
Università degli Studi di Padova

Department of Information Engineering

Master’s degree course in
Control System Engineering

The new design for Automated Guided
Vehicles: from laser triangulation to

natural navigation

Supervisor: Author:
Prof. Angelo Cenedese Gloria Cecchetto

2022573

Academic Year 2021/2022

“I’m going to let you in on a little secret:

Every day, once a day, give yourself a present.
Don’t plan it, don’t wait for it, just let it happen.

Agent Cooper, Twin Peaks

Abstract

This thesis is the result of a project followed during an internship at Euroimpianti

SPA - Skilled Group. The objective was the conversion of an Automated Guided

Vehicles (AGV) from laser triangulation navigation to natural navigation.

This type of AGV is used in warehouse management, so it has to be able to pick

and place loads, and cooperate with other vehicles.

Laser triangulation navigation does not require tags or floor guides for path fol-

lowing, but involves the application of reflectors in designed positions. These

will reflect laser beams back to the vehicle and, based on these, the vehicle will

localize itself.

Natural navigation, or SLAM (Simultaneous Localization And Mapping), uses

laser scanner measurements to identify, and then match, structures in the envi-

ronment. This solution is quick and simple in both installation and modification,

as it requires minimal changes to the infrastructure.

In both cases the paths followed are virtual.

This project included a third-party package to enable natural navigation in

Skilled’s AGV. The crucial points of the project are: the learning of the

BlueBotics technology (from software to hardware requirements), the design of

an hardware structure to allow proper communication between all components,

the programming of the AGV’s Siemens PLC for both safety and non-safety

behaviour and Ignition code developing for mission and traffic management.

This thesis presents the developed project. First, the current structure of the

Skilled AGV is defined, followed by a description of the project and an illustration

of some code sections.

I

II

Contents

1 Euroimpianti - Skilled Group 1

1.1 Skilled Products . 2

1.1.1 Robot Palletizers . 2

1.1.1.1 Skilled SCARA Robot 2

1.1.1.2 Articulated Robots 2

1.1.1.3 Conveyors . 3

1.1.1.4 Gantry . 3

1.1.2 Automated Guided Vehicles 4

1.1.2.1 Rail Guided Vehicle (RGV) 4

1.1.2.2 Laser Guided Vehicle (LGV) 4

1.2 Laser Guided Vehicles . 5

1.2.1 Structure . 5

1.2.2 Laser Triangulation . 9

1.2.3 Actual LGV Managing and Structuring 10

1.2.4 Stationary . 11

1.2.4.1 Interface Program 12

1.2.4.2 Switch and communication protocols 12

1.2.4.3 Radio Server . 13

1.2.4.4 PC Siemens . 14

1.2.4.5 EWON . 14

1.2.5 LGV . 16

1.2.5.1 Laser Scanners 17

1.2.5.2 Safety PLC . 18

1.2.5.3 PC Siemens . 21

2 Project Description 23

2.1 New Design for LGV . 23

2.2 BlueBotics . 23

III

IV CONTENTS

2.3 Hardware design . 26

2.4 New Stationary . 29

2.4.1 AntLab . 30

2.4.2 AntServer . 32

2.4.3 Ignition . 34

2.4.3.1 Ignition and Bluebotics 35

2.5 New AGV . 39

2.5.1 AntLite+ . 41

2.5.2 Laser Scanners . 42

2.5.3 PN/MF Coupler . 45

2.5.4 PLC Siemens . 46

2.5.4.1 Safety . 47

2.5.4.2 Non-safety . 49

3 Project Develop 51

3.1 AntLab programming . 51

3.1.1 Map definition . 51

3.1.2 Vehicle definition and calibration 53

3.2 Programming Ignition . 54

3.2.1 JSON . 54

3.2.2 Ant Server communication 54

3.2.3 Perspective HMI programming 65

3.3 Programming Siemens PLC . 73

3.3.1 Safety . 73

3.3.2 Non Safety . 80

4 Considerations and results 89

4.1 Final considerations . 89

A Ignition code 93

A.1 Ignition-AntServer communication 93

A.2 Ignition Perspective . 112

References 117

Chapter 1

Euroimpianti - Skilled Group

Skilled Group is based in Schio, Italy, with

production facilities and offices in the United

States and Europe. It was founded in 1973

in Zanè (VI) by Gastone Trecco with the aim

of producing, handling and palletizing systems

for all the main types of packaged goods. The

first developed product was the traditional

palletizer, later replaced by the SCARA and Cartesian palletizer and then by

the more modern anthropomorphic robot. Today, Skilled Group is a leading

supplier of material handling automation and automated production of various

types of industrial products. Since 1992, a new product line has been added

to production: Automated Guided Vehicles and Laser Guided Vehicles. These

products enable proper management of warehouse logistics, ensuring that every

available space is utilised in the most effective and productive way. Laser Guided

Vehicles and Palletizing Robots fully automate every product handling and stor-

age process, reducing stock management costs and increasing production. Skilled

provides automation solutions and product equipment, offering certified training,

installation and service for each product [1].

1

2 Chapter 1. Euroimpianti - Skilled Group

1.1 Skilled Products

1.1.1 Robot Palletizers

The automated palletizing process includes all the activities required to stack

different types of products on a pallet or on a slip-sheet in an automated and

optimized way.

1.1.1.1 Skilled SCARA Robot

Figure 1.1: Skilled SCARA robot

This Skilled product is a robot struc-

tured with a SCARA articulated kine-

matic and with 4 interpolated axes, al-

lowing a 360° working area. Thanks

to its high flexibility and the possibil-

ity to customize the picking tool for

an unlimited range of applications, the

Skilled SCARA robot has been used to

solve a wide variety of end-of-line prod-

uct handling problems in the most di-

verse plant logistics situations.

1.1.1.2 Articulated Robots

Figure 1.2: Skilled Articulated Palletizer

Articulated robots are designed with

a kinematic structure with revolute

joints. This robots can vary from a

simple two-joint structures to systems

with ten or more joints. An articulated

robot can be used for different applica-

tions and has a wide coverage of the

working area. It is ideal for pick and

place applications, rapid product han-

dling and orientation, pallet-box filling

and general palletizing.

1.1 Skilled Products 3

1.1.1.3 Conveyors

Figure 1.3: Conveyor

Conveyor systems and packaging equip-

ment are designed for handling and trans-

porting products to and from any location.

The products required can be: lifts/lower-

ators, chains, steel belts, sorting systems,

product alignment, diversion and control

systems, and product identification sys-

tems. This product is equipped with an

electric motor that enables the advance-

ment of the required products and raw ma-

terials in the product chain.

1.1.1.4 Gantry

Figure 1.4: Gantry Palletizer

A gantry robot consists of one or more

manipulators mounted on an overhead

structure that allows them horizontal

movement. This system allows pick

and place applications in large and

wide areas and then the stacking of

different objects according to the com-

pany’s management software. Depend-

ing on requirements it can be supplied

with a single or double pallet station,

with automatic pallet magazine, with

slip-sheet magazine and with conveyor for full pallets. The Skilled Gantry robot

offers standard payloads of up to 1000 kg and a working area of 75m length

and over 15m width. It can provide palletizing solutions with multi-cell gantry

palletizers that sort and palletize several products simultaneously.

4 Chapter 1. Euroimpianti - Skilled Group

1.1.2 Automated Guided Vehicles

The acronym AGV identifies driverless forklifts that can transport pallets and/or

materials to/from programmed positions in production areas and warehouses.

The AGV receives orders directly from warehouse management systems or any

type of software or hardware interface. AGVs operate continuously in total safety

with precisely controlled navigation, acceleration and deceleration to minimise

potential damage in material handling.

1.1.2.1 Rail Guided Vehicle (RGV)

Figure 1.5: RGV

Skilled RGV has been created from the LGV project

and its operation is, therefore, based on the same

general principles. The vehicle moves along a

straight track at floor level and is used exclusively

for straight-line handling. Its integration with the

robot palletizing systems allows complete “end of

line” automation. It is equipped with a modular

system and therefore has great flexibility.

The absence of electrical connections and the possi-

bility of sinking the rails into the floor facilitate the

access to production lines by operators and vehicles.

1.1.2.2 Laser Guided Vehicle (LGV)

Figure 1.6: LGV

Skilled LGV (Laser Guided Vehicle) is an au-

tomatic forklift vehicle that has a role in the

complete automation of the “end of line”

production section.

LGVs are usually equipped with forks for

a single or double pallet and can also han-

dle 10m pallets lifting. They can also be

equipped with gripper, for picking up rolls,

or conveyors, for picking up cast products.

Thanks to its flexibility, the system can be

easily adapted different production needs. The different LGV models differ in

lifting height and load capacity [1].

1.2 Laser Guided Vehicles 5

1.2 Laser Guided Vehicles

Laser Guided Vehicles (LGV) are Automated Guided Vehicle (AGV) that use the

laser triangulation technique to localize itself in the environment.

1.2.1 Structure

Figure 1.7: Tricycle Model

The kinematics aspects to be considered

when designing a mobile robot are: mobil-

ity, control and positioning.

The first one deals with the possible

motions that the robot may follow to reach

a final configuration. Mobile robots must

be able to reach any position on its plane

of motion, with any orientation.

The second aspect deals with the choice

of the kinematic variables, generalized ve-

locities or generalized coordinates, that will

be directly controlled by the drivers to in-

troduce the required robot motion.

Finally, the third aspect considers the

localization system, included in the robot

and used to estimate the actual robot pose (position and orientation), necessary

to achieve an autonomous operation [2].

The way the LGV moves in the environment is defined by the tricycle kine-

matic model. The kinematic model studies the motion of a robotic mechanism

regardless of forces and torque that cause it, dealing with the geometric relation-

ships that govern the system and the relationship between control parameters

and system’s behaviour.

The AGV tricycle model is composed by an active wheel, equipped with a

traction motor with velocity control and a steering motor with position control,

and two fixed passive wheel for balancing purpose as reported in Figure 1.7. The

center of the vehicle is defined as the center of the passive wheels and the traction

wheel can be off-centered [17].

6 Chapter 1. Euroimpianti - Skilled Group

Figure 1.8: AGV Reference system definition where (x, y) are the vehicle horiziontal and vertical
position on the map; θ is the heading angle of the vehicle, Ov is the origin of the vehicle
reference system and T is the trajectory to be followed

The vehicle reference system is reported in Figure 1.8, where also the forward

and backward direction are defined.

Skilled AGV is a non-holonomic systems, which means that the differential

equations are not integrable to the final position and the measurement of the

distance travelled by each wheel is not sufficient to calculate the robot’s final po-

sition. To define the final position, additional information on how the movement

was performed, as a function of time, is required.

This type of system is described by a set of parameters subject to differential and

non-linear constraints.

The maneuverability of a mobile robot is the combination of the mobility

available under sliding constraints and the additional freedom provided by

steering.

1.2 Laser Guided Vehicles 7

The quantification of the mobile robot maneuverability can be derived using

[3]:

• Degree of mobility: is a measure of the number of Degree of Freedom (DoF)

of the robot chassis that can be immediately manipulated through changes

in wheel velocities.

In the case of the tricycle model, its value is δm = 1 because the speed

variations only allow going straight in the defined steering direction.

• Degree of steerability: an increase in Degree of Steerability (DoS) results,

eventually, in greater maneuverability but decrease in mobility.

In the tricycle model case δs = 1 cause one independent steerable wheel is

present and performs changing in the AGV direction.

• robots maneuverability: is the sum of the degree of mobility and steerability.

Therefore in tricycle kinematic case it is: δM = δm + δS = 2

8 Chapter 1. Euroimpianti - Skilled Group

The vehicle dynamics is then defined based on the tricycle structure reported

in figure 1.9

Figure 1.9: Tricycle Model

The kinematic model behaviour can be defined with a set of equations [17]:

ω = v
R

(1)

ω = vt
R′ (2)

R′ = tx
sin(a)

(3)

R = R′ · cos(a) + ty =
tx·cos(a)
sin(a)

+ ty (4)

With 1 and 2: v = vt·
R

R′ (5)

With 3, 4 and 5: v = vt ·
tx·cos(a)
sin(a)

+ ty

tx
·sin(a) = vt ·

tx · cos(a) + ty · sin(a)
tx

(6)

With 2 and 5: ω = vt ·
sin(a)

tx
(7)

1.2 Laser Guided Vehicles 9

1.2.2 Laser Triangulation

AGV navigation can be developed using different techniques.

Line following navigation requires a specific sensor in the AGV to follow

a physical line attached to the ground (magnetic tape, inductive wire). This

requires a lengthy installation and the modification will be costly and difficult for

the fleet to manage.

The navigation with tags, on the other hand, requires a camera or code

reading sensor to read the tags on the floor, so it has the same costs as railway

navigation.

Laser triangulation navigation, on the other hand, does not require tags or

guides on the floor. A laser-supported NAV positioning system is mounted on top

of the LGV, typically centred along the vehicle’s width axis and towards the front

control panel. The scanner emits a modulated laser light that rotates and covers

a 360° angle ten or more times per second, covering several metres. The reflective

landmarks, with known coordinates, are installed at several specific locations.

Each of these landmarks, which can be either flat or round, send a reflection back

to the scanner and this is converted to a coordinate reference. By definition, at

least three identified reflections are needed at any time instant in order for the

scanner to determine its location in the system.

Figure 1.10: Navigation of an AGV with a laser-supported NAV positioning system

10 Chapter 1. Euroimpianti - Skilled Group

1.2.3 Actual LGV Managing and Structuring

The actual AGV is a Laser Guided Vehicle and its movements in the environment

are controlled by PLC, that schedules missions, and Router, that provide traffic

managing. The overall hardware structure is reported in Figure 1.11.

Figure 1.11: Skilled LGV’s hardware design

1.2 Laser Guided Vehicles 11

1.2.4 Stationary

Figure 1.12: Stationary Block Scheme

The Stationary is composed by a Personal Computer (PC) and a Programmable

Logic Controller (PLC).

The first one has in it the interface program that shows all the missions, the state

of each vehicle, the allowed path in the environment, and a router for the traffic

managing.

The router is a software application that relates with the Sstationary and with

each AGV by OPC and maintains the data exchange for traffic management.

It receives the mission schedule from the Stationary PLC and provides the cal-

culation of the paths required to complete it successfully.

It first verifies the possibility of compleate it, then sends the planned route to the

AGVs.

This is done by sending partial path sequences and a continuous update of the

commands. In this way, if the commands of two AGVs have the same sequence,

path intersection occurs, and a wait command is given to one of them to avoid a

collision.

The second component is a PLC (PC Siemens block) and it is the mission

generator. It relates with the signals from the environment, by I/O modules can

receive information from presence sensors, and from warehouse system managing.

The Logistic Server is software application that enable to have more information

about the warehouse and how the loads are managed and stocked. It generates

an event that send a signal to the PC that will generate the required mission.

12 Chapter 1. Euroimpianti - Skilled Group

1.2.4.1 Interface Program

The interface program is defined with a CAD file in which the building plan and

the permitted route for LGVs are represented.

This is designed with nodes and links, that defines the paths, and instanced node

that represent: parking positions (used to park the LGV until it is employed for

a mission), picking and placing stations, charging areas and car-washing station

where LGV can leave the load that doesn’t have a target destination.

Figure 1.13: AGV path layout in CAD

An example can be seen in figure 1.13, where the environment is reported

in red and the allowed path are composed by nodes and links. In the image are

shown the charger nodes and the picking an placing nodes, colored in yellow.

1.2.4.2 Switch and communication protocols

The stationary block schemes in figure 1.12 shows the Stationary components and

their communication. Everything is connected thanks to the Ethernet Switch, so

that the PC and the Siemens PC can communicate with all the other involved

devices. Ethernet technology provides a set of physical media definitions, a sim-

ple frame format and source/destination addressing scheme to move data packets

between devices [4].

1.2 Laser Guided Vehicles 13

The Ethernet switch is used to create a network connection between all the con-

nected devices via Ethernet cables and Ethernet ports. It relies on the addressing

scheme and sends data packets only to the destination port, limiting the number

of data collisions. [5]

1.2.4.3 Radio Server

Radio Server is a radio communication that implement the Client-Server commu-

nication protocol and is used to exchange messages and information with each

vehicle.

Client-server model is a distributed application structure that partitions tasks

or workloads between the providers of a resource or service, called servers, and

service requesters, called clients. Often, clients and servers communicate over a

computer network on separate hardware, but both client and server may reside

in the same system. Clients and servers exchange messages in a request–response

messaging pattern. The client sends a request, and the server returns a response.

This message exchange is an example of inter-process communication. To com-

municate they must have a common language, and must follow rules so that both

the client and the server know what to expect.

To further formalise the data exchange, the server can implement an Appli-

cation Programming Interface (API) that is an abstraction layer for accessing a

service. A server can receive requests from many different clients in a short period

but a computer can only perform a limited number of tasks and then it relies on

a scheduling system to prioritise incoming requests from clients [6].

This Radio Server/Client communication protocol in Skilled AGV is governed

by the Ethernet-IP protocol, so each vehicle will have its own IP and each vehicle

component also has its own. The two strategy to avoid wrong communication

regards the Vehicle’s components IP.

• In the first case each component has different IP from the same component

in other vehicles so everything is unique. There is only one address family

of IP.

• In the second case, instead, each component has the same IP in each vehicle

but what differs is the Vehicle Radio Client IP. The radios IP are on the

same address family and, once the connection is establish with the selected

vehicle, the component IP can be reach uniquely with NAT connection.

14 Chapter 1. Euroimpianti - Skilled Group

Figure 1.14: Client-Server AGV communication

1.2.4.4 PC Siemens

The PC Siemens block represent the PC that is equipped with an image contained

in a SD Memory that has in it the PLC software, files for interface with the LGVs,

and the LGV’s Firmware to communicate with the LGV’s components.

The I/O module is connected to the Siemens PC and act as mediators between

the processor and the input/output devices. The input modules receive signals

from switches or sensors and send them to the processor, the output modules take

back the processor signals to the control devices like relays or motor starters.

The signals from the environment that are used in Siemens PC for mission

managing are, for instance, the signals from automatic doors, from the sensors in

the picking and placing positions, fire sensors to send the LGV in safe positions

to not occlude the emergency exits, and many others.

It also exchanges this information with the interface program and router to

develop proper mission and traffic management. This is enabled by the Ethernet

port IP, which is necessary for proper communication with the Ethernet Switch

and then with all other Stationary’s components.

1.2.4.5 EWON

The EWON block represents the way to remotely service installations, so that

technicians can solve problems and change the code in the rest of the world.

1.2 Laser Guided Vehicles 15

Ewon routers are built to fit within the automation panel and can communi-

cate with both Ethernet and serial devices. The Ewon device makes an outbound

connection via UDP (User Datagram Protocol) or HTTPS (HyperText Transfer

Protocol over Secure Socket Layer) to the VPN (Virtual private network) servers.

