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Abstract

Last year, two separate experimental groups [1, 2] reported claims of parity-violating signatures
in the connected four-point correlation function of the matter over-density field δ(t,x), which is often
referred to as the galaxy-four point correlation function. The matter over-density field parametrizes
the excess of matter-energy density with respect to the homogeneous background and it’s defined
as δ(t,x) ≡ δρ(t,x)−ρ̄(t)

ρ̄(t) , where ρ(t,x) is the energy density field and ρ̄(t) is the average density
field. The four-point correlation function is the most simple statistic capable of detecting parity
violation in the case of a scalar field. The galaxy four-point correlation function basically quantifies
the excess of quartets of galaxies compared to a random distribution. If these measurements are
confirmed, they would have two fundamental implications. First of all, the detection of a connected
correlator beyond the two-point statistic serves as possible evidence of primordial non-Gaussianity.
Moreover, since we know that weak forces play no role in the formation of large-scale structures it
would be evidence of new physics.

The goal of this work is to investigate the possibility to formulate an inflationary model ca-
pable of leaving parity-violating imprints on late-times observables. Consequently, we examine
the inflationary phase within the framework of parity-violating theories of modified gravity. We
need to modify the standard scenario of single-field slow-roll Inflation with standard gravitational
interaction since it is parity-conserving. We examine the dynamical Chern-Simons (dCS) theory
of modified gravity, which extends the standard inflationary model with the lowest-order parity-
violating coupling between the inflaton and the graviton. In this context, we demonstrate that dCS
leaves a distinctive parity-violating signature in the primordial trispectrum of scalar perturbations.
However, the signal is too weak to account for the observed parity violation. Thus, we explore
alternative theories where, a priori, an enhancement is feasible due to gravitational waves’ birefrin-
gence, i.e. the two chiral polarizations, left and right, of the graviton propagate at different speeds.
We present an original analysis of the graviton-mediated trispectrum in the case of the chiral-scalar
tensor theories of gravity. The graviton-mediated trispectrum is the leading parity-violating con-
tribution to the Fourier transform of the four-point correlation function. The theories we analyze
extend Chern-Simons gravity by including parity-violating operators containing first and second
derivatives of the non-minimally coupled inflaton field. We manage to generate a parity-violating
signal, but we don’t observe any significant enhancement compared to the previous scenario.
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Introduction
The exploration of symmetries holds a crucial place in comprehending the fundamental laws of the
universe. Within the Standard Model, accounting for the observed P and CP violation in the weak
sector is essential to building a consistent particle physics model. In Cosmology, there is ongoing
research to investigate parity-violating signatures, both theoretically and experimentally.

From an experimental point of view, there are evidence in the data of parity-violating signatures
that suggest that something different from the Lambda cold dark matter (ΛCDM) model could be
at work. Evidence of parity violation in the Cosmic Microwave Background (CMB) emerges at
a significance level of 3.6σ in the observed pattern of linear polarization among cosmic microwave
background photons [3]. This phenomenon is referred to as “cosmic birefringence". From a theoretical
point of view, this effect can be explained by means of a modification to electromagnetism through a
coupling [4]

Lint ∝ g(χ)FµνF̃
µν , (0.1)

where g(χ) is a dimensionless function of a scalar field and Fµν is the electromagnetic field-strength
tensor while F̃µν its dual version. If χ is constant in space and time, then the term the Lagrangian
written above can be written as a total derivative. However, if χ depends on space-time, the plane of
linear polarization of photons rotates.

Moreover, in Large Scale Structure (LSS) claims of parity violation in the galaxy four-point corre-
lation function of the matter over density field have been recently (2022) reported by [1, 2]. In the
experimental analysis, the approach proposed in [5] was employed to explore parity-violation signa-
tures in the 3D large-scale structure. This method is based on the concept that the lowest-order
shape, of which the parity-transformed version cannot be rotated back into its original form, is a
tetrahedron. Using the final release of BOSS galaxy survey [6], the two experimental groups found
evidence of parity violation in the large-scale distribution of galaxies respectively at 7.1σ and 2.9σ
in the CMASS sample of the survey. Moreover, [2] found parity-violating signatures in the LOWZ
sample at 3.1σ. In the papers, multiple tests have been conducted to determine whether the signal
is genuine or not. These measurements are the starting point of this master’s thesis. We present in
chapter 3 the main ideas used in the analysis performed in [1] and [2].

The goal of this work is to reproduce these observations as a relic signature of parity violation that
took place in the Early Universe within the inflationary paradigm. Such parity violations can arise
as signatures of new physics in the gravitational sector, e.g. the Chern-Simons theory of gravity [7]
or the chiral scalar-tensor theories of gravity [8]. For example in the Chern-Simons modification of
gravity [7, 9], a new parity-breaking coupling term between the inflaton and the metric is introduced

Lint = f(φ)εαβρσRµναβRµνρσ, (0.2)

where φ is the inflaton and Rµναβ is the Reimann tensor.

As we have said we work in the so-called Inflationary scenario, which is a period of accelerated
expansion before the standard radiation-dominated epoch. Inflation can be achieved by employing a
scalar field, denoted as φ(t,x), which can be separated into two components: the background and the
quantum fluctuations. The behavior of the background, φ(τ), follows that of a single degree of freedom
subjected to a potential, V (φ). If the potential has a sufficiently flat region, the scalar field behaves like
a cosmological-constant like component causing the universe to pass through an accelerated expansion
phase, during which the scale factor is stretched by more than sixty e-folds. As a first approximation,
this mechanism makes today’s universe very homogeneous, isotropic, and flat. However, the inflaton
has quantum fluctuations, which got stretched and imprinted at super-horizon scales. Later, during
radiation, matter, or cosmological constant domination, they reenter the horizon and provide the seeds
for CMB anisotropies and LSS formation.

In the thesis, we review the shortcomings of the Hot Big Bang (HBB) model and their inflationary
solution. Then, we discuss the inflationary background dynamics in the case of single-field slow-roll
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model of inflation [10], and we introduce the three fundamental formalisms we use throughout this
work. The first one is perturbation theory in general relativity [11, 12] and, in this context, we focus,
particularly, on the role played by the curvature perturbation ζ in Cosmology. Then, we discuss
the so-called Arnowitt-Deser-Misner formalism (ADM) [13], which is a Hamiltonian formulation of
GR in which we can isolate the “true" dynamical variables out of the ten characterizing the metric
tensor. Finally, we present the Schwinger-Keldysh diagrammatics rules for primordial perturbations
[14], which enable us to compute primordial correlation function in the context of the In-In formalism
in the same way as S−matrix elements are evaluated using Feynmann diagrams in particle physics
and in flat space-times.

We compute the primordial power spectra for the curvature perturbation ζ and gravitation waves
(GW s) in the framework of single-field slow-roll model of inflation [15, 16] by means of perturbation
theory and ADM formalism. Then, using also the In − In formalism, we proceed to the central
calculation of this thesis work: the inflaton graviton-mediated trispectrum in theories of modified
gravity, which is the Fourier transform of the parity-violating contribution to the four-point correlation
function.

We start this analysis with the Chern-Simons theory of gravity, which is constructed as an effective
field theory (EFT ) for gravitation. Basically, we modify the standard inflationary scenario by adding
a parity-breaking term, f(φ)WW̃ , which couples a generic function of the Inflaton field with the
contraction between the Weyl tensor and its dual. Thus, we present a detailed analysis of the com-
putation of the graviton-mediated trispectrum in this model following the one presented in [9]. The
main feature of this computation is that parity violation occurs in the gravitational sector throughout
the graviton exchange between two pairs of scalars. The trispectrum violates parity since the equation
of motions (EoM) for the two chiral polarizations, left and right, of the gravitational waves (GW s)
are different. This results in a different propagator for left and right gravitons. More specifically the
EoM depends on a chirality parameter µ = H

MCS
<< 1, where H is the Hubble constant and MCS is

the scale mass of the theory. As we’ll see, the signal generated in this particular model is too weak
due to chirality suppression. The chirality parameter is taken much lower than one in order to avoid
ghost modes in the theory [9].

Therefore, we explore alternative theories where, a priori, an enhancement is feasible due to GW s
birefringence. Thus, we present an original computation of the graviton-mediated trispectrum in the
so-called chiral scalar-tensor theories of gravity [8] which are theories that extend Chern-Simons gravity
by including parity-violating operators containing first and second derivatives of the non-minimally
coupled inflaton field. For example, we consider terms such as

εµναβRαβρσRµλ
ρ
σ∇σφ∇λφ, εµναβRαβρσR

µλρσ∇ρφφµ∇σ∇λφ, (0.3)

where ∇α is the covariant derivative operator. Unfortunately, we found that no particular enhancement
is produced in this case with respect to the Chern-Simons case.

The work is organized in the following way.

Chapter one: In section 1.1 we review the most important results and concepts of the Friedmann-
Lemaître-Roberston-Walker Universe. In Section 1.2, we delve into the topic of perturbation theory
within the context of General Relativity (GR), with a detailed examination of the matter of gauge
transformations. In section 1.3 we apply what we have done in the previous section in the case of a
spatially flat FLRW metric and in 1.4 we introduce the main “character" of the thesis, i.e. the gauge-
invariant curvature perturbation on uniform energy-density hypersurfaces. The two last sections, 1.5
and 1.6, are devoted to a generic introduction to random fields in Cosmology.

Chapter two: In section 2.1 we discuss and solve throughout the Inflationary mechanism the short-
comings of the HBB model: the horizon problem in section 2.1.1, the flatness problem in section 2.1.2
and, the monopole problem in section 2.1.3. In Section 2.2, we explore the underlying dynamics of
Inflation and the concept of slow-roll approximations. In section 2.2.3, we mention something about
different models of Inflation and the cosmic no-hair principle. Then, we switch to the description
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of the quantum fluctuations of the Inflaton field. We work in the so-called Arnowitt-Deser-Misner
(ADM) which we fully discuss in appendix C.3. In section 2.3 we introduce the necessary tools to
fully derive the scalar and tensor power spectrum of primordial perturbation respectively in section
2.4 and 2.5. Then, we present a very general description, in section 2.6, of the mechanism that allows
us to relate the primordial power spectra of scalar and tensor perturbations with the ones that we can
observe today. Finally, in section 2.7 we discuss the fundamental theoretical and experimental role of
the stochastic background of GW s predicted by the Inflationary model.

Chapter three: In this chapter, we present the main ideas that are used in the analysis of the galaxy
four-point correlation function. We present a general discussion on the need to adopt the formalism
introduced in [5]. Then in section 3.1, using techniques of quantum mechanics, we discuss how to
decompose a generic isotropic function of N vector variables in a convenient orthonormal basis, which
is the one used in data analysis. In section 3.2 we show why, considering a scalar field, we need
the four-point correlation function to search for parity violation signature. In section 3.3 we briefly
introduce the algorithm used in the analysis and in the final section 3.3, we discuss the claims of
measurements of parity violation signature found in the galaxy four-point correlation function by [1]
and [2].

Chapter four: In this chapter, we summarize the standard way to deal with the In− In formalism
in section 4.1 while in section 4.2 we explain the procedure for conducting computations of primordial
correlation functions throughout Schwinger-Keldysh Diagrammatics for Primordial Perturbations [14,
17], which are the cosmological analogous to Feynman rules in quantum field theories.

Chapter five: In section 5.1 we introduce, following [18], the EFT approach to modify the inflationary
Lagrangian. In section 5.2 we discuss the parity-breaking Chern-Simons term, f(φ)WW̃ , which we
are going to consider throughout the rest of the chapter. We also show that this term doesn’t modify
the background dynamics. Then, in section 5.3 we present an extensive discussion on the spatially
flat gauge at second order. Moreover, we demonstrate that up to the first order we do not have to
modify the solution for the lapse and shift function with respect to the standard GR case even in the
presence of the parity-breaking Chern-Simons term. Then, in section 5.4 we present a very detailed
derivation of the equation of motion for the Inflaton and tensor perturbation in Fourier space. We
also discuss how to solve these equations in order to find the primordial power spectra in section 5.5.
Finally, in section 5.6 we perform the computation of the graviton-mediated trispectrum.

Chapter six: First of all, we discuss the main features of the chiral-scalar tensor theories of gravity
introduced in [19]. We observe that also in that case we do not have modification of the background
dynamics. Subsequently, we move forward to calculate the primordial power spectra for tensor and
scalar perturbations in section 6.2. Notably, similar to the Chern-Simons case, we detect modifications
in both the overall tensor power spectrum and the spectral index when compared to the standard
single-field slow-roll model of Inflation. Then, in section 6.3 and 6.4 we make an original computation
regarding the so-called graviton-mediated trispectrum. Unfortunately, we do not find any enhancement
factor with respect to the Chern-Simons case and the signal we are able to generate is too weak to
explain the claims made by [1, 2]. In the last section, 6.5, we make some comments on possible ideas
for future works.
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1 The standard cosmological model

1.1 The Friedmann-Lemaître-Roberston-Walker Universe

Modern cosmology aims to understand the history of our Universe from the beginning until today.
The publication of Einstein’s general relativity in 1915 [20, 21, 22, 23] enabled us to come up with a
testable theory of the universe. Combining notions of fundamental physics we end up considering the
so-called Hot Big Bang model which is based on the pioneering works of Friedmann [24], Lemaître[25],
Roberston [26] and Walker[27], which offers a comprehensive explanation for a broad range of observed
phenomena: the expansion of the universe discovered by the Hubble in 1929 [28], the abundance of
light elements, which goes under the name of Big Bang nucleosynthesis (BBN) made by Alpher,
Bethe, and Gamow in 1948 [29], and the cosmic microwave background (CMB) radiation discovered
by Penzias and Wilson in 1965 [30].

In making physical predictions about observables, as in all other fields of physics, we must rely on
simplifying assumptions derived from observations and intuition. First of all, the cosmic microwave
background displays a remarkable degree of isotropy, except for tiny temperature fluctuations of
approximately ∆T

T̄
∼ 10−5. When formulating the assumption of isotropy, one should stress that the

universe appears the same in all directions to a family of “privileged" observers: those at rest with
respect to the cosmic fluid. Furthermore, adopting the Copernican principle is justifiable, which posits
that Earth is not a privileged observer in the Universe. These two assumptions together lead to the
cornerstone of modern cosmology, the Cosmological principle:

Every comoving observer observes the Universe around him at a fixed time as homogeneous and
isotropic on sufficiently large scales.

In order to clarify this statement we have to make a few comments on the model used in Cosmology.
First of all, we assume that it’s possible to describe the dynamics of the universe throughout the
metric tensor of a four-dimensional Lorentzian manifold [13] with signature (1,3). Furthermore, even
if the local distribution of matter lacks homogeneity and isotropy, we idealize the real universe by
homogenizing its matter distribution and redistributing it uniformly to match the observed average
density and motion throughout. We recover isotropy and homogeneity on large scale, which are
distances bigger than 100Mpc. Subsequently, we introduce the additional assumption that the motion
and geometry of this ideally standardized model universe, influenced by its own gravitational forces,
mimic the average motion pattern and geometry observed in the actual universe. Each geometrical
point of the manifold is a potential “center" of mass of a cluster of galaxies in the real world, and it’s
imagined to carry a fundamental observer, the so-called comoving observer. These “points" correspond
to the kinematic substratum of the model and constitute the cosmic fluid. This construction allows
us to describe the background dynamics of the Universe. In order to recover the deviation from this
background we adopt perturbation theory in General relativity.

While we won’t delve into deriving the FLRW metric and its associated geometric framework, we
will discuss the fundamental properties that will be employed in this thesis.

As stated in the Cosmological principle, the concept of homogeneity and isotropy remain valid at a
fixed time, this implies that the universe exhibits spatial homogeneity and isotropy. For example,
translational symmetry over time is absent due to the expansion of the Universe. Thus the manifold
can be foliated as R × Σ, where Σ are spatially hypersurfaces that due to the homogeneity and
isotropy assumptions are maximally symmetric spaces [31]. R represents the time direction, and the
time variable associated is also called cosmic time since every comoving observer measures the same
proper time. Roughly speaking spatial homogeneity and isotropy imply that every point in Σ is the
equivalent and there are no privileged directions. It’s possible to provide a more formal definition of
these concepts using differential geometry and group theory as done in [31]. The most general metric
tensor satisfying these hypotheses is the FLRW one

ds2 = −dt2 + a2(t)

(
dr2

1− κr2
+ r2dΩ2

)
, (1.1)
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where dΩ2 = dθ2 + sin2 θdφ2 is the line element of a 2−sphere and we have used polar coordinates
(r, θ, φ), which are also called comoving coordinates since they specify the so-called comoving distance
between points in the manifold as shown in the figure. κ can be normalized to take the following
values

κ =


+1 spherical
0 Euclidean
−1 hyperspherical

. (1.2)

In what follows, according to Planck data [32] we take κ = 0, thus we assume that the hypersurfaces
are spatially flat. In eq.(1.1) a(t) is the Robertson-Walker scale factor which is the dynamical variable
in the tensor metric. Friedmann [24] and Lemaître [25] originally discovered the metric tensor of
eq.(1.1) but Robertson [26] and [27] showed that this is the most general metric tensor satisfying
spatial homogeneity and isotropy.

There are other two important coordinate transformations that are often used in cosmology. The first
one is the switching to confomal time defined as

dτ =
dt

a(t)
, (1.3)

which allows us to put the metric as

ds2 = a2(τ)
(
−dτ2 + dx2 + dy2 + dz2

)
, (1.4)

which is conformal to the Minkowski metric (see [13] for conformal transformation). The other one,
which makes sense only if κ 6= 0, is the one with which the metric becomes

ds2 = −dt2 + a2(t)
(
dχ2 + S2

κ(χ)dΩ
2
)
, (1.5)

where we have used that

dχ =
dr√

1− κr2
, Sκ(χ) =


sinχ κ = +1

χ κ = 0

sinhχ κ = −1

. (1.6)

In what we have discussed we have adopted natural units c = } = 1, and in what follows sometimes
we’ll also use Mpl =

√
8πG

−1
= 1.

1.1.1 The background dynamics

The dynamic of an expanding Universe is described by Einstein’s field equations

Gµν = Rµν −
R

2
gµν = 8πGTµν , (1.7)

where Gµν is the Einstein’s tensor, while

Rµν = ∂αΓ
α
µν − ∂µΓ

α
αν + ΓαβνΓ

β
αµ − ΓαµνΓ

β
βα, (1.8)

R = gµνRµν , (1.9)

are respectively the Ricci tensor and scalar in the convection we adopted1 defined as functions of the
Christoffel symbols

Γαµν =
gαλ

2
(gµλ,ν + gνλ,µ − gµν,λ) . (1.10)

1Different signs’ convection are present in the literature.
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While in section 1.1 we have discussed the metric tensor which allows us to evaluate the LHS of
eq.(1.7), in order to compute the RHS we need to specify the explicit form for the energy-stress
tensor. Accordingly, for isotropy and homogeneity, we can’t have off-diagonal components and the
spatial components must be equal. Thus, the most simple form satisfying these requirements is the
energy-stress tensor of a perfect fluid

Tµν = (ρ+ p)uµuν + pδνµ = diag(−ρ, p, p, p), (1.11)

where ρ is the energy density of the fluid, p is the pressure of the fluid while uµ = (1, 0, 0, 0) is the
four-velocity of the cosmological fluid. Now plug in the metric and energy-stress tensor in eq.(1.7) to
obtain the Friedmann equations [33]

H2 =
8πG

3
ρ− k

a2
(1.12)

ä

a
= −4πG

3
(ρ+ 3p), (1.13)

where H = ȧ
a is the Hubble constant, which is called “constant" since it doesn’t depend on the space

variables. Now using the Bianchi identity we can write the continuity equation

∇αTαβ = 0, (1.14)

which in the case of FLRW cosmology gives

ρ̇ = −3H(ρ+ p). (1.15)

This equation doesn’t add information since it can be derived from eq.(1.12) and (1.13). Thus, our
variables are ρ, p and a(t) and we have two equations. In order to solve the system we specify the
equation of state (EoS) for the cosmic fluid and we adopt a barotropic EoS, which is

p = wρ, w 6= w(t, x, y, z). (1.16)

In this way, it’s possible to completely describe the dynamic of a spatially flat Universe. In fact from
eq.(1.15) we get

ρ = ρ0

(
a(t)

a0

)−3(1+w)

, (1.17)

where the subscript specifies the quantities evaluated at the present time. Plugging this in eq.(1.12)
we get

a(t) = a0


(
t
t0

) 2
3(1+w)

w 6= −1

eH(t−t0) w = −1
. (1.18)

Now we have to comment on the possible values that w can assume and their physical interpretations:

• w = 0 describes pressureless matter as dark matter and non-relativistic matter. In this case we
have 

ρ ∝ a−3

a ∝ t
2
3

H = 2
3t

. (1.19)

The energy density gets diluted basically because since the universe expands and the volume
goes as V ∝ a−3.
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• w = 1
3 describes radiation and we get 

ρ ∝ a−4

a ∝ t
1
2

H = 1
2t

, (1.20)

where the energy density gets an extra contribution with respect to the w = 0 case since the
radiation frequency is redshifted.

• w = −1
3 doesn’t correspond to any particular state of matter but it’s an important point since

it’s the turning point for the second derivative of a(t), see eq.(1.13). If w < −1
3 the universe

goes under a phase of accelerated expansion which can not be driven by ordinary matter, i.e.
photons or baryonic matter.

• w = −1 corresponds to a dark energy contribution which leads to an exponential expansion since
ρ = const

a ∝ eHt

H = const

, (1.21)

which corresponds to the so-called de-Sitter stage. This is as a first approximation of what is
used to describe the background dynamics characterizing Inflation.

1.1.2 The Hubble radius and cosmological horizon

In this section, we discuss the issue of cosmological horizons and the Hubble radius. The latter is a
fundamental quantity which we’ll use throughout the rest of this work and is defined as in [34]:

The Hubble radius is the maximum distance over which particles can travel in the course of one
expansion time.

Thus, the Hubble radius in natural units is defined as

Rc(t) ≡
c

H
=

1

H
, (1.22)

which describes the maximum distance since anything can travel faster than light. 1
H is the character-

istic scale time that describes the evolution of the Universe so we expect light to travel a distance 1
H

in a characteristic expansion time. Thus, the Hubble radius allows us to understand at a given time
in the history of the Universe on what scales information can be exchanged. If the distance between
two points is larger than the Hubble radius they cannot exchange information at the particular time
we are considering. Otherwise, they are causally disconnected. We can also introduce the comoving
Hubble radius as

rc(t) =
1

aH
. (1.23)

In the following, we’ll frequently use that a given comoving scale λ or the associated wave vector
| k |= 2π

λ “enters" or “exits" the Horizon. We say that

1

k
<

1

aH
the scale is sub-horizon, (1.24)

1

k
>

1

aH
the scale is super-horizon, (1.25)

1

k
=

1

aH
the scale is at horizon’s exit or entrance. (1.26)

In the FLRW Universe the Hubble radius reads

Rc(t) =
1

H
=

{
3(1+w)t

2 w 6= −1

const w = −1
(1.27)
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To conclude this section we discuss the issue of horizons in Cosmology. We introduce the concept of
particle’s horizon in the FLRW universe with line element as in eq.(1.5)

ds2 = −dt2 + a2(t)
[
dχ2 + S2

k(χ)dΩ
]
. (1.28)

If the model has a beginning time (take tbeginning = 0 for simplicity) we can introduce the maximum
distance over which “information" could have traveled, which is one of light signals. Considering radial
geodesic light motion we have that ds2 = dΩ = 0, thus we get the following differential equation

dt

a(t)
= ±dχ, (1.29)

where, the choice of ± depends on the interval of integration. Specifically, if we integrate from (t1, r1)
to (t2 > t1, r2 > r1) or (t2 < t1, r2 < r1), we use the plus sign; otherwise, we use the minus sign. By
integrating from (t = 0, χ(r)) to the origin of the polar coordinate system we are adopting, where, due
to homogeneity, we put ourselves as observers (t, χ(0)), we arrive at∫ t

0

dt̃

a(t̃)
= χ(r). (1.30)

Thus, using eq.(1.6), we obtain the so-called comoving particle’s horizon

dH(t) = Sκ

[∫ t

0

dt̃

a(t̃)

]
, (1.31)

while its physical version, the particle’s horizon, we have

DH(t) = a(t)Sκ

[∫ t

0

dt̃

a(t̃)

]
= a(t)

[∫ t

0

dt̃

a(t̃)

]
, (1.32)

where in the last passage we have set κ = 0. Now in a Friedmann Universe, we have with w 6= −1

a(t) ∝ tα, α =
2

3(1 + w)
, DH(t) =

3(1 + w)

(1 + 3w)
t, (1.33)

from which, since 1
H = 2

3(1+w)t , we get

DH(t) ∼ Rc(t). (1.34)

Nevertheless, these two quantities possess fundamentally distinct conceptual natures. Specifically, the
particle’s horizon encompasses the entire past history of the Universe, whereas the Hubble radius
characterizes the Universe at a specific moment in its evolutionary timeline. Another way to see this
is that

dH(t) =

∫ t

0

dt̃

a(t̃)
=

∫ a(t)

0

da

a2H
=

∫ a(t)

0
d ln a[rc], (1.35)

which states that the particle’s horizon is the logarithmic integral of the Hubble radius. This is another
way to say that the Hubble radius is local (with respect to time) properties while the particle’s horizon
encompasses all the past history of the Universe. We mention that if the model has an ending time
there is another kind of horizon which we are not going to discuss since we do not use it in this work,
see [35] for a complete discussion about this point.

1.2 Perturbation theory

As previously discussed in the preceding section, the FLRW model serves as an approximation for the
overall evolution of the Universe. However, when aiming to account for deviations from homogeneity
and isotropy, we must turn to a perturbation approach. This becomes absolutely essential when
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Figure 1: φ :M0 →Mp

analyzing the anisotropies in the Cosmic Microwave Background (CMB) and the formation of large-
scale structures (LSS).

Within the realm of General Relativity (GR), only a handful of exact solutions to Einstein’s field equa-
tions exist, and these solutions often prove to be excessively idealized for capturing the complexities
of natural phenomena. Consequently, the perturbative approach stands as an essential tool. Thus,
we introduce two differential manifolds: the physical space Mp and background one M0. Roughly
speaking the perturbation in some tensor T is defined as the “difference" between the tensor in Mp

and the one in M0. However, within the context of differential geometry, the comparison of tensors
is meaningful when they are evaluated at the same point within a given manifold. Thus, we need to
introduce a diffeomorphism φ : M0 → Mp which identifies points of the physical space with points
of the background as shown in figure 1. The “gauge" issue becomes apparent as there is no reason
for favoring one diffeomorphism over another. The choice of the diffeomorphism represents the gauge
problem.

After an intuitive explanation of why gauge problems arise in the theory of perturbations, we tackle
the problem in a formal way as presented in [11, 12]. We introduce a family of space-times model

{Mλ} ≡ {(M, gλ, τλ)}, (1.36)

where M is a four-dimensional Lorentzian manifold2, gλ is the tensor metric and τλ are generic matter
fields, which satisfies EFE, i.e.

ε{gλ, τλ} = 0, (1.37)

where ε represents Einstein’s field equations. Then, we assume that {M, g0, τ0} represents the back-
ground around which we want to expand and we also take as a hypothesis that gλ and τλ are smooth
in λ. As we’ll see λ is the expansion parameter for the metric and stress-energy tensor and it’s the
same that labels the family of space-times models we have introduced. Basically, we can think of the
leaves Mλ as the space-times where the quantities are of order λ.

The most natural way to study the problem is introducing a five-dimensional manifold,

N = R×M (1.38)

which can be foliated by submanifolds diffeomorphic to M, figure 2. We can introduce a chart in
which xµ(µ = 0, 1, 2, 3) are coordinates on each Mλ, and x4 = λ. Now, given a tensor field Tλ defined
on each Mλ we can automatically define the tensor field on N as

T (p, λ) := Tλ(p), p ∈ Mλ, (1.39)
2This is not essential but we directly specialize to the case of interest.
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Figure 2: The manifold N.

where P is a point in M. While if we have a tensor defined on N we can define its restriction on each
leaf inverting what we have written above.

Now, in order to define the perturbations in some quantity we need to introduce a way to compare
tensors between each leaf and the zero-order version in M0. Thus we introduce a generic vector field
X which is smooth, i.e.there exist the integral curves, and X4 = 1. The latter condition assures that
X has always a component perpendicular to each leaf in such a way that the integral curves of X

induce ∀λ a diffeomorphism between M0 and Mλ. The numerical value is completely irrelevant for
our purpose so we put it to one as done in [11]. So we have introduced a one-parameter group of
diffeomorphism which we call

Ψλ : N → N, (1.40)

which have ∀λ we have an associated diffeomorfism

Ψλ|M0
: M0 → Mλ. (1.41)

In this way, we can compare tensor in Mλ and M0 using the pullback operation. Thus we define the
perturbation in some tensor T , defined on N, as

∆Tλ := Ψ∗
λT |M0

− T0, (1.42)

where T0 is the tensor evaluated on the background while Ψ∗
λT |M0

is the pull back of T using Ψλ.
Since everything is smooth we can write

∆Tλ = Ψ∗
λT |M0

− T0 =
+∞∑
k=1

λk

k!
δkT, δkT :=

dk

dλk
Ψ∗
λT |λ=0,M0

. (1.43)

This expression highlights two significant characteristics. The first one underscores that the perturba-
tions remain defined on the background space-time throughout the pullback operation. Furthermore,
if we can interpret λ as a perturbative parameter, we gain clarity on the notion of perturbation of the
λth order.

1.2.1 Gauge transformations

At this point, we can delve into the matter of gauge transformations as presented in [11]. As we
previously mentioned, there exists no inherent justification for favoring one vector field over another3.

3In literature authors also indicate the vector field itself as the gauge.
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This liberty in selecting the diffeomorphism is at the heart of the gauge issue. Our goal is to understand
how perturbations behave under a gauge transformation and to determine the authentic physical
degrees of freedom that come into play when we perturb the space-time of interest. Thus, let’s take
two smooth vector fields X and Y such that X4 = Y4 = 1. If we fixed λ the integral curves of X and Y

define two diffeomorphisms

φλ|M0
: M0 → Mλ (1.44)

ψλ|M0
: M0 → Mλ (1.45)

as represented in figure 3. Now given a generic tensor field T defined on N we can define its pulled-back

Figure 3: φ :M0 →Mp

version evaluated on M0 with the associated perturbations according to φλ and ψλ (where we omit
the subscript because it’s irrelevant in what we are going to discuss)

TX
λ := ψ∗

λT |0 =
+∞∑
k=0

λk

k!
£k

XT

∣∣∣∣∣
0

= T0 +∆ψTX, (1.46)

T Y
λ := φ∗λT |0 =

+∞∑
k=0

λk

k!
£k

YT

∣∣∣∣∣
0

= T0 +∆φTY, (1.47)

where the we have replaced M0 with 0 for notational clarity, we have used theorem A.1 presented in
appendix A.4 and where £k

X = £X ◦ .. ◦£X. Now we want to understand how the different definitions
of the perturbations of the tensor T are related. As we have previously said the perturbations we
have written, eq.(1.46) and (1.47), correspond to the perturbations in two different gauges since they
are obtained using the two diffeomorphisms of eq.(1.44) and (1.45). As shown in figure 3 we have a
natural way of describing how the perturbations are related by introducing

Φλ = φ−1
λ ◦ ψλ : M0 → M0, (1.48)

which is a one-parameter family of diffeomorphism on M0. Thus, we can write

T Y
λ = ψ∗

λT |M0
=
(
ψ∗
λφ

∗
−λφ

∗
λ

)
T
∣∣
M0

= (φ−λ ◦ ψλ)∗ φ∗λT |M0
= Φ∗

λT
X
λ . (1.49)

Now, according to theorem A.2 we can decompose Φλ using a family of knight diffeomorphism with
generator ξ(1), .., ξ(k), ... These smooth vector fields have an associated flow, χ(1), .., χ(k), .., which are
simply the one-parameter group associated with their integral curves. Thus, we can write

Φλ = .. ◦ χ(k)
λk

k!

◦ .. ◦ φ(2)
λ2

2

◦ φ(1)λ , (1.50)

where the subscripts specify the parameter associated with the relative one-parameter group of dif-
feomorphism. Now, using theorem A.3 we get

T Y
λ = Φ∗

λT
X
λ =

+∞∑
l1=0

+∞∑
l2=0

..

+∞∑
lk=0

..
λl1+2l2+..+klk+..

2l2 ..(k!)lk ..l1!l2!..lk!..
£
ζ
l1
(1)

..£
ζ
lk
(k)

..TX
λ . (1.51)

18



Now we can get order by order the transformation rules. For example up to second order we get

T0 + λ£(Y)T
∣∣
0
+
λ2

2
£2

Y

∣∣∣∣
0

=

[
T0λ £(X)T

∣∣
0
+
λ2

2
£2

Y

∣∣∣∣
0

]
+

[
λ£ξ(1) +

λ2

2

(
£2
ξ(1)

+£ξ(2)

)] [
T0λ £(X)T

∣∣
0
+
λ2

2
£2

Y

∣∣∣∣
0

]
,

(1.52)

where the subscript 0 is an abbreviation for M0. Now, using what we have introduced in eq.(1.43) we
can write

δT
(1)
Y = δT

(1)
X +£ξ(1)T0, (1.53)

δT
(2)
Y = δT

(2)
X +

[
£2
ξ(1)

+£ξ(2)

]
T0 + 2£ξ(1)δT

(1)
X . (1.54)

In general, λ is set to 1 and we interpret the component of ξ(k) as of the kth order.

The situation resembles a scenario in which we have a contravariant tensor field C defined on a general
manifold K, along with a diffeomorphism ζ : K → K. We are faced with the inquiry of how the tensor
changes under this diffeomorphism. To define the “new" tensor, we can either pull back the original
tensor using the diffeomorphism or push forward it via the inverse map. In order to draw a comparison
between these two tensor fields, let’s consider a point P and its corresponding image Q ≡ ζ(P ). At
point P , we have the initial tensor C(P ), and the pullback of the original tensor in Q evaluated in P ,
denoted as ζ∗C|P . In this way, we can compare the two tensor fields at the same point.

Analogously, in the context of gauge transformations, we find ourselves in a similar scenario. We can
conceptualize the two gauges as the original tensor and its pullback counterpart in the aforementioned
example. In the pursuit of gauge transformation, we are in search of the connection between these
two gauges. This linkage is established by the diffeomorphism of eq.(1.48).

This approach is called active since we have a map that “moves" points on the background as shown
in figure 3. However, it’s possible to work using coordinates in the so-called passive approach [11] but
we do not touch this point since what is presented is fully consistent and coordinate-independent.

1.3 Cosmological perturbation

In cosmology, as mentioned in section 1.1 we can work with a spatially flat Robertson-Walker back-
ground. Adopting conformal time we now can perturb the background as

g00 = −a2(τ)

(
1 + 2

+∞∑
r=1

ψ(r)

r!

)
, (1.55)

g0i = a2(τ)
+∞∑
r=1

w
(r)
i

r!
, (1.56)

gij = a2(τ)

[(
1− 2

+∞∑
r=1

φ(r)

r!

)
δij +

+∞∑
r=1

χ
(r)
ij

r!

]
, (1.57)

where we have used Latin indices to label spatial components and where χii = 0. It’s standard to
split vectors and traceless tensors using a generalization of the Helmholtz theorem [36]. In our case
each order of the shift function g0i can be written as

w
(r)
i = ∂iw

(r)|| + w
(r)⊥
i , ∂iw

(r)⊥
i = 0. (1.58)

While the traceless part of the spatial metric can be written as

χ
(r)
ij = Dijχ

(r)|| + ∂iχ
(r)⊥
j + ∂jχ

(r)⊥
i + χ

(r)T
ij , (1.59)

where we have

Dij = ∂i∂j −
δij
3
∇2, ∂iχ

(r)⊥
i = 0, ∂iχ

(r)T
ij = 0, χ(r)T i

i = 0. (1.60)
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To consistently introduce perturbations to Einstein’s field equations, it is imperative to also address
the perturbation of the stress-energy tensor. In the context of a fluid, this can be expressed in its
most general form [37] as

Tµν = (ρ+ p)uµuν + pgµν +Πµν , (1.61)

where ρ and p are the energy density and the pressure, uµ is the four-velocity while Πµν is the
anisotropic stress tensor which is subjected to

Πµµ = 0, uµΠµν = 0. (1.62)

In the case of a perfect fluid or a scalar field Πµν = 0. Now in order to perturb it we have to perturb
each quantity in eq.(1.61). Now, regarding perturbations of the stress-energy tensor we can summarize
the results as

• The energy density is a scalar and we can perturb it as

ρ = ρ0 +
+∞∑
r=1

δrρ

r!
, (1.63)

where r specifies the perturbation order. In Cosmology often the so-called overdensity matter
field is used and it’s defined as

δ ≡ ρ(τ,x)− ρ0(τ)

ρ0(τ)
. (1.64)

• Concerning the pressure, which, when it comes to rotations, is also scalar, we can write

(1.65)

p = p0 +
+∞∑
r=1

δrp

r!
. (1.66)

The pressure is assumed to be linked to the energy density through the EoS,

p = p(ρ, S), (1.67)

where S is the entropy. Thus a perturbation in the pressure can always be written as

δp =
∂p

∂ρ

∣∣∣∣
S

δρ+
∂p

∂S

∣∣∣∣
ρ

δS = c2sδρ+
∂p

∂S

∣∣∣∣
ρ

δS, (1.68)

where cs is the sound speed and where the second term is always called a non-adiabatic pertur-
bation.

• The four-velocity it’s generally perturbed as

uµ =
1

a

(
δµ0 +

+∞∑
r=1

vµ(r)

r!

)
, (1.69)

where we have to remember that uµuµ = −1; thus at any order the velocity perturbation it’s
linked to the lapse perturbation, ψ(r). Moreover, the usual decomposition in scalar and vector
is adopted for the spatial component of the four-velocity

vi(r) = ∂iv
||
(r) + vi(r)⊥. (1.70)
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• The tensor of anisotropic stress solely possesses spatial components, with Π0µ = 0 [37].
Thus, we can write as

Πij =

+∞∑
r=0

Π
(r)
ij , (1.71)

and we can use the same decomposition adopted for the spatial metric

Π
(r)
ij = Dijχ

(r)|| + ∂iχ
(r)⊥
j + ∂jχ

(r)⊥
i + χ

(r)T
ij . (1.72)

We will abstain from deriving the perturbed form of Einstein’s equation, as their use will be confined
to section 1.4. The results in the case of minimally coupled scalar field are reported in [10]. In the rest
of the thesis, we’ll work directly at the Lagrangian level and we’ll derive the EoM using a variational
principle (we will also adopt the notation introduced in [13]).

1.3.1 Gauge transformations and cosmological gauges at first order

Within this section, we explore several aspects of cosmological gauges and discuss the procedure of
gauge-fixing at the first order, offering insights into the methodology. Subsequently, in section 5.3,
we will extend our analysis to the second order for the two gauges employed in calculating the scalar
trispectrum graviton-mediated within the context of theories of modified gravity.

At first order, the metric tensor has the following components

g00 = −a2(τ)
(
1 + 2ψ(1)

)
, (1.73)

g0i = a2(τ)w
(1)
i , (1.74)

gij = a2(τ)
[(

1− 2φ(1)
)
δij + χ

(1)
ij

]
, (1.75)

while regarding the stress-energy tensor at first order we get [37]

T 0
0 = −

(
ρ(0) + δ(1)ρ

)
, (1.76)

T i0 = −
(
ρ(0) + p(0)

)
vi(1), (1.77)

T 0
i =

(
w

(1)
i + v

(1)
i

) (
ρ(0) + p(0)

)
, (1.78)

T ij =
(
p(0) + δ(1)p

)
+ p0Π

i
j
(1). (1.79)

(1.80)

Now, given the perturbation in two gauges,
{
g̃
(1)
µν , δT̃µν

}
and

{
g
(1)
µν , δTµν

}
, we have that they are

related according to eq.(1.53)

g̃(1)µν = g(1)µν +£ζ(1)g
(0)
µν , (1.81)

δT̃ (1)
µν = T (1)

µν +£ζ(1)T
(0)
µν , (1.82)

where ζµ(1) denotes a smooth vector field characterized by components of first-order and where we have
defined δTµν ≡ Tµν ≡ −Tµ(0)ν . It’s customary to decompose ζ(1) in two scalars and one divergence-free
vector as

ζ0(1) = α(1) (1.83)
ζi(1) = ∂iβ(1) + di⊥(1), ∂id

i⊥
(1) = 0. (1.84)
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At each order, this vector decomposition linked to the gauge transformation is commonly utilized
[11, 12]. Now, in order to establish the gauge transformation rules for the quantities we have defined
in the metric, we have to compute the Lie derivative of the background metric [38]

£g(0)µν = ∇µζ
(1)
ν +∇νζ

(1)
µ , (1.85)

which in components reads

£g
(0)
00 = −2a(τ)a

′
(τ)α(1) − 2a2(τ)α

′
(τ), (1.86)

£g
(0)
0i = a2(τ)

(
∂β

′

(1) + d
(1)⊥
i

′
)
− a2(τ)∂iα(1), (1.87)

£g
(0)
ij = a2(τ)

[
∂i

(
∂jβ(1) + d

(1)⊥
j

)
+ ∂j

(
∂iβ(1) + d

(1)⊥
i

)]
+ 2a(τ)a

′
(τ)αδij , (1.88)

where ′ is the derivative with respect to conformal time, i.e. d
dτ . Thus, we get the linear transformation

rules at first order [11]

ψ̃(1) = ψ(1) + α
′

(1) +
a
′

a
α(1) (1.89)

w̃(1)|| = w(1)|| + β
′

(1) − α(1), w̃
(1)⊥
i = w

(1)⊥
i + d

(1)⊥
i

′
, (1.90)

φ̃(1) = φ(1) − 1

3
∇2β(1) − a

′

a
α(1), (1.91)

χ̃(1)|| = χ(1)|| + 2β(1), χ̃
(1)⊥
i = χ

(1)⊥
i + d

(1)⊥
i , χ̃Tij = χTij , (1.92)

from which we immediately realize that tensors are gauge invariant at first order.

For the energy-momentum tensor, we have to compute the Lie derivative of its background version,
which in components reads

£ζ(1)T
0
(0)0 = −αρ′

, (1.93)

£ζ(1)T
0
(0)0 =

(
∂iβ(1) + di⊥(1)

)′ (
ρ(0) + p(0)

)
, (1.94)

£ζ(1)T
0
(0)i = −

(
ρ(0) + p(0)

)
∂iα(1), (1.95)

£ζ(1)T
i
(0)j = αp

′
0δ
i
j . (1.96)

Thus, we can easily deduce the gauge transformation rules for the quantities we have introduced in
perturbing the stress-energy tensor

δ(1)ρ̃ = δ(1)ρ+ α(1), ṽi(1) = vi(1) −
(
∂iβ(1) + di⊥(1)

)′

(1.97)

δp̃(1) = δp(1) + αp
′
0, Π̃i(1)j = Πi(1)j . (1.98)

Presently, when considering gauge fixing, the question arises whether it is possible to pass from a
completely arbitrary gauge to the desired one. We will illustrate this process for a specific gauge,
while for the other gauges, we will solely present the outcome. Basically, since we have two scalars
and one vector in ζ(1) we can set to zero two scalars and one vector in metric perturbations. We
provide a brief overview of the most frequently employed gauge choices in Cosmology without a deep
analysis of their specific physical properties.

• Poisson gauge
It’s defined by the following conditions

w(1)|| = 0, , χ(1)|| = 0, χ
(1)||
i = 0. (1.99)
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Now, in order to verify that we can impose this gauge we have to start from an arbitrary gauge,
i.e. δgµν , and verify if we can achieve what we have written. Thus, in the “new" gauge, g̃µν , we
wonder if we can impose 

w̃(1)|| = 0

χ̃(1)|| = 0

χ̃
(1)⊥
i = 0

. (1.100)

Using the gauge transformation rules we arrive at the following system of equations

0 = w(1)|| + β
′

(1) − α(1), (1.101)

0 = χ(1)|| + 2β(1), (1.102)

0 = χ
(1)⊥
i + d

(1)⊥
i , (1.103)

which it’s algebraic and can be solved in order to find α(1), β(1), d
(1)⊥
i . Thus, starting from a

very general gauge we can always arrive at the Poisson gauge setting particular values for the
components of ζ(1).

• Synchronous and time-orthogonal gauge
It’s defined by the following conditions

ψ̃(1) = 0, w̃(1)|| = 0, w̃
(1)||
i = 0. (1.104)

This gauge is plagued by residual gauge freedoms and is referred to as the synchronous gauge,
as the proper time measured by an observer at rest relative to the spatial coordinates it’s equal
and corresponds to the unperturbed proper time of a Robertson-Walker universe.

• Comoving gauge
The conditions we impose are

v(1)|| = 0, v
(1)⊥
i = 0, w(1)|| = 0. (1.105)

This gauge is called comoving since we do not have any spatial components of the perturbed
four-velocity.

• Spatially-flat gauge
In this case, we set to zero the scalars and vectors of the perturbed spatial part of the metric,
i.e.

φ(1) = 0, χ(1)|| = 0, χ
(1)⊥
i = 0. (1.106)

This is called spatially flat gauge since the Ricci scalar on the spatial hypersurface is zero. It’s
possible to show that [37]

(3)R =
6κ

a2
+

12κ

a2
φ̂(1) +

4

a2
∇2φ̂(1), (1.107)

where κ is the curvature constant and φ̂(1) = φ(1)+
∇2χ(1)||

6 . In the case of a spatially flat universe
and, from φ̂(1) = 0 we immediately get a vanishing Ricci scalar on the spatial hypersurfaces.

• Uniform energy density gauge
This gauge is defined simply by setting

δ(1)ρ = 0, (1.108)

without specifying any other conditions.
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1.4 The gauge invariant curvature perturbation

In this section, we present the gauge-invariant curvature perturbation known as ζ. Firstly, we em-
phasize that a gauge-invariant quantity remains unchanged under a gauge transformation. Various
examples of this concept exist, including the Bardeen gauge-invariant potentials [39]. As previously
mentioned, tensors also maintain gauge invariance at the first order. ζ is defined as

ζ ≡ −φ̂(1) −
a
′

a

δ(1)ρ

ρ
′
0

, (1.109)

which is gauge invariant since

˜̂
φ(1) = φ̂(1) −

a
′

a
α(1), (1.110)

δ(1)ρ̃ = δ(1)ρ+ α(1)ρ
′

(0). (1.111)

It is alternatively referred to as the gauge-invariant curvature perturbation on the uniform energy-
density hypersurfaces, as it takes on a resemblance to the Ricci scalar on spatial hypersurfaces when
considering the uniform density gauge (δ(1)ρ = 0). In fact, the Ricci scalar on three-dimensional
hypersurfaces can be computed [37, 10] as

(3)R =
4

a2
∇2φ̂(1). (1.112)

This quantity is crucial in inflationary computations since it’s conserved on super-horizon scales. In
fact, the energy conservation equation at first order for scalar quantities reads [10]

δ(1)ρ
′
+ 3

a
′

a

(
δ(1)ρ+ δ(1)p

)
− 3 (ρ0 + p0) φ̂

′

(1) + (ρ0 + p0)∇2(V (1) + σ(1)) = 0, (1.113)

where V (1) ≡ v(1)|| +w(1)|| and σ ≡ χ||′

2 −w||. The last term on super-horizon scales can be neglected
and, adopting the uniform density gauge, we get

a
′

a
δ(1)p− (ρ0 + p0) φ̂

′

(1) = 0. (1.114)

Now, in this gauge, we have φ̂(1) = −ζ and we also can split the pressure perturbation in an adiabatic
contribution and in a non-adiabatic part, δ(1)p = c2sδ

(1)ρ+ δ(1)pn−a. Finally, we can write

ζ
′
= −a

′

a

δ(1)pn−a
ρ0 + p0

. (1.115)

Now, it’s possible to show that, in the case of single-field of slow-roll inflation δ(1)p ∝ k2

a2
ΦH , which

goes to zero on super-horizon scales and where 2ΦH ≡ −2φ(1) − 1
3∇

2χ|| + 2a
′

a w
|| − a

′

a χ
||′ is one of the

Bardeen gravitational potential [39]. Thus, we have that on super-horizon scales the gauge invariant
curvature perturbation on uniform energy-density hypersurfaces it’s conserved.

1.5 Random fields and correlation functions

We conclude this chapter with a brief introduction to the concept of random fields and correlation
functions and their application in Cosmology. First of all, we start by introducing some general
concepts in a D−dimensional Euclidean manifold, and then in section 1.6 we generalize them to the
spatially-flat FLRW case.

Random fields are ubiquitous in physics and the most powerful tool for their analysis is the set of N -
point correlation functions (hereafter NPCF s). Analyses with NPCF s are widely used in different
fields [40]: molecular physics [41], materials science [42], field theory [43], diffusive systems [44],
statistical mechanics [45] and Cosmology [5].
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Now, building upon the works of [40] and [33], we introduce the formal concept of correlation functions
in RD.

Let φ(x) : RD −→ R denote a random real scalar field dependent on D-dimensional Euclidean coor-
dinates x. Here, x represents a D-dimensional vector that signifies the absolute position of a specific
point in RD. Formally the N -point correlation functions are defined as{

ζ : (RD)⊗N 7−→ R,

ζ(r1, .., rN−1, s) = 〈φ(s), φ(s+ r1, .., φ(rN−1 + s)〉,
(1.116)

where s, r1, .., rN−1 indicates absolute and relative positions, ⊗ stands for tensor product and 〈..〉
is the ensemble average, i.e. the statistical average over realizations of φ. Ideally, we should have
K 7−→ ∞ of realizations of the same process and the ensemble average consists of a statistical average
over the K copies. For a random field, we can think of a realization as the determination of the scalar
field’s value at every point within RD. In general, we don’t have access to K 7−→ ∞ copies of the
process we are considering. For example in cosmology, the universe is assumed to be an isotropic and
homogeneous random process [46] (see section 1.6); i.e. fields, such as the overdensity matter field
δ, are stochastic, homogeneous and isotropic fields. The problem is that we don’t have other copies
of the universe over which we can average. However, under suitable hypotheses, we can apply the
Ergodic theorem, eq.(1.122), to evaluate the NPCF s using spatial averages.

We conclude this section by introducing some basic concepts about random fields and proving the Er-
godic theorem, which will be useful in constructing the galaxy four-point correlation function estimator
(section 3.3). We note that the definition of correlation functions has the potential for generalization in
both Euclidean and Riemannian manifolds. However, since we adopt R3 as a simplified representation
of the low-redshift universe in section 3 and a flat Friedmann-Lemaître-Robertson-Walker (FLRW )
universe in section 1.6, our focus lies elsewhere and we do not delve into this generalization.

Presently, we formally introduce the notions of a Gaussian field, as well as a homogeneous and isotropic
field. Consider a random field φ(x) : RD 7−→ R depending on a D-dimensional Euclidean coordinate
x and let’s take 〈φ(x)〉 = 0. The distribution function governing φ(x) is said to be Gaussian if:

〈φ(x1), .., φ(xN )〉 = 0 if N is odd, (1.117)

〈φ(x1), .., φ(xN )〉 =
∑

pairings

∏
pairs

〈φφ〉 if N is even, (1.118)

with the sum over pairings not distinguishing those that interchange coordinates in a pair, or which
merely interchange pairs. For example, the four-point correlation function becomes

〈φ(x1), φ(x2), φ(x3), φ(x4)〉 = 〈φ(x1), φ(x2)〉〈φ(x3), φ(x4)〉+
〈φ(x1), φ(x3)〉〈φ(x2), φ(x4)〉+ 〈φ(x1), φ(x4)〉〈φ(x2), φ(x3)〉. (1.119)

In a path integral formulation of correlation functions for random fields, we mention that the proba-
bility density functional (PDF ) for a Gaussian random field is a Gaussian.

The random field we have introduced is said to be statistically homogeneous if

∀N ∈ N, ∀z ∈ RD ζ(r1 + z, .., rN + z) = ζ(r1, .., rN ), (1.120)

while is statistically isotropic if

∀R̂ ∈ SO(D) ζ(R̂r1, .., R̂rN ) = ζ(r1, .., rN ), (1.121)

where SO(D) ≡ {O ∈ matD×D(R) | OTO = OOT = I}.

We conclude this section by proving the Ergodic theorem in the case of a homogeneous field as stated
in Weinberg’s book ([33]).
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Theorem 1.1 (Ergodic Theorem). Consider a homogeneous random field φ(x) : RD 7−→ R depending
on a D-dimensional Euclidean coordinate x. Let’s take that φs at distant arguments are uncorrelated,
i.e.

u ∈ R,〈φ(x1 + u)φ(x2 + u)..φ(y1 − u)φ(y2 − u)..〉 |u| 7−→ ∞−−−−−−→ 〈φ(x1 + u)φ(x2 + u)..〉〈φ(y1 − u)φ(y2 − u)..〉.
(1.122)

If the limit in eq.(1.122) is approached sufficiently rapidly, then the root mean square difference between
any product φ(x1 + z)φ(x2 + z)... , averaged over a range R of z values around an arbitrary point z0,
and the ensemble average of the same product vanishes as R−D

2 for large R. That is if we define

∆2
R(x1, x2, ..) = 〈

[(∫
dDzNR(z)φ(x1 + z)φ(x2 + z)..

