 α

2
i ‖g(i)‖22

2
∑k

i=1 αi

. (3.7)

Using the fact that the subgradients are bounded by G, we finally obtain

f
(k)
best − p⋆ ≤ R2 +G2

∑k
i=1 α

2
i

2
∑k

i=1 αi

. (3.8)

Now, from this last inequality (3.8), we can deduce several convergent re-
sults.

Constant step size. For αk = α constant, we have

f
(k)
best − p⋆ ≤ R2 +G2α2k

2αk
.

The righthand side converges to G2α/2 as k →∞.

Thus, for the subgradient method with fixed constant step size α, f
(k)
best

converges to within G2α/2 of optimal.

Constant step length. Using the step size αk = γ/‖g(k)‖2, inducing a
constant step length of size γ, the inequality (3.7) becomes

f
(k)
best − p⋆ ≤ R2 + γ2k

2
∑k

i=1 γ/‖g(i)‖2
≤ R2 + γ2k

2γk/G

by using the bound G for the subgradient. The righthand side converges to
Gγ/2 as k →∞. Therefore, in this case the subgradient method converges
to within Gγ/2 of optimal.

Square summable but not summable. Let the step size be such that

‖α‖22 =
∞
∑

k=1

α2
k <∞,

∞
∑

k=1

αk =∞.

Then,

f
(k)
best − p⋆ ≤ R2 +G2‖α‖22

2
∑k

i=1 αi

,

which converges to 0 as k →∞ and thus, the subgradient method converges
to the optimal value.

Diminishing step size rule. If the step size is diminishing, that is,

αk ≥ 0, lim
k→∞

αk = 0,
∞
∑

k=1

αk =∞,
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the righthand side of (3.8) converges to zero, implying that the subgradient
method converges.

In fact, let ǫ > 0, then there exists N1 ∈ Z such that αi ≤ ǫ/G2 for all
i > N1. There is also an N2 ∈ Z such that

N2
∑

i=1

αi ≥
1

ǫ

(

R2 +G2
N1
∑

i=1

α2
i

)

,

since
∑∞

i=1 αi =∞. Let N = max{N1, N2}. Then for k > N , we have

R2 +G2
∑k

i=1 α
2
i

2
∑k

i=1 αi

≤ R2 +G2
∑N1

i=1 α
2
i

2
∑k

i=1 αi

+
G2
∑k

i=N1+1 α
2
i

2
∑N1

i=1 αi + 2
∑k

i=N1+1 αi

≤ R2 +G2
∑N1

i=1 α
2
i

(2/ǫ)
(

R2 +G2
∑N1

i=1 α
2
i

) +
G2
∑k

i=N1+1

(

ǫαi/G
2
)

2
∑N1

i=1 αi

=
ǫ

2
+

ǫ

2
= ǫ.

Nonsummable diminishing step lengths. Suppose αk = γk/‖g(k)‖2,
where

γk ≥ 0, lim
k→∞

γk = 0,

∞
∑

k=1

γk =∞.

In this case, inequality (3.7) becomes

f
(k)
best − p⋆ ≤ R2 +

∑k
i=1 γ

2
k

2
∑k

i=1 γk/‖g(i)‖2
≤ R2 +

∑k
i=1 γ

2
k

(2/G)
∑k

i=1 γi
,

which converges to zero as k →∞.

3.3.5 Subgradient method for constrained problems

The subgradient method described before applies to the general uncon-
strained case. It can be extended to solve inequality constrained problems
of the form

minimize f0(x) (3.9)

subject to fi(x) ≤ 0, i = 1, 2, . . . ,m,

where fi are convex functions.
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This algorithm iterates as the subgradient method. The difference is on
the subgradient: it has to choose either an objective subgradient, i.e., a
subgradient of the objective function, or one of the constraint functions.

If the current point is feasible, the method chooses an objective subgradient
and iterates so as to decrease the objective function value. While if the
point is infeasible, it uses a subgradient of a violated constraint function,
any of them if there are more than one. In this case, the algorithm tries to
decrease the value of the violated constraint function, in order to make it
valid.

The method iterates in the following way:

x(k+1) = x(k) − αkg
(k),

where αk > 0 is a step size, and g(k) is a subgradient chosen as

g(k) ∈







∂f0(x
(k)), if fi(x

(k)) ≤ 0, i = 1 . . . ,m,

∂fj(x
(k)), if fj(x

(k)) > 0, for such a j.

As in the subgradient method, the steps given in this algorithm are not
necessarily descendent, so the iterations can be infeasible, meaning that the
point obtained after computing an iteration may be an infeasible point. The
key is again to tune those parameters that enable us to obtain a proper result
efficiently.

In any case, this efficience is hard to obtain if a dataset has a lot of instances.
Computing the mean can be very slow and the algorithm will take much
time to return a reasonable good result. So, in order to make it faster, we
introduce a variant of the subgradient method: the Stochastic Subgradient
method.

3.4 Stochastic Subgradient Method

These methods are extensions of the subgradient method to stochastic set-
tings and are particularly useful for problems where the exact evaluation
of gradients or subgradients is computationally infeasible due to the large
size of the dataset. In large-scale settings, computing the exact subgradient
can be impractical. Instead, a stochastic subgradient is used, which is an
unbiased estimator of the true subgradient (Boyd et al., 2018).

Stochastic methods are particularly common in scenarios where the objective
function is a sum of a large number of terms. This happens almost every
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time we are doing ERM over a number of samples. In order to simplify,
suppose we want to solve the following problem

min
m
∑

i=1

fi(x),

where fi is a convex function for every i.

Recall how subgradients behave with the sum,

∂

m
∑

i=1

fi(x) =

m
∑

i=1

∂fi(x).

The Classical Subgradient Method (CSM), the one defined in Section 3.3,
would repeat

x(k+1) = x(k) − αk

m
∑

i=1

gi
(k), k = 1, 2, 3, . . . ,

where gi
(k) ∈ ∂fi(x

(k)). So if m is quite large, we have to compute m − 1
sums at each iteration of CSM in order to obtain a subgradient.

Instead, the Stochastic Subgradient Method (SSM) just computes the sub-
gradient of one fi at iteration. That is, a step of the stochastic method
iterates as

x(k+1) = x(k) − αkgik
(k), k = 1, 2, 3, . . . ,

where ik ∈ {1, . . . ,m} is some chosen index at iteration k.

In other words, rather than computing the full subgradient, only the subgra-
dient gik corresponding to one of the functions fik is used at each iteration.