UDP, HTTPS are communication protocols with different characteristics: UDP is

a simple connection-less communication model with a minimum protocol, HTTPS

is used for secure communication over a computer network.

VPN is a private network, established as a connection between parties using a

shared, public transmission protocol. Using the VPN client, authorized users are

able to log into their account and connect to their Ewon router anywhere in the

world.

The Ewon router is typically configured as a DHCP (Dynamic Host Config-

uration Protocol) Client so it receives network settings automatically [7].

User devices are used to remotely access the installations and this can be

done also with PLC programs. Talk2M is an industrial cloud, secure, reliable

and scalable.

Figure 1.15: Ewon connection

16 Chapter 1. Euroimpianti - Skilled Group

1.2.5 LGV

The actual Laser Guided Vehicle structure is reported in figure 1.16 and it is the

upper section of the figure 1.11.

Figure 1.16: LGV Block Scheme

The block scheme reported in Figure 1.16 represent the hardware structure

of each Skilled LGV. These components collaborate to enable proper handling of

all devices and ensure the correct vehicle behaviour.

The PC Siemens block and Safety PLC block are the two most important

devices in the LGV. Those two receive information from all the devices in the

LGV structure and manage it by sending as output the proper signal to handle

every case.

1.2 Laser Guided Vehicles 17

1.2.5.1 Laser Scanners

Skilled LGVs perform their localization with laser triangulation, but collision

avoidance and safety behaviour are performed with laser scanners and safe areas

definition around the vehicle.

In the first LGVs the safe stopping was performed with bump strips, contact

sensors used to allow an LGV to stop safely without collisions, but the vehicles

had to move at low speed to react in time.

Today, safety laser scanners allow the AGVs to move at higher speeds because

they provide the safe non-contact detection of personnel and obstacles far ahead

of their path, allowing higher speeds.

The design of these safety areas takes into account many aspects of the ap-

plication of industrial autonomous vehicles, such as the environment, the break

system and a comprehensive risk assessment.

The use of laser scanners in stationary and mobile applications enables a machine

or vehicle to slow down or stop safely as soon as it detects a person, body part

or unexpected obstacle within the protective field.

Safety laser scanners use the time-of-flight principle, in which a light pulse

is transmitted, reflected and then detected. The distance (d) from the object to

the scanner is calculated using the return time of the beam (∆t) and the speed

of light (c = 3 · 108 m
s
):

d =
c ·∆t

2

A mirror inside the scanner rotates this light beam, allowing measurements

to be taken around a radius in a plane.

This means that the scanner can build up a profile of the surrounding area, and

operating entities can configure different fields in the scanner that can be used

to activate and deactivate different outputs for use in safety functions. Some

scanners can also be used for multiple safety functions due to their ability to

evaluate multiple fields simultaneously [8].

With Laser Scanner it is possible to define Warning and Protective fields

(Figure 1.17) and then Warning and Protection Areas around the LGV, Figure

1.18.

The safe behaviour of the LGVs is defined by the detection of obstacles in these

areas and is encoded in the Safety PLC.

18 Chapter 1. Euroimpianti - Skilled Group

Figure 1.17: Lasers fields Figure 1.18: Safety AGV areas

1.2.5.2 Safety PLC

To be considered a Safety PLC, a PLC must meet a number of strict international

standards. It supports all the applications that a standard PLC does, however a

safety PLC contains integrated safety functions that allow it to control systems

safely [9].

A safety PLC is designed to achieve two important goals: Not to fail and, if

unavoidable, to fail only in a predictable and safe way. It achieves these goals

with its redundant microprocessors, eliminating the need for safety relays to

create redundancy. In addition, it has built-in diagnostics to continuously monitor

inputs and outputs.

If an internal fault or error is detected, the PLC shuts down safely. [10]

Figure 1.19: SICK Safety PLC

The safety PLC (Figure 1.19) is programmed using SICK’s Flexi Soft Safety

Controller and the SICK Safety Designer software, correlating signals from the

motor safety encoders, laser scanners (Figure 1.20), internal software bits and

other hardware inputs. SICK’s safety laser scanners and the Flexi Soft Safety

1.2 Laser Guided Vehicles 19

Controller with EFI-Pro Gateway, a safe communication protocol, are the basis

for an integrated, standards-compliant safety design.

Encoder information are used to dynamically change the field size on the safety

laser scanners via EFI-Pro communication according to speed and direction [11].

Figure 1.20: SICK Safety PLC and Laser Scanners

SICK Flexi Soft allows the application of complex algorithms and logic so

that the LGVs can be configured to work completely independently.

If the safety laser scanner detects an obstruction in its warning fields, the

safety controller instructs the vehicle control system to slow down and then speed

up again once the field is clear, allowing efficient and productive operation.

If the inner protective field is breached, the Flexi Soft ensures that all drives are

stopped immediately and are prevented from starting up again until it is safe

to do so. The design of the protective fields is carried out taking into account

the specifications of the laser and encoders to provide an accurate value that

guarantees vehicle’s safety.

Starting with the stopping distance (which includes the vehicle’s braking dis-

tance, the distance travelled during the response time of the safety laser scanner

and the response time of the safety control system), the other factors to be added

are: a general safety supplement = 100 mm, a supplement for any reflection re-

lated measurement error of the safety laser scanner, a supplement for any lack of

ground clearance of the vehicle, a supplement for the reduction in the breaking

performance of the vehicle as defined in vehicle documentation.

It is advantageous to keep this summed value as small as possible so that:

Industrial autonomous vehicles can work in closer proximity to each other, they

do not need large clearance space around them, objects and people are less likely

20 Chapter 1. Euroimpianti - Skilled Group

to cause stoppages or slow downs of the vehicle, the vehicles can move much faster

with smaller fields and increase availability.

The Safety areas can be defined as function of the installation path, in some

cases the LGV has to deal with situation in witch the laser scanners will stop the

vehicle without obstacle in front of it. For instance in some case of picking/placing

the forks will cover the sensor, shutting down the vehicle and compromising the

achievement of the target.

In this case the Waning and Protective fields are imposed to be almost null

(Picking and Placing Area definition), and the AGVs can continue its mission.

An accurate design of all the Safe Areas and Safety definitions is carried out to

ensure a safe and correct behaviour of the AGV.

The three Laser scanners in the Skilled AGV are connected via Ethernet/IP

to the CPU of the safety PLC (which contains the Flexi soft program with area

definitions). Other safety inputs enter the PLC and are, for instance: the brakes,

the reset power button, the enable power supply, the battery charge, the auto-

matic/manual selector and the chain tension sensor signal.

The Gateway Modbus (the grey module in figure 1.19) is used to exchange

signals with Modbus communication between the Siemens PC and the Safety

PLC.

It also functions as bridge to allow the Siemens PLC to relate with the device

under the Safety PLC in the AGV block scheme (Figure 1.16) like Battery Pack,

HMI, TIM Laser and Radio Client.

1.2 Laser Guided Vehicles 21

1.2.5.3 PC Siemens

As in the Stationary, the LGV Siemens PC has an image, and contains the

software of the PLC an the LGV’s Firmware.

Figure 1.21: PC Embedded Siemens

A firmware is a ”software” that provides basic machine instructions that

allow the hardware to function and communicate with other software running on

a device. Firmware provides low-level control for a device’s hardware, so it is not

generally designed to be user friendly. It is used to run user programs on the

device and can be thought of as the software that enables the hardware to run.

Firmware may be written into read-only memory (ROM), erasable programmable

read-only memory (EPROM) or flash memory [13].

The Siemens PC block is one of the main components of the AGV block

scheme, as it communicates with everything and relates to every device. The

schematic block is divided into four ports that have different communication

protocols to enable the correct exchange of information.

The PC is in charge of handling all tasks and cases, the software in it can interact

with external inputs and then provide input signals to devices to perform specific

tasks.

The Siemens PC is the one that translates the missions received from the

Stationary and Router via Radio Client into commands to be given to the steering

and traction motors to reach the destination. This is a CanOpen communication

and is connected to the Can port of the Siemens PC.

The Safety Wirless Control block allows the communication with the joystick

for manual navigation. CanOpen communication allows to receive the signal from

the joystick and let them arrive to the PLC

22 Chapter 1. Euroimpianti - Skilled Group

The devices, as shown in the block diagram in figure 1.16, are connected,

from the hardware point of view, in serial mode starting from the traction drive

and ending after the steering encoder with a terminal resistance but the Can/ID

communication is in parallel mode.

The Input/Output module is one of the main modules of the PC. Through

it, the PC can communicate with all devices by receiving and providing infor-

mation or tasks. The communication is governed by the Profinet communication

protocol. Based on the input provided by the vehicle status, the PC gives the

commands for the flashing of the AGV’s led blinking, which is used to give a

rapid information about the vehicle’s status.

Chapter 2

Project Description

2.1 New Design for LGV

A third-party component was installed to convert the AGV from laser triangula-

tion to natural navigation.

The complete package consists of BlueBotics AntLite+, an on-board naviga-

tion system that allows each AGV to navigate autonomously in the environment,

and AntServer, the fleet management software for the installation site that per-

forms all high-level tasks, such as mission scheduling and deadlock-free traffic con-

trol. AntLab is the software used for vehicle and installation configuration [17].

2.2 BlueBotics

BlueBotics is a Swedish com-

pany that provide natural fea-

ture navigation solution to

AGVs. Its Autonomous Nav-

igation Technology (ANT) was

created in order to make AGVs

easier to install and operate.

ANT natural feature naviga-

tion (sometimes called ‘natural navigation’, ’free navigation’ or ‘SLAM naviga-

tion’) uses a vehicle’s existing safety laser scanners to firstly identify and then

match permanent features in the environment, such as walls, pillars, and ma-

chines. This complete natural feature navigation solution calculates the vehicle’s

position (localization), controls the vehicle motion, and interfaces directly with

23

24 Chapter 2. Project Description

the vehicle’s safety laser scanners [15].

ANT uses laser scanner data and odometry to provide a robust localization of

the vehicle in the map, using permanent structures (features) in the environment

as references. The accuracy is very high, varying in ± 1 cm and ± 1◦.

ANT is compatible with all AGVs types including tricycle, differential, Ack-

ermann model based and omnidirectional.

The obstacle avoidance allows the dynamic navigation of the vehicle around block-

ages without stopping, except for ”too far from the path” error.

The transfer of mission data from computer to vehicle happens once (instead

of continuously sending commands from the server to the vehicle), reducing the

network requirements.

The overall structuring of ANT technology is represented in figure 2.1.

Figure 2.1: ANT Structure

The three main components of the Autonomous Navigation System

technology are: AntLite+, AntServer and AntLab.

2.2 BlueBotics 25

• AntLite+ is the onboard navigation system, that allows each AGV to navi-

gate autonomously in the environment so both localization and navigation

calculations are embedded in the AGV. The network connection is only

required for mission dispatch, monitoring, traffic in sensitive areas and con-

nect devices, but not for localization and navigation. Each AGV is equipped

with its own AntLite+, and one instance of AntServer is installed.

• AntServer allows the fleet management, the selection of the right vehicle

for each mission and the coordination of vehicles in path intercepts (wait-

ing points). It performs all high-level tasks such as mission’s scheduling,

deadlock-free traffic control, battery charge management, interface with

external software and external device controllers. It also allows simulation

of vehicles and missions.

The dedicated AntServer’s API allows the mission managing according to

the company’s management system [16].

• AntLab is the software used for configuration of both vehicles and instal-

lation. It allows to perform vehicle configuration and calibration, the envi-

ronment mapping for localization, the drawing of the routes, the definition

of actions, the configuration of devices such as chargers, doors and lifts us-

ing AntServer. AntLab is used to set up a fleet of AGVs equipped with

AntLite+ in an industrial environment, but the continuous running of Ant-

Lab is not necessary to enable the operation of the AGVs [17].

26 Chapter 2. Project Description

2.3 Hardware design

The first thing to consider in the new Skilled AGV design was the definition of

the appropriate hardware structure to provide the right communication between

all components and its ability to provide the same actions of actual Skilled AGV.

As stated in the AntLite+ manual in the configuration section [17], a PLC is

required to perform all the tasks that the actual Skilled AGV can perform.

Figure 2.2: ANT and AGV devices

As a new project, all the possible design ways was considered, starting from

the PLC supplier. In industrial automation, the two main PLC manufacturers

are Allen Bradley (Rockwell Automation) and Siemens. The two PLCs differs

in many aspects, from the programming language to the used communication

protocol.

2.3 Hardware design 27

The comparison between the adaptability of the Allen Bradley PLC and the

Siemens PLC in the project was the first step in the project planning.

The main differences between Rockwell and Siemens PLC are [19]:

1. Rockwell and Siemens PLC have similar speeds, reliability and has almost

the same number of output.

2. Siemens does not require a rack or Siemens power supply for the rack,

any external 24VDC works, instead Allen Bradley requires both an Allen

Bradley Rack and a Allen Bradley power supply.

3. Rockwell PLC is considered more intuitive and user-friendly to program

than Siemens controllers.

4. The main difference is them communication protocols. Allen-Bradley con-

trollers support North American protocols such as DeviceNet, Control-

Net and Ethernet IP. Siemens uses European protocols such as Profinet-

Profibus, ASI, MODBUS or MODBUS TCP/IP.

During the definition of the new Skilled AGV hardware structure, the most

relevant difference between the two hardware schemes was related to the PLC

communication protocol.

This was a crucial point because AntLite+ supports the Ethernet/IP protocol

to communicate with Laser Scanners (needed also in the Safety PLC) so, if the

Siemens PLC has been chosen, a Gateway Converter is required to allow the

correct communication.

Initially the Rockwell PLC was preferred, as it could support direct commu-

nication with AntLite+ and Laser Scanner in Ethernet/IP. A solution to make

the Siemens PLC supported as well was found in the PN/MF Bus Coupler (de-

fined in Chapter 2 Section 2.5.3), which allows a proper Profinet and Ethernet/IP

conversion.

The two hardware projects, based on the PLC choice, were identical except

for this coupling device. Euroimpianti’s choice was to proceed with the Siemens

PLC for standardization as they already use it for them products.

The block scheme of the hardware design is reported in figure 2.3. As can

be seen both Stationary and AGV structuring changes from the one of the LGV

described in Chapter 1, Section 1.2.3.

28 Chapter 2. Project Description

Figure 2.3: New Skilled AGV block scheme

2.4 New Stationary 29

2.4 New Stationary

The figure reported below represent the comparison between the actual Stationary

structure (figure 2.4a) and the new designed one (figure 2.4b).

(a) Actual Stationary design

(b) New Stationary design

The new Stationary differs from the actual Skilled Stationary, but the ba-

sic idea is the same. The PC Windows has in it the AntServer provided by

BlueBotics, which takes care of mission scheduling, traffic management and ex-

changing information with the new AntLite+.

The radio-server is still present and it is required for the Client/Server hier-

archy messaging, as defined in Chapter 1, Section 1.2.4.3.

Ignition is a SCADA program that, regardless of brand, model or platform, is

able to dialogue with any equipment in the plant.

It can communicate with the external environment with the I/O modules and

Modbus communication. In the new Stationary the I/O module is connect di-

rectly to the switch and the PC Siemens is not needed anymore.

Therefore Ignition, installed in the windows PC, will replace the Stationary’s

PC Siemens to schedule missions. It is also used to define the human interface

and exchange information with AntServer.

30 Chapter 2. Project Description

2.4.1 AntLab

AntLab is the interface software developed by BlueBotics, which replaces the

CAD file definition in the actual Stationary programming. The basic idea is

quite similar: as before, the map of the environment is used to define the path

that the AGVs must follow in order to move correctly in space and achieve target

missions. This configuration software is used for [17]:

• connect to one vehicle at a time, control it and modify its properties,

• map the environment and edit the map,

• define the routes and the actions that the vehicle will follow along the path,

• test/debug the routes, paths and actions using troubleshooting tools.

AntLab files are called projects. Generally, an AntLab project corresponds

to an installation with the required number of vehicles. It contains all necessary

data: vehicle list and properties, maps, routes and actions.

Figure 2.5: AntLab project example

2.4 New Stationary 31

Figure 2.5 shows a sketch of an AntLab project. The allowed paths are

still defined with the node-line method and each node can be associated with

an action like: charging, parking, picking and placing, car wash (special station

where AGVs can leave the load in case the delivery point is not empty or if the

mission was aborted during the transfer) and many others.

Green lines, on the other hand, represents the environment features, those

objects in the environment that are fixed and which BlueBotics technology uses

for its localisation.

Each path line is coupled with and arrow that forced the only possible direc-

tion of the AGV in that segment. The areas in light purple are those that allow

the AGV to perform the curve. They are defined by AntLab based on the cal-

culation of the AGV’s speed in that section. Speed and curvature radius bounds

can also be set manually by the developer.

The allowed path design can be done starting from the Laser Scanners data of

the AGV moving in the environment or from a CAD file of the plant. The paths

are then defined in the AntLab designer. As explained in Chapter 3, Section 3.1.1

Once everything has been set up and configured, all this information are stored in

the vehicle, which means that AntLab does not have to be opened or the vehicle

connected in order to have a running vehicle.

The vehicle is insert in the project with a firmware called bootfile.

There exist a bootfile for each type of vehicle and contains all the common pa-

rameters for this type like: motors, kinematics, laser types, maximum speeds and

controller gains.

Added to these parameters are the calibration parameters of the individual

vehicles, which are unique and take into account the small mechanical differences

in a fleet of vehicles. Typical vehicle calibration parameters are wheel radius,

laser position and odometry quality.

These values are stored in the flash memory of AntLite+ and can be erased

via a “Reset to factory default”.

The vehicle parameters overwrite the default platform parameters and should

only be calibration parameters and not critical parameters to ensure that all

vehicles in a fleet behave the same way.

When connecting to a vehicle from an AntLab project, an automatic check is

performed to ensure that the vehicle and project parameters are consistent.

32 Chapter 2. Project Description

2.4.2 AntServer

AntServer is a program designed to run from a computer or server at the instal-

lation site, it is an advanced mission and fleet management software for AGVs,

regardless of vehicle type and kinematics.

AntServer is coupled with AntServer API, a REST-based programming in-

terface to connect AntServer to other software systems. It allows full integration

with an existing Warehouse Management System (WMS) or the design of spe-

cific user interfaces. Every possible interaction with AntServer is available via

the AntServer API, from mission creation to alarm monitoring.

All communication between AntServer and the vehicles are managed through

a wireless network. This is only needed when: the vehicle has been assigned a

mission and starts it, the vehicle has finished a mission and notify it, the vehicle

will pass a crossing soon and needs an acknowledgement from AntServer and when

the vehicle needs to communicate with external hardware [21]. The AntServer

schematic functionality is shown in Figure 2.6.

