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Abstract

Gravity could be modified compared to General Relativity on very large scales, as
suggested by the discovery of the accelerated expansion of the Universe. One possible
explanation would be the existence, on cosmological scales, of scalar fields, which
have hidden their presence until now thanks to particular screening mechanisms and
which would influence the growth of large scale structures by their coupling to Cold
Dark Matter.
Since a complete analysis of the structure formation problem would require complete
N-body simulations, which are really complex from a computational point of view,
the goal of this thesis is to find a set of semi-analytical approximations that allows
to obtain reliable results.
First of all we will investigate the spherical collapse of such structures, in order to
understand how this new scale-dependent fifth force, mediated by the scalar field,
changes the critical initial overdensity necessary to collapse and also how different
models modify this value.
In a second step, we will use the excursion set theory to relate the statistics of
the density field at early times to the number of virialized, gravitationally bound
structures. Since the fifth force is stronger for smaller objects, a smaller initial
overdensity is required to collapse and we expect to find a larger number of haloes
with respect to General Relativity.
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Chapter 1

Introduction

At the end of the past century two different projects, the High-Z Supernova Search
Team [21] and the Supernova Cosmology Project [19], detected a remarkable incon-
sistency between what we thought to be our Universe and what it really is: observing
high redshift Type Ia supernovae they found an evidence that we are in an epoch
where the Universe is not only expanding, but it is also accelerating! This discovery,
which over the years has been supported also by other evidences, was so significant
that it opened a new era in cosmology and even in particle physics: supposing that
our Universe is filled with a single fluid with equation of state p = wρ, we can easily
see from the first Friedman equation

ä

a
= −ρ+ 3p

6M2
p

(1.1)

that, in order to obtain a positive acceleration ä > 0, we need w < −1
3 , i.e. our fluid,

which will be called dark energy, is not composed by regular matter, since GR tells
us that for this kind of material 0 ≤ w ≤ 1

3 . The two groups noticed that this dark
energy component could be given by a cosmological constant term and suddendly
such term, introduced by Einstein nearly a century ago to obtain a static Universe,
became the most puzzling component of our Universe.

1.1 Observational Evidence

Before going on and discuss what could be the problems related to the cosmological
constant, let’s briefly review the first observational evidence that we need a dark
energy component and how this new component solved an existing problem about
the age of Universe.
Type Ia supernovae [27] occur when a white dwarf star in a binary system accretes
enough material from its partner that its mass becomes closer to the Chandrasekhar
limit, where electron degeneracy cannot compensate anymore gravitational forces.
The star becomes unstable and, due to the increased temperature and density, car-
bon and oxygen conversion into nichel triggers an explosion: since the mass is nearly
the same when this happens, it is believed that the absolute luminosity of such ex-
plosion doesn not vary, therefore they can be used as standard candles. In principle,
the nature of the explosion isn’t affected by the nature of the partner or by the
starting mass of the white dwarf, but it might depend from the metallicity, which,
in some measure, depends from the epoch. This variation of the absolute luminosity
is related to the rising and declining time of the light curve and it has been calibrated
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through observations of similar supernovae in galaxies at known distance. The mea-
sured apparent magnitude m, proportional to the logarithm of the energy flux F we
receive from the supernova, is related to the absolute magnitude M , connected to
the logarithm of the absolute luminosity L, by the following relation

m−M = 5 log10

(
dL
Mpc

)
+ 25, (1.2)

where dL is the luminosity distance, defined by d2
L = L

4πF in order to preserve the
inverse-square law for the diminuition of the light. Since the Hubble rate can be
written as

H2 = H2
0

[∑
i

Ωi0(1 + z)3(1+wi)

]
, (1.3)

where the sum runs over every component of Universe, it can be shown [12] that

dL(z) =
1 + z

H0

∫ z

0

dz′√∑
i Ωi0(1 + z′)3(1+wi)

. (1.4)

At low redshifts, this quantity reduces to dL(z) ' zH−1
0 , therefore we can use

low redshift supernovae to determine the absolute magnitude M ; then we can use
1.2 to establish dL for high redshift supernovae and we can compare this value to
the theoretical one given by 1.4. The two groups we have mentioned found that
observations were consistent for a flat Universe where Ωm0 ∼ 0.3 and Ωde0 ∼ 0.7,
i.e. our Universe is dominated by a dark energy contribution, responsible of an
acceleration started at

zacc = 3

√
2Ωde0

Ωm0
− 1 ∼ 0.67. (1.5)

This result allowed to solve another issue related to the Universe age t0. For con-
sistency, this quantity has to be bigger than the age of the oldest stars, which was
measured to be at least 11− 12 Gyr. From [12] we find that

t0 =

∫ ∞
0

dz

(1 + z)H(z)
, (1.6)

where H(z) is given by 1.3. Neglecting the radiation component, since the radiation
era didn’t last for so a long time, and the curvature component, because observations
constrain our Universe to be almost flat, for a matter dominated Universe, where
Ωm = 1, we would have

t0 =
2

3H0
∼ 9− 10 Gyr, (1.7)

while including also a dark-energy contribution we find

t0 =
2

3H0

√
ΩΛ0

log

[
1 +
√

ΩΛ0√
Ωm0

]
∼ 14 Gyr, (1.8)

value which solves the age problem.
Over the years this evidence about the existence of such new dark energy component
has been confirmed either by new supernovae that has been discovered and by other
experiments which has analyzed the CMB temperature anisotropies and the large
scale structure formation.
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1.2 Cosmological Constant Problem

Even if observations indicate the presence of a cosmological constant (CC) type
term, from a particle physics point of view such term brings a fine-tuning problem.
As for the quantity that Einstein studied, the CC is characterized by a constant
energy density

ρΛ = M2
pΛ = −pΛ (1.9)

and generates the accelerated expansion through its negative pressure. Observation-
ally we have found that

Λobs ' H2
0 ∼ 10−84 GeV2 =⇒ ρΛ ' H2

0M
2
p ∼ 10−48 GeV4. (1.10)

Theoretically such term arises as an energy density of the vacuum, in fact the vacuum
stress-energy tensor, because of Lorentz invariance of the vacuum state and invoking
the general covariance principle, reads as Tµν = ρvacgµν , where in general the zero
point energy of a quantum field with mass m is given by

ρvac =
1

2

∫
d3k

(2π)3

√
k2 +m2 (1.11)

and presents an ultraviolet divergence. Assuming that the quantum theory is reliable
until the Planck mass Mp, we can put a cut-off to the previous integral which will
read as

ρvac ∼M4
p ∼ 1072 GeV4, (1.12)

120 orders of magnitude bigger than the observed value. Even with a more conserva-
tive choice, for example choosing the cut-off at approximately 1 TeV because under
such scale the Standard Model has been carefully investigated, we end up with a
value

ρvac ∼ 1012 GeV4, (1.13)

with a difference of 60 orders of magnitude with respect to the observed value. This
contribution is due to the ordering ambiguity of the fields, but since the procedure
to “rescale”the zero point energy is ad hoc and experiments showed that indeed the
energy of the vacuum can produce macroscopic effects, such as on the Casimir force
experiment, one can try to properly cancel it through counter terms, even if the
degree of fine-tuning required is absurdly high.
If we lived in a Universe with an unbroken supersimmetry, then ρvac would be ex-
actly zero because the zero-point energy of every bosonic particle would be canceled
by its fermionic counter part; unfortunately, even if such theory is valid, the SUSY
is broken in our world and since the breaking happens at least around 1 TeV, we
are far from having explained the smallness of the cosmological constant.
It is worthy to mention that it exists some sort of anthropic principle, even if physi-
cists don’t like such kind of motivation. The presence itself of observers means
that the dark energy component became significative only at late times, allowing
the structure formation, in particular the galaxy formation, because starting from
matter-dark enrgy equivalence structures stop growing. This fact puts a strict bound
[26] on

ρΛ ≤ 500ρm0 ∼ 10−46 GeV4, (1.14)

even if this principle doesn’t explain the underlying physics.
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1.3 Dynamical Dark Energy

Since the cosmological constant problem has not been resolved yet, different authors
tried other approaches, in particular it is possible to assume that, for some unknown
reason, the cosmological constant is exactly zero and the accelerated expansion is
due to some form of dynamical dark energy. Since it is thought that the Universe
has already experienced an accelerated expansion phase known as inflation, it was
quite natural to think that also in the present epoch the accelerated expansion could
be driven by a scalar field; moreover, in theories that extends the Standard Model,
such as Supersymmetry or String Theory, we can find different candidates for such a
field. We won’t go through all the different theories that have been proposed during
these years but the interested reader can find an extended review in [12]. As an
example of such models, let’s briefy introduce Quintessence theories: here the field
is characterized by the action

S =

∫
d4x
√
−g
[

1

2
∂µφ∂µφ− V (φ)

]
(1.15)

the equation of state

wφ =
pφ
ρφ

=
φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
, (1.16)

therefore it can mimic the cosmological constant behaviour and produce the Uni-
verse expansion under the slow-roll condition φ̇2 � V (φ). This does not resolve the
problems, in fact in addition to the “old”fine-tuning problem, a coupling between
scalar field and matter arises due to quantum correction, even if at classical level
there isn’t. This coupling will produce, since the mass of the field has to be small
in these thoeries, long range forces and a possible time dependance of constants of
nature, which has to be constrained. Unless there is an underlying symmetry that
suppresses these couplings, we have to required that these values must be small,
which is indeed another fine-tuning requirement.
In order to avoid any additional fine tuning request, we will investigate the behaviour
of a class of models in which there is, also at classical level, a non-zero coupling to
matter and where there are screening mechanisms that allow the new force to be
undetected until now. Precisely because of this the new force, which will act as
an additional gravitational contribution, these models are called “Modified Grav-
ity”(MG) models.

The thesis is organized as follows. In Chapter 2 we introduce such models, which
are cast as scalar-tensor theories coupled with matter; then we present some generic
feature and we analyze in detail the three typical class of models we will investi-
gate. In Chapter 3 we discuss cosmological implications of such scalar field and we
introduce an intuitive parametrization of such theories that will allow us to describe
the linear and non-linear anomalous matter growth during structure formation. In
Chapter 4 we will analyze in detail the gravitational collapse in MG through ana-
lytical and numerical methods, showing how the fifth force mediated by the scalar
field affects the dynamics of the collapse. In Chapter 5 we will introduce the ex-
cursion set theory, a framework that will allow us to link the results we found in
the previous chapter to the statistics of virialized structures, obtaining, in the end,
how their number changes in a MG scenario. Finally, in Chapter 6, we will briefly
discuss possible extensions of this work.

All through this thesis we will adopt the following conventions. We will use nat-
ural units, so c = ~ = 1, and the reduced Plank mass will be given by M2

p =
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(8πG)−1. We choose to work with the mostly minus Minkowski flat metric ηµν =
diag(+1,−1,−1,−1). We will indicate the covariant derivative and the covariant
Dalembertian respectivey as Dµ and �g = gµνDµDν .
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Chapter 2

Modified Gravity Models

In this chapter we will show how Einstein gravity can be consistently modified in
order to explain the expansion of the Universe, without considering a cosmological
constant; we will do so introducing a new scalar degree of freedom that will mediate
a new fifth force because of its coupling to matter. Since GR has been well tested
in our solar system, there must be some mechanism that explains why the force has
not been detected: this screening property, i.e. this suppression of the fifth force
with respect to the Newtonian one, is due to nonlinearities developed by the field.
In principle, in a generic lagrangian we can include terms that involve the field,
its first and second derivatives, but not higher order derivatives since we want to
obtain second order equations of motion: each one of this kind of terms, in particular
regions, can dominate over the others, generating those nonlinearities; moreover we
can classify such mechanisms according to particular screening criterions. We will
mainly focus on the first type of screening mechanism and just in the last section
we will quickly review the basic features of the second and the third kind, where
derivatives of the field become relevant.

2.1 Screening by Deep Potentials

In this first class of models screening occurs in regions where the Newtonian potential
reaches and exceeds some large critical value. In the Einstein Frame (EF), i.e. the
frame where gravity has the form of GR, the action has general form given by

S =

∫
d4x
√
−g

[
−
M2
p

2
R+

1

2
∂µφ∂µφ− V (φ)

]
+ Smatter

[
A2(φ)gµν , ψ

(i)
]
, (2.1)

where R is the Ricci scalar and the field behaviour will be characterized by its
potential V (φ) and its coupling function A(φ) to different matter fields ψ(i), labelled
by i. In principle, differents Ai are allowed, but since this would imply a violation
of the Equivalence Principle because different kinds of matter will couple to gravity
with different strenghts, we choose to study just the case in which Ai = A, ∀i.
Notice that the matter action is a functional of the Jordan Frame (JF) metric g̃µν =
A2(φ)gµν , i.e.

Smatter

[
g̃µν , ψ

(i)
]

=

∫
d4x
√
−g̃Lm

[
g̃µν , ψ

(i)
]

: (2.2)

this is the frame in which matter minimally couples to gravity and from now on we
will indicate every quantity calculated in the JF with a ˜, while quantities without
it are calculated in the EF.
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The equation of motion (EOM) for φ is obtained through a variational principle
from 2.1; in particular, introducing the JF stress-energy tensor (SET)

T̃µνm = − 2√
−g̃

δSm
δg̃µν

(2.3)

and, in a second step, its trace T̃m = T̃µνm g̃µν , we have that

δSmatter =

∫
d4x

δ(
√
−g̃L)

δg̃µν

δg̃µν
δφ

δφ =

= −
∫
d4x

√
−gA4

2
T̃µνm g̃µν

2

A

∂A

∂φ
δφ,

(2.4)

therefore the EOM reads as

�gφ = −∂V
∂φ
− T̃mA3∂A

∂φ
. (2.5)

Because of the minimal coupling, this matter stress-energy tensor is covariantly
conserved, i.e. D̃µT̃

µν
m = 0, while in the EF the conserved quantity is the global

stress-energy tensor Tµνm + Tµνφ : these two matter SET are connected through the
appropriate power of A, in particular

T̃m = g̃µν T̃
µν
m = A2gµν

(
− 2

A4
√
−g

δSm
δgµν

δgµν
δg̃µν

)
= A−4gµνT

µν
m = A−4Tm, (2.6)

so that we can rewrite equation 2.5 as

�gφ = −
∂Veff
∂φ

= −∂V
∂φ
− Tm
Mp

β(φ) (2.7)

where Veff = V + ρm logA and we have introduced the coupling to matter function

β(φ) =
Mp

A

∂A

∂φ
. (2.8)

In this kind of scalar-tensor theories, masses of fundamental fermion particles are
given by mp = A(φ)mbare, where mbare is their mass appearing in the matter la-
grangian. This means that the mass evolves according to the cosmological evolution
of the scalar field and that their variation is given by

∆mp

mp
=
β(φ)

Mp
∆φ. (2.9)

Since this variation is tightly bounded by Big Bang Nucleosynthesis, we have to avoid
large excursions of the field in order to preserve the formation of elements: this can
be achieved requiring that the field has to sit on its potential energy minimum,
which has to be stable, before BBN and has to follow it along the evolution of
the Universe; moreover this minimum position should not vary too much. In other
words, the conformal factor A(φ) should read as 1 + small corrections dependent
from φ.

2.2 Appearance of a Fifth Force

This new scalar field, which will drive the Universe expansion, mediates also a new
fifth force. We are interested in what happens in the EF, where we can distinguish
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effects due to the usual Einstein gravity from those due to the scalar field, but let’s
start from the JF instead: here, by definition, matter fields will couple minimally
to gravity, therefore the acceleration of a test particle in free fall will reads as ẍ =
−∇Ψ̃N , where Ψ̃N is this frame Newtonian potential. This relation appears taking
the “classical limit”of the geodesic equation

d2xµ

dλ2
+ Γ̃µαβu

αuβ = 0, (2.10)

where xµ(λ) is the test particle world-line and uα = dxα

dλ is its 4-velocity, normalized
in such a way that uµuµ = 1. We can explicitly rewrite 2.10 in the EF, obtaining

d2xµ

dλ2
+

[
Γµαβ +

∂ logA

∂φ

(
δµα∂βφ+ δµβ∂αφ− gαβ∂

µφ
)]
uαuβ = 0. (2.11)

Now the classical limit is obtained considering a weak and static gravitational field,
i.e.

gµν = ηµν + hµν , |hµν | � 1; ∂0gµν = 0 (2.12)

and assuming that particles velocities are small, i.e. v � 1. From this last as-
sumption it follows that each component vi = dxi

dx0 = ui

u0 has to be small, therefore
ui � u0. Under this approximation, equation 2.11 reads at first order as

0 =
d2xµ

dλ2
+

[
Γµ00 +

∂ logA

∂φ
(δµ0∂0φ+ δµ0∂0φ− g00∂

µφ)

]
(u0)2 =

=
d2xµ

dλ2
+

[
−∂µ

(
h00

2
+ logA

)
+ 2δµ0∂0 logA)

]
(u0)2.

(2.13)

Choosing x0(λ) = t, the 0-th component of the previous equation reas as

d2t

dλ2
+ (u0)2∂0 logA = 0, (2.14)

while the i-th component, recalling that h00 = 2ΨN , where ΨN is the usual New-
tonian potential because in the EF the Einstein-Hilbert action is the same that in
GR, is given by

0 =
d2xi

dλ2
− ∂i (ΨN + logA) (u0)2 =

=
d2xi

dt2
(u0)2 + vi

d2t

dλ2
− (u0)2∂i(ΨN + logA).

(2.15)

Considering equation 2.14, the second term is negligible due to the vi prefactor,
therefore we have proved the the test particle acceleration is given by

ẍ = −∇ [ΨN + logA] , (2.16)

where the second term will produce a fifth force, dependent from the choice of the
potential V (φ) and coupling function A(φ).

2.3 Models

We will now introduce the three principal kind of models: the chameleon ([17],[5]),
the symmetron ([14],[15]) and the dilaton ([7],[8]). We will present the features of
these models and how they hide their presence, i.e. their screening mechanism.