We can follow two methods for choosing which gi to use, that is, two rules
for choosing index ik at iteration k:

(i) Cyclic rule: choose ik = 1, 2, . . . ,m, 1, 2, . . . ,m, . . .,

(ii) Randomized rule: choose ik ∈ {1, . . . ,m} uniformly at random.

Computationally, m stochastic steps approximately correspond to one classic
step; but furthermore, using the stochastic method we do not need to have
all data points in memory. So naturally, computing SSM is faster than
computing the classic one. But we still need to see this new method works,
that is, that the stochastic method converges to the solution of the problem.



Chapter 3. Subgradient methods 33

In fact, a stochastic step performs quite similar to a classic step, the differ-
ence on iteration k is

ǫik = ∂
m
∑

i=1

fi − ∂fik .

Roughly speaking, different errors compensate each other and, on average,
the accumulated error is insignificant.

The expected value of the subgradient on the stochastic case will be almost
the real subgradient. Then, computing a stochastic step gives not a big
difference from the real value, the one obtained by applying a classic step,
and moreover it is much faster.

In order to obtain a good performance, the behaviour of SSM also needs to
be analyzed so that the elements defined in Subsections 3.3.1 - 3.3.3 can be
tuned.

3.4.1 Convergence results

We will state very basic convergence results for the stochastic method,
considering step sizes that are square summable but non summable. See
(Boyd et al., 2018) for the proofs.

Assume there is an x⋆ that minimizes f , and a G for which E‖g(k)‖22 ≤ G2

for all k. We also assume that R satisfies E‖x(1) − x⋆‖22 ≤ R2.

Then,

Ef
(k)
best −→ f⋆

as k → ∞, i.e., we have convergence in expectation. We also have conver-
gence in probability: for any ǫ > 0,

lim
k→∞

Prob
(

f
(k)
best ≥ f⋆ + ǫ

)

= 0.

More sophisticated methods can be used to show almost sure convergence.

3.5 Application to MRCs

The innovation of this work is to apply these subgradient methods to solve
the optimization problems described in (2.2) and (2.5). This is the first time
such algorithms are used for this specific task.
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3.5.1 Binary case

In order to start from the simplest case, let us consider the binary case where
Y = {1, 2}. Then, the vector we want to learn at the minimization task is
of the form µ = {µ1, . . . , µ2d}T. In order to apply the subgradient method,
we need to calculate a subgradient of the objective function. In this case,

f(µ) = 1− τTµ+ λT|µ|+ 1

n

n
∑

i=1

ϕ(µ, xi), (3.10)

with

ϕ(µ, x) = max

{

[xT, 0T] µ− 1, [0T, xT] µ− 1,
[xT, xT] µ− 1

2

}

,

(3.11)
where 0 is the null vector in R

d.

Recalling the rule of sum of subdifferentials (ii) described in Section 3.2.2,
it is enough to compute a subgradient of each addend in (3.10) in order to
obtain a subgradient of f , because every addend is a convex function itself.
So let us consider the first three addend as fi functions on µ, for i = 1, 2, 3.

Since f1(µ) = 1 is differentiable, we have that

∂f1(µ) = {∇1} = {0}.

The function f2(µ) = −τTµ is also differentiable. Therefore,

∂f2(µ) = {∇
(

−τTµ
)

} = {−τT}.

However, f3(µ) = λT|µ| is not differentiable. Then, since λ ≥ 0, applying
the nonnegative scaling rule (i) from Section 3.2.2, we just need to compute
∂|µ|.

According to Example 3.2.1, we define g = (g1, . . . , g2d) ∈ ∂|µ| as

gi = sign(µi), i = 1, 2 . . . , 2d.

The most challenging part might be the computation of the subgradient of
the maximum given in (3.11). Following rule (iii) for the pointwise maxi-
mum, we have to obtain a subgradient of the function achieving the maxi-
mum at x.

If the maximum is achieved either on the first or second argument of ϕ(µ, x),
since they are differentiable functions, we have

∂ϕ(µ, x) = {Φ(x, j)},
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where j = 1 if the maximum is achieved on the first argument, and j = 2 if
it is achieved on the second.

Otherwise, if ϕ(µ, x) = ([xT, xT]µ− 1)/2, it is still differentiable and in this
case the subdifferential is

∂ϕ(µ, x) = {([xT, xT]/2)}.

So in order to obtain a subgradient of f , we just need to add the subgradi-
ents obtained in the previous steps. Then, the CSM is run as described in
Section 3.3 with the obtained subgradient.

Note that for this method we need to compute the average of all the sub-
gradients gi ∈ ∂ϕ(µ, xi) for i = 1, 2 . . . , n, whereas for the SSM just one i
is chosen at each step, following one of the rules described in Section 3.4.

3.5.2 Generalization to the multiclass case

The previous computations can easily be generalized to the multiclass case.
Again, the main problem is to compute the subgradient of the maximum
defined in (2.6), i.e.,

ϕ(µ, x) = max
C⊆Y

(

∑

y∈C Φ(x, y)
Tµ− 1

|C|

)

.

The computational cost of the maximum is very high, since we have to
compute the maximum among every subset of Y. For a fixed x, it is enough
to compare the values given by

∑

y∈C

Φ(x, y)Tµ (3.12)

for each subset C.

Then, we have to compare 2|Y| − 1 values, the number of nonempty subsets
of Y. But, in fact, note that we can refuse most of the subsets. If we obtain
the greatest value among all the subsets of the same cardinality, we just
need to compare those greatest values in order to obtain the maximum. In
this case, we reduce the comparison of 2|Y| − 1 elements to |Y|.

Let us compute just the value corresponding to subsets with one element,
and order them. For simplicity, let us suppose that the order is given by
just ordering the labels. That is,

Φ(x, 1)Tµ ≥ . . . ≥ Φ(x, |Y|)Tµ. (3.13)
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It is evident that the sum of the highest two values will be greater than any
other sum of two different values, i.e.,

Φ(x, 1)Tµ+Φ(x, 2)Tµ ≥ Φ(x, i)Tµ+Φ(x, j)Tµ

for every i 6= 1, j 6= 1, 2.

So for the value corresponding to subsets of two elements, we just take into
account the two greatest ones given in (3.13) and discard the others, that
is, discard every subset of two elements C 6= {1, 2}.

The same reasoning follows for every possible cardinality of |C|. For a generic
case where |C| = s, we will take the greatest s values in (3.13) for the sum
in (3.12), and discard the rest.