)
− 〈φ(x1)φ(x2)..〉

]2
〉, (1.123)

where

NR(z) ≡ (
√
πR)−Dexp(−|z − z0|2

R2
), (1.124)

then ∆R
|u|7−→∞−−−−−→ O(R−D

2 ).

Proof. First of all, notice that the specific form of the function of eq.(1.124) it’s not important but we
require that

•
∫
dDzNR(z) = 1,

•
{
NR(z) ≈ const if |z − z0|2 � R

NR(z) → 0 if |z − z0|2 � R
.

In the analysis of the galaxy NPCF a window function can be adopted{
NR(z) =

1
RD = 1

VD
if |z − z0|2 ≤ R

NR(z) = 0 if |z − z0|2 ≥ R
. (1.125)

Eq.(1.123) can be rewritten using the normalization condition of NR(z)

∆2
R(x1, x2, ..) = 〈

[∫
dDzNR(z) [(φ(x1 + z)φ(x2 + z)..)− 〈φ(x1)φ(x2)..〉]

]2
〉, (1.126)

(1.127)

which expanding the square becomes

∆2
R(x1, ..) = 〈

[∫
dDzNR(z)

∫
dDwNR(w)[(φ(x1 + z)..φ(x1 + w)..) + 〈φ(x1)φ(x2)..〉2]

]
〉

− 2〈
[∫

dDzNR(z)

∫
dDwNR(w)[φ(x1 + z)..]〈φ(x1)φ(x2)..〉

]
〉 (1.128)

= 〈
[∫

dDzNR(z)

∫
dDwNR(w)

[
(φ(x1 + z)..φ(x1 + w)..) + 〈φ(x1)φ(x2)..〉2

]]
+

− 2

∫
dDzNR(z)

∫
dDwNR(w)[〈(φ(x1 + z)..)〉〈φ(x1)φ(x2)..〉] (1.129)

=

∫
dDzNR(z)

∫
dDwNR(w)[〈φ(x1 + z)..φ(x1 + w)..〉 − 〈φ(x1)φ(x2)..〉2], (1.130)

where in the third equality we have used that∫
dDzNR(z)

∫
dDwNR(w)[〈(φ(x1 + z)..)〉〈φ(x1)φ(x2)..〉] =∫

dDzNR(z)

∫
dDwNR(w)[〈(φ(x1)..)〉〈φ(x1)φ(x2)..〉] = 〈(φ(x1)..)〉2, (1.131)
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which is true only if the field is homogeneous. Now we introduce new integration variables u ≡ z−w
2

and v ≡ z+w
2 and we get

∆2
R(x1, ..) =

∫
dDudDv|J |(

√
πR)−2De(−

|u+v−z0|
2

R2 − |u−v−z0|
2

R2 )[〈φ(x1 + u+ v)..φ(x1 + v − u))..〉 − 〈φ(x1)φ(x2)..〉2]

(1.132)

= (
2

πR2
)D
∫
dDudDve(−

2|u−z0|
2

R2 − 2|v|2

R2 −)[〈φ(x1 + u+ v)..φ(x1 + v − u))..〉 − 〈φ(x1)φ(x2)..〉2]

(1.133)

= (
2

πR2
)D
∫
dDudDve(−

2|u−z0|
2

R2 − 2|v|2

R2 −)[〈φ(x1 + u)..φ(x1 − u))..〉 − 〈φ(x1)φ(x2)..〉2],

(1.134)

where in the second equality we use the Jacobian for the transformation, |J | = 2D, and in the last one
we exploit homogeneity. Now we can integrate on the v variable since the integrand doesn’t depend
on v

∆2
R(x1, x2, ..) = (

2

πR2
)
D
2

∫
dDue−

2|u−u0|
2

R2 [〈φ(x1 + u)..φ(x1 − u)..〉 − 〈φ(x1)φ(x2)..〉2]). (1.135)

If the limit of eq.(1.122) is sufficiently rapid the integral would converge even without the exponential
factor. Since ∫

dDue−
2|u−u0|

2

R2 [〈φ(x1 + u)..φ(x1 − u)..〉 − 〈φ(x1)φ(x2)..〉2]), (1.136)

is finite, for R 7−→ ∞ we can take the integral of order unity and this proves the statement of the
Ergodic theorem, i.e.

∆2
R(x1, x2, ..)

R 7−→∞−−−−→ O(R−D
2 ). (1.137)

Now if we imagine having K copies of the stochastic process we are considering we can write

∆2
R(x1, x2, ..) = 〈

[(∫
dDzNR(z)φ(x1 + z)φ(x2 + z)..

)
− 〈φ(x1)φ(x2)..〉

]2
〉 (1.138)

=
∑
K

[(∫
dDzNR(z)φK(x1 + z)φK(x2 + z)..

)
− 〈φ(x1)φ(x2)..〉

]2
, (1.139)

where the subscript K specifies the field in one of the K realization. Since eq.(1.139) is the sum of
positive terms, in order to get 0 when R 7−→ ∞ we require each term to be 0. This means that if we
have at our disposal only one copy of the stochastic process4, provided that the volume of integration
is sufficiently large, we can calculate the NPCF s as

〈φ(x1)φ(x2)..φ(xN )〉 =
1

VD

∫
dDzφ(x1 + z)φ(x2 + z)..φ(xN ), (1.140)

where we have used a window function for NR(z).

1.6 Cosmological correlation functions

In the preceding section, we introduced random fields on RD. However, when describing the universe
(in its 0th order approximation), we utilize a four-dimensional homogeneous and isotropic spacetime
denoted as (M, g). This spacetime is characterized by a Lorentzian manifold M endowed with a

4This is the case in cosmology.
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metric g [13], as elaborated upon in section 1.1. As we discussed earlier, homogeneous and isotropic
spacetimes can be sliced into homogeneous and isotropic maximally symmetric 3-spaces [13], leading
to the metric tensor g taking the form described by equation (1.1). However, in the thesis, we work
by setting κ = 0, i.e. the spatially flat case.

Therefore, given a random real field scalar field φ(t,x) : M 7−→ R we define the NPCF s as{
ζ : (M)⊗N 7−→ R,

ζ(t, r1, .., rN−1, s) = 〈φ(t, s), φ(t, s+ r1), .., φ(t, rN−1 + s)〉,
(1.141)

where we stress that the N fields are evaluated at the same cosmic time. We mention that we need
to modify the definition of statistically isotropy and homogeneity with respect to the one introduced
in section 1.5; basically we have to restrict these concepts to the spatial hypersurfaces. We say that a
field φ(t,x) : M 7−→ R is statistically isotropic if

∀R̂ ∈ SO(3) ζ(t, R̂r1, .., R̂rN ) = ζ(t, r1, .., rN ). (1.142)

We state that a field φ(t,x) : M 7−→ R is statistically homogeneous if

∀r ζ(t, r1, .., rN ) = ζ(t, r1 + r, .., rN + r). (1.143)

Now, we are prepared to explore the fundamental cosmological assumptions that underlie the treatment
of random fields:

• the universe is statistically homogeneous,

• the universe is statistically isotropic,

• well-separated patches of the universe are uncorrelated.

We stress that homogeneity and isotropy in this contest are to be interpreted as "spatial" isotropy
and homogeneity, as defined in eq.(1.142) and eq.(1.143). As discussed in [46] this hypothesis, the
fair simple hyphotesis, has successfully met the available tests. Surely matter in the universe is not
distributed in a homogeneous and isotropic way but in complex structures such as stars, galaxies, and
clusters of galaxies. So homogeneity and isotropy can be applied in a statistical sense, i.e. in the
spatial average over large enough regions. One can imagine that the matter distribution in each place
is determined by a long sequence of position-dependent physical events which can’t be influenced by
very distant points. Since well-separated patches of the universe are uncorrelated one can imagine
constructing an ensemble by splitting the universe into such patches. We recall that the hypothesis
the universe is homogeneous and isotropic with a metric of the form of eq.(1.1) and the fair simple
hypothesis are related to the Cosmological principle. We don’t discuss the relationship between the
two concepts but we present them as different hypothesis.

The fair simple hypothesis is crucial since allows us to conclude that: given any random cosmological
field

φ(t,x) : M 7−→ R (1.144)

with 〈φ(t,x)〉 = 0, the NPCF s are isotropic functions of N −1 vector variables. Indeed, homogeneity
allows us to write

ζ(t, r1, .., rN ) = ζ(t, s, s+ r1, .., s+ rN−1) = ζ(t, r1, .., rN−1), (1.145)

which, using isotropy, we know it must be invariant under simultaneous rotations of r1, .., rN−1. This
is the starting point for the analysis of parity violation in the galaxy four-point correlation function,
presented in section 3 .

Before discussing the measurements of the galaxy four-point correlation function, we want to intro-
duce some fundamental concepts about the two-point correlation function in a spatially-flat FLRW
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universe. Given a statistically homogeneous and isotropic field φ(x) which has zero mean, 〈φ(x)〉 = 0,
the two-point correlation function ζ(x,y) is defined as

ζ(x,y) ≡ 〈φ(x)φ(y)〉, (1.146)

which can be rewritten as

ζ(x,y) = 〈φ(x)φ(y)〉 = 〈φ(x)φ(x+ r)〉 = 〈φ(0)φ(r)〉 = ζ(r) = ζ(r), (1.147)

where we have written y = x+ r, used homegeneity and isotropy and defined r = |r|. So we can say
that the two-point correlation function is an isotropic function of one vector variable. It’s convenient
to write φ(x)5 in Fourier space as

φ(x) =

∫
d3k

(2π)3
e+ik·xφ(k), (1.148)

where k is a comoving wave vector related to the physical one q throughout q = ak. We should
indicate the field in Fourier space with a tilde, φ̃(k), but we omit it since the space of definition of the
field is always clear from the contest. If we now consider the ensemble average in Fourier space we get

〈φ(k1)φ(k2)〉 = 〈
∫
d3x

∫
d3yφ(x)φ(y)e−ik1·xe−ik2·y〉 =

∫
d3x

∫
d3re−ik1·xe−ik2·(x+r)〈φ(x)φ(x+ r)〉

(1.149)

=

∫
d3x

∫
d3re−ik1·xe−ik2·(x+r)ζ(r) = (2π)2δ(3)(k1 + k2)

∫
d3re−ik2·rζ(r) (1.150)

= (2π)2δ(3)(k1 + k2)P (|k2|), (1.151)

which is called the Wiener-Kintchine theorem. In the last line, we have introduced the power spectrum
P (|k|) which is the anti-Fourier transform of the two-point correlation function,i.e.

P (|k|) =
∫
d3re−ik·xζ(r). (1.152)

The δ(3)(k1+k2) in eq.(1.151) arise from the assumption of homogeneity while the dependence on the
modulus of |k2| stems from isotropy. In cosmology, it’s mostly used the adimensional power spectrum,
∆(|k|) = ∆(k), which is the contribution to the variance per logarithmic integral. The variance can
be written as

〈φ2(x, t)〉 = ζ(0) =

∫
d3k

(2π)3
e+ik·rP (k)

∣∣∣∣
r=0

=

∫ ∞

0

dk4πk2

(2π)3
P (k) =

∫ ∞

0

dk

k

k3

2π2
P (k) =

∫ ∞

0

dk

k
∆(k),

(1.153)
where we have introduced the adimensional power spectrum

∆(k) ≡ k3

2π2
P (k). (1.154)

Despite P (k) and ∆(k) are different quantities, they are often referred to as the power spectrum. We
can also define another useful quantity, the spectral index, defined as

n(k) ≡ d[ln∆(k)]

d ln(k)
, (1.155)

which describes the shape of the power spectrum.

• If n = 1 we get the Harrison-Zeldovich spectrum which means cosmological scale invariance.

• If n = const, ∆(k) is usually written with respect to a pivot scale k0, ∆(k) = ∆(k0)(
k
k0
)n−1. If

n > 1 we speak of a blue-tilted spectrum while if n < 1 of a red-tilted one.

Note that this kind of reasoning can also be applied to metric perturbations and stress-energy tensor
perturbations since these perturbations live on a background space-time which is spatially isotropic
and homogeneous [33].

5We assume fall-off conditions at infinity for all cosmological quantities which assure that the functions are square-
integrable, so the Fourier transform (FT ) of φ exists.
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2 The Inflationary paradigm

Cosmologists strongly believed that before the radiation-dominated epoch, during which the Robertson-
Walker scale factor a(t) grows as

√
t, a period of accelerated expansion took place, i.e. Inflation. This

idea was introduced by Alan Guth in 1981 to solve the flatness (section 2.1.2), the horizon (section
2.1.1) and the monopole (setion 2.1.3) problems of the standard BigBang cosmology. Inflation can
be achieved if the energy density of the universe is dominated by the vacuum energy density of a
scalar field φ, the inflaton. In this way, the universe is dominated by dark energy like component and
passes through an accelerated expansion phase, during which the scale factor is stretched by more
than 60 efolds, aE = e60aB where aE and aB are the scale factor respectively at the end and the
beginning of Inflation. Inhomogeneities and anisotropies are washed away, making today’s universe
very homogeneous, isotropic and flat. Moreover, the fields, which drive Inflation, have quantum fluc-
tuations. These fluctuations also got stretched and imprinted at super-horizon scales. Later, during
radiation, matter or cosmological constant domination, they reenter the horizon and provide the seeds
for cosmic microwave background (CMB) anisotropies and the large-scale structures today (LSS).
Inflation predicts some general features on the properties of the density perturbations:

• They are primordial, i.e. they are quantum fluctuations of the fields driving Inflation. They go
on super-horizon scales during Inflation and re-enter the horizon during the Big Bang cosmology.

• They are approximately scale-invariant, as confirmed by the Planck’s measurement [32] of the
spectral index, ns = 0.9649 ± 0.0042, of the Power Spectrum of the primordial matter density
field. Basically, during the accelerated expansion, each k-mode experiences a similar expansion.

• They are approximately Gaussian.

The fluctuations are nearly Gaussian but the detection of connected N -point correlation functions with
N ≥ 3 could unveil some features of the primordial universe, so in recent years these measurements
have become crucial in cosmology. Theoretically, even if Inflation remains a paradigm, it’s commonly
accepted in the standard cosmological model.

This chapter is constructed in the following way. In section 2.1 we discuss and solve throughout the
Inflationary mechanism the shortcomings of the HBB model. We present an accurate description of
the horizon problem in section 2.1.1 and the flatness problem in section 2.1.2. While regarding the
monopole problem we provide a qualitative explanation in section 2.1.3. Then, we focus on the descrip-
tion of the dynamics of Inflation in the case of single-field slow-roll models. The scalar field driving
Inflation, the Inflaton φ(τ,x), can be split into two parts a homogeneous and isotropic background,
φ(τ), and the quantum fluctuations, δφ(τ,x), of the Inflaton itself. Hence, in Section 2.2, we explore
the underlying dynamics of the inflaton and the concept of slow-roll approximations. These approx-
imations enable the potential to possess a flat region, where the behavior of φ(τ) closely resembles
that of an effective cosmological constant, thereby providing accelerated expansion. In section 2.2.3,
we mention something about different models of Inflation and the cosmic no-hair principle. Then, we
switch to the description of the quantum fluctuations of the Inflaton field. We work in the so-called
Arnowitt-Deser-Misner (ADM) which we fully discuss in appendix C.3. In section 2.3 we introduce
the necessary tools to fully derive the scalar and tensor power spectrum of primordial perturbation
respectively in section 2.4 and 2.5. Then, we present a very general description, in section 2.6, of the
mechanism that allows us to relate the primordial power spectra of scalar and tensor perturbations
with the ones that we can observe today. Finally, in section 2.7 we discuss the fundamental theoretical
and experimental role of the stochastic background of GW s predicted by the Inflationary model.

2.1 The shortcomings of the Hot Big Bang model

In this section, we outline the so-called shortcomings of the Big Bang model, the horizon 2.1.1, the
flatness 2.1.2 and the monopole 2.1.3 problems, and we work out how Inflation can solve each of
them. For the sake of simplicity, we make the following assumptions for describing the evolution of
the universe in the HBB model:
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• the HBB model is correct up to the Planck scale (t ∼ tpl),

• if t ∈ [tpl, teq], the universe is radiation dominated, i.e.
a(t) = aeq

[
t
teq

] 1
2

H(t) = 1
2t

ρ(t) = ρeq

[
aeq
a(t)

]3 , (2.1)

• if t ∈ [teq, t0], the universe is matter dominated (we disregard the recent period of dark energy
domination), i.e. 

a(t) = aeq

[
t
teq

] 2
3
= a0

[
t
t0

] 2
3

H(t) = 2
3t

ρ(t) = ρ0

[
a0
a(t)

]4
= ρeq

[
aeq
a(t)

]4 , (2.2)

• we do not take smooth transition between different epochs.

Regarding the evolution in the Inflationary case, we assume that the universe went through an early
period of exponential expansion which we take, for simplicity, a De-sitter expansion phase:

• if t ∈ [tB, tE ], the universe goes through an acceletated expansion
a(t) = aB exp(H(t− tB)) = aE exp(H(t− tE))

H(t) = const

ρ(t) = const

, (2.3)

• the reheating is instantaneous at tE ,

• starting from tE , we apply the same assumption made in the previous case, the Hot Big Bang
(HBB).

2.1.1 The Horizon problem

In simple terms, we can summarize the problem as follows: within the HBB model, at the last
scattering surface (when protons and electrons merged into neutral hydrogen with the emission of the
CMB), we observe regions that are not causally connected but exhibit similar physical properties,
such as the temperature T . The horizon problem emerges when calculating dH(t) at the last scattering,
resulting in a finite value that is smaller than the physical distance between regions exhibiting very
similar properties, like temperature. This implies that regions of the universe that were not causally
connected at the time of last scattering share remarkably similar characteristics. These similarities
can be achieved either by imposing specific initial conditions (though this isn’t a physical resolution)
or through mechanisms like inflation, which enable the observable universe today to occupy a tiny
region of the space where information exchange could have occurred.

This can be quantified in the following way. First, we need to calculate the physical horizon distance
at the last scattering. This can be accomplished by employing the formula for computing the proper
distance as presented in eq.(A.16), while adjusting the interval of integration accordingly:

dH(tls) ≡ a(tls)

∫ tls

0

dt

a(t)
= a(tls)Sk

[∫ ∞

zls

dz

a0H(z)

]
(2.4)

= a(tls)Sk

∫ ∞

zls

1

a0H0

∫ z

0

dz√[
Ω0M (1 + z)3 +Ω0R (1 + z)4 +Ω0Λ +Ω0κ (1 + z)2

]
 , (2.5)
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where t = 0 corresponds to the Big Bang. Then, we can compute the angular diameter distance at
last scattering as

dA(zls) = a(tls)r(tls) = a(tls)S

[∫ zls

0

dz

a0H(z)

]
(2.6)

= a(tls)S

∫ zls

0

1

a0H0

∫ z

0

dz√[
Ω0M (1 + z)3 +Ω0R (1 + z)4 +Ω0Λ +Ω0κ (1 + z)2

]
 . (2.7)

Now, we can determine the maximum angle at the surface of last scattering that separates points
which have been in causal contact:

θmax =
dH(tls)

dA(tls)
=
a(tls)Sk

[∫∞
zls

dz
a0H(z)

]
a(tls)Sk

[∫ zls
0

dz
a0H(z)

] =
Sk

[∫∞
zls

dz
a0H(z)

]
Sk

[∫ zls
0

dz
a0H(z)

] , (2.8)

which for a spatially flat universe becomes

θmax =

∫∞
zls

dz
H(z)∫ zls

0
dz
H(z)

≈ 0.02 ≈ 1.2◦, (2.9)

where the result can be obtained by numerical integration using the results of the Planck mission [32].
Eq.(2.9) tells us that in principle regions which have angular separation larger than 1.2◦ have never
been in causal contact before. However, this is in contradiction with the nearly perfect isotropy of
CMB at large angular scales which was observed ever since CMB’s discovery.

Inflation can provide a solution to this problem. If we compute the physical particle’s horizon at last
scattering we get

dH(tls) ≡ a(tls)

∫ tls

tB

dt

a(t)
= a(tls)

∫ tE

tB

dt

a(t)
=

a(tls)

HEaE
exp(H(tE − t))|tEtB ≈ a(tls)

HEaE
eN , (2.10)

where we have neglected the contribution from the HBB phase, we have taken eN >> 1 and we have
used the approximation of spatial flatness. In order to solve the horizon problem we have to impose

dH(tls) > θmaxdA(tls), (2.11)

where θmax is the maximum angle over which we observe isotropy. We can take θmax ≈ O(1) since its
precise value has negligible impact on the minimum number of e-folds N . So we can write

a(tls)

HEaE
eN > dA(tls) ≈

a(tls)

a0H0
, (2.12)

where we have used numerical integration of eq.(2.7) for a spatially flat universe. Thus we get a lower
bound on the minimum number of e-folds required to solve the horizon problem:

N > ln

[
aEHE

a0H0

]
. (2.13)

Now using Tolman’s law, Ta = const, in the HBB model phase we can write

ln

[
aEHE

a0H0

]
= ln

[
HET0
H0TE

]
= ln

[
HE

TE

]
+ ln

[
T0
H0

]
. (2.14)

From Planck’s data we know that T0 ≈ 2.728K and H0 ≈ 0.67019× 100km
sMpc , so we can estimate ln

[
T0
H0

]
coming back to SI units

ln

[
T0
H0

]
= ln

[
kBT0
}H0

]
= ln

[
1.38× 10−23 J

K 2.7K

1.0545× 10−34Js0.67019× 100km
3.085×1019km

s−1

]
(2.15)

= ln
[
16.26× 1028

]
≈ 28 ln 10 + ln16.26 ≈ 68, (2.16)
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where we have used that
Boltzmann’s constant kB = 1.38× 10−23 J

K

Planck’s constant h = 6.626× 10−34Js

Mega parsec conversion in km 1Mpc = 3.085× 1019km

. (2.17)

To estimate the first term on RHS of eq.(2.14) we have to recall that we have taken an istantaneous
reheating, thus we can write write

H2
E ≈ 8πG

3

[
π2

30
g∗T

4
E

]
≈

T 4
E

M2
pl

. (2.18)

Using this result we get

ln

[
HE

TE

]
≈ ln

[
T 2
E

MplTE

]
≈ ln

[
TE
Mpl

]
, (2.19)

Different Inflationary models that have been proposed, make predictions within the range of 10−5 ≤
TE
Mpl

≤ 1. Therefore the only condition on the Inflationary period we can derive from the solution of
the horizon problem is a lower bound on the number of e-folds N ,

N > 68 + [−5 ln 10, 0] ≈ 66 + [−11, 0]. (2.20)

There is another interesting way to obtain the bound of eq.(2.13). Recalling the definition of the
comoving Hubble radius eq.(1.23)

rH(t) =
1

a(t)H(t)
, (2.21)

which basically individuates the maximum comoving distances that at a particular time can exchange
information. If two points are located beyond the Hubble radius, they are unable to exchange in-
formation with each other. We know that in the HBB model it’s always increasing as explained in
section 1.1.2 and graphically presented in figure 4. The sketch shows that in the Hot Big Bang (HBB)

Figure 4: The comoving Hubble radius.

model, regions causally connected with an observer increase over time. Initially, this might not be
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problematic, as it only implies that a specific length scale λ enters the horizon at a particular time6.
The issue arises when we observe causal connections between regions that are separated by length
scales well beyond the particle horizon predicted by the HBB model. The idea to solve this issue
revolves around an early period during which the comoving Hubble radius decreases in a manner that
ensures all the scales we observe today were well within the horizon. However, if we want

ṙH(t) = − ä(t)

ȧ(t)2
< 0, (2.22)

we must require ä > 0 ⇐⇒ w < −1
3 . Thus, we need a period of accelerated expansion, i.e. Inflation,

as shown in figure 4. In order to solve the horizon problem we must require that the large scale we
can probe today was under the horizon during Inflation

rH(tB) ≥ rH ,↔ expN >
aEHE

a0H0
, (2.23)

which is exactly the same condition we have previously imposed.

2.1.2 The Flatness problem

The flatness problem is a fine-tuning problem of the HBB model which can be discussed by using the
first Friedmann equation

H2 =
8πG

3
ρ− κ

a2
, (2.24)

which can be written in the form of eq.(A.6)

1 = Ω(t)− Ωk, (2.25)

where Ω(t) = Ωm(t) + Ωγ(t) + ΩΛ(t). A priori κ could take any value according to some sort of
probability density function; so the probability to get a spatially flat Universe has zero measure. The
problem is that

| Ωk(t0) |=| Ω(t0)− 1 |= 4× 10−3 (95%CL), (2.26)

which consists of saying that the universe is compatible with being spatially flat today. This presents
a fine-tuning problem, as assuming the correctness of the HBB model up to the Planck scale (tpl ≈
10−43) leads to

| Ω(tpl)− 1 |≈| Ω(tpl)− 1 | 10−60 < 10−62, (2.27)

which constraints an adimensional quantity to get a very “fine-tuned" value, even though we lack any
physical arguments a priori to support such a statement. In physics, this is referred to as a fine-tuning
problem, as we would expect this quantity, i.e. | Ω(t)− 1 | at initial time, to be of O(1).

Now we show how to get the bound of eq.(2.27) within the context of the Big Bang model, using that[
1− Ω−1(t)

]
ρa2 = const. (2.28)

Considering t ∈ [tp, teq] we can write

[
1− Ω−1(t)

]
ρ(t)a2(t) =

[
1− Ω−1(t)

]
ρeq

[
aeq
a(t)

]4
a2(t) =

[
1− Ω−1(t)

]
ρ0

[
a0
aeq

]3 [ a4eq
a2(t)

]
, (2.29)

6When a length scale λ enters the horizon, it signifies that we can exchange information with points up to a distance
of λ from our location.
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which, using eq.(2.28) evaluated today, allows us to get the following

[
1− Ω−1(t)

]
ρ0

[
a0
aeq

]3 [ a4eq
a2(t)

]
=
[
1− Ω−1

0

]
ρ0a

2
0. (2.30)

Finally, we can get the upper bound of eq.(2.27)

[
1− Ω−1(t)

]
=
[
1− Ω−1

0

] a2(t)
a20

a0
aeq

=
[
1− Ω−1

0

] a2(t)
a20

[1 + zeq] =
[
1− Ω−1

0

] T 2
0

T 2(t)
[1 + zeq] , (2.31)

where we have used the definition of the redshift and Tolman’s law in the context of the HBB model,
i.e. T α a−1. If we take t = tpl in eq.(2.31) we obtain

[
1− Ω−1(tp)

]
=
[
1− Ω−1

0

] T 2
0

T 2
tpl

[1 + zeq] ≈
[
1− Ω−1

0

]
× 10−64 × 104 ≈

[
1− Ω−1

0

]
× 10−60, (2.32)

where we have used that Tpl ≡ Ttpl ≈ 1032K, T0 ≈ 2.7K and (1 + zeq) ≈ 104. Plugging the bound of
eq.(2.26) in eq.(2.32) we get the desired upper bound for

[
1− Ω−1

pl

]
,

| Ω−1
pl − 1 |=|

Ωpl − 1

Ωpl
≈| Ω−1

0 − 1 | 10−60 =| Ω0 − 1

Ω0
| 10−60 < 10−62, (2.33)

which using that Ω0,Ωpl ∼ O(1) can be put in the desired expression of eq.(2.27).

A phase of accelerated expansion provides a solution to the flatness problem, i.e. Inflation. As
mentioned earlier, in order to address the fine-tuning problem, we make the assumption that Ωk
during the onset of Inflation is of order unity, i.e. Ωk(tB) =

|κ|
a2BH

2
B

∼ O(1). Under these hypotheses
we get

| Ωk(t0) | =
| κ |
a20H

2
0

=
| κ |
a20H

2
0

a2EHE

a2BHB

a2BHB

a2EHE
=

| κ |
a2BH

2
B

(
aB
aE

)2(aEHE

a0H0

)2

∼ exp(−2N)

(
aEHE

a0H0

)2

.

(2.34)

In order to explain today’s parameter density for the spatial curvature parameter, eq.(2.27) tells us
that Ωk < 1, so that we have

exp(−2N)

(
aEHE

a0H0

)2

< 1, (2.35)

which translates into the following requirement for the number of e-folds

N > ln

(
aEHE

a0H0

)
. (2.36)

Note that we have used Ωk < 1 and not the real upper bound Ωk < 4×10−3 since it has not a relevant
impact on the number of e-folds.

There is a nice graphical interpretation of the flatness problem presented in figure 5a and 5b. In the
HBB, figure 5a, we have that

Ωk =
κ

H2a2
= κr2H(t), (2.37)

which it’s always increasing since ṙH > 0. This implies, as we have seen, the need of very fine-tuned
initial conditions in order to reproduce the data. However, if a period of accelerated expansion occurs,
during this phase, the value of Ω decreases. If this accelerated expansion lasts for a sufficient duration,
it becomes possible to push Ω closer to 1 with the desired accuracy, figure 5b.
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(a) The Ω parameter in the HBB model. (b) The Ω parameter in the Inflationary sce-
nario.

Figure 5

2.1.3 The Monopole problem

Historically, this was the first shortcoming of the HBB model and was one factor leading to interest
in Inflationary models. Basically, the issue involves the generation of massive particles during the
Universe’s early stages, resulting from the spontaneous symmetry breaking (SSB) of some gauge
symmetry in “beyond" the standard model (BSM) theories. We generally refer to massive relics
produced in the early universe after the spontaneous symmetry breaking of some gauge symmetries,
for example, we can get [47]:

• magnetic monopole (0-dimension) arise from the breaking of the GUT at TGUT ∼ 1014÷1016GeV
into a lower gauge symmetry including U(1) gauge group,

• cosmic strings (1-dimensions) from the SSB of U(1) gauge symmetry,

• domain walls (2-dimension) from the SSB of a discrete symmetry such as the shift symmetry,

• textures (3-dimension) from the SSB of an SU(2) gauge symmetry.

In this section, we provide a qualitative example in order to briefly illustrate how this mechanism
works. We discuss the formation of domain walls which arise from the SBB symmetry breaking of a
shift symmetry, i.e. ψ 7−→ −ψ, in a model described by the following Lagrangian

L = −1

2
gµν∂µψ∂νψ − λ

4
(ψ2 − σ2)2, (2.38)

whose potential is sketched in blue in figure 6 with λ and σ constants. The main feature of this
potential is that the choice of the vacuum, i.e. ψ = ±σ, breaks the shift symmetry which is said to be
spontaneously broken. When the scalar field is interacting with a thermal bath the potential receives
temperature correction of the form [47]

V (ψ, T ) =
λ

4
(ψ2 − σ2)2 +

1

2
αT 2ψ2, (2.39)

where α is constant. At the critical temperature T = Tc ≡ σ√
α

, the second derivative of V (ψ, T ) at
ψ = 0 undergoes a change in sign, causing the point to become a local maximum. As shown in the
figure, we can see that if T >> Tc the shift symmetry is restored conversely when T < Tc the field
rolls down the potential toward one of the two minima, thus it dynamically breaks the symmetry.
Upon the occurrence of the Spontaneous Symmetry Breaking (SSB), the fields opt for +σ in certain
regions and −σ in others. Since the field must vary smoothly we have regions in which the field is
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Figure 6: V (ψ).

trapped in the “false vacuum" at ψ = 0. Thus in this region the phase transition doesn’t take place
and we have topological imperfections in the field configuration called domain walls.

The basic idea is to introduce ζ which is the typical length over which the scalar field has the same
value, as shown in figure 7. If these objects are inside the horizon when produced we have that

Figure 7: Correlation length ζ.

38



ζ < dH(t). Since we are working in the HBB model at high temperatures the universe is radiation-
dominated when the scalar field undergoes the SSB. Thus, using the particle number density we
have

nX ∝ ζ−3 <

(
1

2t

)3

' H3, (2.40)

where Xs are the massive particle produced via the mechanism we are discussing. In radiation domi-
nance, ρ = ργ , we know [47] that

H ≈ 1.66g
1
2
∗
T 2

Mpl
, (2.41)

where g∗ is the total effective degrees of freedom of particles coupled to the thermal plasma. Plugging
eq.(2.41) in eq.(2.40) we get

nX ≤

 g
1
2
∗

0.6

3

T 6

M3
pl

'

 g
1
2
∗

0.6

3(
T

Mpl

)3

nγ , (2.42)

where we have used that nγ ' T 3 [47]. When we evaluated this at the temperature of the phase
transition, in this case, we can take TGUT since this is the typical scale we have in mind we get

nX
nγ

∣∣∣∣
T=TGUT

≤

g 1
2
∗ TGUT
Mpl

3

≈ 10−10 ÷ 10−9 ' η =
nb
nγ
, (2.43)

where we have take as order of magnitude g∗ ≈ O(100) and we have introduced η, the baryon asymme-
try [47]. If neither interaction nor decay occurs, the number density of domain walls scales as a−3(t)
because of the expansion of the universe. Since the photon density scales as a−3(t) as well, the above
result of eq.(2.43) it still holds today and in terms of energy budget it reads

ΩX0 =
ρ0x
ρ0c

=
mXnX0

ρ0c
=
mXnb0
ρ0c

mb

mb
= Ω0b

mX

mb
, (2.44)

where we have used that nX0 = nb0. Typically, mX ∼ 1014 ÷ 1015GeV [47] (the GUT scale) we
immediately realize that Ω0x >> 1 which would overclose the universe. Without delving into specific
details, it is evident that an accelerated expansion lasting more than 60 e-folds would wash away any
potential contribution arising from this mechanism.

2.2 The dynamics of Inflation and the slow-roll approximation

Several authors [48] had previously suggested the possibility of an era of exponential expansion preced-
ing the well-known radiation-dominated period. However, it was Alan Guth [49] who first emphasized
the fundamental implications this epoch could entail. Guth was working at the time (early 80s) on
grand unified theories (GUT ) and he soon realized that in these kinds of models, scalar fields could be
trapped in a local minimum of their potential. In case one of these fields dominates the energy density
of the Universe, it can lead to a phase of accelerated exponential expansion, driven by a slowly varying
vacuum energy density. This phase would eventually end when the scalar field starts rolling down its
potential toward the true minimum. Guth’s realization is that this type of mechanism simultaneously
resolves the horizon, flatness, and monopole problems and it also provides the seeds, sourced by the
quantum fluctuations of the scalar field itself, for the subsequent evolution of the universe.

Soon Alan Guth realized that its version of Inflation, what it’s called “Old Inflation", failed to explain
the formation of today’s Universe. Therefore, a novel concept was put forth by Linde[50], Albrecht,
and Steinhardt[51]. This idea, known as “new inflation," is based on the idea that one or more
scalar fields drive an accelerated expansion phase through their gradual rolling down a potential as
presented in fig.8. There are various alternatives to the standard scenario, i.e. the single-field slow-roll
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Figure 8: The scalar field φ rolling down its potential V (φ).

Inflation model. However, in this context, we will only focus on describing this particular possibility
quantitatively. The main idea is that we need a region in which the potential is quite large but
sufficiently flat as shown in fig.8. In this way, we can think of the scalar field as a single degree of
freedom that slowly rolls down its “classical" potential. Quantitatively, we work with the following
action

S =

∫
d4x

√
−g

[
M2
pl

2
R− 1

2
gµν∂νφ∂µφ− V (φ)

]
, (2.45)

where g is the determinant of the metric tensor gµν , and where the first term is the standard Hilbert-
Einstein action, the second term is the kinetic term for the inflaton φ and the last one is its potential.
The main idea is that since, in today’s universe, the deviation from perfect homogeneity and isotropy
are small, ∆T

T ∼ 10−5 in the CMB, we can split the field as

φ(t,x) = φ0(t) + δφ(t,x), (2.46)

where 〈δφ2(t,x)〉 << φ20(t)
7. Thus, φ0(t) is the homogeneous and isotropic background which we can

interpret as the vacuum expectation value of the field φ since we take 〈δφ(t,x)〉 = 0. While δφ(t,x) are
7When the fluctuations are quantum fluctuations 〈..〉 has to be interpreted as correlation functions in quantum field

theory (QFT ) while when we observe the effects of the observables universe they are statistical averages as introduced
in section 1.5.
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its quantum fluctuations which provide the seed for the subsequent evolution of the Universe and it’s
why we expect that the splitting of eq.(2.46) to hold. We now direct our attention to the background
dynamics, leaving the discussion of the quantum nature of the fluctuations for the remainder of the
thesis. We stress that since we take the scalar field homogeneous and isotropic, the background
dynamics is taken to be the FLRW . This might appear non-sense since what we want to show is that
independently of the initial conditions if inflation starts we end up with today’s observable universe.
We postpone this discussion to section 2.2.3.

2.2.1 Background dynamics

To characterize the dynamics of a scalar field in an expanding universe, we evaluate the φ’s stress-
energy momentum tensor Tµν , which, in GR, can be evaluated by varying the action with respect to
gµν ,

δS =

∫
d4x

√
−g

 1√
−g

δ

(
M2

pl

2

√
−gR

)
δgµν

+
1√
−g

δ (
√
−gLφ)
δgµν

 δgµν , (2.47)

from which we recover the Einstein field equation in the form

Gµν =
2

M2
pl

δ (
√
−gLφ)
δgµν

. (2.48)

Thus we recognize the stress-energy momentum tensor of the scalar field as

Tµν = −2
√
−g δS

δgµν
= −2

∂Lφ
∂gµν

+ gµνLφ = ∂µφ∂νφ+ gµν
(
−1

2
gαβφ;αφ;β − V (φ)

)
, (2.49)

where we have used 1√
−g

δ
√
−g

δgµν = −1
2gµν . Extracting the background value of eq.(2.49) we immediatly

get

(T0)
0
0 = −ρ̄ = −φ̇20 +

(
φ̇20
2

− V (φ)

)
= −

(
1

2
φ̇20 + V (φ)

)
, (2.50)

(T0)
i
j = p̄δij = δij

(
1

2
φ̇2 − V (φ)

)
, (2.51)

from which we get the w as

w =

(
1
2 φ̇

2 + V (φ)
)

(
1
2 φ̇

2 − V (φ)
) . (2.52)

Thus we can write the Friedmann equation in the form

H2 =
1

3M2
pl

[
1

2
φ̇20 + V (φ)

]
, (2.53)

ä

a
= − 1

6M2
pl

(1 + 3w)

(
1

2
φ̇2 − V (φ)

)
. (2.54)

Please take note that in the action given by equation (2.45), we have “two" degrees of freedom: φ(t,x)
and gµν(t,x). As a result, we can obtain another equation for the background by varying the action
with respect to φ0(t). Thus, we obtain

δS =

∫
d4x

√
−g
(

1√
−g

∂µ
(√

−ggµν∂νφ
)
− ∂V

∂φ
δφ

)
, (2.55)
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from which we can obtain the Klein-Gordon equation of motion (EoM)

�φ− ∂V (φ)

∂φ
=

1√
−g

∂µ
(√

−ggµν∂νφ
)
− ∂V (φ)

∂φ
= 0. (2.56)

The background EoM reads

�φ0
∂V (φ)

∂φ

∣∣∣∣
φ=φ0

= − 1

a3
∂

∂t

(
a3φ̇
)
− ∂V (φ)

∂φ

∣∣∣∣
φ=φ0

= −φ̈0 − 3Hφ̇0 −
∂V (φ)

∂φ

∣∣∣∣
φ=φ0

= 0. (2.57)

2.2.2 The slow roll conditions

The so-called slow-roll conditions are the one that allows the potential to be sufficiently flat in order
for Inflation to take place. The first slow-roll parameter condition is

ε = − Ḣ

H2
<< 1, (2.58)

which basically states that the variation of the Hubble parameter, Ḣ, in a Hubble time, 1
H , is negligible

with respect to H. This means that the Hubble constant is almost constant during Inflation. This
condition can be expressed in a more illuminating way using that

2HḢ =
1

3M2
pl

[
φ̈0φ̇0 +

∂V (φ)

∂φ

∣∣∣∣
φ=φ0

φ̇0

]
= − H

M2
pl

φ̇0
2
, (2.59)

from which we understand the Ḣ < 0 and this explain the minus sign in eq.(2.58). Finally, we can
write

ε =
1

2M2
pl

φ̇0
2
3M2

pl

1(
1
2 φ̇

2 + V (φ)
) =

φ̇0
2
3

2
(
1
2 φ̇

2 + V (φ)
) << 1, (2.60)

which implies φ̇0
2
<< V (φ). This allows us to get

ε ≈ 3

2

φ̇20
V (φ)

. (2.61)

The second slow roll condition corresponds to the requirement

η = − φ̈0

Hφ̇
<< 1, (2.62)

which is equivalent to saying that the fractional change of φ̇0 is negligible in an expansion time, i.e.
the potential is sufficiently flat. Plugging this condition in the equation of motion we get

φ̇0 ≈ −V
′
(φ0)

3H
, with V

′
(φ0) =

∂V (φ)

∂φ

∣∣∣∣
φ=φ0

. (2.63)

Now let’s see how this condition is related to the potential by taking

φ̈0 = −V
′′
(φ0)φ̇0
3H

+
V

′
(φ0)

3

Ḣ

H2
= −V

′′
(φ0)φ̇0
3H

+
V

′
(φ0)

3

Ḣ

H2
, (2.64)

which we can plug in eq.(2.62) to get

η =
V

′′
(φ0)

3H2
+
V

′
(φ0)

3Hφ̇0
ε ≈ ηV − ε, (2.65)

where we have used that V
′
(φ0)

3Hφ̇0
≈ −1 and where we have defined

ηV ≡ V
′′
(φ0)

3H2
, (2.66)

which clearly satisfies ηV << 1. We conclude this section by mentioning a series of important results
which we are not going to discuss:
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• The condition η << 1 is imposed [33] to ensure that inflation lasts for a significant number of
e-folds in order to solve the shortcomings of the HBB model.

• Inflation ends when ε, η, ηV ∼ O(1); the last condition is equivalent to have V ′′ ∼ H2. From this
moment, the reheating phase starts and the scalar field goes to the true minimum [10]. V ′′

dominates over H2, the scalar field behaves like non-relativistic ordinary matter and it decays
into radiation, with a decay rate Γφ. Then, we recover the standard radiation-dominated epoch
of the HBB model.

• In principle one can construct an infinite tower of slow-roll parameters, which ε and η are
the first ones, using successive derivatives of the potential. For example, we can define ξ2 =(

1
4πG

)2 (V ′
V

′′′

V 2

)2
, which is second order in the slow-roll parameters. We do not discuss these

parameters since we’ll work in this thesis at the lowest order in slow-roll parameters.

• It can be demonstrated that the temporal derivatives of ε, η, and ηV are of second order in
slow-roll. As a result, we can treat them as constants at first order.

• In the next section we’ll use that H << Mpl, which can be derived from the fact that, in order
to avoid quantum gravity, we impose V << M4

pl.

2.2.3 Final remarks

The single-field slow-roll models are divided into different classes based on the excursion of the scalar
field during Inflation:

• Large-field models characterized by ∆φ > Mpl,

• Small-field models characterized by ∆φ < Mpl,

• Hybrid models which share some features of the two previous classes.

While we won’t delve into an extensive discussion on this topic, it’s worth mentioning that there are
observables associated with the scalar field’s excursion during inflation. This approach can efficiently
provide insights into the shape of the potential involved.

Lastly, we mention the concept known as the cosmic no-hair principle, which essentially states that
regardless of the initial conditions (which could be anisotropic and inhomogeneous), the universe
will still undergo inflation and end up in a Robertson-Walker (RW ) scenario. A priori it may not be
apparent that inflation can occur when starting with a non-FLRW metric and it’s not obvious that the
anisotropies and inhomogeneities are washed away by this mechanism. Nonetheless, in a wide range
of diverse scenarios, it is possible to demonstrate that everything works as expected. An illustrative
example regarding Bianchi models can be found in [47]. However, due to the absence of a completely
general proof, this is regarded as a principle.

2.3 Adopted formalism to the computation of primordial power spectra

Now, the goal of the remaining part of the chapter is the computation of the primordial power spec-
tra of the gauge invariant curvature perturbation on uniform energy density hypersurfaces ζ and the
gravitational waves (GWs) in a fully consistent manner, considering both inflaton and metric per-
turbations. For the scalar perturbations, one could choose not to consider metric perturbations and
instead work in a De-Sitter background, calculating the primordial power spectrum of the inflaton
perturbation. Then, using δφ = − φ̇

H ζ [15], one can switch to the curvature perturbation and get its
power spectrum on super-horizon scales, which is what we are interested in. In this scenario, the
field can be canonically quantized in a De-Sitter background, following the explanation provided in
[52]. Although the method of working solely with inflaton perturbations in a De-Sitter background is
insightful and commonly the first approach used for explaining the guiding principles of these analyses,
our preference is to directly address the completely consistent case, wherein we also incorporate metric
perturbations.
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In this context, we work in the ADM formalism, introduced in appendix C.3, and we write the metric
tensor in the form of eq.(C.38)

gαβ =

(
−(N2 −NiN

i) Ni

Ni hij

)
, gαβ =

(
−N−2 N i

N2

N i

N2 hij − N iNj

N2

)
, (2.67)

where N and N i are respectively the lapse and shift functions introduce in section C.3. In the unitary
gauge, we have

δφ(t,x) = 0, hij = a2(t)e2ζ(t,x)
(
δij + γij +

1

2
γikγ

k
j

)
, ∂iγ

i
j = 0, γii = 0, (2.68)

where ζ and γ are first order quantities and are the “true" degrees of freedom we are dealing with.
I want to stress here that in this gauge ζ coincides with the gauge invariant curvature perturbation.
The notation can clearly lead to a misunderstanding since we are calling with the same name two
different quantities. If we recall the definition of the gauge invariant curvature perturbation at linear
order we have

ζ = −φ− ∇2χ||

6
− ȧ

a

δρ

ρ0
. (2.69)

In the unitary gauge, we have

φ = −ζ, χ|| = 0, δρ = φ̇0δφ̇+ V
′
δφ = 0, (2.70)

where the expression of the matter density perturbation has been derived from the perturbed version
of eq.(2.49). Thus it’s clear that the ζ we have introduced in the metric is the gauge invariant curvature
perturbation on uniform energy density hypersurfaces. The other gauge we are going to adopt in the
master’s thesis is the spatially flat gauge8,

δφ(t,x), hij = a2(t)

(
δij + γij +

1

2
γikγ

k
j

)
, ∂iγ

i
j = 0, γii = 0. (2.71)

In this particular gauge, it is possible to demonstrate that the gauge-invariant curvature perturbation
is δφ = − φ̇

H ζ [15]. It is important to emphasize that this ζ corresponds to the gauge-invariant curvature
perturbation, which coincidentally, in the spatially flat gauge, equals the scalar field presented in the
metric perturbation. We make this clarification because, without it, there might be a misconception
that the field ζ in the spatially flat gauge is the gauge invariant curvature perturbation. It’s the gauge
invariant curvature perturbation which in that specific gauge is equal to the scalar field ζ introduced
in the metric perturbation. We stress that if ζ in eq.(2.68) is the “true" gauge invariant curvature
perturbation, we can set that ζ to zero, since it’s gauge-invariant and in the spatially flat gauge can
be set to zero; thus it would always be zero in any other gauge. Even if this can lead to confusion
we are going to call ζ in (2.68) as the gauge-invariant curvature perturbation having mind what we
have discussed here. In what follows we are going to derive the powers spectrum of the curvature
perturbation in the unitary gauge but in section 5.5 we present the same computation in the spatial
flat gauge and we’ll show that we obtain the same results. This is not particularly insightful but it’s
useful to verify that by adopting two different gauges we obtain the same result.

Before going to the actual computation we would like to comment on the procedure used to fix the
gauge up to the nth order. Eq.(2.68) is the first example of a second-order gauge, and now we proceed
to make certain observations pertaining to gauge fixing up to the second order. First of all, the Inflaton
perturbation it’s a scalar and can be decomposed as

δφ(t,x) = δ(1)φ(t,x) + δ(2)φ(t,x) + ... (2.72)

When we establish a gauge up to the nth order, we can conceive of the ability to nullify, at any order
up to nth, two scalars and one vector. This is feasible due to the introduction of a new vector ζ related

8We use this gauge in chapter 5

44



to gauge transformations at each order, as elaborated in section 1.2. Please note that this ζ is the
vector associated with the gauge transformation. Therefore, in the unitary gauge scenario, we have
nullified all the δ(r)φ(t,x), χ(r)||, and χ(r)⊥

i components, following the notation introduced in equation
(1.57). Furthermore, the metric perturbations involving the trace of the spatial metric, i.e. e2ζ(t,x),
have not been expanded. This choice is driven by the convenience of expanding these perturbations
once we have completed the computations, as it leads to simplifications in the intermediate steps.
This expansion of the metric is more convenient as we’ll see when we have to quantize the system.
Regarding tensor perturbations, we have written the transverse and traceless part of the metric as
exp (γ)ij , which up to second order gives what we have written in eq.(2.68). This parametrization of
the metric tensor both for scalar and tensor [15] is convenient when we have to quantize the system.

The action of the problem is one of the single-field slow-roll model which can be written in the unitary
gauge within the ADM formalism as

S =
1

2

∫
d4x

√
hN

[
(3)R+ 2X − 2V

]
+

1

2

∫
d4x

√
hN−1

[
EijEij − E2

]
, (2.73)

where X ≡ −1
2g
µν∂µφ∂νφ is the kinetic term of the inflaton field and where we set M−2

pl = 8πG = 1.
In the unitary gauge, we have

X =
1

2
N−2φ̇2, (2.74)

where φ̇ represents the time derivative of the inflaton field with respect to cosmic time. For simplicity,
we will omit the subscript 0 going forward. It is worth noting that the inflaton background value is
simply a temporal function that appears in the metric as a(t). We recall that

Eij = NKij =
1

2

[
ḣij −DiNj −DjNi

]
, (2.75)

where Di is the covariant derivative operator on the spatial hypersurfaces (see appendix C.3).

2.3.1 Constraint equations

In order to find the action for dynamical degrees of freedom, ζ and γ, it’s necessary to solve for N
and N i, which are constraints as explained in section C.3, and plug the results back into the action.
We start by computing the constraint equation for the lapse function. Firstly, it is important to
observe that there are no terms in the Lagrangian that depend on derivatives of the lapse function.
Consequently, our focus will be solely on computing the derivative of the Lagrangian with respect to
N , as it is the only thing we need for obtaining the constraint equations

∂L

∂N
= 0. (2.76)

The three-tensor Eij , its trace, the three-dimensional Ricci scalar, the inflaton potential, and the
determinant of the three metric do not vary with respect to N . Therefore, the only non-straightforward
derivative we need to compute is the one corresponding to the kinetic term, which is given by:

∂X

∂N
=

∂

∂N

[
−1

2
gµν∂µφ∂νφ

]
=

∂

∂N

[
−1

2
g00∂0φ∂0φ

]
=

∂

∂N

[
φ̇2

2N2

]
= − φ̇2

N3
. (2.77)

Thus we can obtain the constraint equation as

0 =
∂L

∂N
=

∂

∂N

[
1

2

√
hN

[
(3)R+ 2X − 2V

]
+

1

2

√
hN−1

[
EijEij − E2

]]
(2.78)

=
1

2

√
h
[
(3)R+ 2X − 2V

]
+

1

2

√
hN

[
−2

φ̇2

N3

]
− 1

2N2

√
h
[
EijEij − E2

]]
, (2.79)
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which, using that

2X + 2N
∂X

∂N
=

φ̇2

2N2
− 2N

φ̇2

N3
= 0, (2.80)

can be simplified as

(3)R− 2V − φ̇2

N2
− 1

N2

[
EijEij − E2

]
= 0. (2.81)

Now, our attention turns to the computation of the constraint equation for the shift function N i,
taking into account that (3)R, V , N , and φ̇ are all independent of the shift function. Thus, applying
the variational principle we get

dS

dλ

∣∣∣∣
λ=0

=
1

2

∫
d3xdt

√
hN−1

{
EijEklh

ikhj − hijEij

}∣∣∣
λ=0

=

∫
d3xdt

√
hN−1(Eij − Ehij)

dEij
dλ

∣∣∣∣
λ=0

,

(2.82)

where we have used the notation for the variational principle described in [13] and where dEij

dλ

∣∣∣
λ=0

=

1
2

[
−Di

dNj

dλ

∣∣∣
λ=0

−Dj
dNi
dλ

∣∣∣
λ=0

]
. Finally, using that both Eij and hij are symmetric, we can write up

to a surface term

dS

dλ

∣∣∣∣
λ=0

= −2

∫
d3xdt

dNi

dλ

∣∣∣∣
λ=0

Dj

{√
h

N
(Eij − Ehij)

}
. (2.83)

Thus, we can write the two constraints equations as [15]0 = (3)R− 2V − φ̇2

N2 − 1
N2

[
EijEij − E2

]
0 = Dj

{√
h
N (Eij − Ehij)

} . (2.84)

Now, the task at hand is to solve these equations. However, an analytical solution is not readily
available, necessitating a step-by-step approach to solve them order by order. As we proceed, it’s
essential to note that we are interested in expanding actions up to the third order, thus as noted
in [15] and demonstrated in [53] we only need first-order solutions to the constraint equations. This
is applicable to the single-field slow-roll model, Chern-Simons, and scalar chiral tensor theories of
gravity.