13



2.3.1 Chameleon

Despite we will not study this kind of field in the following part of the thesis, we will
explain it in detail because its screening criterion can be generalized to the other
models we will use.
The chameleon field, as the name itself suggests, mimics the environment where it
lives and achieves a large (small) mass in high (low) density regions. This model is
characterized by a runaway potential and a mostly constant coupling to matter; so,
since the effective mass will receive contributions from both terms, in particular

m2
eff =

d2Veff
dφ2

=
d2V

dφ2
+ ρ

d2A

dφ2
, (2.17)

we can assume without any loss of generality that V (φ) and A(φ) are respectively
a monotonically decreasing and increasing functions of φ, in order to obtain a sort
of balance between them. This balance will in the end produce a density dependent
minimum position. On the base of what we explained before, we can take

A(φ) ' 1 + β
φ

Mp
, (2.18)

while for V (φ) we have to require also that ∂2
φV > 0 and ∂3

φV < 0: the first condition
is given by the fact that the major contribution to the effective mass comes from
the potential and we want to guarantee stability, the second one ensures that the
effective mass is an increasing function of the density. An example of such potential
is given by the Ratra-Peebles potential

V (φ) =
Mn+4

φn
, n > 0. (2.19)

Let’s now analyze how the field behaves: we consider a spherically simmetric body
with constant mass M , radius R and density ρo, living in a static, homogeneous and
isotropic background with density ρb. Under these hypothesis, the field will try to
reach its environment-dependent effective potential energy minimum, which we will
indicate respectively as φo and φb; moreover the KG equation reduces to

∇2φ =
1

r2

d

dr

[
r2dφ

dr

]
=
dV

dφ
+ β

ρ

Mp
(2.20)

where, as explained,

ρ(r) =

{
ρo r ≤ R
ρb r > R

. (2.21)

This equation has to be solved imposing that the solution is non-singular at the
origin and that the field recovers its background value far away from the object, i.e.

dφ

dr

∣∣∣∣
r→0

→ 0; φ(r →∞)→ φb. (2.22)

Instead of numerically solve equation 2.20, let’s derive the qualitative behaviour of
the solution.
Outside the object, but still within the Compton wavelength m−1

b , where mb =
meff (φb), the field can reach its minimum, therefore 2.20 approximately reads as
∇2φ = 0, which has solution

φ(r) ' φb −
Ce−mb(r−R)

r
, R ≤ r ≤ m−1

b , (2.23)
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where C is a constant and we have introduced by hand the Yukawa suppression
because our field is massive, even if in this region the mass is tiny. From this profile
we can see that further than m−1

b , the exponential factor flattens the field on its
background value, resulting in an absence of any fifth force.
The field profile inside the body depends on the object properties, in particular we
can identify two different regimes, called thin-shell (t-s) and thick-shell (T-s) regime.
In the first one the object is big enough that the field can reach its minimum, i.e.
φ(r = 0) − φo = φi − φo � φo: because of this fact, in this regime the field has
to satisfy ∇2φ = 0 until some radius RS close to R, where the field starts feeling
the sudden change in the environment density, therefore in the effective potential,
and begins to increase. As soon as it is displaced significantly from its equilibrium
position, we will not have anymore any compensation in the RHS of 2.20, which will
read in this shell [RS , R] as

d2φ

dr2
+

2

r

dφ

dr
' βρo
Mp

(2.24)

and has solution

φ(r) =
βρo
6Mp

r2 +
A

r
+B. (2.25)

Imposing continuity of φ and dφ
dr at r = RS we find that

A =
βρo
3Mp

R3
S , B = φo −

βρo
2Mp

R2
S ; (2.26)

requiring same conditions at r = R and using mbR� 1, |RS−R| � R, we find that

C =
βM

4πMp

3∆RS
RS

(2.27)

∆RS
RS

=
R−RS
RS

=
φb − φo

6βMp|ΨN |
(2.28)

where ΨN is the Newtonian potential. Equation 2.28 is the all-important thin-
shell condition. In the T-s regime, the object is not able to perturb too much the
environment, thus the field profile. In this case the field do not sit on its minimum
inside the object, but it assumes a value φi ≥ φo; so that we have to solve equation
2.24 for r ∈ [0, R] and to impose the non singularity condition, which gives

φ(r) =
βρo
6Mp

r2 + φi. (2.29)

Requiring continuity at r = R, this time we find that

C =
βM

4πMp
, φi = φb − 3βMpΨN . (2.30)

We can estimate the value of the thin shell condition in this regime, finding

∆R

R
≥ φb − φi

6βMpΨN
' O(1), (2.31)

thus we can separate the two regimes according to the value assumed by this condi-
tion. Let’s notice that this second regime interior solution could be obtained from
the first one taking the limit RS → 0 and substituting φo → φi.
As we can see from the complete profile, in the t-s regime just a thin shell below the
surface of the object contributes to the fifth force and the force exerted on a test
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particle is suppressed by the t-s factor, making the body screened; on the contrary,
in the T-s regime the coupling is not suppressed and the objects will be unscreened.
This screening/unscreening criterion tells us how big the deviation from GR will be,
so let’s now suppose to deal with screened objects, since until now we have not ob-
served any significative deviation from Newtonian gravity. Under this assumption,
we notice that this fifth force will be scale(mass)-dependent, in fact once that the

environment (ρo, ρb) is fixed, we would have |ΨN | ∼ M
2
3 ∼ R2, therefore, for a

given value of β, bigger (or heavier) objects will be more screened with respect to
smaller (or lighter) objects.
Finally, let’s write down the effective gravitational potential outside the body but
still at short distances compared to m−1

b , given by

Ψ = ΨN + logA ' ΨN +
β

Mp
φ(r) ' βφb

Mp
− GM

r

[
1 + 2β2

(
3∆RS
RS

)]
, (2.32)

where we can notice that for objects in the T-s regime, the effect of MG is to rescale
the Newton constant by a factor (1 + 2β2).

2.3.2 Symmetron

In these kind of models we have a symmetry breaking potential (hence the name of
the model) that allows the field to develop a non-zero (zero) coupling to matter in
low (high) density regions. The easiest example of such potential is given by the
mexican hat

V (φ) = V0 −
1

2
µ2φ2 +

λ

4
φ4, (2.33)

even if other shapes are possible, as we will see in the next chapter. In these models
the coupling function is given by

A(φ) = 1 +
A2

2
φ2, (2.34)

where, as explained, we suppose that the quadratic correction is small. In the end,
the effective potential reads as

Veff ' V0 +
1

2

[
A2ρm − µ2

]
φ2 +

λ

4
φ4. (2.35)

In dense regions, where matter density is higher than the critical value ρc = µ2

A2
, the

mass term in square brackets will be positive, therefore the potential will have only
one global minimum in φ̄ = 0; on the other hand, when the environment density

is low, two global minima appear at φ̄ = ±
√

A2(ρc−ρm)
λ . The mass of the field,

evaluated at its proper minimum, reads as

m2
eff = A2(ρm − ρc) + 3λφ2 '

{
A2ρm ρm � ρc

2A2ρc ρm � ρc
(2.36)

and we will assume that this phase transition happens in the recent past, so that
the mass of the symmetron in the cosmological background is approximately given
by m2

0 ∼ µ2 ∼ A2ρ0m.
The effective coupling to matter β ' MpA2φ depends from the VEV of the field,
therefore in dense regions we will not have any modification to gravity.
Let’s suppose to have the same environmental setup we described in the chameleon
case. If the body density is high enough compared to the critical one, then, inside the
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object, the field sits on the φ = 0 minimum. Expanding the field as φ = φmin+δφ =
δφ, the effective potential is approximately given by Veff ' A2ρm

2 δφ2 = 1
2m

2
oδφ

2, so
that we have to solve ∇2δφ = m2

oδφ; imposing the same boundary conditions given
in 2.22, the field profile reads as

φ(r) = A
sinh(mor)

mor
, r ≤ R (2.37)

Outside the body but at short distances with respect to m−1
b , assuming that density

vanishes at infinity, the field will sit at φ? = φ̄(ρm = 0). As before we can expand
around φ?, thus in this case the effective potential will be approximately Veff '
µ2δφ2 =

m2
b

2 δφ
2 and we have to solve ∇2δφ = m2

bδφ, obtaining is this way

φ(r) = φ? +
B

r
e−mb(r−R). (2.38)

Asking for continuity at r = R we can determine the two constants A and B, finding
the complete profile

φ(r) =


φ?

cosh(moR)
sinh(mor)
mor

r ≤ R
φ? − φ?

[
1− tanh(moR)

moR

]
R
r e
−mb(r−R) R < r < m−1

b

, (2.39)

where for dense enough bodies we have moR � 1. The coupling to matter outside
the object reads as β? ' MpA2φ? so we can see that a test particle, outside the
object but at distances much smaller than m−1

b will feel the effective gravitational
potential

Ψ = ΨN + logA ' ΨN +
A2φ

2
?

2

[
1− R

r

]2

'

' A2φ
2
?

2
− GM

r

[
1 +

2β2
?

2A2M2
p |ΨN |

]
+O

(
R2

r2

)
,

(2.40)

therefore the fifth force will be heavily suppressed if

1� 2A2M
2
p |ΨN | =

2β?Mp|ΨN |
φ?

, (2.41)

i.e. we find the same thin-shell condition

φ? − φo
2β?MpΨN

� 1, (2.42)

where now φo ' 0, we had already found for the chameleon field. Conclusions which
had followed from this result are still valid.

2.3.3 Dilaton

The third model we are going to introduce is the environment-dependent dilaton.
In this model we have a quadratic coupling function A(φ) = 1 + A2

2 (φ − φ?)
2,

characterized by the presence of a miminum and where the quadratic correction

is still small, and a slowly varying runaway potential, for example V (φ) = V0e
− φ
Mp ,

such that ∂2
φV (φ?) ∼ H2

0 . In this kind of model the field will not couple to matter
inside a dense body, while in rarefied environments it will mediate a fifth force: when
density is large, the effective potential

Veff = V (φ) +
ρmA2

2
(φ− φ?)2 (2.43)
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will be dominated by the second term and its minimum φo will be close to φ? for
large enough A2, therefore β(φo) 'MpA2(φo − φ?) ' 0. On the other hand, in low
density regions, β(φb) 6= β(φ?) = 0 and the field can have a non-zero coupling to
matter. The density dependent minimum of Veff is given by

φmin(ρ) = φ? −
∂φV (φmin)

A2ρ
' φ? −

∂φV (φ?)

A2ρ
(2.44)

and the mass of the field reads as m2 = ∂2
φV + A2ρm. Today, in the cosmological

background, the mass of the dilaton will reads as m2
0 ' 3A2M

2
pΩ0mH

2
0 .

Inside a dense body, the minimum of the field will be very close to φ?, therefore,
expanding

∇2φ = ∂φV +A2ρo(φ− φ?) (2.45)

around φ = φo + δφ, we find that the fluctuation has to satisfy ∇2δφ = m2
oδφ and

the complete interior profile will read as

φ(r) = φo +A
sinh(mor)

r
. (2.46)

Outside we will expand

∇2φ = ∂φV +A2ρb(φ− φ?) (2.47)

around φ = φb + δφ and using 2.44 we find that

φ(r) = φb −B
e−mb(r−R)

r
. (2.48)

Imposing continuity between inside and outside we obtain

φ(r) =

φo + φb−φo
cosh(moR)

sinh(mor)
mor

r ≤ R
φb − (φb − φo)

[
1− tanh(moR)

moR

]
R
r e
−mb(r−R) R < r < m−1

b

, (2.49)

where

φb − φo =
βb

A2Mp

(
1− βo

βb

)
=

βb
A2Mp

(
1− ρb

ρo

)
. (2.50)

Finally, the interesting part of the effective gravitational potential will read as

Ψ ' −GM
r

[
1 +

2β2
b

2A2M2
p |ΨN |

(
1− ρb

ρo

)]
+O

(
R2

r2

)
(2.51)

and the body will be screened if

1− ρb
ρo

2A2M2
p |ΨN |

� 1 =⇒ φb − φo � 2βbMp|ΨN |, (2.52)

as in the chameleon and symmetron case.

2.3.4 f(R) Theories

Another well known family of theories that can reproduce the expansion of the
Universe is given by f(R) theories: first of all we will show how they can be cast as
scalar-tensor theories, then, in a second moment, we will display how some of them
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present a chameleon type of screening. In this case the Einstein-Hilbert action reads
as

SEH = −
M2
p

2

∫
d4x
√
−g [R+ f(R)] = −

M2
p

2

∫
d4x
√
−g
[
R+ f(Φ) +

df

dΦ
(R− Φ)

]
,

(2.53)
where we have introduce the auxiliary field Φ. The equivalence between the second
and third member is proved finding the EOM for Φ which gives, assuming that
d2f
dΦ2 6= 0, the non-dynamical constrain Φ = R. Under the conformal rescaling of the
metric gµν = Ω2ḡµν , where

Ω−2 = 1 +
df

dΦ
= e
−
√

2
3
φ
Mp (2.54)

and φ is a new field defined by the above relation, we have that
√
−g = Ω4√−ḡ and

the Ricci scalar reads as

R = Ω−2
[
R̄− 6�̄g log Ω− 6ḡµν∂µ log Ω∂ν log Ω

]
. (2.55)

Since the term proportional to∫
d4x
√
−ḡ�̄g log Ω =

∫
d4x
√
−ḡ 1√

−ḡ
∂µ
(√
−ḡḡµν∂ν log Ω

)
(2.56)

gives a surface contribution, we will neglect it. In the end we have that 2.53 has
become ∫

d4x
√
−ḡ

[
−
M2
p

2
R̄+

1

2
ḡµν∂µφ∂νφ− V (φ)

]
, (2.57)

where we have defined

V (φ) =
M2
p

2

f(R)−R df
dR(

1 + df
dR

)2 . (2.58)

In the meantime, the matter action Smatter
[
gµν , ψ

(i)
]

has become Sm

[
e

√
2
3
φ
Mp ḡµν , ψ

(i)

]
,

gaining the conformal factor. From its form we can deduce immediately that
β =

Mp

A
dA
dφ = 1√

6
is constant, as in the chameleon case.

Viceversa, we can reconstruct the value of R and f(R): the first one reads as

R(φ) =

√
6

Mp
e

√
2
3
φ
Mp

d

dφ

[
e
−2

√
2
3
φ
Mp V (φ)

]
(2.59)

and is obtained deriving 2.58 with respect to the scalar field and using 2.54; the
second one is obtained through a direct substitution of 2.59 into 2.58. The complete
expression will read as

R+ f(R) = − 2

M2
p

e
−2

√
2
3
φ
Mp V (φ) +

√
6

Mp
e
−2

√
2
3
φ
Mp
dV

dφ
. (2.60)

Conditions on the potential V (φ) become condition on f(R) and its derivatives (see
[6]) and it can easily shown that, for example, theories with f(R) ∼ Rp+1, −1 < p <
0 have the corresponding potential that goes as V (φ) ∼ φ−n, where n = −1+p

p > 0,
as in the Ratra-Peebles potential. We will return on this fact in the next chapter.
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2.3.5 Universality of Thin Shell Condition

We have seen that, despite being so different, all models has the same thin-shell
condition that allows us to understand if a given object is screened or not. Moreover,
this condition does not depend from specific details of the models but just from
the density-dependent field value which minimises the effective potential inside and
outside the body. This particular features was noticed for the first time in [9], where
it was argued why this universal condition occurs: it was found that every model
shares some common property with the others, such as a field mass which increases
with the environment density, and indeed we have seen a recurrent but quite model
indipendent pattern, which enforces the general form of the solution, during our
calculation of the field profile.
Furthermore this screening condition can be related to local experimental constrains
on modified gravity effects. For example, the fact that we do not observe deviations
from Einstein gravity in the Milky Way, i.e. that the Milky Way is screened, allow
us to put bounds on the mass of the scalar field in vacuum: in general it has been
found that m0

H0
≥ 103, which means that the range of the fifth force is approximately

given by m−1
0 ≤ 10−3H−1

0 ∼ Mpc (see e.g. Figure 1 in [2] for chameleon and f(R)
theories). Under this constrain, we find that the A2 parameter in the symmetron
and dilaton case has to satisfy A2 ≥ 106M−2

p .

2.4 Other Screening Mechanisms

In this section we will briefly expose the two other types of screening, where nonlin-
earities come from higher-derivative interactions.
The first one is called kinetic screening and here the fifth force is suppressed when the
gravitational acceleration is higher than some critical value. Defining the Lorentz in-
variant quantity X = 1

2∂
µφ∂µφ, the generic lagrangian in this kind of models called

“P (X) models”will read as

L =

n∑
j=1

cj
Xj

Λ4(j−1)
− gT

M
φ = P (X)− gT

M
φ (2.61)

where Λ is some characteristic mass scale and we have introduced a coupling be-
tween the field and the matter, with relative strenght g, that allows the creation
of nonlinearities. There are two regions: close and far from the matter source, i.e.
below or above some critical radius r?, defined as the distance where X

M4 ' 1 and all
terms of the lagrangian becomes significatives. At distances bigger than this radius,
nonlinearities are negligible and the field will mediate a gravitational strenght fifth
force, while close to the source the force will be suppressed and we have the screening
effect.
The second screening mechanism is given by the Vainshtein effect: here the la-
grangian will contain also second derivatives of the field and the additional force is
shut down in regions where the local curvature exceeds a given critical threshold.
This mechanism is based on the interplay between classical nonlinearities and quan-
tum corrections and we can distinguish three regions: below some radius rQ, too
much close to the mass source, both classical and quantum corrections are impor-
tant and this effective field theory is not reliable; above rQ but below the Vainshtein
radius rV only classical nonlinearities are important and they suppress the fifth
force. Finally, at distances bigger than rV both classical and quantum corrections
are negligible and there is a fifth force comparable to the Newtonian one.
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Chapter 3

Cosmological Scalar Field
Dynamics

In this chapter we will describe how different aspects of cosmology are modified when
we consider this new scalar field instead of the usual cosmological constant. First
of all we will present the evolution of the field along the history of the Universe,
in order to better understand why we must require that the field has to closely
follow its effective potential energy minimum, in order to avoid any alteration on
the formations of elements. This requirement allows us to introduce a new way
to parametrize our field, which we will use all through this and the next chapter
because of its simplicity. Then we will explicitly show that such a field can drive
the accelerated expansion of the Universe and also how it modifies the growth of
structure, motivating why we will study it in the next chapter.