Then, the maximum we have to compute is reduced to

max

{

Φ(x, 1)Tµ− 1,
Φ(x, 1)Tµ+Φ(x, 2)Tµ− 1

2
,

. . . ,
Φ(x, 1)Tµ+ . . .+Φ(x, |Y|)Tµ− 1

|Y|

}

.

At this point, the subgradient is computed as described in the binary case,
by finding at which argument the maximum is achieved and calculating its
subgradient.

3.5.3 Constrained problem

The minimization problem given in (2.2)-(2.3) does not involve the calculus
of the average among instances, so SSM cannot be applied to it. Instead, in
this case, the maximum has to be computed among all the instances. This
takes even more time, and the CSM will not be a very efficient method.
Instead, we can convert this problem to a constrained optimization problem,
and use the machinery introduced in Section 3.3.5. For that, we use a model
transformation technique that deletes the maximum.

We define the following problem by introducing a new variable ν ∈ R,

min
µ,ν

1 − τTµ+ λT|µ|+ ν (3.14)

s.t.
∑

y∈C

Φ(xi, y)
Tµ− 1

|C| ≤ ν, ∀xi, C ⊆ Y.

Reorganizing it in order to have the same structure as in (3.9), we have the
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following objective and constraint functions:

f0(µ, ν) = 1 − τTµ+ λT|µ|+ ν, (3.15)

fj(µ, ν) =
∑

y∈C

Φ(xi, y)
Tµ− 1

|C| − ν, (3.16)

where there are as many fj as constraints, i.e., one j for each instance xi
and subset C.

At this point, the algorithm defined in Section 3.3.5 is run for these functions.
In this case, since there are two variables, we update each one using the
corresponding subgradient at each step. Every fj behaves with respect to
µ in the same way as described in previous sections. So the calculus of a
subgradient is already explained.

On the other hand, every function is differentiable with respect to ν. So in
order to obtain its subdifferential, it is enough to derive wrt ν the corre-
sponding function at each iteration, i.e.,

gν
(k) =







1, if x(k) feasible,

−1, if x(k) infeasible.

The main problem is to check whether the current point is feasible or not,
i.e., to check whether every constraint is satisfied. This can be a hard
task since there might be too many constraints but, in fact, it results quite
simple: it is enough to calculate the maximum among all classes for each
instance, and check if it is not positive. If these values are non-positive, so
are the rest, and every constraint is satisfied. On the contrary, if one of
those values is positive, the point is infeasible and it already determines a
violated constraint, so we can use that constraint function to compute the
subgradient at that step.

By Section 3.5.2, we already know how to calculate this maximum efficiently,
so we can easily compute this method. In this way, the problem is restricted
to check just n number of constraints.
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Chapter 4

Numerical results

For the experiments in Chapter 4, we have considered different binary and
multiclass classification datasets, available in the publicly available UCI
repository (Dua and Graff, 2017). Each dataset mentioned in the tables
and captions includes a link to its corresponding page on the UCI website.
These experiments were run using MATLAB and they were conducted on
a machine with Intel Core i5 CPU, RAM 8 GB memory. The main goal of
this experimental part is to see how our algorithm works, comparing differ-
ent situations in order to choose the right parameters introduced in Section
3.3. Various aspects are taken into account. Mainly, execution time and
approximation to the real solution, where the aim is to obtain a good trade-
off so as to achieve both situations. For these purposes, we test different
step sizes, number of iterations, variable evaluation, etc. and we train the
method using various datasets, in order to assess its performance.

Recall that subgradient methods are not exact methods and can just pro-
vide an approximation of the solution. So, the performance criterion has
been whether the obtained result is close enough to the solution of the min-
imization problem. In order to determine the allowed error factor, we take
into account that the values we are optimizing refer to classification error
probabilities, and we will consider errors around 10−2 as acceptable.

Then, we have to compare the approximation solutions obtained by the
algorithms with the real one. To do so, the real solution is needed, but
obtaining it is a very hard task. Therefore, achieving the real solution is not
an option then, but we still need a value so as to evaluate the completion of
the algorithm. So we use CVX, a MATLAB-based software for disciplined
convex programming (Grant and Boyd, 2014), in order to obtain a very close
approximation, a value we will use as a reference to determine an effective
method.

39
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It is natural to ask why we are developing a new algorithm if CVX can
already provide a reliable solution. It does for relatively small datasets, but
it will take very long to perform with large ones. That is why we use these
tractable datasets to train our method and guarantee a good performance
even with larger data.

4.1 Results for MRCs with 0-1 loss and fixed
marginals

In this section we analyze the results obtained for the optimization problem
given in the learning stage of MRCs with 0-1 loss and fixed marginals, the
one described in equations (2.5)-(2.6).

We begin with a small simple dataset (Haberman, binary with 306 instances
of 3 variables) and see how the algorithm works. A small step size may imply
a slower convergence but it also provides a more accurate result. The idea is
to obtain a method which performs fast enough to allow the use of a precise
step size. We present in Table 4.1 the results obtained by each method,

Table 4.1. Results obtained with both Classic and Stochastic methods for a
binary dataset with 306 samples.

Dataset CVX CSM SSM

Haberman t Solution n α t Solution t Solution

4.0675 0.4722 103 10−1 1.8287 0.4726 0.2163 0.6772

10−2 1.8499 0.4727 0.2014 0.4802

10−3 1.8848 0.4855 0.2176 0.4857

0.02/i 1.8132 0.4833 0.1690 0.5034

0.02/
√
i 1.3327 0.4833 0.1334 0.4937

104 10−1 15.9164 0.4725 0.2754 0.7923

10−2 16.0396 0.4724 0.2713 0.4785

10−3 15.9771 0.4727 0.2725 0.4729

0.02/i 15.8553 0.4732 0.2544 0.5022

0.02/
√
i 11.6459 0.4732 0.2143 0.4735

105 10−1 >4min 0.4726 0.7779 0.5982

10−2 - - 0.7438 0.4782

10−3 - - 0.7379 0.4729

0.02/i >5min 0.4726 0.8748 0.5012

0.02/
√
i >3min 0.4726 0.5394 0.4726

CVX, the CSM and the SSM, for Haberman dataset, for different number of

https://archive.ics.uci.edu/dataset/43/haberman+s+survival
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iterations n and step sizes α, including the adaptive step sizes depending on
the number of iterations i. For each method the results are represented in
two columns corresponding to solution value (Solution) and execution time
(t). We can observe that the Stochastic method is significantly faster than
the Classic one. However, CSM gives very accurate results while SSM needs
more iterations in order to obtain such good approximations. For instance,
the results of SSM for 103 iterations are not very promising, but the speed
of this method allows to make more iterations so that we can obtain a better
approximation, as it happens with 105 iterations.