At this stage, we need to compute all the terms present in the equations. It is crucial to emphasize
that, at the first order, any non-zero scalar or vector arising from the tensor part cannot form, as the
tensor indices must be contracted either with a spatial derivative or the Kronecker delta. Thus we
can disregard the tensor in what follows. Since we are interested in the solution for the lapse and the
shift function at first order we introduce their expansions

N = 1 + 2φ, N i = ∂iB + Ñ i with ∂jÑ
j = 0, (2.85)

where we have decomposed the shift function in a scalar and vector part which we can be always done
as shown in [36].

With all the necessary components in place, we can now proceed to solve for the desired values. To
begin, we compute the three-dimensional Christoffel symbols as

(3)Γkij =
1

2
hkm(∂jhmi + ∂ihmj − ∂mhij) = ∂jζδ

k
i + ∂iζδ

k
j − ∂kζδij , (2.86)

where we have retained only first order terms in tensor perturbation while we do not expand the scalar
part for simplicity. Please note that the symbols are of first order. Now we can evaluate the Ricci
tensor as

Rij = ∂k
(3)Γkij − ∂j

(3)Γkik +
(3)Γkij

(3)Γlkl − (3)Γlik
(3)Γkjl. (2.87)
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Evaluating each term in eq.(2.87) we get

∂k
(3)Γkij = 2∂i∂jζ − δij∇2ζ, (2.88)

∂j
(3)Γkik = 3∂i∂jζ, (2.89)

(3)Γkij
(3)Γlkl = 6∂iζ∂jζ − δij3∂

k∂kζ, (2.90)
(3)Γlik

(3)Γkjl = 5∂iζ∂jζ − 2δij∂
k∂jζ, (2.91)

and summing everything together we obtain
(3)Rij = −∂i∂jζ + ∂iζ∂jζ − δij∇2ζ − δij∂

kζ∂kζ. (2.92)

Now we can easily evaluate the Ricci scalar up to first order as

(3)R = hij(3)Rij = − 4

a2
∇2ζ, (2.93)

from which it becomes evident that ζ in this gauge invariant curvature perturbation introduced in
section 1.4. Next, we focus on computing the Eij tensor and we get

(1)Eij =
1

2

[
ḣij −DiÑj −DjÑi

]
=

1

2

[
ḣij − ∂iÑj − ∂jÑi

]
=

1

2

[
(2aȧe2ζ + 2ζ̇a2e2ζ)δij − ∂iÑj − ∂jÑi

]
(2.94)

= a2
[(

ȧ

a
(1 + 2ζ) + ζ̇

)
δij − ∂i∂jB − 1

2

(
∂jÑi + ∂iÑj

)]
, (2.95)

where in the first passage we have considered that the Christoffel symbols are first order. Regarding
the trace of this tensor, we immediately get

E = e−2ζδij
[
(
ȧ

a
+ ζ̇)e2ζδij − ∂i∂jB − 1

2

(
∂jÑi + ∂iÑj

)]
= e−2ζ

[
3(
ȧ

a
+ ζ̇)e2ζ −∇2B

]
≈
[
3(
ȧ

a
+ ζ̇)−∇2B

]
,

(2.96)

where in the last passage only first order terms have been considered. Since in eq.(2.84) we need E2

we need

E2 = 9

(
ȧ

a

)2

+ 18
ȧ

a
ζ̇ − 6

ȧ

a
∇2B. (2.97)

Now we can evaluate the Eij tensor with one index covariant and the other one contravariant

Eij = a−2e−2ζδima2
[(

ȧ

a
(1 + 2ζ) + ζ̇

)
δmj − ∂m∂jB − 1

2

(
∂jÑm + ∂mÑj

)]
(2.98)

=

[(
ȧ

a
+ ζ̇

)
δij − ∂i∂jB − 1

2

(
∂jÑ

i + ∂iÑj

)]
, (2.99)

while the completely covariant version reads

Eij = a−4e−4ζδilδjma2
[(

ȧ

a
(1 + 2ζ) + ζ̇

)
δlm − ∂l∂mB − 1

2

(
∂lÑm + ∂mÑl

)]
(2.100)

= a−2

[(
(
ȧ

a
(1− 2ζ) + ζ̇)

)
δij − ∂i∂jB − 1

2

(
∂iÑ j + ∂jÑ i

)]
. (2.101)

Now, we can evaluate EijEij while considering that (∂iÑj+∂jÑi) part cannot contribute at first order
since they must be contracted with a Kronecker delta

EijEij =

[(
ȧ

a
(1− 2ζ) + ζ̇

)
δij − ∂i∂jB

] [(
ȧ

a
(1 + 2ζ) + ζ̇

)
δij − ∂ijB

]
(2.102)

= 3

(
ȧ

a
(1− 2ζ) + ζ̇

)(
ȧ

a
(1 + 2ζ) + ζ̇

)
− 2

(
ȧ

a
+ ζ̇

)
∇2B (2.103)

≈ 3

(
ȧ

a

)2

+ 6ζ̇
ȧ

a
− 2

ȧ

a
∇2B. (2.104)
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Before proceeding in solving eqs.(2.84), we evaluate two fundamental contributions which we need to
rewrite the constraint equations. The first one is

EijEij − E2 = 3

(
ȧ

a

)2

+ 6ζ̇
ȧ

a
− 2

ȧ

a
∇2B −

[
9

(
ȧ

a

)2

+ 18
ȧ

a
ζ̇ − 6

ȧ

a
∇2B

]
(2.105)

= −6

(
ȧ

a

)2

− 12
ȧ

a
ζ̇ + 4

ȧ

a
∇2B, (2.106)

while the second is

Eij − Eδij =

[(
ȧ

a
+ ζ̇

)
δij − ∂i∂jB − 1

2

(
∂jÑ

i + ∂iÑj

)]
− 3

[
ȧ

a
+ ζ̇

]
δij +∇2Bδij (2.107)

= −2

[(
ȧ

a
+ ζ̇

)
δij

]
− 1

2

(
∂jÑ

i + ∂iÑj

)
− ∂i∂jB +∇2Bδij . (2.108)

Now we are ready to rewrite the second eq of eqs.(2.84) considering that the metric and its determinant
are covarianlty constant

0 = Di

[
1

Ñ
(Eij − Eδij)

]
(2.109)

= ∂i

[
(1− 2φ)

{
−2

[(
ȧ

a
+ ζ̇

)
δij

]
− 1

2

(
∂jÑ

i + ∂iÑj

)
− ∂i∂jB +∇2Bδij

}]
(2.110)

= ∂i

{
−2

[(
ȧ

a
(1− 2φ) + ζ̇

)
δij

]
− 1

2
∇2Ñj

}
(2.111)

= ∂i

{
−2

[(
−2

ȧ

a
φ+ ζ̇

)
δij

]
− 1

2
∇2Ñj

}
. (2.112)

While the first constraint equation, using that ȧ
a = H, becomes

0 = − 4

a2
∇2ζ − 2(3H2 − 1

2
φ̇0

2
)− (1− 4φ)

[
−6H2 − 12Hζ̇ + 4H∇2B

]
− (1− 4φ)φ̇2 (2.113)

= − 4

a2
∇2ζ −

[
−12Hζ̇ + 4H∇2B

]
− 24φH2 + 4φφ̇0

2
, (2.114)

which dividing by four becomes

0 = −∇2
[
a−2ζ +HB

]
+ 3Hζ̇ − 6φH2 + φφ̇0

2
. (2.115)

Thus, we have to solve the following system of equations0 = −∇2
[
a−2ζ +HB

]
+ 3Hζ̇ − 6φH2 + φφ̇0

2

0 = ∂i

{
−2
[(

−2 ȧaφ+ ζ̇
)
δij

]
− 1

2∇
2Ñj

} . (2.116)

The solution of this system is 
φ = 1

2
ζ̇
H

Ñ i = 0

B = −a−2H−1ζ + χ

∇2χ = φ̇0
2
ζ̇

2H2

, (2.117)

which is identical to the one presented in [15].

2.4 The scalar power spectrum

The goal of this section is to evaluate the primordial scalar power spectrum of the curvature pertur-
bation ζ in a fully consistent manner. To start, we must assess the equations of motion (EoM), which
requires computing the action at the second order in ζ. The constraints can be substituted with their
first-order versions, as explained in the previous section.
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2.4.1 The second order action

We recall that the action is

S =
1

2

∫
d4x

√
h
[
N
(
(3)R+ 2X − 2V

)
+N−1

(
EijEij − E2

)]
. (2.118)

To begin, we compute the three-dimensional Ricci tensor with an analogous computation tot the one
presented in the previous section

(3)Rij = −∂i∂jζ + ∂iζ∂jζ − δij∇2ζ − δij∂
kζ∂kζ. (2.119)

The Ricci scalar becomes

(3)R = a−2e−2ζ
[
−∇2ζ + ∂iζ∂

iζ − 3∇2ζ − 3∂kζ∂kζ
]
= a−2e−2ζ

[
−4∇2ζ − 2∂kζ∂kζ

]
. (2.120)

Regarding the extrinsic curvature-related tensor we have

Eij =
1

2

[
(2ζ̇a2 + 2ȧa)e2ζδij − 2a2∂i∂jB + 2a2∂kB

(3)Γkij

]
(2.121)

= a2
[
(ζ̇ +

ȧ

a
)e2ζδij − ∂i∂jB + ∂kB(∂jζδ

k
i + ∂iζδ

k
j − ∂kζδij)

]
(2.122)

= a2
[
(ζ̇ +

ȧ

a
)e2ζδij − ∂i∂jB + (∂iB∂jζ + ∂jB∂iζ − ∂kB∂

kζδij)

]
, (2.123)

where we have used that Ni =
(3)gij∂

jB = a2∂iB at first order. The fully contravariant version of the
extrinsic curvature tensor reads

Eij = a−2

[
(ζ̇ +

ȧ

a
)δije−2ζ − ∂i∂jBe−4ζ + e−4ζ(∂iB∂jζ + ∂jB∂iζ − ∂kB∂

kζδij)

]
. (2.124)

Thus we can compute at second-order

EijEij ≈ 3(ζ̇ +
ȧ

a
)2 + ∂i∂jB∂

i∂jB − 2e−2ζ(ζ̇ +
ȧ

a
)∇2B − ȧ

a
2∂kB∂

kζ, (2.125)

and, we can evaluate

E2 =

{
e−2ζ

[
(ζ̇ +

ȧ

a
)e2ζ3−∇2B − (2∂kB∂kζ − 3∂kB∂

kζ)

]}2

(2.126)

≈ +9(ζ̇ +
ȧ

a
)2 +

(
∇2B

)2 − 6(ζ̇ +
ȧ

a
)
∇2B

e2ζ
− 6∂kB∂kζH. (2.127)

Finally, we can compute

EijEij − E2 ≈ −6(ζ̇ +
ȧ

a
)2 + ∂i∂jB∂

i∂jB − 2∇2B

e2ζ
(ζ̇ +

ȧ

a
)−

(
∇2B

)2
+ 6(ζ̇ +

ȧ

a
)
∇2B

e2ζ
+ 4∂kB∂kζH

(2.128)

≈ −6(ζ̇ +H)2 + ∂i∂jB∂
i∂jB + 4e−2ζ

[
ζ̇ +

ȧ

a

]
∇2B −

(
∇2B

)2
+ 4∂kB∂kζH. (2.129)

Now, using that
√
h = a3e3ζ we can rewrite the action as

Sζζ =
1

2

∫
d4xa3e3ζ

[
(1− ζ̇

H
)(−a−2e−2ζ(4∇2ζ + 2∂kζ∂

kζ) +N−2φ̇0 − 2V )

+N−1

(
−6(ζ̇ +H)2 + ∂i∂jB∂

i∂jB + 4

[
ζ̇ +

ȧ

a
(1− 2ζ)

]
∇2B −

(
∇2B

)2
+ 4∂kB∂kζH

)]
,

(2.130)
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which can be manipulated to be presented in a more illuminating form.

First of all, we have

1

2

∫
d4xa3e3ζN−1

[(
∂i∂jB∂

i∂jB −
(
∇2B

)2)] ≈ 1

2

∫
d4xa3

[(
+∇2B∇2B −

(
∇2B

)2)]
= 0, (2.131)

where we have disregarded total derivatives. Then, there is another term that can be rewritten up a
total derivative∫

dtd3x
2Ha3

N

[
(1 +

ζ̇

H
)∇2Beζ + ∂kB∂kζ

]
≈
∫
dtd3x2Ha3

[
∇2Beζ + ∂kB∂kζ

]
(2.132)

≈
∫
dtd3x2Ha3

[
∇2Bζ + ∂kB∂kζ

]
(2.133)

=

∫
dtd3x2Ha3

[
−∂gB∂gζ + ∂kB∂kζ

]
= 0. (2.134)

where note that at up to second this term is identical to the sum of the third and fifth one in the
second line of eq.(2.130). Thus, we get the following action

S =
1

2

∫
d4xa3e3ζ

[
N
(
a−2e−2ζ

[
−4∇2ζ − 2∂kζ∂kζ

]
+N−2φ̇0 − 2V

)
− 6N−1

(
ζ̇ +H

)2]
(2.135)

= S1 + S2, (2.136)

where for convenience we have introduced

S1 =
1

2

∫
d4xa3e3ζ

[
N
(
a−2e−2ζ

[
−4∇2ζ − 2∂kζ∂kζ

]
− 2V

)]
, (2.137)

S2 =
1

2

∫
d4xa3e3ζN−1

[
−6
(
ζ̇ +H

)2
+ φ̇2

]
. (2.138)

Now we solve the first action

S1 =
1

2

∫
d4xaeζ

[(
1 +

ζ̇

H

)([
−4∇2ζ − 2∂kζ∂kζ

]
− 2

(
3H2 − φ̇0

2

2

)
a2e2ζ

)]
(2.139)

≈ 1

2

∫
d4xa

[
−4∇2ζ − ζ̇

H
4∇2ζ − 4ζ∇2ζ − 2∂kζ∂kζ + a2

(
1 + 3ζ +

9

2
ζ2 +

ζ̇

H
+ 3ζ

ζ̇

H

)(
−6H2 + φ̇0

2
)]

(2.140)

=
1

2

∫
d4xa

[
− ζ̇

H
4∇2ζ − 4ζ∇2ζ − 2∂kζ∂kζ + a2

(
1 + 3ζ +

9

2
ζ2 +

ζ̇

H
+ 3ζ

ζ̇

H

)(
−6H2 + φ̇0

2
)]
,

(2.141)

where in the first line we have used the first Friedmann equation, i.e. eq.(2.54) and in the last passage
we have eliminated a total derivative. Switching to the second action we get

S2 =
1

2

∫
d4xa3

(
1 + 3ζ +

9

2
ζ2 − ζ̇

H
− 3

ζ̇ζ

H
+

ζ̇2

H2

)[
−6
(
ζ̇2 +H2 + 2ζ̇H

)
+ φ̇2

]
(2.142)

=
1

2

∫
d4xa3

(
1 + 3ζ +

9

2
ζ2 − ζ̇

H
− 3

ζ̇ζ

H
+

ζ̇2

H2

)[
−
(
6H2 − φ̇2

)
−
(
6ζ̇2 + 12ζ̇H

)]
(2.143)

=
1

2

∫
dtd3xa3

{
−(3H2 − φ̇0

2

2
)9ζ2 − 3(6H +

φ̇0
2

H
)ζζ̇ +

φ̇0
2
ζ̇2

H2
− 12Hζ̇ − 2

(
3H2 − φ̇0

2

2

)(
1− ζ̇

H
+ 3ζ

)}
.

(2.144)
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Now we can extract the 0th order lagrangian and we get

S(0) =
1

2

∫
dtd3xa3

[
−2V − 6H2 − φ̇0

2
]
, (2.145)

where the superscript indicates the order of the action. This is just a test to verify that what we have
done is correct. Now, we proceed to validate the vanishing of the first order action

S(1) =
1

2

∫
dtd3xa3

[(
−6H2 + φ̇0

2
)(

3ζ +
ζ̇

H

)
− 12Hζ̇ +

(
−6H2 + φ̇0

2
)(

− ζ̇

H
+ 3ζ

)]
(2.146)

=
1

2

∫
dtd3xa3

[(
−6H2 + φ̇0

2
)
6ζ − 12Hζ̇

]
(2.147)

=
1

2

∫
dtd3x

[
a3
(
−6H2 + φ̇0

2
)
6ζ +

d

dt

(
12Ha3

)
ζ

]
(2.148)

=
1

2

∫
dtd3x

[
a3
(
−6H2 + φ̇0

2
)
6ζ + 12

(
Ḣa3 + 3H2a3

)
ζ
]

(2.149)

=
1

2

∫
dtd3x

[
a3
(
−6H2 + φ̇0

2
)
6ζ + 12

(
− φ̇0

2

2
a3 + 3H2a3

)
ζ

]
(2.150)

= 0, (2.151)

where we have used that Ḣ = − φ̇0
2

2 . Now we are ready to evaluate the second-order action

S(2) =
1

2

∫
d4xa

{
− ζ̇

H
4∇2ζ − 4ζ∇2ζ − 2∂kζ∂kζ + a2

[
−(3H2 − φ̇0

2

2
)18ζ2 +

φ̇0
2
ζ̇2

H2

]
− 36Hζζ̇a3

}
,

(2.152)

which, using the following integration by parts

first = 1

2

∫
dtd3xa

(
−4ζ∇2ζ

)
=

1

2

∫
dtd3xa

(
4∂iζ∂iζ

)
, (2.153)

blue =
1

2

∫
dtd3xa

(
− 4

H
ζ̇∇2ζ

)
=

1

2

∫
dtd3xa

[
2

H

d

dt

(
∂iζ∂iζ

)]
= −1

2

∫
dtd3x2a(1 + ε)(∂iζ)

2,

(2.154)

third =
1

2

∫
dtd3xa3

(
−36Hζζ̇

)
=

1

2

∫
dtd3xa3

(
−18H

d

dt
ζ2
)

=
1

2

∫
dtd3x18a3

(
3H2 − φ̇0

2

2

)
ζ2,

(2.155)

becomes

S(2) =

∫
dtd3xε

{
a3ζ̇2 − a∂kζ∂kζ

}
, (2.156)

where we are working in cosmic time and where in the previous computations we have used that

Mpl = 1, ε =
φ̇0

2

2H2
, Ḣ = − φ̇0

2

2
. (2.157)

Now using conformal time and reintroducing the Planck mass we can rewrite the action as

S(2) =

∫
dτd3xa2(τ)M2

plε

{
ζ
′2 − ∂kζ∂

kζ

}
. (2.158)
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2.4.2 The EoM and the power spectrum

In order to get the EoM we reintroduce the Mpl and we make a field redefinition by defining the
so-called Mukhanov-Sasaki variable

v ≡ zζ, z =
√
2εaMpl. (2.159)

Thus, the action eq.(2.158) becomes

S(2) =
1

2

∫
d4xz2

{(
v
′

z
− z

′

z2
v

)2

− ∂kζ∂kζ

}
=

1

2

∫
d4xz2

{
v
′2

z2
+

(
z
′

z2
v

)2

− 2
v
′

z

z
′

z2
v − ∂k

v

z
∂k
v

z

}
(2.160)

=
1

2

∫
d4x

{
v
′2
+

(
z
′

z
v

)2

− 2v
′
v
z
′

z
− ∂kv∂kv

}
(2.161)

=
1

2

∫
d4x

{
v
′2 − ∂kv∂kv +

z
′′

z
v2,

}
(2.162)

where we have integrated by parts in the last step. Now going to Fourier space

v(τ,x) =

∫
d3keik·x

(2π)2
v(τ,k), (2.163)

and, varying the action we get the following equation of motion for the mode functions vk(τ) ≡ v(τ,k)

v
′′
k +

(
k2 − z

′′

z

)
vk = 0. (2.164)

Before solving this equation, we must obtain an explicit expression for z′′

z , and we can achieve this by
using the definition of z in the following way

z′′

z
=

d

dτ

(
z
′

z

)
+

(
z
′

z

)2

. (2.165)

Thus, we can compute

z
′

z
= a

(
d

dt

√
2εa(t)Mpl√
2εa(t)Mpl

)
=

ε̇

2ε
a+ aH = aH(1− ηV + 2ε) ≈ −1

τ
(1− ηV + 3ε), (2.166)

where we exploit the result of the appendix on quasi De-Sitter expansion (appendix C.1) and, we use
that

ε̇

ε
=

− Ḧ
H2 + 2 Ḣ

2

H3

− Ḣ
H2

= +
Ḧ

Ḣ
+ 2Hε =

2φ̇0φ̈0

φ̇0
2 + 2Hε = 2(−ηV + 2ε)H. (2.167)

Now eq.(2.165) reads

z′′

z
≈ 1

τ2
(1− ηV + 3ε) +

1

τ2
(1− 2ηV + 6ε) =

1

τ2
(1− 3ηV + 9ε), (2.168)

which allows us to rewrite the equation of motion as

v
′′
k +

(
k2 −

ν2 − 1
4

τ2

)
vk = 0, ν2 ≡ 9

4
+ 9ε− 3ηV , (2.169)
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which can be solved as done in appendix C.2 as

vk(τ) =

√
π

2

√
−τH(1)

ν exp i
(νπ

2
+
π

4

)
. (2.170)

We recall that in order to obtain the solution we have assumed Bunch-Davies’ initial condition [54]

vk(τ)
−kτ>>1−−−−−→ 1√

2k
e−ikτ , (2.171)

and we required the following

W{vk, v∗k} = vkv
∗
k

′ − v∗kv
′
k = −i, (2.172)

which as we’ll see allows us to recover the standard commutation relation for the creation and anni-
hilation operators. Since the EoM is of second order we can always impose two conditions on the
solutions.

Next, we are ready to move forward with the canonical quantization of the system. Our first step is
to determine the conjugate momentum to the variable v, denoted as πv ≡ ∂L

∂v′
= v

′ . In this context,
the subscript indicates that πv is the conjugate momentum with respect to the variable v. Thus, we
can impose the canonical commutation relation [43, 52, 17]

[v(τ,x1), v
′
(τ,x2)] = δ(3)(x1 − x2), (2.173)

[v(τ,x1), v(τ,x2)] = [v
′
(τ,x1), v

′
(τ,x2)] = 0, (2.174)

and write the fields as a combination of creation and annihilation operators

v(τ,x1) =

∫
d3k

(2π)3

[
vk(τ,k)e

ik·xâ(k) + v∗k(τ,k)e
−ik·xâ†(k)

]
, (2.175)

v
′
(τ,x1) =

∫
d3k

(2π)3

[
v
′
k(τ,k)e

ik·xâ(k) + v
′
k
∗(τ,k)e−ik·xâ†(k)

]
. (2.176)

Thus, inverting the relation we get

â(q) = i

∫
d3xe−iq·x

[
v
′
q
∗(τ, q)v̂(τ,x)− v∗q (τ, q)v

′
(τ,x)

]
, (2.177)

â†(q) = −i
∫
d3xe+iq·x

[
v
′
q(τ, q)v̂

†(τ,x)− vq(τ, q)v̂
′†(τ,x)

]
, (2.178)

from which we can obtain the commutation relation for the creation and annihilation operators

[â(k), â†(q)] = (2π)3δ(3)(k− q), (2.179)
[â(k), â(q)] = [â†(k), â†(q)] = 0. (2.180)

In what we have done is crucial that the condition on the Wronskian 2.172 holds in order to recover
eq.(2.179) and (2.180).

Finally, we are ready to compute the power spectrum which is simply related to the two-point corre-
lation function in Fourier space

〈0|v̂k(τ, k)v̂q(τ, q)|0〉 = 〈0|
(
vk(τ, k)â(k) + v∗−k(τ,−k)â†(−k)

)(
vq(τ, q)â(q) + v∗−q(τ,−q)â†(−q)

)
|0〉

(2.181)
= 〈0|vk(τ, k)â(k)v∗−q(τ,−q)â†(−q)|0〉 (2.182)
=| vk(τ, k) |2 δ(3)(k+ q)(2π)3, (2.183)

53



from which we can extract the power spectrum and the adimensional power spectrum (see section 1.6)

Pζ =
| vk(τ, k) |2

2εa2M2
pl

, ∆ζ =
k3

2π2
| vk(τ, k) |2

2εa2M2
pl

, (2.184)

where the subscript recalls that we are computing the gauge invariant curvature perturbation power
spectrum. Using the asymptotic expansion for the Hankel functions [55]

vk(τ)
−kτ<<1−−−−−→ ei

(
ν− 1

2

)
π
2
(−kτ)−ν+

1
2

√
2k

Γ(ν)

Γ
(
3
2

)2ν− 3
2 , (2.185)

we immediately get the two power spectra on super-horizon scales

Pζ ≈
1

4εk3

(
H

Mpl

)2( k

aH

)3−2ν

, ∆ζ ≈
1

2ε

(
H

2πMpl

)2( k

aH

)3−2ν

. (2.186)

Now, we can immediately evaluate the spectral index (see 1.6) of the scalar perturbation and we get

ns − 1 =
d ln∆ζ(k)

d ln k
= 2ηV − 6ε, (2.187)

which corresponds to an almost scale-invariant power spectrum. Since, from section 1.4 we know
that the gauge invariant curvature perturbation is conserved on superhorizon scales roughly we can
say that on super-horizon scales the power spectrum retains the value it has at horizon crossing, i.e.
k ∼ aH,

Pζ ≈
1

4k3

(
H

εMpl

)2
∣∣∣∣∣
k=aH

, ∆ζ ≈

(
H

2
√
2επMpl

)2
∣∣∣∣∣∣
k=aH

. (2.188)

2.5 The tensor power spectrum

This section aims to evaluate the tensor power spectrum within the ADM formalism in a fully consis-
tent way. The calculation presented here may not reveal any particularly enlightening insights, but it
serves as a warm-up exercise for what we need to do in the next section. Additionally, this computa-
tion enables us to obtain the correct normalization factor for the power spectrum. Independently on
the gauge we adopt, since we are interested in tensor perturbations we can set to zero all the scalars
in the metric and write

gµν = a2
(
1 0
0 (δij + γij +

1
2γilγ

l
j)

)
, gµν = a−2

(
1 0
0 (δij − γij + 1

2γ
ilγj l)

)
. (2.189)

Note that we are interested only in deriving the EoM to compute the Power spectrum so we consider
terms in the Lagrangian up to second order in h. We recall that the Lagrangian we are interested in
is

LHE =
M2
pl

2

√
h
[
(3)R+KαβK

αβ −K2
]
, (2.190)

where we have set N = 1 consistently to what we have said. Therefore, we can start by evaluating
the extrinsic curvature up to second order

Kαβ =
1

2N

[
ḣµν −DµNν −DνNµ

]
=

1

2
ḣµν . (2.191)

All the computations that we do not repeat here are performed in detail in appendix C.4. Since as
shown in section C.3.4 we only need to evaluate the spatial components of the extrinsic curvature we
can use Latin indices and obtain

Kij =
1

2
ġij = ȧaδij + ȧaγij +

1

2
a2γ̇ij +

1

2
ȧaγikγ

k
j +

1

4
a2γ̇ikγ

k
j +

1

4
a2γikγ̇

k
j . (2.192)
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The fully contravariant extrinsic curvature reads

Kij =
ȧ

a3
δij − ȧ

a3
γij +

1

2
a−2γ̇ij +

1

2

ȧ

a3
γikγjk −

1

4
a−2γ̇ikγjk −

1

4
a−2γikγ̇jk. (2.193)

Thus we are ready to compute the necessary ingredients to rewrite the second and third terms in the
action

KijKij = 3
ȧ2

a2
+

1

4
γ̇ij γ̇ij , (2.194)

gijKij = 3
ȧ

a
. (2.195)

Now we have to evaluate the three-dimensional Ricci scalar which can be evaluated as we have done
in appendix C.4

(3)R =
1

a2

[
∂iD

i +
1

2
γliγil

,k
,k +

1

4
γli,kγil

,k

]
, (2.196)

where, Di is a second-order function in tensor perturbation, and its specific expression is not significant.
What matters is that it can be represented as a spatial total derivative. As we observe in appendix
C.4

√
h ≈ a3(1 + O(γ3)). Now, inserting everything in eq.(2.190), eliminating total derivatives and

switching to conformal time we find the following action

S
(2)
T =

∫
dτd3x

M2
pl

8
a2
{
γ

′ ij
γ

′
ij − γli,kγil

,k
}
. (2.197)

Using the variational principle we immediately get the EoM for the tensors perturbation

γ
′′
ij + 2

a
′

a
γ

′
ij −∇2γij = 0. (2.198)

Now, going into Fourier space,

γij(τ,x) =

∫
d3keix·k

(2π)3

∑
s

[
εsij(k̂)us(τ,k)bs(k) +

(
εsij
)∗

(k̂)u∗s(τ,−k)b∗s(−k)
]
, (2.199)

where εsij(k̂) are the polarization tensors defined in section D.1, us(τ,k) are the mode functions while
bs(k) are functions of k. The basis we adopt for the polarization is completely equivalent. The
equation in Fourier space for the mode functions are

u
′′
s (τ,k) + 2

a
′

a
u

′
s(τ,k) + k2us(τ,k) = 0, (2.200)

which, using this field redifinition u(τ,k) = v(τ,k)
a(τ) ,

0 =

(
v
′′
(τ,k)

a
− 2

v
′
(τ,k)

a

a
′

a
− v(τ,k)

(
a
′′

a2
− 2

a
′2

a3

))
+ 2

a
′

a

(
v
′
(τ,k)

a
− v(τ,k)

a

a
′

a

)
+ k2

v(τ,k)

a

(2.201)

= v
′′
(τ,k) +

(
k2 − a

′′

a2

)
v(τ,k) =

v
′′
(τ,k)

a
+

(
k2 −

ν2 − 1
4

τ2

)
v(τ,k), (2.202)

where we have exploited the results of appendix C.1 and where ν2 = 9
4 + 3ε. Thus, we see that

equations for the mode functions are identical to the one of the scalar field and we do not repeat the
calculations but we report the results

P sT (k) =
16π

k3

(
H

Mpl

)2( k

aH

)−2ε

, ∆s
T (k) =

8

π

(
H

Mpl

)2( k

aH

)−2ε

, (2.203)
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where the subscript T stands for tensor, the subscript s refers to the polarization. The tensor spectral
index is

nT = −2ε. (2.204)

At horizon crossing we have

P sT (k) =
16π

k3

(
H

Mpl

)2

, ∆s
T (k) =

8

π

(
H

Mpl

)2

. (2.205)

The total tensor power spectrum, which is the sum of the two polarization states contribution, is

P sT (k) =
32π

k3

(
H

Mpl

)2( k

aH

)−2ε

, ∆s
T (k) =

16

π

(
H

Mpl

)2( k

aH

)−2ε

. (2.206)

2.6 From quantum fluctuations to initial conditions

Now, we have to understand how from primordial quantum fluctuations we can set the initial condition
for the subsequent evolution of the fluctuations. This can be done using that the gauge invariant
curvature perturbation on uniform energy density hypersurfaces,

ζ = −φ̂− Hδ(1)ρ

ρ̇0
, (2.207)

is constant on super-horizon scales. Hence, the concept is that the fluctuations generated during
inflation go on super-horizon scales. Subsequently, they become frozen and remain so until re-entering
within the horizon during the epochs of radiation or matter dominance. As an illustration, let’s take
two scales, denoted as λ and λ

′ , as depicted in the figure 9. These scales are associated with wave
vectors k and k

′ , respectively. Throughout the inflationary phase, λ and λ
′ go on super-horizon

scales at times t1(k) and t1(k
′
), respectively. Subsequently, during the epochs of radiation and matter

dominance, these scales re-enter under the horizon at times t2(k) and t2(k
′
), respectively. Thus, if

Figure 9: The scales λ and λ
′ .

we want to evaluate the power spectrum of matter or radiation perturbation we need to evaluate the
relation between these perturbations and ζ. It’s possible to show that

ζrad =
δργ
4ργ

=
∆T

T
, ζmat =

δρmat
3ρmat

, (2.208)
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where we have used the standard relation between radiation energy density and temperature, ργ ∝ T 4.
It’s worth noting that we have computed these quantities within the spatially flat gauge, where φ̂ = 0.
This choice of gauge is permissible because ζ remains gauge invariant, allowing us to choose any gauge
we desire to evaluate its expression. Now, if we want to evaluate the power spectra for temperature
and matter perturbations we simply have to use that ζ is conserved on super-horizon scales

ζ(t1,k) = ζ(t2,k) =
δρmat
3ρmat

, (2.209)

ζ(t1,k
′
) = ζ(t2,k

′
) =

∆T

T
, (2.210)

from which we can write

∆ζ|t1(k) = ∆ζ|t2(k) . (2.211)

2.7 The Importance of the stochastic background of GW s

In this section, we mention something about the importance of detection of GW s in constraining
Inflationary models. First of all, we have to introduce the so-called scalar to tensor ratio r, which is
defined as

r ≡=
∆T

∆ζ

∣∣∣∣
k=aH

=
16

π

 H2

M2
pl

H2

M2
pl

∣∣∣∣∣∣
k=aH

πε = 16ε = −8nT . (2.212)

This relation is often called consistency relation. The actual bound on the scalar-tensor ratio is [32]

r < 0.036 (95%C.L.). (2.213)

The scalar to tensor ratio would provide useful insights into the dynamics of Inflation since it allows
us to evaluate:

• The energy scale of Inflation
We say the energy scale at which Inflation took place basically depends on the slow-roll potential
Einf ' V

1
4 . Now, we can write

Einf ' V
1
4 ' [HMpl]

1
2 '

[
∆

1
2
TMpl

] 1
2

'
[ r

10−2

] 1
4
1016GeV, (2.214)

where it’s clearly an estimate which allows us to individuate the order of magnitude of the
quantity of interest. From this relation, it’s evident that a detection of the background of
stochastic GW s would give us insights into the energy scale of Inflation.

• The distinction between large and small field models
A measurement of r would provide useful insights also on the kind of model we have to consider.
In fact, we can write the excursion of the scalar field during Inflation as

∆φ =

∫ φf

φi

φ̇dt
H

H
' φ̇

H

∫ t2

t1

Hdt = ε
1
2MplNCMB =

r
1
2

4
MplNCMB. (2.215)
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3 Parity violation in the galaxy four-point correlation function
In this chapter we discuss the issue of the measurement of parity violation in the galaxy four-point
correlation function as presented in [2] and [1]. This is the starting point of the work since the goal of
the thesis is to try to reproduce these kinds of signals as relic signatures of parity violation in the Early
Universe. We are going to do this in section 5 and in section 6 in which we study models of modified
gravity which can imprint parity-violating signatures in the trispectrum of the curvature perturbation
ζ.

Before entering theoretical computations regarding the four-point correlation function or its analogous
in Fourier space, the trispectrum, we would like in this chapter to illustrate the basic ideas underlying
the measurement of parity violation in the galaxy four-point correlation function. So for the sake of
simplicity, space curvature and expansion are ignored. This allows us to work in three-dimensional
euclidean space, R3. We disregard that galaxies are observed along the back-light cone, not at a fixed
instant of cosmic time t. This is a good approximation [46] because most of the available data samples
only a small fraction of the Hubble distance. A more detailed and complete analysis can be carried
out taking into account additional effects, such as spatial curvature [40]. So we can say that position-
dependent fields are real random fields that are statistically homogeneous and isotropic in the sense
specified in section 1.5. Moreover, they satisfy the hypothesis of the ergodic theorem eq.(1.122).

In particular, the field we analyze is the fractional matter density field defined on R3 as

δ(t, r) ≡ δρ(t, r)

ρ0(t)
(3.1)

where ρ0(t) is the spatial mean of ρ(t,x) = ρ0(t)+ δρ(t,x). For the sake of simplicity, in the following,
we omit the time dependence of the density fields. The galaxy four-point correlation function is defined
as

ζ(s, r1, r2, r3) ≡ 〈δ(s)δ(s+ r1)δ(s+ r2)δ(s+ r3)〉, (3.2)

where 〈..〉 denotes the ensemble average and s, r1, r2, r3 indicate absolute and relative positions on R3.
Invoking the ergodic theorem, eq.(1.122), the galaxy 4PCF estimator [1] becomes

ζ̂(r1, r2, r3) ≡ 〈δ(s)δ(s+ r1)δ(s+ r2)δ(s+ r3)〉 (3.3)

=
1

V

∫
dsδ(s)δ(s+ r1)δ(s+ r2)δ(s+ r3), (3.4)

provided that V , the volume over which we measure the 4PCF , is sufficiently large. In eq.(3.4) we
denote with a hat the quantity measured from data and we opt for this notation throughout the
entire chapter. We stress that in data analysis we have to take into account the range of validity of
eq.(1.140)9 and we simply assume that the volume is sufficiently large. In eq.(3.4) we have introduced
the 4PCF estimator but, in practice, we cannot use it and we group the data in bins of finite size,
B(r1, r2, r3), for example, angular and radial bins. For example, given a sample of Ng galaxies at
positions

xi=1,..,Ng , such that ∀i ∈ [1, Ng], ri ∈ [20, 120]h−1Mpc, (3.5)

we can divide this interval in 10 identical parts with ∆r = 10h−1Mpc. We label each bin or interval
with an index b = 1, .., bmax=10 and we identify ∆b = [10(b + 1), 10(b + 2)]h−1Mpc. In this way, we
can define θb(r)

θb(r) : R → R (3.6){
θb(r) = 1 if r ∈ ∆b,

θb(r) = 0 otherwise
. (3.7)

9If the volume is too small we are not computing the NPCF
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In the same fashion we can introduce the angular binning. Therefore the problem reduces in estimating
the coefficients of such decomposition

ζ̂B =

∫
dr1dr2dr3ζ(r1, r2, r3)B(r1, r2, r3), (3.8)

where the ζ̂B is a R number and the subscript B refers to one of the bins we are using. We stress
that unavoidably we have to average over the space otherwise we are not measuring the 4PCF as
explained in sec.1.5. In general we have access to a discrete field of Ng particles at positions xi=1,..,Ng

with weights wi, which is defined as

δ(s) ≡
Ng∑
i=1

wiδ
(3)(s− xi). (3.9)

Using eq.(3.9), the estimator becomes

ζ̂B =
1

V

∫
dsdr1dr2dr3δ(s)δ(s+ r1)δ(s+ r2)δ(s+ r3)B(r1, r2, r3) (3.10)

=
1

V

∫
dsdr1dr2dr3B(r1, r2, r3)

 Ng∑
J0=1

wJ0δ
(3)(s− xj0)

 Ng∑
J1=1

wJ1δ
(3)(s+ r1 − xj1)

× (3.11)

×

 Ng∑
J2=1

wJ2δ
(3)(s+ r2 − xj2)

 Ng∑
j3=1

wj3δ
(3)(s+ r3 − xj3)

 (3.12)

=

Ng∑
j0,j1,j2,j3=1

wj0wj1wj2wj3B(xj1 − xj0 ,xj2 − xj0 ,xj3 − xj0), (3.13)

which is a sum over a triplet of particles, and it has a complexity O(N4
g ). If we consider the generic

NPCF , the estimator has complexity O(NN
g ) which, unless N is small (N = 2) it’s useless due to

computationally costs [40]. To solve the problem, instead of projecting on angular bins, we use a
basis for isotropic functions of N − 1 vector variables10, introduced in section 3.1, whose elements are
products of N − 1 spherical harmonics:∫

dsδ(s)

∫ [ 3∏
i=1

driθ
bi(ri)δ(s+ ri)YΛimi (̂ii)

]
, (3.14)

where YΛimi(r̂i) = YΛimi(θ1, φ1) is the spherical harmonics with indices Λi and mi (appendix B.1). We
are not going to use eq.(3.14) but a sum of terms like this weighted by Wigner symbols, as explained
in section 3.3. This trick allows us to obtain an algorithm that has complexity O(N2

g ) for every N , as
explained in section 3.3.

The remainder of this chapter is structured as follows. In section 3.1, using techniques of quantum me-
chanics, we discuss how to decompose a generic isotropic function of N vector variables in a convenient
orthonormal basis, which is the one used in data analysis. In section 3.2 we show why, considering a
scalar field, we need the four-point correlation function to search for parity violation signature. We
give both an intuitive geometrical argument and a more formal one, based on the properties of the
basis’ elements introduced in section 3.2. In section 3.3 we briefly introduce the algorithm used in
the analysis and in the final section 3.3, we discuss the claims of measurements of parity violation
signature found in the galaxy 4PCF by [2] and [1].

3.1 Isotropic N-point basis functions and their properties

As discussed in section 1.6 we know that the NPCF s of a real scalar field are isotropic functions of
N − 1 vector variables. In this section, following [5], we present how to provide an orthonormal basis

10As explained in section 1.6 the NPCF are isotropic functions of N − 1 vector variables.
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for square-integrable isotropic functions of positions R ≡ [r1, .., rN], where R stand for the collection
of r1, .., rN. To do that in a manageable way we use the quantum mechanics (hereafter QM) formalism
for the addition of angular momentum. In appendix B.2 we summarize the most important features
of the procedure used for the addition of two angular momenta following [56]. In QM we have that
the orbital angular momentum is defined as L̂ = (L̂z, L̂y, L̂z) = r× p̂ and it’s possible to diagonalize
simultaneously L̂2 and L̂z since [L̂2, L̂z] = 011. This procedure can be found in any QM textbook and
we have that the spherical harmonics Ylm(θ, φ) of order l,m12 are common eigenfunctions of L2 and
Lz with eigenvalues l(l + 1) and m respectively

L̂2Ylm(θ, φ) = l(l + 1)Ylm(θ, φ),

L̂zYlm(θ, φ) = mYlm(θ, φ), (3.15)

where l ≥ 0, l ∈ N and m ∈ [−l, l]. As stated in [57] we know that

L2(R3) = L2([0,∞), r2dr)⊗ L2(S2) (3.16)

and that the spherical harmonics are an orthonormal basis of L2(S2). In eq.(3.16) we have introduced

L2([0,∞), r2dr) ≡ {f(r) : R → R |
∫ ∞

0
drr2|f(r)|2, <∞}. (3.17)

Thus it’s always possible to decompose any f(r) ∈ L2(R3) in the following way

f(r) =
+∞∑
l=0

l∑
m=−l

flm(r)Ylm(θ, φ), (3.18)

where we r = |r|.

We introduce the method starting from the case N = 2, i.e. the decomposition of a square-integrable
isotropic function f(r1, r2) ∈ L2(R3)⊗L2(R3) of two vector variables, r1 and r2. We seek an orthonor-
mal basis for isotropic functions of r1 and r2. We can achieve this by using some basic facts of QM .
The basic idea is to think of L2(R3) as the state space of a free particle with spin 0 with an associated
angular momentum operator L. So the functions we want to decompose belong to the state space of a
composite system of two subsystems of particles with 0 spin with space states ε1 and ε2 and angular
momentum operator L1 and L2. We indicate the composite space state as

ε ≡ ε1 ⊗ ε2, (3.19)

and its relative angular momentum operator with L = L1 + L2.

Now we want to make contact with the notation introduced in appendix B.2. Since the angular
momentum operator acts only on the angular part of the function13, the one which can be decomposed
on S2, we write

ε1 = ε2 = L2(R3) = L2([0,∞), r2dr)⊗ L2(S2) = L2([0,∞), r2dr)⊗ χ1\2, (3.20)

where χ1\2 is the space where the angular momentum operator has no trivial dependence, i.e. L2(S2).
According to eq.(B.15) we can write

χ = (L2([0,∞), r2dr)⊗ L2(S2))⊗ (L2([0,∞), r2dr)⊗ L2(S2)) (3.21)
= (L2([0,∞), r2dr))⊗2 ⊗ (L2(S2))⊗2 (3.22)

= (L2([0,∞), r2dr))⊗2 ⊗ (
∑
⊕
χ(L,m)), (3.23)

11In what follows, we omit the operator symbol, i.e. the hat, for notational simplicity.
12See appendix for definition and useful properties.
13We can formally write L = Ir ⊗ L in order to emphasize that it doesn’t depend on r.
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where χ(L,m) are subspaces with definite total angular momentum. We stress that
∑

⊕ χ(L,m) is a
convenient way to express L2(S2) ⊗ L2(S2). We recall that if we choose the spherical harmonics as
basis for L2(S2) according to eq.(3.22), we can always decompose a generic square-integrable function
of two vector variables as

f(r1, r2) =
∑
l1,l2

l1∑
m1=−l1

l2∑
m2=−l2

fl1m1l2m2(r1, r2)Yl1m1(θ1, φ1)Yl2m2(θ2, φ2). (3.24)

We are not interested in generic functions of L2(R3 ⊗R3) but in the isotropic ones. Now the isotropic
functions are eigenvectors of L with eigenvalue L = 0. So the relative state space is

(L2([0,∞), r2dr))⊗2 ⊗ χ(L = 0,m = 0). (3.25)

Now we can express the states of χ(L = 0,m = 0) either in the basis in which the states are com-
mon eigenfunctions of L2

1, (L1)z, L
2
2, (L2)z or L2

1, L
2
2, L

2, Lz. Our goal is to use products of spherical
harmonics, which are common eigenfunctions of L2

1, (L1)z, L
2
2, (L2)z and in order to do that we’ll use

the Clebsch-Gordan coefficient. To do that, we have to sum L1 and L2, into L = L1 + L2 = 0. An
element with L = 0 can be obtain only if L1 = L2 = Λ since |L1 − L2| ≤ L ≤ L1 + L2. We denote,
according to the notation of appendix B.214 this state as PΛ,Λ ≡ |Λ,Λ, 0, 0〉, which is expressed in the
basis of common eigenfunctions of L2

1, L
2
2, L

2, Lz. The Clebsch-Gordan coefficients (see appendix B.2)
allow us to get an analytic expression for PΛ,Λ as a product of spherical harmonics

PΛ,Λ =
∑
m1,m2

〈Λm1,Λm2|00〉|Λm1〉|Λm2〉 =
Λ∑

m=−Λ

(−1)Λ−m√
2Λ + 1

YΛm(r̂1)YΛ−m(r̂2) =

Λ∑
m=−Λ

(−1)Λ√
2Λ + 1

YΛm(r̂1)Y
∗
Λm(r̂2),

(3.26)

where |Λ,m〉 denotes a single particle state with quantum numbers Λ(Λ + 1) and m respectively for
L2 and Lz and r̂1\2 ≡

r1\2
r1\2

is used to specify the angular dependence. In the first step of eq.(3.26) we
use the definition of the Clebsch-Gordan coefficients, in the second one we use their explicit expression
while in the last one, we use the expression for the conjugate of Ylm(θ, φ) (see appendix B.1). Using
eq.(3.25) every isotropic function of two vector variables can be decomposed as follow

f(r1, r2) =

∞∑
Λ=0

f(r1, r2)PΛ,Λ(r̂1, r̂2). (3.27)

Now we can generalize this decomposition to square-integrable functions of N vector variables, R ≡
[r1, .., rN ], which we denote as

L2(R3)⊗N ≡ {f : (R3)⊗N −→ R |
∫
(R3)⊗N

N∏
i=1

d3ri|f(R)|2 <∞}, (3.28)

which can be written as

L2(R3)⊗N = (L2([0,∞), r2dr)⊗ L2(S2))⊗N = (L2([0,∞), r2dr))⊗N ⊗ (L2(S2))⊗N . (3.29)

Now we seek an orthonormal basis of isotropic functions, i.e. functions that are invariant under
simultaneous rotations of the position’s vectors,

∀R̂ ∈ SO(3), f(R̂R) ≡ f(R̂r1, .., R̂rN) = f(r1, .., rN) = f(R). (3.30)

We proceed in a similar way to what was done in the case N = 2. We identify

∀i = 1, .., N εi = L2(R3) = (L2([0,∞), r2dr))i ⊗ χi, (3.31)
14We adopt this notation throughout the rest of the chapter.
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as the state space of a free particle of spin 0 and relative angular momentum operator Li. In a similar
way to eq.(3.20) we have renamed L2(S2) with χ in order to make contact with the notation of the
appendix B.2. We also have introduced a subscript i = 1, .., N in eq.(3.31) to identify the N vector
spaces we have to consider. Therefore we can interpret

ε ≡ (L2(R3))⊗N , (3.32)

as the resulting vector space for a system of N particles with spin 0 and total angular momentum
operator

L =

N∑
i=1

Li. (3.33)

In similar way to eq.(3.23), we get

ε = (L2([0,∞), r2dr)1)⊗ χ1 ⊗ ..⊗ (L2([0,∞), r2dr)N )⊗ χN = (L2([0,∞), r2dr)⊗N ⊗
∑
⊕
χ(L,m),

(3.34)

where in the second passage we have dropped the subscript i for simplicity and where χ(L,m) are
subspaces with definite total angular momentum. Since the spherical harmonics are basis of χi,
according to eq.(3.34), we can decompose any function f(R) ∈ L2(R3)⊗N as

f(R) =
∑
l1,..lN

∑
m1,..,mN

fl1,..,lN ,m1,..,mN
(r1, ., rN )

N∏
i=1

Ylimi
(θi, φi). (3.35)

We are not interested in projecting onto a basis the radial part of the functions but in working only
with the angular part. What we mean is that we are not interested in writing fl1,..,lN ,m1,..,mN

(r1, .., rN )
of eq.(3.35) as

fl1,..,lN ,m1,..,mN
(r1, .., rN ) =

∑
k1

..
∑
kN

ak1,..,kN ,l1,..,lN ,m1,..,mN

N∏
i=1

f̃ki(ri), (3.36)

where {f̃1, .., f̃j ..} is a basis for L2([0,∞), r2dr)15 and where ak1,..,kN ,l1,..,lN ,m1,..,mN
’s are numerical

coefficients. Our goal is to decompose the isotropic functions using products of spherical harmonics
but if we want to reconstruct the full function we always have to remember that the coefficients
multiplying the product of spherical harmonics won’t be real numbers but functions of the moduli of
the radii. Now we are interested in isotropic functions, which are eigenfunctions of L with eigenvalue
L = 0 since we know that rotation invariant states are the ones with 0 angular momentum. A basis
of the space can be obtained by taking the tensor product of the single particle’s basis, i.e. a basis
for L2(R3). But we are interested in obtaining a basis consisting of spherical harmonics products.
So, as in the case N = 2, we want to express our basis elements as linear combinations of common
eigenfunctions L2

1, (Lz)1, .., L
2
N , (Lz)N . The states in χ(L,m) can be written as common eigenfunctions

of the operators L2
1, .., L

2
N , L

2, Lz or common eigenfunctions of L2
1, (L1)z, ..., L

2
N , (LN )z and we can link

them using Clebsch-Gordan coefficients (see appendix B.2).

Now advancing to N ≥ 3 vectors we need to specify a scheme for the addition of angular momenta. If
N = 3, the sum of the the angular momenta associated with the first two directions, Λ1 and Λ2, give
rise to Λ12, which, due to the triangular rule for addition of angular momenta must satisfy

|Λ1 − Λ2| ≤ Λ12 ≤ Λ1 + Λ2. (3.37)

Now to have a state with total angular momentum we need Λ3 = Λ12. Therefore in the case N = 3,
we don’t need to specify any intermediate state. However, once we go beyond three vectors, there are

15The index kj can be continuous but for the sake of simplicity we use a discrete one.
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choices to be made in the sense that we can have different intermediate combinations which lead to a
state with 0 angular momentum. So we need to specify a scheme with which we sum the various angular
momenta. We adopt a convention where we decide to sum the momenta as cumulants, i.e. summing
Λ1 with Λ2 we get Λ12 which combined with Λ3 give rise to Λ123 and so on. For the sake of simplicity,
we indicate the full angular momenta with Λ ≡ (Λ1,Λ2,Λ12, ..) and with m ≡ (m1,m2,m3, ..). We do
not need to specify m12 since m12 = m1 +m2. It’s important to specify the intermediate momenta
because we get different elements of the basis. Let’s suppose that

Λ1 = 1, Λ2 = 2, Λ3 = 3, Λ4 = 1, (3.38)

we have different possibilities to get status with 0 angular momentum. For example

Λ12 = 2 −→ Λ123 = 1, Λ12 = 1 −→ Λ123 = 1, (3.39)

give rise to two different elements of the basis which are respectively PΛ and PΛ′ where Λ = (1, 2, 2, 3, 1, 1)
and Λ′ = (1, 2, 1, 3, 1, 1). According to what we have done in the case N = 2 we have introduced the
elements of the basis as PΛ. So any isotropic function can be decomposed as

f(R) =
∑
Λ

f(r1, .., rN )PΛ(r̂1, .., r̂N ), (3.40)

where the sum is over all the possible combinations of N angular momenta that give a final state of
0 angular momentum. The basis’ elements can be written as

PΛ(R̂) =
∑

m1,m2..