Figure 2.6: AntServer functionality

This means that the vehicle can drive autonomously most of the time and

exchange information just when required, thanks to the navigation algorithm

directly integrated in AntLite+. This results in minimal data exchanged, which

can be done over low bandwidth and so vehicles are always able to have a con-

nection, even if weak.

Through its interfaces, AntServer constantly receives mission requests from

external sources such as WMS, operator and machines. Generally, a mission

defines a task, but not the vehicle that has to perform it, so AntServer optimally

2.4 New Stationary 33

assigns missions to vehicles considering mission priority, vehicle availability, their

position on the map, mission deadline, payload/vehicle type and mission.

Vehicle traffic management is based on vehicle map and space sharing. They

must follow a common set of traffic rules to avoid collisions and ensure smooth

traffic without deadlocks.

AntServer managing is based on the following concepts [21]:

• AntServer processes each path intersection as a single access resource, so

whenever a vehicle reaches an intersection it automatically asks AntServer

if the access is granted. On the other hand, when it leaves, it asks AntServer

to clear the intersection. In this way only one vehicle at a time can access

in the intersection;

• AntServer can count the number of vehicles allowed in each region of the

graph. Since it supervises the entire fleet at an higher lever, it can manage

the correct access to cells;

• In some cases is necessary to manually define additional traffic rules. This

usually involves limiting an area to only one vehicle, because there is not

enough space or because the complexity of the graph can lead to complex

traffic situations. For this reason, a region can be manually restricted to

the access of only one vehicle at a time.

In general, vehicles in a plant have a behaviour that changes according to

specific positions. For example, a forklift must move its forks when picking up a

pallet, slow down in a dangerous area or emit a sound when driving backwards.

These behaviours are handled in AntServer with the concept of Actions. Some

are implicit, such as slowing down in a curve, and are handled automatically by

AntLite+. Others are explicitly defined by the integrator to serve a purpose, such

as pick up a payload.

The configuration of an installation and the scheduling of actions are carried out

with AntLab and stored in a project file. When the project is ready, it can be

transferred to AntServer so AntLab is not used for run-time, as long as there is

no need to modify the project.

An important aspect of actions in AntServer is that the logic is not relate to

time constraints, but to position constraints: a vehicle will activate its actuators

at a specific position because there is an action to be perform there. This allows

a clear process to be defined for installation.

34 Chapter 2. Project Description

2.4.3 Ignition

Ignition is an Integrated Software Plat-

form for SCADA systems, released by

Inductive Automation, based on SQL

Database-centred architecture. SQL

stands for Structured Query Language

and is a specific language used for data

management in a relational database

management system. Ignition platform

has three main components:

the Ignition Gateway, the Designer, and the Runtime clients.

• The Ignition Gateway is the main software service that manages everything

in Ignition. It is a single application running as a web server and accessible

through a web browser. It connects to data and PLCs, executes modules,

and communicates with clients. When the Gateway server is running, it

can connect to a device, to a database, launch the Designer and launch a

Vision client or Perspective session as represent in Figure 2.7.

• The Designer brings all data, systems and developers together in one simple

integrated development environment, designed specifically to realise indus-

trial applications quickly and efficiently.

• The web-launched Vision Clients in Ignition are the “runtimes” of the Vision

module. One or more Clients can be launched to display the projects created

in the Designer [22].

Ignition is a server software that acts as a hub for everything in the plant for

total system integration, regardless of brand, model or platform.

Any type of industrial application can be created for desktops, industrial dis-

plays and mobile screens as Ignition Designer combines a rich component library,

powerful design and scripting tools.

The development power of Ignition is extensible through the addition of fully

integrated software modules. Each module provides distinct functionality such

as Real-Time Status control, alarms, data acquisition, scripting and scheduling.

2.4 New Stationary 35

Figure 2.7: Ignition structuring

Ignition is programmed to optimise the flow of data and to display actual

tag values in real time. It is also possible to start and stop processes, monitor

multiple data points in multiple locations and check the status of the entire plant

at any time [23].

Ignition Designer provides an environment to create optimized Human-Machine

Interfaces (HMI), creating an application that displays HMIs with historical

trends, alarms, and all crucial aspects of the installation required by the operator.

2.4.3.1 Ignition and Bluebotics

AntServer API provides a convenient way to interface AntServer with Ignition to

provide the fleet management with a production software or a warehouse man-

agement system [24]. AntServer API is based on REST (Representational State

Transfer).

A REST API, also known as a RESTful API, is an application programming

interface conforming to the constraints of the REST architectural style, which

allows interaction with RESTful web services. APIs (an acronym for Application

Programming Interfaces) are a set of definitions and protocols by which appli-

cation software is realised and integrated. They can be regarded as a contract

between an information provider and the user receiving that information: the

API establishes the content requested by the consumer (the call) and the content

requested by the producer (the response). The API then acts as an intermediary

between users or clients and the web resources or services.

REST, instead, is a set of architectural constraints, not a protocol or a stan-

36 Chapter 2. Project Description

dard [25] that allows clients to access resources provided by the system via URIs

(Uniform Resource Identifiers) and the following four HTTP methods:

• GET: only retrieve the representation/information of the resource and do

not modify it in any way.

• PUT: used to update an existing resource. If the resource does not exist,

then API may decide whether or not to create a new resource.

• POST: used to create a new resource into the collection of resources.

• DELETE: APIs deletes resources identified by the request URI. [26].

When a client request is sent via a RESTful API, it transfers a representative

state of the resource to the requestor. The information, or representation, can be

delivered in one of the allowed formats via HTTP like: JSON (Javascript Object

Notation), HTML, XLT, Python, PHP or plain text.

JSON (JavaScript Object Notation) is an open standard format that uses

human-readable text to transmit data objects consisting of attribute–value pairs.

Although originally derived from the JavaScript scripting language, JSON is a

language-independent data format [27].

The JSON format is employed by AntServer because it is language-independent

and easily readable. In particular AntServer will always act as a slave, respond-

ing to requests from the client. This means that AntServer will never send data

without an explicit request from the client. To monitor the status of objects in

AntServer, the client must poll the information regularly.

Going into detail, AntServer sends a response to each request and the returned

JSON data is encapsulated in the following envelope [21]:

1 {

2 "payload ": { ... },

3 "resultinfo ": [...] ,

4 "retcode ": 0

5 }

The payload field contains the requested information and is specific to each

command.

The resultinfo array contains information about the items specified in the request.

The retcode field is 0 when the command is successful. In case of error, a non-zero

value is returned with additional information [21].

2.4 New Stationary 37

The main requests used with AntServer API [21]:

• Login: URL: . . . /wms/monitor/session/login.

The aim is to send identifier and password to AntServer, to establish a

secured connection, which responds with a session token. This session token

must be used with all other requests to ensure safe transactions.

• Vehicles: URL: . . . /wms/rest/vehicles

Vehicles requests allow to insert or extract a vehicle (POST) and monitor

the status of the vehicles (GET).

• Missions: URL: . . . /wms/rest/missions

Mission requests allow to create new missions (POST), monitor current

missions (GET) and cancel missions (DELETE).

• Alarms: URL: .../wms/rest/alarms

Alarms requests allow to get the list and status of alarms in the installation

(GET).

• Devices: URL: .../wms/rest/devices

Devices request allow to get the status of devices in the installation (GET)

and to send commands to these devices (POST) [21].

38 Chapter 2. Project Description

The main parts of the workflow with AntServer API are [21]:

• Managing the connection

• Sending commands

• Monitoring the status of each component of the installation by exchange

data

• Create missions and get their status using their ID.

A schematic representation is reported in Figure 2.8

Figure 2.8: AntServer workflow

2.5 New AGV 39

2.5 New AGV

The new AGV hardware design is reported in Figure 2.9b, and can be compared

with the actual Skilled LGV shown in Figure 2.9a.

The differences between the current Skilled LGV and the new designed one

are many. Firstly, the Safety PLC has been removed and encoded in the Siemens

PLC, which will contain both safety and non-safety modules.

Secondly, a Profinet switch has been used to make everything communicate. In

Profinet Switch, each switch port is identified by a port address and therefore

everything can communicate correctly and directionally.

Profinet switches have them own General Station Description (GSD) file. The

Controller recognizes them as IO devices, and the GSD file defines

Profinet-related diagnostics information. Most of the Ethernet switches are suit-

able for Profinet [28].

This switch is needed because many devices has to communicate both with

the additional Siemens PLC and with AntLite+, for instance Laser Scanners. The

model of this Lasers is the one that is supported by BlueBotics technology and

has a Profinet and Profisafe Communication so can be used for Safety purposes.

To enable BlueBotics AntLite+, whose communication protocol is Ethenet/IP,

to exchange information with Sick Laser Scanners (Profinet and Profisafe com-

munication protocols), the PN/MF bus coupler has been added. This allows easy

and fast data exchange between a Profinet and an Ethernet/IP controller.

All other components in the block scheme are connected to the switch so

that the PLC can manage them and are: I/O modules, battery pack (can be

also managed by ANT technology to send vehicles into charging position when

needed), HMI and encoders.

Encoders connected to the switch controls different fork movements:

• Encoder up/down: positioned to control the upward and downward move-

ment of the forks;

• Encoder trasl: positioned to control the translation of the forks along the

horizontal axis, so the right/left movement;

• Encoder op/cl: positioned to control the relative opening and closing of the

forks in order to pick up and position pallets of different sizes;

• Encoder tilt: positioned to control the angle of the forks to allow picking

and positioning if the pallet is not perfectly positioned horizontally.

40 Chapter 2. Project Description

(
a
)

A
c
tu

a
l
L
G
V

d
e
sig

n
(
b
)

N
e
w

A
G
V

d
e
sig

n

2.5 New AGV 41

2.5.1 AntLite+

AntLite+ is designed to be installed in a wide range of vehicles, for this reason

it can support various architectures. In the configuration defined in this project

AntLite+ is connected to both Motor Controllers and the AGV devices, in this

way the Siemens PLC can be seen as an additional PLC that provides the Safety

system and the other tools not managed by AntLite+ [17].

The connected motor controllers (Traction and Steering drives in Figure 2.9b)

have two functions: to receive motor commands from AntLite+ and drive the

motors accordingly, and send odometry feedback information to AntLite+ as an

input to the localization algorithm. Direct communication between AntLite+ and

the motor controllers is based on the CAN bus or on EtherNet/IP.

The connected Laser scanners are essential for the localization of the AGV, as

they provide an image of the environment, and for navigation, whose outer data

are used by the ANT navigation algorithm to slow down around obstacles and to

stop before triggering safety mechanisms. This allows smooth vehicle operation

in a dynamic environment.

The laser scanners can be used to track an object and adjust the vehicle

trajectory to adapt to the object’s position. A Laser Scanner can be used to

perform various tasks at the same time. So, depending on the needs for the

application, several Laser Scanners can be used and combined.

The new Skilled AGV will be equipped with three Safety Laser Scanners near floor

height, used for localization, navigation and Safety purposes [17]. To provide

high-precision also the odometry is used: this algorithm uses the information

from the wheel encoders to calculate the vehicle’s movement. Depending on the

kinematics, AntLite+ uses wheel speed and/or steering angle [17].

AntLite+ communicates with the added PLC to provide additional function-

alities. There are two different ways to connect the PLC to AntLite+: CANopen

and EtherNet/IP. Therefore an EtherNet/IP bridge is required to use a PLC with

Profinet communication.

PLC functionality is associated with nodes in the AntLab project, as

PLC Action, and then is triggered by AntLite+. An action is a mechanism

used to trigger an operation, with the possibility to determine when the action

terminates, whether it terminated successfully or failed, and to abort an action

in progress. The commander provides one or more arguments and an execute bit

to perform the Action. The executor answers with a success or failure bit and,

optionally, a results byte [21].

42 Chapter 2. Project Description

2.5.2 Laser Scanners

The chosen model for Laser Scanners is the one that is supported by BlueBotics

technology and has a Profinet and Profisafe Communication so can be used for

Safety purposes. The only type of Scanners that have all this characteristics is

the SICK product MicroScan3 Laser Scanner that support both Profinet/Profisafe

and EtherNet/IP communication protocols.

Laser scanners have multiple purposes in an AGV:

• Localization: The laser scanner provides an image of the environment to

AntLite+ for localization of the AGV in the map.

• Navigation: The laser is used by ANT navigation algorithm for slowing

down around obstacles and for stopping before triggering safety mecha-

nisms. This is what allows smooth operation of the vehicle in a dynamic

environment.

• Safety: If the laser is safety-rated, well configured and well positioned, it

can provide safety functions of the AGV.

• Tracking: The laser scanners can be used to track an object and adjust the

vehicle trajectory to adapt to the object’s position. [17].

A Laser Scanner can be used to perform various tasks at the same time. So,

depending on the needs for the application, several laser scanners can be used

and combined.

Figure 2.10: Lasers configuration

2.5 New AGV 43

Figure 2.10 shows a sketch of the Laser Scanners positioning in the new Skilled

AGV and the area covered around the vehicle.

To guarantee optimal performance, three main aspects has to be taken into

account: maximising the Laser Scanner’s field of view, controlling the consistency

of the Scanner’s height and ensuring that the Laser Scanner is horizontal.

Laser Scanners have a wide field of view, to optimize them usage an optimal

positioning in the vehicle has been designed requiring the same brand and model

for each Laser Scanners as AntLte+ will merge scanner’s data. Laser scanners are

must have a relative height difference less than ±2cm. Laser scanner horizontality

is a critical aspect for AntLite+ as several problems can arise if they are not well

set. For instance the scanners will see the ground, or above a needed feature for

localization, or see a feature different from the one expected leading to a false

match and an inaccurate laser distance [17].

The vehicle’s mechanical stability is important to ensure that the Laser Scanners

do not vibrate or shift over time.

The chosen Sick MicroScan3 has the follow characteristics [17]:

manufacturer model Measuring range Protective range FoV

SICK microScan3 64m 9m 275◦

The measuring range is the maximum distance from which the Safety Laser

Scanner can detect an object. The protective range is the measurement of the

Protective Field cover distance, i.e. the area in which, if an object is detected,

the vehicle is forced to stop. A warning field can be defined around this area

to trigger a warning signal [18]. The composition of those fields will define the

vehicle hull shapes as reported in Chapter 3, Section 3.1.2.

Laser Scanners data are used from ANT technology, as the chosen Scanners

are Safety Scanners, to set the correct Safety Area around the vehicle according to

its position in the environment and the situation in witch the AGV is operating.

For instance the docking hull corresponds to a small area around the vehicle, in

this configuration the vehicle will not be able to travel at high speed but it will

be used in picking/placing actions.

Standstill hull is used when the vehicle is not moving, this means that if

something is present in the hull, the vehicle will not start.

The hull shape selected when the AGV is moving is defined according to the

vehicle speed and direction. If the vehicle is moving forward or backward at

low speed the hull will be the same as the standstill, but will be greater in the

direction of movement.

44 Chapter 2. Project Description

If it moves faster, the shape in the moving direction will be greater, so that it

can start to stop the vehicle when it detect objects in the hull boundary [17].

Figure 2.11: Vehicle Hulls

During normal operation, if an object is detected inside the hull, the laser

safety zone will trigger an emergency stop signal to stop the vehicle as fast as

possible to avoid collisions.

2.5 New AGV 45

2.5.3 PN/MF Coupler

The PN/MF Coupler is used to connect an EtherNet/IP network to a PROFINET

sub-network or to interconnect two PROFINET sub-networks.

It also offers deterministic data exchange between PROFINET and EtherNet/IP

controllers.

The PN/MF Coupler has two Ethernet interfaces:

• X1 for EtherNet/IP or Profinet IO

• X2 for Profinet IO

During its configuration, Siemens PLC creates two IO devices with their

respective subnets from the PN/MF coupler. [29].

The new AGV Skilled contains a Siemens PLC and the PN/MF coupler

(ProfiNet MultiField bus coupler) that is required to communicate with AntLite+.

The configuration of the PN/MF coupler in Siemens PLC starts with the installa-

tion of its GSDML file, a readable ASCII text file that contains both general and

device-specific specifications for communication (Communication Feature List),

and network configuration.

This is followed by the adding of the I/O modules, as required in the PN/MF

coupler documentation, and the definition of the PLC input structure that con-

tains all input bits and relative addresses. For instance [17]:

Input for PLC bit address

PosX 32 %ID0

PosY 32 %ID4

PosTheta 16 %IW8

Table 2.1: Examples of PLC inputs

The device has to be configured also in AntLab by set the Siemens PN/MF

as an Ethernet/IP PLC.

46 Chapter 2. Project Description

2.5.4 PLC Siemens

The Siemens PLC has a multiple role in this new AGV project. Its configuration

includes safety and non-safety modules, so that it can provide both functionalities.

Figure 2.12: PLC modules configuration

The Figure 2.12 represents the configuration defined in TIAPortal to develop

the address assignment of the input/output signals that will be called up in the

programming environment. The modules in yellow identify the safety modules

that use the PROFIsafe communication protocol.

Profinet is an open industrial Ethernet standard that offers real-time data

exchange while maintaining openness for flexible plant and machine concepts. In

addition to the standard features of each Profinet device, optional features such

as PROFIsafe provide additional functionality.

PROFIsafe extends the standard Profinet communication protocol to meet the

unique requirements of functional safety information, necessary to comply with

stringent safety standards. PROFIsafe takes care of the functional safety part of

communications. It ensures the integrity of failsafe signals transmitted between

safety devices and a safety controller meeting the relevant safety standards for

industrial networks [30].

The first three modules in the Siemens PLC configuration (Figure 2.12) are

Safety DI-24VDC, i.e. Safety Digital Input modules with 24V DC voltage and

Direct Current.

The next two, enumerate with 5 and 6 are Safety DO-24DC, which stands for

Safety Digital Output - 24V Direct Current.

The last two safety modules, enumerated with 7 and 8, are the Safety Count

2.5 New AGV 47

modules needed to count various things and evaluate the state evolution of certain

variables and are used for encoders information. The counter limits can be set

to provide information on the evolution of variables, such as a warning or error

message [31].

From the 9th to the 15th modules are light blue, which means they are non-

safety. These are the Digital Input, Digital Output and Relay modules. The relay

outputs consist of a contact that opens or closes depending on the processing of

the entered program.

2.5.4.1 Safety

Safety modules are necessary to define the Safe behaviour of Skilled AGVs, the

priority is to ensure the safety of workers and environment when AGVs are op-

erating.