Moreover, even if the results given by the Classic method are acceptable,
the increment on the number of iterations takes already too long in this
binary little dataset, so we can assume it will not be possible to compute it
for large ones. That is why we are not showing the results for CSM with
α = 10−2 and α = 10−3 for 105 iterations; these processes will take pretty
long, as it happens with α = 10−1, and we already obtained a very good
approximation, also with α = 10−1.

In order to give an example where CVX takes longer, we present the follow-
ing results in Table 4.2 for Redwine dataset (1599 instances of 11 variables
and 6 classes). Not only larger datasets, according to the number of in-
stances, make this process slower, but also datasets of multiclass scenario,
as this Redwine one; the time increases as the number of classes does. A
few results are shown in the table organized as previously described: we
consider some number of iterations n and a specific step size α for each n,
and represent the results obtained by the CSM, the SSM and CVX (solution
value (Solution) and execution time (t)) by columns. We can see that the
CVX takes more than a minute, while the implementation of the stochastic
method is very fast. Nevertheless, the classic one takes much time already
for 104 iterations, so computing the results for 105 is not possible.

Table 4.2. Successful results obtained with both Classic and Stochastic
methods for Redwine dataset with 1599 samples and 6 labels.

Dataset CVX CSM SSM

Redwine t Solution n α t Solution t Solution

>1min 0.6705 103 10−1 13.4132 0.6706 0.2194 1.2818

104 10−3 >4min 0.6740 0.3185 0.6756

105 10−3 - - 1.0823 0.6728
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4.1.1 Importance of the step size

The choice of the step size does not only determine the convergence speed,
but the convergence in general, as proved in Section 3.3.4. Figure 4.1 shows
the importance of a proper step size in order to achieve a good performance
on the method. Figure 4.1 is obtained using Credit dataset with 690 classes
of 15 variables and 2 classes, and shows the objective function values given
by the SSM, on the y axis, for different step sizes during 104 iterations,
on the x axis. We can see the algorithm for the step size α = 0.001, red
line, gets very close to the value given by CVX for this scenario, yellow line.
While for α = 0.01, blue line, the method is actually not working, it keeps
fluctuating and even the minimum value is not an accurate approximation
to the solution. Apart from the constant step sizes, we try different ones
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Figure 4.1: Behavior of the SSM for n = 104 number of iterations with
Credit dataset, binary with 690 samples. The blue line shows the method
for α = 0.01, the red one for α = 0.001, and the yellow one is the reference
value obtained with CVX, the one to be approximated.

that depend on the current number of iteration i: α = c/i and α = c/
√
i,

where c is a nonzero constant. The second one is an attempt to correct the
first as shown in Figure 4.2. The figure shows the objective function values
obtained with the stochastic method for previously introduced Haberman
dataset. The graphics are computed using 104 iterations and α = 0.02/i and
α = 0.02/

√
i step sizes. The blue line corresponding to α = 0.02/i, increases

the objective value considerably during the first steps and converges very
slowly; this makes the algorithm harder to achieve a lower final value. On
the other hand, the square root, α = 0.02/

√
i, red line, makes the step size

smaller as the number of iterations increases, so that the convergence is

https://archive.ics.uci.edu/dataset/27/credit+approval
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faster at the beginning and enables the achievement of a lower value. By
Figure 4.2b we see that the behavior of the blue line, values for α = 0.02/i,
is actually similar to the red line, values corresponding to α = 0.02/

√
i, on

a smaller scale so that takes much longer to decrease. The constant we use
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Figure 4.2: Comparison of the SSM for Haberman dataset with 104 itera-
tions. In Figure 4.2a we have in blue the values for α = 0.02/i, in red for
α = 0.02/

√
i, and in yellow the value obtained with CVX. In Figure 4.2b we

can see clearer the behavior of the method with α = 0.02/i. That is, both
blue lines represent the same function.

is 0.2, motivated by analyzing the method behavior with α = 1/i. That is,
for this step size the method returns increasing values. After different trials,
0.2 is the best value reducing this increment.

4.1.2 Performance of different evaluation techniques

We already introduced in Section 3.3.1 other evaluation techniques that
allow to achieve a better solution, in exchange of, probably, a higher com-
putational cost.

Firstly, the first approach, described as keeping track of the best point, needs
the calculation of the objective function value at each step. This is a very
costly task, since it needs to store every instance and compute the respective
maximum at each iteration, in order to obtain the objective value and, then,
compare to the previous one. On the contrary, the simple approach used
until now, makes this evaluation just on the last iteration, in order to return
the solution value.

It is obvious the success of this new approach, since, in this case, we will
obtain the best value achieved during the whole method. Using this re-
sult, this type of procedure can be useful in the cases where the algorithm

https://archive.ics.uci.edu/dataset/43/haberman+s+survival
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fluctuates and it is not very stable as shown in Figure 4.3. The objective
function values corresponding to the stochastic method for Glass dataset
(214 instances of 9 variables with 6 classes) are shown, using 103 instances
and α = 10−2 step size. The blue line represents the SSM with the usual
points given by the algorithm, while the red one is using the best point
approach to evaluate the function. This removes the fluctuations and keeps
the best value obtained along the computation of the method. We see how
in general the best point method keeps closer to the CVX value, the one
we would like to achieve. However, this method will take much longer than
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Figure 4.3: Objective function values for the SSM with Glass dataset, mul-
ticlass of 6 labes with 214 instances, n = 103 number of iterations and
α = 10−2. In blue, the performance of the algorithm as usual; in red, per-
formance using the best point approach; in yellow, the CVX value.

teh usual one. We show in Table 4.3 the results for the same dataset as
the one used in Figure 4.3, Glass. Mostly, the difference of execution time
between the evaluation approaches is remarkable. Results corresponding to
the value of the solution and the execution time t are shown by columns,
for the SSM with each evaluation technique (the usual and the best point
method). We can see the fast performance of the usual method comparing to
the best evaluation. For the purpose of decreasing this computational cost
but, at the same time, trying to keep an improvement on the solution value,
the mean approach was described. This method computes the mean of the
points given by the algorithm at each iteration, so no function evaluation is
needed.

Moreover, for the calculus of the mean, we just need to compute a multi-
plication and a sum. That is, we compute the mean of points x(1), . . . , x(i)

https://archive.ics.uci.edu/dataset/42/glass+identification
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Table 4.3. Results for SSM using the usual evaluation method, and the best
point approach. Glass dataset with 214 samples and 6 labels.