CΛ
m

N∏
i=1

YΛimi(r̂i), (3.41)

where the weights are

CΛ
m ≡ CΛ1..ΛN

m1..mN
=

∑
m12,m123..

〈Λ1,m1,Λ2,m2|Λ12,m12〉 × ..×

〈Λ1..N−1,m1..N−2,ΛN−1,mN−1|Λ1..N−1,m1..N−1〉〈Λ1..N−1,m1..N−1,ΛN ,mN |Λ, 0, 0〉, (3.42)

where |Λ, 0, 0〉 is the state in the basis of common eigenfunctions of L2
1, L

2
2, ., , L

2
N , L

2, Lz. Following
the same reasoning of eq.(3.26) we can demonstrate the eq.(3.42) using iteratively the addition formula
for angular momentum. Indeed we can start decomposing PΛ as if it was the state resulting from the
linear combination of |Λ1..N−1,m1..N−1〉 and |ΛN ,mN 〉:

|Λ1..N−1,m1..N−1,ΛN ,mN 〉 =
∑

m1..N−1,mN

〈Λ1..N−1,m1..n−1,ΛN ,mN ||Λ, 0, 0〉|Λ1..N−1,m1..N−1〉YΛNmN
,

(3.43)

where |Λ1..N−1,m1..N−1〉 is the state resulting from the addition of N − 1 angular momenta. Now
using the addition formula for

Λ1..N−2 +ΛN−1 = Λ1..N−1, (3.44)

we can proceed in an iterative way decomposing |Λ1..N−1,m1..N−1〉 as

|Λ1..N−1,m1..N−1〉 =
∑

m1..N−2,mN−1

〈Λ1..N−2,m1..n−2,ΛN−1,mN−1|Λ1..N−1,m1..N−1〉×

× |Λ1..N−2,m1..N−2〉YΛN−1mN−1
(r̂N−1). (3.45)

So we get

PΛ = |Λ1,Λ2,Λ12, ..ΛN 〉 =
∑

m1,..,mN

∑
m12,m123..

〈Λ1,m1,Λ2,m2|Λ12,m12〉 × ..×

〈Λ1..N−1,m1..N−1,ΛN ,mN , |Λ, 0, 0〉
N∏
i=1

YΛimi(r̂i), (3.46)

64



which can be recast in the desired expression of eq.(3.41).

We conclude this section by deriving the explicit expression for eq.(3.42) and by analyzing some useful
properties of the basis elements. Now we focus on deriving the explicit expression for eq.(3.42) in
the case N = 3, which is the one corresponding to the four-point correlation functions. Then we’ll
generalize to the case N > 3. So we have

CΛ
m =

∑
m12

〈Λ1,m1,Λ2,m2|Λ12,m12〉〈Λ12,m12,Λ3,m3|Λ, 0, 0〉 (3.47)

=
√

2Λ12 + 1
∑
m12

(
Λ1 Λ2 Λ12

m1 m2 −m12

)(
Λ12 Λ3 0
m12 m3 0

)
(−1)−Λ12+Λ3−m12+Λ2−Λ1

=
√

2Λ3 + 1

(
Λ1 Λ2 Λ3

m1 m2 −m3

)(
Λ3 Λ3 0
m3 −m3 0

)
(−1)−Λ3+Λ3−m12+Λ2−Λ1

=
√

2Λ3 + 1

(
Λ1 Λ2 Λ3

m1 m2 −m3

)
(−1)Λ3−m3

√
2Λ3 + 1

(−1)−Λ3+Λ3−m3+Λ2−Λ1 (3.48)

=

(
Λ1 Λ2 Λ3

m1 m2 m3

)
(−1)Λ3+Λ2+Λ1 , (3.49)

where in the first step we have used the definition of the 3− j symbols (appendix B.3), in the second

we have exploited that
(
Λ12 Λ3 0
m12 m3 0

)
is different from 0 only if m12 = −m3

16 and that Λ12 = Λ3.

In the third passage, we have employed eq.(B.24) while in the last one, we have changed the signs of
the integers17. When N ≥ 4 we have

CΛ
m =

∑
m12,m123,..

〈Λ1,m1,Λ2,m2|Λ12,m12〉 × ..

× 〈Λ1..N−1,m1..N−2,ΛN−1,mN−1|Λ1..N−1,m1..N−1〉〈Λ1..N−1,m1..N−1ΛN ,mN |Λ, 0, 0〉 (3.50)

=

N−1∏
j=2

√
2Λ1..j + 1

∑
m12,m123,..

(
Λ1 Λ2 Λ12

m1 m2 −m12

)
..

(
Λ1..N−2 ΛN−1 Λ1..N−1

m1..N−1 mN−1 −m1..N−1

)
×

×
(
Λ1..N−1 ΛN 0
m1..N−1 mN 0

)
(−1)−Λ12−..−Λ1..N−1−m12−..−m1..N−1+Λ2+..+ΛN−Λ1 (3.51)

=
N−1∏
j=2

√
2Λ1..j + 1

∑
m12,m123,..

(
Λ1 Λ2 Λ12

m1 m2 −m12

)
..

(
Λ1..N−2 ΛN−1 ΛN
m1..N−2 mN−1 mN

)
×

× (−1)ΛN−mN√
2Λ1..N−1 + 1

(−1)−Λ12−..−Λ1..N−1−m12−..−m1..N−1+Λ2+..+ΛN−Λ1 (3.52)

=
N−2∏
j=1

√
2Λ1..j + 1

∑
m12,m123,..

(
Λ1 Λ2 Λ12

m1 m2 −m12

)
..

(
Λ1..N−2 ΛN−1 Λ1..N−1

m1..N−2 mN−1 −m1..N−1

)
×

× (−1)+Λ12+..+Λ1..N−2−m12−..−m1..N−2(−1)Λ1+Λ2+..+ΛN , (3.53)

where in the second step we have used the definition of the 3− j eq.(B.22), in the third we have used
the property eq.(B.24) and in the last step we have used that

(−1)ΛN−mN (−1)−Λ12−..−Λ1..N−1−m12−..−m1..N−1+Λ2+..+ΛN−Λ1 =

(−1)Λ1+Λ2+..+ΛN (−1)+Λ12+..+Λ1..N−1−m12−..−m1..N−1(−1)Λ1..N−1−ΛN (−1)−m1..N−1−mN =

(−1)Λ1+Λ2+..+ΛN (−1)+Λ12+..+Λ1..N−1−m12−..−m1..N−1 , (3.54)

where we have used that Λ1..N−1 = ΛN , m1..N−1 = −mN and the fact that since all the angular
momenta are integers their sign in the exponential of (−1) doesn’t matter. Note that in an analogous

16This can be seen from the definition of the Clebsh-Gordan coefficients.
17If a, b ∈ Z (−1)a+b = (−1)a−b = (−1)−a+b = (−1)−a−b.
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way to the case N = 3, the sum in eq.(3.51) goes from m12 to m1..N−1 while in eq.(3.52) from m12 to
m1..N−2.

We conclude this section by demonstrating some useful properties of the basis we have introduced.

We start analyzing parity. Since the parity of the spherical harmonics Ylm(r) is (−1)l (appendix B.1)
we get

P[PΛ(R̂)] = P[
∑

m1,m2,..

CΛ
m

N∏
i=1

YΛimi(r̂i)] =
∑

m1,m2,..

CΛ
m

N∏
i=1

P[YΛimi(r̂i)] =
∑

m1,m2,..

CΛ
m

N∏
i=1

YΛimi(r̂i)(−1)Λi

(3.55)

= ε(Λ)
∑

m1,m2,..

CΛ
m

N∏
i=1

YΛimi(r̂i) = ε(Λ)PΛ
m(R̂), (3.56)

where ε(Λ) = (−1)
∑N

i=1 Λi and where we have used that CΛ
m are numbers which do not transform under

parity.

Now we analyze the behavior under complex conjugation{
PΛ
m = [PΛ

m]
∗ if

∑N
i=1 Λi is even

PΛ
m = −[PΛ

m]
∗ if

∑N
i=1 Λi is odd

. (3.57)

We now prove this last claim. First, the spherical harmonics (appendix B.1) satisfy
Y ∗
l,m(r̂) = (−1)mY ∗

l,−m(r̂) (3.58)
and we can also write that

〈L1,−m1, L2,−m2|L,−m〉 = (−1)L1+L2−L〈L1,m1, L2,m2|L,m〉, (3.59)
since

〈L1,−m1, L2,−m2|L,−m〉 =
(
L1 L2 L
−m1 −m2 m

)
(−1)−L1+L2+m

√
2L+ 1 (3.60)

=

(
L1 L2 L
m1 m2 −m

)
(−1)−L1+L2+m

√
2L+ 1(−1)L1+L2+L (3.61)

= 〈L1,m1, L2,m2|L,m〉(−1)L1+L2+L (3.62)
= 〈L1,m1, L2,m2|L,m〉(−1)L1+L2−L, (3.63)

where we have used eq.(B.22), eq.(B.28) and we have flipped the sign of L in the last equality. Then
we have [CΛ

m]
∗ = CΛ

m since the Clebsch-Gordan coefficients can be chosen to be real ([56]). Using
eq.(3.63) we have

CΛ
−m = ε(Λ)CΛ

m (3.64)
since

CΛ
−m =

∑
m12,..

〈Λ1,−m1,Λ2,−m2|Λ12,−m12〉 × ..× 〈Λ1..N−1,−m1..N−1ΛN ,−mN |Λ, 0, 0〉

=
∑
m12,..

〈Λ1,m1,Λ2,m2|Λ12,m12〉 × ..×

〈Λ1..N−1,m1..N−2,ΛN−1,mN−1|Λ1..N−1,m1..N−1〉〈Λ1..N−1,m1..N−1,ΛN ,mN |Λ, 0, 0〉×
× (−1)Λ1+Λ2−Λ12+Λ12+Λ3−Λ123+..+Λ1..N−2+ΛN−1−Λ1..N−1+Λ1..N−1+ΛN

=
∑
m12,..

〈Λ1,m1,Λ2,m2|Λ12,m12〉 × ..×

〈Λ1..N−1,m1..N−2,ΛN−1,mN−1|Λ1..N−1,m1..N−1〉〈Λ1..N−1,m1..N−1,ΛN,mN |Λ, 0, 0〉×
× (−1)Λ1+Λ2+..+ΛN

= ε(Λ)CΛ
m,
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where in the first step since m12, .. ∈ [−Λ12,Λ12], .. we directly flip the sign of m12,... Now we can
prove the claim of eq.(3.57) in the following way

[PΛ
m]

∗ =
∑

m1,m2,..

CΛ
m

N∏
i=1

Y ∗
Λimi

(r̂i) =
∑

m1,m2,..

CΛ
m

N∏
i=1

YΛi,−mi(r̂i)(−1)mi (3.65)

= ε(Λ)
∑

m1,m2,..

CΛ
−m(−1)

∑N
i=1mi

N∏
i=1

YΛi,−mi(r̂i) = ε(Λ)
∑

m1,m2,..

CΛ
m

N∏
i=1

YΛi,mi(r̂i) = ε(Λ)PΛ
m,

(3.66)

where we have used that
∑

imi = 0 and since mi ∈ [−Λi,Λi], in the fourth equality we have flipped
the sign of m = (m1, ..,mN ).

From the definition, it’s clear that PΛs are a complete basis of χ(0, 0). Now we discuss the orthonormal-
ity condition of PΛ, which simply follows from the orthonormality of the spherical harmonics eq.(B.3)
and of Clebsch-Gordan coefficients, appendix B.2,∫

dR̂PΛ(R̂)P ∗
Λ′(R̂) = δ

Λ1,Λ
′
1
δ
Λ2,Λ

′
2
δ
Λ12,Λ

′
12
.., (3.67)

where we recall that R̂ = [̂r1, .., r̂N ].

3.2 Parity violation with the four-point scalar correlation function

In this section, we explore the necessity of using NPCF s (N-Point Correlation Functions) with N ≥ 4
to search for parity violation signatures. We consider a random real scalar field φ(x) defined on R3,
and denote all the correlation functions with the Greek letter ζ, specifying their dependence to clarify
the context.

Firstly, we approach this issue from a geometric perspective. We can envision the NPCF s as solid
figures: the 2PCF corresponds to a segment (see Fig. 10a), the 3PCF to a triangle (see Fig. 11a),
the 4PCF to a tetrahedron (see Fig. 12a), and so on. Geometrically, a parity transformation is a
reflection through the origin (as depicted in Fig. 10a, 11a, and 12a). NPCF s violate parity if the
reflected solid figure differs from the original one, i.e., they cannot be rigidly rotated to overlap. In a
3D space, parity transformation can also be interpreted as a reflection about a plane (such as the y = 0
plane depicted in Fig. 10a, 11a, and 12a), followed by a 180◦ rotation about the vector perpendicular
to that plane, ŷ = (0, 1, 0) in our case. Since the NPCF s are isotropic, only the mirroring effect is
significant.

If N = 2, there always exists a rotation, represented in Fig. 10b, that can map the transformed
segment back to the original one. In the same way the parity-transformed 3PCF (fig.11a) can be
transformed into the original one through the two rotations sketched in fig.11b and 11c. While in the
case N = 4 we can rotate as in fig.12b but as we can see in fig.12c the two tetrahedrons are different.
Choosing the blue dot as our primary vertex, the 4PCF is defined by the remaining three vertices, the
orange (r1), red (r2) and violet (r3). For a given tetrahedron, ζ(r1, r2, r3), we can order the argument
from the smallest to the larger one, i.e. r1 ≤ r2 ≤ r3. When viewing the tetrahedron from the blue
dot, i.e. the primary one, looking down along each vector ri, the direction in which one reads going
from smallest to largest side defines a handedness, clockwise (right) or counterclockwise (left). In this
fashion, the tetrahedron of fig.12a is right-handed while the parity transformed is left-handed (see
fig.12c). So regarding the 4PCF parity converts the clockwise tetrahedrons to the counterclockwise
ones. This kind of argument can’t be applied in the case N = 2\3, i.e. we aren’t able to define a
handedness that is equivalent to saying that the 2PCF and 3PCF are parity symmetric. The same
line of reasoning can be applied in the cases in which N〉4.

We can demonstrate why parity violation could occur only with N ≥ 4. The NPCF are isotropic
functions of N − 1 vector variables. Therefore they must be function of scalar quantities only. In the
case N = 2 we have only one available vector, r. The only scalar we can create is r. While if N = 3 we
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(a) ζ(r) and Pζ(r). (b) The rotation.

Figure 10: 2PCF

(a) ζ(r1, r2) and Pζ(r1, r2). (b) The first rotation. (c) The second rotation.

Figure 11: 3PCF

have r1, r2 and r1·r2. So we can’t violate parity since |P[r1]| = |r1| and P [r1·r2] = (−r1)·(−r2) = r1·r2.
If we have three vectors r1, r2, r3 we can form scalar quantities from an odd number of vectors, such
as r1 × r2 · r3, which are not parity invariant.

We can also tackle the problem using the transformation law of PΛ introduced in section 3.1, i.e.
eq.(3.56). The case N = 2 is trivial since we have not angular dependence. While in general, eq.(3.56)
tells us that

P[PΛ] = ε(Λ)PΛ with ε(Λ) = (−1)
∑N

i=1 Λi . (3.68)

If N = 3 we have to sum two angular momenta, Λ1 and Λ2, to obtain 0. To get 0, inevitably, we need
Λ1 = Λ2, which implies

ε(Λ) = (−1)Λ1+Λ2 = (−1)2Λ1 = 1 ∀Λ1 ∈ N. (3.69)

Since every element of the basis is parity even, we have that any isotropic function of two variables is
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(a) ζ(r1, r2, r3) and Pζ(r1, r2, r3). (b) The first rotation. (c) The parity even and parity odd
tetrahedons.

Figure 12: 4PCF

parity even. In the case N ≥ 4 we have to sum N − 1 angular momenta to obtain 0,

N−1∑
i=1

Λi = 0. (3.70)

For example if N = 4 we can obtain a PΛ with Λ = (Λ1,Λ2,Λ12,Λ3) = (1, 2, 2, 2) which has ε(Λ) =
(−1)1+2+2 = −1. So if the isotropic function of N vector variables gets non 0 contribution from the
elements of the basis with ε(Λ) = −1 the NPCF violates parity.

3.3 The galaxy four-point correlation function estimator, data analysis and results

In this section, we discuss the estimator of the galaxy 4PCF (eq.(3.84)) projected on the basis of
section 3.1, we outline the algorithm used in data analysis (eq.(3.97), eq.(3.98) and eq.(3.99) and
lastly we report the claim of parity violation of [2] and [1], which use the final galaxy catalog of
Baryon Oscillation Spectroscopy Survey (BOSS), from the twelfth data release (DR12) [6] of the
Sloan Digital Survey-III (SDSS − III).

The galaxy 4PCF estimator has been introduced in eq.(3.2) as

ζ(s, r1, r2, r3) ≡ 〈δ(s)δ(s+ r1)δ(s+ r2)δ(s+ r3)〉. (3.71)

From the discussion of section 1.6 we learn that the galaxy 4PCF is homogeneous and isotropic, so it
can be decomposed into the basis introduced in section 3.1:

ζ(r1, r2, r3) =
∑

Λ=(Λ1,Λ2,Λ3)

ζΛ(r1, r2, r3)PΛ(r̂1, r̂2, r̂3), (3.72)

where Λ ≡ (Λ1,Λ2,Λ3); in the case N = 3 we don’t need to specify any intermediate state of angular
momenta since Λ12 must be equal to Λ3. ζ(r1, r2, r3), using eq.(3.49), becomes

ζ(r1, r2, r3) =
∑
Λ

ζΛ(r1, r2, r3)
∑

m1,m2,m3

CΛ
mYΛ1m1(r̂1)YΛ2m2(r̂2)YΛ3m3(r̂3) (3.73)

=
∑
Λ

ζΛ(r1, r2, r3)ε(Λ)
∑

m1,m2,m3

(
Λ1 Λ2 Λ3

m1 m2 m3

)
YΛ1m1(r̂1)YΛ2m2(r̂2)YΛ3m3(r̂3). (3.74)

The coefficients (hereafter denoted "multiplets") ζΛ(r1, r2, r3) can be obtained through the orthonor-
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mality relation eq.(3.67):

ζΛ(r1, r2, r3) =

∫
dr̂1dr̂2dr̂3ζ(r1, r2, r3)P

∗
Λ(r1, r2, r3) (3.75)

= (−1)Λ1+Λ2+Λ3

∫
dr̂1dr̂2dr̂3ζ(r1, r2, r3)PΛ(r1, r2, r3) (3.76)

=
∑

m1,m2,m3

(
Λ1 Λ2 Λ3

m1 m2 m3

)∫
dr̂1dr̂2dr̂3ζ(r1, r2, r3)YΛ1m1(r̂1)YΛ2m2(r̂2)YΛ3m3(r̂3),

(3.77)

where in the second equality we have used eq.(3.57), P ∗
Λ = ε(Λ)PΛ, while in the last equality the

explicit expression for PΛ which is eq.(3.41) in the case N = 3. Now we recall that from eq.(3.56) and
(3.57) we have

P[P(Λ1,Λ2,Λ3)(r1, r2, r3)] = ε(Λ)P(Λ1,Λ2,Λ3)(r1, r2, r3), (3.78)
P ∗
(Λ1,Λ2,Λ3)

(r1, r2, r3) = ε(Λ)P(Λ1,Λ2,Λ3)(r1, r2, r3), (3.79)

which allows us to find a natural split of ζ(r1, r2, r3) into parity-even and parity-odd parts:

ζ+(r1, r2, r3) =
∑

Λ1+Λ2+Λ3=even
ζΛ(r1, r2, r3)PΛ(r̂1, r̂2, r̂3), (3.80)

ζ−(r1, r2, r3) =
∑

Λ1+Λ2+Λ3=odd
ζΛ(r1, r2, r3)PΛ(r̂1, r̂2, r̂3), (3.81)

which satisfy

P[ζ±((r1, r2, r3))] = ±[ζ±((r1, r2, r3))], (3.82)
ζ∗±((r1, r2, r3)) = ±[ζ±((r1, r2, r3))]. (3.83)

We stress that since PΛs are orthonormal and the ones with Λ1 + Λ2 + Λ3 odd are immaginary, to
obtain a real 4PCF ζΛ1+Λ2+Λ3=odd(r1, r2, r3) must be purely immaginary.

Now we briefly explain the algorithm used in data analysis. In eq.(3.4) we have introduced the galaxy
4PCF estimator

ζ̂(r1, r2, r3) =
1

V

∫
dsδ(s)δ(s+ r1)δ(s+ r2)δ(s+ r3), (3.84)

where we recall that we denote with a hat the quantity measured from data. If we now insert eq.(3.84)
into eq.(3.77) we obtain an estimator for the basis coefficients of the galaxy 4PCF

ζ̂Λ(r1, r2, r3) =
1

V

∫
dsδ(s)

∫ [ ∑
m1,m2,m3

(
Λ1 Λ2 Λ3

m1 m2 m3

)( 3∏
i=1

dr̂iδ(s+ ri)YΛimi(r̂i)

)]
(3.85)

=
∑

m1,m2,m3

(
Λ1 Λ2 Λ3

m1 m2 m3

)
1

V

∫
dsδ(s)aΛ1,m1(s, r1)aΛ2,m2(s, r2)aΛ3,m3(s, r3), (3.86)

where we define the harmonics coefficients as

aΛi,mi(s, ri) ≡
∫
dr̂iδ(s+ ri)YΛimi(r̂i). (3.87)

Then we bin the 4PCF in radii, the appeal of this decomposition is clear since eq.(3.85) is exactly
separable in r̂i. Similarly to what we have done in eq.(3.7), we introduce a binning function θb(r)
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which is unity if r is in radial bin b and zero else. The radially-averaged 4PCF becomes

ζ̂BΛ =
1

νB

∫ [ 3∏
i=1

r2i driθ
bi(ri)

]
ζ̂Λ(r1, r2, r3) (3.88)

=
1

νB

1

V

∫
dsδ(s)

∫ [ ∑
m1,m2,m3

(
Λ1 Λ2 Λ3

m1 m2 m3

)( 3∏
i=1

driθ
bi(ri)YΛimi(r̂i)δ(s+ ri)

)]
(3.89)

=
∑

m1,m2,m3

(
Λ1 Λ2 Λ3

m1 m2 m3

)
1

V

∫
dsδ(s)ab1Λ1,m1

(s)ab2Λ2,m2
(s)ab3Λ3,m3

(s), (3.90)

where we have introduced the radially averaged harmonic coefficients

abiΛi,mi
(s) ≡ 1

νbi

∫
driθ

bi(ri)YΛim1(r̂i)δ(s+ ri), (3.91)

and the bin volume

νB =

3∏
i=1

νbi =

[
3∏
i=1

r2i driθ
bi(ri)

]
. (3.92)

In eq.(3.90) we have introduced a bin index B = [b1, b2, b3] where bi specify in which bin we are
analyzing the variable ri. In the example of eq.(3.7), bi = 1, .., 10. So in that case we have 103

possibilities for the bin index; B = [1, 1, 1], [1, 1, 2].. etc. We underline that ζ̂BΛ doesn’t depend on
(r1, r2, r3), it’s the coefficient of ζ̂(r1, r2, r3) projected in the basis’ element denoted by Λ for the
angular variables and B for the radial one.

As mentioned in section 3 in general we have access to a discrete field of Ng particles at positions
xi=1,..,Ng with weights wi

δ(s) =

Ng∑
i=1

[
wiδ

(3)(s− xi)
]
, (3.93)

where δ(3)(..) is the three dimensional Dirac delta function. Using eq.(3.93) we can replace the integral
of eq.(3.90) with a sum over the Ng galaxies:

ζ̂BΛ =

Ng∑
i=1

wi
∑

m1,m2,m3

(
Λ1 Λ2 Λ3

m1 m2 m3

)
1

V
ab1Λ1,m1

(xi)a
b2
Λ2,m2

(xi)a
b3
Λ3,m3

(xi). (3.94)

Strictly, this decomposition is correct only if the bin indices b1, b2 and b3 are not coincident (due to
shot noise effects, [58]). Therefore, in data analysis, we guarantee this by enforcing b1〈b2〈b3.

Now in practice, we assume a fixed maximum multipole Λmax and a number of bins Nb. We take
Λmax relatively low, which gives an angular resolution of θmin ' 2π

Λmax
for the internal angles of the

4PCF tetrahedron [1]. This approximation ensures that only a finite number of abiΛimi
(xi) coefficients

(asymptotically [40], Nb × Λ3
max) need to be estimated at each position xi. If we want to reconstruct

the 4PCF , ζ(s, r1, r2, r3) from the set of measured basis coefficients, this truncation would lead to
an approximation error. We can avoid this issue by projecting the theory model in the same way. In
data analysis we are not interested in all the possible Λ with Λi ≤ Λmax but only in the ones that can
violate parity, i.e. Λ1 + Λ2 + Λ3 = odd.

The full procedure for estimating the 4PCF from a discrete set of Ng particles, eq.(3.93), is thus:
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1. For a given primary particle i = 1, .., Ng, compute abiΛimi
(xi) as a weighted sum of spherical

harmonics:

abilm(xi) =
1

νbi

∫
drθbi(r)δ(r+ xi)YΛimi(r̂) (3.95)

=
1

νbi

Ng∑
j=1

[
wj

∫
drδ(3)(r+ xi − xj)YΛimi(r̂)θ

bi(r)

]
(3.96)

=
1

νbi

Ng∑
j=1

[
wjYΛimi(x̂j − xi)θ

bi(|xj − xi|)
]
. (3.97)

2. For each Λ multiplet and bin indexB, sum overm1,m2,m3 the product of ab1Λ1,m1
(xi)a

b2
Λ2,m2

(xi)a
b3
Λ3,m3

(xi)

weighted by ε(Λ)CΛ
m to obtain

∑
m1,m2,m3

(
Λ1 Λ2 Λ3

m1 m2 m3

)
1

V
ab1Λ1,m1

(xi)a
b2
Λ2,m2

(xi)a
b3
Λ3,m3

(xi). (3.98)

3. Repeat for each primary particle and sum to get

ζ̂BΛ =

Ng∑
i=1

wi
∑

m1,m2,m3

(
Λ1 Λ2 Λ3

m1 m2 m3

)
1

V
ab1Λ1,m1

(xi)a
b2
Λ2,m2

(xi)a
b3
Λ3,m3

(xi). (3.99)

We note that the 4PCF contains also a disconnected piece sourced by two copies of the 2PCF .
Whilst this can be subtracted at the estimator level directly [59], it does not contribute to parity-odd
multiplets since the 2PCF can’t violate parity as explained in sec.3.2. As anticipated in section 3
the algorithm we implement has a complexity O(N2

g ). Each coefficient abiΛimi
of eq.(3.97) involves a

sum over Ng and the algorithm require to evaluate abiΛimi
at the location of each of the Ng particles,

thus we get complexity order O(N2
g ). Note that eq.(3.98) can be at most of order O((1 + 2Λmax)

3)
while eq.(3.99) is of O(Ng), therefore their contribution can be completely disregarded in evaluating
the efficiency of the method. We mention that in the analysis we do not have access to the overdensity
matter field δ directly, and we must work instead with a set of data and random particles. This allows
an estimation of the full 4PCF via a generalization [60] which we are not going to discuss.

We conclude this section by reporting the results of the analysis of [2] and [1], which use the final galaxy
catalog of the Baryon Oscillation Spectroscopic Survey (BOSS), from the twelfth data release (DR12)
[6] of the Sloan Digital Sky Survey-III (SDSS−III). The survey contains two samples, CMASS and
LOWZ. The former sample which contains 587 071 (216 041) galaxies in the Northern (Southern)
galactic cap, across a redshift range z ∈ [0.43, 0.7], while the latter contains 280 067 Luminous Red
Galaxies (LRGs), across a redshift range z ∈ [0.2, 0.4]. Basically, the analysis used the method, we
have discussed in this section, restricted to the parity odd multiplets, i.e. Λ1 + Λ2 + Λ3 = odd. [2]
find in LOWZ 3.1σ evidence for a non-zero parity-odd 4PCF , and in CMASS a parity-odd 4PCF
at 7.1σ. [1] find a a detection probability of 99.6% (2.9σ) using the CMASS sample. This provides
significant evidence for parity violation signature, either from cosmological sources or systematics. The
authors perform various systematic tests which do not reveal any observational artifacts. However, at
the moment we cannot exclude this possibility.
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4 The diagrammatic rules for the In− In formalism
In the previous sections, we have seen how to deal with the computation of the power spectrum
for the single-field slow-roll model of Inflation. The procedure we have described it’s standard and
can be applied to every model of Inflation. In order to compute the power spectrum for tensor and
scalar perturbation one has to derive the equation of motions, solve them with Bunch-Davies initial
conditions, impose the canonical commutation relations, and perform the computation of the two-
point correlation function in Fourier space. The power spectrum is the only correlator we need to
consider if the field is Gaussian (see section 1.6). However, a detection of a non-zero three-point
correlation function would rule out automatically the Gaussianity of the field under consideration.
This line of reasoning clearly applies to all the other statistics. So, Non-Gaussianity constitutes a
key observable in Cosmology since it allows us to discriminate among competing scenarios for the
generation of cosmological perturbations [10]. Furthermore, concerning scalar fields and the quest for
parity violation, it becomes essential to examine at least the four-point correlation function, which is
the goal of this master’s thesis.

Consequently, it becomes imperative to develop methodologies enabling the efficient computation
of higher-order correlation functions in the early universe. According to the Inflationary paradigm,
quantum fluctuations of the Inflaton field can be transferred to matter and radiation as explained in
section 2.6.

In this section, we delve into the computations of correlation functions beyond the two-point statistics
of quantum fluctuation during Inflation. These are “quantum averages", not averages over a classical
ensemble of a stochastic field (see section 1.5). We are interested in reaching the latter situation
since every cosmological field, the over-density matter field δ or the CMB temperature field T , from
which we build observables today is assumed to be a stochastic classical field described by the set of
N−point correlation functions. The field configuration in the early universe must be locked into one
of an ensemble of classical configurations with ensemble averages given by the quantum correlators
computed in the early Universe. It’s suggested that it happens on superhorizon scales [61]. Once the
fields under consideration are classical we can apply the Ergodic theorem, eq.(1.122) and interpret
these ensemble averages as spatial averages.

The formalism we are going to introduce in section 4.1 is the In − In formalism [17], which is very
similar to what is done in quantum field theory (QFT ) in the computation of S−matrix elements. Our
goal here is not to provide a complete derivation of this formalism, but rather to explain the proce-
dure for conducting such computations throughout Schwinger-Keldysh Diagrammatics for Primordial
Perturbations [14], which are the cosmological analogous to Feynman rules in QFT .

4.1 The In− In formalism

In this section, we want to sketch the derivation of the “Master formula" of the In− In formalism for
the computations of cosmological correlation function during Inflation following the treatment made
in the appendix of [17].

4.1.1 The Hamiltonian time dependence

Therefore, consider a general Hamiltonian system involving canonical variables φa(t,x) and their
corresponding conjugate momenta πa(t,x), where the index a serves to identify the fields and their
spin components. The system satisfies the canonical commutation relations

[φa(t,x), πb(y, t)] = iδabδ
(3)(x− y), [φa(t,x), φb(t,y)] = [πa(t,x), πb(t,y)] = 0, (4.1)

and the equations of motion

φ̇a(t,x) = i [H[φ(t), π(t)], φa(t,x)] , π̇a(t,x) = i [H[φ(t), π(t)], πa(t,x)] , (4.2)

where H is the Hamiltonian which is a functional of the fields and the functional dependence does not
depend on the time t considered.
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Keeping in mind the explanation of the Inflationary dynamics and the distinction between classical
and quantum behavior of the inflaton as outlined in section 2.2.1, we assume the existence of a time-
varying solution denoted by complex numbers φ̄a(x, t) and π̄a(x, t) that satisfies the classical equations
of motion. During Inflation, this corresponds to the Robertson-Walker dynamic determined by the
homogeneous part of the scalar field. The background equation of motion reads

˙̄φa(x, t) =
δH[φ̄(t), π̄(t)]

δπ̄a(x, t)
, ˙̄πa(x, t) = −δH(φ̄(t), π̄(t)]

δφ̄a(x, t)
. (4.3)

The next step is to expand the Hamiltonian around this background in the same way we have done
in section 2 and 2.4

φa(t,x) = φ̄a(t,x) + δφa(t,x) , πa(t,x) = π̄a(t,x) + δπa(t,x) . (4.4)

Now, we can plug eq.(4.4) into eq.(4.1) to obtain the commutation relations for the perturbations[
δφa(t,x), δπb(t,y)

]
= iδabδ

3(x− y) ,
[
δφa(t,x), δφb(t,x)

]
=
[
δπa(t,x), δπb(t,x)

]
= 0 , (4.5)

where we have used that the background solutions are numbers that commute with everything. The
next goal is finding evolution equations for the perturbations using eq.(4.2). Thus, we need to expand
the Hamiltonian in powers of the perturbations δφa(t,x) and δπa(t,x):

H[φ(t), π(t)] = H[φ̄(t), π̄(t)] +
∑
a

δH[φ̄(t), π̄(t)]

δφ̄a(x, t)
δφa(x, t] +

∑
a

δH[φ̄(t), π̄(t)]

∂π̄a(x, t)
δπa(x, t) + H̃[δφ(t), δπ(t); t] ,

(4.6)

where H̃[δφ(t), δπ(t); t] is the sum of all terms in the Hamiltonian beyond first order in the pertur-
bations. The Hamiltonian’s zero-order term, being a function of time and possessing commutative
properties with all other elements, can be ignored in all the following discussions. At first order, we
observe that

i

[∑
b

∫
d3y

δH[φ̄(t), π̄(t)]

δφ̄b(y, t)
δφb(y, t) +

∑
b

∫
d3y

δH[φ̄(t), π̄(t)]

δπ̄b(y, t)
δπb(y, t), δφa(x, t)

]
= ˙̄φa(x, t), (4.7)

i

[∑
b

∫
d3y

δH[φ̄(t), π̄(t)]

δφ̄b(y, t)
δφb(y, t) +

∑
b

∫
d3y

δH[φ̄(t), π̄(t)]

δπ̄b(y, t)
δπb(y, t), δπa(x, t)

]
= ˙̄πa(x, t) . (4.8)

Thus, we can rewrite the evolution equations

˙̄φa(x, t) + δφ̇a(x, t) = i
[
H[φ(t), π(t)], δφa(x, t)

]
, ˙̄πa(x, t) + δπ̇a(x, t) = i

[
H[φ(t), π(t)], δπa(x, t)

]
,

(4.9)

using the observations we have made as

δφ̇a(x, t) = i
[
H̃[φ(t), π(t); t], δφa(x, t)

]
, δπ̇a(x, t) = i

[
H̃[φ(t), π(t); t], δπa(x, t)

]
. (4.10)

However H generates the time-dependence of φa(t,x) and πa(t,x), it is H̃ that determines the time
dependence of the perturbations. Thus, in order to find the evolution equations for the perturbations
one has to expand the original Hamiltonian H in powers of fluctuations disregarding the zeroth and
first order in these fluctuations. This construction gives H̃ an explicit dependence on time.

4.1.2 The master’s formula

In this section, we derive the master formula of the In−In formalism throughout an operator formalism
as presented in [17]. We are interested in the computation of the expectation value of an operator,
which we generically call Q, which is a product of δφa and δπa evaluated at the same time t but
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different spatial position in general. These fields are, for example, Inflaton fluctuations, scalars, and
tensor fluctuations of the metric. As we’ll see we can compute correlation functions in the Heisenberg
picture as

〈Q(t)〉 = 〈Ω|Q(t)|Ω〉, (4.11)

where t is the end of inflation since we are interested in computing correlation function when Inflation
ends. |Ω〉 is the vacuum state in the far past which we indicate as t0, which can be taken to be −∞.
This is the reason why the formalism is referred to as In-In. In this formalism, both vacuum states
are considered in the distant past, while in quantum field theory, the states under consideration are
the initial state |IN〉 in the remote past and the final state |OUT 〉 in the distant future.

Now, since Q(t) it’s a generic product of fields we need to understand how this field evolves in time.
Using eq.(4.10), we can express the fluctuations at the time t in relation to those of the same operators
at an initial time t0 by means of a unitary transformation

δφa(t) = U−1(t, t0)δφa(t0)U(t, t0) , δπa(t) = U−1(t, t0)δπa(t0)U(t, t0) , (4.12)

where U(t, t0) is the evolution operator defined throughout the differential equation

d

dt
U(t, t0) = −i H̃[δφ(t0), δπ(t0); t]U(t, t0), U(t0, t0) = 1 . (4.13)

It’s possible to show that what we have written is correct but we postpone the demonstration since
it’s equal to the one we present to demonstrate that eq.(4.17) is solution of the differential equation
(4.15). To evaluate U(t, t0), we decompose H̃ into a quadratic part H0, which refers to the kinematic
part of H̃, and an interaction term HI

H̃[δφ(t), δπ(t); t] = H0[δφ(t), δπ(t); t] +HI [δφ(t), δπ(t); t] . (4.14)

Our goal is to find a similar decomposition as the one made in QFT to evaluate the Dyson evolution
operator [43]. To this end, we introduce an analogous of an “interaction picture” in which the time
dependence of the fluctuation operators δφIa(t) and δπIa(t) is governed by the quadratic part of the
Hamiltonian

δφ̇Ia(t) = i
[
H0[δφ

I(t), δπI(t); t], δφIa(t)
]
, δπ̇Ia(t) = i

[
H0[δφ

I(t), δπI(t); t], δπIa(t)
]
, (4.15)

and the initial conditions

δφIa(t0) = δφa(t0) , δπIa(t0) = δπa(t0) . (4.16)

The solution of eq.(4.15) can be written as

δφIa(t) = U−1
0 (t, t0)δφa(t0)U0(t, t0) , δπIa(t) = U−1

0 (t, t0)δπa(t0)U0(t, t0) , (4.17)

with U0 defined by the following differential equation

d

dt
U0(t, t0) = −iH0[δφ(t0), δπ(t0); t]U0(t, t0) (4.18)

with initial condition

U0(t0, t0) = 1 . (4.19)

It’s easy to show that U0(t, t0) is unitary. In fact, we have

0 =
d

dt
1 =

d

dt

(
U0(t, t0)U

−1
0 (t0, t0)

)
= U0(t, t0)

d

dt
U−1
0 (t0, t0)− iH0[δφ(t0), δπ(t0); t]U0(t, t0)U

−1
0 (t0, t0),

(4.20)
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from which we can obtain

d

dt
U−1
0 (t, t0) = +i U−1

0 (t, t0)H0[δφ(t0), δπ(t0); t] . (4.21)

which is identical to the hermitian conjugate of eq.(4.18). Notice that the fields in Hamiltonian
H0[δφ(t0), δπ(t0); t] are evaluated at the time t0, thus the time dependence is encoded in the explicit
time dependence [..; t]. Now, we show that we can write the solution as we have stated. In fact, let’s
define the fields as

δφI(t) = U−1
0 (t, t0)δφ

I(t0)U0(t, t0), δπI(t) = U−1
0 (t, t0)δπ

I(t0)U0(t, t0), (4.22)

where we omit the subscript a for simplicity. If we now take the time derivative of the δφI (the
reasoning is identical for the conjugate momenta)

δφ̇I(t) =

(
d

dt
U−1
0 (t, t0)

)
δφI(t0)U0(t, t0) + U−1

0 (t, t0)δφ
I(t0)

(
d

dt
U0(t, t0)

)
(4.23)

=
(
iU−1

0 (t, t0)H0 [δφ(t0), δπ(t0)]
)
δφI(t0)U0(t, t0) + U−1

0 (t, t0)δφ
I(t0) (−iH0 [δφ(t0), δπ(t0)]U0(t, t0))

(4.24)
= +iU−1

0 (t, t0)
[
H0 [δφ(t0), δπ(t0)] δφ

I(t0)− δφI(t0)H0 [δφ(t0), δπ(t0)]
]
U0(t, t0) (4.25)

= +iU−1
0 (t, t0)

[
H0

(
δIφ(t0), δπ

I(t0), t
)
, δφI(t0)

]
U0(t, t0) (4.26)

= +i
[
H0

(
δIφ(t), δπI(t), t

)
, δφI(t)

]
, (4.27)

where in the last step we have used the fact that the Hamiltonian is a polynomial in δφI and δπI and
the definition of the interaction picture fields.

Now, we can proceed in deriving the form of the unitary operator U(t, t0). Now, from eq.(4.12) we
can write

δφa(t) = U−1(t, t0)δφaU(t, t0) = U−1(t, t0)U0(t, t0)U
−1
0 (t, t0)δφaU0(t, t0)U

−1
0 (t, t0)U(t, t0) (4.28)

= F−1(t, t0)δφ
I
a(t)F (t, t0), (4.29)

where

F (t, t0) = U−1
0 (t, t0)U(t, t0), (4.30)

is unitary since the product of unitary operators. Now, we seek a differential equation for F (t, t0)

d

dt
F (t, t0) =

d

dt
U−1
0 (t, t0)U(t, t0) + U−1

0 (t, t0)
d

dt
U(t, t0) (4.31)

= +i U−1
0 (t, t0)H0[δφ(t0), δπ(t0); t]U(t, t0)− U−1

0 (t, t0)i H̃[δφ(t0), δπ(t0); t]U(t, t0) (4.32)
= +iH0[δφ(t), δπ(t); t]F (t, t0)− U−1

0 (t, t0)i H̃[δφ(t0), δπ(t0); t]U0(t, t0)F (t, t0) (4.33)
= +iH0[δφ(t), δπ(t); t]U

−1
0 (t, t0)U(t, t0)− i H̃[δφ(t), δπ(t); t] (4.34)

= −iHI(t)F (t, t0) (4.35)

where, we have used that all the Hamiltonians employed are polynomials in the perturbations and
where we define HI(t) as the interaction Hamiltonian in the interaction picture

HI(t) ≡ U0(t, t0)HI [δφ(t0), δπ(t0); t]U
−1
0 (t, t0) = HI [δφ

I(t), δπI(t); t]. (4.36)

The solution of equations like eq.(4.36) is well known [43]

F (t, t0) = T exp

(
−i
∫ t

t0

HI(t) dt

)
, (4.37)
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where T is the time-ordering operator [43]. Thus, a generic operator Q(t) product of δφs and δπs, can
be written in terms of the free fields of the interaction picture as

Q(t) = F−1(t, t0)Q
I(t)F (t, t0)

=

[
T̄ exp

(
i

∫ t

t0

HI(t) dt

)]
QI(t)

[
T exp

(
−i
∫ t

t0

HI(t) dt

)]
, (4.38)

where T̄ denotes anti-time-ordering. Now, we are almost done but we would like to substitute the
vacuum of the interacting theory with the one of the free theory in the correlation functions eq.(4.11).
We can do this because of the identity F−1F = 1 [17, 62]. Thus, we finally arrive at the master
formula of the In− In formalism

〈Q(t)〉 = 〈0|
[
T̄ exp

(
i

∫ t

t0

HI(t) dt

)]
QI(t)

[
T exp

(
−i
∫ t

t0

HI(t) dt

)]
|0〉. (4.39)

4.2 The diagrammatic formalism

Now, throughout the rest of the thesis, we do not work with the master formula of the In − In
formalism, eq(4.39), but rather with a set of diagrammatic rules which are the cosmological equivalent
of Feynman rules in QFT . This set of rules is the so-called Schwinger-Keldysh Diagrammatics for
Primordial Perturbations [14] which can be derived in a path integral formulation of the problem.
While we abstain from presenting the derivation of these rules, we offer a concise overview of the
essential steps required for evaluating correlation functions based on the given Lagrangian of the
system.

The problem we are confronted with, the computation of correlation function during Inflation, involves
just three degrees of freedom. One of these is represented by a scalar field, which can either be the ζ
field or the Inflaton, contingent on the gauge chosen. The remaining two degrees of freedom pertain
to the tensor perturbation. The dynamic is governed by a Lagrangian density L, wherein, due to our
perturbative scheme, exclusively “polynomials" of the fields are incorporated, and the couplings are
allowed to possess a time dependency, given the time-varying nature of the background.

Even if the basic ideas are very similar to the Feynman formalism, there are a series of properties
that are different with respect to the QFT case. First of all, there exist two kinds of vertices which
we call plus + or minus -, which originate from the time-ordered product and the anti-time-ordered
product, correspondingly. Consequently, when evaluating a diagram containing N vertices, it becomes
necessary to sum all the possible configurations (a total of 2N options) involving the assignment of
each vertex as either a plus vertex or a minus vertex. Each plus or minus vertex contributes a factor
of i or +i along with any factors from the vertex itself.

Moreover, we encounter four distinct types of propagators, depending on the four possible vertices
combinations at disposal

++, +−, −+, −− . (4.40)

To compute the propagators at tree level, we require the mode functions that fulfill both the Bunch-
Davies initial condition and the canonical commutation relation. Refer to section 2.4 for an illustrative
instance in the context of the single-field slow-roll model of Inflation. However, if we aim to accurately
retrieve the complete outcome, these factors should be incorporated. Then, the tree-level propagators
in the 3−momentum space are [14]

G++(k; τ1, τ2) = G>(k; τ1, τ2)θ(τ1 − τ2) +G<(k; τ1, τ2)θ(τ2 − τ1), (4.41)
G+−(k; τ1, τ2) = G<(k; τ1, τ2), (4.42)
G−+(k; τ1, τ2) = G>(k; τ1, τ2), (4.43)
G−−(k; τ1, τ2) = G<(k; τ1, τ2)θ(τ1 − τ2) +G>(k; τ1, τ2)θ(τ2 − τ1), (4.44)
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where

G>(k; τ1, τ2) ≡ u(τ1, k)u
∗(τ2, k), (4.45)

G<(k; τ1, τ2) ≡ u∗(τ1, k)u(τ2, k). (4.46)

In diagrammatic representation, a black dot signifies a positive vertex (+), while a white dot represents
a negative vertex (−). Therefore, we have

τ1 τ2

1

= G++(k; τ1, τ2), (4.47)

τ1 τ2

2

= G+−(k; τ1, τ2), (4.48)

τ1 τ2

3

= G−+(k; τ1, τ2), (4.49)

τ1 τ2

4

= G−−(k; τ1, τ2). (4.50)

Within a diagram, there are internal legs that link points within the diagram, and external legs that
connect an internal point with an external one. The external points are where we position the fields
for which we intend to compute correlation functions. The propagators we have written can be used
both to evaluate internal legs (bulk propagators) and external legs (bulk-to-boundary propagators).
The external legs terminated at the final conformal time τ = τ0, which is the time at which we are
interested in computing the correlation functions. We’ll set τ = 0, in the next chapter. It’s important
to emphasize that a boundary point does not differentiate between the positive (+) and negative (−)
designations, resulting in just two categories of bulk-to-boundary propagators.

τ
= G+(k; τ) ≡ G++(k; τ, τf ),

τ
= G−(k; τ) ≡ G−+(k; τ, τf ).

Notice that we have indicated the external points with a black square. Here we have discussed the
propagator for a scalar field. When we want to deal with tensor fields we also have to take into
account the polarization portion of the propagators. We are not going to discuss this point but the
polarization portion is identical to all four propagators and takes the form∑

h

εhij(k)
[
εh
]∗
ab
(k), (4.51)

if the propagator connects the vertex ij with the vertex ab. We can think of these two vertices as the
τ1 and τ2 in eq.(4.50). The fact that the polarization doesn’t change depends explicitly on how we
compute the propagators; for more details see [14].

The final aspect to address pertains to deriving the vertex factors. The process bears resemblance
to the methodology employed in QFT . Nevertheless, in this context, we do not make the Fourier
transform with respect to conformal time. Consequently, time integrals will manifest in the eventual
results, and they often add complexity to the computations involved. As previously mentioned, for
every individual interaction vertex present in the original Lagrangian, we must formulate two distinct
vertices, representing the + and − types, respectively. We provide a series of examples in order to
clarify the procedure. We represent scalars using a solid line and tensors using a wavy line. We don’t
differentiate between internal and external lines, as this becomes evident based on the vertices that
the line connects.
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Non-derivative couplings. Non-derivative couplings are easy to derive and one just proceeds in a
completely analogous way to the QFT case with the differences mentioned above. Let’s consider an
interaction term of the form

Lint = − λ

24
a4(τ)ϕ4(t,x). (4.52)

Then in three-momentum space, we get the following rules

1

= −iλ
∫ τf

τ0

dτ a4(τ) · · · ,

2

= +iλ

∫ τf

τ0

dτ a4(τ) · · · , (4.53)

where · · · means that we have this time integral acting on every part of the correlation function which
is time dependent.

Derivative couplings. Derivative coupling has to be treated in a different way. First of all, we have
to distinguish spatial and temporal derivatives since we do not Fourier transform with respect to the
time variable. Regarding spatial derivatives, no additional explanations are required. For instance,
let’s examine the diagrammatic rule for the subsequent interaction:

Lint ∝ −λ
6
a2(τ)ϕ(∂iϕ)(∂iϕ), (4.54)

which is given by,

k2

k1
k3

3

∝ +
iλ

3
(k1 · k2 + k2 · k3 + k3 · k1)

∫ τf

τ0

dτ a2(τ) · · · , (4.55)

k2

k1
k3

4

∝ − iλ
3
(k1 · k2 + k2 · k3 + k3 · k1)

∫ τf

τ0

dτ a2(τ) · · · . (4.56)

Now we can analyze the time-derivative couplings in the Lagrangian. The time derivatives within
a vertex should be directly applied to the propagators connected to it. Let’s take the following
interaction,

Lint ∝ −λ
6
a2(τ)ϕϕ′2. (4.57)

The diagrammatic rule is given by,

τ2

τ1

τ3τ

5

∝− iλ

3

∫ τf

τ0

dτ a2(τ) [∂τG+a1(k1; τ, τ1)] [∂τG+a2(k2; τ, τ2)]G+a3(k3; τ, τ3) (4.58)

+ 2 permutations, (4.59)

where permutations refer to various combinations in which the two temporal derivatives can be ar-
ranged and, where a1, a2, a3 = ±. The corresponding rule for the minus type vertex is derived from
the plus type by introducing an additional negative sign.

Now, let’s provide an overview of the steps required to calculate a general correlation function:
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• Initially, the action needs to be expanded up to the second order concerning both tensor and
scalar perturbations. This expansion is essential for determining the EoM . Typically, this
process is carried out separately. While evaluating, for example, the scalar component, any
other factor apart from the scalar function under consideration is set to zero (refer to section
2.4). If we are considering only traceless and transverse tensor and scalar the EoM are decoupled
since we are not able to form a non-zero bilinear involving the scalar, the tensor, derivatives,
and the Kronecker delta and the Levi-Civita tensor18 (see section 5.3 for a complete discussion
about this point).

• Subsequently, after establishing the correlation function being computed, the next step involves
identifying the specific type of diagrams that could contribute to it. Once we have established
the “kind" of coupling we need, for example, a tensor-scalar-scalar non-derivative coupling, we
have to expand the action and find every term that contributes to it. Then, we have to recover
the diagrammatic rules for this interaction.

• Then, we have to sketch all the possible diagrams of interest labeling each vertex with a black
dot (plus-type vertex) or a white dot ( minus-type vertex), in all possible ways. Therefore, we
have 2N different diagrams if we have N vertices. Then, we label external points as square dot.

• Then, using propagators and rules vertices we have to evaluate each diagram and sum everything
together. Integrate each vertex over time from the initial time which we’ll set to be τ = −∞
to a final time, which is set to be zero τf = 0. Please note that each vertex has an associated
different time variable.

• Finally, we obtain the correlation function in Fourier space by multiplying the result by (2π)3δ(3) (
∑

i ki),
where ki are the three-momenta involved in the diagram.

18We do not possess any other tools for index contraction.
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5 Chern-Simons theory of modified gravity

5.1 Modifying Einstein’s GR

The actual Inflationary paradigm, standard slow-roll models of Inflation, provides a satisfactory ex-
planation for various experimental observations, including those related to the CMB and LSS. These
include the homogeneity, isotropy, and flatness of today’s Universe and the origin of the initial density
perturbations. Einstein’s General Relativity (GR) is the paradigm used for the description of grav-
itational interactions. However, since Inflation could take place at very high energies, it’s possible
and interesting to consider models which go beyond standard gravity. For example, the first model of
Inflation [63] was based on R2-higher order gravitational terms.