The Safe behaviour of an Automated Guided Vehicle is defined in:

• UNI EN ISO 3691-4:2020 ’Industrial trucks - Safety requirements and

verification - Part 4: Driverless industrial trucks and their systems’

containing requirements for the design and production of trucks and for the

preparation of operating and load transfer zones

• UNI EN 1175:2020 ’Safety of industrial trucks - Electrical/electronic

requirements’ concerning the electrical systems of industrial trucks, includ-

ing self-driving trucks [32].

The UNI EN ISO 3691-4:2020 standard provides guidance on the safety mea-

sures that must be present on trucks to enable their safe operation, including

devices for detecting people in the path.

A very important part of the standard is the definition of the requirements for

the preparation of operating areas, including signs and markings on the ground,

perimeter guards, sensitive devices to protect openings for forklift access, and

minimum spaces for the passage of workers.

To guarantee a Safe AGV behaviour, a Safety functionality has to be com-

posed of three subfunctions:

• Detect: for instance with position sensors and light curtains

• Evaluate: for instance with fail-safe control and modular safety systems

• React: for instance with drives and motor management systems

48 Chapter 2. Project Description

Together, these subfunctions must create a safe and effective chain.

PLC Safety functions are integrated in SINAMICS, the Digital base AC and

DC drive system used to control motion, speed, and torque. Safety functions in

SINAMICS drives can be divided in four categories [33]:

• Functions to safely stop the drive

• Functions for safe brake management

• Functions for safely monitoring drive motion

• Functions for safely monitoring the position of a drive

Safety functionality is implemented principally through safety functions in

the software. Safety functions are executed by the SIMATIC Safety system in

order to bring the system to a safe state or maintain it in a safe state in case of

a dangerous event.

Safety functions are contained mainly: in the safety-related user program

(safety program), in the CPU and in the fail-safe inputs and outputs (I/O).

The I/O safety modules ensure the safe processing of field information from sen-

sors (e.g. emergency STOP pushbutton, light barriers) and actuators (e.g. for

motor control). They have all of the required hardware and software components

for safe processing.

The programming of fail-safe FBs and FCs in the safety program can be done

by creating fail-safe DBs.

Safety checks are automatically performed and additional fail-safe blocks, for er-

ror detection and fault reaction, are inserted when the safety program is compiled.

This ensures that failures and errors are detected and appropriate reactions are

triggered to maintain the system in the safe state or bring it to a safe state.

In addition to the safety program, a standard user program can be run on the

CPU. It can coexist with a safety program in an CPU because the unintentional

influencing of the safety-related data of the safety program is uncovered by the

standard user program.

Data can be exchanged between the safety program and the standard user pro-

gram in the CPU by means of bit memory or data of a standard DB or by

accessing the process image input and output [34].

2.5 New AGV 49

2.5.4.2 Non-safety

The non-safety actions of the AGV includes all the function that are not defined

as Safe and do not require ProfiSafe communication. All the AntLab PLC actions

are coded in this environment and define all the action that are external to the

AntLab programmed actions.

The Safety variables can be used in the Non-Safety programming environment

but cannot be changed or assigned a value. For instance the blinking light, that

provide visual information on the correct, warning or error status of the AGV,

is coded in the Non-Safety environment using the Safety AGV state variables

and the TON-TOFF function blocks. The use of a PLC in an AGV driven by

AntLite+ can have multiple objectives:

• Additional functionality: a PLC integrated in the vehicle allows additional

vehicle functionality to be executed from commands sent by AntLite+

• Digital IOs: AntLite+ can interact directly with a selected number of

external PLC I/Os, so as to have access to devices such as proximity sensors,

lifts, lamps and many others.

• Connection to motor controllers: if motor controllers are not directly com-

patible with AntLite+, they can be connected to the PLC. The PLC can

then ensure data exchange between AntLite+ and the motor controllers [17].

In Skilled AGVs these are directly connected to both AntLite+ and the

Siemens PLC via the Ethernet switch.

PLC actions are triggered from AntLite+, to use functionalities implemented

in the PLC. The PLC Actions are specified by their own number and arguments.

Their function is determined only by the implementation in the PLC. For exam-

ple, action 0 can be used to move the fork at a certain height and action 1 can

be used to move a conveyor at a certain speed [17].

50

Chapter 3

Project Develop

3.1 AntLab programming

3.1.1 Map definition

The environment features representation and the definition of allowed AGVs path

takes place in the AntLab design environment. This can be done in two ways:

1. By moving the vehicle around the environment in manual mode, taking

notes on the positions of the reflectors and features position and then defin-

ing the paths

2. By the import of a CAD file representing the environment’s plant and then

define the allowed AGV paths considering the plant scaling factor.

AntLite+ provides Natural Feature Localization, this means that, in most

cases, the features present in the environment are sufficient to build an accurate

map and navigate within it. In the first case, during the mapping with vehicle

manual navigation in the environment, AntLite+ will extract segments and re-

flectors.

Segments are the representation of a straight object seen by lasers (like walls and

boxes, those should be long-term static objects as they will provide tools for AGV

localization).

Reflectors, instead, represent high reflectivity locations added manually in case

there are not enough references for localization [17].

In the second case, a CAD file of the warehouse layout is imported into

AntLab designer, this is not used for localization but only for representation.

CAD file must be an SVG file or a PNG file, then lines, polylines, arcs and

51

52 Chapter 3. Project Develop

circles that were set as visible in AutoCAD are imported. The scale ratio must

be adapted to the extracted map so that the overwritten path are coherent with

warehouse dimensions.

Once the map of the environment has been defined or imported, routes and

actions must be designed.

Routes are composed of a set of nodes connected by links. Nodes represent the

vehicle passing points and are represented by a number (identification), an arrow

(orientation of the vehicle when snapped on the node) and a radius (how sharp

the trajectory curvature is).

The node radius parameter, that describes the curve radius of the line generated

on the node, can be set as Manual or Automatic.

An AGV Action can be assigned to nodes and can start on transit, on site or

on departure.

For example, if the AGV heads to a node whose assigned action is to pick up a

pallet at a height of 2 meters, it is convenient to start lifting the forks on transit.

A sequence of actions can then be assigned to the node:

• on transit action: impose velocity reduction

• on transit action: when the AGV is, for instance, 3m from the node, start

to raise the forks

• on site action: check on the correct forks height, if it is not stop and wait

for it, in case send and error signal

• on site action: reach the node position to pick up the pallet, wait for a

signal from the presence sensor

• on site action: once the pallet has been pick, go back and remove it from

the shelf

• on transit action: command the forks to reach the “travelling forks height”

• on transit action: remove the velocity limits. [21].

The AGV path following is performed by considering the vehicle center as

reference point, both in curvature and straight line trajectory sections.

In following a path, AntLite+ uses two controllers, these are tuned to ensure

that the vehicle follows its predefined path as well as possible and in case of errors

will make adjustments in the motors commands to return to the path.

3.1 AntLab programming 53

Distance controller is used to minimize the distance between the vehicle position

and the path, its value will mostly affect how the vehicle performs on straight

lines.

Heading controller is used to minimize the difference between the vehicle heading

and the vehicle path direction (tangential to the closest path point in a curve)

and will affect how the vehicle performs in curves and while exiting a curve.

Non-omnidirectional vehicle is assumed to be able to drive forward and back-

ward along a link following the direction in which it is oriented. If it is too far

from the required orientation it will send and error massage of the type “Too far

from the path”.

The map files created in AntLab is sent to each vehicle that operate in the

environment to have consistent behaviour [21].

3.1.2 Vehicle definition and calibration

A bootfile exists for each type of vehicle and it contains both common and in-

dividual calibration parameters. When the vehicle is connected to the AntLab

project, an automatic check for parameter consistency is performed [21].

One of the main aspects of vehicle calibration is Laser Scanners calibration.

The chosen laser model has to be insert and then Lasers position, roll and pan

angle are automatically calculated during the calibration process. Each laser

scanner has it own IP address so that data can be classified according to its

value.

In case the laser scanner detect unwanted points of the vehicle, presence of red

points inside the vehicle shape in AntLab, redefine the laser scanner properties

angle interval to discard those values.

The laser scanner data are necessary for AGV navigation in the environment

and a set of safety hull shapes is defined to use them rapidly. Each of these

hulls corresponds to a combination of laser scanners safety fields and is used for

a particular set of situation, as define in Chapter 2, Section 2.5.2.

The main purpose of the hull is to avoid AGV collisions. Hulls shape definition

can be done in an Excel file and then imported in AntLab [17].

AntLite can work in Obstacle Avoidance mode, this will allow the vehicle to

go outside of the predefined path to avoid an obstacle while staying as close as

possible to the path [17].

54 Chapter 3. Project Develop

3.2 Programming Ignition

The communication with the AntServer is implemented with REST API, com-

posed by URL and JSON, as described in Chapter 2, Section 2.4.3.1.

Ignition’s JSON handling requires an external Python library, which must be

imported in order to use the defined functions.

Once this is done, it is possible to import the two methods request and

json in the programming environment. Those contains the functions needed to

communicate with AntServer and from this with AntLab and AntLite+.

3.2.1 JSON

JSON (JavaScript Object Notation) is a standard text-based format for

representing structured data based on JavaScript object syntax. It is completely

language independent and is commonly used for transmitting data.

JSON exists as a string and this format is useful for transmitting data over

a network, but it must be converted into a native JavaScript object to access the

data. JavaScript provides a global JSON object that has methods available for

converting between the two formats.

JSON string, similar to JavaScript object literal format, can be stored in a file

that’s similar to text file with .json extension. So JSON include the same basic

data types as JavaScript object: strings, numbers, arrays, booleans, and other

object literals. This allows a hierarchy structuring of data.

An object is an unordered set of name/value pairs, it begins with ”{” left

brace and ends with ”}” right brace. Each name is followed by ”:” colon and the

name/value pairs are separated by ”,” comma.

To access the data inside, the dot/bracket notation is necessary and to access

data further down the hierarchy, a chain of the required property names and array

indexes together is necessary.

A JSON file example is reported in Figure 3.2.2

3.2.2 Ant Server communication

As reported in Chapter 2, Section 2.4.3.1 BlueBotics AntServer communication is

done with JSON. Once the Ignition setup has been update with the new required

libraries for JSON understanding and managing, the information contained in

the required JSON response can be understand.

3.2 Programming Ignition 55

AntServer’s JSON messages are as numerous as AntServer has functionali-

ties. To ensure fast message conversion and a readable programming structure,

an object-oriented programming structure was chosen to contain and classify all

necessary methods.

In Ignition coding environment the main developed objects are: Server, Mis-

sion, Vehicle, Map and BlueBotics object that calls all the others and provide

AntServer communication.

The BlueBotics object contains the main methods to allow the proper manage

of the new Skilled AGV technology.

The applied HTTP methods to relate with AntServer are:

• POST: Required the URL to send the request to AntServer with the JSON

file with the required parameters.

• GET: Required URL for send the request and then receive the AntServer

response. As it is only a requirement of information without modification,

the JSON file with parameters is not necessary.

• DELETE: Requires just the API URL to communicate with AntServer

In each method case the base idea is the same and it is structured as:

1. Import the request libraries for handle JSON file format.

2. Try/except block to verify if the Login has been successful. This is done by

the verification of the sessiontoken length, returned from AntServer Login.

3. Composition of the api url string with the acquired sessiontoken.

4. Composition of the string that will compose the JSON structure with the

required parameters (if necessary) and its conversion from string to .json

format.

5. The sending of the request to AntServer with the proper HTTP method.

The response, if the communication holds correctly, is saved in a proper

variable to then extract the required information.

The BlueBotics object has all the methods required to allows the message

exchanging with AntServer.

Follows the definition of the BlueBotics object and a method example for

each of the applied HTTP method.

56 Chapter 3. Project Develop

1 import requests

2 import json

In the first part of the program, the import of the two methods necessary for

reading JSON and send requests take place.

1 class BlueBotics:

2 def __init__(self ,ip = "localhost",port = "8081",user="admin",

psw="123456"):

3 self.ip = ip

4 self.port = port

5 self.user = user

6 self.psw = psw

Then follows the definition of the BlueBotics object, whose constructor section

contains the variables: IP, port (to complete the IP addressing), username and

password. Used to enable the communication with AntServer and then with the

AGV.

The first method of the BlueBotics object is the Login and it will return a ses-

sion token that is required by all other methods to communicate with AntServer.

1 def Login(self):

2 #INPUT

3 #[STRING] username: Name of a user as defined in the system

4 #[STRING] pwd: Password

5 #OUTPUT

6 #[INT] err: Error status

7 #[STRING] sessiontoken: token received from ANTServer

8 #[STRING] username: Name of a user as defined in the system

In the first part of the method the complete description of the involved and

necessary parameters is done to make the code section easily readable and un-

derstandable.

1 api_url = "http ://" + self.ip + ":" + self.port + "/wms/

monitor/session/login?username=" + self.user + "&pwd=" + self.

psw

The Login method requires username and password to access AntServer, and

those are defined in the BlueBotics object constructor as self.user, self.psw.

In the same section are reported the other variables required to build the api url

to communicate with AntServer, like self.ip and self.port. All those variables

can can have a default value, reported in AntServer manual, to access the device.

3.2 Programming Ignition 57

1 response = requests.get(api_url)

2 jsonfile = response.json()

Once the api url, an address that allows to access an API and its fea-

tures, is defined the GET request is sent to AntServer with the method re-

quests.get(api url). AntServer response will be contained in a Response object

called response.

The method response.json() returns a JSON object of the result, if the

result was written in JSON format, otherwise it opens a PopUp error window.

1 self.retcode = (jsonfile["retcode"])

2 if self.retcode == 0:

3 self.sessiontoken = (jsonfile["payload"]["sessiontoken"]).

encode ()

4 self.username = (jsonfile["payload"]["username"]).encode ()

5 else:

6 system.perspective.openPopup(’1’, ’Error’, params = {’

textLabel ’:’retcode = ’ + self.retcode + ’!’},showCloseIcon =

False)

7

Once the jsonfile variable has been created the access to all the parameters

contained in the JSON format are available using the square brackets as in dic-

tionaries programming structures.

In this way is easy to verify the retcode value: if it is zero, this means that com-

munication with AntServer has been successful, otherwise an error has occurred

and it can be identified from the retcode value.

If the communication holds correctly, then the session token can be acquired

as it is contained in the payload in jsonfile.

The encode() method returns an encoded version of the given string. This is

necessary cause the parameters in the jsonfile are encoded in the Unicode format

that add format characters to the string. In the same way the username is saved

in the self.username constructor variable. If the retcode is different from zero

a PopUp window is displayed with an error message.

58 Chapter 3. Project Develop

An example of REST DELETE method is the CancelOneMission method

contained in the BlueBlotics object. It allows to delete a specific mission in the

mission scheduler.

1 def CancelOneMission(self ,missionID):

2

3 #INPUT

4 #[INT] missionID: Id of the mission

5

6 #OUTPUT

7 #[STRING] missionid: Mission id.

8 #[BOOL] cancelled: true , The mission is cancelled.

9 #false , The mission is not cancelled.

The CancelOneMission method requires as input variable the missionID

to identify the mission to be deleted.

As output it returns the ID of the deleted mission and the Boolean variable to

check if the cancellation happen correctly or not.

1 try:

2 if len(self.sessiontoken) <=0:

3 self.Login ()

4 except:

5 self.Login()

In the first part of the program the try/except block verifies if the Login

happen by checking the lenght of the sessiontoken variable. If it is zero then

the Login is performed.

1 api_url = "http ://" + self.ip + ":" + self.port + "/wms/rest/

missions/" + str(missionID) + "?& sessiontoken=" + self.

sessiontoken

2 response = requests.delete(api_url)

3 jsonfile = response.json()

Then the definition of the api url is done using the ip, port and session token

defined in the BlueBotics object constructor and the missionID obtained as input

to the method. The request to AntServer is performed with requests.delete(api url)

as it is an HTTP DELETE method and it do not required a JSON file with ad-

ditional parameters. The only required parameter is the missionID that is insert

in the api url.

3.2 Programming Ignition 59

As in the previous method the responce.json returns the JSON object from

the JSON file so that the response parameters information are accessible.

1 self.retcode = (jsonfile["retcode"])

2 if self.retcode == 0:

3 missID = jsonfile["payload"]["missionid"]. encode ()

4 cancelled = jsonfile["payload"]["cancelled"]

5 else:

6 system.perspective.openPopup(’1’, ’Error’, params = {’

textLabel ’:’retcode = ’ + self.retcode + ’!’},showCloseIcon =

False)

7

8 return missID ,cancelled

In the last part of the method the retcode is verified to be zero, meaning that

the communication and the function holds. If this is true missID and cancelled

response values are extracted from the jsonfile to be returned as output. Those

represent the deleted mission ID and a boolean variable to check if the cancella-

tion happened correctly.

The CreateMission method is an example of HTTP POST method.

This initiates the creation of a CreateMission message from the warehouse man-

agement software, which is then sent to AntServer to communicate with the

vehicle and successfully complete the task.

The scheduler will select the best vehicle for the required action.

1 def CreateMission(self ,missType ,fromNode ,toNode ,priority=1,

deadline="",dispatchtime="",vehicle="",cardinality =1,payload="

Something"):

2 #INPUT

3 #[INT] missiontype (mand.):

4 #0: Transport from node to station.

5 #1: Move to station.

6 #2: Waiting lane.

7 #7: Transport to node.

8 #8: Move to node.

9 #9: Transport from station to station.

10 #10: Move a specific vehicle to a node.

11 #12: Move to a loop

12 #[STRING] fromnode: Name of the pickup node: <Node > or

station (depending on the type of mission)

13 #[STRING] tonode: Name of the delivery node or station

60 Chapter 3. Project Develop

(depending on the type of mission)

14 #[INT] cardinality: number of missions to create

15 #[INT / STRING] priority (Another number or text is

not interpreted. Mission priority is set to Medium default

value):

16 #0 or Low ,

17 #1 or Medium ,

18 #2 or High

19 #[TIME] deadline (opt.): The absolute date from which the

mission can be assigned to a vehicle

20 #[TIME] dispatchtime (opt.): The absolute date when the

mission is started

21 #[STRING] vehicle: Name of the vehicle that you want to

assign

22 #[STRING] payload: Name of the payload

23 #OUTPUT

24 #[STRING ARRAY] rejectedmissions: Array of strings

containing ids of rejected missions

25 #[STRING ARRAY] pendingmissions: Array of strings

containing ids of pending missions

26 #[STRING ARRAY] acceptedmissions: Array of strings

containing ids of accepted mission.

The CreateMission method requires: the mission type, the departure and

arrival node and other variables whose value can be assigned explicitly or by

default [21].

The missionType description table is reported in Table 3.1. The value N/A

means that the starting point of the vehicle is its real-time position when it

receives the mission.