Dataset CVX SSM-usual SSM-best

Glass t Solution α n t Solution t Solution

4.9693 0.6056 10−2 103 0.1608 0.6504 2.0184 0.6241

104 0.3612 0.6462 18.5665 0.6172

105 1.0605 0.6194 >3min 0.6172

recursively by following

mean(i) =
i− 1

i
mean(i−1) +

1

i
x(i).

Figure 4.4 and Table 4.4 illustrate this new process and the comparison of
times. In Figure 4.4 we have the comparison of the SSM for Glass dataset
reduced to 4 classes (192 samples of 9 variables) using the usual and the
mean evaluation technique. Results obtained for n = 4000 number of it-
erations and α = 10−2 are shown in blue for the usual approach, and in
red for the mean evaluation values. The mean performs a stable behavior
getting close to the CVX value, in yellow. Table 4.4 shows numerical re-
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Figure 4.4: Behavior of the SSM for n = 4000 number of iterations and
α = 10−2 with the reduction of Glass dataset to 4 classes, multiclass of
4 labes with 192 samples. The blue line shows the method for the usual
approach, the red one for the mean and the yellow value obtained with
CVX.

sults, solution values and computation time, for the stochastic method in

https://archive.ics.uci.edu/dataset/42/glass+identification
https://archive.ics.uci.edu/dataset/42/glass+identification
https://archive.ics.uci.edu/dataset/42/glass+identification
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the previous scenario (Glass dataset reduction to 4 classes, n = 4000 itera-
tions and α = 10−2) with each evaluation approach introduced so far: usual
one, the best point method, and the mean evaluation; together with the
CVX results, too. We can appreciate how the usual and the mean approach

Table 4.4. Results obtained with SSM for the reduction of Glass dataset to
4 classes with α = 10−2 and n = 4000.

Dataset CVX SSM-usual SSM-mean SSM-best

Glass4 t Solution t Solution t Solution t Solution

5.5706 0.5463 0.2186 0.5984 0.4585 0.5717 5.1871 0.5609

are quite similar on time, unlike the best procedure, that takes considerably
longer. Furthermore, the algorithm performs better using the mean than
using the usual points. In this case, the exact number of iterations is not
such significant as it can be in the usual approach, i.e., in the latter method,
the values corresponding to consecutive iterations might vary significantly,
while using the mean avoids this issue.

4.2 Results for MRCs with 0-1 loss

The main difference of the problem used is this section, the one described in
equations (2.2)-(2.3), compared to the one used in the previous section, is
the computation of the maximum among all instances, instead of calculating
the average.

We will analyze the accuracy of the subgradient method for the constrained
problem given in 3.14, using different datasets and steps sizes. The first
idea is to replicate the experiments done in the previous section, in order to
compare the methods.

4.2.1 Importance of the step size

A few examples given in Table 4.5 are enough to illustrate that big constant
step sizes, such as 10−1 or 10−2, are not working in this problem as in
the prior one. The table shows the results obtained by the subgradient
method for the constrained problem using Haberman dataset (binary with
306 instances of 3 variables), representing the solution value and execution
time by columns for different number of iterations n = 103, 104, 105 and
step sizes α = 10−1, 10−2, 10−3. Note that the first two step sizes do not
provide good results for any number of iterations. In the latter problem, the

https://archive.ics.uci.edu/dataset/42/glass+identification
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Table 4.5. Results from subgradient method for constrained problem (SM)
with Haberman dataset.

Dataset CVX SM

Haberman t Solution n α t Solution

5.3952 0.4866 103 10−1 0.9650 0.8540

10−2 0.9805 0.5209

10−3 0.9462 0.4936

104 10−1 8.5978 0.8819

10−2 8.6323 0.5172

10−3 8.7319 0.4890

105 10−1 >2min 0.6205

10−2 >2min 0.5026

10−3 >3min 0.4897

steps 10−1 or 10−2 where pretty accurate, and, in fact, Figure 4.5 shows the
comparison of both situations, CSM and constrained method, for the same
scenario, same step size and number of iterations. In the figure the algorithm
is computed for Haberman dataset, using 104 iterations and α = 10−2. The
blue lines show the objective function values for the constrained problem
algorithm with already mentioned parameters, and the red line represents
the CVX value. Moreover, Figure 4.5a shows the extreme fluctuation of the
constrained method for Haberman dataset, the new algorithm is not actually
converging. Whereas Figure 4.5b shows how the CSM works under the same
circumstances. On the other hand, going back to Table 4.5, the step size α =
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Figure 4.5: Comparison of the CSM and constrained method for Haberman
dataset with 104 iterations and α = 10−2. In Figure 4.5a we have the behav-
ior of the constrained method in blue and its CVX value in red. Whereas in
Figure 4.5b we recall the CSM problem for the same scenario in blue, and
its corresponding CVX value in red.

https://archive.ics.uci.edu/dataset/43/haberman+s+survival
https://archive.ics.uci.edu/dataset/43/haberman+s+survival
https://archive.ics.uci.edu/dataset/43/haberman+s+survival
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10−3 seems to perform pretty well, but it needs at least 104 iterations. We
can see in Figure 4.6a that the constrained method tends to converge, even
if it fluctuates, and 4.6b indicates, one more time, the behavior of the CSM
under the same circumstances. We are using Haberman dataset, with 10−3

step size and 104 number of iterations to show these results. Other step sizes
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Figure 4.6: Both figures show in blue the objective function value obtained
by the respective algorithms, and in red the CVX value for each case for
Haberman dataset, 10−3 step size and 104 number of iterations. 4.6a uses
the subgradient method for constrained problems and 4.6b the CSM.

have been also used for this problem, such as α = 0.3/
√
i or α = 0.1/(0.3 +√

i). Table 4.6 shows some results obtained, including these adaptive step
sizes, together with results obtained for α = 10−3 for different datasets and
number of iterations. The presented dataset are the following: Haberman
(binary with 306 instances of 3 variables), Credit (binary with 690 intances
of 15 variables), Glass3 which is the reduction of Glass dataset to 3 classes
(163 intances of 9 variables and 3 classes), Glass (214 instances of 9 variables
and 6 classes). These results are the best ones obtained after different trials
with various step sizes in order to determine the constants. For instance, we
compute the algorithm for Haberman dataset with 0.2/

√
i, the step size used

in the previous problem; but we noticed a different constant is working better
for this problem: α = 0.3/

√
i. We can observe that the values obtained are

better for smaller datasets, as it is easier to perform in a more accurate
way. Moreover, computing the algorithm for larger datasets, both for more
instances and more classes, takes longer as already analyzed.