Besides these considerations, there are other reasons, not strictly related to Inflation, that suggest
a modification of General Relativity could take place at high energies. In particle physics, we lack
a quantum description of gravitational interactions, i.e. “quantum gravity", which can’t be achieved
by quantizing GR with standard techniques. Moreover in cosmology, explaining the late-time cosmic
acceleration of the universe with GR is full of difficulties. In the FLRW model, which is based on
Einstein’s gravity, it’s assumed that this phase of accelerated expansion is driven by a cosmological
constant Λ which is interpreted as vacuum energy. This assumption comes with two challenging issues:
the inability to account for the gravitational properties of the vacuum energy and the coincidence
problem. The former, basically, consists of the incredibly small and highly fine-tuned value of the
vacuum energy [64]. The latter corresponds to the fact the densities of dark energy and dark matter
are measured to be of the same order of magnitude, i.e ρΛ0

ρDm0
∼ O(1). This implies that we are living

in a very special period of cosmic history, which is the result of specific initial conditions in the Early
Universe. The so-called “coincidence problem" is trying to find an answer to “why now" this specific
period occurs. Due to these reasons, numerous alternatives to standard gravity have been explored in
recent years.

5.2 Effective field theory approach

In order to modify gravity we follow the argument presented in [18] in order to illustrate the basic
ideas of this kind of approach without adventuring into extensive computations. First of all, we focus
only on the case of a single-field slow-roll Inflation model, i.e.

L =
√
−g

[(
M2
pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ)

)]
, (5.1)

where we recall that g = det(gµν) and M2
pl =

1
8πG . The first term corresponds to the Hilbert-Einstein

action which is the unique, up to a cosmological constant contribution, diffeomorphism invariant action
for a four-dimensional metric, whose EoM are at most “second order" [19]19. Hence, the expression
of eq.(5.1) represents the most general Lagrangian density for gravity and a scalar field, whose EoM
involve a maximum of two space-time derivatives. The basic idea of this approach is considering the
action of eq.(5.1) as the first term of the expansion of the “true" Lagrangian in effective field theory
approach (EFT ). The terms with higher derivatives are suppressed by some undefined large mass
parameter M , which characterizes the true field theory which produces the EFT Lagrangian. Here
we assume that all the coupling constants in the higher-derivatives terms are powers of M multiplied
with coefficients roughly of order unity, where the number of powers required is fixed by dimensional
analysis. Since we can’t produce any term with three-derivative20, the first correction can be written

19We have up to second derivatives; the Einstein’s field equation contains up to second derivatives.
20We have to construct scalar quantities using the Riemann tensor, the Ricci tensor, the Ricci scalar, the metric

tensor, derivatives of the scalar field, and generic scalar function of the scalar field. Since the curvature tensors contain
two “powers" of derivatives and have an even number of indices we can’t write a scalar term with an odd number of
derivatives.

81



[7] as

δL = L =
√
g

[
1

2
M2
PR− 1

2
gµν∂µφ∂νφ− V (φ)

+ f3(φ)g
µν∂µφ∂νφ+ f4(φ)g

ρσ∂ρφ∂σφ�φ+ f5(φ)(�φ)
2 + f7(φ)R

µν∂µφ∂νφ+ f8(φ)Rg
µν∂µφ∂νφ

+ f9(φ)R�φ+ f10(φ)R
2 + f11(φ)R

µνRµν + f12(φ)C
µνρσCµνρσ + f13(φ)ε̃

µνρσCκλµνCρσκλ

]
, (5.2)

where ε̃µνρσ is the Levi-Civita tensor density defined as ε̃µνρσ ≡ εµνρσ√
−g with εµνρσ corresponding to the

Levi-Civita symbol [38]. Moreover, the various fn coefficients are dimensionless, i.e. they contain the
necessary numbers of power of the scale mass M , and they can depend on a generic function of the
Inflation field. In eq.(5.2) we also have introduced the Weyl tensor which is defined as [13]

Cµνρσ = Rµνρσ −
1

2
(gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ) +

R

6
(gµρgνσ − gνρgµσ), (5.3)

which is the traceless part of the Riemann curvature tensor. The last term of eq.(5.2)

f13(φ)ε̃
µνρσCκλµνCρσκλ, (5.4)

is the so-called Chern-Simons term, which can also be written as replacing the Weyl tensor with the
Riemann tensor (see appendix D.2) as

f13(φ)ε̃
µνρσRκλµνRρσκλ. (5.5)

The Lagrangian described in equation (5.2) consists of various terms, but only the Chern-Simons term
can exhibit parity-violating signatures. Assuming that this is the “right" approach to Inflation, only
data that can tell us which coefficients fn have to be kept in order to reproduce the dynamics. Since
at the moment, with the current data, we are not able to do this we can study the effects of the
Chern-Simons and set to zero all the other terms. So we are left with the following action

S =

∫
d4x

√
−g

[
M2
pl

2
R− 1

2
gµν∂µφ∂νφ− V (φ) +

φ

4f
∗RR

]
, (5.6)

where we have introduced the Pontryagin density defined as

∗RR = ∗RσρµνRσρµν , (5.7)

where

∗Rσρµν =
1

2
ε̃µναβRσραβ =

1

2
√
−g

εµναβRσραβ. (5.8)

Note that in eq.(5.6) we have set f13(φ) = φ
4f with f a dimensional constant, it contains one power of

M .

We conclude this paragraph by mentioning two important properties of the Chern-Simons action.
Firstly, we note that the Pontryagin is zero when evaluated on the background since the Weyl tensor
is conformally invariant [38]. It is worth recalling that a conformal transformation maps

gµν −→ g̃µν = Ω2(x)gµν, (5.9)

where gµν is a generic metric and, where Ω(x) is an arbitrary non-vanishing function of spacetime.
Therefore, the spatially flat FLRW metric is conformally equivalent to the Minkowski metric, in which
all curvature tensors vanish. Consequently, there are no modifications to the background equation of
motion for the Inflaton, i.e. we obtain the same results we have shown in section 2.2.1.
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Furthermore, the Pontryagin density can be written as total derivative [65] in the following way

∇αK̃
α =

1

2
∗RR, (5.10)

where

K̃α := ε̃αβδγ
(
Γχβσ∂δΓ

σ
γχ +

2

3
ΓχβσΓ

σ
δεΓ

ε
γχ

)
, (5.11)

is the CS topological current. In what follows we often use CS to indicate quantities related to the
Chern-Simons theory of modified gravity. Notice that the εαβδγ is the Levi-Civita “symbol" which
is related to the Levi-Civita “tensor" via ε̃αβδγ = ε̃αβδγ

√
−g (see [38] to a complete explanation on the

convection). For the sake of convenience in what follows, we will also use the symbol Kα for the
topological CS current, which corresponds to K̃ with the replacement of the Levi-Civita tensor with
its symbol equivalent.

5.3 Metric perturbations and gauge fixing

We work in the so-called Arnowitt-Deser-Misner (ADM) formalism of the metric, section C.3, in the
generalization of the spatially flat gauge [15]. The reasoning that allows us to impose this gauge is
analogous to the one we have done in section 2.3. In Cartesian coordinates, the metric tensor and its
inverse become

gµν = a2
(
−(N2 −NiN

i) Ni

Ni gij

)
, gµν = a2

(
− 1
N2

Ni
N2

Ni
N2 (gij − N iNj

N2 )

)
, (5.12)

where a2(τ) is the scale factor, N is the lapse function, and, Ni = ∂iψ+Ei is the shift function which is
decomposed in a scalar part ψ and in a vector part, the divergence-free three vector Ei, i.e. ∂iEi = 0.
In this section, we omit the use of the superscript (3) for spatial tensors because it becomes evident
from the context whether a tensor is associated with the spatial hypersurface. The spatial metric
receives a contribution from the background and from transverse and traceless symmetric tensor and
can be written as [15]

gij = a2 exphij = a2
(
δij + hij +

1

2
hikh

k
j + ..

)
, hii = 0, ∂ih

i
j = 0. (5.13)

In the generalization of the spatially flat gauge, we don’t have considered perturbation of first, h(1)ij ,
second, h(2)ij , order and so on as we have explained in section 1.3. Following [15] we have written the
metric in the following way

gij = (exph)ij ≈ δij + hij +
1

2
hikh

k
j + ..+, (5.14)

which, since gij is symmetric is well defined. We recall that the lapse and shift functions are auxiliary
fields in standard gravity, section C.3.2, which can be removed by solving the EoM as we have done in
section 2.3.1. However, considering that we have modified the gravity sector of our theory through the
Chern-Simons term, it is necessary to determine whether these fields become dynamical or not. Now
we show that they remain as constraints and that the CS term doesn’t modify the first-order solutions
of their Euler-Lagrnage equations which are what we need since we are interested in expanding the
action up to third order. We are going to compute the graviton-mediated trispectrum in section 5.6
which is computed using two vertices of the kind scalar-scalar-tensor, constituting a third-order term.
Thus, as explained in [8, 7, 15], we need the solution of the constraints equation at first order. Now
since the CS term can be written as

S
(2)
CS =

∫
d4x

√
−g φ

4f
∗RR =

∫
d4x

√
−g φ

2f
∇αK̃

α =

∫
d4x

φ

2f
∇αK

α (5.15)

=

∫
d4x

[
− φ

′

2f
K0 − ∂i

(
φ

2f

)
Ki

]
=

∫
d4x

[
− φ

′

2f
K0

]
=

∫
d4x

[
− φ

′

2f
ε0ijk

(
Γαiσ∂jΓ

σ
kα +

2

3
ΓαiσΓ

σ
jχΓ

χ
σk

)]
,

(5.16)
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we observe that we have a Levi-Civita symbol multiplying everything. So a possible contribution to
the Lagrangian is a scalar quantity constructed contracting the Levi-Civita symbol with a product
constructed using the two scalars, N and ψ, the solenoidal vector, Ei, a traceless and transverse
tensor, hij , and their derivatives. The maximum number of spatial derivatives that can appear is six
since we have the multiplication of three Christoffel symbols which can contain one “power" of spatial
derivatives and because the quantity D appears already in the form ∂iD in the metric tensor eq.(5.12).
Now since we are interested in first-order constraint equations for the lapse and shift function, we only
need to discuss all the bilinear terms we can construct; we are considering the action up to second
order since higher order terms produce non-linear term in Euler-Lagrange equations.

We directly discuss the problem in Fourier space since it’s easier. Since we have only two fields in
the bilinear we can express everything as a function of only one vector variable k because of the
three-dimensional Dirac delta arising from the x integral. For example in the case of a product of two
generic scalar fields A and B we get∫

dτd3x
d3keix·k

(2π)3
d3qeix·q

(2π)3
A(τ,k)B(τ,q) =

∫
dτ

d3k

(2π)3
A(τ,k)B(τ,−k). (5.17)

If we have derivatives in Fourier space we’ll have a correspondent kis, but we can have only one ki
contracted with the Levi-Civita symbol otherwise we get zero because of symmetry. Thus if we have
more than one derivative we must perform contractions in order to have only one ks contracted with
the symbol.

Starting from the combination of two scalar fields, S1 = N/ψ and S2 = N/ψ, and considering three
and five derivatives 21 we only can get

S1S2kikjklε
ijl, S1S2kikjklk

2εijl, (5.18)

which clearly are all zeros for what we have anticipated before. In what follows we completely disregard
temporal derivatives since the results are unchanged. Regarding the scalar-tensor bilinear, without
considering the ones with more than one “free" k appears, there are only the following possibilities

Shjlkiε
ijl, (5.19)

which is zero and, where S = ψ,N . In principle, we have to consider three or five derivatives but in
these cases, we have two ks contracted with the Levi-Civita symbol. Now going to the vector-scalar
combinations we need at least two free derivatives to get non-trivial contractions but these terms are
zero, as explained above (we can’t contract the ks with the vector because of transversality). For
example, we could write

SNlkiklε
ijl, (5.20)

which clearly is zero. Considering tensor-vector contribution we have to contract one of the two indices
of the metric with a derivative index or with the index of the vector

Nlkih
l
jkf ε

ijf , Nfkih
l
jklε

ijf , Nfk
fkih

l
jklε

ijf , (5.21)

which are zeros because of symmetries or transversality of the vector and tensor. Regarding tensor-
tensor and vector-vector bilinears, we can create non-vanishing terms which, in real space, can be for
example

hli
,mhlk,mjε

ijk, Ni,jNkε
ijk. (5.22)

This discussion teaches us that the equation for the lapse function is unchanged and thus it remains
a non-dynamical d.o.f. However since terms as the ones in eq.(5.22), exist we have to show that the
field Ei does not become dynamical.

21It’s pointless to consider one derivative since this means that two indices of the Levi-Civita symbol must be contracted
to form a scalar quantity.
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This can be proved by observing that the only Christoffel symbol which receives a non-zero contribution
from Ėi is Γi00. Therefore, given the form of eq.(5.16), we conclude that the shift function remains
a non-dynamical d.o.f. For completeness, we demonstrate the statement we have done regarding the
Christoffel symbols reporting only the contributions which contain temporal derivatives of the shift
function

Γ0
00 =

1

2

[
g00 (g00,0) + g0i (2g0i,0 − g00,i)

]
=

1

2

[
N−2

(
2NṄ − 2NiṄ

,i
)
+
N i

N2

(
2Ṅ,i − 2NNi + 2Nj,iN

i
)]

→ 0,

(5.23)

Γ0
0i =

1

2
g00g00,i + g0j(g0j,i + gij,0 − g0i,j) → 0, (5.24)

Γi00 =
1

2

[
gi0g00,0 + gij(2g0j,0 − g00,j)

]
→
[
−N i

N2

(
2NṄ − 2NiṄ

,i
)
+ (hij − N iN j

N2
)Ṅ,j

]
→ hijṄ,j ,

(5.25)

Γi0j =
1

2

[
gi0(gj0,0 + g00,j − gj0,0) + gik(gjk,0 + gk0,j − gj0,k)

]
→ 0, (5.26)

Γijk =
1

2

[
gi0(gj0,k + gk0,j − gjk,0 + gil(gjl,k + gkl,j − gjk,l)

]
→ 0. (5.27)

Now from the previous results, it’s clear that the constraint equation for N is the same as in standard
gravity while the one for the Ei receives additional contributions. However, these contributions are
linear terms in the transverse vector field Ei (they can contain spatial derivatives clearly) so, as in
the case of standard gravity, we can find a solution by setting Ei to zero, as we have done in section
2.3.1. Thus we can compute the constraints in a similar way to what we have done in section 2.3.1
and write the solution for the constraints up to first-order [15] as

N = 1 +
φ̇δφ

2HM2
pl

, Ni = ∂iψ + Ei, Ei = 0 ψ = χ, ∂2χ =
φ̇2

2H2M2
pl

d

dt

(
−H
φ̇
δφ

)
, (5.28)

where we have reintroduce the Planck mass to recover the correct prefactor with respect to the result
presented in [15].

5.4 The equation of motion for the Inflaton and tensor perturbations

In order to obtain the EoM we need to expand the action of eq.(5.6) up to second order considering
the constraints we have previously solved for the scalar sector. We work in conformal time. Regarding
the Inflaton, at second order, the action doesn’t receive any contribution from the Hilbert-Einstein
action since

Kij = −∂ijψ, Kij = −a−4∂ijψ, Ki
j = −a−2∂i∂jψ, (5.29)

from which we understand that both K2 and KijKij can be written as total derivatives. Notice
that in evaluating eq.(5.29) we have considered that the three-dimensional Christoffel symbols do not
depend on any scalars. The three-dimensional Ricci tensor clearly can’t contribute since we do not
have scalars in the three-dimensional metric.
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Thus we obtain, using the constraints. the scalar Lagrangian up to second order

S(2) =

∫
d4x

a22 (δφ′2 − δφ,iδφ
,i
)
+

a2(t)

2

(
1 + φ̇

2HM2
pl
δφ

)2 δφ̇φ̇− a∂iχ∂iδφφ
′ − a4

2

∂2V (φ)

∂φ2

∣∣∣∣
φ(τ,x)=φ(τ)

δφ2


(5.30)

≈
∫
d4x

[
a2

2

(
δφ

′2 − δφ,iδφ
,i
)
− 1

a(τ)

φ
′2

2HM2
pl

δφδφ
′
+ a∂2χδφφ

′ − a4

2

∂2V (φ)

∂φ2

∣∣∣∣
φ(τ,x)=φ(τ)

δφ2

]
(5.31)

≈
∫
d4x

[
a2

2

(
δφ

′2 − δφ,iδφ
,i
)
− 1

a(τ)

φ
′2

2HM2
pl

δφδφ
′ − a(τ)Hεδφ

′
δφ− a4

2

∂2V (φ)

∂φ2

∣∣∣∣
φ(τ,x)=φ(τ)

δφ2

]
(5.32)

≈
∫
d4x

[
a2

2

(
δφ

′2 − δφ,iδφ
,i
)
− 2a2Hεδφδφ

′ − a4

2

∂2V (φ)

∂φ2

∣∣∣∣
φ(τ,x)=φ(τ)

δφ2

]
, (5.33)

where we have disregarded a first-order piece and, at lowest order in the slow parameter we have used
that

∂2χ =
φ̇

2H2M2
pl

d

dt

(
−H
φ̇
δφ

)
= ε

d

dt

(
−H
φ̇
δφ

)
= −H

φ̇
εδφ̇− ε

d

dt

( √
ε√

2Mpl

)
≈ −H

φ̇
εδφ̇. (5.34)

We need the equation of motion for the scalar in order to write down the scalar propagators and to
compute the scalar power spectrum. This computation yields identical outcomes to those derived in
chapter 2.4. However, it’s valuable to verify that when employing two distinct gauges, we arrive at
the same outcome.

Regarding tensor perturbations, the Hilbert-Einstein term becomes as in section 2.5

S
(2)
HE =

∫
d4x

M2
pl

8

[
(hij)

′
(hj i)

′ − (∂kh
i
j)(∂

khj i)
]
, (5.35)

while we need to expand the Pontryagin density and we achieve this using a smart trick. Since the
Weyl tensor is conformally invariant we have that also the Pontryagin density is conformally invariant,
thus we can perform the expansion using the Minkowski metric as the background. Furthermore, we
know from eq.(5.11) that we can write

S
(2)
CS =

∫
d4x

√
−g φ

4f
∗RR =

∫
d4x

√
−g φ

2f
∇αK̃

α =

∫
d4x

φ

f
∇αK

α (5.36)

=

∫
d4x

[
− φ

′

2f
K0 − ∂i

(
φ

2f

)
Ki

]
=

∫
d4x

[
− φ

′

2f
K0

]
, (5.37)

where we have used the Leibniz rule for covariant derivatives [13] and we have eliminated surface
contributions. Thus we are left to expand K0 in a Minkowski background, where the Christoffel
symbols and all the curvature tensors are zero. Thus the relative perturbed quantities are at least of
first order. Thus, as explained in the appendix D.2 the action we get

S
(2)
CS =

∫
d4x

[
− φ

′

4f
K0

]
=

∫
d4xεijl

φ
′

4f

[
−h′ l

i∂jh
′
kl + hli

,mhlk,mj

]
. (5.38)

Collecting everything together we get

S(2) =

∫
d4x

{
a2

2

[
(δφ

′
)2 − δφ,iδφ

,i
]
− 2a2Hεδφδφ

′ − a4

2

∂2V (φ)

∂φ2

∣∣∣∣
φ(τ,x

δφ2+

+
M2
pl

8
a2
[
(hij)

′
(hj i)

′ − (∂kh
i
j)(∂

khj i)
]
+ εijl

φ
′

4f

[
−(hli)

′
∂j(hkl)

′
+ hli

,mhlk,mj

]}
. (5.39)
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Our action coincides with the one presented in [9, 66, 67]. Since the main reference of the computation
of the trispectrum in section 5.6 is [9] we briefly verify that the action reported in that paper coincides
with eq.(5.39). We report this computation since it’s not completely trivial. The only difference
presented is in the expansion of the action is in the CS term which they write as∫

d4x
a4φ

4f
δ2(∗RR) =

∫
d4x

φ

2f
εijk

[
h

′′
il(∂jh

l
k)

′
+ (∂mh

′
li)(∂j∂

lhmk + ∂k∂
mhlj)

]
. (5.40)

The first term in eq.(5.40) can be reformulated such that only two (instead of the original three)
“powers" of metric temporal derivatives appear

first term =

∫
d4x

φεijk

2f

[
h

′′
il(∂jh

l
k)

′
]

(5.41)

=

∫
d4x

φεijk

2f

1

2

[
h

′′
il(∂jh

l
k)

′ − h
′′
kl(∂jh

l
i)

′
]

(5.42)

=

∫
d4x

1

2

εijk

2f

{
−h′

il

[
φ(∂jh

l
k)

′
]′
− φh

′′
kl(∂jh

l
i)

′
}

(5.43)

=

∫
d4x

εijk

2f

{
−h′

ilφ(∂jh
l
k)

′′ − h
′
ilφ

′
(∂jh

l
k)

′ − φh
′′
kl(∂jh

l
i)

′
}

(5.44)

=

∫
d4x

εijk

4f

{
∂jh

′
ilφ(h

l
k)

′′ − h
′
ilφ

′
(∂jh

l
k)

′ − φh
′′
kl(∂jh

l
i)

′
}

(5.45)

=

∫
d4x

εijk

4f

{
−h′

ilφ
′
(∂jh

l
k)

′
}
, (5.46)

where we have eliminated total derivatives due to boundary terms and in the second equality we have
symmetrized the integrand in i, k. The second term in eq.(5.39) can be rewritten as

second term =

∫
d4x

φεijk

2f

[
(∂mh

′
li)(∂j∂

lhmk + ∂k∂
mhlj)

]
(5.47)

=

∫
d4x

φεijk

2f

[
(∂mh

′
li)(∂j∂

lhmk + ∂k∂
mhlj)

]
(5.48)

=

∫
d4x

φεijk

2f

1

2

[
−(h

′
li)(∂m∂j∂

lhmk) + (∂mh
′
li)(∂k∂

mhlj)− (∂mh
′
lj)(∂k∂

mhli)
]

(5.49)

=

∫
d4x

εijk

2f

1

2

[
+φ(∂mh

′
li)(∂k∂

mhlj)− (∂k∂mhlj)(∂
mhliφ)

′
]

(5.50)

=

∫
d4x

εijk

2f

1

2

{
−φ(∂mh

′
li)(∂k∂

mhlj) + (∂k∂mhlj)
[
∂mhliφ

′
+ (∂mhli)

′
φ
]}

(5.51)

=

∫
d4x

εijk

4f

{
(∂k∂mhlj)∂

mhliφ
′
}
, (5.52)

where we have disregarded a total derivative and we have used that hij is transverse, i.e. eq.(D.12).

Now we compute the EoM for scalar and tensor in Fourier space. Thus we expand the scalar and
tensor perturbation as

δφ(τ,x) =

∫
d3k

(2π)3
[u(τ,k)b0(k) + u∗(τ,−k)b∗0(−k)] , (5.53)

hij(x, τ) =

∫
d3k

(2π)3

∑
s

[
ε
(s)
ij (k̂)us(k, τ)bs(k) +

(
ε
(s)
ij

)∗
(k̂)u∗s(−k, τ)b∗s(−k)

]
eik·x, (5.54)

where ε(s)ij is an arbitrary polarization basis introduced in appendix D.1. In the following discussion,
we adopt the chiral polarization basis, i.e. the one we indicate as {R,L} in appendix D.1. For the
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scalar part, varying the action22

δSscalar =

∫
d4x

{
a2

[
δφ

′ d(δφ
′
)

dλ
− δφ,iδ

dφ,i

dλ

]
− 2a(τ)H(t)ε

d

dλ

(
δφ

′
δφ
)
− a4

∂2V

∂φ2
δφδ

dφ

dλ

}
(5.55)

=

∫
d4x

d(δφ)

dλ

[
−
(
a2δφ

′
)′

+ a2∇2(δφ) + 2 (a(τ)H(t)ε)
′
δφ− a4

∂2V

∂φ2
δφ

]
, (5.56)

and going in Fourier space, we get the EoM for the mode functions, u(τ,k),

u
′′
(τ,k) + 2

a
′
(τ)

a(τ)
u

′
(τ,k) +

(
k2 + a2

∂2V

∂φ2

)
u(τ,k)− 2 (a(τ)H(t)ε)

′
u(τ,k) = 0, (5.57)

which introducing the new variable χu(τ,k) = a(τ)u(τ,k) becomes

0 =

(
χ

′′
u

a
− χ

′
ua

′

a2
− a

′
χ

′
u

a2
−

(
a
′′

a2
− 2

a
′2

a3

)
χu

)
− 2

a
′

a

(
χ

′
u

a
− a

′
χu
a2

)
+

(
k2 + a2

∂2V

∂φ2

)
1

a
χu +

(
a
′′

a
− 2

a
′2

a2

)
ε
χu
a

(5.58)

=

(
χ

′′
u

a
− a

′′

a2
χu

)
+

(
k2 + a2

∂2V

∂φ2

)
1

a
χu − 2

(
a
′′

a
− a

′2

a2

)
ε
χu
a
, (5.59)

which using that a
′′

a = 2
τ2
(1 + 3

2ε), appendix C.1, and

a2
∂2V

∂φ2
≈ 1

H2τ2
∂2V

∂φ2
=

3ηV
τ2

,

(
a
′′

a
− a

′2

a2

)
ε ≈

[
2

τ2
+

1

τ2

]
ε =

3ε

τ2
(5.60)

where we have used eq.(2.66), can be put in the following form

χ
′′
u +

(
k2 −

ν2T − 1
4

τ2

)
χu = 0, (5.61)

where ν2T = 9
4 + 9ε − 3ηV , and which as shown in appendix C.2 can be put in the form of a Bessel

equation. A solution satisfying the canonical commutation relation23 and initial Bunch-Davies vacuum
[54] can be found as, appendix C.2,

χu(τ,k) =

√
π

2
exp i

(νT
2
π +

π

4

)√
−τH(1)

νT
(−kτ), (5.62)

where H(1)
νT (x) is the Hankel function of the first kind of index νT [55].

Regarding tensors, we use the variational principle directly on the Lagrangian expressed in Fourier
space. In order to proceed in a systematic way we split the action into three pieces:

S1 =

∫
d4x

M2
pl

8
a2
[
(hij)

′
(hj i)

′ − (∂kh
i
j)(∂

khj i)
]
, (5.63)

S2 = −
∫
d4x

εijk

4f

{
h

′
ilφ

′
(∂jh

l
k)

′
}
, (5.64)

S3 =

∫
d4x

εijk

4f

{
(∂k∂mhlj)∂

mhliφ
′
}
. (5.65)

22Here we adopt the same notation used in [13].
23Please notice that with the change of variable used, we have put the kinetic term in the canonical form [43]
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As shown in appendix D.1, going to Fourier space we get

S1 =

∫
dτM2

pla
2

4

d3k

(2π)3

{
u

′
R(k)u

′
R(−k) + u

′
L(k)u

′
L(−k)− k2 [uR(k)uR(−k) + uL(k)uL(−k)]

}
,

(5.66)

S2 = −
∫
dτ
kφ

′

2f

∫
d3k

(2π)3

{
u

′
R(k)u

′
R(−k)− u

′
L(k)u

′
L(−k)

}
, (5.67)

S3 = +

∫
dτ
φ

′

2f

d3k

(2π)3
k3 {uR(k)uR(−k)− uL(k)uL(−k)} , (5.68)

where for the sake of simplicity we eliminated the time dependence of the mode function. Now if we
perform a variation over uR(k), which is one of the two independent degrees of freedom, of the three
actions we get

δS1 = −
∫
dτ
M2
pla

2

2

d3k

(2π)3

{[
1

a2

(
a2u

′
R(−k)

)2
+ k2uR(−k)

]
δuR(k)

}
, (5.69)

δS2 = +

∫
dτ
k

f

∫
d3k

(2π)3

{
φ

′
u

′
R(−k)

}′

δuR(k), (5.70)

δS3 = +

∫
dτ
φ

′

f

d3k

(2π)3
k3uR(−k)δuR(k). (5.71)

So putting everything together we get the EoM

0 = −
M2
pla

2

2

[
1

a2

(
a2u

′
R(−k)

)2
+ k2uR(−k)

]
+
k

f

{
φ

′
u

′
R(−k)

}′

+
φ

′

f
k3uR(−k), (5.72)

which sending k 7−→ −k becomes

0 = u
′′
R(k) + 2

a
′

a
uR(k)

′
+ k2uR(k)−

2k

M2
plfa

2

{
φ

′′
u

′
R(k) + φ

′
u

′′
R(k) + k2 {uR(k)}φ

′
}

(5.73)

= u
′′
R(k)

(
1− 2k

M2
plfa

2
φ

′

)
+ uR(k)

′

(
2
a
′

a
− 2k

M2
plfa

2
φ

′′

)
+ k2uR(k)

(
1− 2k

M2
plfa

2

)
, (5.74)

where we recall that k =| k |. Now if we apply the variational principle with respect the other degree
of freedom, i.e. uL(k), we get

δS1 = −
∫
dτ
M2
pla

2

2

d3k

(2π)3

{[
1

a2

(
a2u

′
L(−k)

)2
+ k2uL(−k)

]
δuL(k)

}
, (5.75)

δS2 =

∫
dτ

k

f

∫
d3k

(2π)3

{
φ

′
u

′
L(−k)

}′

δuL(k), (5.76)

δS3 =

∫
dτ
φ

′

f

d3k

(2π)3
k3uL(−k)δuL(k), (5.77)

When we combine the three contributions, we obtain

0 = −
M2
pla

2

2

{[
1

a2

(
a2u

′
L(−k)

)2
+ k2uL(−k)

]}
+
k

f

{
φ

′
u

′
L(−k)

}′

+
φ

′

f
k3uL(−k), (5.78)

which sending k 7−→ −k becomes

0 = u
′′
L(k) + 2

a
′

a
uL(k)

′
+ k2uL(k) +

2k

M2
plfa

2

{
φ

′′
u

′
L(k) + φ

′
u

′′
L(k) + k2 {uL(k)}φ

′
}

(5.79)

= u
′′
L(k)

(
1 +

2k

M2
plfa

2
φ

′

)
+ uL(k)

′

(
2
a
′

a
+

2k

M2
plfa

2
φ

′′

)
+ k2uL(k)

(
1 +

2kφ
′

M2
plfa

2

)
. (5.80)
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It’s possible to write eq.(5.74) and (5.80) in a more compact way as

0 = u
′′
s (k)

(
1− λs

2k

M2
plfa

2
φ

′

)
+ us(k)

′

(
2
a
′

a
− λs

2k

M2
plfa

2
φ

′′

)
+ k2us(k)

(
1− λs

2kφ
′

M2
plfa

2

)
, (5.81)

which is identical to the one obtained in [66]. In eq.(5.81) λs = ±1 respectively for R and L polarization
(see appendix D.1). Now we introduce the following quantity

zs(k, τ) ≡ a(τ)

√
1− λs

2k

M2
plfa

2
φ′ , (5.82)

and a related new variable χs(τ,k) which is defined as

χs(k, τ) ≡ zs(k, τ)us(k, τ). (5.83)

Before proceeding in manipulating the EoM we show how to write the function multiplying u′
(τ,k)

in a smarter way. If we take the time derivative of zs(τ,k)

z
′
s(k, τ) =

1

2zs

(
2aa

′ − λs
2k

M2
plf

φ
′′

)
=

a2

2zs

(
2
a
′

a
− λs

2k

M2
pla

2f
φ

′′

)
, (5.84)

which becomes

z
′
s(k, τ)

2zs
a2

=

(
2
a
′

a
− λs

2k

M2
pla

2f
φ

′′

)
. (5.85)

In order to get the EoM in the new variable we need to compute the first and second derivatives of
u(τ,k) in order to substitute their values in eq.(5.81)

us(k, τ)
′
=
χ

′
s(k, τ)

zs(k, τ)
− z

′
s(k, τ)

z2s (k, τ)
χs(k, τ), (5.86)

us(k, τ)
′′
=
χ

′′
s (k, τ)

zs(k, τ)
− 2χ

′
s(k, τ)

z
′
s(k, τ)

z2s (k, τ)
+ χs(k, τ)

2
(
z
′
s(k, τ)

)2
z3s (k, τ)

− z
′′
s (k, τ)

z2s (k, τ)

 . (5.87)

The equation of motion in the chiral basis, suppressing the time and k dependence and using eq.(5.85),
(5.86) and (5.87), becomes

0 =

χ′′
s

zs
− 2χ

′
s

z
′
s

z2s
+ χs

2

(
z
′
s

)2
z3s

− z
′′
s

z2s


 z2s
a2

+

[
χ

′
s

zs
− z

′
s

z2s
χs

]
z
′
s(k, τ)

2zs
a2

+ k2
χs
zs

z2s
a2

(5.88)

=

[
χ

′′
s

zs
− χs

z
′′
s

z2s

]
z2s
a2

+ k2
χs
zs

z2s
a2
, (5.89)

which we can write in a very simple form as

χ
′′
s +

[
k2 − z

′′
s

zs

]
χs = 0. (5.90)

Finally, if we expand keeping the lowest order in the slow-roll parameters and we introduce the
“chemical potential" µ as

µ ≡
√
2εMpl

f

(
H

Mpl

)2

=
φ̇H

fM2
pl

, (5.91)
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we arrive at the desired expression [7, 68]

χ
′′
s +

[
k2 −

(
2 + 3ε

τ2
+ λs

2kµ

τ

)]
χs = 0. (5.92)

Note that our result differs from the one presented in [9] since we have changed the sign of the
Pontryagin density in the action; this sign can be reabsorbed in the coupling and we recover the
expression presented in the paper. Before proceeding we discuss a technical point. The coefficient
λs is equal to ±1 respectively for R and L modes. This implies that there exist some values of the
physical wave number kphys = k

a for which the factor z2R(τ,k) becomes negative. This happens when

2k

M2
plfa

2
φ

′
=

2k

M2
plfa

φ̇ > 1, (5.93)

which, introducing the Chern-Simons mass,

MCS =
M2
plf

2φ̇
=
H

2µ
, (5.94)

can be written as
kphys
MCS

φ̇ > 1. (5.95)

These modes acquire a negative kinetic becoming ghost fields [7, 9, 68]. Since this kind of behavior can
be problematic [69] we assume that only gravitons with kphys < MCS are at work at the beginning of
Inflation. This condition holds also during the rest of the Inflationary period since the universe expands
kphys decreases. Moreover, at the beginning of Inflation, we need also gravitons with kphys � H, which
implies that the mode function is deep inside the horizon, i.e.

λphys <<
1

H
. (5.96)

This condition is crucial to have quantum tensor perturbations produced from a Bunch-Davies vacuum
state [7]. This condition is preserved if MCS >> H, which, in the language of the chemical potential
reads

H

MCS
= µ << 1. (5.97)

Now, the effective potential ±2kµ
τ approaches 0 in the asymptotic past, i.e. τ → −∞, we can use the

Bunch-Davies vacuum state as the initial condition for (5.92):

χs(τ,k) =
1√
2k
e−ikτ . (5.98)

Thus, introducing ν̃T = 3
2 + ε, the solution of the EoM for the mode functions is [7, 68]

χs(τ,k) = (−2kτ)ν̃T
√
−τe−ikτe−i(

π
4
+π

ν̃T
2
)U

(
1

2
+ ν̃T − λsiµ, 1 + 2ν̃T , 2ikτ

)
exp

(
λs
π

2
µ
)
, (5.99)

where U is the Tricomi’s confluent hypergeometric function [55]. The solution for the tensor mode
function due to canonical normalization becomes

us(τ,k) =

√
2

Mpl

1

zs(τ,k)
(−2kτ)ν̃T

√
−τe−ikτe−i(

π
4
+π

ν̃T
2
)U

(
1

2
+ ν̃T − λsiµ, 1 + 2ν̃T , 2ikτ

)
exp

(
λs
π

2
µ
)
,

(5.100)

where the correct normalization is recovered from the action presented in [7]. We observe that
√
2

Mpl

can be incorporated a priori into the definition of zs(τ,k). However, since it is not required for the
solution of the equations of motion (EoM), we have set it to one in the previous computation.
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5.4.1 The scalar and graviton propagators.

In this section, we introduced the different propagators we have to employ in the following sections in
order to apply the Schwinger-Keldysh diagrammatic rules, section 4.2.

As explained in section 4.2 we have four different kinds of propagators both for the scalar and tensor.
Starting with the scalar sector, the tree-level propagators in momentum space are

G++(k, τ1, τ2) = u(k, τ1)u
∗(k, τ2)θ(τ1 − τ2) + u∗(k, τ1)u(k, τ2)θ(τ2 − τ1), (5.101)

G+−(k, τ1, τ2) = u∗(k, τ1)u(k, τ2), (5.102)
G−+(k, τ1, τ2) = u(k, τ1)u

∗(k, τ2), (5.103)
G−−(k, τ1, τ2) = u∗(k, τ1)u(k, τ2)θ(τ1 − τ2) + u(k, τ1)u

∗(k, τ2)θ(τ2 − τ1) (5.104)

where u(k, τ1) = a(τ)χu(k, τ) is the scalar mode function. The bulk propagators are

G+b(k, τ, 0) ≡ G+(k, τ) = u∗(k, τ)u(k, 0),≈ H2

2k3
(1− ikτ)e+ikτ , (5.105)

G−b(k, τ, 0) ≡ G−(k, τ) = u(k, τ)u∗(k, 0) ≈ H2

2k3
(1 + ikτ)e−ikτ , (5.106)

where the index b stands for bulk, and where we have taken the second conformal time to be zero since
we are interested in computing the correlation function outside the horizon. In the last step, we have
taken the lowest order in slow-roll parameters since in section 5.6 we work within this hypothesis.

Regarding tensors we have

G++,s(k, τ1, τ2) = us(k, τ1)u
∗
s(k, τ2)θ(τ1 − τ2) + u∗s(k, τ1)us(k, τ2)θ(τ2 − τ1), (5.107)

G+−,s(k, τ1, τ2) = u∗s(k, τ1)us(k, τ2), (5.108)
G−+,s(k, τ1, τ2) = us(k, τ1)u

∗
s(k, τ2), (5.109)

G−−,s(k, τ1, τ2) = u∗s(k, τ1)us(k, τ2)θ(τ1 − τ2) + us(k, τ1)u
∗
s(k, τ2)θ(τ2 − τ1), (5.110)

where the index s represents the polarization states, and where us(τ, k) is what we have computed in
eq.(5.100). We do not report the tensor bulk propagators since we are not going to use them.

5.5 Scalar and tensor Power Spectrum

In order to proceed to the computation of the primordial power spectra, we must canonically quantize
the scalar and tensor fields. In order to recover the canonical commutation relation we have to quantize
the rescaled fields both for scalar, χu(τ,k) = a(τ)u(τ,k), and tensor, χs(τ,k) =

Mplzs(τ,k)√
2

us(τ,k),
which are

χ̂s(τ,k) = χs(τ,k)b̂s(k) + χ∗
s(τ,k)b̂

†
s(−k), (5.111)

χ̂u(τ,k) = χu(τ,k)b̂0(k) + χ∗
u(τ,k)b̂

†
0(−k). (5.112)

where b̂0(k), b̂R(k) and b̂L(k) are the respectively creation and annihilation operators which obey the
usual relations

〈0|b̂†i = 0, b̂i|0〉 = 0, [b̂i(k), b̂
†
j(k

′
)] = (2π)3δ(3)(k− k

′
)δij , [b̂i(k), b̂j(k

′
)] = [b̂†i (k), b̂

†
j(k

′
)] = 0,

(5.113)

where i = 0, R, L. Now, in order to derive the Power spectrum we must evaluate

〈0|û(τ,k)û(τ,−k
′
)|0〉 = a−2(τ)〈0|

(
χu(k)b̂0(k) + χ∗

u(k)b̂
†
0(−k)

)(
χu(−k

′
)b̂0(−k

′
) + χu(−k

′
)∗b̂†0(−k

′
)
)
|0〉

(5.114)
= a−2(τ)χu(τ,k)χ

∗
u(τ,k

′
)〈0|b̂0(−k

′
)b̂†0(−k

′
)|0〉 (5.115)

= a−2(τ)χu(τ,k)χ
∗
u(τ,k)(2π)

3δ(3)(k+ k
′
), (5.116)
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where in the first step we have suppressed the temporal dependence for clarity. Now, from this, we
can derive the inflaton adimensional power spectrum, introduced in eq.(1.154)

∆δφ(k) =
k3

2π2
P (k) =

k3

2π2
a−2(τ)χu(τ,k)χ

∗
u(τ,k), (5.117)

where S stands for scalar. Since we are interested in super-horizon scales, we can use the asymptotic
expansion for the Hankel function for −kτ << 1

H(1)
ν (x) ≈

[
−Γ(ν)

π

(
2

x

)ν
i

]
, (5.118)

to approximate the scalar mode function as

χµ(τ,k) ≈
√
π

2
exp (i

νT
2
π + i

π

4
)
√
−τ
[
−Γ(νT )

π

(
2

−kτ

)νT
i

]
= exp (i

π

2

(
νT − 1

2

)
(−kτ)−νT+ 1

2

√
2k

Γ(νT )

Γ(32)
2νT− 3

2 .

(5.119)

Thus, the adimensional power spectrum becomes

∆δφ(k) ≈
k3

2π2
(Hτ(1− ε))2

(−kτ)−2νT+1

2k

[
Γ(νT )

Γ(32)

]2
22νT−3 (5.120)

=
k3

2π2
(Hτ(1− ε))2

(−kτ)−2−2(3ε−ηV )

k

[
Γ(32 + ε− ηV )

Γ(32)

]2
22(3ε−ηV ), (5.121)

where we have used that νT ≈ 3
2 + 9ε − ηV . At first order in slow-roll parameters the adimensional

power spectrum ∆δφ(k), i.e. Eq.(5.121), and the power spectrum Pδφ(k) become

∆δφ(k) =

(
H

2π

)2( k

aH

)−2(3ε−ηV )

, (5.122)

Pδφ(k) =
1

k3
H2

2

(
k

aH

)−2(3ε−ηV )

, (5.123)

which are identical to the ones we have derived in the standard scenario. Now passing to the curvature
perturbation with [15]

ζ(k) = − δφ(k)√
2εMpl

, (5.124)

we can write the adimensional power spectrum and power spectrum as

∆ζ(k) =

(
H

2π

)2( k

aH

)−2(3ε−ηV ) 1

2εM2
pl

=

(
H

2πMpl

)2( k

aH

)−2(3ε−ηV ) 1

2ε
, (5.125)

Pζ(k) =
1

k3
H2

2

(
k

aH

)−2(3ε−ηV ) 1

2εM2
pl

=

(
H

Mpl

)2( k

aH

)−2(3ε−ηV ) 1

4εk3
. (5.126)

Concerning tensors, we can follow the same procedure with a slight modification to account for the
polarization tensor. Therefore we compute

〈0|ĥsij(k)ĥijs ∗(−k
′
)|0〉 = εsij(k)ε

ij
s
∗(k)〈0|ûs(k)û∗s(−k

′
)|0〉 = 2us(k)u

∗
s(k)(2π)

3δ(3)(k+ k
′
), (5.127)

where we have used that εsij(k)ε
ij
s
∗(k) = 2 for both s = L/R, see appendix D.1. In order to proceed

we need a super-horizon expression for the solutions of the EoM . Using the asymptotic form of the
hypergeometric confluent functions we can write [68]

us(τ,k) ≈
√
2

Mpl

1

zs(τ,k)

√
−τ

2(−kτ)3
ei
(
−π

4
+π

2
ν̃T

)Γ(νT )
Γ(32)

(
−kτ
2

) 3
2
−ν̃T

eλs
π
2
µ. (5.128)
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Therefore the adimensional power spectrum reads

∆s
T =

k3

2π2
2

M2
pl

1

z2s (τ,k)

τ

2(kτ)3

[
Γ(νT )

Γ(32)

]2(
−kτ
2

)3−2ν̃T

eλsπµ (5.129)

=
1 + λsπµ

π2M2
plz

2
s (τ,k)τ

2

(
−kτ
2

)−2ε

(5.130)

≈ H2

π2M2
pl

eλsπµ
(
−kτ
2

)−2ε

(5.131)

=
∆T

2
eλsπµ, (5.132)

where ∆T is the adimensional tensor power spectrum we have computed in section 2.5, where we have
taken the lowest order in the slow roll parameters and in µ and, in the third step we have considered

z2s (τ,k) = a(τ)

√
1− λs2

kphys
MCS

≈ a(τ). (5.133)

We can approximate in this way because we initially consider a scenario where kphys < MCS at the
beginning of Inflation, and additionally, in eq.(5.132), we are considering the value of z at the end of
Inflation. Thus

k

a

∣∣∣∣
E

=
k

a

∣∣∣∣
B

aB
aE

≈ k

a

∣∣∣∣
B

e−N , (5.134)

where the subscripts stand for the beginning and the end of Inflation while N is the minimum number
of e-folds required to solve the shortcomings of the HBB model. Thus, it’s clear that any correction
to a(τ) in zs is completely washed away by the accelerated expansion.

The disparity between the L and R power spectra at the linear level offers a potential observable,
which is often called the chirality parameter

Θ =
∆R
T −∆L

T

∆R
T +∆L

T

≈ (1 + πµ)− (1− πµ)

(1 + πµ) + (1− πµ)
= πµ, (5.135)

which we expect to be small and as discussed in [7], only weak constraints could be put with future
CMB experiments. This quantity is the degree of gravitational circular polarization introduced in [9]
which is

Πcirc = πµ = π

√
2εMpl

f

(
H

M2
pl

)2

, (5.136)

which quantitatively takes values according to [9]

Πcirc ≈ 0.9
( ε

10−2

) 1
2

(
H

1014GeV

)2(109GeV

f

)
+O(µ2). (5.137)

Another important feature is the total tensor ratio is modified in the Chern-Simons theory of modified
gravity even if the effect is unobservably small

∆CS
T = ∆R

T +∆L
T ≈ ∆T

(
1 + Θ2)

)
. (5.138)

Therefore, at linear order in µ, we do not observe any modifications in the total power spectrum or
in the relationship between scalar and tensor quantities, r = 16ε. Going to higher orders in µ, it’s
possible to modify the total power spectrum with respect to the standard single-field slow-roll model
[7]. Exploring the modification of the spectral index is intriguing, but we refrain from conducting the
calculation here since a similar computation is carried out in the subsequent chapter (the result is
identical once we exchange the two chirality parameters).
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5.6 The scalar trispectrum graviton mediated

The goal of this section is the calculation of the scalar trispectrum, building upon the approach
introduced in [9], and incorporating an additional observation that was not discussed in the paper,
section 5.6.3. We restrict ourselves only to the lowest contribution in slow-roll parameters that can
present parity-violating signatures, which is the zeroth order.

Before proceeding with the calculation, it is essential to elucidate why an imaginary part of the
trispectrum leads to parity violation, as emphasized in [9], whereas the real part cannot produce such
an effect. In fact, we know that the four-point correlation function, i.e.

ζ(τ,x1,x2,x3,x4) ≡ 〈δφ(τ,x1)δφ(τ,x2)δφ(τ,x3)δφ(τ,x4)〉, (5.139)

is real and in Fourier space can be written as

ζ(τ,x1,x2,x3,x4) =

∫
d3k1e

ik1·x1

(2π)3
d3k2e

ik2·x2

(2π)3
d3k3e

ik3·x3

(2π)3
d3k4e

ik4·x4

(2π)3
ζ(τ,k1,k2,k3,k4). (5.140)

Since ζ∗(τ,x1,x2,x3,x4) = ζ(τ,x1,x2,x3,x4) we have ζ∗(τ,k1,k2,k3,k4) = ζ(τ,−k1,−k2,−k3,−k4).
Hence, if the trispectrum is real, it cannot violate parity

< [ζ(τ,k1,k2,k3,k4] = ζ∗(τ,k1,k2,k3,k4) = ζ(τ,−k1,−k2,−k3,−k4), (5.141)

while if it has an imaginary component

= [ζ(τ,k1,k2,k3,k4))]
∗ = = [ζ(τ,−k1,−k2,−k3,−k4))] = −= [ζ(τ,k1,k2,k3,k4)] , (5.142)

it clearly presents parity-violating signatures.

Now we delve into the actual calculation of the trispectrum, which is performed using the Schwinger-
Keldysh diagrammatic rules [14] for the In-In formalism’s master formula [17] (see section 4.2). The
initial step involves identifying the types of diagrams that contribute at the lowest order in slow-roll to
the scalar trispectrum. First of all, we notice that the scalar contribution to the trispectrum coming
from all the possible diagrammatic possibilities of terms coming from the expansion of the potential
can’t violate parity. For example the following interaction vertex∫

d4x
1

4!

∂4V

∂φ4
δφ4(τ,x)

∣∣∣∣
φ(τ,x)=φ(τ)

, (5.143)

which diagrammatically in Fourier space has two forms24

δφ(k1) δφ(k3)

δφ(k2) δφ(k4)

δφ(k1) δφ(k3)

δφ(k2) δφ(k4)

Figure 13: Quartic interaction from the potential expansion.
.

can’t produce any contribution to the parity-violating part of the trispectrum25. We notice that the
possible contributions to the parity-violating trispectrum must be the ones, shown in fig.14, which are
mediated by gravitons since the parity violation arises from the modification of standard GR. Clearly,
there are contributions coming from much more complicated diagrams involving loops but here we
consider only the dominant terms which are the tree-level contributions. Thus at lowest order, we are
seeking the following diagram shape:
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h

δφ(k1)

δφ(k3)δφ(k2)

δφ(k4)

Figure 14: The diagram for the graviton-mediated trispectrum.

Based on the preceding discussion, it becomes evident that we require interaction vertices of the type
depicted in fig. 15. These vertices involve two scalars and one tensor.

K

δφ(k1)

δφ(k2)

Figure 15: scalar-scalar-tensor vertex

This kind of contribution can come up only from the kinetic term and the CS one. Expanding the
kinetic term we obtain the following contribution to the action in position space

S
(1)
int = −

∫
d4x

1

2
a2(τ)hij∂iδφ(τ,x)∂jδφ(x, τ). (5.144)

which in Fourier space becomes

S
(1)
int = −1

2

∫
d4x

(Hτ)2
d3keik·x

(2π)3
d3qeiq·x

(2π)3
d3KeiK·x

(2π)3
ikf iqlu(k, τ)u(q, τ)

∑
h

εlf (K)uh(K, τ) (5.145)

=
1

2
(2π)3

∫
dτ

(Hτ)2
d3k

(2π)3
d3q

(2π)3
d3K

(2π)3
kfqlu(k, τ)u(q, τ)

∑
h

εlf (K)uh(K, τ)δ
3(k+ q+K),

(5.146)

from which, according to [14] we can write the relative vertex diagrammatic rule in Fourier space as

(1) K

k1

= −ikf1k
l
2ε
h
lf (K)

∫ τ
τ0

dτ̃
(Hτ̃)2

,

k2

(1) K

k1

= ikf1k
l
2

(
εhlf (K)

)∗ ∫ τ
τ0

dτ̃
(Hτ̃)2

,

k2

Figure 16: Diagrammatic rule for the interaction vertex

24each vertex can be of the + or − type which is respectively represented with a dot and an empty dot, see section
4.2.

25See section 4.2 for the diagrammatic formalism.
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where (1) on the vertex is used to refer to the interaction of eq.(5.144), εhij(K) are the polarization
tensors introduced in appendix D.1 with h = L/R, and K = k1 + k2.

Now we need to expand the CS term in order to obtain the scalar-scalar-tensor vertex. Using the
conformal invariance of the Weyl tensor [13] and retaining the leading order in slow roll it’s possible
to get [7]

S
(2)
int = −

∫
d4x

2

fMpl

√
ε
(
∂lδφ

)
εijk

[
(∂kδφ) ∂ih

′
lj

]
, (5.147)

which up to a surface term can be written in Fourier space as

S
(2)
int =

2

fMpl

√
εεijk

∫
d4x

d3keik·x

(2π)3
d3qeiq·x

(2π)3
d3KeiK·x

(2π)3
ikf iql (u(k, τ)u(q, τ))

′∑
h

εlf (K)uh(K, τ)

(5.148)

=
2

fMpl

√
εεijk(2π)3

∫
dτ

d3k

(2π)3
d3q

(2π)3
d3K

(2π)3
kfql (u(k, τ)u(q, τ))

′∑
h

εlf (K)uh(K, τ)δ
3(k+ q+K),

(5.149)

where we have reintroduced the Planck mass by dimensional analysis. Now, since temporal deriva-
tives appear [14], we directly write down the expression of the vertex in which the external lines are
contracted with scalars. The associated diagrammatic rule becomes

(2) K

δφ(τf k1)

= −i 4
fMpl

√
εεijkkf1k

l
2ε
h
lf (K)

∫
dτ [G+(k1, τ, τf )G+(k2, τ, τf ))]

′
,

δφ(τf k2)

(2) K

δφ(τf k1)

= +i 4
fMpl

√
εεijkkf1k

l
2

(
εhlf (K)

)∗ ∫
dτ [G−(k1, τ, τf )G−(k2, τ, τf ))]

′
.