3.1 Cosmological History

Through the different epochs, there are two characteristic time scales we have to con-
sider: the first one is given by H−1 and it represents the typical time scale in which
we observe significant changes in the energy density field for species that populate
our Universe, therefore it will be also the time scale in which the density-dependent
minimum position will change; the second one is the field response time, given by
m−1
φ . The requirement of a faithful tracking of the minimum is fulfilled if we ask

that m−1
φ � H−1: this means that if the field starts at or close to the minimum, it

will be able to quickly adjust its dynamics in order to reach and follow the minimum
position along its evolution, in other words the minimum solution is stable. This
condition can be proved as valid from the Big Bang up to now in the specific models
we have described earlier (see e.g. [5] for the chameleon case).
During the inflationary era, where H is nearly constant, the only source that will
contribute to the SET trace is the inflaton. Since its energy density is almost con-
stant, the minimum position φinf (in symmetron and dilaton cases it is indipendent
from the self-interaction potential V (φ) that will be relevant only at lower energy
scales), as well as the scalar field mass, will be fixed during this period and the field
will quickly sit on it, in fact, considering the fluctuation δφ = φ − φmin, from the
perturbed KG equation we have that

δφ̈+ 3Hδφ̇+m2
φδφ = 0, (3.1)

so, under our minimum stability assumption,

δφ ' e−
3Ht

2
(
c1e

imφt + c2e
−imφt

)
. (3.2)
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If we average over oscillations, we find that the fluctuations amplitude
〈
(δφ)2

〉
∼ a−3

rapidly decreases in time therefore, by the end of the inflation, the field will certainly
be at its minimum.
In the chameleon case [5], considering as istantaneous the reheating phase, when
both relativistic and non-relativistic species were created, the scalar field enters in
the radiation era, where 3M2

pH
2(a) ' ρr(a), at φi = φinf � φmin(ti), where the

minimum position is determined just by the non-relativistic matter density, since
relativistic species have a negligible SET trace. Here, because of the displacement
of the field with respect to the minimum and the minimum stability requirement,

m2(φi) ' ∂2
φV � m2(φmin(ti))� H2

i , (3.3)

therefore the driving force −∂φV will dominate over the friction term 3Hφ̇ and the
field will be underdamped. According to the EOM, the field starts rolling down on
its potential following φ̈ ' −∂φV and acquires a kinetic energy 1

2 φ̇ = V (ti) − V (t)
that soon becomes dominant since the potential is a decreasing function of the field,
i.e.

φ̇2

2

V
=
V (ti)

V (t)
− 1� 1 =⇒ wφ ' 1, (3.4)

thus the scalar field energy density will scale as ρφ = ρφia
6
i a
−6 and the kinetic

energy as φ̇ =
√

2ρφia
3
i a
−3. Once that it has reached the minimum, it overshoots

and finally stop at some value φf , when the friction term in KG equation becomes
relevant. We can estimate φf starting from the kinetic energy expression, finding

dφ

da
=
√

6ΩφiMp
ai
a2

=⇒ φ(a)− φi =
√

6ΩφiMp

(
1− ai

a

)
, (3.5)

and noticing that we have φ̇ ' 0 for a� ai, therefore φf = φi +
√

6ΩφiMp.
Now the field is in the opposite situation, where φf � φmin(tf ): here the friction

term will dominate over the driving force −∂φV and also over the −ρmβ
Mp

term, thus
the chameleon will be overdamped and essentially frozen at this value until matter-
radiation equality, where the Hubble friction term will have the same order of the
coupling-to-matter term, allowing the field to start rolling towards the minimum
and resulting in a great variation of fermion masses between BBN and now. On the
other hand we have to consider that, during the radiation era, every time that a
massive species j becomes non-relativistic at T ∼ mj , the field receives a kick that
pushes it towards its minimum. This is due to the fact that the SET trace for such
species becomes non-zero for about one e-fold of expansion, therefore the behaviour
of the field in this epoch is well approximated by KG equation

φ̈+ 3Hφ = −
∑
j

βjHjkjMpδ(t− tj), (3.6)

where kj =
gj

g?(mj)
is the ratio between the number of degrees of freedom gj of the

j-th species and the usual function g?(mj) that evaluates at a given temperature
the effective number of dof. Every kick displaces the field by

∆φj = −βjHjkjMp (3.7)

and if one of these kick succeeds in bringing the field close to the minimum, then
the field settles on it and successive kicks will just produce oscillations around the
minimum; otherwise, as we have told, the field have to wait until matter-radiation
equality to move towards its minimum. The last kick received would be given by
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electrons at z ∼ 109, so, in order to do not have significant changes in the masses of
fundamental fermion particles during BBN (zBBN ∼ 109 − 108), the field has to sit
on its minimum well before this moment.
The symmetron [15] and the dilaton [13] cases have a similar behaviour, since their
minimum position did not displace at the end of the inflationary phase, because
at early times just the coupling-to-matter term is relevant and we can neglect the
potential. The field enters the radiation era at some φi and will essentially remain
frozen at this value due to the Hubble friction term until when H2 ∼ A2ρm, at some
redshift z ≥ 106zeq; then it will undergo damped oscillation around its minimum
and kicks will not perturbe its dynamics. In [15] it has been analyzed the fact that
the field could be considerably displaced from its minimum if during the reheating
the tipycal decay time of the inflaton is bigger than its characteristic response time.
Since we want to avoid higher orders corrections in the coupling function, in order
to keep it quadratic all along the field evolution in time, bounds on these inflaton
parameters has been introduced.

3.2 Equation of State

In an Universe filled just with non-relativistic matter and the scalar field, as could
be considered our Universe after matter-radiation equality at zeq = Ωm0

Ωr0
− 1, the

first Friedmann equation

ä

a
= −

ρm + (1 + 3wφ)ρφ
6M2

p

(3.8)

tells us that we will have an accelerated expansion just if wφ < −1
3

[
1 + Ωm

Ωφ

]
. The

aim of this section is to prove that in late times the scalar field we introduced can
satisfy this relation, driving in this way the expansion.
As we have seen in the previous section, we have to require a small excursion of the
scalar field in order to have a small change in fermion masses and, when m2 � H2,
this can be achieved in a large class of models, where the potential energy minimum
is stable. In a spatially uniform matter background ρ̄m, the background field φmin(t),
defined by the minimum equation[

dV

dφ
+
ρ̄m
Mp

β

]
φmin

= 0 (3.9)

evolves in time according to the minimum equation �gφ = −dVeff
dφ = 0. Deriving

with respect to the time equation 3.9, we can also analyze the changing in time of
the minimum position obtaining, since ρ̇m = −3Hρm and

m2 =
d2Veff
dφ2

=
d2V

dφ2
+
ρm
Mp

dβ

dφ
, (3.10)

the explicit minimum equation

dφmin
dt

=
3Hρ̄mβ(φmin)

Mpm2(φmin)
. (3.11)

In order to avoid such heavy notation, from now on we will not indicate anymore that
we are considering the field at its minimum at the background level. The general
form of the scalar field SET reads as

Tµνφ = ∂µφ∂νφ− gµν
[

1

2
∂ρφ∂ρφ− V (φ)

]
, (3.12)
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so that we can easily calculate its 00 and ij components, i.e. its energy density and
its pression, at the background level, finding

T 0
0 = ρφ =

1

2

(
dφ

dt

)2

+ V (φ), (3.13)

T ij = −pφδij = −

[
1

2

(
dφ

dt

)2

− V (φ)

]
δij . (3.14)

In this kind of scalar theories coupled to matter, it is more convenient to define the
scalar field energy density in another way: let’s suppose that in our Universe we
have only the scalar field and a CDM fluid, characterized by its SET given, in the
EF, by

Tµνm = ρEu
µuν , (3.15)

where uµ is normalized in such a way that uµuµ = 1. Here the second Friedman
equation reads as

H2 =
ρE + ρφ

3M2
p

, (3.16)

where ρE is not conserved in the usual way, in fact, as we have pointed out in the
previous chapter, the conserved SET in this frame is given by Tµνm + Tµνφ . From the
scalar field KG equation and since [Dµ, Dν ]φ = 0, it follows immediately that

DµT
µν
m = −DµT

µν
φ = ρE∂

ν logA, (3.17)

where its LHS reads as

(DµρE)uµuν + ρE(Dµu
µ)uν + ρEu

µ(Dµu
ν). (3.18)

If now we contract 3.17 with uν and use

uνDµuν =
1

2
Dµ(uνuν) = 0, (3.19)

we are able to find the final form of the energy density conservation equation for ρE ,
which reads as

ρ̇E + 3HρE = ρE
Ȧ

A
, (3.20)

where we have introduced the Hubble rate Dµu
µ = 3H and the shortened notation

ρ̇E = uµDµρE . We can therefore define the new matter energy density as ρm =
A−1ρE , so that the conservation equation for ρm has the more familiar expression

ρ̇m + 3Hρm = 0; (3.21)

at the same time, this choice induces a new definition of the energy density of the
scalar field, which now reads as

ρφ =
1

2

(
dφ

dt

)2

+ V (φ) + (A− 1)ρm '
1

2

(
dφ

dt

)2

+ Veff (φ), (3.22)

in order to preserve the Friedman equation 3.16, now given by

H2 =
ρm + ρφ

3M2
p

. (3.23)
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In the end, we are ready to evaluate the equation of state

wφ + 1 =
pφ
ρφ

+ 1 =

(
dφ
dt

)2

ρφ
+ (A− 1)

ρm
ρφ

: (3.24)

the first term, using equation 3.11, reads as

27β2Ωm

(
H

m

)4 Ωm

Ωφ
, (3.25)

while for the second one we have to use a first order expansion of A and a second
order expansion of V close to the minimum of the field, which give

A(φ)− 1 ' ∂A

∂φ
∆φ ' β

Mp
∆φ, (3.26)

0 ' ∆V ' (∂φV )∆φ+ (∂2
φV )(∆φ)2 =⇒ ∆φ ' −

∂φV

∂2
φV

. (3.27)

Combining these two quantities and using equations 3.9 and 3.10, we obtain that
the second term goes as

(A− 1)
ρm
ρφ
' β2ρm
m2M2

p

Ωm

Ωφ
= 3β2Ωm

(
H

m

)2 Ωm

Ωφ
. (3.28)

We can conclude that, as long as Ωm and Ωφ are of the same order of magnitude and

their ratio does not compensate the significant H2

m2 suppression, i.e. in the late times
Universe, wφ+1 ' 0, therefore the background scalar field behaves as a cosmological
constant.

3.3 Reconstruction of the Dynamics

In the previous chapter we have seen how, starting from the lagrangian and in
particular from explicit forms of the potential V (φ) and the coupling function A(φ),
we can construct different models with peculiar behaviours of the scalar field. This is
a good approach but, since we would like to parametrize our models in a cheap way
and we would like to create also new models more intuitively, probably it is not the
best one to study the cosmological dynamics of the field. Considering what we have
said earlier, the evolution of φ through epochs is quite constrained by theoretical
reasons and is determined by the minimum equations 3.9 and 3.11: from these
two expressions we can see that, if we known the time evolution of the mass and
the coupling to matter, i.e. if we know m(a) and β(a), we are able to completely
reconstruct from 3.11 the background value of the scalar field

φ(a)− φi =

∫ a

ai

dā
3β(ā)ρ̄m(ā)

ām2(ā)Mp
(3.29)

and, from 3.9, using 3.11, the parametric form of the potential

V (a)− Vi = −
∫ a

ai

dā
3β2(ā)ρ̄2

m(ā)

ām2(ā)M2
p

, (3.30)

where we have assumed that the field have been sat on its minimum since ai < aBBN .
This parametrical representation of the field, since we know how ρm(a) changes in
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time, allows us to reconstruct these quantities for every matter density of interests,
from the cosmological background density (ρ0 ∼ 10−29 g/cm3) to the Earth one (up
to ρcore ∼ 10 g/cm3), just choosing the right scale factor: this density range forces
us to choose at least zi = 1010. Moreover, even in this parametrization, we can
evaluate the all-important thin shell condition

φ(ab)− φ(ao)

β(ab)Mp|ΨN |
=

1

β(ab)Mp|ΨN |

∫ ab

ao

dā
3β(ā)ρm(ā)

ām2(ā)Mp
. (3.31)

In other words, the full nonlinear dynamics of the theory since before BBN can be
recovered just from the knowledge of time evolution of the mass and the coupling
to matter. Let’s now show how this is done in those models we have introduced in
the previous chapter.

3.3.1 Chameleon and f(R)

In these models ([2],[9]) the coupling to matter β is constant and the mass increases
with the density, therefore a reasonable parametrization is given by

m(a) = m0a
−r. (3.32)

For r 6= 3
2 , equation 3.29 reads as

φ(a)− φi
Mp

=
9βΩm0H

2
0

(2r − 3)m2
0

[
a2r−3 − a2r−3

i

]
'

' 9βΩm0H
2
0

(2r − 3)m2
0

a2r−3

(3.33)

when r > 3
2 (notice that we have to require this condition in order to don’t have a

large excursion in time of the background level field). At the same time equation
3.30 reads as

V (a)− Vi = −
27β2Ωm0H

4
0M

2
p

2(r − 3)m2
0

[
a2(r−3) − a2(r−3)

i

]
(3.34)

so, using the parametrical reconstruction of the field in 3.33,

V (φ) = V0 − C
(
φ− φi
Mp

) 2(r−3)
2r−3

, (3.35)

where both V0 and C are numerical constants. For 3
2 < r < 3, V (φ) ∼ φ−n behaves

as chameleon theories with Ratra-Peebles exponent n = 2(3−r)
2r−3 . When β = 1√

6
, from

equation 2.59, we can find the relation between φ and R, that is given by

R(φ) ' −2
√

6(r − 3)C

(2r − 3)M2
p

(
φ− φi
Mp

)− 3
2r−3

− 4V0

M2
p

+
4C

M2
p

(
φ− φi
Mp

) 2(r−3)
2r−3

'

' −2
√

6(r − 3)C

(2r − 3)M2
p

(
φ− φi
Mp

)− 3
2r−3

− 4V0

M2
p

,

(3.36)

where the first term dominates over the third one when the field excursion is small.
Finally, we can end the reconstruction obtaining

f(R) =
2

M2
p

V (φ(R)) =
2

M2
p

V0 − C

R+ 4V0
M2
p

R?

− 2
3

(r−3)
 , (3.37)

where for r > 3, we have the so called large curvature f(R) models.
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3.3.2 Symmetron

In the symmetron model ([9],[10]), the field develops a (non-)zero coupling to matter
in (low) high density regions or, alternatively, at redshifts (z ≤ z?) z > z?. Here z?
is the redshift associated to the critical density ρc = ρm(a?) = ρ? mentioned in the
previous chapter. This behaviour can be reproduced by

β(a) =

{
0 z > z?

β?

√
1−

(
a?
a

)3
z ≤ z?

(3.38)

and since for ρm < ρc we have

m2 = 2A2ρc

(
1− ρm

ρc

)
= 2A2ρc

(
1− a3

?

a3

)
, (3.39)

we can consistently define for z ≤ z?

m(a) = m?

√
1−

(a?
a

)3
. (3.40)

From 3.29, given that φi = 0, we find

φ(a) =

{
0 z > z?

φ?

√
1−

(
a?
a

)3
z ≤ z?

, (3.41)

where φ? = 2β?ρ?
m2
?Mp

, while from 3.30 we find

V (a)− Vi =

{
0 z > z?
β2
?ρ

2
?

2m2
?M

2
p

[(
a?
a

)6 − 1
]

z ≤ z?
. (3.42)

Using the parametrical reconstruction of the field we can show that

V (φ)− Vi =
β2
?ρ

2
?

2m2
?M

2
p

[(
1− φ2

φ2
?

)2

− 1

]
= −1

2
µ2φ2 +

1

4
λφ4, (3.43)

where µ2 = m2
?

2 , λ = m2
?

2φ2
?
, and that

β(φ) = β?
φ

φ?
, (3.44)

as in the symmetron model.
Now, starting from 3.38 and 3.40, we can slightly modify the mass and coupling to
matter functions in order to create new generalized symmetron models: as shown in
the previously cited papers, picking up for z ≤ z?

β(a) = β?

[
1−

(a?
a

)3
]1/q

(3.45)

m(a) = m?

[
1−

(a?
a

)3
]1/p

, (3.46)

we can create models where the potential and the coupling to matter are given by

V (φ)− Vi = −c1φ
n + c2φ

m (3.47)

β(φ) = β?

(
φ

φ?

)n−1

, (3.48)
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where m, n are function of q, p, as well as the two positive (for m > n) constants
c1, c2. In order to keep the potential symmetric around φ = 0, m and n should
be taken even integers. Moreover, in [9], using the standard environmental setup
introduced in the previous chapter, it has been explicitly shown that these models
have the same screening property of the regular symmetron.

3.3.3 Dilaton

Sometimes, as in the dilaton case ([10],[2]), it’s more convenient to express the
coupling to matter function as a function of the field, instead of the scale factor. It
is possible to rewrite equation 3.11 as∫ φ

φi

dφ

β(φ)
=

∫ a

ai

dā
3ρ̄m(ā)

ām2(ā)Mp
(3.49)

and since in our case we will study the dynamics around the minimum φ?, where
β(φ) = MpA2(φ− φ?), we can easily reconstruct

log

∣∣∣∣ φ− φ?φi − φ?