4.2.2 Performance of different evaluation techniques

Note that the subgradient method for the constrained problem fluctuates
more than the classic or the stochastic one in the previous section, as see in

https://archive.ics.uci.edu/dataset/43/haberman+s+survival
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Table 4.6. Some results from subgradient method for constrained problem
with different datasets and parameters.

Dataset Instances CVX SM

t Solution n α t Solution

Haberman 306 5.3952 0.4866 103 0.3/i 1.3575 0.4871

0.3/
√
i 1.3092 0.4886

Credit 690 7.4179 0.1721 104 10−3 22.3866 0.1778

0.3/
√
i 39.7145 0.1911

0.1/(0.3 +
√
i) 22.0585 0.1804

105 0.3/
√
i >7min 0.1734

0.1/(0.3 +
√
i) >4min 0.1753

Glass3 163 2.4887 0.6270 104 10−3 4.4659 0.6293

0.3/i 4.4622 0.6307

0.3/
√
i 4.6131 0.6301

105 0.3/i >1min 0.6288

0.3/
√
i >1min 0.6273

Glass 214 5.5299 0.6598 104 10−3 13.6199 0.7143

0.3/
√
i 14.8806 0.7245

0.3/(0.1 +
√
i) 11.5370 0.6830

105 10−3 >3min 0.6710

0.3/
√
i >3min 0.6957

0.3/(0.1 +
√
i) >2min 0.6631

the figures presented during this section 4.2, Figures 4.5 and 4.6. Given the
fluctuations, it is a good idea to apply the best point evaluation approach,
or either the mean approach described in Section 3.3.1. We can see in
Figure 4.7 the behavior of these different methods, and in Table 4.7 their
corresponding values. Figure 4.7 represents the objective function values for
the subgradient method using different evaluation techniques: in blue the
usual results, in red the mean evaluation, in yellow the best point approach,
and in purple the corresponding CVX value. Here Haberman dataset is used,
with 103 number of iterations and α = 10−2 step size. Table 4.7 shows the

Table 4.7. Results obtained from different evaluation methods for the sub-
gradient constrained method, for 103 number of iterations and 10−2 step
size. Best point approach and mean evaluation method are compared to the
usual evaluation.

Dataset SM-usual SM-mean SM-best

Haberman t Solution t Solution t Solution

1.6049 0.5209 1.3904 0.5020 2.7900 0.4930

https://archive.ics.uci.edu/dataset/43/haberman+s+survival
https://archive.ics.uci.edu/dataset/27/credit+approval
https://archive.ics.uci.edu/dataset/42/glass+identification
https://archive.ics.uci.edu/dataset/43/haberman+s+survival
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Figure 4.7: Behavior of the subgradient method for constrained problem
using 103 number of iterations and α = 10−2 step size with Haberman
dataset. In blue, the usual evaluation approach; in red, the mean method;
in yellow, the best point evaluation; and in purple, CVX value.

corresponding numerical results from the computation of the subgradient
method for Haberman dataset with 103 number of iterations and 10−2 step
size. The presented three evaluation techniques are represented by columns:
usual results (SM-usual), mean evaluation (SM-mean) and the best point
approach (SM-best). We can observe that these alternative approaches, the
mean and the best point one, perform slightly better than the usual one.
The best point approach takes longer than the other techniques, since it has
to compute the objective function value for each iteration, as explained in
Section 3.3.1.

4.3 Discussion of Results

During this chapter different experiments and computations have been done
with the aim of determining a successful method. First we analyzed the
fixed marginal case where CSM performs very well. The approximations
obtained by the classic method are very accurate, but the algorithm already
takes some time for ”bigger” datasets as Credit, so it could not be possible
to compute the CSM for large datasets, since it will take too much time.
In general, we can deduce that this method will just be useful for simple
datasets (binary with around 1000 instances or less, for example).

The stochastic method seems to provide less accurate results, but it is faster

https://archive.ics.uci.edu/dataset/43/haberman+s+survival
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so more iterations can be computed in order to improve the approximation
and obtain a good solution. In general, small constant step sizes (10−3)
provide accurate solutions, but this also makes the convergence slower. The
best step size assuring this trade-off is α = 10−3. Adaptive step sizes also
have pretty successful results, for instance, we propose α = 0.02/

√
i after

several computations.

According to evaluation approaches, the best point method obtains the best
value but it takes very long, so this evaluation is not actually computable.
On the other hand, the mean approach is used because of its computation
speed and can usually reduce the result value, so it is a good variant in order
to make the algorithm stable and obtain a good solution on an effective way.

During the analysis of the problem for MRCs with 0-1 loss without fixed
marginals, we used the subgradient method for constrained problem where
constant step sizes are not working as well as in the previous problem. So
the step size α = 10−3 could be used, and with at least 104 iterations. This
does not take very long yet, so it can be computed.

Much more fluctuation as in the classic one can also be noted, so in order to
reduce them alternative evaluation techniques have been tested: best point
and mean approach. They perform as they do for the previous problem, the
best point method takes too long so that it is not an option for future large
datasets, while the mean evaluation is a good alternative usually providing
a better solution than the usual algorithm.

In general, we can see that the constrained approach is not as accurate as the
classic method, and do not perform as well as the classic does. Furthermore,
it does not perform as fast as the stochastic one, so that the convergence
will be slower.
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Chapter 5

Conclusions and Future work

In this work several variants of the subgradient method have been proposed
and executed, in order to analyze their behavior and specify the necessary
parameters so as to obtain a successful algorithm. Firstly, the necessary
background about Machine Learning and MRCs has been established in
order to present the minimization problem which the research is focused on.
Then, theoretical concepts have been presented and explained in Chapter 3,
while in Chapter 4, we have computed several experiments to realize these
issues, applying the corresponding methods to the two problems described in
this study: the minimization problem arisen in the learning stage of MRCs
with 0-1 loss (2.2)-(2.3), and the one including fixed marginals (2.5)-(2.6).

First, we analyzed the fixed marginal case applying the classical method,
with the aim of evolving to the stochastic method. In this scenario, the
CSM performs very well with different step sizes, but the algorithm may
take very long for large datasets; so that in general, this method will just
be useful for small ones.

Just by the theory, we can deduce that the stochastic method will not give
such accurate results as the classic one: the CSM computes the exact sub-
gradient of the objective function at each step by using the entire dataset,
while the SSM uses just a subset of the data. This fact makes the algorithm
faster to be computed, as already described, and that is exactly why we are
interested in this method. Indeed, the results obtained during Chapter 4
support this conclusions.