δφ(τf k2)

Figure 17: Diagrammatic rule for the CS interaction vertex

Thus, using the two interaction verteces of eq.(5.147) and eq.(5.149) we can get four diagram combi-
nations:

h

δφ

(1) (1)
δφδφ

δφ

h

δφ

(1) (2)
δφδφ

δφ

h

δφ

(2) (1)
δφδφ

δφ

h

δφ

(2) (2)
δφδφ

δφ

Figure 18: The possible diagrammatic combination using the two vertices.

where we haven’t specified the momenta of the scalar field and the kind of vertices (see section 4.2)
for simplicity but in the calculations all the possible permutations must be considered in order to get
the correct result. Notice that the second and the third diagrams can be obtained one from the other
by exchanging the momenta.
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Thus we start the computation of the first possibility in which the two vertices came from the kinetic
term. Now we have to compute twelve diagrams since we have three channels

h

δφ(k1)

δφ(k3)δφ(k2)

δφ(k4)

h

δφ(k1)

δφ(k4)

δφ(k3)

δφ(k2)

h

δφ(k1)

δφ(k3)

δφ(k4)

δφ(k2)

Figure 19: s,t and, u channel

and each channel comes in four combinations since we have two vertices (each vertex can be of the +
or − type which are respectively represented with a dot and an empty dot)

h(kI)

δφ(k1)

δφ(k3)δφ(k2)

δφ(k4)

h(kI)

δφ(k1)

δφ(k3)δφ(k2)

δφ(k4)

h(kI)

δφ(k1)

δφ(k3)δφ(k2)

δφ(k4)

h(kI)

δφ(k1)

δφ(k3)δφ(k2)

δφ(k4)

Figure 20: The four possibilities for the s channel

Since the computation for each channel is identical we introduce KI = (k1
I ,k

2
I ,k

3
I ,k

4
I) with I = s, t, u

Ks = (k1,k2,k3,k4), Kt = (k1,k3,k2,k4), Ku = (k1,k4,k3,k2), (5.150)

and kI = k1
I + k2

I = k3
I + k4

I . Therefore, we can determine the contribution from the four diagrams
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for the generic channel I using the rules we have determined above.

first = −
∑
h

∫ 0

−∞

dτ1dτ2
(H2τ1τ2)2

εhij(kI)(k
1
I )
i(k2I )

jG+(k
1
I , τ1)G+(k

2
I , τ1)

× [εh]∗ab(kI)(k
3
I )
a(k4I )

bG+(k
3
I , τ2)G+(k

4
I , τ2)uh(kI ,max[τ1, τ2])u

∗
h(kI ,min[τ1, τ2])] (5.151)

= −
∑
h

Ph(KI)J
(2)
h (k), (5.152)

second =
∑
h

Ph(KI)

∫ 0

−∞

dτ1
(Hτ1)2

dτ2
(Hτ2)2

[G−(k
1
I , τ1)G−(k

2
I , τ1)[G+(k

3
I , τ2)G+(k

4
I , τ2)u

∗
h(kI , τ1)uh(kI , τ2)]

(5.153)

=
∑
h

Ph(KI)J̄
(1)
h (k1,k2)J

(1)
h (k3,k4), (5.154)

third =
∑
h

Ph(KI)

∫ 0

−∞

dτ1
(Hτ1)2

dτ2
(Hτ2)2

[u+b(k
1
I , τ1)u+b(k

2
I , τ1)[u−b(k

3
I , τ2)u−b(k

4
I , τ2)uh(kI , τ1)u

∗
h(kI , τ2)]

(5.155)

=
∑
h

Ph(KI)

∫ 0

−∞

dτ1
(Hτ1)2

[u+b(k
1
I , τ1)u+b(k

2
I , τ1)uh(kI , τ1)

∫
dτ2

(Hτ2)2
[u−b(k

3
I , τ2)u−b(k

4
I , τ2)u

∗
h(kI , τ2)]

(5.156)

=
∑
h

Ph(KI)J
(1)
h (k1,k2)J̄

(1)
h (k3,k4), (5.157)

fourth = −
∑
h

Ph(KI)J̄
(2)
h (k), (5.158)

where we have introduced

Ph(KI) = εhij(kI)(k
1
I )
i(k2I )

j [εh]∗ab(kI)(k
3
I )
a(k4I )

b, (5.159)

and the following notation for the time integrals

J
(2)
h (KI) =

∫
dτ1dτ2

(H2τ1τ2)2
G+(k

1
I , τ1)G+(k

2
I , τ1)G+(k

3
I , τ2)G+(k

4
I , τ4)uh[kI ,max(τ1, τ2)]u

∗
h[kI ,min(τ1, τ2)],

(5.160)

J
(1)
h (kiI ,k

j
I) =

∫
dτ

(Hτ)2
G+(k

i
I , τ)G+(k

j
I , τ)u

∗
h(k

i
I + kjI , τ), (5.161)

Tvarh(KI) = <
(
J
(2)
h (KI)− J

(1)
h (k1

I ,k
2
I)J

(1)
h

∗(k3
I ,k

4
I)
)
. (5.162)

Summing everything together we get

〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉 = −
∑
I,s

2Ph(KI)Tvarh(KI), (5.163)

Now using eq.(D.12) that

PR(KI) = εRij(K)(k1I )
i(k2I )

j [εR]∗ab(KI)(k
3
I )(k

4
I )
b = [εLij ]

∗(K)(k1I )
i(k2I )

jεLab(KI)(k
3
I )
a(k4I )

b = P ∗
L(KI).

(5.164)

we can write, from eq.(5.163), that

<〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉 = −2
∑
I

< (PR(KI)) [TvarR(KI) + TvarL(KI)] , (5.165)

=〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉 = −2
∑
I

= (PR(KI)) [TvarR(KI)− TvarL(KI)] . (5.166)

Thus the computation of the graviton-mediated trispectrum proceeds in two steps: the computation
of the polarization sums and the time integral.
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5.6.1 Polarization sum

First of all, we introduce a Cartesian system in Fourier space such that the z−axis is parallel to kI as
shown in figure 21 (for clarity we haven’t reported all the vectors). In this particular reference frame,

Figure 21: The basis.

the two polarizations read

εRij(kI) =
1√
2

1 i 0
i 1 0
0 0 0

 , εLij(kI) =
1√
2

 1 −i 0
−i 1 0
0 0 0

 , (5.167)

and we can write in polar coordinates the Ki
Is as

Ki
I = Ki

I

[
cos
(
φiI
)
sin
(
θiI
)
, sin

(
θiI
)
sin
(
φiI
)
, cos

(
θiI
)]
. (5.168)

Now we want to compute the polarization factor

Ph(KI) =
[
εhab(kI)

(
K1
I

)a (
K2
I

)b] [
εhcd

∗(kI)
(
K3
I

)c (
K4
I

)d]
, (5.169)

which is the product of two similar expressions; we can obtain the second from the first by exchanging
momenta and taking the complex conjugate. Using that K2

I = kI −K2
I and that εL/Rij (kI)k

i
I = 0, the

first term for the right polarization can be written as

[
εRab(kI)

(
K1
I

)a (
K2
I

)b]
= −K1

I

cos
(
φ1I
)
sin
(
θ1I
)

sin
(
θ1I
)
sin
(
φ1I
)

cos
(
θ1I
)

T

1√
2

1 i 0
i −1 0
0 0 0

K1
I

cos
(
φiI
)
sin
(
θ1I
)

sin
(
θ1I
)
sin
(
φ1I
)

cos
(
θ1I
)


(5.170)

= −K1
IK

1
I

cos
(
φ1I
)
sin
(
θ1I
)

sin
(
θ1I
)
sin
(
φ1I
)

cos
(
θ1I
)

T

1√
2

 cos
(
φiI
)
sin
(
θ1I
)
+ i sin

(
θ1I
)
sin
(
φ1I
)

+i cos
(
φiI
)
sin
(
θ1I
)
− sin

(
θ1I
)
sin
(
φ1I
)

0


(5.171)

= −
K1
IK

1
I√

2
sin2

(
θ1I
)
e+i(2φ

1
I), (5.172)
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where K1
I ≡| K1

I |. Now sending K
1/2
I 7−→ K

3/4
I and taking the complex conjugate we get for the

second factor in eq.(5.169)[
εRab

∗(kI)
(
K4
I

)a (
K2
I

)b]
=
[
εLab(kI)

(
K4
I

)a (
K2
I

)b]
= = −

K3
IK

3
I√

2
sin2

(
θ3I
)
e−i2φ

3
I . (5.173)

Taking the product of eq.(5.172) and eq.(5.173) we obtain

PR(KI) =
1

2

[
K1
IK

3
I sin

(
θ1I
)
sin
(
θ3I
)
e+iφ

1
Ie−iφ

3
I

]2
, (5.174)

PL(KI) =
1

2

[
K1
IK

3
I sin

(
θ1I
)
sin
(
θ3I
)
e−iφ

1
Ie+iφ

3
I

]2
. (5.175)

5.6.2 Time integral

We now compute the time integral following the procedure adopted in [9]. What we want to compute
is

Tvarh(KI) = <
(
J
(2)
h (KI)− J

(1)
h (k1

I ,k
2
I)J

(1)
h

∗(k3
I ,k

4
I)
)
, (5.176)

where we recall that from the computation of section 5.4

u(τ,k) =
−i
a(τ)

√
π

2
exp

(
i
νT
2
π + i

π

4

)√
−τH(1)

νT
(−kτ), (5.177)

us(τ,k) =
1

zs(τ,k)
2

√
(−kτ)3
k

e−ikτe−i
(
π
4
+π

νT
2

)
U(

1

2
+ νT − λsiµ, 1 + 2νT , 2ikτ)e

λs
π
2
µ. (5.178)

First of all, we are interested in keeping only the dominant term both for the real part and the
imaginary part of the scalar trispectrum. We have to retain µ since the parity-violating part of the
trispectrum, i.e. the imaginary piece, has to be proportional to µ. Regarding the real part, this is
different from zero and contains terms of zeroth order in the slow-roll parameters because the solution
of the EoM contains zeroth order terms in the slow-roll parameters. Keeping this assumption in mind
we have

a(τ) = − 1

Hτ
, νT =

3

2
, H

(1)
3
2

(−kτ) = −

√
2
π i(1 + ikτ)e−ikτ

(−kτ)
3
2

, zs(τ,k) ≈ a(τ), (5.179)

where in expanding z we have also considered that being an effective field theory we have kphys < MCS .
Thus for the scalar we obtain

u(τ,k) = (+iHτ)

√
π

2
(−1)

√
−τ

−

√
2
π i(1 + ikτ)e−ikτ

(−kτ)
3
2

 =
H√
2k3

(1 + ikτ)e−ikτ , (5.180)

while for the tensor we get

us(τ,k) =

√
2

Mpl
(−Hτ) (−2kτ)

3
2
√
−τe−ikτ (−1)U(2− λsiµ, 4, 2ikτ)e

λs
π
2
µ

(
i

1+ikτ
4k3τ3

U(2, 4, 2ikτ)

)
(5.181)

=

(
H

Mpl

√
k3

)
e−ikτ

(
U(2− λsiµ, 4, 2ikτ)

U(2, 4, 2ikτ)

)
i (1 + ikτ) eλs

π
2
µ. (5.182)

Before continuing, we introduce an additional approximation to enable us to analytically evaluate the
time integral. We assume that

U(2− iλsµ, 4, 2ikτ) ≈ CsU(2, 4, 2ikτ), (5.183)
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where we can find the amplitude at first order in µ by imposing the equality in τ = 0

CR ≈ 1− i(−1 + γ)µ, CL ≈ 1 + i(−1 + γ)µ, (5.184)

where γ = 0.577216 is the Euler constant. Using the HypergeometricU[...] function in Mathematica,
we can derive this result. To assess the accuracy of our approximation, it is crucial to emphasize
that the primary contribution to the graviton mode function arises near horizon crossing, where
| τki |≈ 1. Furthermore, if −kτ < −1 the integrand is highly oscillatory and we expect a subdominant
contribution [17]. Moreover, we can plot the

| CsU(2− λsµ, 4, 2iz)

U(2, 4, 2iz)
|2, (5.185)

as show in figure 22. In the first subplot, we display the outcome for the right polarization, whereas,
in the second subplot, we show the result for the left polarization. From the plot we can appreciate
that if µ << 1 and z = kτ < 1 it’s reasonable that the approximation works.

Figure 22: | CsU(2−λsµ,4,2iz)
U(2,4,2iz) |2 vs µ for different value of z ≡ kµ.

This assumption allows us to evaluate the time integral taking the 0th order in slow-roll and µ solutions
of the EoM ,

u(τ,k) =
iH√
2k3

(1 + ikτ)e−ikτ , (5.186)

us(τ,k) =
iH

Mpl

√
k3

(1 + ikτ)e−ikτ . (5.187)

since µ has the only effect to modify the amplitude of the mode function. Thus we can simplify the
scalar propagator as

G±(k, τ) =
H2

2k3
(1−±kτ)e±ikτ . (5.188)

We do not report the explicit expression for the modification of the tensor propagators since in the
time integral we report the explicit expression for this propagator as product of mode functions. Since
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in the time integral, i.e. eq.(5.176), the graviton mode function appears always multiplied by its
complex conjugate we have that

Tvars(KI) = <
(
CsC

∗
s e
λsµπ

[
J
(2)
h (KI)− J

(1)
h (k1

I ,k
2
I)J

(1)
h

∗(k3
I ,k

4
I)
]
µ=0

)
, (5.189)

which using that up to first order CsC∗
s ≈ 1 we get

Tvars(KI) = eλsπµ Tvars(KI)|µ=0 . (5.190)
Therefore using Mathematica we finally obtain using the iε-prescription in the asymptotic past [15]

Tvarh(KI)|µ=0 = − Āt
2k3I

H4∏4
i=1 2k

3
i

{
K1
I +K2

I

[aI34]
2

[
1

2
(aI34 + kI)([a

I
34]

2 − 2bI34) + k2I (K
3
I +K4

I )

]
+ (1, 2) ↔ (3, 4)

+
K1
IK

2
I

kt

 bI34
aI34

− kI +
kI

aI12

(
K3
IK

4
I − ki

bI34
aI34

) 1

kt +
1
aI12

+ (1, 2) ↔ (3, 4)

− kI

aI12a
I
34kt

[
bI12b

I
34 + 2k2I

(
4∏
i=1

ki

)(
1

k2t
+

1

aI12a
I
34

+
kI

ktaI12a
I
34

)]}
,

(5.191)
with

kt =

4∑
i=1

| Ki
I |, aIij =

[
| Ki

I | + | Kj
I | +kI

]
, bIij =

[
(| Ki

I | + | Kj
I)kI+ | Ki

I || K
j
I |
]
, Āt = 4

(
H

Mpl

)2

.

(5.192)
It is worth noting that the outcome of eq. (5.191) remains independent of the polarization, as evident
from our choice to set µ equal to zero. Consequently, we omit the chiral index when discussing the
time integral evaluated at µ = 0. The program used to compute the integral is available on this link.
Now we can finally compute the graviton-mediated trispectrum as

<〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉 = −4
∑
I

< (PR(KI)) TvarR(KI)|µ=0 , (5.193)

=〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉 = −4πµ
∑
I

= (PR(KI)) TvarR(KI)|µ=0 . (5.194)

We now focus on one of the collapsed limits of the trispectrum, i.e. the one in which | Ki
I |>>| kI |≈ 0,

with i ∈ 1, 2, 3, 4. Operating with this approximation is much easier, and our goal is to demonstrate
that the trispectrum’s amplitude in the collapsed limit is too small for detection. In this way, we
only want to highlight the difficulty of detecting the trispectrum. Certainly, a more comprehensive
examination becomes necessary in alternative configurations, as we encounter numerous simplifications
in the collapsed limit. The collapsed limit also implies that K1

I ≈ −K2
I and K3

I ≈ −K4
I , and the fact

that kI ≈ 0 makes our previous assumption for the tensor mode function exact. Unless the conditions
K1
I ≈ −K2

I ≈ −K3
I ≈ K4

I are met, we can select a specific channel, and the influence of the other two
channels becomes negligible, due to the factor 1

k3I
. By excluding this possibility and narrowing our

focus to one channel, the resulting outcome is

Tvar±(KI)
∣∣Collapsed
µ=0

= − Āt
2k3I

(
H4∏4
i=1 2K

i
I

)
9K1

IK
3
I

4
, (5.195)

and the corresponding trispectrum reads

<〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉 =
[
K1
IK

3
I sin

(
Θ1
I

)
sin
(
Θ3
I

)]2
cos
(
+2i

(
φ1I − φ3I

)) Āt
2k3I

(
H4∏4
i=1 2K

i
I

)
9K1

IK
3
I

4
,

(5.196)

=〈δφ(k1)δφ(k2)δφ(k3)δφ(k4)〉 = πµ
[
K1
IK

3
I sin

(
Θ1
I

)
sin
(
Θ3
I

)]2
sin
(
+2i

(
φ1I − φ3I

)) Āt
2k3I

(
H4∏4
i=1 2K

i
I

)
9K1

IK
3
I

4
.

(5.197)
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Now recalling that δφ = − φ̇
H ζ = −

√
2εMplζ we can switch to the trispectrum of the curvature

perturbation and we get

<〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 =
1(

2εM2
pl

)2 [K1
IK

3
I

]2 [
sin
(
Θ1
I

)
sin
(
Θ3
I

)]2
cos
(
+2i

(
φ1I − φ3I

)) 9Āt
2k3I

(
H4∏4
i=1 2K

i
I

)
,

(5.198)

=〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 =
πµ(

2εM2
pl

)2 [K1
IK

3
I

]3 [
sin
(
Θ1
I

)
sin
(
Θ3
I

)]2
sin
(
+2i

(
φ1I − φ3I

)) 9Āt
2k3I

(
H4∏4
i=1 2K

i
I

)
.

(5.199)

Now we can use the expression of the power spectrum of the curvature perturbation at 0th order in
slow-roll

Pζ(k) =
1

4εk3

(
H

Mpl

)2

, (5.200)

we can rewrite the real and complex part of the scalar trispectrum as

<〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 =
9

16
r
[
sin
(
Θ1
I

)
sin
(
Θ3
I

)]2
cos
(
+2i

(
φ1I − φ3I

))
Pζ(kI)Pζ(k

1
I )Pζ(k

3
I ), (5.201)

=〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 =
9

16
Πcircr

[
sin
(
Θ1
I

)
sin
(
Θ3
I

)]2
sin
(
+2i

(
φ1I − φ3I

))
Pζ(kI)Pζ(k

1
I )Pζ(k

3
I ),

(5.202)

where we have used that

ĀT = 4

(
H

Mpl

)2

, r = 16ε. (5.203)

We conclude this section with some final remarks about the graviton-mediated trispectrum. The
natural smallness of the trispectrum is due to the r suppression factor and it makes it unobservable
given the current limit on the sensitivity [9]. The factor r originates from a consistency relation within
bispectra [9], as it can be demonstrated that the trispectrum emerges as a product of two distinct
bispectra in the collapsed limit. It is possible to incorporate enhancement factors through adjustments
to the model, such as in quasi-single field models of inflation [9] but we are not going to discuss this
point. Nevertheless, caution must be exercised to avoid compromising the bispectrum measurement,
given the interconnections between the trispectrum and the bispectrum in the collapsed limit.

5.6.3 The scalar trispectrum with the Chern-Simons interaction vertex

In this section, we provide a brief explanation as to why the interference diagrams (refer to fig. 18)
and the one involving two vertices from the CS term do not contribute to the scalar trispectrum. We
can discuss both terms in the same way by repeating all the steps we have done previously:

• write down the four amplitudes coming from the vertices combinations,

• evaluate the polarization portion,

• use the simplifying assumption to treat the hypergeometric confluent functions,

• derive the time integral.

The two contributions are 0 since the time integral is 0. In the case of the interference term, which
diagrammatically is
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h

δφ(k1)

(2) (1)

δφ(k3)δφ(k2)

δφ(k4)

the time integral becomes

Tvarh(KI) = <
(
J
(2)
h (KI)− J̃

(1)
h (k1

I ,k
2
I)J

(1)
h

∗(k3
I ,k

4
I)
)
, (5.204)

where

J
(2)
h (KI) =

∫
dτ1dτ2

(H2τ1τ2)2
[
u+(k

1
I , τ1)u+(k

2
I , τ1)

]′
u+(k

3
I , τ2)u+(k

4
I , τ4)uh[kI ,max(τ1, τ2)]u

∗
h[kI ,min(τ1, τ2)],

(5.205)

J
(1)
h (kiI ,k

j
I) =

∫
dτ

(Hτ)2
u+(k

i
I , τ)u+(k

j
I , τ)u

∗
h(k

i
I + kjI , τ), (5.206)

J̃
(1)
h (kiI ,k

j
I) =

∫
dτ

(Hτ)2

[
u+(k

i
I , τ)u+(k

j
I , τ)

]′
u∗h(k

i
I + kjI , τ). (5.207)

With an implementation of the previous code, we can show that this integral is exactly 0. While
regarding the diagram with two CS interaction vertices, which is

h

δφ(k1)

(2) (2)

δφ(k3)δφ(k2)

δφ(k4)

we can write the time integral as

Tvarh(KI) = <
(
J
(2)
h (KI)− J̃

(1)
h (k1

I ,k
2
I)J̃

(1)
h

∗(k3
I ,k

4
I)
)
, (5.208)

which can be evaluated using this code and the result of the trispectrum and it approximately scales,
as order of magnitude, as

〈δφ(k1δφ(k2δφ(k3δφ(k4〉 ≈
ε

f2M2
pl

(
H

Mpl

)2 H8

k9
, (5.209)

where with k we are simply counting the power of ks which enter in the expression. Eq.(5.209) is
largely suppressed with respect to the standard case which scales as

〈δφ(k1δφ(k2δφ(k3δφ(k4〉 ≈
(
H

Mpl

)2 H4

k9
. (5.210)

The suppression factor is

εH4

f2M2
pl

=
H4M2

pl

M2
CS8εH

2M2
pl

≈ εH2

M2
CS

<< 1, (5.211)

where we have use that f = MCS2φ̇
M2

pl
= MCS2

√
2εH

Mpl
.
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6 Chiral scalar-tensor theories of gravity
In this section, following the idea of an effective field theory approach to modify the standard Inflation-
ary scenario, section 5.2, we introduce the so-called chiral scalar-tensor theories of gravity proposed in
[19]. As the Chern-Simons theory of gravity falls short in explaining the signal detected in LSS, the
idea being explored is whether these types of theories can amplify the signal through the birefringence
effect they induce on left and right-handed gravitons. As we’ll see this is not the case. Within this
theory, we introduce covariant parity-breaking terms which have more derivatives both of the metric
and of the Inflaton field, which, in this context, is not minimally coupled to gravity. However, these
theories lead to equations of motion with higher-order derivatives and, Ostrogradsky shows that this
may make the theory pathological [70] with the appearance of ghost’s modes, for example. However,
under suitable conditions, it’s possible to show that this occurrence is not verified [19]. We are not
going to discuss this point in depth but simply we list which hypotheses are needed.

The actions of the theories we are considering have the following form

SPV1 =

∫
d4x

√
−g
[
M2
Pl

2
R+ LPV1 −

1

2
gµν∂µφ∂νφ− V (φ)

]
, (6.1)

SPV2 =

∫
d4x

√
−g
[
M2
Pl

2
R+ LPV2 −

1

2
gµν∂µφ∂νφ− V (φ)

]
, (6.2)

where, LPV1 and LPV2 represent Lagrangians that incorporate parity-violating operators involving up
to only first and second derivatives of the inflaton field, φ, respectively. The explicit expression of the
LPV1 is [19]

LPV1 =
4∑

A=1

aALA , (6.3)

where, with Mpl = 1, we have

L1 = ε̃µναβRαβρσR
ρ

µν λφ
σφλ , L3 = ε̃µναβRαβρσR

σ
νφ

ρφµ ,

L2 = ε̃µναβRαβρσR
ρσ

µλ φνφ
λ , L4 = ε̃µνρσRρσαβR

αβ
µνφ

λφλ , (6.4)

where ε̃ρσαβ is the Levi-Civita tensor (see section 5), and φµ = ∇µφ. The couplings aA in (6.3) are
adimensional functions of the scalar field and its kinetic term, i.e. aA = aA(φ, φ

µφµ). In order to
avoid the Ostrogradsky modes, we have to work in the unitary gauge 2.3 and we have to set

4a1 + 2a2 + a3 + 8a4 = 0 , (6.5)

from which we understand that we have only three independent coefficients.

Now, switching to the second Lagrangian LPV2 we have [19]

LPV2 =
7∑

A=1

bAMA , (6.6)

where

M1 = εµναβRαβρσφ
ρφµφ

σ
ν , M4 = εµναβRαβρσφνφ

ρ
µφ

σ
λφ

λ,

M2 = εµναβRαβρσφ
ρ
µφ

σ
ν , M5 = εµναβRαρσλφ

ρφβφ
σ
µφ

λ
ν ,

M3 = εµναβRαβρσφ
σφρµφ

λ
νφλ , M6 = εµναβRβγφαφ

γ
µφ

λ
νφ

λ,

M7 = (�φ)M1 , (6.7)

where φσν = ∇σ∇νφ and bA = bA(φ, φ
µφµ). Also in this case, to avoid the Ostrogradsky pathological

modes, we have to work in the unitary gauge with the following four conditions [19]

b7 = 0 , b6 = 2(b4 + b5) , b2 = −A2
∗(b3 − b4)/2 , (6.8)

where A∗ = φ̇(t)/N and N is the lapse function of the spacetime.
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6.1 The actions in the ADM framework

We work in the ADM formalism of the metric, section C.3, and in the unitary gauge, section 2.3,
since we have to avoid pathological modes. In Cartesian coordinates and conformal time, we write

gµν = a2(τ)

(
−(N2 −NiN

i) Ni

Ni gij

)
, (6.9)

where a2(τ) is the scale factor, N is the lapse function, and, Ni = ∂iψ+Ei the shift function and, the
spatial metric is

gij = a2
(
e2ζδij + exphij

)
= a2

(
e2ζδij + hij +

1

2
hikh

k
j + ..

)
, hii = 0, ∂ih

i
j = 0. (6.10)

According to the Hamiltonian analysis performed in [19] we can write the parity-violating actions in
the following way

√
−gLPV1 =

4ε

N

(
H

Mpl

)2

εijl
[
2(2a1 + a2 + 4a4)

(
KKmiDlK

m
j + (3)RmiDlK

m
j −KmiK

mnDlKjn

)
− (a2 + 4a4)

(
2KmiK

n
j DnK

m
l + (3)Rjlm

nDnK
m
i

)]
, (6.11)

√
−gLPV2 =

φ̇3

N4
εijl
[
2N

(
b1
M5
pl

NKmiDlK
m
j +

(b4 + b5 − b3)

M6
pl

KmiK
n
jDnK

m
l

)
+ φ̇

(
b3
M8
pl

(3)Rjlm
nKm

iDnN − 2(b4 + b5)

M8
pl

(3)RmlK
m
jDiN

)]
, (6.12)

where we have reintroduced the Planck mass.

We conclude this section by discussing equations of motion of the lapse and shift functions. We can
apply exactly the same discussion of the Chern-Simons case, section 5.3. Thus, since we do not need
to expand the action to fourth order in scalar and tensor perturbations, we only need first-order
solutions for the constraint equations. We can set the solution of the constraint equations of motion
as in standard gravity

N = 1 +
ζ̇

H
, N i⊥ = 0, ψ = −a−2 ζ

H
+ χ, ∇2χ =

φ̇2

2H2M2
pl

ζ̇ = εζ̇ (6.13)

6.2 The EoM and the Power spectrum

In this section, we investigate the chirality introduced by these theories in the primordial power
spectrum of tensor modes. Here, “chirality" refers to the distinction between left-handed and right-
handed gravitons. We won’t provide a detailed derivation of the results but will provide brief insights
into the key aspects. The primary references for this subsection are [8] and [71].

Before going into the details of the tensor computations I want to stress that the purely scalar part
does not receive any contribution at quadratic order for both Lagrangians. Thus, since we are working
in the unitary gauge we can copy what we have obtained in section 2.4. Thus, we have at quadratic
order the following Lagrangian

Sζζ(2) =

∫
dτd3xa2εM2

plhij

{
ζ ′2 − ∂iζ∂jζ

}
, (6.14)

from which we can derive the solution to EoM in Fourier space with Bunch-Davies initial condition
and at lowest order in slow-roll parameter as

uζ(τ,x) = − 1√
2εkaMpl

(
1− i

kτ

)
e−ikτ =

iH√
2εk3Mpl

(ikτ + 1) e−ikτ , (6.15)
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where we have used a(τ) ≈ − 1
Hτ and we also have to recall that in order to recover the canonical

commutation relation we have also to impose the condition on the Wronskian, eq.(2.172), of the
normalized field, which in this case is aMpl

√
2εζ. We rewrite the mode functions in the form of

eq.(6.15) since we are going to compute the graviton-mediated trispectrum in section 6.4 at lowest
order in slow-roll parameters26. The full solution is the one presented in 2.4 from which we recover
the power spectrum for scalar perturbations.

The initial step for calculating the power spectrum is to derive the equations of motion, which we
accomplish in Fourier space. Therefore, we express the tensor modes in Fourier space as follows:

hij(x, t) =

∫
d3k

(2π)3

∑
s=L,R

hs(k, t)ε
(s)
ij (k)e

ik·x , (6.16)

where ε(s)ij (k) are the polarization tensor in the {R,L} basis, appendix D.1, hs(k, t) are the so-called
mode function of tensors. The action derived by Lagrangian LPV1 (6.11) at leading order in slow-roll
and at quadratic order in hij is given by [8]

SPV1hh =
∑
s=L,R

∫
dτ

∫
d3k

(2π)3

[
A2
T,s|h′s(k, τ)|2 −B2

T,sk
2|hs(k, τ)|2

]
, (6.17)

where hs
′
= d

dτ hs, and we have introduced

A2
T,s ≡

M2
Pl

2
a2
(
1− λs

kphys
MPV1

)
, B2

T,s ≡
M2
Pl

2
a2

[
1− 4

M6
Pl

φ̇2

a
(ḟ + ġ)λsk

]
, (6.18)

with λs = ±1 for right and left-handed gravitons respectively, and with

MPV1 ≡
M6
Pl

8

1

φ̇2
1

(f + g)H
, (6.19)

and
f ≡ a1 +

a2
2

+ 2a4 , g ≡ a2
2

+ 2a4 . (6.20)

Now, everything works in a very similar way to what we have done in the Chern-Simons of modified
gravity. First of all, we notice that the right-handed graviton modes, i.e. λR = +1, can acquire a
negative kinetic term if kphys > MPV1 , where kphys ≡ k

a with k co-moving wave number. In such
cases, these modes become unstable, potentially leading to critical issues within the theory, such as
a breach of unitarity or the propagation of negative energy modes forward in time[8]. To avoid such
circumstances, we introduce a cutoff scale denoted as Λ ≤ MPV1 . At the beginning of Inflation, we
restrict our consideration to gravitons for which kphys < Λ. Moreover, at the beginning of inflation,
we need also gravitons with kphys >> H. This follows from the fact that we impose Bunch-Davies
initial conditions. Thus, by putting everything together we have that

χ1 ≡
H

MPV1

<< 1, (6.21)

where we have introduced the chirality parameter χ1 in analogy to what we have done in section 5.4.
Now, we observe that this condition is verified throughout the inflationary epoch since the scale factor
exponentially increases. For example at the end of inflation, we have

kphys
aE

=
kphys
aB

aB
aE

=
kphys
aB

e−60, (6.22)

where aE and aB are respectively the scale factor at the end and beginning of inflation.
26We seek the lowest order in slow-roll parameters since we expect that the parity-violating trispectrum to be propor-

tional to the chirality parameters which are much lower that one.
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If we now introduce a new quantity, the graviton speed, as

c2T,s ≡
B2
T,s

A2
T,s

, (6.23)

the action (6.17) becomes

SPV1
γγ =

∑
s=L,R

∫
dτ

∫
d3k

(2π)3
A2
T,s

[
|γ′s(k, τ)|2 − c2T,sk

2|γs(k, τ)|2
]
. (6.24)

In order to canonically quantize the field we have to write the action in the canonical form. Thus, we
make the following field redefinition

µs ≡ AT,shs . (6.25)
This allows us to rewrite the action as

SPV1
γγ =

∑
s=L,R

∫
dτ

∫
d3k

(2π)3

[
|µ′s(k, τ)|2 − c2T,sk

2|µs(k, τ)|2 +
A′′
T,s

AT,s
|µs(k, τ)|2

]
. (6.26)

Now, applying the variational principle in Fourier space we get the following equations of motion for
µs

µ′′s +

(
c2T,sk

2 −
A′′
T,s

AT,s

)
µs = 0 , (6.27)

where the we can rewrite the last term using

A′′
T,s

AT,s
=

d

dτ

(
A′
T,s

AT,s

)
+

(
A′
T,s

AT,s

)2

=
2 + 3ε

τ2
− λsk

τ
χ1 + O

(
ε2, χ2

1, εχ1

)
, (6.28)

where ε is the first slow-roll parameter, section 2.2. Thus, the EoM at lowest order in χ1 and slow
roll parameters are [7]

µ′′s +

(
c2T,sk

2 −
ν2T − 1

4

τ2
+ λs

k

τ
χ1

)
µs = 0 , νT ' 3

2
+ ε , c2T,s ' 1− λskτχ1. (6.29)

We promptly observe that in this theory, a birefringence effect occurs, implying that the two chiral
polarizations propagate at distinct velocities that deviate from the speed of light. This marks the
primary difference between chiral-scalar tensor theories of gravity and the Chern-Simons one. As we’ll
see this particular feature does not influence the calculation of the graviton-mediated trispectrum. No
enhancement is observed compared to the Chern-Simons theory.

It’s important to highlight that when setting f + g = 0, we fall back to the standard scenario. Now
we can rewrite the EoM for the mode function as

µ′′s +

[
k2
(
1− λsk

H

MPV1

τ

)
−
ν2T − 1

4

τ2
+ λs

k

τ

H

MPV1

]
µs = 0 . (6.30)

It’s possible to find an approximate analytical solution [8, 71] in terms of Airy functions [55]

µs(y) = α

(
ξ(y)

g(y)

)1/4

Ai(ξ) + β

(
ξ(y)

g(y)

)1/4

Bi(ξ) , (6.31)

where y = −kτ , α and β are constants to be determined, and

g(y) =
ν2T
y2

− 1− λsy
H

MPV1

+ λs
H

MPV1

1

y
, (6.32)

ξ(y) =


(
−3

2

∫ y
ys0

√
g(y′) dy′

)2/3
y ≤ ys0 ,

−
(
3
2

∫ y
ys0

√
g(y′) dy′

)2/3
y ≥ ys0 ,

(6.33)
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with

ys0 = −
1− 21/3

[
1 + 3

(
H

MPV1

)2]
/Y − 2−1/3Y

3λs
H

MPV1

, (6.34)

where

Y =

Y1 +
√√√√−4

[
1 + 3

(
H

MPV1

)2
]3

+ Y 2
1


1/3

, Y1 = −2 + 27ν2T

(
H

MPV1

)2

− 9

(
H

MPV1

)2

.

(6.35)

By assuming that the Universe was initially in an adiabatic vacuum state we can set the value of the
integration constants [71]

α =

√
π

2k
eiπ/4 , β = i

√
π

2k
eiπ/4 . (6.36)

Before passing to the computation of the power spectrum we stress that the solution is a sort of
“expansion" in slow-roll parameters and χ1 of the de-Sitter mode functions [8].

Now, we can compute the super-horizon power spectra for left and right gravitons in the same way
we have done previously so we do not repeat the computation. Finally, we get [71]

PLT = 2
|uL(y)y�1|2

A2
T,L

, PRT = 2
|uR(y)y�1|2

A2
T,R

, (6.37)

where an expansion in y = 0 of the solution to the EoM is employed [71]. Retaining only the leading
order in slow-roll parameters, we finally obtain

PLT =
PT
2

exp

[
π

16

H

MPV1

]
, PRT =

PT
2

exp

[
− π

16

H

MPV1

]
, (6.38)

where here PT is the GR’s power spectrum eq.(2.206). We notice that, in order to find the solution
we have used

A−2
T,s =

2

M2
pla

2

1(
1− λs

kphys
MPV1

) ≈ 2

M2
pla

2

(
1 + λs

kphys
MPV1

)
≈ 2

M2
pla

2
, (6.39)

where in the last step we have used the idea of eq.(6.22), i.e. we have completely disregarded kphys
MPV1

since at the end of inflation we have
kphys
MPV1

∣∣∣∣
E

=
kphys
MPV1

∣∣∣∣
B

aB
aE

=
kphys
MPV1

∣∣∣∣
B

e−N , (6.40)

where the subscripts B and E stand for the beginning and the end (of the inflationary period) while N
is the number of e-folds. Thus, it’s clear that this term is completely negligible at the end of Inflation
when we compute the power spectrum on super horizon scales.

Now, we can appreciate how the chirality of this kind of theory impacts on the power spectrum. First
of all, we have a modification at the linear level of the two tensor power spectra

PLT ≈ PT
2

exp

(
1 +

π

16

H

MPV1

)
, PRT ≈ PT

2

(
1− π

16

H

MPV1

)
(6.41)

This effect is encoded in the so-called chirality parameter χ which is defined as

χ ≡
PRT − PLT
PRT + PLT

=≈ − π

16

H

MPV1

. (6.42)
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where in the last step we have stopped at first order. The procedure is exactly identical to what we
have done in the case of the Chern-Simons theory. As we have previously done another interesting
quantity to compute is rPV1 , i.e. the tensor-to-scalar ratio in the chiral-scalar tensor theories of gravity.
The first modification to the total tensor power spectrum is at second order in χ1

PPV1T = PRT + PLT = PT

[
1 +

π2

256

(
H

MPV1

)2
]
= PT

(
1 + χ2

)
, (6.43)

from which we can immediately compute rPV1 since the scalar power spectrum get no contributions
from the chiral-scalar tensor theories

rPV1 ≡
∆PV1
T

∆S
= r

(
1 + χ2

)
, (6.44)

where r is the tensor-to-scalar ratio eq.(2.212), in the standard GR slow-roll single-field model of
Inflation. We immediately understand this correction is unobservably small since the chirality χ is
� 1.

The chiral-scalar tensor theories of gravity also modify the spectral index of tensor perturbation. We
apply the same line of reasoning presented in [15] and we derive the index at horizon crossing

k = a(t∗)H(t∗), (6.45)

where k is the comoving wave vector and t∗ is horizon crossing time. In what follows we suppress
the star for notational convenience. As shown in [15] the tensor modes become constant after horizon
crossing and get frozen on superhorizon scales. Thus, we can compute the spectral index in the
following way

nT ≡
d ln∆PV1

T

d ln k
' −2ε+

d lnχ2

d ln k
= −2ε+ 2

d ln
(
1 + χ2

)
dt

dt

d ln k
≈ −2ε+ 2χχ̇

1 + ε

H
(6.46)

= −2ε+
π2

128

H

MPV1

[
−ε H2

MPV1

− HṀPV1

M2
PV1

]
1 + ε

H
(6.47)

' −2ε+
π2

128

(
H

MPV1

)[
−ε
(

H

MPV1

)
− ṀPV1

M2
PV1

]
, (6.48)

where we have used that the spectral index of standard GR is −2ε, eq.(2.204), we have used a change
of variable, we have expanded the logarithm at linear order and we have used that

d ln k

dt
=

d

dt
ln (a(t)H(t)) =

1

aH

(
ȧH + aḢ

)
= H(1− ε). (6.49)

Therefore, even in this scenario, the deviations from the standard spectral index (nT = −2) are
typically small, making the detection of primordial gravitational waves (PGWs) predicted by this
model well beyond the capabilities of gravitational wave interferometers.

Now, we switch to the second Lagrangian, denoted as LPV2 , which, when expanded to second order
in tensor perturbations, is described as [8]

SγγPV2 =
∑
s=L,R

∫
dτ

∫
d3k

(2π)3

[
Ã2
T,s|h′s(k, τ)|2 −

M2
Pl

2
a2k2|hs(k, τ)|2

]
, (6.50)

where we have introduced

Ã2
T,s ≡

M2
Pl

2
a2
(
1− λs

kphys
MPV2

)
, MPV2 ≡ MPl

2

(
b̃1 − b

H

MPl

)−1

, (6.51)

where the two couplings b̃1 and b are defined as function of the indipedent parameter

b̃1 ≡
φ̇3

M6
Pl

b1 , b ≡ φ̇4

M8
Pl

(b4 + b5 − b3) . (6.52)
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Now everything is identical to the previous case once we have introduced a second chirality parameter

χ2 ≡
H

MPV2

<< 1, (6.53)

where we have taken χ2 << 1 in order to avoid ghosts in the model. Then, one can obtain the same
results we have derived in the previous case simply by making the following substitution

MPV1 −→MPV2 ,

χ1 −→ χ2. (6.54)

6.3 The scalar-scalar-tensor vertices

Now, we turn our attention toward the calculation of the leading contribution to the trispectrum,
which can give rise to parity-violating signals. The idea is quite similar to what was described in the
Chern-Simons theory, chapter 5. Thus, we are not going to repeat all the conceptual steps. We seek
diagrams of the form

h(kI)

ζ(k1)

ζ(k3)ζ(k2)

ζ(k4)

Figure 23: The graviton-mediated trispectrum

Thus, as a first step, we have to write down all the possible vertex of the type scalar-scalar-tensor.
The first contribution arises from standard GR and on superhorizon scales it has the form [15]

Sint =

∫
dτd3xεM2

pla
2(τ)hij∂iζ∂jζ, (6.55)

where we have switched to conformal time and we have reintroduced the Planck mass with respect to
what is presented in [15].

Next, we need to calculate all the potential scalar-scalar-tensor vertices that stem from the parity-
violating terms in the Lagrangians LPV1 and LPV2 . Before going into the actual computations, pre-
sented in section 6.3.1 and 6.3.2, we introduce some basic quantities that we are going to use throughout
the actual computations.

First of all, we recall that the metric tensor in cartesian coordinates and cosmic time can be written
as

gµν =

(
−1 0
0 a2e2ζ(δij + hij)

)
, gµν =

(
−1 0
0 a−2e−2ζ(δij − hij)

)
, (6.56)

where we do not consider second-order tensor perturbations since we are seeking scalar-scalar-tensor
vertices. Moreover, we do not expand directly the scalar part since retaining the exponential simplifies
the computations.

Then, we can compute the three-dimensional Christoffel symbols up to second-order as

Γijk =

[(
δijζ,k + δikζ,j − δkjζ

,i
)
+

1

2

(
hij,k + hik,j − hjk

,i
)
−
(
hijζ,k + hikζ,j − hilδjkζ,l

)]
. (6.57)
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As apparent from eq.(6.11) and eq.(6.12) we also need the expression of the extrinsic curvature tensor,
the three-dimensional Reimann tensor, and three-dimensional Ricci tensor Then, we compute the fully
covariant expression of the extrinsic curvature

Kij =
1

2
[ġij −DiNj −DjNi] (6.58)

= a2

{
e2ζ

[(
H + ζ̇

)
(δij + hij) +

ḣij
2

]
− ψ,ij − ψ,[iζ,j] + δijψ,lζ

,l −
ψ,l
2

[
hl[i,j] +−hij ,l

]}
, (6.59)

where ψ,[iζ,j] = ψ,iζ,j +ψ,jζ,i, which is the symmetrization operation. Moreover, we have used that at
first order we have

Ni =
(3)gijN

j = a2δijN
j . (6.60)

Incorporating the accurate factor is essential from a dimensional perspective. We’ll discuss about this
point in section 6.3.2.

If we compute the (1, 1) version of the extrinsic curvature tensor we immediately get

Km
j =

(
H + ζ̇

)
δmj +

ḣmj
2

− e−2ζ
(
ψ,m,j − ψ,ijh

mi
)
+

[
−ψ,[jζ ,m] + ψ,lζ

,lδmj −
ψ,l
2

(
hl[m,j] − hmj

,l
)]
.

(6.61)

The trace of the extrinsic curvature up to second order is

K = 3
(
H + ζ̇

)
−
(
ψ,j ,j − ψ,fjh

fj
)
e−2ζ + ψ,jζ,j . (6.62)

We also need the three-dimensional covariant derivative of eq.(6.61) in evaluating eq.(6.11) and (6.12)
but because of symmetries we get zero contribution from terms proportional to the Kronecker delta.
Thus, we write the covariant derivative of kmi putting to zero

(
H + ζ̇

)
δmj and we obtain

DlK
m
j =

ḣmj,l
2

+
(
2ζ,lψ

,m
,j + ψ,fjh

fm
,l

)
+

[
−ψ,jζ ,m,l +

ψ,f l
2

(
hf [m,j] − hmj

,f
)

+
ψ,f
2

(
hf [m,j]l − hmj,l

,f
)]

− ḣmlζ,j
2

− ψ,f ,j
2

(
hm[l,f ] − hfl

,m
)
. (6.63)

The first order expression for the Riemann tensor and Ricci tensor are

Rijk
m = ∂k

[
δm{iζ,j} +

1

2
hm{i,j}

]
− ∂m

[
δk{ζ,j} +

1

2
hk{i,j}

]
, (6.64)

Rij = −ζ,ij − δij∇2ζ − 1

2
∇2hij , (6.65)

where {i, j} is the antisymmetrization of the indices. As we’ll see we need the expression of the
curvature tensors up to second order but only in scalar quantities. Thus, we obtain

Rjlm
n = δn{jζ,l}m + ζ,mδ

n
[lζ,j] + δnlζ,jζ,m − δnjζ,mζ,l − ζ,mδ

n
[lζ,j], (6.66)

Rmi = ζ,mζ,i + δmiζ,fζ
,f . (6.67)

6.3.1 The expansion of LPV2

We start seeking the scalar-scalar-tensor vertices in the LPV2 Lagrangian, which we can write as [19]

L =
φ̇3

N4
εijl
{
2N

[
b1
M5
pl

NKmiDlK
m
j +

(b4 + b5 − b3)

M6
pl

KmiK
n
jDnK

m
l

]
(6.68)

+ φ̇

[
b3
M8
pl

(3)Rjlm
nKm

iDnN − 2(b4 + b5)

M8
pl

(3)RmlK
m
jDiN

]}
(6.69)
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We start by expanding the third and fourth terms in the Lagrangian

third =
φ̇4

M8
pl

b3

[
εijl(3)Rjlm

nKm
iDnN

]
=

φ̇4b3
HM8

pl

[
εijl(3)Rjlm

nKm
i∂nζ̇

]
, (6.70)

fourth = − φ̇4

M8
pl

2(b4 + b5)

[
(3)RmlK

m
jDiN

]
= − φ̇

42(b4 + b5)

HM8
pl

[
(3)RmlK

m
j∂iζ̇

]
, (6.71)

where we have used the expression for N , i.e. eq.(6.13). Evidently, in order to perform the computa-
tions, we require the first-order expressions of the Riemann tensor eq.(6.64), the Ricci tensor eq.(6.65),
and the extrinsic curvature tensor, which reads

Km
j =

ḣmj
2

− ψ,m,j , (6.72)

where in the extrinsic curvature tensor we have set to zero the Kronecker delta. This necessity arises
from the fact that the zeroth-order contributions within the extrinsic curvature are proportional to
the identity, and as we have explained above they do not contribute. Thus, the third term reads

third =
φ̇4b3

2HM8
pl

εijl
{
ζ̇,jζ,lmḣ

m
i − ζ,jmζ̇,lḣ

m
i +

[
hn{l,j}m + hm{,l}

,n

](
−ζ

,m
,i

Ha2
+ ε∇−2ζ̇ ,m,i

)
ζ̇,n

}
.

(6.73)

Because the scale factor’s powers have an impact on the outcomes, it is worthwhile to invest time to
verify that no errors have been made. This can be made by a dimensional analysis. Indeed, we have
the flexibility to decide whether the comoving coordinates (x, y, z) possess dimensions or whether we
attribute dimensions to the scale factor since we are working with a spatially flat RW metric, i.e.

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
= a2(τ)

(
−dτ2 + dx2 + dy2 + dz2

)
. (6.74)

If we work in cosmic time it’s clear that t has the dimension of a length while switching to conformal
time we have the option to decide whether to assign dimensions to τ or a(τ). Working with a(τ) with
the dimension of a length we can verify if we have the right number of its powers in eq.(6.73). We
want that the action, i.e.

Sthird term
PV2 = 2ε2

H3

M4
pl

∫
dtd3xb3ε

ijl

{
ζ̇,jζ,lmḣ

m
i − ζ,jmζ̇,lḣ

m
i +

[
hn{l,j}m + hm{,l}

,n

](
−ζ

,m
,i

Ha2
+ ε∇−2ζ̇ ,m,i

)
ζ̇,n

}
.

(6.75)

posses no dimension. Let’s take the first term for example in eq.(6.75) which in conformal time
becomes

S = 2ε2
H3

M4
pl

∫
dτd3xb3a

−1(τ)εijlζ ′,jζ,lmh
′m
i. (6.76)

Now, the line element dτd3x, ζ, hij , and their spatial and temporal derivatives have no dimension in
these units. Moreover, H = ȧ

a clearly has mass dimension one since t has the dimension of a length.
Consequently, when considering the integrand in eq.(6.76), which includes 1

a(τ) , it becomes apparent
that it possesses a mass dimension of one. Consequently, the total action exhibits a dimension of zero.
Thus, we have confirmed that the correct number of scale factor powers has been incorporated. We
can carry out this type of analysis for each term we are going to write.

Now, we can expand the fourth term as

fourth = −8ε2(b4 + b5)ε
ijl H

3

M4
pl

{
∇2hml

(
−ζ

,m
,j

Ha2
+ ε∇−2ζ̇ ,m,j

)
− ḣmjζ,ml

}
ζ̇,i. (6.77)
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Now, we focus on the expansion of the first term, which is the more complicated one

first = φ̇3

M5
plN

2
εijl2b1KmiDlK

m
j = ε

3
2

1

N2

(
H3

M2
pl

)
εijl2

5
2 b1KmiDlK

m
j . (6.78)

First of all we notice that N2 = 1+ 2 ζ̇
H +

(
ζ̇
H

)2
. The second order term in N2 can’t contribute since

we would need one of the two extrinsic curvature tensors to be of zeroth order, i.e. proportional to
a Kronecker delta. However, we can’t disregard a priori the first order contribution. Thus, we divide
the computation in two steps:

• the first one in which N−2 = 1,

• the second one in which we take N−2 ≈ −2 ζ̇
H .

1. Thus, we start from the first computation in which we can write the Lagrangian as

ε
3
2

(
H3

M2
pl

)
εijl2

5
2 b1KmiDlK

m
j . (6.79)

In order to perform the expansion we need the expression of the extrinsic curvature, eq.(6.59), and
its covariant derivative, eq.(6.63), up to second order by setting to zero all the terms proportional
to a Kronecker delta. The calculation is quite lengthy and we report the final result omitting
the prefactor

εijlKmiDlK
m
j = εijl

{
a2

[
Hhmi +

ḣmi
2

][
2ζ,l

(
−
ζ ,m,l
Ha2

+ ε∂−2ζ̇ ,m,l

)]
− 1

2

(
− ζ,im
Ha2

+ ε∂−2 ˙ζ,im

)
×{

a2
[
−
(
−
ζ,f l
Ha2

+ ε∂−2ζ̇,f l

)(
hf j

,m − hm,fj

)
−
(
−

ζf
Ha2

+ ε∂−2ζ̇f

)(
hf j

,m − hm,fj

)]
− a2ḣmlζ,j − a2

(
−a−2 ζ

H
+ ε∂−2ζ̇

),f
,jhl

{m
,f}

}
+ a2

[(
− ζ,i
Ha2

+ ε∂−2ζ̇,i

)
ζ,m

+

(
− ζ,m
Ha2

+ ε∂−2ζ̇,m

)
ζ,i

]
ḣmj,l
2

}
, (6.80)

where we have have used eq.(6.13).

2. The second piece, which we can call B, is easy to compute

B = −ε
3
2 2

5
2

(
H3

M2
pl

)
b1ε

ijlKmiDlK
m
j2
ζ̇

H
= ε

3
2 2

5
2

(
H

Mpl

)2

b1ζ̇ε
ijlḣmj,la

2

(
−a−2 ζ,mi

H
+ ε∂−2ζ̇,mi

)
.