∣∣∣∣ = 3A2ρ̄0m

∫ a

ai

dā
1

ā4m2(ā)
(3.50)

or, equivalently,

|β(φ)| = |β(φi)| exp

[
3A2ρ0m

∫ a

ai

dā
1

ā4m2(ā)

]
. (3.51)

The coupling at initial time or, alternatively, in dense environments is linked to the
coupling in the cosmological background by

|β(φ0)| = |β(φi)| exp

[
3A2ρ0m

∫ 1

ai

dā
1

ā4m2(ā)

]
, (3.52)

so, as long as A2 > 0 (i.e. the minimum of the coupling function is stable) and mass
does not compensate the divergence in the integral, we can obtain in dense regions a
small coupling value β(φi)� 1. After that, we can use this last equations to express
the coupling to matter as

β(φ) = β(φ0) exp

[
3A2ρ0m

∫ a

1
dā

1

ā4m2(ā)

]
. (3.53)

In general, we have seen that

m2(a) ' A2ρ ' 3A2M
2
pH

2(a) : (3.54)

between our initial time and the matter-radiation equality ρ ' ρr = ρ0ra
−4, so

β(a) = β(ai)e
3

Ωm0
Ωr0

(a−ai) (3.55)

and because of the compensation the coupling to matter variation is not so big,
while in the matter-dominated era ρ ' ρ0ma

−3 and

β(a) = β(aeq)

(
a

aeq

)3

. (3.56)

To generalize the dilaton, let’s consider a class of models with a quadratic coupling
function where, around its minimum φ?, the coupling to matter reads as β(φ) =
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MpA2(φ−φ?). It sounds reasonable parametrize the dilaton mass as m(a) = m0a
−r,

so that

β(a) = β(a0) exp

[
s

∫ a

1
dāā2r−4

]
=

{
β0a

s r = 3
2

β0e
s

2r−3
(a2r−3−1) r 6= 3

2

, (3.57)

where s = 9A2M
2
pΩm0

H2
0

m2
0

and β is a decreasing function of the scale factor for every

value of r. From 3.57 it follows that

a =

[
1 +

2r − 3

s
log

β

β0

]− 1
2r−3

, (3.58)

so, when we calculate the first derivative of the potential, we find

dV

dφ
=

dV
da
dφ
da

= −β(a)ρ̄m
Mp

= −β(φ)ρ̄0m

Mp

[
1 +

2r − 3

s
log

β

β0

]− 3
2r−3

, (3.59)

where log β
β0
< 0. This last equation shows why, in order to have a well defined first

derivative, we have to impose that r < 3
2 .

3.4 Growth of Structures

As we have seen, at the background level, our scalar field models are indistinguishable
from the Λ-CDM one. This is not true at perturbative level where, inside the field
Compton wavelength, the density constrat grows in a different way with respect to
the cosmological standard model. In this section we will show how the anomalous
growth can be descibed only via the β(a)−m(a) parametrization, giving us another
proof of the usefulness of this formalism.
We will consider perturbations in the Newtonian conformal gauge where, in absence
of any anisotropic stress and defining vi = dxi

dτ ,

ds2 = a2
[
(1 + 2ΨN )dτ2 − (1− 2ΨN )dx · dx

]
=

= a2dτ2
[
1 + 2ΨN − (1− 2ΨN )vivi

]
.

, (3.60)

In our investigation on large-scale structures (LSS) we will consider non-relativistic
particles and weak Newtonian potentials, therefore both v2 = vivi and ΨN will
be small with respect to unity, as well as their time derivative, since these kind
of structures evolves on Hubble time scales; on the other hand, we will keep their
spatial gradients because LSS are much smaller than the horizon. The perturbed
quantities we will consider are

ρm(t,x) = ρ̄m(t) [1 + δ(t,x)] (3.61)

φ(t,x) = φmin(t) + δφ(t,x) (3.62)

vi(t,x) = 0 + δvi(t,x). (3.63)

Expanding the KG equation 2.7 around background values, such that �gφmin =
−∂φVeff (φmin) = 0, we find that at first order in perturbation theory the fluctuation
of the field evolves according to

δφ̈+ 3Hδφ̇−∇2δφ = −βρ̄m
Mp

δ −m2δφ. (3.64)
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Switching from cosmic time to conformal time variable, we have that φ̇ = dτ
dt δφ

′ ' δφ′

a

and H = a′

a , where ′ = ∂τ ; going in the Fourier space (without adding any particular
sign to indicate it), where k is the comoving wavenumber, equation 3.64 becomes

δφ′′ + 2Hδφ′ + (k2 + a2m2)δφ = −βρ̄ma
2

Mp
δ. (3.65)

In the sub-horizon regime k2 � (aH)2 = H2, so the solution follows

δφ ' − β

k2 + a2m2

ρ̄ma
2

Mp
δ (3.66)

and rapidly oscillates around this analytic solution, as numerical proved in [9].
The CDM particles 4-velocity, at the leading order in this gauge, reads as

uµ =
dxµ

ds
=
dτ

ds

dxµ

dτ
' a−1

(
1−ΨN +

v2

2
, vi
)
, (3.67)

so that the different terms in the energy density conservation equation 3.21 are given
by

ρ̇m = u0∂τρm + ui∂iρm ' a−1
(
ρ′m + vi∂iρm

)
(3.68)

Dµu
µ = ∂µu

µ + Γµµαu
α = ∂µu

µ +
uα√
−g

∂α
√
−g '

'
(

1

a

)′
+

1

a
∂iv

i +
1

a5
(a4)′ = a−1

(
3H+ ∂iv

i
)
.

(3.69)

Gathering all the terms, the complete equation reads as

ρ′m + vi∂iρm +
(
3H+ ∂iv

i
)
ρm = 0, (3.70)

so at the background level it reads as

ρ̄′m + 3Hρ̄m = 0 (3.71)

while at the first order, using this last equation, as

δ′ + ∂iδv
i = 0 =⇒ δ′′ + ∂i(δv

i)′ = 0. (3.72)

Then we need to find the generalized geodesic equation: starting from equation 3.17
and using equation 3.20 we obtain

uµDµu
ν = ∂ν logA− Ȧ

A
uν , (3.73)

where we are interested just in the ν = i component, in order to study CDM particles
velocities. Under the weak field assumption, the inverse of the metric reads as

gµν =

(
a−2(1− 2ΨN ) 03

03 −a−2(1 + 2ΨN )13

)
, (3.74)

so we are able to calculate the components of the affine connection

Γµαβ =
1

2
gµν [∂αgνβ + ∂βgνα − ∂νgαβ] , (3.75)

30



in particular

Γi00 = (1 + 2ΨN )δij∂jΨN (3.76)

Γi0j = (1− 4Ψ2
N )Hδij = Γij0 (3.77)

Γijk = (1 + 2ΨN )
[
δik∂jΨN + δij∂kΨN − δjkδil∂lΨN

]
. (3.78)

In this way, at the first order,

uµDµu
i = uµ∂µu

i + Γiµνu
µuν =

= u0∂0u
i + uj∂ju

i + Γi00u
0u0 + 2Γi0ju

0uj + Γijku
juk '

' 1

a2

[
(δvi)′ +Hvi + δij∂jΨN

]
.

(3.79)

At perturbative level, the i-th component of the RHS of 3.73 reads as

− 1

a2

[
δij∂j logA+

βφ′min
Mp

δvi
]
, (3.80)

therefore we finally obtain

(δvi)′ +

[
H+ β

φ′min
Mp

]
δvi +

β

Mp
δij∂jδφ = −δij∂jΨN . (3.81)

Using the minimum equation 3.11, we find that

φ′min
Mp

= 9ΩmβH
(
H2

a2m2

)
� H (3.82)

due to the suppression factor, therefore we can neglect the second term in square
brackets. Taking the spatial derivative of this last equation with respect to the i-th
coordinate and using what we have found in 3.72, we get the equation of motion for
the density contrast, which reads in the Fourier space as

δ′′ +Hδ′ − a2ρ̄m
2M2

p

δ +
β

Mp
k2δφ = 0, (3.83)

where we have used

∇2
xΨN =

a2

2M2
p

(δρm + δρφ) ' a2ρ̄m
2M2

p

δ, (3.84)

since, along the minimum trajectory, the variation of energy density of the scalar
remains small compared to the Planck mass, as shown earlier in this chapter. Using
the analytic solution we found in 3.66, we are able to obtain the final form of the
density contrast equation, which is given by

δ′′ +Hδ′ − a2ρ̄m
2M2

p

δ

[
1 +

2β2

1 + a2m2

k2

]
= 0. (3.85)

This is a remarkable result since it shows that, just knowing the time evolution of the
mass and the coupling to matter function, it is possible to completely reconstruct
the linear dynamics. We can also identify the influence regime of the fifth force,
in fact, on scales larger than the Compton wavelength of the scalar field, where
k � am(a), the second term in square brackets is highly suppressed and we recover
the same equation of the Λ-CDM model; while for k ≥ am(a) we have an anomalous
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growth. As we have explained in the previous section, in order to describe the
behaviour of MG models, we have to deal with four or five new parameters: in
general, increasing the strenght of β, properly changing either the coupling factor
β, β?, β0, the exponents q, s or the time a? where modifications arise, will result
in a stronger matter clustering; conversely increasing value of m, via the prefactor
m0, m?, the exponents r, p or the starting time a?, will reduce the range of gravity
modification, weakening the matter clustering.
The advantages of this parametrization do not stop here, in fact, as we will explain
in the next chapter, it can be used also to describe the non-linear dynamics of the
scalar field, even allowing us to specify its spatial configuration: this will help us,
since our goal is to investigate non-linear phenomena, as the gravitational collapse,
where we expect to find deviations from the cosmological standard model.
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Chapter 4

Spherical Collapse

In order to investigate the structure formation, we need large N-body simulations,
which are very time and resource consuming. These simulations are adapt to test
physical models whose parameter space is well experimentally constrained, as the
Λ-CDM model, rather than wide parameters space as in modified gravity models,
where we have four or even five new parameters. In these year, step by step, through
laboratory, astrophysical and cosmological tests, we are eliminating large regions of
such space but this is not enough. Then an analytic or semi-analytic description
of different phenomena can help us to isolate some interesting regions of the MG
parameter space that will be investigated in a second step through numerical simu-
lations.

4.1 Spherical Collapse in GR

Since we want to compare the MG collapse to the usual collapse in GR, we will
introduce the latter in this section. We will analyze the simpler collapse model,
where we have an initial spherical symmetry which we suppose to be maintained in
time, at least until what we will define the “end”of the collapse.
We will study the collapse in the matter era, starting from recombination, at zi =
1100, until matter-dark energy equality, at ze = 0.33, because here we can assume
that Ωm = 1 and neglect other components, i.e. we will consider an Einstein-
de Sitter Universe. Actually, the matter era starts well before recombination, at
zeq ∼ 3 · 103, but until this moment baryonic matter will be in equilibrium with
radiation and any gravitational collapse is avoided. After recombination baryonic
matter fall in CDM potential well and they start evolving together. We choose to
stop our collapse at the matter-dark energy equality instead of considering the end
at z = 0 as done in several papers (see e.g. [4],[18]) because in the dark energy
era the density perturbation growth slows down and perturbations eventually freeze
out; moreover, we want to carry on all the calculations analytically as long as we
can and, in the MG case, a non-zero Ωde can complicate our problem.
Since in our Universe we will have just matter, we will drop the subscript m when
we will talk about the density. In this framework, let’s consider at zi a spherical
region with a slightly perturbed density ρ̄i(1 + δi), where δi � 1, with respect to
the background and with initial radius ri, enclosing a mass M = 4π

3 ρ̄i(1 + δi)r
3
i . A

corollary of the well known Birkhoff theorem [28]

Theorem. A spherically symmetric gravitational field in empty space must be static,
with a metric given by the Schwarzschild solution.

state that
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Corollary. The metric inside an empty spherical cavity at the center of a spherical
symmetric system must be equivalent to the flat-space Minkowski metric ηµν ,

therefore, since our perturbation lives inside such a cavity, it decouples from
the rest of the Universe and it evolves according to his properties. The spherical
dynamics reduces to the usual Newtonian dynamics

r̈ = −GM
r2

, (4.1)

from which we can obtain the usual energy conservation

1

2
ṙ2 − MG

r
=

1

2
ṙ2
i −

MG

ri
= −κ (4.2)

where κ > 0, since the initial total energy is negative. We can prove this last
statement assuming that the perturbation initial velocity is due only to the Universe

expansion i.e. ṙi = ȧixi = Hiri, so that the kinetic energy will read as
H2
i r

2
i

2 while

the potential energy will be given by −GM
ri

= −H2
i r

2
i (1+δi)
2 , obtaining in this way

κ =
H2
i r

2
i δi

2 ; in other words, the small fluctuation δi will give to the system the small

energy necessary to begin to collapse. Through a rescaling r →
√

2κr̃ we get

r̃ =
A2

˙̃r2 + 1
, (4.3)

where A2 = MG√
2κ3

= 1+δi

Hiδ
3/2
i

depends from the initial conditions; then we can solve 4.3

through a parametric procedure: first we define p = ˙̃r, then we derive with respect
to the time equation 4.3 obtaining

r̃ =
A2

p2 + 1
(4.4)

t = −2A2

∫
dp

(p2 + 1)2
(4.5)

and finally, using the substitution 1
p = tan θ+θi

2 and going back to the physical
coordinate, we are able to find the parametric solution

t(θ) =
A2

2
[θ + θi − sin(θ + θi)] , r(θ) =

√
2κr̃(θ) =

√
2κ
A2

2
[1− cos(θ + θi)] .

(4.6)
Usually in literature this θi parameter is not introduced, but we have put it in
order to obtain non-singular quantities at the beginning of the collapse. In the end,
recalling that in a matter-dominated Universe H = 2

3t , we obtain

t(θ) = ti
3(1 + δi)

4δ
3/2
i

[θ + θi − sin(θ + θi)] , r(θ) = ri
(1 + δi)

2δi
[1− cos(θ + θi)] . (4.7)

Requiring that r(θ = 0) = ri we are able to fix the θi parameter as

θi = arccos
1− δi
1 + δi

' 2
√
δi (4.8)

since the initial overdensity is small, therefore also the θi parameter will be small.
Finally, we can compute the cosmological scale factor for the flat, matter-dominated
Universe, finding

a(t) = ae.m.e.t
− 2

3
e.m.e.t

2
3 =

ai
δi

[
3

4
(1 + δi) [θ + θi − sin(θ + θi)]

] 2
3

, (4.9)
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where ae.m.e. and te.m.e. are associated to the end of the matter-dominated era.
Since our goal is to study the overdensity evolution, let’s introduce a new quantity
directly relate to such variable: first of all let’s define the comoving Lagrangian coor-

dinate q =
(

3M
4πρ̄0

)1/3
of a shell that include the same mass M of our perturbation in

an uniform Universe; then, requiring that the mass is conserved during the collapse,
we have that

M =
4π

3
ρr3 =

4π

3
ρ̄(1 + δ)r3 =

4π

3
ρ̄a3q3, (4.10)

therefore we can introduce the normalized radius y = (1+δ)−
1
3 = r

aq , which explicitly
reads in our Universe as

y0(θ) =
r(θ)

a(θ)q
=

3

√
2

9

1− cos(θ + θi)

[θ + θi − sin(θ + θi)]
2
3

(4.11)

and where, by construction, y(0) = (1 + δi)
− 1

3 ' 1, hence its name.
According to our parametrization the collapse will start at some ti > 0, then the
physical radius will increase due to the expansion of the Universe until the turn
around moment at tta = t(π− θi) = 3πti(1+δi)

4δ
3/2
i

, where the body reaches its maximum

size rta and the physical radius begins to decrease (the comoving size will always
decrease), completely collapsing to a point at θ = 2π − θi.
We can extract some useful information about the collapse studying the linear
regime: for small values of θ + θi we can expand both quantities in 4.7 up to the
second order as

r(θ)

rta
=

1

2
[1− cos(θ + θi)] '

(θ + θi)
2

4

[
1− (θ + θi)

2

12

]
(4.12)

t(θ)

tta
=

1

π
[θ + θi − sin(θ + θi)] '

(θ + θi)
3

6π

[
1− (θ + θi)

2

20

]
. (4.13)

Keeping only the leading order in both expressions we find the background expansion
in a matter dominated universe

rbg(θ)

rta
=

1

4

(
6πt

tta

) 2
3

, (4.14)

while condidering both terms in 4.13 can compute the linear growth

rlin(θ)

rta
=

1

4

(
6πt

tta

) 2
3

[
1− 1

20

(
6πt

tta

) 2
3

]
, (4.15)

thus the linear density contrast will evolve with respect to the background according
to

1 + δlin =
ρlin
ρbg

=
r3
bg

r3
lin

' 1 +
3

20

(
6πt

tta

) 2
3

. (4.16)

The body will eventually collapses to a point in a finite time tc = t(2π − θi) = 2tta,
where the linear density contrast, extrapolated at this moment, reads as

δc = δlin(tc) =
3

20
(12π)

2
3 ' 1.686, (4.17)

independently from initial conditions of the collapsing body, in particular from the
mass of the object. This feature is mantained also in an Universe where there is also
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a cosmological constant, but in this case the critical value will slightly depend the
matter density fraction Ωm at the redshift of interest (see e.g. [25]) and the critical
value will be a bit smaller. Using the explicit expression for tta, we can see that the
linear density contrast evolves in time as