The SSM needs more study to determine a good performance. In general,
constant step sizes need to be pretty small in order to obtain an accurate
solution, but this also makes the convergence slower. Adaptive step sizes
also have pretty successful results. This method performs much faster than
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the classic one, so that it enables to perform many iterations.

Different evaluation approaches can be used, too. As we already described,
the best point method obtains the best value achieved during the method
so it is a successful approach, but it takes very long. On the other hand,
computing the mean of the points obtained by the algorithm, and evaluating
this one in order to obtain the result, is used because of its computation
speed: quite similar to the usual approach but performs in a more stable
way than the usual method. Overall, the best point approach can only be
used with small datasets. For larger ones, using the mean can usually reduce
the result value.

Regarding the problem for MRCs with 0-1 loss, without fixed marginals,
we used a constrained approach, that is, we converted the problem in an
equivalent constrained one. For this situation, constant step sizes are not
working as well as in the previous problem. This algorithm suffers from much
more fluctuation than the Classic one, so this implies a slower convergence:
the time is spent while the method fluctuates, and this does not allow to
decrease the value. These fluctuations give a good situation to use the best
point or mean approach, as mentioned in the previous method.

Moreover, it is notorious that the approximations for this problem are not
as accurate as the results obtained with the CSM, nor as fast as the ones
from SSM. These statements are sensible: on the one hand, the constrained
method does not focus each step on the reduction of the objective function
value, it has to make the value feasible, too; so it takes longer to perform
a successful result. On the other hand, it is not computing a subgradient
of the actual objective function we want to minimize, making the approach
not as accurate as the classic, that actually performs an exact subgradient.

Studying the results, we can see the algorithm succeeds for small datasets as
Haberman, and loses accuracy as the dataset is larger; either ut has many in-
stances (Credit), or many classes (Glass). Furthermore, in these challenging
cases, more iterations are needed in order to obtain better approximations.
This is reasonable considering the fluctuations, that is, the method commits
many steps that worsen the objective function value. So in order to achieve
a low enough value, these bad steps need be corrected and many iterations
are needed for this purpose.

As a final conclusion, we can mention that we obtained a pretty satisfying
algorithm for the first case, fixed marginals, while for the second case the
developed method is not such accurate in general, and this case may require
an exhaustive study or the development of other methods.

In future work, several strategies could be explored to improve the perfor-
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mance of the subgradient method for the constrained problem we presented.
For instance, testing different step sizes could yield better results. Addi-
tionally, alternative approaches could be considered, such as developing new
techniques to efficiently compute the required maximum. In this work the
problem is handled by using a constrained conversion, the development of
other approaches could also make a difference. By exploring these avenues,
we aim to enhance the method’s efficiency and effectiveness in solving the
given problem.
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Appendix A

Codes for CVX

A.1 Code for CVX for MRCs with 0-1 loss and
fixed marginals problem

%LOAD DATASET

load()

%CALCULUS OF NECESSARY PARAMETERS

n=size(X,1);

d=size(X,2);

c=length(unique(Y));

I=eye(c);

kron_matrix=zeros(c*d,n);

for i=1:n

kron_matrix (:,i)=kron(I(:,Y(i)),X(i,:) ');

end

[standesv ,tau]=std(kron_matrix ,1,2);

lambda=standesv/sqrt(n);

%CVX PROBLEM FORMULATION

cvx_begin

variable mu(c*d,1)

minimize (1-tau '*mu+lambda '*abs(mu)+average_max(X

,mu ,c))

cvx_end
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60 A.1. MRCs with 0-1 loss problem and fixed marginals

A.1.1 average max function

function mean_of_maxs=average_max(X,mu,c)

n=size(X,1);

sum =0;

for i=1:n

sum=sum+phi_general(X(i,:) ',mu,c);

end

mean_of_maxs=sum/n;

end

A.1.2 phi general function

function max_of_class=phi_general(x,mu,c)

d=length(x);

M=zeros (2^c-1,c*d);

denominators=zeros (2^c-1,1);

aux =0;

for i=1:c

options=nchoosek (1:c,i);

for j=1: size(options ,1)

v=options(j,:);

M(aux+j,:)=encodings(v,x,c);

denominators(aux+j)=1/i;

end

aux=aux+j;

end

results =(M*mu -1).* denominators;

max_of_class=max(results);

end

A.1.3 encodings function

function f=encodings(v,x,c)

d=length(x);

I=eye(c);

sums=zeros(1,c*d);
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for i=1: length(v)

sums=sums+(kron(I(:,v(i)),x)) ';

end

f=sums;

end

A.2 Code for CVX for MRCs with 0-1 loss prob-
lem

%LOAD DATASET

load()

%CALCULUS OF NECESSARY PARAMETERS

n=size(X,1);

d=size(X,2);

c=length(unique(Y));

I=eye(c);

kron_matrix=zeros(c*d,n);

for i=1:n

kron_matrix (:,i)=kron(I(:,Y(i)),X(i,:) ');

end

[standesv ,tau]=std(kron_matrix ,1,2);

lambda=standesv/sqrt(n);

%CVX PROBLEM FORMULATION

cvx_begin

variable mu(c*d,1)

minimize (1-tau '*mu+lambda '*abs(mu)+maxmax(X,mu,c

))

cvx_end

A.2.1 maxmax function

function max_of_all=maxmax(X,mu,c)

n=size(X,1);

for i=1:n

maxis(i)=phi_general(X(i,:) ',mu,c);
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end

max_of_all=max(maxis);

end

Note that phi general and encodings functions are the same as the ones
defined in sections A.1.2-A.1.3.
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Codes for the subgradient
methods for MRCs with 0-1
loss and fixed marginals
problem

B.1 Classic Subgradient Method

%LOAD DATASET

load()

%CALCULUS OF NECESSARY PARAMETERS

n=size(X,1);

d=size(X,2);

c=length(unique(Y));

I=eye(c);

kron_matrix=zeros(c*d,n);

for i=1:n

kron_matrix (:,i)=kron(I(:,Y(i)),X(i,:) ');

end

[standesv ,tau]=std(kron_matrix ,1,2);

lambda=standesv/sqrt(n);

mu=zeros(c*d,1);

mu_aux=mu; %for averaging
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f_best=Inf; %for best point approach

%CHOOSE CTE STEP SIZE

alpha=...;

%CHOOSE NUMBER OF ITERATIONS

iter=...;