(6.81)

Thus, collecting the two pieces we immediately obtain the expression for the first piece of the first
term of the Lagrangian

first = ε
3
2 2

5
2

(
H3

M2
pl

)
b1ε

ijl

{
a2

[
Hhmi +

ḣmi
2

] [
2ζ,l

(
−
ζ ,m,l
Ha2

+ ε∂−2ζ̇ ,m,l

)]
− 1

2

(
− ζ,im
Ha2

+ ε∂−2 ˙ζ,im

)
×{

a2
[
−
(
−
ζ,f l
Ha2

+ ε∂−2ζ̇,f l

)(
hf j

,m − hm,fj

)
−
(
−

ζf
Ha2

+ ε∂−2ζ̇f

)(
hf j

,m − hm,fj

)]
− a2ḣmlζ,j − a2

(
−a2 ζ

H
+ ε∂−2ζ̇

),f
,jhl

,{m
,f}

}
+ a2

[(
− ζ,i
Ha2

+ ε∂−2ζ̇,i

)
ζ,m

+

(
− ζ,m
Ha2

+ ε∂−2ζ̇,m

)
ζ,i

]
ḣmj,l
2

}
+ ε

3
2 2

5
2

(
H

Mpl

)2

b1ζ̇ε
ijlḣmj,la

2

(
−a−2 ζ,mi

H
+ ε∂−2ζ̇,mi

)
.

(6.82)
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In the end, we have to evaluate the expansion of the second term, which we can write as

second =
φ̇3

M6
pl

2

N3
εijlf1KmiK

n
jDnK

m
l = ε

3
2
H3

M3
pl

2
5
2

N3
εijlf1KmiK

n
jDnK

m
l, (6.83)

where, for the sake of simplicity, we have defined f1 ≡= b4 + b5 − b3. First of all, we notice that
the terms proportional to the Kronecker delta in Kmi and Km

l can be set to zero since they produce
vanishing contributions. Now, to advance further, we observe that we can take Kn

j up to first order.
Consequently, we divide our calculations into three distinct parts and we’ll ignore the couplings for
the sake of simplicity:

1. the initial part A in which Kn
j is of zeroth order and we set N = 1,

2. the subsequent part B in which we take Kn
j of first order and we set N = 1,

3. the last term D in which we consider higher orders in N . Since Kmi and DnK
m
l are at least of

first order we need to consider Kn
j of zeroth order.

Notice that the terms proportional to Kronecker’s delta contain all the zero-order terms.

1. We already compute the first term since we can write

A = ε
3
2 2

5
2
H3

M3
pl

εijlHf1KmiDjK
m
l (6.84)

= ε
3
2 2

5
2
H4

M3
pl

f1ε
ijl

{
a2

[
Hhmi +

ḣmi
2

] [
2ζ,l

(
−
ζ ,m,l
Ha2

+ ε∂−2ζ̇ ,m,l

)]
− 1

2

(
− ζ,im
Ha2

+ ε∂−2 ˙ζ,im

)
×{

a2
[
−
(
−
ζ,f l
Ha2

+ ε∂−2ζ̇,f l

)(
hf j

,m − hm,fj

)
−
(
−

ζf
Ha2

+ ε∂−2ζ̇f

)(
hf j

,m − hm,fj

)]
− a2ḣmlζ,j − a2

(
−a−2 ζ

H
+ ε∂−2ζ̇

),f
,jhl

,{m
,f}

}
+ a2

[(
− ζ,i
Ha2

+ ε∂−2ζ̇,i

)
ζ,m

+

(
− ζ,m
Ha2

+ ε∂−2ζ̇,m

)
ζ,i

]
ḣmj,l
2

}
(6.85)

2. We are not going to explicitly perform this computation since there are no particular technical
parts worth to be discussed

B = f1ε
3
2
H3

M3
pl

2
5
2a2

(
−a−2 ζ

H
+ ε∇−2ζ̇

)
,im

(
−ζ̇ḣml,j +

(
−a−2 ζ

H
+ ε∇−2ζ̇

),n
,j ḣ

m
j,l

)
. (6.86)

3. The result of the last computation reads

C = ε
3
2 2

5
2
H3

M3
pl

εijlHf1KmiDjK
m
l = 3ε

3
2 2

5
2
H4

M3
pl

εijla2ζ̇

(
−a−2 ζ

H
+ ε∇−2ζ̇

)
,mi

ḣmj,l
2

(6.87)

Thus, by collecting everything together we have the scalar-scalar-tensor vertices from the Lagrangian
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of eq.(6.12)
√
−gLζζhPV2

= 2ε2
H3

M4
pl

b3ε
ijl

{
ζ̇,jζ,lmḣ

m
i − ζ,jmζ̇,lḣ

m
i +

[
hn{l,j}m + hm{j,l}

,n

](
− ζ

a2H
+ ε∇2ζ̇

),m
,iζ̇,n

}
+

− 8ε2(b4 + b5)ε
ijl H

3

M4
pl

{
∇2hml

(
−ζ

,m
,j

Ha2
+ ε∇−2ζ̇ ,m,j

)
− ḣmjζ,ml

}
ζ̇,i+

+ ε
3
2 2

5
2

(
H3

M2
pl

)
b1ε

ijl

{
a2

[
Hhmi +

ḣmi
2

][
2ζ,l

(
−
ζ ,m,l
Ha2

+ ε∂−2ζ̇ ,m,l

)]
− 1

2

(
− ζ,im
Ha2

+ ε∂−2 ˙ζ,im

)
×{

a2
[
−
(
−
ζ,f l
Ha2

+ ε∂−2ζ̇,f l

)(
hf j

,m − hm,fj

)
−
(
−

ζf
Ha2

+ ε∂−2ζ̇f

)(
hf j

,m − hm,fj

)]
+

− a2ḣmlζ,j − a−2

(
−a2 ζ

H
+ ε∂−2ζ̇

),f
,jhl

,{m
,f}

}
+ a2

[(
− ζ,i
Ha2

+ ε∂−2ζ̇,i

)
ζ,m+

+

(
− ζ,m
Ha2

+ ε∂−2ζ̇,m

)
ζ,i

]
ḣmj,l
2

}
+ ε

3
2 2

5
2

(
H

Mpl

)2

b1ζ̇ε
ijlḣmj,la

2

(
−a−2 ζ,mi

H
+ ε∂−2ζ̇,mi

)
+ ε

3
2 2

5
2
H4

M3
pl

f1ε
ijl

{
a2

[
Hhmi +

ḣmi
2

][
2ζ,l

(
−
ζ ,m,l
Ha2

+ ε∂−2ζ̇ ,m,l

)]
− 1

2

(
− ζ,im
Ha2

+ ε∂−2 ˙ζ,im

)
×{

a2
[
−
(
−
ζ,f l
Ha2

+ ε∂−2ζ̇,f l

)(
hf j

,m − hm,fj

)
−
(
−

ζf
Ha2

+ ε∂−2ζ̇f

)(
hf j

,m − hm,fj

)]
+

− a2ḣmlζ,j − a2
(
−a−2 ζ

H
+ ε∂−2ζ̇

),f
,jhl

,{m
,f}

}
+ a2

[(
− ζ,i
Ha2

+ ε∂−2ζ̇,i

)
ζ,m+

+

(
− ζ,m
Ha2

+ ε∂−2ζ̇,m

)
ζ,i

]
ḣmj,l
2

}
+

+ f1ε
3
2
H3

M3
pl

2
5
2a2

(
−a−2 ζ

H
+ ε∇−2ζ̇

)
,im

(
−a2ζ̇ḣml,j +

(
−a−2 ζ

H
+ ε∇−2ζ̇

),n
,j ḣ

m
l,n

)
+ 3f1ε

3
2 2

5
2
H4

M3
pl

a2εijlζ̇

(
−a−2 ζ

H
+ ε∇−2ζ̇

)
,mi

ḣml,n
2

, (6.88)

which is a quite long Lagrangian but as we’ll see it has no impact on the leading order of the graviton-
mediated trispectrum.

6.3.2 The expansion of LPV1

Let’s now focus towards LPV1 as represented by equation (6.11). Since many of the terms overlap with
those already computed in the preceding section, we won’t repeat those calculations. Instead, we’ll
present the computations different from our previous analysis. Furthermore, we are not providing a
complete representation of all vertices stemming from the Lagrangian because, as we will demonstrate
in section 6.4, these vertices are subject to suppression relative to the coupling we derive from the
Hilbert-Einstein term. This can be understood also by dimensional analysis however for completness
we report this computation.

We write down once again the expression of the LPV1 Lagrangian in the ADM formalism and within
the unitary gauge as [19]
√
−gLPV1 =

4ε

N

(
H

Mpl

)2

εijl
[
2(2a1 + a2 + 4a4)

(
KKmiDlK

m
j + (3)RmiDlK

m
j −KmiK

mnDlKjn

)
−(a2 + 4a4)

(
2KmiK

n
j DnK

m
l + (3)Rjlm

nDnK
m
i

)]
. (6.89)

Now, we can start by expanding the first term in the Lagrangian in order to find the scalar-scalar-tensor
vertex

first = 4ε

N

(
H

MPl

)2

εijl2(2a1 + a2 + 4a4)KKmiDlK
m
j , (6.90)
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where ε is the first slow-roll parameter, eq.(2.58). First of all, we notice that Kmi and Km
j can’t

contain terms proportional to a Kronecker delta because of symmetry the result would be zero. Thus,
we immediately understand that we need the expression of K up to the first order, which is

K = 3
(
H + ζ̇

)
−∇2ψ. (6.91)

Now we can split the expansion into three parts:

• The first one, A, in which 1
N = 1 and K = 3ζ̇ − a−2∇2ψ. Thus we immediately get

A = 4ε

(
H

Mpl

)2

εijl2(2a1 + a2 + 4a4)
(
3ζ̇ −∇2ψ

)
KmiDlK

m
j (6.92)

= −4ε

(
H

Mpl

)2

εijl2(2a1 + a2 + 4a4)
(
3ζ̇ −∇2ψ

)
εijla2ψ,mi

ḣmj,l
2

(6.93)

= −4ε

(
H

Mpl

)2

2(2a1 + a2 + 4a4)

[
3ζ̇ +

∇2ζ

Ha2
− εζ̇

]
εijla2

(
−a−2 ζ,mi

H
+ ε∂−2ζ̇,mi

)
ḣmj,l
2

.

(6.94)

• The second one, B, in which we consider the first order expansion of 1
N ≈ − ζ̇

H and K = 3H.
We get

B = − ζ̇

H
4ε

(
H

Mpl

)2

εijl2(2a1 + a2 + 4a4)3HKmiDlK
m
j (6.95)

= −ζ̇a2ε
(
H

Mpl

)2

24(2a1 + a2 + 4a4)ε
ijl

(
−a−2 ζ,mi

H
+ ε∂−2ζ̇,mi

)
ḣmj,l
2

(6.96)

• The third piece, C, in which we set N = 1 and K = 3H. Thus we have

C = 4ε

(
H

Mpl

)2

2(2a1 + a2 + 4a4)3Hε
ijlKmiDlK

m
j (6.97)

(6.98)

where we can use eq.(6.80) to obtain the final result. We do not collect everything together since we’ll
make a general discussion

Now, we can focus on the expansion of the second term of eq.(6.11), which is

second =
8ε

N

(
H

Mpl

)2

(2a1 + a2 + 4a4) ε
ijl(3)RmiDlK

m
j , (6.99)

where the (3) indicates that the quantity we are considering belongs to the spatial section. For
simplicity, we’ll omit it. First of all, we notice that DlK

m
j can’t contain terms proportional to a delta

since the result would be zero because of symmetries. Moreover, the only first-order term it contains
is proportional to h. Thus we need the expression of the Ricci tensor up to the second order in scalar
perturbations, which is given by eq.(6.67). We do not need to consider tensor perturbations in this
expansion. The final result is the sum of three pieces:

• In the first piece, we set N = 1, we take Rmi of second order in scalar perturbations and we fix
DlK

m
j =

ḣmj,l

2 . The result is

A = 8ε

(
H

Mpl

)2

(2a1 + a2 + 4a4)
(3)εijlζ,mζ,i

ḣmj,l
2

. (6.100)
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• In the second piece, A, we take the Ricci tensor at first order, the covariant derivative of the
extrinsic curvature up to second order and we set N = 1. The final result is

B = 8ε

(
H

Mpl

)2

(2a1 + a2 + 4a4) ε
ijl

{
− ζ,mi

[(
− ζ

a2H
+ ε∂−2ζ̇

)
,f l

(
hfm,j + hf j

,m − hmj
,f
)
+

(
− ζ

a2H
+ ε∂−2ζ̇

)
,f

(
hf j

,m
,l − hmj

,f
,l

)]

+ ζ,mi
ḣmlζ,j

2
− ζ,mi

[
−
(
− ζ

a2H
+ ε∂−2ζ̇

),f
,j (h

m
l,f + hmf,l − hfl

,m)

+

(
− ζ

a2H
+ ε∂−2ζ̇

),m
,f

(
hf l,j + hf j,l

)]
− 1

2
∇2hmi

(
2ζ,l

(
− ζ

a2H
+ ε∂−2ζ̇

),m
,j −

(
− ζ

a2H
+ ε∂−2ζ̇

)
,j

ζ ,m,l

)}
. (6.101)

• The last piece, C, we consider N of first order, Rmi of first order in scalar perturbations, and
we take DlK

m
j =

ḣmj,l

2 . Higher order terms in N produce quartic vertex interaction. Thus, we
have

C = 8ε

(
H

Mpl

)2

(2a1 + a2 + 4a4)
ζ̇

H
εijlζ,im

ḣmj,l
2

. (6.102)

Now we turn our attention to the third piece of the Lagrangian

third =
4ε

N

(
H

Mpl

)2

εijl2(2a1 + a2 + 4a4) (−KmiK
m
nDlK

n
j) (6.103)

We can split the computation into three parts

• To start, we can set N equal to one, and then we can examine the two terms that emerge when
we consider the zeroth-order values for Kmi = a2Hδmi and Km

n = Hδmn, respectively. We
can’t have both of them of zeroth order at the same time because we would get zero because of
symmetries. Since we fall back to something proportional to KinDlK

n
j we do not repeat the

actual computation (see eq.(6.80)).

• Then, we have to consider all three extrinsic curvature tensors at first order and we get

−2ε

(
H

Mpl

)2

εijl2(2a1 + a2 + 4a4)a
2
[
−ζ̇ψ,inḣnj,l + ψ,imψ

,m
,nḣ

n
j,l

]
. (6.104)

• Finally we have to consider the possibility of expanding N . We can’t expand N up to the
second order since DlK

n
j is of the first order. So we would have to take the other two extrinsic

curvatures of zeroth order and we get zero. The final result is

2ε

(
H

Mpl

)2

εijl2(2a1 + a2 + 4a4)a
2ζ̇ψ,inḣ

n
j,l. (6.105)

Then, we can turn our attention to the fourth term in the Lagrangian

fourth =
4ε

N

(
H

Mpl

)2

εijl
[
−(a2 + 4a4)2KmiK

n
j DnK

m
l

]
. (6.106)

However, we do not perform this computation since it is identical to what we have already computed
in expanding the second term in the Lagrangian LPV2 .
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Now, we can expand the fifth term in the Lagrangian

fifth = −4
ε

N

(
H

Mpl

)2

(a2 + 4a4)
(3)Rjlm

nDnK
m
i. (6.107)

The method to perform this computation is identical to the expansion of the second term of the
Lagrangian LPV1 . Thus, we report the result

fifth = −4ε

(
H

Mpl

)2

(a2 + 4a4)
εijl
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[
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)2
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ijl
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ψfih
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(
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,j

)
− ḣmj

2
ζ,i −

ψ,f ,i
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(hmj,f + hmf,j − hfj
,m)

]
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}
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(
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ijl

{
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,n
,}j

}
[2ζ,nψ

,m
,i − ψ,iζ

,m
,n]

+ 4ε

(
H

Mpl

)2

(a2 + 4a4) ε
ijlζ ,n,l

{
ψ,fih

f
j,n −

ḣjn
2
ζ,i + ψ,fn

[
hf [i,j] − hij

,f
]

− ψ,f ,i
(
hj[n,f ] − hfn,j

)
+
ψ,f
2
h
{f
i ,i}n − (j ↔ l)

}
+ 2ε

(
H

Mpl

)2

(a2 + 4a4) ε
ijlḣmi,{jζ,l}m, (6.108)

where we do not have substituted the actual value of ψ for simplicity.

6.4 The graviton-mediated trispectrum

In this section, we want to illustrate the main ideas revolving around the computation of the graviton-
mediated trispectrum. In this section, we’ll show that we do not obtain an enhancement factor with
respect to what we have obtained in Chern-Simons even if here we have a birefringence effect. The
reason is that the correction to the velocity of the chiral polarization of the gravitational waves,

C2
T,s ≈ 1− λskτχ1/2 ≈ 1 + λs

k

aH
χ1/2, (6.109)

scales with the chirality parameter. It is evident that as −kτ approaches infinity, the sound speed
can grow significantly. However, when we examine the behavior of the trispectrum for −kτ << −1,
we encounter a highly oscillatory integrand during the computation of the trispectrum, leading to
significant cancellations [17].

In order to proceed, we are going to use the same scheme we have applied in the Chern-Simons case.
First of all, we want to show that any contributions arising from the vertices we have computed in
section 6.3.1 and 6.3.2 can be disregarded with respect to the case in which we consider two standard
GR vertices in trispectrum. The contributions under discussion refer to the interference components
involving a standard GR vertex and a vertex derived from the Lagrangians (6.11) and (6.12), as well as
diagrams featuring two vertices from these two Lagrangians. First of all, given the explicit expression
of the Lagrangian LPV2 , the contributions stemming from that Lagrangian are slow-roll suppressed if
we take ε ' 10−2 27. This is different for LPV1 since it has the same slow-roll prefactor with respect
to the standard GR vertex. Then, they have a suppression factor given by the ratio(

H

Mpl

)n
, with n ∈ N,n ≥ 2. (6.110)

27There are models of inflation for which ε ∼ O(1).
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From Planck data [72], we know that at the horizon exit of a given physical wavenumber k
a , the Hubble

parameter, which is equal to k
a , has the value [18]

H =
k

a
=

√
ε2× 1014Gev, (6.111)

where ε = − Ḣ
H2 is evaluated at Horizon exit for any given wave numer k. So it’s clear that if we take

ε ≈ O(1) we have that (
H

Mpl

)
≈ 10−4, (6.112)

which results in suppression factors of at least 10−8 with respect to the standard GR vertex. In this
discussion, we are considering the coupling parameters which are functions of the scalar field (see
eq.(6.11) and eq.(6.12)) as order one quantities [18] according to the idea that we are building an
EFT of Inflation (see section 5.2). We want also to discuss deeply about this point. Since the theory
is built as an EFT of Inflation the vertices stemming from the Lagrangians, LPV1 and LPV2 , contain
more derivative with respect to the standard GR vertex term. So their contribution is suppressed by
powers of k

Λ
28, where Λ is a cut-off scale. Thus, because of everything we have said we can conclude

that we can safely disregard all the contributions we have computed.

Up to this point, we have provided a preliminary dimensional analysis argument. However, our next
step is to validate this analysis and confirm that there is no enhancement factor involved when we
examine the scalar-scalar-tensor vertex stemming from the Lagrangians LPV1 and LPV2 . The fact
that there are no enhancement factors due to the sound speed is clear from the explicit expression
of the vertices presented in section 6.3.1 and 6.3.2. Furthermore, one should consider whether there
exist enhancement factors of the form 1

k that lead to enhancements as k approaches zero. We ask this
question since we have to employ the solution for shift function

N i = ∂iψ, ψ = −a−2 ζ

H
+ ε∇−2ζ̇, (6.113)

in which appears the operator ∇−2. In Fourier space this results in a factor of 1
k2

where k is the
comoving wavevector associated to the field ζ in ψ. Thus a priori one can expect an enhancement
factor of the form 1

k since we have a temporal derivative acting on ζ. The general idea of this kind of
analysis is that a spatial or a temporal derivative is equivalent to k factor in Fourier space. However,
as one can verify in all the vertices written in section 6.3.1 and 6.3.2 the scalar field ψ appears at least
with one spatial derivative. So, we do not produce any enhancement factor.

Now we want to provide an explicit example in order to clarify why we can disregard all the vertices
stemming from LPV1 and LPV2 . This is not a very rigorous proof but it’s reasonable that everything
works in this way. Let’s consider the two interaction vertices

S
(1)
int =

∫
dτd3xεM2

pla
2(τ)hij∂iζ∂jζ, S

(2)
int = −2

5
2 ε

3
2

(
H4

M3
pl

)∫
dtd3xf1ε

ijlHhmi2ζ,l
ζ ,m,l
H

, (6.114)

where the second vertex is a contribution extracted from eq.(6.88). In order to compute the trispectrum
within the In− In formalism we have to switch to conformal time and we get

S
(2)
int = −2

7
2 ε

3
2

(
H4

M3
pl

)∫
dτd3xa(τ)f1ε

ijlhmiζ,lζ
,m
,l. (6.115)

Now, the idea is to make a comparison of the two vertices at the horizon crossing. We recall that
given a comoving wavector k the definition of horizon crossing is

k = aH. (6.116)
28The idea is the same presented in [9].
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First of all, we make this comparison at horizon crossing since the most important contribution to the
time integral part of trispectrum arises at horizon crossing [17]. Certainly, each momentum entering
in the trispectrum crosses the horizon at distinct intervals, but for simplicity, we approximate them
to be within a similar magnitude, k. Moreover we disregard any directional contribution form the
polarization portion. Thus, if we make a comparison of the two vertices at the horizon crossing we get

|
−a(τ)2

5
2 ε

3
2

(
H4

M3
pl

)
f1ε

ijlhmi2ζ,lζ
,m
,l

εM2
pla

2(τ)hij∂iζ∂jζ
|≈ ε

1
2

(
H4

M3
pl

)
f1

H3a4

M2
pla

4H2
≈ f1ε

1
2

(
H

Mpl

)5

, (6.117)

from which we understand the large suppression we get. In this computation, we also used that f1 is
roughly of order one. However, it will be interested to understand to compute the trispectrum with
an explicit form of the coupling parameters. We are not going to discuss this issue but we’ll make
some comments in section 6.5.

Now, we focus on the computation of the graviton-mediated trispectrum with two standard GR
vertices. We are going to use the same approximation we employed in the Chern-Simons case; we
approximate the tensor mode functions with the one in de-Sitter and we match the approximate
solutions with the real ones in τ = 0. Actually, we do not need to match the approximate solution
with the real one. In fact, since the graviton mode functions appear in the propagator we need only to
match the expression of the square modulus of the mode function in τ = 0 with the real value. But two
times the modulus of the mode function in τ = 0 is the Power spectrum of tensor perturbation thus
we can use the result reported in [71]. Moreover, we notice that everything works in exactly the same
way as what we have done in section 5.6 to the computation of the Chern-Simons graviton mediated
trispectrum. The polarization portion of the diagram is identical since the coupling between the two
ζs to the graviton in the chiral scalar-tensor theories of gravity is identical to the inflaton-inflaton-
coupling in the Chern-Simons case. Moreover, the time integral is the same since the time-dependent
part of the mode function is identical in eq.(6.15) and eq.(5.180). The difference between this case and
the Chern-Simons case arises from the normalization factor in the amplitudes of the mode functions,
denoted as uζ(τ,k) and uδφ(τ,k), as well as the prefactor in the vertices. However, it’s easy to show
that once every factor is taken into account the result is identical to the one we have computed in
Chern-Simons once we have switched to the new chirality parameter

<〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 = − 4(
2εM2

pl

)2 ∑
I

< (PR(KI)) TvarR(KI)|χi=0 , (6.118)

=〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 = − πχi(
2εM2

pl

)2 ∑
I

= (PR(KI)) TvarR(KI)|χi=0 , (6.119)

where χi with i = 1, 2 is the chirality parameter introduced before and, where,

PR(KI) =
1
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IK
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)
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)
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3
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]2
, (6.120)
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1

2

[
K1
IK

3
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)
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Ie+iφ

3
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. (6.121)

Moreover, as we have computed in chapter 5 we have

Tvarh(KI)|χi=0 = − Āt
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(6.122)
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with

kt =

4∑
i=1

| Ki
I |, aIij =

[
| Ki

I | + | Kj
I | +kI

]
, bIij =

[
(| Ki

I | + | Kj
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I || K
j
I |
]
, Āt = 4

(
H

Mpl

)2

.

(6.123)

All the conventions we are using here are identical to the ones we have adopted in chapter 5.

As stressed many times in chapter 5 it’s reasonable that the assumption we made works since the
real mode functions are a “sort" of expansion in the slow-roll and chirality parameters around the
de-Sitter mode functions. However, it’s important to note that providing a numerical verification of
this assumption in this particular case is significantly more intricate, and as a result, we have chosen
to omit it. Moreover, we stress once again that this assumption is exact in the case of the collapsed
trispectrum when KI ≈ 0.

6.5 The graviton-mediated trispectrum with de-Sitter mode functions

The next step one could be interested in is trying to understand if it’s possible to generate a parity-
violating signal using the vertices we have written in section 6.3.1 and 6.3.2 without the suppression
introduced by the chirality parameters. We won’t delve deeply into this aspect, but we aim to provide
some comments that could prove valuable for a future analysis. The key point we aim to demonstrate
is that, regardless of the specific form of the coupling function in the vertices, it is impossible to violate
parity in a trispectrum involving two vertices originating from LPV1 and LPV2 and the de-Sitter mode
functions. Thus, we must consider a trispectrum in which we consider a standard GR vertex and one
of the vertices we have obtained in the expansion of the Lagrangians. We are going to show this with
a specific example.

Now, in order to perform the computation we need to write down the diagrammatic rules for the
In − In formalism. Thus, we need the vertex contribution for the two terms we are considering.
Starting form the the vertex arising from the standard GR we have position space

S
(1)
int =

∫
dτd3xεM2

pla
2(τ)hij∂iζ∂jζ, (6.124)

which, writing the scalar and tensor fields in Fourier space, becomes
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d3keik·x

(2π)3
d3qeiq·x
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εlf (K)uh(K, τ) (6.125)
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∑
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εlf (K)uh(K, τ)δ
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(6.126)

According to [14] we can write the relative vertex diagrammatic rule in Fourier space as
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f
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,
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f
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l
2
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(Hτ̃)2

.

k2

Figure 24: Diagrammatic rule for the interaction vertex
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Now, we need the interaction rules for the other vertex

S
(2)
int = − 2ε2

Mpl

(
H3

M4
pl

)∫
dτd3xb3ε

ijlζ̇,j ζ̇,lmh
m
i (6.127)

which is the first contribution we have written in eq.(6.88). This is not exactly the first contribution
but is one of the terms we get once we integrate by parts to remove the temporal derivative from the
tensor perturbations. Writing the scalar and tensor fields in Fourier space, the vertex becomes

S
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int = +(2π)3 i

2ε2

Mpl

(
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Mpl
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The relative vertex diagrammatic rule in Fourier space can be written as
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= +i 4ε2

Mpl

(
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Mpl
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∫
dτb3Hτu′
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′
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k2

Figure 25: Diagrammatic rule for the interaction vertex

where we have also a factor of two due to symmetry factor. The key distinction compared to the
Chern-Simons case is the inclusion of an i factor in one of the two vertices. Consequently, in the
total polarization factor, we introduce an i factor that is absent when the sum of the momenta in the
two vertices is even. It’s important to have an overall factor of i in the polarization portion not have
a single factor of i in the vertex itself. If we use two vertices of the Lagrangian of LPV1 and LPV2
we always have a polarization factor that contains an even number of momenta and we do not get
any overall i contribution. This is crucial when we write down the explicit expression of the real and
imaginary part of the trispectrum.

Now we proceed in the computation of the trispectrum following what we have done in chapter 5, we
know that each channel comes in four combinations since we have two vertices (each vertex can be of
the + or − type which are respectively represented with a dot and an empty dot)

Hence, we can calculate the contribution arising from the four diagrams for the general channel I
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Figure 26: The four possibilities for the s channel

utilizing the established rules:
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where, the bar is the complex conjugate operation, and where, we have introduced
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For the time integrals the following notation has been adopted
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Cvarh(KI) = <
(
J
(2)
h (KI)− J

(1)
h (KI)

)
, (6.136)

where the scalar propagator, G+, and the tensor mode function,uh, can be computed using the result
of section 6.2. Summing everything together we get

〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 = −i8ε2Mpl

(
H

Mpl

)3∑
I,h

Ph(KI)Cvarh(KI), (6.137)

Now, we can put the real part and imaginary part of the trispectrum as in eq.(5.165) and eq.(5.166)
but with the crucial difference that we have a i prefactor

<〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 = 8ε2Mpl

(
H

Mpl

)3∑
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= (PR(KI)) [CvarR(KI)− CvarL(KI)] , (6.138)
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Now, it’s clear that in order to compute the leading order contribution we can use the de-Sitter mode
function; the real one are expansion in slow-roll and chirality parameters around this solution. This is
the most important difference with respect to the standard GR vertices. It’s possible to compute the
integral by taking b3 constant and we’ll also consider it of order unity since we are dealing with an
effective field theory and the result is exactly zero for this vertex. It’s possible to use other vertices to
obtain a non-zero contribution. In this case, we are not going to produce a parity-violation but the
idea is the same also for the other vertices.

What we intend to convey is that when we examine the trispectrum with two vertices from the
Lagrangians LPV1 and LPV2 , we do not introduce an additional i contribution in the polarization
factor, and both the real and imaginary parts would take a similar form to the one we previously
computed in the Chern-Simons scenario

<〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 ∝
∑
I

= (PR(KI)) [CvarR(KI) + CvarL(KI)] , (6.140)

=〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 ∝
∑
I

< (PR(KI)) [CvarR(KI)− CvarL(KI)] , (6.141)

where the explicit form of the polarization factors and the time integrals don’t matter. In fact, if the
propagators for the chiral polarization are identical we have that

CvarR(KI) = CvarL(KI), (6.142)

which implies

=〈ζ(k1)ζ(k2)ζ(k3)ζ(k4)〉 = 0. (6.143)

Finally, it would be interesting to compute the graviton-mediated trispectrum using an explicit form
for the coupling functions as the one proposed in [8] in order to understand if it’s possible to produce
an enhancement in the signal.
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Conclusions

The starting point of this work is the detection of a connected four-point correlation function of the
matter over-density field that exhibits parity violation [1, 2]. We would like to stress one more time
that if these measurements are confirmed and proven to be primordial in origin, they will have two
significant implications. Firstly, discovering a connected correlator beyond the two-point statistic
provides evidence for primordial non-Gaussiany. Furthermore, considering that weak forces are not
involved in the formation of large-scale structures, such evidence would indicate the presence of new
physics.

Given our current absence of primordial tensor mode detections, the scalar sector remains the sole
domain in which we can investigate parity violation. Concerning scalars, as we have seen, the first
correlator capable of exhibiting parity violation is the four-point correlation function. Moreover, us-
ing the approach introduced in [5], we have built the estimator for the galaxy four-point correlation
function in chapter 3. This estimator enables us to significantly decrease the computational expense,
reducing it from O(N4

g ) to O(N2
g ), where Ng represents the number of galaxies in the survey. Conse-

quently, it empowers us to measure and compute this correlation function, which would otherwise be
challenging due to computational costs.

Moreover, I’d like to emphasize that the signal may be spurious, and there is no a priori reason to
assume that this signal originates from early universe physics. It could have its roots in astrophysical
sources or late-time cosmological effects. However, the huge amount of data we expect from future
experiments such as DESI, EUCLID, and RUBIN , galaxy surveys, would provide a natural en-
vironment to study scalar correlation functions and in which to hunt for parity-violating signatures.
These upcoming surveys will provide larger samples and different systematics concerning the BOSS
catalog. This will enable us to gain a better understanding of the true origin of the signal. If the
evidence is of cosmological origin, it would likely be detectable in DESI. Discovering evidence in
DESI would serve as a compelling indicator that either the signal is authentic, or it is caused by
some yet-undiscovered parity-breaking systematic shared between BOSS and DESI. However, con-
sidering the technical differences in the instrumentation used in the two surveys, the latter possibility
also appears unlikely.

I also would like to stress that this effect of parity violation in the CMB is not observed [73]. This
could imply two possibilities: either the signal identified in the BOSS galaxy catalog is spurious, or
parity violation occurs at significantly different scales. We observe parity violation in the formation
of large-scale structures, but we do not detect parity violation on the scales of the cosmic microwave
background. The second scenario would be very interesting and challenging from a theoretical point
of view.

Then, we try to provide an Inflationary model that can leave a parity-violating signature in the
scalar trispectrum of the curvature perturbation. Thus, following an introduction to cosmological
fundamentals, including FLRW dynamics, perturbation theory, correlation functions, and the gauge-
invariant curvature perturbation on a uniform energy density hypersurface denoted as ζ in chapter 1,
we redirect our attention to the inflationary phase. Our primary objective is to explain the observed
signal as a remnant signal of parity violation occurring in the early universe. Firstly we review the
shortcomings of the HBB model and their inflationary solution. Then, we present the single-field
slow-roll model of inflation under the slow-roll hypothesis [10]. The inflationary background dynamics
mimic the behavior of a Cosmological constant component giving rise to an accelerated expansion
period. Then, we present a detailed and self-consistent analysis within the ADM formalism, the
Hamiltonian formulation of GR, of the tensor and ζ power spectra on super-horizon scales. We also
stress the importance of a detection of GW s background since it wuold be crucial insights into the
dynamics of Inflation.

Prior to delving into the computation of the parity-violating contribution within the framework of
modified theories of gravity, we introduce the Schwinger-Keldysh diagrammatic rules for primordial
perturbations [14, 17]. These rules enable the computation of primordial correlation functions using
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the In− In formalism, similar to how S−matrix elements are evaluated using Feynman diagrams in
particle physics and flat spacetimes.

Then, we start the analysis of modified gravity models in order to see if it’s possible to produce a
parity-violating signature in today’s observables. First of all, we consider the Chern-Simons theory
of gravity, which is constructed as an effective field theory (EFT ) for gravitation. The interaction
Lagrangian we add to the standard Inflationary one is of the form

Lint =
√
−g φ

4f
∗RR =

φ

8f
εαβσρRµναβRµνρσ, (6.144)

where f is a dimensional constant. We provide a comprehensive and thorough derivation of the
equations of motion and power spectra for both scalar and tensor modes within the spatially flat
gauge. The main feature of this kind of model is that it introduces a modification of the equation of
motion for the left and right polarizations for gravitons. This modification depends on the so-called
chirality parameter

µ =
H

MCS
<< 1, (6.145)

and in the limit in which µ goes to zero, we recover the standard single-field model of slow-roll Inflation.
This modification of the EoM results in different propagators for left and right gravitons. This can
source parity violation in the trispectrum, which is the Fourier transform of the four-point correlation
function. Furthermore, the chirality parameter introduces variations in the primordial power spectra
for tensor modes, resulting in modifications to the scalar-to-tensor ratio, the spectral index, and the
overall power spectrum for tensor modes. Nevertheless, as we have observed, these effects remain
unobservable due to their suppression by the smallness of the chirality parameter.

Then, we present a detailed analysis of the computation of the graviton-mediated trispectrum in this
model working within the ADM formalism in the spatially-flat gauge. The two vertices that contribute
to the scalar trispectrum are

S
(1)
int = −

∫
dτd3x

1

2
a2(τ)hij∂iδφ(τ,x)∂jδφ(x, τ), S

(2)
int = −
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2

fMpl

√
ε
(
∂lδφ

)
εijk

[
(∂kδφ) ∂ih

′
lj

]
.

(6.146)

We have shown that the interference term and the purely Chern-Simons contribution, S(2)
int, are re-

spectively zero and suppressed by εH2

M2
CS

with respect to the purely kinetic contribution which we have
computed using the approximation made in [9] for the mode functions. Basically, we approximate the
Chern-Simons mode functions with the de-Sitter ones multiplied by a constant which is different for
left and right gravitons. This constant is obtained by matching these approximate solutions with the
original ones in −kτ = 0. This, as we have verified, it’s a reasonable assumption. Thus, the main
contribution to the trispectrum arises when considering two vertices of the type S(1)

int. The main feature
in this case is that the trispectrum violates parity since the propagators for left and right gravitons
are different. The signal we get in this particular model is too weak due to chirality suppression. As
discussed in [9], in models that go beyond the standard inflationary scenario with dynamical Chern-
Simons term, such as those involving multiple scalar fields or superluminal scalar sound speed, it is
possible to encounter a substantial enhancement factor F ≥ 106 for the trispectrum. In the paper, the
author does not provide a comprehensive discussion on this topic. Therefore, it would be worthwhile
to conduct a thorough investigation into such models to comprehend how they can generate such a
significant enhancement, making the signal detectable.

Hence, we investigate alternative theories in which, in principle, there is a possibility of enhance-
ment owing to gravitational waves (GWs) birefringence. These theories extend Chern-Simons gravity
by incorporating parity-violating operators that involve the first and second derivatives of the non-
minimally coupled inflaton field such as

f(φ)εµναβRαβρσRµλ
ρ
σ∇σφ∇λφ, g(φ)εµναβRαβρσR

µλρσ∇ρφφµ∇σ∇λφ. (6.147)
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To begin, we calculate the modifications made to the power spectra of tensors, and we discover a
situation that mirrors the one discussed in the context of the Chern-Simons theory of gravity. We
observe changes in the tensor power spectra, yet these modifications are unobservable. Then, we
provide an original calculation of the graviton-mediated trispectrum within the framework of chiral
scalar-tensor theories of gravity [8, 19]. The procedure for the scalar trispectrum is identical to the one
we have presented for the Chern-Simons theory. All the couplings introduced by these new theories are
largely suppressed with respect to the standard gravity term, which is analogous to the kinetic term in
the Chern-Simons theory. Given that the suppression of the trispectrum results from the smallness of
the chirality parameter and the fact that the theories are constructed as effective field theories, it would
be intriguing to further explore the scenario where this chirality parameter goes to zero. For example
in the case of LPV1 it’s sufficient to send f+g = 0 in order to have MPV1 7−→ +∞, (see [8] for details).
In this case, we can use de-Sitter mode functions in order to assess whether enhancement factors
become possible. In this scenario, we have demonstrated the necessity of considering an interference
term between the standard GR term and a term originating from the expansion of the Lagrangians
LPV1 and LPV2 . Otherwise, we get a zero parity-violating part of the trispectrum. Another intriguing
aspect of this scenario involves attempting to assign specific functional forms to the coupling functions
appearing in the vertices, such as f and g in equation (6.147), and trying to understand if it’s possible
to get an enhancement in this case.

Currently, aside from the modification of the Chern-Simons theory outlined in [9], there are no other
instances in the literature of inflationary models that can produce a signal capable of explaining the
observations reported in [1, 2]. Nonetheless, as outlined in [74], it has been shown that it’s impossible
to generate detectable signals for a series of inflationary models.
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A Appendix A

A.1 Friedmann equation

Now we derive a useful form for the first Friedmann equation (1.12) with matter, radiation, and
cosmological constant components

H2 =
8πG

3
ρ− κ

a2
=

8πG

3
[ρM + ρR + ρΛ]−

κ

a2
. (A.1)

This equation will be useful in the derivation of the proper distance and the angular diameter distance
in section A.2 and A.3. From the continuity equation (1.15) we know that

ρM = ρ0M

(a0
a

)3
(w = 0), ρR = ρ0R

(a0
a

)4
(w =

1

3
), ρΛ = ρΛ0 = const(w = −1), (A.2)

thus we can write

H2 =
8πG

3

[
ρ0M

(a0
a

)3
+ ρ0R

(a0
a

)4
+ ρ0Λ − 3κ

8πG
a−2

]
(A.3)

=
H2

0

H2
0

8πG

3

[
ρ0M

(a0
a

)3
+ ρ0R

(a0
a

)4
+ ρ0Λ − 3κ

8πG
a−2

]
(A.4)

= H2
0

[
Ω0M

(a0
a

)3
+Ω0R

(a0
a

)4
+Ω0Λ +Ω0κ

(a0
a

)2]
(A.5)

= H2
0

[
Ω0M (1 + z)3 +Ω0R (1 + z)4 +Ω0Λ +Ω0κ (1 + z)2

]
, (A.6)

where we have used that a0
a = (1 + z) with z redshift [33]. Moreover, we have introduced the energy

parameter for each component today which is defined as

Ω0i =
ρ0i
ρ0c

, (A.7)

where, the index i represents matter, radiation, or cosmological constant, while ρc denotes the present-
day critical density. This critical density signifies the density that the universe would possess if it were
flat

ρ0c =
3H2

0

8πG
. (A.8)

A.2 The proper distance

To begin with, let’s consider a light signal traveling from a luminous source to our location, which
we take to be at the origin of the polar coordinates system. Due to isotropy the signal travels along
radial null geodesic with ds2 = dΩ2 = 0, so that we can derive the following differential equation

dt

a(t)
= ± dr√

1− κr2
, (A.9)

where the choice of ± depends on the interval of integration. If we integrate from (t1, r1) to (t2 >
t1, r2 > r1) or (t2 < t1, r2 < r1), we use the plus sign; otherwise, we use the minus sign. Thus
integrating eq.(A.9) we are able to relate the radial comoving coordinate with the emission time of a
light signal ∫ t

t0

dt̃

a(t̃)
= −

∫ r

0

dr̃√
1− κr̃2

, (A.10)

which using the following change of coordinates
r = sinhχ if k = −1

r = χ if k = 0

r = sinχ if k = +1

, (A.11)
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becomes ∫ t

t0

dt̃

a(t̃)
= −

∫ χ(r)

χ(0)
dχ = −χ(r). (A.12)

Now recalling the definition of the redshift, (1 + z) ≡ a0
a(t) we get that

d

dt
(1 + z) =

d

dt
(
a0
a
) = −a0ȧ

a2
, (A.13)

which we can recast in the following way

dz

H(z)a0
= − dt

a(t)
. (A.14)

If we want to compute the radial distance of a source observed with redshift z, eq.(A.12) we can write
that

r(z) = S

[∫ t0

t(z)
− dt

a(t)

]
= S

[∫ 0

z

dz

H(z)a0

]
(A.15)

= S

 1

a0H0

∫ z

0

dz√[
Ω0M (1 + z)3 +Ω0R (1 + z)4 +Ω0Λ +Ω0κ (1 + z)2

]
 , (A.16)

where we have used the explicit expression for H(z), i.e. eq.(A.6). Eq.(A.16) can be expressed in a
more convenient way considering that Ωκ = − κ

H2
0a

2
0
,

a0r(z) =
1

H0Ω
1
2
κ

sinh

Ω
1
2
κ

∫ z

0

dz√[
Ω0M (1 + z)3 +Ω0R (1 + z)4 +Ω0Λ +Ω0κ (1 + z)2

]
 , (A.17)

where in the case κ = 0 the limit Ωκ → 0 is used.

A.3 The angular-diameter distance

In this section, we introduce another kind of distance, angular diameter distance, dA, which allows
us to compare angular sizes with physical dimensions. Let’s consider two points A and B at spatial
coordinates {

(rA, θA, φA) = (r, θA, 0)

(rB, θB, φB) = (r, θB, 0)
, (A.18)

which both emit lights at time t1 and they are observed at present time t0. They subtend, in the sky,
an angle with modulus

| θ |≡| θA − θB | (A.19)

and they are separated by a proper distance given by

s = a(t1)r1θ. (A.20)

We define the angular diameter distance so that

dA =
s

θ
= a(t1)r1. (A.21)

This definition makes sense only if the two points are at the same radial coordinate, for example in
the case of CMB emission we know that all the points lie on a surface. In general, this definition is
used in the small angle approximation to compute the physical extension of a source in the sky.
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A.4 Perturbation theory

In this section, we present the theorems’ statements, omitting the proofs, which we utilize in deriving
the gauge transformation of perturbations.

Theorem A.1. Let ξ be a vector field on a differential manifold M, generating a flow φ : R×M → M,
where φ(0, p) = p, ∀p ∈ M. ∀ λ ∈ R and ∀p ∈ M, we write φλ(p) := φ(λ, p). Let T be a tensor field
on M. The map φ∗λ defines a new field φ∗λT on M, the pull-back of T , which is thus a function of λ.
The field φ∗λT admits the following expansion around λ = 0 :

φ∗λT =
+∞∑
k=0

λk

k!

dk

dλk

∣∣∣∣
λ=0

£k
ξT. (A.22)

Theorem A.2. Let M a differential manifold and Ψ : R × M 7−→ M a one-parameter family of
diffeomorphisms. Then ∃φ(1), .., φ(k), .. one parameter groups of diffeomorphisms of M with associated
vector fields ζ(1), .., ζ(k), .. such that

Ψλ = .. ◦ φ(k)
λk

k!

◦ .. ◦ φ(2)
λ2

2

◦ φ(1)λ . (A.23)

According to what is presented in [11] we call this kind of decomposition a knight diffeomorphism.
We stress that Ψλ is not a one-parameter group of diffeomorphisms but a one-parameter family of
diffeomorphisms. Now we are ready to state the fundamental theorem used in obtaining the gauge
transformation rules of section 1.2.

Theorem A.3. Let M and T a tensor field defined on it. The pullback of Ψ∗
λT by a one-parameter

family of knight diffeomorphisms Ψ with generators ζ(1), .., ζ(k), .. can be expanded around λ = 0 as
follows

Ψ∗
λT =

+∞∑
l1=0

+∞∑
l2=0

..

+∞∑
lk=0

..
λl1+2l2+..+klk+..

2l2 ..(k!)lk ..l1!l2!..lk!..
£
ζ
l1
(1)

..£
ζ
lk
(k)

..T. (A.24)
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B Appendix B

B.1 Spherical Harmonics

We introduce the spherical harmonics in the Condon-Shortley convection as

Ylm(θ, φ) = (−1)m

√
(2l + 1)

4π

(l −m)!

(l +m)!
Pml (cosθ)eimφ, (B.1)

where l ∈ N, m ∈ Z m ∈ [−l, l], θ ∈ [0, π], φ ∈ [0, 2π) and

Pml (x) =
1

2ll!
(1− x2)

m
2
dl+m

dxl+m
(x2 − 1)l, (B.2)

with x ∈ [−1, 1]. In the form of eq.(B.1) the spherical harmonics are an orthonormal basis of the
vector space L2(S2), where S2 is the unit sphere. The orthonormality condition reads∫

dΩYlm(θ, φ)Y
∗
l′m′(θ, φ) = δll′δmm′ . (B.3)

where we have defined the scalar product as

∀f, g ∈ L2(S2) (f(θ, φ), g(θ, φ)) =

∫
dΩf(θ, φ)g∗(θ, φ). (B.4)

While the fact that they are a basis implies that ∀f ∈ L2(S2) we can write

f(θ, φ) =

∞∑
l=0

l∑
m=−l

almYlm(θ, φ), (B.5)

where

alm =

∫
dΩY ∗

lm(θ, φ)f(θ, φ). (B.6)

Now we analyze the behavior of spherical harmonics under the parity operator, P, which acts on
vectors as ∀x∈ R3 P[x] = −x, which in spherical coordinates (fig.27 ) reads

P[x](r, θ, φ) = x(r, π − θ, φ+ π). (B.7)

So under parity, we get

P[Ylm] = P[NPml (cosθ)eimφ] = NPml (−cosθ)eim(φ+π) = (−1)m(−1)m+lYml(θ, φ) = (−1)lYml(θ, φ),
(B.8)

where we have defined N =
√

(2l+1)
4π

(l−m)!
(l+m)! and we have used

P lm(−x) = (−1)lP lm(x), (B.9)

which can be deduced from

Pml (z = −x) = 1

2ll!
(1− z2)

m
2
dl+m

dzl+m
(z2 − 1)l =

1

2ll!
(1− x2)

m
2 (
dx

dz
)l+m

dl+m

dxl+m
(x2 − 1)l = (−1)l+mPml (x).

(B.10)
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Figure 27: Transformation of the vector x under parity, P.

B.2 Addition of angular momenta and Clebsh-Gordan coefficients

Consider a system, whose state space is χ, and an angular momentum operator J relative to this
system. Since [J2, Jz] = 0, it’s always possible to construct a basis of common eigenvectors of these
two operators:

J2|j,m〉 = j(j + 1)|j,m〉,
Jz|j,m〉 = m|j,m〉, (B.11)

with m ∈ [−j, j] and j could be a fractional or integer number. Since it’s a basis we know that
χ = span{|j,m〉}. We denote by χ(j) the vector space spanned by the set of vectors of the standard
basis which correspond to fixed values j. There are 2j + 1 of these vectors in this subspace and we
know that the entire space can be considered as the direct sum of these subspaces

χ =
∑
⊕
χ(j). (B.12)

We recall that J2 and Jz are block diagonal with respect to this decomposition of χ.

Now consider a system formed by the union of two subsystems, we refer to the subsystem 1\2 respec-
tively with an index 1\2. The state space of the global system is the tensor product of the individual
space states

χ = χ1 ⊗ χ2, (B.13)

and we know that a basis of the total system is constructed taking the tensor product of the bases
chosen in χ1 and χ2:

|j1,m1, j2,m2〉 ≡ |j1,m1〉 ⊗ |j2,m2〉. (B.14)

138



Since the decomposition of eq.(B.12) holds for the vector spaces χ1 and χ2 we obtain

χ =
∑
⊕
χ1(j1)⊗

∑
⊕
χ2(j2) =

∑
⊕
χ1,2(j1j2). (B.15)

The space χ1,2(j1j2) = χ1(j1)⊗ χ2(j2) has dimensions (2j1 + 1)(2j2 + 1) and it’s invariant under the
actions of any functions of L1 ≡ L1 ⊗ I1 and L2 ≡ I1 ⊗ L2.

Typically, since L2 ≡ (L2 + L1)
2, L2

1, L
2
2 and Lz ≡ (L1)z + (L2)z commutes, a change of basis is

performed such that

L2|L,m,L1, L2〉 = L(L+ 1)|L,m,L1, L2〉, (B.16)
Lz|L,m,L1, L2〉 = m|L,m,L1, L2〉, (B.17)
L2
1|L,m,L1, L2〉 = L1(L1 + 1)|L,m,L1, L2〉, (B.18)

L2
2|L,m,L1, L2〉 = L2(L2 + 1)|L,m,L1, L2〉, (B.19)

where it can be shown that |L1 − L2| ≤ L ≤ L1 + L2. The Clebsch-Gordan coefficients are the
coefficients that allow us to pass from the standard basis, the tensor product of the two bases in χ1

and χ2, to |L,M,L1, L2〉. In fact, we can write

|L,M,L1, L2〉 =
L1∑

m1=−L1

L2∑
m2=−L2

〈L1,m1, L2,m2|L,M,L1, L2〉|L1,m1, L2,m2〉, (B.20)

where we define 〈L1,m1, L2,m2|L,M,L1, L2〉 as Clebsch-Gordan coefficients. We haven’t summed
over the indexes j1 and j2 since the change of basis can be performed individually inside each of the
χ1,2(j1, j2) since eq.(B.15) holds. We recall that the operators L2, L2

1, L
2
2 and Lz are block diagonal

with respect to the decomposition of eq.(B.15).

To conclude this section we recall some basic properties that can be easily demonstrated ([56]) or
imposed

1. 〈L1,m1, L2,m2|L,M,L1, L2〉 = 〈L,M,L1, L2|L1,m1, L2,m2〉,

2.
∑

L,m〈L1,m1, L2,m2|L,M,L1, L2〉〈L,M,L1, L2|L
′
1,m

′
1, L

′
2,m

′
2〉

= δ
L
′
1L1

δ
L
′
2L2

δ
m

′
1m1

δ
m

′
2m2

δ(L,L1, L2), where{
δ(L,L1, L2) = 1 if |L1 − L2| ≤ L ≤ L1 + L2

δ(L,L1, L2) = 0 otherwise
, (B.21)

3.
∑

m1,m2
〈L1,m1, L2,m2|L,M,L1, L2〉〈L

′
,M

′
, L1, L2|L1,m1, L2,m2〉 = δLL′ δmm′ δ(L,L1, L2).