δ ' 3

5
δi

(
t

ti

) 2
3

=
3

5
δi
a

ai
=

3

5
δi

1 + zi
1 + z

, (4.18)

therefore if the initial overdensity value, extrapolated at some later time (redshift) t
(z), reaches or exceeds the critical value given in 4.17, then the perturbation collapses
or has already collapsed by that time: this will be an useful criterion to determine
the future of perturbations we will consider. Physically speaking, the collapsing
body will not reach point-size dimensions, in fact when densities are high, even a
tiny departure from the spherical symmetry can create shocks, whose dissipation will
convert the kinetic energy of collapsing shells into thermal random motion, heating
the material and producing an equilibrium state with a finite size Rvir. A complete
reconstruction of the dynamics of the collapse, even in such regions, can be found
in [24]. We can derive when the virialization happens, in fact, at such moment, the
Virial Theorem states that Etot = EG

2 . Considering an uniform density perturbation,
whose enclosed mass scales from r = 0 to r = R as m = 4π

3 ρr
3, its gravitational

energy reads as

EG = −
∫ M

0
dm

Gm

r(m)
= −3

5

GM2

R
; (4.19)

moreover, assuming that the mass and the energy are conserved during the col-
lapse, we can easily calculate the total energy at the turn around, where the only
contribution is the gravitational one. In the end we find that at virialization
−3

5
GM2

rta
= −3

5
GM2

2Rvir
, therefore the virialized radius will be half of the maximum

radius, fixing θvir = 3
2π − θi. At such time, the density contrast will be given by

δvir = y−3(θvir)− 1 ' 147 (4.20)

and also numerical simulations proved that gravitationally bound structure arise
when the objects become 150-200 times denser than the background. From now
on when we will speak of “the end of the collapse”we will mean the virialization
moment. To characterize this moment we will choose the value δvir = 200, in order
to be consistent to what has done in [4], which will be our comparison reference for
the following sections. Requiring that virialization happens at the end of matter era,
we can find the unknowns quantities δi and θc numerically solving the equations

1

1 + ze.m.e.
= a(θc) =

ai
δi

(
3

4
(1 + δi) [θc + θi − sin(θc + θi)]

) 2
3

(4.21)

y0(θc) =
3

√
2

9

1− cos(θc + θi)

[θc + θi − sin(θc + θi)]
2
3

= (201)−
1
3 , (4.22)

obtaining δi ' 3.2 · 10−3 (therefore θi ' 0.113) and θc = 4.69 (from now on the
collapsing time will be tc = t(θc)). This will fix the height of the critical barrier to
δc = 1.589.
In the following sections we will introduce the MG scenario, where the physical
radius r, therefore the normalized radius y(θ), will evolve in a different way; on the
other hand, since we want to compare the collapses in these two cases, we choose
to mantain the same “clock”given in 4.7, which in principle was defined along with
the physical radius of this scenario.
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4.2 Spherical Collapse in MG

In this case, always assuming spherical symmetry, the physical radius will increase
also due to the fifth force, in fact a shell of radius r(t) will evolve according to

r̈ = −∂ΨN

∂r
−
∂Ψφ

∂r
. (4.23)

While before we could find an analytic expression for the normalized radius y = r
aq ,

now we have to properly derive its equation of motion. The LHS of 4.23 explicitly
reads as

r̈

aq
= ÿ + 2Hẏ +

ä

a
y (4.24)

and considering the normalized radius as a function of the new time variable η =
log a(t), instead of the usual cosmic time, we obtain that ẏ = dy

dt = H dy
dη = Hy′ and

that the RHS of the last equation is given by

H2

[
y′′ +

(
2 +

Ḣ

H2

)
y′ +

ä

aH2
y

]
. (4.25)

Using the overbar to indicate background quantities, in an Universe where both
matter and dark energy are present, the first and the second Friedman equations
read as

ä

a
= − ρ̄m + (1 + 3wde)ρ̄de

6M2
p

= H2

[
1 +

Ḣ

H2

]
, H2 =

ρ̄m + ρ̄de
3M2

p

, (4.26)

so that we can calculate

ä

aH2
= −Ωm

2

[
1 + (1 + 3wde)

Ωde

Ωm

]
. (4.27)

On the other hand, the gravitational potential evolves due to the complete matter
density, according to the modified Poisson equation

∇2ΨN = 4πG [ρm(r) + (1 + 3wde)ρ̄de] , (4.28)

therefore, integrating once this equation, since dark-energy energy is spatially uni-
form, we find

∂ΨN

∂r
=

4πG

r2

∫ r

0
dr̃r̃2 [ρm(r̃) + (1 + 3wde)ρ̄de] =

4πGr

3

[
3M

4πr3
+ (1 + 3wde)ρ̄de

]
=

=
4πGr

3

[
ρ̄m0a

−3y−3 + (1 + 3wde)ρ̄de
]

=
ρ̄mr

6M2
p

[
y−3 + (1 + 3wde)

Ωde

Ωm

]
,

(4.29)

obtaining in the end

1

aqH2

∂ΨN

∂r
=

y

rH2

∂ΨN

∂r
=
yΩm

2

[
y−3 + (1 + 3wde)

Ωde

Ωm

]
. (4.30)

Gathering together all the pieces from 4.25, 4.27 and 4.30, we find

y′′ +
1

2
(1− 3wdeΩde) y

′ +
Ωm

2

[
y−3 − 1

]
y = −

3M2
pΩmy

ρ̄mr

∂ΨA

∂r
= −3βMpΩmy

ρ̄mar

∂φ

∂x
,

(4.31)
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where in the LHS we have the usual result we would find in the Λ-CDM cosmological
model while in RHS we have the fifth force contribution, a peculiar characteristic of
our MG models.
It is clear that we need to understand how the scalar field evolves both temporally
and spatially: in order to do so we will use again the β(a)−m(a) parametrization,
showing that it is an effective framework also in the study of the non-linear dynamics.
The spatial profile of the field is given by the quasi-static KG equation

1

a2
∇2φ =

∂V

∂φ
+ ρm

∂ logA

∂φ
, (4.32)

where ρm = ρ̄m(1 + δ) = ρ̄m0a
−3(1 + δ) is the complete, position-dependent density

of our body. In the previous chapter we have reconstructed background field values
starting from the background density, i.e. we have found φ̄(a), while now we have
to deal with the local value φ(x) associated to the complete density. Let’s define
the function α = a(φ̄), which associate to a given value of the background field the
corresponding scale factor, i.e. a(φ̄) is the inverse function of φ̄(a): this function
allow us define the field α(x) as the scale factor observed when the background field
value is equal to the local field value or, in a mathematical fashion, φ̄[α(x)] = φ(x).
From the minimum equation 3.9 evaluated at the local value of the field we obtain
as before

dφ

dα
=

3ρ̄αβα
αMpm2

α

. (4.33)

where ρ̄α = ρ̄m0α
−3, βα = β(φ̄(α)) = β(φ(x)) and m2

α = m2(φ̄(α)) = m2(φ(x)).
Thanks to this new quantity and to the spherical symmetry, we can now rewrite the
quasi-static KG equation 4.32 as follows: the LHS reads as

dφ

dα

[
d2α

dx2
+

2

x

dα

dx

]
+
d2φ

dα2

(
dα

dx

)2

, (4.34)

where
d2φ

dα2
=

3ρ̄0

Mp

d

dα

(
βα

m2
αα

4

)
=
dφ

dα

d

dα
log

βα
m2
αα

4
, (4.35)

while terms in the RHS, using the minimum equation, will read as

ρmβ

Mp
=
ρ̄m0(1 + δ)a−3βα

Mp
, (4.36)

dV

dφ
= − ρ̄αβα

Mp
= − ρ̄m0α

−3βα
Mp

. (4.37)

Gathering all these terms, equation 4.32 has become

1

x2

d

dx

[
x2dα

dx

]
+ log

βα
m2
αα

4

(
dα

dx

)2

=
m2
αα

4

3a

[
1 + δ − a3

α3

]
. (4.38)

Finally, using this new quantity, we can modify equation 4.31 in order to obtain the
complete normalized radius equation

y′′ +
1

2
(1− 3wdeΩde) y

′ +
Ωm

2

[
y−3 − 1

]
y = −9Ωmβ

2
αay

m2
αα

4x

∂α

∂x
. (4.39)

The first difference that arises in the MG scenario is that now there is not anymore
scale indipendence, in fact we have a set of two coupled equation, where the field
evolves in time and space according to the density profile δ(t, x) and the density
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evolves also due to the additional fifth force profile. Because of this coupled be-
haviour, a complete and rigorous study of the spherical collapse can be done only
following the dynamics of all shells. Since this can be done just numerically, we
follow [3] and adopt another approach: we will focus our attention just on the shell
which enclose the mass M we are interested in and we will use an ansatz for density
profile. This is enough in order to have manageable numerical simulation, in fact at
each step we can calculate the density profile shape, the field profile and how the
radius changes, but it is still too much complicated if we want to find a semi-analytic
description, as we can see from the specific shape chose in [4], and it is also mean-
ingless since the density profile choice is arbitrary, therefore in the next section we
will try to find a way to overcome this problem.

4.3 Field Profile

The first idea that can be considered is to choose, as in GR, a spatially uniform
top-hat perturbation which encloses a mass M and has the general profile

δ(t, x) =

{
δ(t) x ≤ xM
0 x > xM

, (4.40)

where xM is the comoving coordinate of the outer shell, which we will follow during
the collapse, of our perturbation. Even without drawing the profile or launching
some numerical simulation, we can immediately guess what could be the problem in
this approach: the critical point is that the field has to evolve from its background
value to its internal value all at once in a not so extended region, instead of exploit-
ing the rising density profile to slowly evolve over larger distances from the exterior
to the interior value. This would imply that the gradient of the field, evaluated at
our reference shell, which contributes to determine the fifth force strenght, will be
excessively large, overestimating the fifth force strength; moreover, since the field
can’t properly follow the density profile, it will hardly reach its potential minimum
inside the collapsing body and this will result in a lack of screening, as we have
explained in the second chapter.
On the base of these considerations, we can conclude that we definitively need some
intermediate or transition region between the body and the cosmological back-
ground, where the density profile can smoothly vary, in order to achieve sensible
results. This fact introduces a substantial problem, since equation 4.38 is highly
non-linear, therefore even some trivial profile will produce an analytically unsolv-
able equation. To overcome this issue, we decide to start from a different point, i.e.
from the profile of α, for which we have numerical simulations that can guide our
choices (see [4] or bottom-right panels of Figure 4.1 and 4.4). Since deeply inside
and outside the object we have that field profile is almost constant, we decide to take
in these regions a spatially uniform density profile as we have done before, while in
the transition region [xM , xε], where xε = xM (1 + ε) and ε will be properly chosen
on the base of the cited numerical simulations, the density is an unknown (for now)
quantity. In physical coordinates, the complete matter density profile will now read
as

ρ(r) =


ρ̄[1 + δ(t)] r ≤ rM
ρ̄[1 + δ(t, r)] rM < r < rε

ρ̄ r ≥ rε
. (4.41)

Then, since we expect that the first derivative will assume small values, we further
simplify the LHS of equation 4.38 assuming that the second term, in which appears
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the squared first derivative, is negligible with respect to the first one. Introducing
the rescaled variable α̃ = α

a , the α profile equation 4.38 reads as

1

x2

d

dx

[
x2dα̃

dx

]
=
m2
aα̃a

2α̃

3

[
α̃3(1 + δ)− 1

]
. (4.42)

In the inner and outer region, according to density profile shape 4.41, we can expand
α̃ as α̃0(t) + δα̃(t, x), where δα̃ � α̃ is a small perturbation with respect to the
background value, and find the perturbed equation

1

x2

d

dx

[
x2dδα̃

dx

]
=
m2
aα̃0

a2α̃0

3

[
α̃3

0(1 + δ)− 1
]

+

+
m2
aα̃0

a2

3

[
3α̃3

0(1 + δ) +
(
α̃3

0[1 + δ]− 1
)(

1 +
α̃0

m2
aα̃0

dm2
aα̃

dα̃

∣∣∣∣
aα̃0

)]
δα̃ =

= S + k2δα̃,

(4.43)

where in the last line we have defined the two quantities k2 and S, for now assumed
both as positives, even if we have still to prove it.
Deeply outside the body, for x > xε, where δ = 0, we can grasp how the screening
mechanism works: looking to equation 4.38 we can see that in this case the disap-
pearance of the fifth force (dαdx = 0) can be obtained if α→ a, i.e. in the weak field
regime, as confirmed also by numerical simulations. Therefore it is reasonable to
choose α̃0 = 1, so that

S = 0, k2 ≡ k2
o = m2

aa
2 (4.44)

and equation 4.43 is given by

1

x2

d

dx

[
x2dδα̃

dx

]
− k2

oδα̃ = 0. (4.45)

Asking that the perturbation vanishes at spatial infinity, i.e. δα̃(x→∞)→ 0, only
the decreasing exponential solution survives and the complete profile in this region
reads as

α̃(x) = 1−De
−kox

x
, (4.46)

where D is a constant.
Inside the collapsing object, for x ≤ xM , where the density is spatially uniform,
S 6= 0 and k2 ≡ k2

i , equation 4.43 reads as

1

x2

d

dx

[
x2dδα̃

dx

]
− k2

i δα̃ = S. (4.47)

Requiring that the solution is non-singular at the origin, i.e. dδα̃
dx

∣∣
x→0

→ 0, the
complete profile reads as

α̃(x) = α̃0 −
S

k2
i

+A
sinh(kix)

kix
, (4.48)

where α̃0 and A are constant we have to determine. Since we want our expansion
around α̃0 to be faithful, i.e. that our expansion is effectively done around the
background value, we have to require that δα̃(x→ 0)→ 0, which implies that

A− S

k2
i

= 0. (4.49)
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Finally, because of difficulties we have already mentioned, in the intermediate region
we will interpolate the field profile between the interior solution 4.48 and the exterior
one 4.46 with the simplest profile choice, i.e. the linear one: here we will assume
that the complete (background plus perturbation) α profile will have the convenient
form

α̃(x) = B +
C −B
εxM

(x− xM ), (4.50)

where B and C are constants. Such field profile will indirectly define, through
equation 4.42, the density profile

1 + δ(x) =
1

α̃3
+

3

m2
aα̃a

2x2α̃4

d

dx

(
x2dα̃

dx

)
, (4.51)

so that we are able to check if the density profile shape, associated to our linear
approximation, is reasonable. Of course this method creates some issues, for example
nothing assures us that the density profile will be continuous passing from inside
the body to the transition region and from the latter to the outer one.
Imposing continuity of α̃ and dα̃

dx both at x = xM and x = xε we can determine the
four coefficients A, B, C, D, therefore the complete profile will be given by

α̃(x) =



α̃0 − S
k2
i

+
(

1− α̃0 + S
k2
i

)
kixM (koxε+1)

cosh(kixM )[kixM+koxε tanh(kixM )+f(ε)]
sinh(kix)
kix

x ≤ xM

1−
(

1− α̃0 +
S

k2
i

)
kixM − tanh(kixM )

kixM + koxε tanh(kixM ) + f(ε)
[1 + ε(koxε + 2)] +

+
koxε + 1

xM

(
1− α̃0 +

S

k2
i

)
kixM − tanh(kixM )

kixM + koxε tanh(kixM ) + f(ε)
(x− xM )

xM < x < xε

1−
(

1− α̃0 + S
k2
i

)
kixM−tanh(kixM )

kixM+koxε tanh(kixM )+f(ε)
x2
ε

xM
eko(xε−x)

x x ≥ xε
(4.52)

where we have defined

f(ε) = ε [koxε + 2] [kixM − tanh(kixM )] (4.53)

and, as expected, we find that α̃ is bound to be lesser than one.
In this way we can find the explicit form of equation 4.49, which now reads as

α̃0

1− α̃0

[α̃3
0(1 + δ)− 1]

[
cosh(kixM )(kixM+koxε tanh(kixM )+f(ε))

kixM (1+koxε)
− 1
]

[α̃3
0(1 + δ)− 1]

[
1 + α̃0

m2
aα̃0

dm2
α

dα̃

∣∣∣
aα̃0

]
+ 3α̃3

0(1 + δ)

= 1 (4.54)

and gives the evolution of α0 in time: even without solving numerically this equation,
we can roughly predict the behaviour of the scalar field inside the body, in particular
in the two extreme regimes, when kixM → 0 and when kixM � 1. In the first regime,
where the outer shell is well inside the Compton wavelength of the scalar field and
will fully feel the fifth force, the second square bracket in the numerator will tend
to zero, so, in order to balance this contribution to obtain a finite value of the LHS
of 4.54, we will have that α̃0 → 1, i.e. the field will not evolve from its background
value, as expected from the lack of screening. In the second regime, the outer
shell will be outside the Compton wavelenght and the same square bracket will be
dominate by the exponential term ekixM so, in order to achieve some compensation,
α̃0 will tend to the value (1 + δ)−

1
3 which is associated to the screening condition,

as we could have eventually seen also in the complete α equation 4.38. Moreover,
we can see that the evolution of α̃0 is ε-dependent, stressing again the importance
of the transition region.
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Now that we have fully derived the field profile behaviour we have to check that our
assumption about neglecting the square derivative term was consistent, i.e. that the
the ratio between the second term in the LHS of equation 4.38 and the first one,
which reads as

Rder =

∣∣∣∣∣ ddα log

(
βα

m2
αα

4

)(
dα

dx

)2
/

1

x2

d

dx

(
x2dα

dx

)∣∣∣∣ , (4.55)

is much less than one all along the collapse.
Then, in order to study the fifth force behaviour and to compare it to the Newtonian
one, we will calculate their ratio and we will analyze its dependence from the col-
lapsing object mass, as well as its spatial and temporal evolution. Given the density
profile 4.41, the mass enclosed in a shell with physical size r reads as

M(r) =


4π
3 ρ̄(1 + δ)r3 r ≤ rM
Mbody + 4π

3 ρ̄[r3 − r3
M + 3

∫ r
rM

dr′(r′)2δ(r′)] rM < r < rε

Mbody +Mtr + 4πρ̄
3 (r3 − r3

ε ) r ≥ rε
, (4.56)

where we have defined the mass enclosed in the transition region as Mtr = M(rε)−
Mbody. Switching to the comoving radial coordinate, the mass profile reads as

M(x) =


4π
3 ρ̄0(1 + δ)x3 x ≤ xM

4π
3 ρ̄0[x3 + δx3

M + 3
∫ x
xM

dx′(x′)2δ(x′)] xM < x < xε
4π
3 ρ̄0[x3 + δx3

M + 3
∫ xε
xM

dx′(x′)2δ(x′)] x ≥ xε
, (4.57)

so the Newtonian force that such shell will feel is given by

FN (x) = −GM(x)

a2x2
=


− ρ̄0x

6M2
pa

2 [1 + δ] x ≤ xM
− ρ̄0x

6M2
pa

2 [1 + δ
x3
M
x3 + 3

x3

∫ x
xM

dx′(x′)2δ(x′)] xM < x < xε

− ρ̄0x
6M2

pa
2 [1 + δ

x3
M
x3 + 3

x3

∫ xε
xM

dx′(x′)2δ(x′)] x ≥ xε

.