%CALCULUS OF SUBGRADIENT

g1=-tau;

G3=zeros(c*d,n);

for i=1: iter

%CHOOSE CHANGING STEP SIZE (if not constant)

%alpha =...;

g2=lambda .*sign(mu);

for j=1:n

[~,g3]= sg_max(mu,X(j,:) ',c);

G3(:,j)=g3;

end

g3=mean(G3 ,2);

g=g1+g2+g3;

%SUBGRADIENT METHOD STEP

diff=-alpha*g;

%NEW POINT

mu=mu+diff; %usual point

mu_aux =((i-1)/i)*mu_aux +(1/i)*mu; %average of

all the points obtained so far

%CALCULUS OF BEST POINT OBJECTIVE FUNCTION VALUE

f_i=f(mu,X,tau ,lambda ,c);

f_best=min([ f_best f_i]);

end

f(mu ,X,tau ,lambda ,c) %usual final objective function

value

f(mu_aux ,X,tau ,lambda ,c) %averaging technique final

objective function value
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f_best %best point approach final objective function

value

B.1.1 sg max function

function [value ,subgradient ]= sg_max(mu,x,c)

d=size(x,1);

v=zeros(c,1);

I=eye(c);

K=kron(I,x) ';

for i=1:c

v(i)=x'*mu((i-1)*d+1:i*d);

end

[values ,order ]=sort(v,'descend ');

value=values (1) -1;

subgradient=K(order (1) ,:);

for i=2:c

new =((i-1)*value+values(i))/i;

if new >= value

value=new;

subgradient =((i-1)*subgradient+K(order(i

) ,:))/i;

else

break

end

end

subgradient=subgradient ';

end

B.1.2 f function

function objective=f(mu,X,tau ,lambda ,c)

objective=1-tau '*mu+lambda '*abs(mu)+phi(X,mu ,c);

end
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B.1.3 phi function

function f=phi(X,mu,c)

n=size(X,1);

sum =0;

for i=1:n

[maxi ,~]= sg_max(mu ,X(i,:) ',c);

sum=sum+maxi;

end

f=sum/n;

end

B.2 Stochastic Subgradient Method

%LOAD DATASET

load()

%CALCULUS OF NECESSARY PARAMETERS

n=size(X,1);

d=size(X,2);

c=length(unique(Y));

I=eye(c);

kron_matrix=zeros(c*d,n);

for i=1:n

kron_matrix (:,i)=kron(I(:,Y(i)),X(i,:) ');

end

[standesv ,tau]=std(kron_matrix ,1,2);

lambda=standesv/sqrt(n);

mu=zeros(c*d,1);

mu_aux=mu; %for averaging

f_best=Inf; %for best point approach

%CHOOSE CTE STEP SIZE

alpha=...;

%CHOOSE NUMBER OF ITERATIONS

iter=...;
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%CALCULUS OF STOCHASTIC SUBGRADIENT

g1=-tau;

k=0;

for i=1: iter

%CHOOSE CHANGING STEP SIZE (if not constant)

%alpha =...;

k=k+1;

if k>n

k=1;

end

g2=lambda .*sign(mu);

[~,g3]= sg_max(mu,X(k,:) ',c);

g=g1+g2+g3;

%SUBGRADIENT METHOD STEP

diff=-alpha*g;

%NEW POINT

mu=mu+diff; %usual point

mu_aux =((i-1)/i)*mu_aux +(1/i)*mu; %average of

all the points obtained so far

%CALCULUS OF BEST POINT OBJECTIVE FUNCTION VALUE

f_i=f(mu,X,tau ,lambda ,c);

f_best=min([ f_best f_i]);

end

f(mu ,X,tau ,lambda ,c) %usual final objective function

value

f(mu_aux ,X,tau ,lambda ,c) %averaging technique final

objective function value

f_best %best point approach final objective function

value

Note that sg max, f and phi functions are the same as the ones defined in
sections B.1.1-B.1.3-B.1.2.
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Codes for the subgradient
methods for MRCs with 0-1
loss problem

C.1 Classic Subgradient Method for constrained
problem

%LOAD DATASET

load()

%CALCULUS OF NECESSARY PARAMETERS

n=size(X,1);

d=size(X,2);

c=length(unique(Y));

I=eye(c);

kron_matrix=zeros(c*d,n);

for i=1:n

kron_matrix (:,i)=kron(I(:,Y(i)),X(i,:) ');

end

[standesv ,tau]=std(kron_matrix ,1,2);

lambda=standesv/sqrt(n);

mu=zeros(c*d,1);

nu=-1/2;

%FOR AVERAGING
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mu_aux=mu;

nu_aux=nu;

f_best=Inf; %for best point approach

%CHOOSE CTE STEP SIZE

alpha=...;

%CHOOSE NUMBER OF ITERATIONS

iter=...;

%CALCULUS OF SUBGRADIENT

g1=-tau;

for i=1: iter

%CHOOSE CHANGING STEP SIZE (if not constant)

%alpha =...;

g2=lambda .*sign(mu);

g_mu=g1+g2;

g_nu =1;

for j=1:n

[maximum ,sg]= sg_max(mu,X(j,:) ',c);

if maximum -nu >0

g_mu=sg;

g_nu=-1;

break

end

end

%NEW POINT

mu=mu-alpha*g_mu;

nu=nu-alpha*g_nu;

%AVERAGING METHOD

mu_aux =((i-1)/i)*mu_aux +(1/i)*mu;

nu_aux =((i-1)/i)*nu_aux +(1/i)*nu;

%CALCULUS OF BEST POINT OBJECTIVE FUNCTION VALUE

f_i=f_constrain(mu,X,tau ,lambda ,c);

f_best=min([ f_best f_i]);
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end

f_constrain(mu,X,tau ,lambda ,c) %usual final

objective function value

f_constrain(mu_aux ,X,tau ,lambda ,c) %averaging

technique final objective function value

f_best %best point approach final objective function

value

C.1.1 f constrain function

function objective=f_constrain(mu,X,tau ,lambda ,c)

objective=1-tau '*mu+lambda '*abs(mu)+

phi_constrain(X,mu,c);

end

C.1.2 phi function

function f=phi_constrain(X,mu ,c)

n=size(X,1);

[maxi ,~]= sg_max(mu,X(1,:) ',c);

for i=2:n

[new ,~]= sg_max(mu,X(i,:) ',c);

if new >maxi

maxi=new;

end

end

f=maxi;

end

Note that sg max function is the same as the one defined in section B.1.1.
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