ID Description fromnode tonode

0 From a source node to a target station Node name Station name

1 Move to a station N/A Station name

2 Waiting lane N/A Station name

7 From a source node to a target node Node name Node name

8 Move to a node N/A Node name

9 From source station to target station Station name Station name

10 Move a specific vehicle to a node N/A Node name

12 Move to a loop N/A Loop name

Table 3.1: MissionTypes

3.2 Programming Ignition 61

The Response from AntServer returns three different arrays containing the

IDs of the missions created, which have the respective characteristic:

• Rejected: missions that cannot be executed by AntServer. For example no

route found between the source node and the destination

• Pending: missions that have been received by AntServer but that have not

been accepted or rejected yet

• Accepted: missions that AntServer is going to execute

As far as the missions is concerned, not all fields are mandatory depending

on mission type and mission scheduler.

Entering in code details:

1 try:

2 if len(self.sessiontoken) <=0:

3 self.Login ()

4 except:

5 self.Login ()

The code starts with a try/except block to verify if the Login happened, other-

wise it is performed in the except part of the code.

1 api_url = "http ://" + self.ip + ":" + self.port + "/wms/rest/

missions ?& sessiontoken=" + self.sessiontoken

2 myobj = ’{" missionrequest ":’

3 myobj = myobj + ’{" requestor ": "’ + self.username + ’",’

4 myobj = myobj + ’"missiontype ": "’ + str(missType) + ’",’

5 myobj = myobj + ’"fromnode ": "’ + str(fromNode) + ’",’

6 myobj = myobj + ’"tonode ": "’ + str(toNode) + ’",’

7 myobj = myobj + ’"cardinality ": "’ + str(cardinality) + ’",’

8 myobj = myobj + ’"priority ": "’ + str(priority) + ’",’

9 if deadline != "":

10 myobj = myobj + ’"deadline ": "’ + str(deadline) + ’",’

11 if dispatchtime != "":

12 myobj = myobj + ’"dispatchtime ": "’ + str(dispatchtime) + ’

",’

13 myobj = myobj + ’"parameters ": {’

14 myobj = myobj + ’"value ": {’

15 if vehicle != "":

16 myobj = myobj + ’"vehicle ": "’ + str(vehicle) + ’",’

62 Chapter 3. Project Develop

17 myobj = myobj + ’"payload ": "’ + str(payload) + ’"},’

18 myobj = myobj + ’"desc": "Mission extension",’

19 myobj = myobj + ’"type": "org.json.JSONObject",’

20 myobj = myobj + ’"name": "parameters "}’

21 myobj = myobj + ’}}’

22

23 myobj = json.loads(myobj)

Follows the definition of the required api url to communicate with AntServer,

and the definition of the JSON parameters file required for the mission creation.

Firstly the string variable myobj is composed with the parameters structuring

required to develop a correct AntServer communication.

The json.loads() method accepts as input a valid string and converts it to a

JSON file.

1 response = requests.post(api_url , json = myobj)

2 jsonfile = response.json()

The request is sent to the AntServer with the

requests.post(api url, json = myobj) method that requires the composed

api url and the JSON file with the required parameters.

An example of AntServer CreateMission Request and Response is reported.

Request example: Create a mission rule

Method: POST;

URL: http://localhost:8081/wms/rest/..

../missions?&sessiontoken=uAzDPqMRPfEhg05X3ajXsw%3D%3D

1 {

2 "missionrequest ": {

3 "requestor ": "Requestor -Username",

4 "missiontype ": "0",

5 "fromnode ": "S1-Pick",

6 "tonode ": "Station 1",

7 "cardinality ": "1",

8 "priority ": 2,

9 "deadline ": "2015 -02 -25 T12 :27:41.043Z",

10 "dispatchtime ": "2015 -02 -25 T12 :27:41.043Z",

11 "parameters ": {

12 "value": {

13 "payload ": "Something"

14 "value": {

15 "payload ": "Something",

16 "maxwaitingvehicles ": "3",

http://localhost:8081/wms/rest/..
../missions?&sessiontoken=uAzDPqMRPfEhg05X3ajXsw%3D%3D

3.2 Programming Ignition 63

17 "maxduration ": "3"

18 },

19 "desc": "Mission extension",

20 "type": "org.json.JSONObject",

21 "name": "parameters"

22 }

23 }

24 }

25 }

This is an example of the JSON file sent to AntServer to create a new mission.

The server response structure is, according to BlueBotics documentation:

Response example:

1 {

2 "payload ": {

3 "rejectedmissions ": [],

4 "pendingmissions ": [

5 "1"

6],

7 "acceptedmissions ": []

8 },

9 "retcode ": 0

10 }

Then the response, that can be read with the response.json() method, is

analysed to verify the correctness of the mission creation:

1 self.retcode = (jsonfile["retcode"])

2 if self.retcode == 0:

3 answerMissJSON = (jsonfile["payload"])

4 missID = MissionID(answerMissJSON)

5 else:

6 system.perspective.openPopup(’1’, ’Error’, params = {’

textLabel ’:’retcode = ’ + self.retcode + ’!’},showCloseIcon =

False)

7

8 return missID

The variable self.retcode is verified to be zero to check the correctness of the

communication with AntServer. Therefore, an if/else block structure is added

and, in case of an error, the error message is displayed with a PopUp window in

the HMI.

64 Chapter 3. Project Develop

The variable missID is a MissionID object with the chronology of the

missions [21].

1 class MissionID:

2 def __init__(self ,answerMissJSON):

3 rejMiss = answerMissJSON["rejectedmissions"]

4 penMiss = answerMissJSON["pendingmissions"]

5 acpMiss = answerMissJSON["acceptedmissions"]

6

7 self.rejectedmissions = []

8 self.pendingmissions = []

9 self.acceptedmissions = []

10

11 for rejected in rejMiss:

12 self.rejectedmissions.append(rejected.encode ())

13 for pending in penMiss:

14 self.pendingmissions.append(pending.encode ())

15 for accepted in acpMiss:

16 self.acceptedmissions.append(accepted.encode ())

The MissionID(answerMissJSON) class is the one that receive as input

the payload section of the AntServer responce and the MissionID object that

has in it all the mission rejected, pending and accepted in order.

In case missions are not created or are rejected, a reason will be given in the reply

with the retcode value.

This structure allows to easily identify if the last sended mission has been

accepted, rejected or insert with the pending ones.

3.2 Programming Ignition 65

3.2.3 Perspective HMI programming

HMI program definition was done in Perspective, a subsection of Ignition pro-

gramming that allows the HMI to be visualised in a web page and then in screens

of different sizes like PCs, tablets and smartphones.

This programming section defines the exchange of information and tasks between

the operator and the overall AGVs system.

The web page sections report the following windows:

• Alarm Section: Returns a table with the active Alarms and a table with

them historical overview. The Figure 3.1 report an example of error message

due to the non-connection of the Device. The GetAllAlarms method of

the BlueBotics object allows to get all alarms information, the code can be

found in Appendix A.

– eventname: Name of the alarm

– sourceid: Name of the event source

– sourcetype: Type of the event source

– state: State of the alarm Active, Acknowledged, Closed or Deleted

– eventcount: Number of times the alarm occurred

– firsteventat and lasteventat : Date of the first and last occurrence

– cleardat: Date the alarm was cleared by the operator

– timestamp: Date of the last update

Figure 3.1: HMI logs table example

66 Chapter 3. Project Develop

• Mission Section: Returns a table of the active missions and the possibility

to delete the selected one (GetOneMissions() method) or all missions

(GetAllMissions() and GetAllMissionsTable() methods that provide

the GET method to receive information from AntServer and the creation of

the HMI table). The example in Figure 3.2 shows the mission table where

the main parameters for each mission are reported.

Figure 3.2: HMI mission table example

– MissionID: Unique ID of the mission

– NavigationState: State of the mission so, for instance, if it has been

accepted or rejected

– SchedulerState: Reason why the mission is not assigned to a vehicle,

0 if the assignment happened correctly

– MissionType: is the type of the required mission and is the one defined

in the POST method CreateMission JSON file (Table 3.1).

– TransportState: State of the transport, for instance if it is transported,

selected or terminated

– StateInfo: Vehicle state error, for instance if the station or the desti-

nation are unknown

– Priority: Urgency level of the mission

3.2 Programming Ignition 67

– AssignedTo: Name of the assigned vehicle

– isLoaded: If the payload is loaded on the assigned vehicle

– FromNode: Name of the pickup node: ¡Station.Node¿

– State: Mission state, for instance if it was accepted, rejected or can-

celled

– ToNode: Name of the delivery node: ¡Station.Node¿

Details of number’s value information is reported in the respective method

comment section in Appendix A.

The Figure 3.2 shows just three missions as example, in real installation

there will be a long set of missions to be gradually send and complete.

• Vehicle Section: Returns a table with the main AGV’s information. In this

section it is also possible to insert/remove a vehicle from the ANT view

using the two icons on the top left of the HMI window.

The parameters are asked to AntServer with the defined methods

GetAllVehicle(), GetOneVehicle() that returns vehicle’s information.

– name: Name of the vehicle

– isloaded: define if the payload is loaded on the vehicle or not

– missionid: The ID of the assigned mission

– operatingState: returns state of the vehicle, for instance if it is ready,

if a mission has been assigned or not

– currentnode: ID of the node in which the vehicle is (or the last crossed

one)

– connectionOK: defines if the connection between the server and the

vehicle is established or not

– battInfoPerc: Vehicle battery charge percentage

– trafficAvailable: Defines if the vehicle is available or not for mission

The shown parameters are just a sub-set of the parameters that the

GetAllVehicles() method returns. The highlight parameters are those

that are more important to be visualized from operators for control the

AGVs. The example Figure 3.3 shows just two AGVs but in real installation

there will be many vehicles operating simultaneously.

68 Chapter 3. Project Develop

Figure 3.3: HMI vehicles table example

• Map Section: Returns a representation of the AntLab environment with

the evolution of the vehicles position.

To receive all the map information from AntServer the BlueBotics object

method GetMap() is used. This command provides all the available in-

formation about maps like node position, links, feature position and virtual

walls.

This information is used to draw the environment with the MapRenderer

object, which uses the defined object to draw nodes, links, vehicles to cre-

ate a virtual scheme of the environment. As can be seen in Figure 3.4 in

the upper section the commands to zooming in and translate in the overall

map can be found. The drawed vehicles position, as it is received from

AntServer, it is almost real-time updated.

3.2 Programming Ignition 69

Figure 3.4: HMI map view example

Entering in the details of the Map Section program.

The basic principle of Ignition programming is the cyclic request to the vehicle

and server for status and mission information. In this way, alarms can be acquired

quickly (the request time is shorter) and other basic information is requested over

a longer period of time, based on information importance.

The Map drawing require all the information about the allowed path and the

Actions to be performed by the AGV at certain nodes. To this end, the objects

that allow drawing have been defined, and those are: Line, Arrow, Text, Circle,

Vehicle, Node and MapRenderer.

70 Chapter 3. Project Develop

The GetMap method is an HTTP-GET method and is used to ask and then

receive all the available information about the map like node position, links, fea-

ture position and virtual walls as reported in the first commented section of the

method code.

1 def GetMap(self ,levelID):

2 #INPUT

3 #[INT] levelID: Map id.

4 #OUTPUT

5 #[STRING] alias: Map name.

6 #[STRING] description: Map description.

7 #[INT] id: Map id.

8 #[layers: Always two layers: one for localization information

, the other for navigation.

9 #[0]: Localization information

10 #defaultstyleid:

11 #[STRING] lines: localization.

12 #[STRING] points: localization.

13 #[STRING] desc: Segments and reflectors.

14 #lines: Array of localization segments.

15 #[INT ARRAY] coord: Localization segments [x1,y1,x2,y2]

16 #[STRING] name: localization.

17 #points: Array of reflectors

18 #[FLOAT ARRAY] coord: Reflector position and covariance

[x,y,cov].

19 #[1] Navigation information

20 #defaultstyleid

21 #[STRING] lines: navigation

22 #[STRING] points: navigation

23 #[STRING] desc: Nodes , links and virtual walls

24 #lines: Array of localization segments.

25 #[INT ARRAY] coord: Navigation segments [x1,y1,x2,y2].

26 #[STRING] styleid: Ivirtual -wall , The navigation

segment is a virtual wall.

27 #Empty field , It is a simple navigation node link.

28 #[STRING] name: navigation

29 #symbols: Array of navigation node position.

30 #[FLOAT ARRAY] coord: Navigation node position [x,y,0].

31 #[STRING] name: Navigation node name

32 #[INT] level: Level id.

33 #origin

34 #[FLOAT ARRAY] offset: [x,y] offset.

35 #[FLOAT] orientation: Map orientation.

3.2 Programming Ignition 71

36 #[STRING] group: Level id.

37 #[FLOAT ARRAY] offset: [x,y] offset.

38 #[FLOAT] orientation: Map orientation.

The code structure follows the general structure defined in the Section 3.2.2

and, as it is a GET method, is not required the JSON parameters file.

1 try:

2 if len(self.sessiontoken) <=0:

3 self.Login ()

4 except:

5 self.Login ()

As in the other method, in the first part the SessionToken length is verified

to check if the Login happened properly, otherwise it is performed.

1 api_url = "http ://" + self.ip + ":" + self.port + "/wms/rest/

maps/level/" + str(levelID) + "/data?& sessiontoken=" + self.

sessiontoken

2 response = requests.get(api_url)

3 jsonfile = response.json()

The api url is defined to allow the AntServer communication and the re-

sponse is saved in the jsonfile variable.

1 self.retcode = (jsonfile["retcode"])

2 if self.retcode == 0:

3 fileJSON = jsonfile["payload"]["data"]

4 Map = []

5 for data in fileJSON:

6 CreateMap = MapDraw.MapRenderer(data , "black", 1, 8, "red

", "black")

7 pathLayout = "C:\Users \...\ Desktop\layout.svg"

8 system.file.writeFile(pathLayout , CreateMap.render ())

9 else:

10 system.perspective.openPopup(’1’, ’Error’, params = {’

textLabel ’:’retcode = ’ + self.retcode + ’!’},showCloseIcon =

False)

11 return

After the retcode zero value verification data contained in the payload, one

of the parameters in the JSON file, are send as input to the MapRenderer object

contained in MapDraw.

MapRenderer object analyze data and define the .svg file containing the infor-

72 Chapter 3. Project Develop

mation to draw the environment. The variables needed to define the object are:

the .json file of the map information, line color, line width value, node diameter,

node color and text color.

CreateMap is a MapRenderer object and the application of theCreateMap.render()

method will define the string that will contain all the information required to built

the svg file of the image. The object code definition can be found in Appendix

A.

The svg file will contain information about the coordinates of the lines ((x, y)

coordinates of two boundary points) and points, segments and reflectors, the ori-

entation in each segment, the node ID and the node name (to identify the chosen

action in special nodes) and the vehicles position.

The compilation of all this information allows the dynamic visualization of the

environment with the AGVs in operation and the possibility of zooming and

translating in the map.

3.3 Programming Siemens PLC 73

3.3 Programming Siemens PLC

3.3.1 Safety

As reported in Chapter 2, Section 2.5.4.1 the Safety program uses the Safety

block functions. These are easily recognisable by the yellow filling in the names

of functions and variables.

The Laser Scanners outer data managing is one of the main aspects of the AGV’s

Safe behaviour.

Figure 3.5: LaserScanner Function Block

74 Chapter 3. Project Develop

The Figure 3.5 report the LaserScanner block function that set, in function

of AGV velocity and bit information from the PLC, the safety area to be used.

It is a Function Block (FB) and then, whenever it is called, it creates a DB in-

stance data block to store variables value. The input to this Function Block are

the AGV direction, the RangeSpeeds (defined in 4 bits) and then the Merker vari-

ables (bits for the temporally store of variables or intermediates calculus results)

that encode information received from the PLC to force specific safety areas in

special sections of the environment.

The outer data are: the respective laser field for the chosen safety area and the

state of the laser scanners like the reset request and if they are in error. The

ScannerOK is a boolean control variable that is true if the Scanner didn’t see

object, so when the space around is free from obstacles.

The #LaserError is true if the Laser is in error and this can happen if the

configuration is missing or if the safety area process fails and two areas are send

to the Laser Scanner (only one is allowed). Laser Scanners must always have a

one and only active safety area.

The other three variables, as many as Laser Scanners, are the Reset Request of

each laser to enable correct operation from reset onwards.

The LaserScanner block function is composed of two block functions re-

ported in Figure 3.6 and those are: MonitoringCaseFw and Monitoring-

CaseBw. This functions received as inputs the LaserScanner function inputs

and send as output the bit composition that will activate the respective Safety

Area for vehicle front and back.

The structure inside the two functions is almost identical, they just differs in

variables combination to identify the proper area in those conditions.

The input variable are the #Direction, the #RangeSpeed (defined in 4

Bits) and the #BitArea FW and BW (each defined in 3 bits) from the PLC.

The comparison between the input values allows the definition of a variable for

each of the 8 bits in vehicle’s Forward and Backward movement.

3.3 Programming Siemens PLC 75

Figure 3.6: LaserScanner-Monitoring case

Figure 3.7 and in Figure 3.8 shows the code section to define the outer bit

variables. Based on#RangeSpeedBit, #Direction and#BitAreas variables

the different motion cases are identified.

The first step in Network 1 report the identification of #RangeSpeedBit and,

76 Chapter 3. Project Develop

if one of the first two bits has value one and the other is zero the variable

#Speed1or2 is initialize ad set to True. This initial step allows to reduce the

number of code lines.

Analysing the Network 2, that report theCase1 identification, if the#Speed1or2

is true; #RangeSpeedBit2,#RangeSpeedBit3 are both zeros, and#BitAr-

easFw1, #BitAreasFw2, #BitAreasFw3 are all zeros then the outer value

is #CaseFw1 set as out and then Case1 is identified. The #Case variables

are the identified Area based on bit composition. All those cases correspond to

an area, there will be up to 14/16 different areas.

Figure 3.7: CaseFW definiton

3.3 Programming Siemens PLC 77

Similar reasoning can be used to understand other networks:

• #CaseFw2: if #Speed1or2, #BitAreasFw1 are 1 and the others

(#RangeSpeedBit2, #RangeSpeedBit3, #BitAreasFw2 and

#BitAreasFw3) are zero.

• #CaseFw3: if both #RangeSpeedBit0 and #RangeSpeedBit1 are 1

and others (#RangeSpeedBit2, #RangeSpeedBit3, #BitAreasFw1,

#BitAreasFw2) are zero,

• #CaseFw4: if #RangeSpeedBit0, #RangeSpeedBit1 and #BitAr-

easFw1 are 1 and others (#RangeSpeedBit2, #RangeSpeedBit3,

#BitAreasFw2 and #BitAreasFw3) are zero.