B.3 Wigner or 3-j symbols

The Wigner symbol are defined in terms of the Clebsch-Gordan coefficient via(
j1 j2 j3
m1 m2 m3

)
≡ (−1)j1−j2−m3

√
2j3 + 1

〈j1m1j2m2|j3m−3〉, (B.22)

which can be inverted as

〈j1m1j2m2|j3m3〉 =
√
2j3 + 1(−1)j1−j2−m3

(
j1 j2 j3
m1 m2 m3

)
. (B.23)

In the special case in which j3 = m3 = 0, j1 = j2 = l and m1 = −m2 = m is possible to derive ([55])(
j j 0
m −m 0

)
=

(−1)j−m√
2j + 1

. (B.24)
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The orthonormality condition reads ([5])

∑
m2,m3

(
j1 j2 j3
m1 m2 m3

)(
j4 j2 j3
m4 m2 m3

)
=
δj1j4δm1m4

2j1 + 1
, (B.25)

where δab is the Kronecker and summing over m1 we get∑
m1,m2,m3

(
j1 j2 j3
m1 m2 m3

)(
j4 j2 j3
m4 m2 m3

)
= 1. (B.26)

The symbols have the following symmetries(
j1 j2 j3
m1 m2 m3

)
=

(
j3 j2 j1
m3 m2 m1

)
= (−1)j1+j2+j3

(
j2 j1 j3
m2 m1 m3

)
(B.27)

= (−1)j1+j2+j3
(

j1 j2 j3
−m1 −m2 −m3

)
. (B.28)

The symbols can also be taken to be real since the Clebsch-Gordan coefficients can be taken real ([56]).
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C Appendix C

C.1 Quasi de Sitter Universe

In a quasi de Sitter stage of the universe, we consider a slowly varying Hubble parameter, which is

ε = − Ḣ

H2
6= 0. (C.1)

It’s possible to show that by switching to conformal time τ we can write

τ ≈ − 1

aH(1− ε)
≈ − 1

aH
(1 + ε). (C.2)

Now, we derive some useful expressions. We start by computing at first order in slow the first and
second derivatives of the expansion parameter a(τ)

a
′
(τ) = +

1

τ2H(1− ε)
− 1

τ(1− ε)
a(τ)ε, (C.3)

a
′′
(τ) = −

2
[
1 + 3

2ε
]

τ3H(1− ε)
, (C.4)

where we have used that
d

dτ

(
1

H

)
= a(t)

d

dt

(
1

H

)
= −a(t)ε. (C.5)

We conclude this section by computing the ratio between the second derivative of the scale factor and
the scale factor itself

a
′′
(τ)

a(τ)
=

2
[
1 + 3

2ε
]

τ3H(1− ε)
Hτ(1− ε) ≈ 2

τ2

[
1 +

3

2
ε

]
. (C.6)

C.2 Bessel’s equation

The goal of this section is to show that the following equation

uk(τ)
′′
+

[
k2 −

ν2 − 1
4

τ2

]
uk(τ) = 0, ν2 > 0, τ < 0, (C.7)

can be solved by means of Bessel’s equation [55]. If we introduce a new variable

uk(τ) =
√
−τz(−kτ), (C.8)

u
′
k(τ) = −k

√
−τz′

(−kτ)− z(−kτ)
2
√
−τ

, (C.9)

u
′′
k(τ) = k2

√
−τz′′

(−kτ) + k
z
′
(−kτ)√
−τ

− z(−kτ)
4(−τ)

3
2

, (C.10)

where we also have directly computed the first and second derivatives. Plugging in the result in
eq.(C.7) we get

0 = k2
√
−τz′′

(−kτ) + k
z
′
(−kτ)√
−τ

− z(−kτ)
4(−τ)

3
2

+

[
k2 −

ν2 − 1
4

τ2

]
√
−τz(−kτ) (C.11)

= k2
√
−τz′′

(−kτ) + k
z
′
(−kτ)√
−τ

+

[
k2 − ν2

τ2

]√
−τz(−kτ), (C.12)

which, multiplying by (−τ)
3
2 reads

0 = (−τk)2z′′
(−kτ)− kτ

z
′
(−kτ)√
−τ

+ [k2τ2 − ν2]z(−kτ) = x2z
′′
(x) + xz

′
(x) + (x2 − ν2)z(x), (C.13)
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where we have defined x ≡ −kτ in order to make clear that this a Bessel’s equation [55].

As this result is utilized multiple times in the thesis, we solve this equation with the condition that in
the sub-horizon regime, i.e., when −kτ � 1, the following holds

uk(τ)
−kτ>>1−−−−−→ 1√

2k
e−ikτ , (C.14)

and also with the condition on the Wronskian which allows us to recover the standard commutation
relation once we quantize,

uku
∗
k

′ − u∗ku
′
k = −i. (C.15)

Please note that we can always impose two conditions since the differential equation is of second order.

Thus a general solution can be written using the Hankel functions [55] as follows

uk(τ) = C1(k)H
(1)
ν (−kτ) + C1(k)H

(2)
ν (−kτ), (C.16)

where H(1)
ν and H

(2)
ν are respectively the Hankel’s function of the first and second kind. Since [55]H

(1)
α (x) ≈

[
2
πx

] 1
2 exp i

(
x− απ

2 − π
4

)
H

(2)
α (x) ≈

[
2
πx

] 1
2 exp i

(
−x+ απ

2 + π
4

) , x >> 1, (C.17)

we must impose that

C(2)(k) = 0, (C.18)

C(1)(k) =

√
π

2
exp i

(νπ
2

+
π

4

)
. (C.19)

Finally, we can write the solution as

uk(τ) =

√
π

2

√
−τH(1)

ν (−kτ) exp+i
(νπ

2
+
π

4

)
. (C.20)

Using the asymptotic expansion for the Hankel functions [55] we immediately get that on super-horizon
we have

uk(τ)
−kτ<<1−−−−−→ ei

(
ν− 1

2

)
π
2
(−kτ)−ν+

1
2

√
2k

Γ(ν)

Γ
(
3
2

)2ν− 3
2 , (C.21)

where Γ(ν) is the Euler function of ν [55]. In order to verify the condition on the Wronskian we need
two useful properties [55]

H(1)
ν = H(2)

ν
∗, W

{
H(1)
ν (z),H(2)

ν (z)
}
= − 4i

πz
. (C.22)

Thus, we can write

W {uk(−τ), u∗k(−τ)} =
π

4
(−τ) 4i

πτ
= −i, (C.23)

which proves the statement.
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C.3 ADM ’s formalism

The ADM formalism, proposed by Richard Arnowitt, Stanley Deser, and Charles W. Misner in 1959
[75], presents a Hamiltonian treatment of General Relativity (GR). While we won’t delve into the
derivation of the General Relativity Hamiltonian in this context29, we will focus on the fact that this
formalism brings to light a crucial insight. Within the ADM framework, it becomes apparent that
four out of ten metric degrees of freedom are not dynamical and can be eliminated from the Lagrangian
once we have solved their Euler-Lagrange equation. Moreover, this formalism offers valuable insights
into both the quantization program of general relativity and the domain of numerical relativity.

C.3.1 Globally hyperbolic spacetime

First of all, we need to introduce the concept of a globally hyperbolic spacetime which is the cornerstone
upon which is based the entire formalism. Indeed, the applicability of this formalism is contingent
solely upon the condition that the spacetime is globally hyperbolic. It is worth noting that instances
exist where these conditions are not met, thereby rendering the utilization of this formalism unfeasible.

In order to do this we have to introduce some notions regarding the causal structure of a manifold.
Considering a manifold M , we define a causal curve as one that remains time-like or null at all points.
Consequently, for a subset W of M , its causal future, denoted as J+(W ), consists of points that
can be reached by following a causal curve starting from W . Similarly, the chronological future,
denoted as I+(W ), includes points that can be reached by following a timelike curve starting from
W . Furthermore, we assert that the subset W is considered achronal if there is no causal curve
connecting any two points within it. Then, we define the future domain of dependence of W ,
D+(W ), as the set of points that can be reached from a future-directed causal curve starting from W .
In an analogous way, we can define the past domain of dependence of W , D−(W ). There is no a
priori reason for which a generic point of the manifold must stay in one of the two domains. We can
now introduce the concept of Cauchy surface, which is defined as an achronal surface Σ for which
D(Σ) ≡ D+(Σ) ∪D−(Σ) coincides with the entire manifold M . If a spacetime has a Cauchy surface,
it’s said to be globally hyperbolic.

C.3.2 The ADM ’s decomposition of the metric

In this section, we provide an interpretation of the concept of time flow in GR, and we present an
operative way to introduce the ADM splitting of the metric throughout the introduction of the lapse
and shift functions.

Let be (M, gαβ) a globally hyperbolic spacetime with a Cauchy surface Σ. It can be shown [13] that it’s
possible to foliate it with Cauchy surfaces Σt parametrized by a global time function t. The core of the
ADM formalism is the splitting between the notions of “time" and “space", creating a framework that
enables a description of spacetime’s temporal evolution. The idea of globally hyperbolic spacetime
suggests that the variables evolving with time pertain to those defined on the spatial hypersurface Σ.
These variables are the six independent components of the induced three-dimensional spatial metric,
which evolves as one moves within the foliation.

Let us now proceed to formalize this conceptual framework. First of all, we proceed to introduce the
induced spatial metric. Thus, let nα be the normal vector30 to the Σt, which are spatial hypersurfaces
since they are achronal [13]. Now it’s possible to decompose the metric as

hαβ = gαβ + nαnβ, (C.24)

where one can show that hαβ and −nαnβ are projectors on the tangent vector space [76]. Then, we
discuss the concept of “time flow" by defining a smooth vector field tα,

tα∇αt = 1, (C.25)
29The derivation of the Hamiltonian can be promptly obtained subsequent to the forthcoming discussion.
30It’s orthogonal to the hypersurface and −nαnα = 1.
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this condition amounts to say that this vector field always has a normal component to Σt. As empha-
sized in [77], and as becomes evident from its definition, we can select the vector field tα as we like.
Moreover, we can decompose this vector in its “temporal" component also called lapse function N ,
and its “spatial component" also called shift function Nα

N = −nαtα, (C.26)
Nα = hαβt

β. (C.27)

By utilizing the integral curves of tα, it becomes possible to uniquely introduce a family of diffeomor-
phisms denoted as φt : Σ0 → Σt, where Σ0 and Σt represent different spacelike hypersurfaces. Hence,
by progressing forward in time, we observe the effect of this “moving forward in time", as we begin
from Σ0 and advance by a parameter t to reach Σt. This offers an idea of how to proceed in order
to find the Hamiltonian formulation of General Relativity (GR). In fact, we can conceive the entire
manifold as the “evolution" of Σ0 through time. This suggests that we must view the Riemannian
metric on the three-dimensional spatial manifold as the “true" dynamical variable in GR. Being N
and Nα the component of the tangent vector to the φt, it’s clear that they represent the prescription
to move forward in time as presented in figure 28. These variables are not dynamic in nature and can
be removed from the Lagrangian once we have solved their constraint equations.

Figure 28: Moving in time with the lapse and shift functions.

Now, we need to derive the explicit form of the metric in ADM ’s formalism. This can be done as
presented in [77] introducing a set of coordinates on the manifold. First of all, we notice that the
hypersurfaces are the level sets of the time function t

Σt := {yα : t(yα) = const}, (C.28)

where yα are generic coordinates on M . Thus, introducing a new coordinate system (t, xi) in such
a way that the coordinates xa on the hypersurfaces Σt=0 are transported along the time flow, φt,
introduced previously. It’s clear that the tangent vector field to these curves,

yαx̄a(t) = yα(t, x̄i), (C.29)

where x̄a it’s a generic point on Σt=0 which is fixed for each curve, corresponds to the vector field

tα = Nnα +Nα. (C.30)
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The time flow can be viewed in this sense by following the curve we have introduced. In the language
of coordinates, the tangent vector reads

(∂t)
α ≡

(
∂yα

∂t

)
x

= tα. (C.31)

Now, the lapse function measures the rate of proper time measured by a Eulerian observer (fig.28)
which is an observer at rest in the spacetime. An observer at rest in the space-time can move along
a trajectory whose tangent vector is normal to the hypersurfaces. In fact, as shown in figure 28, the
lapse of proper time between Σt and Σt+dt, for the Eulerian observer is

dτ = N(t, xi)dt. (C.32)

While the shift vector N i(t, xi) represents a “spatial" function that quantifies the displacement between
Eulerian and coordinate observers following a time-lapse dt from Σt and Σt+dt, as shown in figure 28.
The coordinate observer is the one that follows the time flow introduced by the vector field tα. Thus,
moving normally (see the Eulerian observer trajectory in figure 28) from Σt to Σt+dt the coordinates
of the point on the upper leaf, xiupper, are related to the coordinate of the starting point on Σt, xilow,
in this way

xilow = xi, xiupper = xi −N i(t, x, y, z)dt, (C.33)

as shown in figure 28. Please notice that at the infinitesimal level, it’s indifferent to take N i on Σt or
Σt+dt; [78] takes the vector defined on Σt for example.

The construction we have done is useful for understanding how to write the four-dimensional metric
tensor using the three-dimensional one, the lapse, and shift functions [78]. In order to do this we want
to compute the displacement of two infinitesimally adjacent points yµ(t) = (t, xi) and yµ + dyµ =
(t + dt, xi + dxi), which respectively belong to Σt and Σt+dt. What we have to do is compute the
spacetime distance of the two points. If we want to compute distances in one of the two leaves
we are considering, i.e. Σt and Σt+dt, we use respectively the spatial metric (3)gij(t, x, y, z) and
(3)gij(t+ dt, x, y, z). If we want to move between the two leaves we can use the prescription provided
by the lapse and shift functions. Thus, we have everything to understand how to calculate distances
between the two points. We can use the generalization of the Pythagorean theorem in GR. The time
separation between the two leaves is

N(t, x, y, z)dt, (C.34)

while the “spatial" separation on the upper leaves between the two points reads

(xi + dxi)− (xiupper) =
[
xi + dxi

]
−
[
xi −N i(t, x, y, z)dt

]
= dxi +N i(t, x, y, z)dt. (C.35)

Thus using the general relativistic version of the Pythagorean theorem [78] we get

ds2 = −N2dt2 + (3)gij(t+ dt, x, y, z)
(
dxi +N i(t, x, y, z)

) (
dxj +N j(t, x, y, z)

)
(C.36)

≈ −
(
N2 −NiN

i
)
dt2 + (3)gij(t, x, y, z)dx

idxj + 2Nj(t, x, y, z)dx
j , (C.37)

where we have disregarded quantities that are infinitesimal of higher orders and where we have defined
Ni =

(3)gijN
j and NiN

i = (3)gijN
jN i. Since what we have computed is invariant; the path we’ve

taken does not impact the outcome. Thus, we can read the components of the metric tensor and its
inverse as

gµν =

(
−
(
N2 −NiN

i
)

Nj

Ni
(3)gij

)
, gµν =

(
− 1
N2

Nj

N2

N i

N2

(
(3)gij − N iNj

N2

)) , (C.38)
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where (3)gik(3)gkj = δij and where the inverse metric is obtained by imposing gµνgνα = δµα [78]. The
explicit components of the vectors Nα and nα and the projection tensor hµν read

nµ =
1

N

(
1,−N i

)
, nµ = N(1, 0, 0, 0), (C.39)

Nµ =
(
0, N i

)
, Nµ = hµνN

ν , (C.40)

hµν =

(
NlN

l Ni

Nj
(3)gij

)
, hµν =

(
0 0

0 (3)gij

)
. (C.41)

We conclude this section by making remarks about the projection tensor and by introducing the
covariant derivative on spatial hypersurfaces. Now, given a “spatial" vector vα, i.e. nαvα = 0, if we
want to raise and lower indices we can use hµν or hµν

vα = hαβv
β = (gαβ + nαnβ)v

β = gαβv
β, (C.42)

and this reasoning can be generalized to each kind of tensor. Moreover, it’s possible to show that

Dα = hα
β∇β, (C.43)

it’s the only covariant derivative operator defined on Σ [13] (see the definition of covariant derivative op-
erator). We extensively use this definition in the next section while trying to express four-dimensional
quantities in terms of three-dimensional ones.

C.3.3 The extrinsic curvature

Now, before proceeding with the derivation of the ADM ’s action, we need a final ingredient, the
extrinsic curvature, which is strictly linked to the concept of “temporal" derivative of the spatial
metric. As we’ll see it contains a temporal derivative of the spatial metric and so it represents the
conjugate momentum with respect to the spatial metric (3)gij which is the canonical variable in this
formalism. Thus, the fundamental ingredients we have are the lapse and shift functions which merely
prescribe how to move forward in time, the canonical variable (3)gij and its conjugate momentum Πij
which is strictly linked to the definition of the extrinsic curvature tensor.

Whilst all of the information about the intrinsic curvature of a manifold is contained in the single
component of the Ricci scalar, the extrinsic curvature describes the way something is embedded in a
higher dimensional space[38]. There is a nice example presented in [38] regarding a cylinder, which is
R× S1. It’s always possible to choose coordinates in such a way that the cylinder is flat; We are also
free to consider an alternative metric wherein the cylinder isn’t flat. However, the key point we want
to underscore is that it’s possible to render the cylinder flat within a certain metric. Thus, it has zero
intrinsic curvature but it does exhibit non-zero extrinsic curvature since the cylinder is embedded in
higher-dimension space. Extrinsic curvature refers to how the surface curves in dimensions beyond
its own, while measurements of lengths and areas within a curved surface only reveal the intrinsic
curvature, excluding the extrinsic curvature.

Now, we can turn our attention to the definition of the curvature tensor [13] which is

Kαβ = hα
γ∇γζβ, (C.44)

where ζβ is the unit tangent vector to a geodesic congruence which is orthogonal to the specific
hypersurface we are considering, Ω. Since the congruence is hypersurface orthogonal we have that the
vorticity tensor is zero, thus the extrinsic curvature is symmetric [13, 76]. Nonetheless, it’s feasible to
expand this definition by differentiating it with respect to the normal vector field to Ω. It’s conceivable
to conceptualize extrinsic curvature without necessitating the introduction of any geodesic congruence.
This is due to the fact that when provided with the normal vector to a spatial hypersurface, it’s always
possible to identify a set of geodesics that, on the hypersurface Σ, possess the normal vector as their
normalized tangent vector. Thus, we can write

Kαβ = hα
γ∇γnβ =

1

2
£nhαβ, (C.45)
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where the last equality can be shown in this way. First of all, since the extrinsic curvature is symmetric
we have

∇αnβ = ∇βnα. (C.46)
Now, using this equation and the normalization condition we get

nα∇βn
α = nα∇βnα = 0

nα∇βnα = nα∇βnα = 0

nα∇αnβ = nα∇βnα = nα∇βn
α = 0

, (C.47)

Now, we can verify what we are interested in by direct computation of the Lie derivative as
£nhαβ = (gαβ + nαnβ);γ n

γ + (gαγ + nαnγ)n
γ
;β + (gγβ + nγnβ)n

γ
;α (C.48)

= nβn
γ∇γnα + nαn

γ∇γnβ +∇αnβ +∇βnα + nγnβ∇αn
γ + nαnγ∇βn

γ (C.49)
= 2∇αnβ + nβn

γ∇γnα = 2hα
γ∇γnβ, (C.50)

where ; stands for four-dimansional covariant derivative and where we have used eq.(C.47).

Now, we derive an explicit useful expression for the extrinsic curvature starting from the definition
and using the definition of the Lie derivative [38]

Kαβ =
1

2
£nhαβ =

1

2
[nγ∇γhαβ + hαγ∇βn

γ + hβγ∇αn
γ ] (C.51)

=
1

2
hα

γhβ
δ [nµ∇µhγδ + hγν∇δn

ν + hδµ∇γn
µ] , (C.52)

where the last passage can be proven by direct evaluation and using the definition of the projection
tensor hαβ and the properties of eq.(C.47). Now, by multiplying and dividing by the lapse function
eq.(C.52) and by using that

hγµN∇νn
µ = hγν∇νNn

µ, (C.53)
we arrive at

Kαβ =
1

2N
hα

γhβ
δ [Nnµ∇µhγδ + hγν∇δNn

ν + hδµ∇γNn
µ] (C.54)

=
1

2N
hα

γhβ
δ [(tµ −Nµ)∇µhγδ + hγν∇δ (t

ν −Nν) + hδµ∇γ (t
µ −Nµ)] (C.55)

=
1

2N
hα

γhβ
δ [£thγδ −£Nhγδ] , (C.56)

where we have used that nα = 1
N (tα −Nα). Now, we need to directly evaluate the second Lie

derivative
hα

γhβ
δ£Nhγδ = hα

γhβ
δ [Nγ∇γhαβ + hαγ∇βN

γ + hβγ∇αN
γ ] (C.57)

= hα
γhβ

δNµ∇µhγδ + hµαh
ν
β∇νNµ + hα

γhβδ∇γ

(
hδνNν

)
(C.58)

= DαNβ +DβNα + hα
γhβ

δNµ∇µhγδ + hαµhβ
νNχ∇νh

χν + hα
µhβνNχ∇µh

νχ (C.59)
= DαNβ +DβNα, (C.60)

where in the last passage we have used that
hα

γhβ
δNµ∇µhγδ = hα

γhβ
δNµ (nγ∇µnδ +∇µnγnδ) = 0, (C.61)

hαµhβ
νNχ∇νh

χν = hαµhβ
νNχ (∇νn

χnν + nχ∇νn
ν) = 0, (C.62)

hα
µhβνNχ∇µh

νχ = hα
µhβνNχ (∇µ∇µn

νnχ + nν∇µn
χ) = 0. (C.63)

Now, we are ready to express the extrinsic curvature in its final form

Kαβ =
1

2N

[
hα

γhβ
δ£thγδ −DαNβ −DβNα

]
=

1

2N

[
ḣαβ −DαNβ −DβNα

]
, (C.64)

where in the last step we have used ḣαβ =
∂hαβ

∂t [13]. This property can be immediately understood
once we recall the coordinates we are adopting; see also the discussion relative to the Lie derivative
presented in [38].
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C.3.4 The ADM ’s action

Now, we start by deriving the expression for the ADM ’s action. First of all, we stress that the
philosophy is to relate four-dimensional quantities to three-dimensional ones. For the sake of simplicity,
we explicitly indicate when a quantity pertains to three dimensions. As we’ll show in a moment we
have that

Gαβn
αnβ = Rαβn

αnβ − R

2
gαβn

αnβ = Rαβn
αnβ +

R

2
=

1

2

{
(3)R+K2 −KαβKαβ

}
, (C.65)

Rαβn
αnβ = K2 −KαβKαβ, (C.66)

where Gµν is the Einstein tensor [13], (3)R is the Ricci scalar of the spatial hypersurfaces, and

K2 = (Kα
α)

2 . (C.67)

Once we have established these relations we can write the Hilbert-Einstein action as [13]

LHE =
√
−gR = N

√
hR = N

√
h2
(
Gαβn

αnβ −Rαβn
αnβ

)
= N

√
h
[
(3)R+KαβKαβ −K2

]
, (C.68)

where we do not show that √−g = N
√
h [13], where √

−g and
√
h are the determinant of the four and

three metric. The crucial observation we make is that there are no temporal derivatives of the lapse
function N(t, x, y, z) and the shift function N i(t, x, y, z). Consequently, these components account for
four degrees of freedom that act as constraints in the same fashion the temporal component of the
vector potential Aµ is a constraint in the electromagnetic Lagrangian. We will proceed to solve the
relative equations of motions and subsequently plug the solutions into the action. This is the most
significant outcome from the perspective of our objective within the framework of the ADM ’s action.

We now move forward to demonstrate the previously mentioned identities eq.(C.65) and (C.66). To
accomplish this, we start with the expression for the three-dimensional Riemann tensor. Thus, we
consider a one-dimensional form defined on Σ and how the Riemann tensor acts on it

(3)Rαβγ
δwδ = (DαDβ −DβDα)wγ . (C.69)

First of all, we evaluate the first term and then we obtain the second by symmetry

DαDβwγ = hβ
χhγ

δhα
µ∇µ

(
hχ

νhδ
φ∇νwφ

)
= hβ

χhγ
δhα

µ∇µ∇χwδ + hγ
δKαβn

ζ∇ζwδ − hβ
δwζK

ζ
δKγα,

(C.70)

where, in order to get the final result, one has to use

∇αh
β
γ = ∇α

(
nβnγ

)
, hβ

γnγ = 0, hαβh
β
γ = hαγ , nγw

γ = 0. (C.71)

Now, using eq.(C.70) and its symmetrized version we get
(3)Rαβγ

δ = hα
µhβ

χhγ
δhδνRµχγ

ν +KγβK
δ
α −KγαK

δ
β, (C.72)

where no specific remarks need to be made regarding this calculation. Now, we list a series of properties
that we need to perform the actual calculation.

Rαβγδg
αγgβδ = Rαγg

βδ = R, (C.73)
Rαβγδg

αβnβnδ = Rβαδγg
αβnβnδ = Rβδn

βnδ, (C.74)
Rαβγδn

αnγgβδ = Rαγn
αnγ , (C.75)

Rαβγδn
αnβnγnδ = −Rαβδγnαnβnγnδ = 0, (C.76)

where R is the Ricci scalar while Rαβ the Ricci tensor. Thus, in order to proceed we have to compute

Rαβγδh
αγhβδ = Rαβγδ (g

αγ + nαnγ)
(
gβδ + nβnδ

)
= R+ 2Rαβn

αβ = 2Gαβn
αnβ. (C.77)
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Now, if we compute
(3)Rαβγδh

αγhβδ = Rαβγδh
αγhβδ +KαβKαβ −K2, (C.78)

where, no observations are to be made for this computation. Thus, we have proved the first relation.
Now, we turn to the second one.

Rαβn
αnβ = Rαγβ

γnαnβ = −nαgχγRαγχβnβ = −nαgχγ [∇α∇γ −∇γ∇α]nχ (C.79)
= K2 −KαβKαβ. (C.80)

In arriving at this result, we’ve exploited the symmetries of the Riemann tensor. Notably, the key
observation is that the final outcome is attained through the application of Leibniz rules, along with
the properties outlined in equation Eq.(C.47), and the symmetry of the extrinsic curvature tensor.

We conclude this section by observing that since Kµν is a spatial tensor we have that Kµνnν = 0.
This, implies that Kµ0 = K0

µ = 0. So, in order to compute the ADM ’s action we do not need to
evaluate K0µ

KαβKαβ = KijKij , K = Kµ
µ = Ki

i. (C.81)

This essentially indicates that we can work as Kij were a tensor defined on a Riemannian manifold
and raise its indices using (3)gij . This final step is allowed by the explicit expression of hµν , for which
we are aware that hµ0 = 0 for all µ. This observation will be useful when expanding the action of the
chiral-scalar tensor theories of gravity.

C.4 The tensor power spectrum in single-field slow-roll models.

As mentioned in section 2.5, we have the option to simplify the equations by setting N = 1, N i = 0,
and all the scalars in the metric to zero, resulting in the following expressions:

gµν =

(
1 0
0 a2(δij + γij +

1
2γilγ

l
j)

)
, gµν =

(
1 0
0 a−2(δij − γij + 1

2γ
ilγj l)

)
. (C.82)

Starting from the extrinsic curvature tensor we simply get

Kij =
1

2
ġij = ȧaδij + ȧaγij +

1

2
a2γ̇ij +

1

2
ȧaγikγ

k
j +

1

4
a2γ̇ikγ

k
j +

1

4
a2γikγ̇

k
j . (C.83)

from which we can obtain the fully contravariant version as follows

Kij = gilgjfKlf (C.84)

= a−4(δil − γil +
1

2
γikγlk)(δ

jf − γjf +
1

2
γjkγfk )

(
ȧaδlf + ȧaγlf +

1

2
a2γ̇lf +

1

2
ȧaγlkγ

k
f

+
1

4
a2γ̇lkγ

k
f +

1

4
a2γlkγ̇

k
f

)
(C.85)

= a−4

(
ȧaδij + ȧaγij +

1

2
a2γ̇ij +

1

2
ȧaγikγ

kj +
1

4
a2γ̇ikγ

kj +
1

4
a2γikγ̇

kj

)
+

a−4
(
−δilγjf − γilδjf

)(
ȧaδlf + ȧaγlf +

1

2
a2γ̇lf

)
+

ȧ

a3

[
γifγ

jf +
1

2
δilγjkγlk +

1

2
γikγjk

]
(C.86)

=
ȧ

a3
δij − ȧ

a3
γij +

1

2
a−2γ̇ij +

1

2

ȧ

a3
γikγjk −

1

4
a−2γ̇ikγjk +

1

4
a−2γikγ̇jk (C.87)

= a−4

{
ȧaδij + ȧaγij +

1

2
a2γ̇ij +

1

2
ȧaγikγ

kj +
1

4
a2γ̇ikγ

kj +
1

4
a2γikγ̇

kj − 2(ȧaγij + γjf ȧaγif )

− 1

2
a2γ̇ifγ

jf − 1

2
a2γ̇ilγjl + ȧa

[
γifγ

jf +
1

2
δilγjkγlk +

1

2
γikγjk

]}
(C.88)

= a−4

(
ȧaδij − ȧaγij +

1

2
a2γ̇ij +

1

2
ȧaγikγ

kj − 1

4
a2γ̇ikγ

kj − 1

4
a2γikγ̇

kj

)
(C.89)

=
ȧ

a3
δij − ȧ

a3
γij +

1

2
a−2γ̇ij +

1

2

ȧ

a3
γikγjk −

1

4
a−2γ̇ikγjk −

1

4
a−2γikγ̇jk. (C.90)
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Now we can compute what it’s needed in order to rewrite the Lagrangian

KijKij =

[
ȧ

a3
δij − ȧ

a3
γij +

1

2
a−2γ̇ij +

1

2

ȧ

a3
γikγjk −

1

4
a−2γ̇ikγjk −

1

4
a−2γikγ̇jk

]
(C.91)

×
[
ȧaδij + ȧaγij +

1

2
a2γ̇ij +

1

2
ȧaγikγ

k
j +

1

4
a2γ̇ikγ

k
j +

1

4
a2γikγ̇

k
j

]
(C.92)

=
ȧ

a3

[
3ȧa+

1

2
ȧaγikγ

k
i +

1

2
a2γ̇ikγ

ki

]
− ȧ

a3
γij
[
ȧaγij +

1

2
a2γ̇ij

]
+

1

2
a−2γ̇ij

[
ȧaγij +

1

2
a2γ̇ij

]
+

(C.93)[
+
1

2
ȧaγikγ

ki − 1

4
a2γ̇ikγ

ki − 1

4
a2γikγ̇

ik

]
ȧ

a3
(C.94)

= 3
ȧ2

a2
+

1

4
γ̇ij γ̇ij . (C.95)

Now we can compute the trace of the extrinsic curvature retaining terms up to second order as follows

gijKij = a−2(δij − γij +
1

2
γilγjl )

[
ȧaδij + ȧaγij +

1

2
a2γ̇ij +

1

2
ȧaγikγ

k
j +

1

4
a2γ̇ikγ

k
j +

1

4
a2γikγ̇

k
j

]
(C.96)

=

[
3
ȧ

a
+

1

2

ȧ

a
γikγ

ki +
1

4
γ̇ikγ

ki +
1

4
γikγ̇

ki

]
− γij

[
ȧ

a
δij +

ȧ

a
γij +

1

2
γ̇ij

]
+

1

2
γilγli

ȧ

a
(C.97)

= 3
ȧ

a
. (C.98)

Now in order to complete the computation of the LHE we need the expression of the Ricci scalar.
Thus, starting from the Christoffel symbols we have

(3)Γijk =
gil

2
[glj,k + glk,j − gjk,l] (C.99)

=
1

2
(δil − γil +

1

2
γifγlf )

[
γjl,k + γkl,j − γjk,l +

1

2

(
(γfl γfj),k + (γfl γfk),j − (γfkγfj),l

)]
(C.100)

=
1

2

(
γij,k + γik,j − γjk

,i +
1

2

(
(γfiγfj),k + (γfiγfk),j − (γfkγfj)

,i
))

− 1

2
γil [γjl,k + γkl,j − γjk,l] .

(C.101)

Before we continue, it is worth noting that because the tensor is traceless and transverse, (3)Γiil is of
second order in the perturbation. Therefore the Ricci tensor on the three-space reads

Rij = ∂kΓ
k
ij − ∂jΓ

k
ik −

1

2
ΓlijΓ

k
lk − ΓlkjΓ

k
li (C.102)

= ∂kB
k
ij − ∂jAi −

1

2
γij

,k
,k −

1

4

[
γlk,j + γlj,k − γkj

,l
] [
γkl,i + γki,l − γli

,k
]
, (C.103)

where we have introduced Bf
ij and Af , the explicit forms of which are not crucial for our current

discussion. The essential point is that they can both be expressed as spatial divergences. Now since it
eq.(C.103) contains both first and second-order terms to get the Ricci scalar is sufficient to contract
with the inverse metric expanded up to first order

R = a−2

{
∂jD

j +
1

2
γijγij

,k
,k −

1

4

[
γlk

,i + γli,k − γik
,l
] [
γkl

,i + γki,l − γli
,k
]}

(C.104)

= a−2

{
F i,i +

1

2
γijγij

,k
,k −

1

4

[
γlk

,iγkl
,i − γli,kγli

,k − γik
,lγki,l

]}
(C.105)

=
1

a2

[
∂iD

i +
1

2
γijγij

,k
,k +

1

4
γli,kγil

,k

]
(C.106)
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where the explicit form of Dj is not important but it’s worth noticing that it’s of second order in
tensor perturbation. Using this Mathematica code it’s possible to verify that

√
h ≈ a3(1 +O(h3)). (C.107)

Thus we can finally write the action, setting N = 1, as follows

S
(2)
T =

∫
M2
pl

2
d4xN

√
h
[
(3)R+KijK

ij −K2
]

(C.108)

=

∫
M2
pl

2
d4xa3

{
1

a2

[
∂iD

i +
1

2
γijγij

,k
,k +

1

4
γli,kγil

,k

]
+ 3

ȧ2

a2
+

1

4
γ̇ij γ̇ij − 9

ȧ2

a2

}
, (C.109)

which neglecting the 0th order action, integrating by parts, and eliminating total derivatives can be
recast as

S
(2)
T =

∫
d4x

M2
pl

8
a3
{
γ̇ij γ̇ij −

1

a2
γli,kγil

,k

}
. (C.110)

The result can be rewritten using conformal time as

S
(2)
T =

∫
d4x

M2
pl

8
a
{
γ

′ ij
γ

′
ij − γli,kγil

,k
}
. (C.111)
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D Appendix D

D.1 Polarization tensors

The focus of this section is to analyze two bases for the polarization tensors along with their respective
properties [7]. First of all, we introduce the Fourier transform of the tensor perturbation as

hij(x, τ) =

∫
d3k

(2π)3

∑
s

hs(k, τ)ε
(s)
ij (n̂), (D.1)

where ε(s)ij (n̂) are the two components for the polarization basis and

n̂ ≡ k

k
= (sin θ cosφ, sin θ sinφ, cos θ) (D.2)

with k =| k |.

1. The {+,×} basis which is constructed starting from two orthonormal vectors{
v = (sinφ,− cosφ, 0)

w = (cos θ cosφ, cos θ sinφ,− sin θ)
if θ 6= π

2
, (D.3){

v = (1, 0, 0)

w = (0, 1, 0)
if θ = 0, (D.4)

which are orthogonal to the vector n̂. Thus we can introduce the two polarizations tensor as

ε+ij = vivj − wiwj , ε×ij = wivj + viwj , (D.5)

which are real, traceless, and transverse, i.e.[
εsij(k)

]∗
=
[
εsij(k)

]
, T r{εsij(k)} = 0, εsij(k)k

i = εsij(k)k
j = 0, with s = +/× . (D.6)

Sending k 7−→ −k we have that (see fig.27 appendix B.1)

v 7−→ +v, (D.7)
w 7−→ −w, (D.8)

which allow us to write {
ε+ij(−k) = ε+ij(k)

ε×ij(−k) = −ε×ij(k)
. (D.9)

Moreover, it’s easy to show that we have{
Tr{ε+ij(k)ε

+
ij(k)} = Tr{ε×ij(k)ε

×
ij(k)} = 2

Tr{ε+ij(k)ε
×
ij(k)} = Tr{ε×ij(k)ε

+
ij(k)} = 0

. (D.10)

2. The chiral basis {R,L} is defined as

εRij =
ε+ij + iε×ij√

2
, εLij =

ε+ij − iε×ij√
2

, (D.11)

which are one the complex conjugate of the other, traceless and transverse, i.e.[
εLij(k)

]∗
=
[
εRij(k)

]
, T r{εsij(k)} = 0, εsij(k)k

i = εsij(k)k
j = 0, with s = R/L. (D.12)

153



Using eq.(D.9) we can deduce {
εRij(−k) = εLij(k)

εLij(−k) = εRij(k)
. (D.13)

Moreover, from eq.(D.10) we can obtain that{
Tr{εRij(k)εLij(k)} = Tr{εLij(k)εRij(k)} = 2

Tr{εRij(k)εRij(k)} = Tr{εLij(k)εLij(k)} = 0
. (D.14)

The last property we report is

εijfkj [ε
s]lj (k) = −iλsk [εs]li (k), (D.15)

where λs = +1/− 1 for s = R/L and k =| k |. In the case s = R we can write the following

εijfkj
[
εR
]l
j
(k) = εijfkj

[ε+]
l
f (k) + i [ε×]

l
f (k)√

2
(D.16)

= εijfkj
vfv

l − wfw
l + iwfv

l + ivfw
l

√
2

(D.17)

= k
wivl + viwl − ivivl + iwiwl√

2
(D.18)

= −ik iw
ivl + iviwl + vivl − wiwl√

2
(D.19)

(D.20)
= −ikλRεliR, (D.21)

where we have used that (a× b)i) = εijkajbk and that{
k× v = w

k×w = −v,
(D.22)

which can be obtained by the definitions of v and w. Now taking k 7−→ −k in eq.(D.21) we get

εijfkj
[
εR
]l
j
(−k) = εijfkj

[
εL
]l
j
(k) = = +ikλRε

li
R(−k) = −ikλLεliL(k). (D.23)

This concludes the demonstration of the assertion of eq.(D.15).
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D.2 Two equivalent ways to express the Pontryagin density

Now we prove that the Pontryagin density

∗RR = ∗RσρµνRσρµν , (D.24)

can be expressed alternatively as

∗RR = ∗CσρµνCσρµν . (D.25)

This follows from the definition of the Weyl tensor

Cµνρσ = Rµνρσ −
1

2
(gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ) +

R

6
(gµρgνσ − gνρgµσ). (D.26)

In fact inserting eq.(D.26) into eq.(D.25) we get

∗RR = ∗CσρµνCρσµν =
1

2
√
−g

εµνρσCκλµνCκλρσ (D.27)

=
1

2
√
−g

εµνρσ
[
Rκλµν −

1

2
(gκµR

ν
λ − gκνR

λ
µ − gλµR

κ
ν + gλνR

κ
µ) +

R

6
(gκµg

λ
ν − gλµg

κ
ν)

]
×
[
Rκλρσ −

1

2
(gρκRσλ − gρλRσκ − gσκRρλ + gσλRρκ) +

R

6
(gρκgσλ − gσκgρλ)

]
, (D.28)

which can be decomposed into three terms that we evaluate separately. The first one reads as

1st =
εµνρσ

2
√
−g

[
RκλµνRκλρσ −

1

2
(Rρ

λ
µνRσλ −RκρµνRσκ −Rσ

λ
µνRρλ +RκσµνRρκ) +

R

6
(Rρσµν −Rσρµν)

]
(D.29)

=
εµνρσ

2
√
−g

[
RκλµνRκλρσ −

1

2
(Rρ

λ
µνRσλ −RκρµνRσκ −Rσ

λ
µνRρλ +RκσµνRρκ) +

R

6
(Rρσµν −Rσρµν)

]
(D.30)

=
εµνρσ

2
√
−g

RκλµνRκλρσ, (D.31)

where we have used that εµνρσRµνρσ = 0 and εµνρσRλνρσR
λ
µ = 0. The first relation can be demon-

strated in this way

εµνρσRµνρσ = ε0ijkR0ijk + εi0jkRi0jk + εij0kRij0k + εijk0Rijk0 = 4ε0ijkR0ijk (D.32)
= 4

[
ε0123R0123 + ε0132R0132 + ε0213R0213 + ε0231R0231 + ε0312R0312 + ε0321R0321

]
(D.33)

= 4
[
ε0123 (R0123 +R0231 +R0312) + ε0132 (R0132 +R0213 +R0321)

]
= 0, (D.34)

where we have used that
Rµνρσ = −Rνµρσ
Rµνρσ = −Rµνσρ
Rµνρσ = Rρσµν

, and Rµνρσ +Rµσνρ +Rµρσν = 0. (D.35)

In an analogous way we get

εµνρσRλνρσR
λ
µ = ε0ijkRλijkR

λ
0 + εi0jkRiλjkR

λ
0R

λ
0 + εij0kRijλkR

λ
0 + εijk0RijkλR

λ
0 = 4ε0ijkRλijkR

λ
0

(D.36)
= 4Rλ0

[
ε0123Rλ123 + ε0132Rλ132 + ε0213Rλ213 + ε0231Rλ231 + ε0312Rλ312 + ε0321Rλ321

]
(D.37)

= 4Rλ0
[
ε0123 (Rλ123 +Rλ231 +Rλ312) + ε0132 (Rλ132 +Rλ213 +Rλ321)

]
= 0. (D.38)

155



The second piece of eq.(D.28) can be written as

2nd =− 1

4
√
−g

εµνρσ(gκµR
λ
ν − gκνR

λ
µ − gλµR

κ
ν + gλνR

κ
µ)

[
Rκλρσ −

1

2
(gρκRσλ − gρλRσκ − gσκRρλ + gσλRρκ)

+
R

6
(gρκgσλ − gσκgρλ)

]
(D.39)

=− εµνρσ

4
√
−g

Rλν

[
Rµλρσ −

1

2
(gρµRσλ − gρλRσµ − gσµRρλ + gσλRρµ) +

R

6
(gρµgσλ − gσµgρλ)− (µ↔ ν)

]
+

εµνρσ

4
√
−g

Rκν

[
Rκµρσ −

1

2
(gρκRσµ − gρµRσκ − gσκRρµ + gσµRρκ) +

R

6
(gρκgσµ − gσκgρµ)− (µ↔ ν)

]
(D.40)

= 0, (D.41)

where we have used that gαβ and Rαβ are symmetric, εµνρσRµνρσ = 0 and εµνρσRλνρσR
λ
µ = 0. The

third one can be put in the following form

3rd =
R

6
εµνρσ(gκµg

λ
ν − gλµg

κ
ν)

[
Rρσκλ −

1

2
(gρκRσλ − gρλRσκ − gσκRρλ + gσλRρκ) +

R

6
(gρκgσλ − gσκgρλ)

]
(D.42)

=
R

6
εµνρσ

[
Rρσµν −

1

2
(gρµRσν − gρνRσµ − gσµRρν + gσνRρµ) +

R

6
(gρµgσν − gσµgρν)

]
− R

6
εµνρσ

[
Rρσνµ −

1

2
(gρνRσµ − gρµRσν − gσνRρµ + gσµRρν) +

R

6
(gρνgσµ − gσνgρµ)

]
(D.43)

= 0. (D.44)

Thus we have proved the statement.

D.3 Expansion of the Pontryagin density in tensor perturbation up to second
order

As explained in section 5.4 we don’t need second order perturbations but only first order one. Thus
we can use the following metric tensor

g̃αβ =

(
−1 0
0 (δij + hij)

)
, g̃αβ=

(
−1 0
0 (δij − hij).

)
(D.45)

Now we can proceed in computing the Christoffel symbols and we get

Γ0
00 = Γ0

0i = Γi00 = 0, (D.46)

Γ0
ij =

1

2
g00(−gij,0) =

1

2
h

′
ij , (D.47)

Γi0j =
1

2
gik(gk0,j + gkj,0 − g0j,k) =

1

2
δikh

′
kj =

1

2
h

′ i
j , (D.48)

Γijk =
1

2
δif (hjf,k + hkf,j − gjk,f ) =

1

2
(hij,k + hik,j − g,ijk), (D.49)

where, in this context, we have represented the time derivative using the conformal derivative, as we
began with a metric where we adopted conformal time. Thus we can expand the zero component of
the topological current,

K0 := ε0βδγ
(
Γχβσ∂δΓ

σ
γχ +

2

3
ΓχβσΓ

σ
δεΓ

ε
γχ

)
, (D.50)
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up to second order, in the following way

K0 = ε0bcd
(
Γnbm∂cΓ

m
dn +

2

3
ΓnbmΓ

m
clΓ

l
dn

)
(D.51)

= ε0bcd
(
Γ0

b0∂cΓ
0
d0 + Γ0

bf∂cΓ
f
d0 + Γf b0∂cΓ

0
df + Γf bl∂cΓ

l
df

)
(D.52)

= ε0bcd
(
1

4
h

′
bf∂ch

′f
d +

1

4
h

′f
b∂ch

′
df +

1

2
(hf b,l + hf l,b − hlb

,f )
1

2
(hld,fc + hlf,dc − hfd,c

,l)

)
(D.53)

= ε0bcd
1

2

(
h

′f
b∂ch

′
df − hlb

,fhld,fc

)
, (D.54)

where in the second passage we have disregarded third order terms while in the last one, we have
eliminated all the contributions that can be integrated away in the action. Thus we get

S
(2)
CS =

∫
d4x

[
− φ

′

2f
K0

]
=

∫
d4x

φ
′

4f

[
−h′f

b∂ch
′
df + hlb

,fhld,fc

]
. (D.55)

D.4 The actions S1, S2, and S3 in Fourier space

So starting from the kinetic term, i.e. S1, using this expression for the tensor in Fourier space31

hij(x, τ) =
∑

s=R/L

∫
d3k

(2π)3
us(k, τ)ε

s
ij(k)e

ik·x, (D.56)

we can write

S1 =

∫
d4x

M2
pl

8
a2

∑
a,z=R,L

∫
d3qd3kei(q+k)·x

(2π)6

{
u

′
a(k)u

′
z(q)[εa]

i
j(k)[εz]

j
i (q) + kfqfua(k)uz(q)[εa]

i
j(k)[εz]

j
i (q)

}
(D.57)

=

∫
dτ
M2
pl

8
a2

∑
a,z=R,L

∫
d3k

(2π)3

{
u

′
a(k)u

′
z(−k)[εa]

i
j(k)[εz]

j
i (−k)− k2ua(k)uz(−k)[εa]

i
j(k)[εz]

j
i (−k)

}
(D.58)

=

∫
dτM2

pla
2

8

d3k

(2π)3

{
u

′
R(k)u

′
R(−k)[εR]

i
j(k)[εR]

j
i (−k) + u

′
R(k)u

′
L(−k)[εR]

i
j(k)[εL]

j
i (−k)

+ u
′
L(k)u

′
R(−k)[εL]

i
j(k)[εR]

j
i (k) + u

′
L(k)u

′
L(−k)[εL]

i
j(k)[εL]

j
i (−k)− k2[uR(k)uR(−k)[εR]

i
j(k)[εR]

j
i (−k)

+ uR(k)uL(−k)[εR]
i
j(k)[εL]

j
i (−k) + uL(k)uR(−k)[εL]

i
j(k)[εR]

j
i (−k) + uL(k)uL(−k)[εL]

i
j(k)[εL]

j
i (−k)]

}
=

∫
dτM2

pla
2

8

d3k

(2π)3

{
u

′
R(k)u

′
R(−k)[εR]

i
j(k)[εL]

j
i (k) + u

′
L(k)u

′
L(−k)[εL]

i
j(k)[εR]

j
i (k)

− k2[uR(k)uR(−k)[εR]
i
j(k)[εL]

j
i (k) + uL(k)uL(−k)[εL]

i
j(k)[εR]

j
i (k)]

}
(D.59)

=

∫
dτM2

pla
2

4

d3k

(2π)3

{
u

′
R(k)u

′
R(−k) + u

′
L(k)u

′
L(−k)− k2 [uR(k)uR(−k) + uL(k)uL(−k)]

}
,

(D.60)

31Notice that between this mode functions and the one written in section 5.4 there is a multiplicative factor which
doesn’t modify on the EoM .
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where in the second equality we have performed the q integral using the δ3(k+ q) arising from the x
integral while in the fourth we have used eq.(D.14). For the action S2 we obtain

S2 = −i
∑

z,a=R/L

∫
d4x

φ
′
εijf

4f

∫
d3ke+ik·x

(2π)3
d3qe+iq·x

(2π)3

[
[εz]li(k)u

′
z(k)qj [εa]

l
j(q)u

′
a(q)

]
(D.61)

= −i
∫
dτ
φ

′
εijf

4f

∫
d3k

(2π)3

∑
z,a=R/L

{
[εz]li(k)u

′
z(k)kf [εa]

l
j(−k)u

′
a(−k)

}
(D.62)

= −i
∫
dτ
φ

′
εijfkf
4f

∫
d3k

(2π)3

{
u

′
R(k)u

′
R(−k)[εR]li(k)[εR]

l
j(−k)

+ u
′
R(k)u

′
L(−k)[εL]li(k)[εR]

l
j(−k) + u

′
L(k)u

′
R(−k)[εL]li(k)[εR]

l
j(−k) + u

′
L(k)u

′
L(−k)[εL]li(k)[εL]

l
j(−k)

}
(D.63)

= −i
∫
dτ
φ

′
εijfkf
4f

∫
d3k

(2π)3

{
u

′
R(k)u

′
R(−k)[εR]li(k)[εL]

l
j(k) + u

′
R(k)u

′
L(−k)[εR]li(k)[εR]

l
j(k)

+ u
′
R(−k)u

′
L(k)[εL]li(k)[εL]

l
j(k) + u

′
L(k)u

′
L(−k)[εL]li(k)[εR]

l
j(k)

}
(D.64)

= −i
∫
dτ
φ

′
εijfkf
4f

∫
d3k

(2π)3

{
u

′
R(k)u

′
R(−k)[εL]

l
j(k)[εR]li(k) + u

′
L(k)u

′
L(−k)[εL]li(k)[εR]

l
j(k)

}
(D.65)

= −
∫
dτ
φ

′
k

4f

∫
d3k

(2π)3

{
u

′
R(k)u

′
R(−k)[εR]

l
j(k)[εL]lj(k)− u

′
L(k)u

′
L(−k)[εL]li(k)[εR]

l
i(k)

}
(D.66)

= −
∫
dτ
φ

′
k

2f

∫
d3k

(2π)3

{
u

′
R(k)u

′
R(−k)− u

′
L(k)u

′
L(−k)

}
(D.67)

where we have used the same techniques adopted in deriving eq.(D.67), we have used eq.(D.13), in the
fifth equality we have exploited the property demonstrated in eq.(D.21) and (D.23) of the appendix
D.1. Regarding the action S3 we get

S3 = −
∑

z,a=R/L

∫
d4x

φ
′
εijf

4f

∫
d3ke+ik·x

(2π)3
d3qe+iq·x

(2π)3

[
+ikm[εz]li(k)uz(k)

(
qfq

m[εa]
l
j(q)ua(q)

)]
(D.68)

= −i
∫
dτ
φεijf

4f
a4
∫

d3k

(2π)3
k2

∑
z=R/L

{[
[εz]li(k)uz(k)kf [εa]

l
j(−k)ua(−k)

]}
(D.69)

= −i
∫
dτ
φ

′
εijf

4f

d3k

(2π)3
k2kf

{
uR(k)uR(−k)[εR]li(k)[εR]

l
j(−k) + uR(k)uL(−k)[εR]li(k)[εL]

l
j(−k)

+ uL(k)uR(−k)[εL]li(k)[εR]
l
j(−k) + uL(k)uL(−k)[εL]li(k)[εL]

l
j(−k)

}
(D.70)

= −i
∫
dτ
φ

′
εijf

4f

d3k

(2π)3
k2kf

{
uR(k)uR(−k)[εR]li(k)[εL]

l
j(k) + uR(k)uL(−k)[εR]li(k)[εR]

l
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= −i
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= +

∫
dτ
φ

′
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d3k

(2π)3
k3
{
uR(k)uR(−k)− u

′
L(k)uL(−k)

}
, (D.73)
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where we have exploited the same properties used for deriving the expression of S2.

D.5 Expansion of z
′′
(τ,k)

z(τ,k)

The goal of this section is to expand at the lowest order in the slow roll parameters z
′′
(τ,k)

z(τ,k) , where we
recall that

zs(k, τ) ≡ a(τ)

√
1− λs

2k

M2
plfa

2
φ′ = a(τ)

√
1− λs

kg

a2
, (D.74)

where in order to simplify the computations, we have introduced

g =
2

M2
plf

φ
′
. (D.75)

The time derivative of z reads

z
′
s =

a
′

a
zs −

1

2
λsk

a2

zs

(
g
′

a2

)′

, (D.76)

while we can write its second derivative as

z
′′
s =

a
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a
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a
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a2
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a
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a
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1

2
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(
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)(
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Now we can write the quantity of interest as

z
′′
s
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Now we need the explicit expression of g
′

a2
and its derivatives as functions of the slow roll parameters

(see section 2.2). Thus, considering the lowest order and taking φ̇ < 032 [68] we retrieve(
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′
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where we have used that φ̇ = −
√
2εMplH and a(τ) = − 1

Hτ(1−ε) (see appendix C.1). While regarding
its first and second derivatives we respectively get(
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′
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(D.82)
32We can choose the sign of the derivative of the inflaton field as we want since it depends on the shape of the potential.
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where we have used the fact that derivatives of the slow-roll parameters and H produce other powers
of these parameters and(

g
′

a2

)′′

≈

[
2
√
2εMpl

f

(
Hinf

Mpl

)2
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=
2
√
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3
2 ) ≈ 0. (D.83)

Inserting eq.(D.81), (D.82) and (D.83), in eq.(D.80), we obtain
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Now using that what it’s shown in appendix C.1 we obtain

z
′′
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zs
≈ 2

τ2
(1 +

3
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1
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Finally, if we introduce the “chemical potential" µ as

µ ≡
√
2εMpl

f

(
Hinf

Mpl

)2

(D.86)

we arrive at the desire expression

χ
′′
s +

[
k2 −

(
1 + 3ε

τ2
+

2kµ

τ

)]
χs = 0, (D.87)

which coincides with eq.(4.9) of [7] and with eq.(59) of [68].
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