(4.58)
On the other hand the fifth force profile is given by

Fφ(x) = −1

a

∂ΨA

∂x
= −1

a

β

Mp

∂φ

∂α

∂α

∂x
= − 3ρ̄0β

2
α

aM2
pα

4m2
α

∂α

∂x
(4.59)

where, from 4.52, the first derivative of the field profile reads as

dα̃(x)

dx
=


(

1− α̃0 + S
k2
i

)
kixM (koxε+1)

cosh(kixM )[kixM+koxε tanh(kixM )+f(ε)]
kix cosh(kix)−sinh(kix)

kix2 x ≤ xM(
1− α̃0 + S

k2
i

)
kixM−tanh(kixM )

kixM+koxε tanh(kixM )+f(ε)
koxε+1
xM

xM < x < xε(
1− α̃0 + S

k2
i

)
kixM−tanh(kixM )

kixM+koxε tanh(kixM )+f(ε)
x2
ε

xM
kox+1
x2 eko(xε−x) x ≥ xε

.

(4.60)
The ratio between them, calculated on the outer shell xM , will reads as

RF (xM ) =
Fφ(xM )

FN (xM )
=

18ay2
0β

2
αM

qα4
Mm

2
αM

∂α

∂x

∣∣∣∣
xM

(4.61)

and it will play a crucial role in the study of the collapse, as we will explain later.
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h 0.67
ρ0c 1.88h2 · 10−29 g/cm3

Ωm0 0.31
M� 1.99 · 1033 g
Mpc 3.09 · 1024 cm

Table 4.1: List of cosmological parameters used in numerical simulations.

m0 0.334 h Mpc−1

r 1
β0 0.5
s 0.12

(a) Dilaton

m0 0.017 h Mpc−1

m 0.5
β0 1
n 0.25
z? 1

(b) Symmetron

Table 4.2: List of dilaton and symmetron model parameters used in numerical sim-
ulations.

4.4 Numerical Simulations: Field Profile

In order to verify that our result are sensible, we will choose a dilaton and a sym-
metron model, we will calculate all the previously introduced quantities and then
we will compare them to numerical simulations in [4], which will be our comparison
reference all along this chapter: we do so not to check that we have obtained the
same numerical values, since in the cited paper the body virializes at z = 0 and
the collapse continues also during the dark-energy era, but to see if we can obtain
values and behaviours that are plausible. The natural extension of this work is to
properly numerically simulate the collapse in our conditions and then to compare the
values, but this will not be done in this thesis. In our simulations we will consider
the cosmological parameter given in Table 4.1, while the dilaton and symmetron
parameters are presented in Table 4.2 and correspond to the A3 models in [4].
The lagrangian coordinate q will read as

q =
yM
xM

=

(
3M

4πρ̄m0

) 1
3

= 0.39h
2
3M

1
3 , (4.62)

where lenghts are expressed in h−1Mpc and masses in 1010h−1M�.
We will assume that the density inside the halo will evolve as in GR; strictly speaking,
this is false but since we expect to find in MG just little deviations from GR, as
approximation it is valid. Moreover, as we said, the overdensity evolution is coupled
to the field evolution and we would like to decouple these equations: this will be our
density ansatz inside the body.
Then, in order to calculate the field profile, we need to define how much large is
the transition region: looking to the cited reference, we see that in both cases the
density profile reaches the background value around 50 h−1Mpc, therefore we will
define ε in such a way that xε = 50 h−1Mpc.
Finally, we will study the mass range [1010 h−1M�, 1015 h−1M�], which spans from
small galaxies to large clusters of galaxies.
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4.4.1 Dilaton

In this case we have

mα = m0α
−r, βα = β0e

s
2r−3(α2r−3−1), (4.63)

therefore, specifying the relevant quantities previously introduced, we have

k2
i =

m2
0α̃
−2r
0 a2−2r

3

[
2r − 1 + (4− 2r)α̃3

0(1 + δ)
]
, (4.64)

S =
m2

0a
2−2rα̃1−2r

0

3

[
α̃3

0(1 + δ)− 1
]

(4.65)

and the derivatives ratio we will use to evaluate the goodness of our approximation
reads as

Rder =

∣∣∣∣∣2r − 4 + sα2r−3

α

(
dα

dx

)2
/

1

x2

d

dx

(
x2dα

dx

)∣∣∣∣ =

=

∣∣∣∣∣2r − 4 + s(aα̃)2r−3

α̃

(
dα̃

dx

)2
/

1

x2

d

dx

(
x2dα̃

dx

)∣∣∣∣ .
(4.66)

In Figure 4.1 we can compare which are the resulting profiles produced by our model
to the ones given by the numerical procedure: in our case we can see that we obtained
reasonable shapes both of the α and the density contrast profile. Concerning the
field profile, we can notice that at the end of the transition region it tends to be too
much flattened towards the background value, while in exact case the growth is less
steep. In our model, bodies with mass larger than 1013 h−1M� are almost screened
at virialization, as in their. We can also notice that the density profile obtained, even
if it isn’t continuous and shows a significant jump in the lower mass case, reminds
the shape of a possible real profile, underlining that our transition region ansatz
points in the right direction. Clearly the presense of such discontinuity at the outer
shell position will produce an overestimated field gradient, therefore a bigger fifth
force.

In the left panel of Figure 4.2 we can check that in our model the term we have
neglected is always smaller than the first one we kept, showing that our approach
is consistent. Moreover, from the right panel, we can see what we would have
obtained if we had taken the bare top-hat approach we have discarded, where we
had not considered the existence of a transition region: in general the ratio is larger,
but starting from M = 1013 h−1M� the neglected term would have been comparable
to the other one during the collapse and, in clusters of galaxies, it even exceeds it,
making the approximated field profile unreliable.
In the end we analyze the fifth force: as it is shown in top-left panel of Figure 4.3,

at the end of the collapse, on the outer shell, the fifth force is highly suppressed for
highly massive objects, while for smaller objects we approach to the characteristic
value 2β2 that correspond to the thick-shell regime. From the top-right panel we
can see that in the early phases of the collapse the fifth force on the outer shell was
considerably suppressed, then it quickly rose to set on an almost constant value; in
the end, the fact that the ratio shows a small decline signals the appearance of the
screening mechanism. Finally, we can compare the spatial profile produced by our
model to the numerical solution, finding out that our result can catch the general
behaviour, in fact we can recognize the “plateau”inside the object, that sort of
cusp around the shell position and the common decay outside the transition region,
which is more abrupt in our model because of the exponential suppression on the
background value we discussed earlier.
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Figure 4.1: α̃ and density contrast profiles from our modelization (top-left/right
and bottom-left panels) and from full numerical simulations (bottom-right panel).
In the latter one, the blue (red) curve represents the α̃ profile for an object with
mass 1010 h−1M� (1013 h−1M�).
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Figure 4.2: Derivatives ratio, for different masses of the collapsing body, in presence
(on the left) and in absence (on the right) of the transition region. Masses unit is
h−1M�.
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Figure 4.3: On upper panels we have the mass (left) and time (right), parametrized
by the θ variable, dependence of the forces ratio on the outer shell. On lower panels
we have the approximated (left) and numerical (right) spatial profile, where masses
units are h−1M�.
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4.4.2 Symmetron

In this case we have

mα = m?

[
1−

(a?
a

)3
]m

, βα = β?

[
1−

(a?
a

)3
]n

(4.67)

therefore, as done before, we can explicitly write

k2
i =

m2
?a

2

3

[
3α̃3

0(1 + δ)

(
1− a3

?

a3α̃3
0

)
+
(
α̃3

0(1 + δ)− 1
)(

1 + (6m− 1)
a3
?

a3α̃3
0

)][
1− a3

?

a3α̃3
0

]2m−1

(4.68)

S =
m2
?a

2α̃0

3

[
α̃3

0(1 + δ)− 1
] [

1− a3
?

a3α̃3
0

]2m

(4.69)

and the derivatives ratio will read as

Rder =

∣∣∣∣∣(4 + 3n− 6m)a3
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d
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(
x2dα̃
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)∣∣∣∣ .
(4.70)

In Figure 4.4 we can see that in this case differences between our profile and the
reference one is stronger, in fact, for low mass objects, the field profile barely moves
away from the background value. Probably this is due to the fact that in our case,
since virialization happens earlier than in their case, the field has less time to evolve
and drift away from the background value. Moreover, since the coupling to matter
appears in late times, the field cannot smoothly evolve along with the density and, as
we have pointed out, large gradients do not allow a proper screening. This happened
despite the fact that symmetron has a more efficient screening mechanism, since in
our case a body will be screened if in the inner region α→ a? = 1

2 or, equivalently,
α̃ → a?

a , because for such value the scalar field mass becomes zero, therefore the

RHS of 4.38 becomes zero too, forcing dα
dx → 0.

In Figure 4.5 we can see that also in this case our solution is consistent with
approximations we made and that the existence of a transition region helps, although
in this case the smallness of these value is also due to the little gradient values in
our α profile.

Because of the heavy lack of screening, as we can see from the top-left panel
in Figure 4.6, it is clear that in the whole range of masses we are really close to
the thick-shell regime and that the fifth force will become even greater than the
Newtonian one, even if this happens after θ?, defined by a? = a(θ?). Moreover, the
absence of screening allows the field to propagate further its fifth force, which will
not decay as fast as in the dilaton case, and the difference in the relative strength
between large and small mass objects is tiny. On the bottom-right panel we can
see what we should expect from a proper simulation, where indeed the fifth force
on the outer shell can be comparable to the Newtonian one for small objects, but it
does not become dominant during all the collapse; moreover we can see that from
medium to large object, the fifth force inside the body is highy suppressed.

4.5 Numerical Simulations: Collapse

Finally, now that we have analyzed our profile behaviour, we are ready to deal with
the collapse dynamics of the outer shell, given by equation 4.39. Since we work in
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Figure 4.4: α̃ and density contrast profiles from our modelization (top-left/right
and bottom-left panels) and from full numerical simulations (bottom-right panel).
In the latter one, the blue (red) curve represents the α̃ profile for an object with
mass 1010 h−1M� (1013 h−1M�).
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the matter dominated era, we can assume that Ωm = 1 − Ωde = 1, therefore the
normalized radius equation will read as

y′′ +
1

2
y′ +

1

2

[
y−3 − 1

]
y = − 9β2

αay

m2
αα

4x

∂α

∂x
. (4.71)

Since we have fixed our clock as in the GR framework, we want to rewrite this last
equation in such a way that the time variable is θ: we know that

η = log a(θ) = log

[
ai
δi

[
3(1 + δi)

4

] 2
3

[θ + θi − sin(θ + θi)]
2
3

]
, (4.72)

therefore we can use
dη

dθ
=

2

3

1− cos(θ + θi)

θ + θi − sin(θ + θi)
(4.73)

to rewrite time derivatives with respect to η as

y′ =
dθ

dη

dy

dθ
=

(
dη

dθ

)−1

ẏ, (4.74)

y′′ =
dθ

dη

d

dθ

[(
dη

dθ

)−1

ẏ

]
=

(
dη

dθ

)−2
[
ÿ −

(
dη

dθ

)−1 d2η

dθ2
ẏ

]
, (4.75)

where

d2η

dθ2
=

2

3

[θ + θi − sin(θ + θi)] sin(θ + θi)− [1− cos(θ + θi)]
2

[θ + θi − sin(θ + θi)]2
. (4.76)

Using the explicit expression of y0 we found in GR, we can rearrange our equation
as

[1− cos(θ + θi)]ÿ +

[
4

3

[1− cos(θ + θi)]
2

θ + θi − sin(θ + θi)
− sin(θ + θi)

]
ẏ+

+ y3
0

(
y−3 − 1

)
y = −18ay3

0β
2
α

qα4m2
α

∂α

∂x
.

(4.77)

Now, in order to explicitly see modifications from GR, we decide to write y as y0Y ,
where y0 will represent the bare GR contribution, while Y is purely due to MG.
Since y0 satifies equation 4.77 when the RHS is put to zero, then Y will satisfy

[1− cos(θ + θi)]Ÿ +

[
4

3

[1− cos(θ + θi)]
2

θ + θi − sin(θ + θi)
− sin(θ + θi) + 2[1− cos(θ + θi)]

ẏ0

y0

]
Ẏ+

+
(
Y −3 − 1

)
Y = −18ay2

0β
2
α

qα4m2
α

∂α

∂x
,

(4.78)

where we can immediately see that the RHS modulus is nothing else than the ratio
between the fifth force and Newtonian gravity, evaluated on the edge shell, we found
in 4.61. A small consistency check shows that, if the fifth force is turned off, this
equation admits as solution Y = 1, obtaining in such a way y = y0 and recovering
GR. Of course, a smaller ratio will produce fewer deviations from GR. Assuming that
we have the same initial conditions of the GR collapse, in general in these models the
collapse will be shorter since we have an additional force, but there is also another
way to see this fact: we can fix the duration of the collapse to the GR one, in order
to last for the whole matter era, and we can change the initial overdensity value,
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showing in this way that a smaller overdensity is required to collapse.
In order to fix initial conditions in the dilaton case, let’s notice that in this framework
Y is nothing less than the ratio of the overdensities in GR and MG, therefore, from

the definition of y, Y (0) = yMG(0)
y0(0) =

(
1+δi,GR
1+δi,MG

)1/3
. Then, since at the beginning of

the collapse
Fφ(xM )
FN (xM ) � 1 as we showed in Figure 4.3, we want to impose that the

evolution of y in MG is the same of GR, therefore

ẏMG(0) = ẏ0(0)Y (0) + y0(0)Ẏ (0) ' ẏ0(0) =⇒ Ẏ (0) = [1− Y (0)]
ẏ0(0)

y0(0)
, (4.79)

where Y (0) will be chosen in such a way that the body collapses at the end of the
matter era. From the value of Y (0) we can derive the initial overdensity

δi,MG =
1 + δi,GR
Y 3(0)

− 1 (4.80)

and we can extrapolate it at the virialization time, finding

δc,MG =
3

5

1 + zi
1 + ze

δi,MG. (4.81)

In Figure 4.7 we can see the solution of equation 4.78 for objects with different
masses: as expected, for larger objects we find smaller deviations from GR, resulting
in a necessary overdensity closer to the pure GR value. From the top-right panel,
we can observe the important effect of the MG model: the critical overdensity is
not anymore scale indipendent as in a Einstein-de Sitter or in a Λ-CDM Universe,
but it depends from the mass of the considered body. This mass-dependent critical
threshold curve tells us that for smaller bodies is easier to collapse and it can be
used, as we will show in the next chapter, to determine how the number of virialized
structure changes. Further, through a comparison with the reference paper result,
we can notice that our range of values is plausible, even if our curve does not turn
up towards the barrier at low masses, probably because we overestimate the size
of the fifth force, as explained in the field profile section, resulting in a smaller
initial overdensity. According to what we have shown for the dilaton case, we can
deduce that our semi-analytical approximation for the field and the collapsing body
produced sensible results and it is worthy of deeper numerical investigations.
For the symmetron the procedure is different, in fact until θ? the fifth force is zero

because so it is the coupling to matter. After that it starts increasing from zero,
therefore at θ? we have Y (θ?) = 1 and Ẏ (θ?) = 0. After this moment Y begins to
drift away from 1, ending up at some Y (θc) < 1. We can derive the new overdensity
requiring that

y(δi,MG, θc) = y0(δi,MG, θc)Y (θc) = y0(δi,GR, θc) (4.82)

and solving this equation for δi,MG, after that we can extrapolate its value to the
virialization time as in 4.81. From what we have seen in Figure 4.6, in this case the
fifth force is too intense to obtain meaningful results, therefore we will minimally
modify the parameters of the model in order to show how the procedure works,
in particular we will choose a new coupling to matter β′? in such a way that the
forces ratio, evaluated at the end of the collapse for the largest objects with mass
1015h−1M�, is equal in the symmetron and in the dilaton case. Since this is just
a constant rescaling, it will reduce the fifth force in the same way in all the range
mass but it will not affect the field profile, therefore the relative diffence between
that ratio evaluated at the upper and at the lower bound in the mass range will
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model parameters are the same of A3.
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shrink, obtaining in such a way an almost constant (in the mass range) fifth force.
This procedure wiil not alter the screening property and the forces ratio will remain
close to the 2β2 curve. That’s the reason for which we have such a tiny difference
between high and low mass objects in Figure 4.8, while in numerical simulations we
can see that their behaviour isn’t similar. Nevertheless, also in this case we observe
that the required overdensity has diminished, as in the dilaton case. In this case
our approximation, which was potentially good as shown from the derivatives ratio,
displays some limit: surely the substantially different collapsing time has produced
remarkable effects and performing some complete numerical simulations in the same
conditions should clarify where problems arise and, maybe, how we can fix them.
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Chapter 5

Excursion Set Theory

The aim of this chapter is to investigate the influence of the additional fifth force
(which affects, as we saw in the previous chapter, the initial overdensity necessary
to collapse) on the formation of gravitationaly bound structures, called haloes; we
will focus in particular on their abundance, although the method we will introduce
can be used also to estimate other haloes properties, such as the accretion rate, the
survival time or the merger history. We know that these haloes are composed mainly
by DM, but since we considered an identical coupling between DE and every kind
of matter (dark or not), we do not have to worry about doing any distinction; in
fact, from a gravitational point of view, they will show the same behaviour.
In order to do so, we will use the Excursion Set Theory (EST), an analytical frame-
work relating the statistics of haloes to fluctuations of the density field in primordial
times, which is based on the assumptions that these objects grew from small ampli-
tude fluctuations because of gravitational instability and that their sites correspond
to regions, called excursion sets, where the density field, smoothed on a suitable
scale, exceeds some critical value, called threshold or barrier.
Since a rigorous study of large scale structures formation can be performed only
through N-body simulations, which are computationally expensive even in the Λ-
CDM model, this method can provide some insight on this topic because it produces
results which we can directy compare to experimental data, despite all the approxi-
mation we have to make. This will result in a great advantage in the study of MG
effects, in fact, through such comparison, we will eventually be able in the future to
constrain the parameter space of MG models, which is bigger and less known than
the standard cosmological model one.