Other cases are built in a similar way, at the end of bits value comparison

there will be the comparison of all those cases to end up with a value for each

#BitN FW value, with N ranging in [0,7].

As well #BitN BW value, with N ranging in [0,7] are defined in Monitoring-

CaseBW Function Block.

The figure 3.8 report two examples in value assignment, respectively to#Bit0 FW

and #Bit1 FW.

This is due to the fact that all the possible area cases (for both backward and

forward) has to be defined in 8 bits for forward and 8 for backward.

The first assigned value #Bit0 FW is set to one if one of those reported cases

hold, so if #CaseFw1, #CaseFw3, #CaseFw5, #CaseFw7, #CaseFw9,

#CaseFw11 or #CaseFw13 holds.

The second one instead when one of #CaseFw2, #CaseFw3, #CaseFw6,

#CaseFw7, #CaseFw10, #CaseFw11 or #CaseFw14 holds.

78 Chapter 3. Project Develop

Figure 3.8: Bit FW definition

The #BitN values are then assigned to the LaserScenners varibales

Q LaserScanner.SetMonitorCaseNoTable N. Those variable are part of the

Laser structure so its a direct assignment of laser activation. In a way similar all

the otherBit FW andBit BW are filled and then the Laser Scanner Monitoring

areas are assigned as reported in Figure 3.9.

3.3 Programming Siemens PLC 79

Figure 3.9: Left Laser Scanner areas setting

80 Chapter 3. Project Develop

3.3.2 Non Safety

The Non Safety functionalities defined in Siemens PLC are those not related to a

Safe behaviour of the Skilled AGV. Those can use Safety variables (identified by

the yellow color) but not modified them value, as this is allowed only from safety

variables and by using safety function blocks.

The Figure 3.10 report an example of Non-Safe behaviour definition. The en-

able power variable is defined from the Safety variables about power button

pushing and laser scanner status. In particular, a temporal variable is defined as

#t temp1 and its value is one if i power pushbutt is one, meaning that the

power on button has been pressed, and one of the two case holds:

• The three laser Scanner status,

I LaserScanner.StatusSafeCutOffPath1, for the Right, Left and Back

Laser are true, and so the Laser scanner field of view in the starting are

case is free from obstacles. Those values are False when the Laser Scanner

detect obstacles in the Protective field (the red one in laser scanners field

image in Chapter 1 Section 1.2.5.1)

• The Main Safety RTG1 DB.BypassOn is true, meaning that the vari-

able BypassOn inside the DB MainSafety is true and then the manual

choice to turn it on, despite of some error, is done. The BypassOn is

the variable associated to the operator button in the joystick for move the

vehicle with small velocity in manual mode without safety area.

Figure 3.10: Enable power definition

3.3 Programming Siemens PLC 81

This variable value (#t temp1)is the used in o enable power value assign-

ment. The first condition requires that one of the two variable, o enable power

or #t temp1, is true and this value is true for 2 seconds

(START POWER DELAY).

This structuring allows the enable power variable to keep the value 1 once it is

set, cause for sure the o enable power will be one for two second once it is set

as one.

The other requests that has to be true are:

• ANT OK so the ANT exchanging information holds properly

• Main Safety RTG1 DB.Safety Man Reset that represent the safety

condition for set the AGV in manual mode

• m enable power represent the monitoring on safety devices like Lasers,

chain, bypass button and encoders

• NOT DB.EDM Error Brake so the brakes are working properly

then o enable power is true so the power is sent to all the drives, otherwise

is false and the vehicle power-on is not allowed.

82 Chapter 3. Project Develop

Figure 3.11: Red and Green light blinking cases

Figure 3.11 defines the green and red light blinking or not based on the state

of the vehicle. This, clearly, depends also on the o enalbe power value. The

#StartUpTestLamp is a boolean variable that is true in the time interval that

follows the power on of the vehicle.

The red lamp will blink in case of Start up test or in case the o enalbe power

is false, so when the vehicle, for some reason, has the power disabled.

The green lamp will be a static light in case of StartUp Test and in case the

vehicle is not Lost, the AGV is insert in the system

(Exchange Ignition Plc.To PLC.agv in system is the variable that is set

to true when the vehicle is insert and is contained in the DB encharged in the

exchange between PLC and Ignition) and it is not in ManualMode. When all

this condition holds also the #command green variable is initialized ad true.

This variable is used for the green light blinking, if the vehicle is not lost and

3.3 Programming Siemens PLC 83

the #command green is false (meaning that the vehicle is not instert or is in

manual mode) to provide the visual information of no-lost vehicle.

Figure 3.12: Set Manual request

84 Chapter 3. Project Develop

Figure 3.12 report the code section to set the state man request so the

raising of the request of manual setting. The outer coil with the S inside is the

SET variable and, when it is activated, the associated bit will take value 1. In

the case, the state man request will be set to one in case the:

• HMI man request and NOT nMoving: The manual request is received

from the HMI (HMI man request is set to one) and the vehicle is not

moving

• i automaticSel and NOT nManualMode: The Safety automaticSelec-

tor is not true and the vehcile is not already in manual mode, so the raising

of the request is performed

• eLost: The vehicle is Lost

• eEncoderSpeedTooHigh: The speed in the encoder is too high

• ePlcComInterrupted: The PLC communication has been interrupted

• eTooFarFromPath: The AGV is ”too far from the path”

• eUndefinedShape: No shape defined for the requested safety case

• eMotionMismatch: The vehicle does not correctly follow its motion com-

mand

• eStoppedTopologicVerification: Important localization features are not

visible

• NOT ANT OK: error in agv insertion

3.3 Programming Siemens PLC 85

Figure 3.13: Set and Reset Insertion vehicle request

Figure 3.13 represent the code section that provide the managing of vehicle ex-

traction and insert request. In the firs row the state man request is reset to zero

in case the state man request holds and the vehicle is in Manual mode, mean-

ing that the request has been satisfied. Then the setting of the insertion request is

done if the insertion command is received by the HMI (HMI man insert is true)

and the AGV is not in system (Exchange Ignition Plc.To PLCagv in system

is false).

The insertion request is reset, so turning back to zero the bit value, when there’s

the Ignition.request insert true and one of the two conditions holds: the AGV

is in system or there’s an error in insert the vehicle.

86 Chapter 3. Project Develop

Figure 3.14: Set and Reset extraction vehicle request and set automatic vehicle request

Follows (Figure 3.14) the extraction request setting when there’s the

HMI man extract request and the AGV is in system. Then the reset of the

extract request when the Ignition request of extraction is true and the vehicle is

no more in the system, meaning it has been extracted.

The automatic state request is set to one if the request automatic value in the

HMI is true, the Safety automatic/manual selector is in automatic mode and the

vehicle is not moving.

If the request holds and the AGV is in system, then a true value is send as input

to the MOVE block function.

A MOVE function is used to output a specific value when a defined input is

True. To achieve this, an EN expression is used with the MOVE function. The

EN expression uses a Boolean input from a direct input variable (agv in system).

The other has a constant value, ”STATE AUTOMATIC”. When the direct input

variable is in State 1 (True), the constant value is moved to the output (so the

output is ”STATE AUTOMATIC”). When the input variable is in State 0 (false),

3.3 Programming Siemens PLC 87

the output is NON-”STATE AUTOMATIC”. This is the block scheme version

of an if-then code structuring in ST program.

If the state aut request is true and the AGV is not in system than the insertion

request is raised.

Figure 3.15: Reset of vehicle automatic request

88 Chapter 3. Project Develop

Figure 3.15 is the coding section that resets the state aut request. This

holds if the state aut request has been raised and one of the following condi-

tions holds:

• NOT nManualMode: The vehicle is not in manual mode

• eLost: The vehicle is lost (in automatic mode)

• eEncoderSpeedTooHigh: The speed of a wheel was too high

• ePlcComInterrupted: The communication with the PLC has been inter-

rupted

• eTooFarFromPath: The vehicle is too far from the path (in automatic

mode)

• eUndefinedShape: No shape defined for the requested safety case

• eMotionMismatch: The vehicle does not correctly follow its motion com-

mand

• eStoppedTopologicVerification: Important localization features are not

visible

• ExchangeIgnition Plc.To PLC.error insert agv: error in agv inser-

tion

This means that with this condition the vehicle cannot be set in automatic

mode so the set request is reset to zero. The main parts of the PLC code are

structured in Ladder to allow a easy readable environment for testers that are not

so confident with the structured test. Clearly the same target could have been

reached with SF function blocks.

Chapter 4

Considerations and results

4.1 Final considerations

The new Skilled AGV project will require an year to be fully implemented and

used. The explained project requires 6 months, it is not completed but it touched

most of the required step for a new Skilled AGV definition.

In the first part, the studying of BlueBotics AntLite+ and AntServer manual has

been done to understand them technology base idea for controlling and develop-

ing.

BlueBotics technical specification has an important role in the study cause

the coupling between the allowed devices (from laser scanner to traction and

steering drives) and the one supported by the actual Skilled AGV was necessary

for the project developing.

After that, the reasoning about the managing of all the AGV actions and

moving has been done. From the previous experiences in AGV installations most

of the possible cases problem solution has been thought.

Starting from the PLC choice two hardware main block project has been

defined and firstly the Rockwell PLC was preferable. This was due to the Ether-

net/IP communication protocol applied from both Rockwell and AntLite+.

With the PN/MF coupler the two alternatives were very similar from the hard-

ware point of view, then the Siemens PLC has been chosen for standardization

reasons as Euroimpianti uses Siemens PLC for most of them products.

The Software definition has faced all the requirements of a complete and

correct AGV navigation and acting.

89

90 Chapter 4. Considerations and results

The conversion from Laser Triangulation to Natural Navigation takes many

changes, allowing to reach still un-reached target.

Laser Guided Vehicles (LGV) installation requires the design of reflectors

position as, at each time instant, the vehicle must be able to see three of them

to perform its localization. This navigation technique is accurate and allows safe

high speed navigation but requires the periodical reflectors cleaning from dirty

that compromise the lasers reflection and then with AGV localization. An extra

attention is reserved to the loads position that may not allow AGV to see the

reflectors.

The path modification will require the new design of the allowed path and the

new vehicle’s installation by moving it in the environment in manual mode to

understand the new reflectors position.

AGVs that navigate with natural navigation are an innovative technology,

and the automation world is moving to this direction. The installation is easier

then LGV as requires reflector positioning just in some conditions where the en-

vironment do not provide enough features for AGV localization.

The AGV installation still requires the AGV to be moved around in manual mode

to learn the environment, then the drawing of the allowed path is done based on

laser scanners data of the environment features like walls, static objects and re-

flectors.

This makes the technology very flexible and the application is allowed in almost

any environment. The cons of this technology is the possibility that the vehicle

could not find itself in very chaotic environment.

In some cases the switch from Natural Navigation to Laser Triangulation Navi-

gation could be required. The new Skilled AGV with BlueBotics technology can

deal with it and allows the correct safe behaviour of the AGV in almost any

possible environment.

Natural navigation technology allows the AGV to navigate and localize in a

various type of environments, allowing the new Skilled AGV to be more adaptable

to the installation environment conditions.

The installation will be faster and an higher number of AGVs can be involved in

the same project thanks to BlueBotics technology traffic managing.

The implementation of the BlueBotics technology will make the Stationary

lighten and optimized the used software. The router is constantly updated and

the human interface is dynamic and easy to use as it is intuitive and readable.

4.1 Final considerations 91

This makes the new AGV more stable, easier and optimized.

The object oriented developed program structuring is less demanding in mem-

ory and variable refreshing so the performance increases. The developed code is

generic and adaptable in any kind of situation and any vehicle type with little

changes. The software modification are easy as it is well commented and readable.

Ignition can interface with any kind of database and warehouse managing

software. This makes Skilled AGV product more vendible and updated.

Natural navigation is the future in autonomous navigation vehicles so this

new project will be the base for all futures Skilled AGVs.

92 Chapter 4. Considerations and results

Appendix A

Ignition code

A.1 Ignition-AntServer communication

1 import requests

2 import json

3

4 class Server:

5 def __init__(self ,serverJSON):

6

7 self.servPause = serverJSON["antServerPause"]

8 self.pauseButVisible = serverJSON["displayPauseButton"]

9 licenseValidity = serverJSON["licenseValidity"]

10 self.nameLic = []

11 self.timeleftLic = []

12

13 for license in licenseValidity:

14 self.nameLic.append(license["name"])

15 self.timeleftLic.append(license["timeleft"])

16

17 self.licErrorMsg = (serverJSON["licenseErrorMsg"]).encode ()

18 self.licErrorCode = serverJSON["licenseErrorCode"]

19

20

21 class BlueBotics:

22 def __init__(self ,ip = "localhost",port = "8081",user="admin",

psw="123456"):

23 self.ip = ip

24 self.port = port

25 self.user = user

26 self.psw = psw

27

93

94 Chapter A. Ignition code

28 def GetAllMissions(self):

29

30 #INPUT

31

32 #OUTPUT

33 #[STRING] missionid: Unique id of the mission.

34 #[TIME] dispatchtime: Absolute date when the mission is

started

35 #[INT] timetodestination: Estimated time to end the mission

36 #[INT] navigationstate

37 #0: Received.

38 #1: Accepted (= planned).

39 #2: Rejected.

40 #3: Started (= running).

41 #4: Terminated (= successful).

42 #5: Cancelled.

43 #[INT] schedulerstate: Reason why the mission is not

assigned to a vehicle:

44 #0: A vehicle has been assigned to the mission.

45 #1: There is no vehicle in state ready to get a mission

.

46 #2: There are vehicles available to get mission but

they cannot reach the mission start node.

47 #3: There are no vehicle of type compatible with the

mission.

48 #4: The vehicle associated with this linked mission is

not available.

49 #5: For mission of type deadline , the deadline is not

reached.

50 #6: For mission of type priority , the priority is too

low

51 #[FLOAT] totalmissiontime: Estimated or effective time to

execute the mission

52 #[TIME] arrivingtime: Estimated or effective end time of

the mission.

53 #[INT] missiontype

54 #0: Transport from node to station.

55 #1: Move to station.

56 #2: Waiting lane.

57 #7: Transport to node.

58 #8: Move to node.

59 #9: Transport from station to station.

60 #10: Move a specific vehicle to a node.

61 #12: Move to a loop.

A.1 Ignition-AntServer communication 95

62 #[BIGINT] groupid Id of a group of missions when generated

at the same time by a mission rule

63 #[INT] transportstate

64 #0: New.

65 #1: Accepted.

66 #2: Rejected.

67 #3: Assigned.

68 #4: Moving.

69 #5: Transporting to selector.

70 #6: Selecting delivery from start.

71 #7: Delivering.

72 #8: Terminated.

73 #9: Cancelled.

74 #10: Error.

75 #11: Cancelling.

76 #12: Selecting pick up node.

77 #13: Selecting delivery from selector.

78 #14: Moving to departure selector

79 #[BIGINT] missionrule: Id of the mission rule which created

the mission. Empty if the mission has not been created by a

mission rule.

80 #[INT] stateinfo

81 #0: Undefined.

82 #1: Unknown loop.

83 #2: No insertion node into loop.

84 #3: Unknown destination.

85 #4: Transport from unknown location.

86 #5: Transport from unknown station.

87 #6: No node available in pick up station.

88 #7: Unknown station.

89 #8: No node available in drop off station.

90 #9: Unparsable mission request.

91 #10: Timetables are closed.

92 #11: Deadline is in the past.

93 #[INT/STRING] priority

94 #0: No priority.

95 #1 or Low ,

96 #2 or Medium ,

97 #3 or High.

98 #[STRING] assignedto: Name of the assigned vehicle.

99 #[STRING] payloadstatus

100 #Waiting (paylolad is ready to be picked up).

101 #PickedUp.

102 #Delivered.

96 Chapter A. Ignition code

103 #Withdrawn (the payload is discarded from the system).

104 #[BOOL] isloaded: true , Payload is loaded on the assigned

vehicle.

105 #false: Payload is not loaded on the assigned

vehicle.

106 #[STRING] payload: Name of the payload.

107 #[BOOL] istoday: true , The mission deadline is before 23:59

PM.

108 #false: Otherwise

109 #[STRING] fromnode: Name of the pickup node:

<Station.Node >.

110 #[INT] state

111 #0: Pending.

112 #1: Dispatched to Scheduler (but answer not received yet)

113 #2: Accepted by Scheduler.

114 #3: Rejected by Scheduler.

115 #4: Missed (the mission is canceled because its deadline

is missed).

116 #5: Cancelling.

117 #6: Cancelled.

118 #[TIME] deadline: The absolute date from which the mission

can be assigned to a vehicle.

119 #[STRING] tonode: Name of the delivery node: <Station.Node >

120 #[BOOL] askedforcancellation

121 #true: The mission is asked to be cancelled at the next

monitorCancellation action.

122 #false: Otherwise.

123

124 try:

125 if len(self.sessiontoken) <=0:

126 self.Login ()

127 except:

128 self.Login()

129

130 api_url = "http ://" + self.ip + ":" + self.port + "/wms/rest/

missions ?& sessiontoken=" + self.sessiontoken

131 response = requests.get(api_url)

132 jsonfile = response.json()

133

134 self.retcode = (jsonfile["retcode"])

135 if self.retcode == 0:

136 missionsJSON = (jsonfile["payload"]["missions"])

137 Missions = []

138 for missJSON in missionsJSON:

A.1 Ignition-AntServer communication 97

139 Missions.append(MissionObj(missJSON))

140 else:

141 system.perspective.openPopup(’1’, ’Error’, params = {’

textLabel ’:’retcode = ’ + self.retcode + ’!’},showCloseIcon =

False)

142

143 return Missions

144

145 def GetAllMissionsTable(self ,path="[default]JSON/GetAllMissions

/AllMissions"):

146

147 #INPUT

148 #[STRING] path: path of the tag where the function writes

the return value

149

150 #OUTPUT

151 #THE SAME OF "GETALLMISSIONS ()"

152

153 Missions = self.GetAllMissions ()

154

155 # First create a list that contains the headers

156 headers = ["MissionId", "DispatchTime", "TimeToDest", "

NavigationState", "SchedulerState", "TotalMissTime", "

ArrivingTime",\

157 "MissionType", "GroupId", "TransportState", \

"MissionRule", "StateInfo", "Priority", "AssignedTo" ,\

"PayLoadStatus", "IsLoaded", "Payload", \

158 "IsToday", "FromNode", "State", "Deadline", "ToNode",

"AskedForCanc"]

159

160 # Then create an empty list , this will house our data.

161 data = []

162

163 for mission in Missions:

164

165 # Then add each row to the list. Note that each row is also

a list object.

166 data.append ([mission.missionid , mission.dispatchtime ,

mission.timetodestination , mission.navigationstate , \

167 mission.schedulerstate , mission.totalmissiontime , \

168 mission.arrivingtime , mission.missiontype , mission.groupid ,

mission.transportstate , mission.missionrule ,mission.stateinfo ,

169 mission.priority ,mission.assignedto , mission.payloadstatus ,

mission.isloaded , mission.payload , mission.istoday , \

98 Chapter A. Ignition code

170 mission.fromnode , mission.state , mission.deadline , \

171 mission.tonode , mission.askedforcanc])

172

173 # Finally , both the headers and data lists are used in the

function to create a Dataset object

174 TableMissions = system.dataset.toDataSet(headers , data)

175

176 TagPath = [path]

177 TagValue = [TableMissions]

178 system.tag.writeBlocking(TagPath ,TagValue)

179

180 def GetOneMission(self ,missionID):

181

182 #INPUT

183 #[INT] missionID: Id of the mission

184

185 #OUTPUT

186 #THE SAME OF "GETALLMISSIONS ()"

187

188 try:

189 if len(self.sessiontoken) <=0:

190 self.Login ()

191 except:

192 self.Login()

193

194 api_url = "http ://" + self.ip + ":" + self.port + "/wms/rest/

missions/" + str(missionID) + "?& sessiontoken=" + self.

sessiontoken

195 response = requests.get(api_url)

196 jsonfile = response.json()

197

198 self.retcode = (jsonfile["retcode"])

199 if self.retcode == 0:

200 missJSON = (jsonfile["payload"]["missions"])

201 Mission = MissionObj(missJSON [0])

202 else:

203 system.perspective.openPopup(’1’, ’Error’, params = {’

textLabel ’:’retcode = ’ + self.retcode + ’!’},showCloseIcon =

False)

204

205 return Mission

206

207

208

A.1 Ignition-AntServer communication 99

209 def CancelAllMissions(self):

210

211 #INPUT

212

213 #OUTPUT

214 #[STRING ARRAY] cancelled: List of the cancelled mission

ids.

215

216 try:

217 if len(self.sessiontoken) <=0:

218 self.Login ()

219 except:

220 self.Login ()

221

222 api_url = "http ://" + self.ip + ":" + self.port + "/wms/rest/

missions ?& sessiontoken=" + self.sessiontoken

223 response = requests.delete(api_url)

224 jsonfile = response.json()

225

226 self.retcode = (jsonfile["retcode"])

227 if self.retcode == 0:

228 cancelled = jsonfile["payload"]["cancelled"]

229 else:

230 system.perspective.openPopup(’1’, ’Error’, params = {’

textLabel ’:’retcode = ’ + self.retcode + ’!’},showCloseIcon =

False)

231

232 return cancelled

233

234 def CancelOneMission(self ,missionID):

235

236 #INPUT

237 #[INT] missionID: Id of the mission

238

239 #OUTPUT

240 #[STRING] missionid: Mission id.

241 #[BOOL] cancelled: true , The mission is cancelled.

242 #false , The mission is not cancelled.

243

244 try:

245 if len(self.sessiontoken) <=0:

246 self.Login ()

247 except:

248 self.Login ()

100 Chapter A. Ignition code

249

250 api_url = "http ://" + self.ip + ":" + self.port + "/wms/rest/

missions/" + str(missionID) + "?& sessiontoken=" + self.

sessiontoken

251 response = requests.delete(api_url)

252 jsonfile = response.json()

253

254 self.retcode = (jsonfile["retcode"])

255 if self.retcode == 0:

256 missID = jsonfile["payload"]["missionid"]. encode ()

257 cancelled = jsonfile["payload"]["cancelled"]

258 else:

259 system.perspective.openPopup(’1’, ’Error’, params = {’

textLabel ’:’retcode = ’ + self.retcode + ’!’},showCloseIcon =

False)

260

261 return missID ,cancelled

262

263 def InsertVehicle(self ,vehicleName , nodeId , forceInsertion="

True"):

264

265 #INPUT

266 #[STRING] vehicleName: name of the vehicle that you want to

insert

267 #[STRING] nodeId: Id or alias of the node where the vehicle

must be inserted.

268 #[BOOL] forceInsertion: Optional argument to force the

insertion even if the vehicle is already inserted

269 #in another ANT server (the vehicle will be set

in error in the other ANT server).

270

271 #OUTPUT

272 #[VehicleOBJ]: Vehicle object

273 #[STRING] warningMessage: Warning message related to a

problem to be noticed but which does not prevent insertion.

274 #[INT] warningCode

275 #6: License check failed (no license for this vehicle).

Error temporarily ignored using license xxx.

276 #7: License check failed (vehicle bootfile must be

upgraded). Error temporarily ignored using license xxx.

277 #8: License check failed (license file xxx must be

upgraded). Error temporarily ignored using license xxx.

278 #[STRING ARRAY] warningParameters Parameters related to the

warning message (vehicle name , license information , etc.)

A.1 Ignition-AntServer communication 101

279

280 try:

281 if len(self.sessiontoken) <=0:

282 self.Login ()

283 except:

284 self.Login ()

285

286 api_url = "http ://" + self.ip + ":" + self.port + "/wms/rest/

vehicles/" + str(vehicleName) + "/command ?& sessiontoken=" +

self.sessiontoken

287 myobj = ’{" command ":’

288 myobj = myobj + ’{"name": "insert",’

289 myobj = myobj + ’"args ":{’

290 myobj = myobj + ’"nodeId ": "’ + str(nodeId) + ’",’

291 myobj = myobj + ’"forceInsertion ": "’ + str(forceInsertion) +

’"’

292 myobj = myobj + ’}}}’

293

294 myobj = json.loads(myobj)

295 response = requests.post(api_url , json = myobj)

296 jsonfile = response.json()

297

298 self.retcode = (jsonfile["retcode"])

299 if self.retcode == 0:

300 vehicleJSON = (jsonfile["payload"]["vehicle"])

301 vehicle = VehicleObj(vehicleJSON)

302 warningMessage = \

303 (jsonfile["payload"]["warningMessage"]).encode ()

304 warningCode = (jsonfile["payload"]["warningCode"])

305 warningParameters = \

306 (jsonfile["payload"]["warningParameters"])

307

308 return self.retcode ,vehicle ,warningMessage ,warningCode ,

warningParameters

309

310 def ExtractVehicle(self ,vehicleName):

311

312 #INPUT

313 #[STRING] vehicleName: name of the vehicle that you want to

insert

314

315 #OUTPUT

316 #[VehicleOBJ]: Vehicle object

317

102 Chapter A. Ignition code

318 try:

319 if len(self.sessiontoken) <=0:

320 self.Login ()

321 except:

322 self.Login()

323

324 api_url = "http ://" + self.ip + ":" + self.port + "/wms/rest/

vehicles/" + str(vehicleName) + "/command ?& sessiontoken=" +

self.sessiontoken

325 myobj = ’{" command ":’

326 myobj = myobj + ’{"name": "extract",’

327 myobj = myobj + ’"args ":{}’

328 myobj = myobj + ’}}’

329

330 myobj = json.loads(myobj)

331 response = requests.post(api_url , json = myobj)

332 jsonfile = response.json()

333

334 self.retcode = (jsonfile["retcode"])

335 if self.retcode == 0:

336 vehicleJSON = (jsonfile["payload"]["vehicle"])

337 vehicle = VehicleObj(vehicleJSON)

338

339 return self.retcode , vehicle

340

341 def GetAllVehicles(self):

342

343 #INPUT

344

345 #OUTPUT

346 #[STRING] name: Name of the vehicle.

347 #[BOOL] isloaded: true , A payload is loaded on the vehicle.

348 #false: A payload is not loaded on the vehicle.

349 #[STRING] missionid: The id of the assigned mission

350 #[STRING] payload The type of payload.

351 #[INT] operatingstate

352 #0: Not inserted

353 #1: Ready

354 #2: Assigned to a mission

355 #3: Not available

356 #4: Paused

357 #5: Asleep (in a loop)

358 #6: In error

359 #[TIME] timestamp: Time of the last received data.

A.1 Ignition-AntServer communication 103

360 #[INT ARRAY] path: List of nodes names forming the path of

the current mission.

361 #[STRING] nameAct: Name of the action that the vehicle is

currently executing.

362 #argsAct: Details about the current action (for example the

node or device id) depending on its state.

363 #[STRING] sourceidAct: vehicle name.

364 #[STRING] sourcetypeAct: Always "vehicle"

365 #[FLOAT] coord: Vehicle position [x, y, z].

366 #[FLOAT] course: Orientation of the vehicle.

367 #[STRING] map: Name of the current map

368 #[INT] group: Floor level.

369 #[INT] currentnode: Id of the current node (the last

crossed node if between two nodes).

370 #[STRING ARRAY] missProgress: [Time to destination [s],

Arrival time [time], Elapsed time [s] and progress [%]].

371 #[STRING ARRAY] missInfo: [start node alias or current node

alias , target node alias , final destination alias].

372 #[STRING ARRAY] connectionOk: true , A connection between

the server and the vehicle is established ,

373 #false: No connection has been established or the

connection has been lost.

374 #[STRING ARRAY] battInfo: [Percentage [%], voltage [V]].

375 #[STRING ARRAY] battMaxTemp: Maximum temperature in the

battery (in C)

376 #[STRING ARRAY] errors: [List of current vehicle errors if

any]

377 #[STRING ARRAY] errorBits: [List of current errors as a set

of 8x32bit integers: Critical0 , Critical1 , Error0 , Error1 ,

Warning0 , Warning1 , Notice0 , Notice1

378 #Each integer is a set of bits representing different

types of alarms. They are described in the ANT lite User

Manual .]

379 #[STRING ARRAY] vehicleType: Type of vehicle as defined by

the ANT firmware.

380 #[STRING ARRAY] vehicleShape: List of (x,y) coordinates of

polygon representing the vehicle shape + the safety areas

381 #[STRING ARRAY] bodyShape: List of (x,y) coordinates of the

polygon describing the physical vehicle shape.

382 #[STRING ARRAY] messages :[List of messages coming from ANT]

383 #[STRING] trafficAvaiable: Free or empty field: The vehicle

is available for mission or not.

384 #[STRING] trafficMissID: Reserved mission id.

385 #[STRING] trafficInSystem: Inserted or Extracted.

104 Chapter A. Ignition code

386 #[STRING] trafficCellID: Reservation cell id.

387 #[STRING] trafficCurrAction: Current static action:

388 #charging , parking: Not moving.

389 #enter cell , entering cell granted: Moving.

390 #[STRING] trafficStartNode: Start node id.

391 #[STRING] trafficTargetNode: Target node id (filled when

the vehicle is moving).

392 #[STRING] trafficCellPath: Cell path: e:[1 7] a:[1 7]

(filled when the vehicle is moving).

393 #[STRING] trafficTimeDest: Time to destination.

394 #0.0: The vehicle is not moving.

395 #[STRING] trafficCurrNode: Current node id.

396 #0: The vehicle is moving

397 #[STRING] vehicleState: String to indicate the current

vehicle state: charging , parking , running a mission , paused ,

asleep , etc.

398 #[STRING] vehicleBlocked: true: Missions are blocked.

399 #false: New missions are accepted.

400 #[STRING] lockUUID: Unique ID of the application which is

already connected to the vehicle.

401 #[STRING] lockApp:Name of application (antlab or antserver)

which is already connected to the vehicle.

402 #[STRING] lockPC: Name of the PC which has an application

already connected to the vehicle.

403 #[STRING] lockUser: Name of the user which has an

application already connected to the vehicle.

404 #[BOOL] antServerPause: true: The server is paused.

405 #false: Otherwise.

406

407 try:

408 if len(self.sessiontoken) <=0:

409 self.Login ()

410 except:

411 self.Login()

412

413 api_url = "http ://" + self.ip + ":" + self.port + "/wms/rest/

vehicles ?& sessiontoken=" + self.sessiontoken

414 response = requests.get(api_url)

415 jsonfile = response.json()

416 print(jsonfile)

417

418 self.retcode = (jsonfile["retcode"])

419 if self.retcode == 0:

420 payloadJSON = (jsonfile["payload"])

A.1 Ignition-AntServer communication 105

421 vehiclesJSON = (jsonfile["payload"]["vehicles"])

422 try:

423 antServerPause = (jsonfile["payload"]["antServerPause"])

424 except:

425 antServerPause = None

426 Vehicle = []

427 for vehiJSON in vehiclesJSON:

428 Vehicle.append(VehicleObj(vehiJSON))

429 else:

430 system.perspective.openPopup(’1’, ’Error’, params = {’

textLabel ’:’retcode = ’ + self.retcode + ’!’},showCloseIcon =

False)

431

432 return Vehicle ,antServerPause

433

434 def GetAllVehiclesTable(self ,path="[default]JSON/GetAllVehicle/

AllVehicles"):

435

436 #INPUT

437 #[STRING] path: path of the tag where the function writes

the return value

438

439 #OUTPUT

440 #THE SAME OF "GETALLVEHICLES ()"

441

442 Vehicles ,antServerPause = self.GetAllVehicles ()

443

444 # First create a list that contains the headers

445 headers = ["name", "isloaded", "missionid", "payload", "

operatingstate", "timestamp", "path", "nameAct", "argsAct",

446 "sourceidAct", "sourcetypeAct", "coord", "course", "map",

447 "group", "currentnode", "missProgTDest", "missProgTArr",

448 "missProgTElaps", "missProgPerc", "missInfoNode",

449 "missInfoTargNode", "missInfoFinalNode", "connectionOk",

450 "battInfoPerc","battInfoVolt", "bbattMaxTemp", "errors",

451 "errorBitsC0", "errorBitsC1", "errorBitsE0", "errorBitsE1",

452 "errorBitsW0", "errorBitsW1", "errorBitsN0", "errorBitsN1",

453 "vehicleType", "vehicleShape", "bodyShape", "messages",

454 "trafficAvaiable", "trafficMissID", "trafficInSystem",

455 "trafficCellID", "trafficCurrAction", "trafficStartNode",

456 "trafficTargetNode", "trafficCellPath", "trafficTimeDest",

457 "trafficCurrNode", "vehicleState", "vehicleBlocked",

458 "lockUUID", "lockApp", "lockPC", "lockUser","antServerPause"]

459 # Then create an empty list , this will house our data.

106 Chapter A. Ignition code

460 data = []

461

462 for vehicle in Vehicles:

463

464 # Then add each row to the list. Note that each row is also

a list object.

465 data.append ([vehicle.name , vehicle.isloaded , \

466 vehicle.missionid , vehicle.payload , vehicle.operatingstate ,

vehicle.timestamp , vehicle.path , vehicle.nameAct , \

467 vehicle.argsAct , vehicle.sourceidAct , vehicle.sourcetypeAct ,

str(vehicle.coord), vehicle.course , vehicle.map ,vehicle.group ,

vehicle.currentnode , vehicle.missProgTDest , \

468 vehicle.missProgTArr , vehicle.missProgTElaps , \

469 vehicle.missProgPerc , vehicle.missInfoNode , \

470 vehicle.missInfoTargNode , vehicle.missInfoFinalNode , \

471 vehicle.connectionOk , vehicle.battInfoPerc , \

472 vehicle.battInfoVolt , vehicle.battMaxTemp , vehicle.errors , \

473 vehicle.errorBitsC0 , vehicle.errorBitsC1 , vehicle.errorBitsE0 ,

vehicle.errorBitsE1 , vehicle.errorBitsW0 ,vehicle.errorBitsW1 ,

vehicle.errorBitsN0 , vehicle.errorBitsN1 ,vehicle.vehicleType ,

vehicle.vehicleShape , vehicle.bodyShape , vehicle.messages ,

vehicle.trafficAvaiable , vehicle.trafficMissID , \

474 vehicle.trafficInSystem , vehicle.trafficCellID , \

475 vehicle.trafficCurrAction , vehicle.trafficStartNode , \

476 vehicle.trafficTargetNode , vehicle.trafficCellPath , \

477 vehicle.trafficTimeDest , vehicle.trafficCurrNode , \

478 vehicle.vehicleState , vehicle.vehicleBlocked ,vehicle.lockUUID ,

vehicle.lockApp , vehicle.lockPC , vehicle.lockUser ,

antServerPause])

479

480 # Finally , both the headers and data lists are used in the

function to create a Dataset object

481 TableVehicles = system.dataset.toDataSet(headers , data)

482

483 TagPath = [path]

484 TagValue = [TableVehicles]

485 system.tag.writeBlocking(TagPath ,TagValue)

486

487

488

489

490

491

492

A.1 Ignition-AntServer communication 107

493 def GetOneVehicle(self ,vehicleName):

494

495 #INPUT

496 #[INT] AutoWrite:

497 #1 : Update the missions table of the interface

498 #0 : Return dataset

499 #[STRING] vehicleName: name of the vehicle

500

501 #OUTPUT

502 #THE SAME OF "GETALLVEHICLES ()"

503

504 try:

505 if len(self.sessiontoken) <=0:

506 self.Login ()

507 except:

508 self.Login ()

509

510 api_url = "http ://" + self.ip + ":" + self.port + "/wms/rest/

vehicles/" + str(vehicleName) + "/info?& sessiontoken=" + self.

sessiontoken

511 #api_url = "http ://" + self.ip + ":" + self.port + "/wms/rest

/vehicles/AGV1?& sessiontoken =" + self.sessiontoken

512 response = requests.get(api_url)

513 jsonfile = response.json()

514

515 self.retcode = (jsonfile["retcode"])

516 if self.retcode == 0:

517 payloadJSON = (jsonfile["payload"])

518 vehiclesJSON = (jsonfile["payload"]["vehicles"])

519 try:

520 antServerPause = (jsonfile["payload"]["antServerPause"])

521 except:

522 antServerPause = None

523 Vehicle = VehicleObj(vehiclesJSON [0])

524 else:

525 system.perspective.openPopup(’1’, ’Error’, params = {’

textLabel ’:’retcode = ’ + self.retcode + ’!’},showCloseIcon =

False)

526

527 return Vehicle ,antServerPause

528

529

530

531

108 Chapter A. Ignition code

532 def GetAllAlarms(self):

533

534 #INPUT

535

536 #OUTPUT

537 #[STRING] uuid: Unique id of the alarm

538 #[STRING] eventname: Name of the alarm.

539 #[STRING] sourceid: Name of the event source

540 #[STRING] sourcetype: Type of the event source

541 #[INT] state:

542 #0: Active.

543 #1: Acknowledged.

544 #2: Closed.

545 #3: Deleted.

546 #[INT] eventcount: Number of times the alarm occurred.

547 #[TIME] firsteventat: Date of the first occurrence.

548 #[TIME] lasteventat: Date of the last occurrence

549 #[TIME] clearedat: Date the alarm was cleared by the

operator.