5.1 Notation

First of all, we have to introduce some fundamental quantities of the theory, such
as the background density ρ̄ and the density contrast

δ(x) =
ρ(x)

ρ̄
− 1, (5.1)

which will allow us to study fluctuations in the density field ρ = ρ̄(1+δ). Its Fourier
transform is given by

δ(x) =

∫
d3k

(2π)3
δ̂(k)e−ik·x. (5.2)

and since it is a real field, Fourier coefficients obey δ̂∗(k) = δ̂(−k). In the stan-
dard framework, this field is set during the inflationary era and is assumed to be
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a statistically homogeneous and isotropic Gaussian random field. Because of this
assumption, the power spectrum, which is nothing else than the Fourier transform
of the two-point function and tells us which are the relevant modes, is given by

〈δ̂(k)δ̂∗(p)〉 = 〈δ̂(k)δ̂(−p)〉 = (2π)3P (k)δ(3)(k− p), (5.3)

where P (k) = P (k) because of isotropy. Now, using 5.3, we can prove the previous
statement, in fact

ξ(r) = 〈δ(x)δ(x + r)〉 =

=

∫
d3k

(2π)3

d3p

(2π)3
e−ik·xe−ip·(x+r)〈δ̂(k)δ̂(p)〉 =

=

∫
d3k

(2π)3
P (k)eik·r =

=

∫
d3k

(2π)3
P (k)e−ik·r,

(5.4)

where in the last passage we sent k→ −k.
Since LSS evolved hierarchically, i.e. small haloes formed earlier than bigger ones
and in a second step they merged together in order to form larger structures, and
present structures on all scales we would like to analyze in detail different ranges of
masses. In order to do so, it is quite natural to pass from the raw density field we
defined in 5.1 to a smoothed one through a convolution with some window (or filter)
function W , which weights the density field inside some region with characteristic
scale R. In practice, from now on, we will consider the smoothed density contrast
field

δ(x, R) =

∫
d3yδ(y)W (x− y, R) =

∫
d3k

(2π)3
δ̂(k)Ŵ (k, R)e−ik·x. (5.5)

This window function is usually normalized to 1, therefore we can rewrite it as

1 =

∫
d3yW (x− y, R) =

1

VW

∫
d3yW ′(x− y, R), (5.6)

where W ′ is the dimensionless window function and VW is the window volume with
whom we can associate to the smoothed region the mass M = ρ̄(1+δ)VW . The root
mean-squared fluctuation of the density (and therefore of the mass) in the window
reads as

S(R) = σ2(R) = 〈δ2(x, R)〉 =

∫
d3k

(2π)3
P (k)Ŵ 2(k, R). (5.7)

Let’s notice that the mass M , the smoothing scale R and the variance S can be used
equivalently to measure the same perturbation, in factM(R) monotonically increases
with R (obvious: bigger regions will be more massive) and, under quite general
conditions, for example that Ŵ is a monotonically decreasing function of R, S(R)
monotonically decreases with R. In hierachical models, S increases starting at very
large scale from 0 because of our assumption on the statistics of the initial density
field; as soon as scale starts decreasing, we begin to observe bigger fluctuations in
the density: this will imply, as we will see in the next section, that it will be easier
for small haloes to collapse. Then, these small structures will accrete material and
merge together in order to form bigger haloes.
Finally, let’s remark that the window function is not given a priori, but depends on
choices we make.
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5.2 Haloes Number in GR

The first attempt to find some relation for the number of virialized structure was
made by Press and Schechter [20]. In their article, they developed a model where the
collapse of an overdense region of size R, which encloses a mass M determined by the
smoothing window choice, occurs when the smoothed density reaches some critical
threshold δc at some redshift z: in the previous chapter the value for δc was given
by the extrapolation of initial overdensity to the moment of virialization, but other
choices can be made, for example a common choice is to pick the redshift value when
the physical radius of our object completely collapses to zero; moreover we saw that
this quantity was constant in GR while it is an increasing function of the mass in MG.
Clearly, if that value is exceeded, the object collapses earlier. They also assumed that
objects collapse on small scale without that non-linearities influence the collapse of
larger scale objects: this fact holds when the additional large scale power generated
by those non-linearities are small compared to primordial fluctuation in the power
spectrum; this assumption simplifies the problem, allowing us to consider different
scales behaviour as indipendent from larger or smaller scales.
Since the smoothed field δ(x, R) is a Gaussian random variable due to the previous
assumptions, its probability distribution reads as

P (δ;R) =
1√

2πS(R)
e
− δ2

2S(R) (5.8)

and the cumulative probability F (M) for a region to have a smoothed density above
the threshold reads as

F (M) = 1− C(M) = 1−
∫ δc

−∞
dδP (δ;R) =

1

2
erfc

[
ν√
2

]
, (5.9)

where C(M) it’s the complementary probability to not reach the barrier and ν =
δc

σ(M) is the height of the threshold in standard deviation units. This cumulative
probability physically represents the probability that the volume associated to the
mass M is already gravitationally bound or, equivalently, the fraction of gravita-
tionally bound volumes, so the number of virialized haloes with mass between M
and M + dM will read as

dn

dM
dM =

ρ̄

M

∣∣∣∣ dFdM
∣∣∣∣ dM. (5.10)

In hierarchical models, where σ(R) → ∞ when R → 0, we would expect that all
the mass stays in some collapsed object, i.e. F (R = 0) = 1: here arises the problem
in this approch, because, as we can read from equation 5.9, F (0) = 1

2 . Press and
Schechter were conscious about this problem and identified its origin in a counting
problem of underdense regions: these patches were not counted even if they are
inside some bigger overdense region, which surely would have collapsed.
The solution of this “cloud-in-cloud”problem was found by Bond, Cole, Efstathiou
and Kaiser [1]: in their approach they fixed the spatial position x (which won’t
appear anymore in the argument of the smoothed density field) and varied the
smoothing scale, starting from very large values of R, analyzing how the field δ(R)
behaves and searching for the biggest scale such that the critical threshold is reached.
In this approach, instead of considering spatial averages of one realization of the
initial density field, they consider averages over different realizations at a fixed posi-
tion. Keeping the same assumptions on the primordial density field, when R→∞,
δ(R)→ 0 and σ(R)� δc, therefore the probability that such large region collapses
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is absolutely negligible; however, once R decreases, σ(R) will increase, as well as the
probability to reach the critical value, until when it becomes significant: due to this
reason, in the following part we will try to determine the probability to have a first
upcrossing at some scale S.
Let’s imagine to start at some small S0, corresponding to some big R0, when the
overdensity value is δ0; once we slightly change the smoothing scale into R0 −∆R,
the variance increases to S0 + ∆S and the overdensity changes in δ0 + ∆δ, where
∆δ is given by a distribution probability that in general may depend from the
starting point (S0, δ0) and from the size of ∆S. If we choose a k-space top-hat filter
Ŵ (k, R) = Θ(1−kR) (where Θ is the Heaviside function) the change in the smooth-
ing scale corresponds to the inclusion of a set indipendent modes, uncorrelated from
those previously included, therefore, for a fixed ∆S, the probability distribution of
∆δ is Gaussian and reads as

Ψ(∆δ; ∆S) =
1√

2π∆S
e−

(∆δ)2

2∆S , (5.11)

such that the mean and the variance are given by

〈∆δ〉 =

∫
d(∆δ)Ψ(∆δ; ∆S)(∆δ) = 0 (5.12)

〈
(∆δ)2

〉
=

∫
d(∆δ)Ψ(∆δ; ∆S)(∆δ)2 = ∆S, (5.13)

indipendently from the starting point. Because of this Markov property, considering
a whole series of ∆S consecutive increments, the value of δ(S) executes a Brownian
motion and the probability to reach some value δ when the scale changes from S to
S + ∆S evolves according to the Chapmann-Kolmogorov (CK) equation

P (δ, S + ∆S) =

∫
d(∆δ)Ψ(∆δ; ∆S)P (δ −∆δ, S). (5.14)

Without the Markov property guaranteed by our filter choice, we could not have
written this last equation, because we should have considered the whole history of
our trajectory: the choice of this filter is due to the fact that it allows us to carry on
analytically the calculation, despite the fact that it has not a well defined associated
volume VW . Expanding 5.14 around P (δ, S) and taking the limit ∆S → 0, we find
that P (δ, S) evolves according to the diffusion equation

∂P

∂S
=

1

2

∂2P

∂δ2
. (5.15)

This result is exact because every odd moment
〈
(∆δ)2n+1

〉
is zero while every even

moment
〈
(∆δ)2n

〉
is proportional to some positive, integer power of ∆S. We want

to find a solution to 5.15 (the general form of the solution is well known) such that
it satisfies the general initial condition

P (δ, S0) = δ(1)(δ − δ0) (5.16)

and two specific boundary condition: the first one is that P has to be finite when
δ → −∞ (rigourously speaking, we should have δ > −1, otherwise the density would
be negative, but neglecting this fact we can carry on calculations and still obtain
meaningful results); the second one is P (δc, S) = 0: since we are interested only
in the first upcrossing of the barrier, we have to remove from our counting each
trajectory that has already reached the critical threshold. This can be done by
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putting an absorbing barrier at δ = δc and Chandrasekhar [11] noticed that, since
every path that reaches δc has the same probability to go upward or downward due
to the ∆δ distribution, our condition could be imposed through the images method,
subtracting the contribution of another source put at 2δc−δ0. The complete solution
reads as

P (δ, S; δ0, S0) =
1√

2π(S − S0)

[
e
− (δ−δ0)2

2(S−S0) − e−
(2δc−δ0−δ)

2

2(S−S0)

]
, (5.17)

therefore F (M) reads as

F (M) = 1−
∫ δc

−∞
dδP (δ, S; δ0, S0) = erfc

[
δ − δ0

2(S − S0)

]
, (5.18)

without the prefactor 1
2 , solving the Press-Schechter problem. Now we are able to

calculate the first upcrossing probability

F(S)dS =
dF

dS
dS = −

(∫ δc

−∞
dδ
dP

dS

)
dS =

= −1

2

(∫ δc

−∞
dδ
d2P

dδ2

)
dS = −1

2

dP

dδ

∣∣∣∣
δc

dS =

=
δc − δ0√

2π(S − S0)3
e
− (δc−δ0)2

2(S−S0) ,

(5.19)

so, setting the starting point to (S0, δ0) = (0, 0), the number of virialized haloes will
read as

dn

dM
dM =

ρ̄

M

dF

dS

∣∣∣∣ dSdM
∣∣∣∣ dM =

√
2

π

ρ̄

M2

∣∣∣∣ d log σ

d logM

∣∣∣∣ νe− ν2

2 dM =
ρ̄

M2

∣∣∣∣ d log σ

d logM

∣∣∣∣ νf(ν)dM.

(5.20)
Comparing this result to full N-body simulations (see e.g. Figure 3 in [29]), we can
see that we have obtained a surprisingly good approximation, although this formula
overestimates the number of small haloes and underestimates the number of big
haloes. In this framework, several authors have analytically modified the νf(ν)
expression in order to obtain even a better accuracy (see e.g. [23],[16]).

5.3 Haloes Number in MG

We are now ready to discuss how the smoothing scale dependent threshold δc(S),
which we will call moving barrier, influences the number of virialized objects in a
MG scenario. This section is organized as follows: first of all we will completely
state the problem and, since it is too difficult to solve it directly, we will transform
it into an equivalent one; then we will solve this new problem with the standard
Quantum Mechanics path integral formalism and finally we will discuss about how
to impose the boundary conditions, which will give us the correct solution from
which we would be able to calculate the number of haloes.

5.3.1 Statement of the Problem

In order to carry on the calculations analytically, we choose a top-hat filter in the
momenta space, so that we will have uncorrelated steps and the transition proba-
bility, for a fixed variation in the smoothing scale ∆S, has the zero mean gaussian
distribution

Ψ1(∆δ′; ∆S) =
1√

2π∆S
e−

(∆δ′)2
2∆S . (5.21)
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The CK equation tells us that the probability to reach a certain height δ, once the
smoothing scale has changed by ∆S, is given by

P1(δ, S + ∆S) =

∫
d(∆δ′)Ψ1(∆δ′; ∆S)P1(δ −∆δ′, S) (5.22)

As before, we expand both member of this last equation around P1(δ, S) and we
take the ∆S → 0 limit, obtaining that the probability P1 has to satisfy the diffusion
equation

∂P1

∂S
=

1

2

∂2P1

∂δ2
(5.23)

with the same initial condition decided before

P1(δ, S0) = δ(1)(δ − δ0) (5.24)

but also with the different boundary condition

P1(δc(S), S) = 0, ∀S. (5.25)

Since the shape of the barrier is not given a priori but it depends from specific
model parameters, imposing this condition will be the main problem to overcome.
To solve this issue we have to notice (and we will prove it in a second moment) that
our problem is equivalent to the one where the barrier is fixed at the GR value δc(S =
0) = δc, which we have to recover at large scales, and steps are still uncorrelated
but their distribution has a smoothing scale dependent mean −∆δc(S) ≡ −∆δc.
Physically speaking, we can justify this idea in the following way: a moving barrier
introduces some preferred direction, in fact it will be easier (harder) to cross it if
it’s a decreasing (increasing) function of S; so, in order to replicate this kind of
behaviour when the barrier is constant, we have to set the mean to −∆δc. This idea
arises from some sort of equivalence principle: since the step size does not depend
from the height (i.e. the density contrast δ) because of our filter choice, we cannot
decide if the barrier is coming towards us at a given rate or we are going towards the
barrier with the opposite rate. Said in a different way, the behaviour of the relative
distance between us and the barrier is the same in both cases.
In this new second case, the transition probability will be

Ψ2(∆δ;S,∆S) =
1√

2π∆S
e−

(∆δ+∆δc)
2

2∆S (5.26)

and the new CK equation will read as

P2(δ, S + ∆S) =

∫
d(∆δ)Ψ2(∆δ;S,∆S)P2(δ −∆δ, S). (5.27)

Following the same procedure, we find out that P2 has to obey the modified diffusion
equation

∂P2

∂S
= h(S)

∂P2

∂δ
+

1

2

∂2P2

∂δ2
, h(S) =

dδc(S)

dS
, (5.28)

where a new drift term appeared, and has to satisty the new and easier boundary
condition

P2(δc, S) = 0, ∀S. (5.29)

Finally we show that, only on the base of the relative distance γ = δ−δc(S) between
a point and the barrier, we can not say in which case we are. Let’s consider the
case in which the barrier is constant (δc(S) = δc(S + ∆S) = δc) and the transition
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probability is given by a gaussian distribution with a g(S,∆S) 6= 0 mean and ∆S
variance. The CK equation reads as

P (γ, S + ∆S) = P (δ − δc(S + ∆S), S + ∆S) =

=

∫
d(∆δ)Ψ(∆δ;S,∆S)P (δ − δc(S + ∆S)−∆δ, S) =

=

∫
d(∆δ)

e−
[∆δ−g(S,∆S)]2

2∆S

√
2π∆S

P (δ − δc(S + ∆S)−∆δ, S).

(5.30)

Changing variable to ∆δ′ = ∆δ − g(S,∆S) equation 5.30 becomes

∫
d(∆δ′)

e−
(∆δ′)2
2∆S

√
2π∆S

P (δ − δc(S + ∆S)− g(S,∆S)−∆δ′, S) =

=

∫
d(∆δ′)

e−
(∆δ′)2
2∆S

√
2π∆S

P (δ − δc(S)−∆δ′, S) =

=

∫
d(∆δ′)Ψ′(∆δ′; ∆S)P (δ − δc(S)−∆δ′, S)

(5.31)

where we have defined δc(S) = δc(S + ∆S) + g(S,∆S) 6= δc(S + ∆S). If we indicate
with 〈〉 (〈〉′) averages with respect to the Ψ (Ψ′) probability density function, then
we have passed from a situation in which

〈∆δ〉 = g(S,∆S);
〈
(∆δ)2

〉
= ∆S (5.32)

to a situation in which 〈
∆δ′
〉′

= 0;
〈
(∆δ′)2

〉′
= ∆S (5.33)

as we wanted to. Since the two situations are identical (P (γ, S + ∆S) is the same!)
we can choose to work in the case we prefer.