550 #[TIME] timestamp: Date of the last update

551

552 try:

553 if len(self.sessiontoken) <=0:

554 self.Login ()

555 except:

556 self.Login()

557 api_url = "http ://" + self.ip + ":" + self.port + "/wms/rest/

alarms ?& sessiontoken=" + self.sessiontoken

558 response = requests.get(api_url)

559 jsonfile = response.json()

560

561 self.retcode = (jsonfile["retcode"])

562 if self.retcode == 0:

563 alarmsJSON = (jsonfile["payload"]["alarms"])

564 Alarms = []

565 for alarmJSON in alarmsJSON:

566 Alarms.append(AlarmObj(alarmJSON))

567 else:

568 system.perspective.openPopup(’1’, ’Error’, params = {’

textLabel ’:’retcode = ’ + self.retcode + ’!’},showCloseIcon =

False)

569

570 return Alarms

571

A.1 Ignition-AntServer communication 109

572 def GetAllAlarmsTable(self ,path1="[default]JSON/GetAllAlarms/

AllAlarmsActive",path2="[default]JSON/GetAllAlarms/

AllAlarmsLogs"):

573

574 #INPUT

575 #[STRING] path: path of the tag where the function writes

the return value

576

577 #OUTPUT

578 #THE SAME OF "GETALLALARMS ()"

579

580 Alarms = self.GetAllAlarms ()

581

582 # First create a list that contains the headers

583 headers = ["uuid", "eventname", "sourceid", "sourcetype", "

state", "eventcount", "firsteventat", "lasteventat", "

clearedat", "timestamp"]

584

585 # Then create an empty list , this will house our data.

586 dataActive = []

587 dataLog = []

588

589 for alarm in Alarms:

590

591 # Then add each row to the list. Note that each row is also

a list object.

592 if alarm.state == 0:

593 dataActive.append ([alarm.uuid , alarm.eventname , \

594 alarm.sourceid , alarm.sourcetype , alarm.state , \

595 alarm.eventcount , alarm.firsteventat , alarm.lasteventat ,

alarm.clearedat , alarm.timestamp])

596

597 dataLog.append ([alarm.uuid , alarm.eventname , alarm.sourceid

, alarm.sourcetype , alarm.state , alarm.eventcount , \

598 alarm.firsteventat , alarm.lasteventat , alarm.clearedat , \

599 alarm.timestamp])

600

601 # Finally , both the headers and data lists are used in the

function to create a Dataset object

602 TableAlarmsActive = \

603 system.dataset.toDataSet(headers , dataActive)

604 TableAlarmsLog = system.dataset.toDataSet(headers , dataLog)

605

606 TagPath = [path1]

110 Chapter A. Ignition code

607 TagValue = [TableAlarmsActive]

608 system.tag.writeBlocking(TagPath ,TagValue)

609

610 TagPath = [path2]

611 TagValue = [TableAlarmsLog]

612 system.tag.writeBlocking(TagPath ,TagValue)

613

614 def GetMap(self ,levelID):

615

616 #INPUT

617 #[INT] levelID: Map id.

618

619 #OUTPUT

620 #[STRING] alias: Map name.

621 #[STRING] description: Map description.

622 #[INT] id: Map id.

623 #[layers: Always two layers: one for localization

information , the other for navigation.

624 #[0]: Localization information

625 #defaultstyleid

626 #[STRING] lines: localization.

627 #[STRING] points: localization.

628 #[STRING] desc: Segments and reflectors.

629 #lines: Array of localization segments.

630 #[INT ARRAY] coord: Localization segments [x1,y1,x2,

y2].

631 #[STRING] name: localization.

632 #points: Array of reflectors

633 #[FLOAT ARRAY] coord: Reflector position and

covariance [x, y, cov].

634 #[1] Navigation information

635 #defaultstyleid

636 #[STRING] lines: navigation

637 #[STRING] points: navigation

638 #[STRING] desc: Nodes , links and virtual walls

639 #lines: Array of localization segments.

640 #[INT ARRAY] coord: Navigation segments [x1,y1,x2,y2

].

641 #[STRING] styleid: Ivirtual -wall , The navigation

segment is a virtual wall.

642 #Empty field , It is a simple navigation

node link.

643 #[STRING] name: navigation

644 #symbols: Array of navigation node position.

A.1 Ignition-AntServer communication 111

645 #[FLOAT ARRAY] coord:navigation node position [x,y,0]

646 #[STRING] name: Navigation node name

647 #[INT] level: Level id.

648 #origin

649 #[FLOAT ARRAY] offset: [x,y] offset.

650 #[FLOAT] orientation: Map orientation.

651 #[STRING] group: Level id.

652 #[FLOAT ARRAY] offset: [x,y] offset.

653 #[FLOAT] orientation: Map orientation.

654

655 try:

656 if len(self.sessiontoken) <=0:

657 self.Login ()

658 except:

659 self.Login ()

660

661 api_url = "http ://" + self.ip + ":" + self.port + "/wms/rest/

maps/level/" + str(levelID) + "/data?& sessiontoken=" + self.

sessiontoken

662 response = requests.get(api_url)

663 jsonfile = response.json()

664 print(jsonfile)

665

666 self.retcode = (jsonfile["retcode"])

667 if self.retcode == 0:

668 fileJSON = jsonfile["payload"]["data"]

669

670 Map = []

671 for data in fileJSON:

672 #Map.append(MapObj(data))

673 CreateMap = MapDraw.MapRenderer(data , "black", 1, 8, \

674 "red", "black")

675 pathLayout = "C:\Users \...\ Desktop\layout.svg"

676 system.file.writeFile(pathLayout , CreateMap.render ())

677 else:

678 system.perspective.openPopup(’1’, ’Error’, params = {’

textLabel ’:’retcode = ’ + self.retcode + ’!’},showCloseIcon =

False)

679

680 return

112 Chapter A. Ignition code

A.2 Ignition Perspective

1

2 class MapRenderer:

3 def __init__(self , json , line_color , line_stroke_width ,

node_diameter , node_color , text_color):

4 self.json = json

5 self.line_color = line_color

6 self.line_stroke_width = line_stroke_width

7 self.node_diameter = node_diameter

8 self.node_color = node_color

9 self.text_color = text_color

10 self.layers = self.get_layers ()

11 self.arrowDist = 10

12

13 self.xmin = 0

14 self.xmax = 0

15 self.ymin = 0

16 self.ymax = 0

17

18 for layer in self.layers:

19 for l in layer["lines"]:

20 x1 = l["coord"][0]*100

21 y1 = -l["coord"][1]*100

22 x2 = l["coord"][2]*100

23 y2 = -l["coord"][3]*100

24

25 if self.xmin == 0 and self.xmax == 0 \

26 and self.ymin == 0 and self.ymax == 0:

27 self.xmin = x1

28 self.xmax = x1

29 self.ymin = y1

30 self.ymax = y1

31

32 if x1 < self.xmin:

33 self.xmin = x1

34 elif x1 > self.xmax:

35 self.xmax = x1

36 if x2 < self.xmin:

37 self.xmin = x2

38 elif x2 > self.xmax:

39 self.xmax = x2

40

41 if y1 < self.ymin:

A.2 Ignition Perspective 113

42 self.ymin = y1

43 elif y1 > self.ymax:

44 self.ymax = y1

45 if y2 < self.ymin:

46 self.ymin = y2

47 elif y2 > self.ymax:

48 self.ymax = y2

49

50 self.xmin = self.xmin - 100

51 self.xmax = self.xmax + 100

52 self.ymin = self.ymin - 100

53 self.ymax = self.ymax + 100

54 self.svgObj = svg(self.xmin ,self.ymin ,self.xmax -self.xmin

,self.ymax -self.ymin)

55

56 def get_layers(self):

57 layers = self.json["data"]["layers"]

58 return layers

59

60 def render(self):

61

62 for l in self.layers [0]["lines"]:

63

64 x1 = l["coord"][0]*100

65 y1 = -l["coord"][1]*100

66 x2 = l["coord"][2]*100

67 y2 = -l["coord"][3]*100

68

69 self.svgObj.add(Line(

70 x1 = x1,

71 y1 = y1,

72 x2 = x2,

73 y2 = y2,

74 stroke = self.line_color ,

75 stroke_width = self.line_stroke_width ,

76 id = "Line"))

77

78 for l in self.layers [1]["lines"]:

79

80 x1 = l["coord"][0]*100

81 y1 = -l["coord"][1]*100

82 x2 = l["coord"][2]*100

83 y2 = -l["coord"][3]*100

84

114 Chapter A. Ignition code

85 xmid=(x1+x2)/2

86 ymid=(y1+y2)/2

87 xdiff=abs(x2-x1)

88 ydiff=abs(y2-y1)

89 if x2 -x1 == 0:

90 m = 1

91

92 if y1-y2 > 0:

93 angleArrow=math.pi/2

94 xc=xmid -self.arrowDist

95 yc=ymid

96 else:

97 angleArrow =3* math.pi/2

98 xc=xmid+self.arrowDist

99 yc=ymid

100 elif y2 -y1 == 0:

101 m = 0

102

103 if x2-x1 >0:

104 angleArrow =0

105 xc=xmid

106 yc=ymid

107 else:

108 angleArrow=math.pi

109 xc=xmid

110 yc=ymid -2* self.arrowDist

111 else:

112 m=(y2-y1)/(x2-x1)

113 angleArrow = math.atan(m)

114 angle=math.pi/2 - math.atan(m)

115 print(m)

116 print(math.degrees(angle))

117

118 if angle < math.pi/2:

119 if x2-x1 >0:

120 xc=xmid -self.arrowDist*math.cos(angle)

121 if angle > math.pi/4:

122 yc=ymid -0.1*(self.arrowDist)*\

123 math.sin(angle)

124 else:

125 yc=ymid -0.6*(self.arrowDist)*\

126 math.sin(angle)

127 else:

128 xc=xmid+self.arrowDist*math.cos(angle)

A.2 Ignition Perspective 115

129 yc=ymid -2*(self.arrowDist)*math.sin(angle)

130 angleArrow=angleArrow+math.pi

131 elif angle > math.pi/2:

132 if x2-x1 >0:

133 xc=xmid -self.arrowDist*math.cos(angle)

134 if angle > 3*math.pi/4:

135 yc=ymid -0.6*(self.arrowDist)*\

136 math.sin(angle)

137 else:

138 yc=ymid -0.1*(self.arrowDist)*\

139 math.sin(angle)

140 else:

141 xc=xmid+self.arrowDist*math.cos(angle)

142 yc=ymid -2*(self.arrowDist)*math.sin(angle)

143 angleArrow=angleArrow+math.pi

144

145 self.svgObj.add(Line(

146 x1 = x1,

147 y1 = y1,

148 x2 = x2,

149 y2 = y2,

150 stroke = self.line_color ,

151 stroke_width = self.line_stroke_width ,

152 id = "Line"))

153 self.svgObj.add(Arrow(

154 xc = xc,

155 yc = yc,

156 angle=math.degrees(angleArrow),

157 stroke = self.line_color ,

158 stroke_width = self.line_stroke_width ,

159 id = "Arrow"))

160

161 for layer in self.layers:

162 for n in layer["symbols"]:

163 self.svgObj.add(Node(

164 x = n["coord"][0]*100 ,

165 y = -n["coord"][1]*100 ,

166 d = self.node_diameter ,

167 name = n["name"],

168 angle = 0,

169 fill = self.node_color ,

170 stroke = self.line_color ,

171 stroke_width = self.line_stroke_width ,

172 font_size =13,

116 Chapter A. Ignition code

173 id = "Node: " + str(n["id"])

174))

175

176 for i,n in enumerate(layer["points"]):

177 self.svgObj.add(Node(

178 x = n["coord"][0]*100 ,

179 y = -n["coord"][1]*100 ,

180 d = self.node_diameter ,

181 name = "R" + str(i),

182 angle = 0,

183 fill = "black",

184 stroke = self.line_color ,

185 stroke_width = self.line_stroke_width ,

186 font_size =13,

187 id = "Reflector"

188))

189

190 t_v = Vehicle(x=0, y=0, width=60, height =30, angle=0, id=

"AGV0", name="0",font_size =15,fill="yellow",stroke=self.

line_color ,stroke_width=self.line_stroke_width)

191 self.svgObj.add(t_v)

192

193 out = str(self.svgObj)

194 return out

References

[1] Skilled Group website, https://www.skilledgroup.com/

[2] Holonomy in mobile robots, J.A. Batlle, A. Barjau

[3] Mobile Robot Kinematics, Roland Siegwart, Margarita Chli, Martin Rufli

[4] Rockwell documentation on Ethernet/IP

[5] https://simple.wikipedia.org/wiki/Ethernet_switch

[6] https://it.wikipedia.org/wiki/Sistema_client/server

[7] Ewon documentation

[8] The perfect size of the protective field on an industrial autonomous vehicle,

from SICK wbsite

[9] Huffman Engineering website

[10] William Goble, Learn to Trust Safety PLCs

[11] A Safe Starting Point for AGV Navigation, SICK website

[12] Modbus Gateways, Control Solutions website

[13] Firmware definition, TechTarget

[14] NAV-LOC Laser positioning system, SICK documentation

[15] BlueBotics website, https://bluebotics.com

[16] BlueBotics ANT navigation documentation

[17] BlueBotics AntLite+ manual

[18] SICK Laser Scanners manual

117

https://www.skilledgroup.com/
https://simple.wikipedia.org/wiki/Ethernet_switch
https://it.wikipedia.org/wiki/Sistema_client/server
https://bluebotics.com

118 REFERENCES

[19] Allen Bradley vs Siemens PLC, DO supply

[20] Profinet explanation, Profinet website

[21] BlueBotics AntServer manual

[22] Ignition documentation

[23] Ignition website

[24] BlueBotics documentation, How an Automobile Parts Producer Used Nipper

AGVs to Meet its Resource Optimization Goals

[25] Api REST definition https://www.redhat.com/it/topics/api/

what-is-a-rest-api

[26] https://restfulapi.net/http-methods/

[27] https://www.json.org/json-en.html

[28] PROFINET Switch vs Ethernet Switch, PROFINET website

[29] Simatic PN/MF coupler documentation

[30] The Difference Between PROFINET and PROFIsafe, PROFINET website

[31] Counting and Measuring with the Counter Module, Siemens documentation

[32] https://quadrasrl.net/nuova-norma-en-iso-3691-4-2020-agv-e-lgv/

[33] Safety Siemens documentation

[34] Industrial Software SIMATIC Safety: Configuring and Programming

[35] https://developer.mozilla.org/en-US/docs/Learn/JavaScript/

Objects/JSON

https://www.redhat.com/it/topics/api/what-is-a-rest-api
https://www.redhat.com/it/topics/api/what-is-a-rest-api
https://restfulapi.net/http-methods/
https://www.json.org/json-en.html
https://quadrasrl.net/nuova-norma-en-iso-3691-4-2020-agv-e-lgv/
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON
https://developer.mozilla.org/en-US/docs/Learn/JavaScript/Objects/JSON

Ringraziamenti

Ringrazio il professor Angelo Cenedese per avermi dato l’opportunità di seguire un

progetto complesso in una realtà importante e per l’aiuto fornitomi nella stesura

della presente tesi.

Ringrazio il team di Euroimpianti ed in particolare Michele Sanvido per tutto

quello che mi ha insegnato durante questo nostro progetto.

E’ stato un viaggio molto travagliato, impegnativo, pieno di lacrime, quaderni

di appunti, schemi ed esercizi. Non avrei mai raggiunto questo obbiettivo senza

le persone che mi sono state vicine in questi anni.

Ringrazio innanzitutto la mia famiglia, grazie a mamma, papà e Nicole per

avermi supportato e sopportato. Nulla di tutto ciò sarebbe stato possibile senza

di voi.

Ringrazio zia Maria Grazia per l’in bocca al lupo puntuale prima di ogni esame

e per le (tante) candele accese affinchè tutto andasse per il meglio.

Ringrazio i miei amici di una vita, Gioele, Mara e Davide perchè nonstante

tutto mi sono sempre stati vicini e sanno quanto sono importanti per me.

Ai miei Uni-Friends per le chiacchierate fino a tarda notte, per il sostegno

e l’aiuto reciproco che ci siamo dati in tutti questi anni. Ai miei compagni di

viaggio dal primo giorno Mattia e Giovanni, insieme siamo sopravvisuti ai traumi

dei primi anni. Ai miei compagni pendolari e alle due ore di treno giornaliere

ad invadere l’ultima carrozza con i nostri discorsi. In molti saranno felici di non

sentirci più.

119

120 REFERENCES

Ringrazio Christian in modo particolare, per tutti i ”ti chiamo 15 minuti che

poi devo studiare” e alla fine stavamo al telefono ore. Sei uno dei regali migliori

che UniPd mi abbia dato.

L’università ci ha tolto tanto, ci ha messo alla prova e molte battaglie le ha pure

vinte. Ma devo dire che rifarei tutto anche solo per incontrarvi.

Ringrazio il calcio e tutte le compagne con cui ho condiviso lo spogliatoio in

questi anni. Con voi ho imparato l’importanza del lavoro di squadra.

In modo particolare ringrazio Sara per tutti i consigli e per tutto quello che

abbiamo condiviso l’ultimo anno, il mio supporto lo avrai sempre.

Infine ringrazio me stessa, per la tenacia, i viaggi in pulmino passati a ri-

passare, a tutte le rinuncie per riuscire a portare a termine il mio obbiettivo dal

primo giorno del primo anno, Tra 5 anni, quando mi laureerò, non ci credeva

quasi nessuno, ma cos̀ı è stato.

	Euroimpianti - Skilled Group
	Skilled Products
	Robot Palletizers
	Skilled SCARA Robot
	Articulated Robots
	Conveyors
	Gantry

	Automated Guided Vehicles
	Rail Guided Vehicle (RGV)
	Laser Guided Vehicle (LGV)

	Laser Guided Vehicles
	Structure
	Laser Triangulation
	Actual LGV Managing and Structuring
	Stationary
	Interface Program
	Switch and communication protocols
	Radio Server
	PC Siemens
	EWON

	LGV
	Laser Scanners
	Safety PLC
	PC Siemens

	Project Description
	New Design for LGV
	BlueBotics
	Hardware design
	New Stationary
	AntLab
	AntServer
	Ignition
	Ignition and Bluebotics

	New AGV
	AntLite+
	Laser Scanners
	PN/MF Coupler
	PLC Siemens
	Safety
	Non-safety

	Project Develop
	AntLab programming
	Map definition
	Vehicle definition and calibration

	Programming Ignition
	JSON
	Ant Server communication
	Perspective HMI programming

	Programming Siemens PLC
	Safety
	Non Safety

	Considerations and results
	Final considerations

	Ignition code
	Ignition-AntServer communication
	Ignition Perspective

	References