5.3.2 Path Integral Formalism

Because of our last consideration, we choose to search for a solution of equation 5.28
using the path integral formalism in QM.
First of all we have to transform our diffusion equation in a Schrödinger equation,
where the smoothing scale S will play the role of time and the overdensity δ will be
the spatial position, so, from now on, we will use the change of variable S = t and
δ = x; moreover we will set ~ = 1 and use the standard definition of the momentum
operator P̂ = −i∂x. Then we have to introduce states and wavefunctions: the
probability to be in a position x at time t will be given by

P (x, t) = ψ(x, t) = 〈x|ψ(t)〉 (5.34)

so, according to our initial condition 5.24,

P (x, t0) = 〈x|ψ(t0)〉 = 〈x|x0〉 = δ(1)(x− x0). (5.35)

Equation 5.28 (up to a contraction with the bra 〈x|) now becomes

∂ |ψ(t)〉
∂t

=

[
− P̂

2

2
+ ih(t)P̂

]
|ψ(t)〉 . (5.36)

61



In the end, we introduce the Euclidean time τ = −it and in this way we are able to
recover the proper Schrödinger equation

i
∂ |ψ(τ)〉
∂τ

=

[
P̂ 2

2
− h(τ)P̂

]
|ψ(τ)〉 = H(P̂ , τ) |ψ(τ)〉 , (5.37)

where H(P̂ , τ) is a time dependent hamiltonian and h(τ) = ∂δc(τ)
∂τ . Starting from

5.37 we can construct the time evolution operator

U(τ, τ0) = exp

[
−i
∫ τ

τ0

dτ ′H(P̂ , τ ′)

]
= e
−i

[
P̂2

2
(τ−τ0)−P̂ ((δc(τ)−δc(τ0))

]
, (5.38)

where we did not need to consider any kind of chronological product because the op-
erator P̂ does not act on the function h′(τ), making the commutator [h′(τ1)P̂ , h′(τ2)P̂ ]
identically zero. Let’s also remind the important property of the time evolution op-
erator

U(τ, τ0) = U(τ, τ1)U(τ1, τ0) (5.39)

which will be useful in the following part.
Finally, we are ready to build the probability to be at (x, t) given that we started
at (x0, t0): considering a generic state |ψ′〉 and the evolution of the initial state
|ψ〉 = U(τ, τ0) |ψ0〉, their transition amplitude reads as

〈
ψ′
∣∣U(τ, τ0) |ψ0〉 =

∫
dxdx̃

〈
ψ′|x

〉
〈x|U(τ, τ0) |x̃〉 〈x̃|ψ0〉 =

=

∫
dxdx̃ψ′∗(x, τ)ψ0(x̃, τ0)K(x, τ, x̃, τ0) =

∫
dxψ′∗(x, τ)K(x, τ, x0, τ0),

(5.40)

where we have introduced two completeness relations in the position and K is the
kernel, i.e. the matrix element of U in the position representation. From the last
member we can identify

K(x, t;x0, t) = P (x, t;x0, t0) = P (δ, S; δ0, S0) (5.41)

and it immediately follows from 5.39 that ∀τ1 : τ0 < τ1 < τ

K(x, τ ;x0, τ0) =

∫
dx1K(x, τ ;x1, τ1)K(x1, τ1;x0, τ0). (5.42)

On the base of this last property, we can divide our time interval in N smaller
intervals where

τ0 < τ1 < ... < τN−1 < τN = τ, τj+1 − τj =
τ − τ0

N
= ε, (5.43)

in order to rewrite

K(x, τ ;x0, τ0) =

∫
dx1...dxN−1

N−1∏
j=0

K(xj+1, τj+1;xj , τj) (5.44)
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Then we can evaluate, using a completeness relation in the momenta and the integral
representation of the Dirac delta,

K(xj+1, τj+1;xj , τj) = 〈xj+1|U(τj+1, τj) |xj〉 =

= 〈xj+1| e
−i

[
P̂2

2
(τj+1−τj)−P̂ ((δc(τj+1)−δc(τj))

]
|xj〉 =

=

∫
dpj 〈xj+1| e

−i
[
P̂2

2
(τj+1−τj)−P̂ ((δc(τj+1)−δc(τj))

]
|pj〉 〈pj |xj〉 =

=

∫
dpj
2π

e
−i

[
p2j
2

(τj+1−τj)−pj((δc(τj+1)−δc(τj))
]
eipj(xj+1−xj) =

=
1√
2πiε

exp

[
iε

2

(
xj+1 − xj

ε
+
δc(τj + ε)− δc(τj)

ε

)2
]

(5.45)

In the ε→ 0 (or equivalently N →∞) limit, the last terms reduces to

1√
2πiε

exp

[
iε

2

(
x′j + h(τj)

)2]
=

1√
2πiε

exp
[
iεL(x′j , τj)

]
(5.46)

so that we can calculate

K(x, τ ;x0, τ0) = lim
N→∞

(
1

2πiε

)N
2
∫
dx1...dxN−1

N−1∏
j=0

eiεL(x′j ,τj) =

= lim
N→∞

(
1

2πiε

)N
2
∫
dx1...dxN−1e

iε
∑N−1
j=0 L(x′j ,τj) =

=

∫ x(τ)=x

x(τ0)=x0

Dx(τ∗)e
i
∫ τ
τ0
dτ∗L(x′(τ∗),τ∗)

,

(5.47)

where the lagrangian reads as

L(x′(τ∗), τ∗) =
1

2

[
x′(τ∗) + h(τ∗)

]2
. (5.48)

Since our action is quadratic, we can exactly expand it around the “classical”path
xc(τ) given by Eulero-Lagrange equation

0 =
d

dτ∗
∂L

∂x′(τ∗)
=

d

dτ∗
(
x′(τ∗) + h(τ∗)

)
(5.49)

which has solution
x′c(τ

∗) + h(τ∗) = c, (5.50)

where c is a constant. Imposing that xc(τ0) = x0 we find

xc(τ
∗)− x0 = c(τ∗ − τ0) + δc(τ0)− δc(τ∗) (5.51)

and imposing xc(τ) = x we are able to fix

c =
x− x0

τ − τ0
+
δc(τ)− δc(τ0)

τ − τ0
. (5.52)

Taking a small variation around the classical path x(τ∗) = xc(τ
∗) + δx(τ∗) which

vanishes at borders, i.e. δx(τ0) = δx(τ) = 0, our Lagrangian becomes

L(x′(τ∗), τ∗) =
1

2
c2 + cδx′(τ∗) +

1

2
(δx′(τ∗))2 (5.53)

and the kernel reads as

K(x, τ ;x0, τ0) = e
ic2(τ−τ0)

2

∫ δx(τ)=0

δx(τ0)=0
Dδx(τ∗)e

i
2

∫ τ
τ0
dτ∗(δx′)2

=
1√

2πi(τ − τ0)
e
ic2(τ−τ0)

2

(5.54)
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5.3.3 Complete Solution

Now we can go back to old variables and obtain

P2(δ, S; δ0, S0) =
1√

2π(S − S0)
exp

[
− [δ − δ0 + δc(S)− δc(S0)]2

2(S − S0)

]
. (5.55)

As for the constant barrier case, we want to obtain the complete solution

P2(δ, S; δ0, S0)− P ′2(δ, S; δ′0, S0), (5.56)

which obeys to equation 5.28 and has the right boundary condition given by 5.29,
adapting the images method we have already seen. While in the previous case this
could be easily done because the probability to go upward or downward, once the
barrier was reached, was the same, this time the situation isn’t anymore symmetric
due to the scale-dependent non-zero mean (or, in the alternative picture, because of
the moving barrier).
Starting from numerical simulations (which use the first picture, see e.g. [18],[4]),
we have noticed that barriers of physical interest do not diverge, i.e.

δc(S = 0)− δc(S̄), (5.57)

where S̄ is the variance associated to the lower bound in the mass range we con-
sidered in the previous chapter, is some finite and actually not too big quantity:
we can extend this result to the S̄ → ∞ limit because, even considering the worst
scenario, the barrier has a lower bound, 0, which can not be reached. In fact, if at
some scale the overdensity required for the collapse would be zero, then we would be
in a situation where arbitrary patches of the homogeneous and isotropic background
decide to collapse on their own! Our situation is similar to a Brownian motion in
one dimension with an absorbing barrier, therefore we can state that every path,
sooner or later, will hit the barrier: due to this reason we can divide the set of
all path according to the first crossing time T , being certain to do not forget any
path. Considering one of such families, i.e. fixing T , and arbitrary choosing that
the “image”path will start at δ′0 = 2δc − δ0 as in the constant barrier case, we find
that

PT (δ, S; δ0, S0) =
1√

2π(S − S0)

[
e
− [δ−δ0+δc(S)−δc(S0)]2

2(S−S0) − e−
[δ+δ0−2δc+δc(S)−δc(S0)]2

2(S−S0) f(T )

]
,

(5.58)
where we have defined

f(T ) = e
−2(δc−δ0)

δc(T )−δc(S0)
T−S0 (5.59)

in such a way that PT (δc, T ; δ0, S0) = 0. Let’s remark that 5.58 satisfies our dif-
ferential equation and both our boundary and initial condition. Then, in order to
find the complete probability, we need some “weight”function µ(T ) which gives the
probability of each crossing time and such that

∫ +∞
S0

dTµ(T ) = 1 because, as already
explained, each path hits the barrier. In the end, we obtain

P (δ, S; δ0, S0) =

∫ +∞

S0

dTµ(T )PT (δ, S; δ0, S0) =

=
1√

2π(S − S0)

[
e
− [δ−δ0+δc(S)−δc(S0)]2

2(S−S0) − e−
[δ+δ0−2δc+δc(S)−δc(S0)]2

2(S−S0)

∫ +∞

S0

dTµ(T )f(T )

]
.

(5.60)
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Moreover (this will be crucial in the following calculation), because of our crossing
time division and since we can say that every path that crosses the barrier “disap-
pears”because of the subtraction, by definition we have

P (δ, S)|δc := PS(δc, S)|δc = 0;
dnP

dδn

∣∣∣∣
δc

:=
dnPS
dδn

∣∣∣∣
δc

, (5.61)

in fact every time we decide to evaluate P at the threshold value we are implicitly
selecting a specific crossing time. Now let’s check that we can recover, at least, the
two known analytic result.

Example (Constant Barrier Case). In this case δc(S) = δc ∀S, so f(T ) = 1 and we
have

P (δ, S; δ0, S0) =
1√

2π(S − S0)

[
e
− (δ−δ0)2

2(S−S0) − e−
(δ+δ0−2δc)

2

2(S−S0)

]
(5.62)

as we know. The rest follows automatically as explained in the previous section.

Example (Linear Barrier Case). This is the only other case analitically solved for
the first time in [22]. Here δc(S) = δc + βS, therefore f(T ) = e−2β(δc−δ0) doesn’t
depend on T and factorizes out of the integral. Setting S0 = δ0 = 0 we can compare

P (δ, S; 0, 0) =
1√
2πS

[
e−

(δ+βS)2

2S − e−
(δ−2δc+βS)2

2S e−2βδc

]
(5.63)

to the result in [29], finding that they are identical. The case in which β > 0 does
not really fit in our description because not all the paths will cross the barrier;
nevertheless we can extend our formalism noticing that if a path does not hit the
barrier, it does not need an image path, i.e. we do not need to subtract anything.
Therefore the result is still valid.

The fraction of trajectories which has crossed the barrier is given by

F (S) = 1− C(S) = 1−
∫ δc

−∞
dδP (δ, S; δ0, S0) (5.64)

where C(S) has been already defined before. The first upcrossing rate will be given
by

F(S) = −
∫ δc

−∞
dδ
dP

dS
=

= −
∫ δc

−∞
dδ

[
h(S)

dP

dδ
+

1

2

d2P

dδ2

]
= −

[
h(S)P (δ, S; δ0, S0) +

1

2

dP

dδ
(δ, S; δ0, S0)

]δc
−∞

.

(5.65)

Using definitions in 5.61, the last member of the previous equation reads as

− h(S)PS(δ, S; δ0, S0)|δc −
1

2

dPS
dδ

(δ, S; δ0, S0)

∣∣∣∣
δc

= − 1

2

dPS
dδ

∣∣∣∣
δc

=

= −

[
− δ − δ0 + δc(S)− δc(S0)

2(S − S0)
√

2π(S − S0)
e
− [δ−δ0+δc(S)−δc(S0)]2

2(S−S0) +

+
δ + δ0 − 2δc + δc(S)− δc(S0)

2(S − S0)
√

2π(S − S0)
e
− [δ+δ0−2δc+δc(S)−δc(S0)]2

2(S−S0) f(S)

]
δc

=

=
δc − δ0√

2π(S − S0)3
e
− [δc−δ0+δc(S)−δc(S0)]2

2(S−S0) .

(5.66)
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Before going on, let’s analyze these two quantities to get a deeper understanding
of what our function µ(T ) really represents: keeping the crossing time division, we
have that FT (S) = Θ(S − T ) since all paths of a given family have or have not
crossed the barrier, therefore we can rewrite F (S) as

F (S) =

∫ +∞

S0

dTµ′(T )FT (S) =

∫ S

S0

dTµ′(T ), (5.67)

where dTµ′(T ) is the probability to cross the barrier in the interval [T, T + dT ]. In
principle, nothing assures us that every path will cross a generic barrier, so we can
also define the total probability to cross the barrier as

F (∞) := lim
S→+∞

F (S) =

∫ +∞

S0

dTµ′(T ) ≤ 1. (5.68)

Using this last relation, we can see that

1 =

∫ +∞

S0

dT
µ′(T )

F (∞)
=

∫ +∞

S0

dTµ(T ), (5.69)

clarifying the fact that dTµ(T ) is nothing else than the conditional probability to
cross in the infinitesimal interval [T, T + dT ] given the fact that our path actually
hits the barrier (in other words, we recover the joint probability law). Finally from
equation 5.67 we can derive immediately that F(S) = µ′(S).
Using the first upcrossing rate we see how the number of haloes changes, in fact,
setting S0 = δ0 = 0, we have

dn

dM

∣∣∣∣
MG

=

√
2

π

ρ̄

M2

∣∣∣∣ d log σ

d logM

∣∣∣∣ ν exp

[
−1

2

(
ν +

δc(σ
2)− δc(0)

σ

)2
]

=

=

√
2

π

ρ̄

M2

∣∣∣∣ d log σ

d logM

∣∣∣∣ ν exp

[
−1

2

(
δc(σ

2)

σ

)2
]
.

(5.70)

First of all, let’s notice that the moving barrier gives corrections only to the exponent
argument: for large haloes, when δc(σ

2)→ δc, we recover exactly the GR result while
we expect to find a bigger number of small haloes, since for small masses δc(σ

2) < δc,
because small objects are less screened. Then we can see that in the whole mass
range dn

dM

∣∣
MG
≥ dn

dM

∣∣
GR

and also this result is expected since we have an additional
force acting during the collapse. Finally, let’s remark that something similar to this
result was already used in published articles (see e.g. [4]), even if it was not formally
proven.
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Chapter 6

Conclusions

In this thesis we have tried to treat the structure formation problem in modified
gravity using semi-analytical method. After having quickly motivated the introduc-
tion of particular scalar fields models which have screening mechanisms that hide
the field presence in high density environments, we exposed how they evolved along
the Universe history and which theoretical constrains they must satisfy, in order
to be compatible with observations. Due to the fact that their temporal evolution
is tightly bound, we have introduced a way to parametrize them only according
to their time-dependent mass and coupling-to-matter functions, which allow us to
reconstruct both the temporal and the spatial dynamics. Since this class of models
introduces a scale dependent fifth force which act along with Einstein gravity, we
have investigated the gravitational collapse of matter perturbations, which leads to
the formation of the first virialized structures. After having pointed out differences
with respect to the Newtonian collapse, we have analyzed the MG collapse in an
original way, using both analytic and numerical techniques. For models that has
a slow evolution all along the collapse, such as the dilaton, we succeed in finding
a good modelization that allowed us to obtain sensible field profiles, force profiles
and the so called moving barrier, typical of these scenarios. On the other hand, our
approach has shown some criticality in models which have a quick evolution, as the
symmetron. Finally, in order to appreciate observational differences from GR, we
used the Excursion Set Theory to determine the number of virialized structures, in
particular we find an analytic extension of such theory to the moving barrier case.
The natural continuation of this work points in three different directions.
Since during the collapse asphericities grow and become significant, the general struc-
ture that it forms are pancakes. In order to treat analytically or semi-analytically
the ellispoidal collapse we need to state also the angular dynamics of both the per-
turbation and the scalar field.
Then we can properly numerical simulate the spherical collapse (and eventually also
the ellipsoidal one, if we have accomplished the first point) in the same conditions
we have derived our profile, in order to understand where the critical points are and
how to obtain a more reliable semi-analytic approximation. This will be very useful
in the symmetron case, where, due to the singularity of the coupling function, our
approach had some problems.
Finally, we can going on deriving other halo properties, following the standard pro-
cedure that the Excursion Set Theoryprovides us.
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thank for all the time we spent together, the fun we had and for being so close to
me even during the last year.

Finally, I thank all my friends from the Shu Ren Kan for all the nice experiences I
had and the warm welcome that I received every time, even if after my last year I
spent abroad.

71


	Introduction
	Observational Evidence
	Cosmological Constant Problem
	Dynamical Dark Energy

	Modified Gravity Models
	Screening by Deep Potentials
	Appearance of a Fifth Force
	Models
	Chameleon
	Symmetron
	Dilaton
	f(R) Theories
	Universality of Thin Shell Condition

	Other Screening Mechanisms

	Cosmological Scalar Field Dynamics
	Cosmological History
	Equation of State
	Reconstruction of the Dynamics
	Chameleon and f(R)
	Symmetron
	Dilaton

	Growth of Structures

	Spherical Collapse
	Spherical Collapse in GR
	Spherical Collapse in MG
	Field Profile
	Numerical Simulations: Field Profile
	Dilaton
	Symmetron

	Numerical Simulations: Collapse

	Excursion Set Theory
	Notation
	Haloes Number in GR
	Haloes Number in MG
	Statement of the Problem
	Path Integral Formalism
	Complete Solution


	Conclusions
	Bibliography
	Acknowledgments

