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Abstract
Recent experimental research showed that nucleotides, under favorable conditions of temperature
and concentration, can self-assemble into liquid crystals. The mechanism involves the stacking of
nucleotides into columnar aggregates. It has been proposed that this ordered structure can favor the
polymerization of long nucleotide chains, which is a fundamental step toward the so called “RNA
world”. In this thesis, starting from ab initio molecular dynamics simulations, at the density func-
tional theory level, an all-atom potential for nucleotides in water, based on an implicit neural network
representation, has been developed. Its stability and accuracy have been tested and its predictions on
simple model systems have been compared with data generated both ab initio and using currently
available empirical force field for nucleic acids.
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Introduction

The origin of life [1] is one of the most challenging scientific questions of all times. The different time
and length scales of the myriad of physico-chemical processes involved, ranging from the chemical
reactions between small organic compounds, up to the supramolecular aggregation of complex bio-
logical structures, make it a formidable problem to tackle.
One of the open questions in the field regards the polymerization of long nucleic acid chains, like
DNA and RNA strands, that seems to be very unfavorable in prebiotic conditions. Recently a series
of experiments [2], [3], [4] have shown that ultrashort DNA oligomers and even free nucleosides can
form ordered liquid crystal phases in solution. These ordered phases seem to be an interesting can-
didate as an environment for abiotic polymerization of long nucleotide chains [5] : a fundamental
step toward the formation of the so called RNA world. The liquid crystal order could act as a guid-
ing hand for the polymerization process, favoring the formation of long chains capable of biological
activity.
The details of the structure of these aggregates at molecular level is difficult to obtain experimentally.
Detailed insights can be obtained using molecular dynamics, a technique that consists in simulating
the time evolution of a molecular system integrating classical equations of motion of the atomic nu-
clei. This requires the calculation of forces, that can be obtained from the electronic structure or by
classical empiric potentials. The length and time scales involved in supramolecular aggregation place
the present problem outside the domain of quantum mechanical calculations. Moreover, although
accurate classical potentials have been developed for describing DNA and RNA polymers [6], they
may not be transferable to single nucleosides in solution. In this thesis a first attempt to develop a
model based on neural networks to calculate energies and forces for nucleosides in solution is pre-
sented. The model is trained on reference ab initio data and aims to bridge the gap between quantum
accuracy and large-scale, long-time dynamics.
The neural network potential has been tested on three model systems: pure water, free dAMP in wa-
ter and dAMP dimer. These systems have been studied also classically, using a state of the art force
field, and ab initio, using density functional theory. The results obtained with these three methods
are compared in order to assess the capability of the neural network potential of reproducing ab initio
results.
The thesis is structured as follows.

• Chapter one is dedicated to a review of physical and chemical properties of nucleosides, in
particular their capability of forming liquid crystal phases. The experimental results [2], [3], [4],
are discussed.

• Chapter two presents the methods employed, namely: the general framework of molecular
dynamics, classical force fields, density functional theory and neural network potentials.

• Chapter three describes the network training, along with the generation of the training set
from ab initio calculations. The stability of the neural network model is discussed and its error
is quantified. Relevant choices of parameters for the molecular dynamics simulations are also
presented.

• Chapter four presents a comparison between molecular dynamics trajectories obtained ab ini-
tio, with classical force field, and with the neural network potential.
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Chapter 1

Nucleoside phosphates: chemical
properties and liquid crystal assemblies
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Nucleoside phosphates: chemical properties and liquid crystal assemblies

1.1 Nucleoside phosphates: structure and nomenclature
Nucleoside phosphates [7] are molecules composed of a nucleobase linked to a sugar by the so called
glycosidic bond, in turn linked to a phosphate group (that can be mono, di or triphosphate). The
nucleobases that are present in biological systems are five: Guanine (G), Cytosine (C), Adenine (A),
Timine (T) and Uracil (U). These are divided into two groups: pyridines (C, T, U), with one aromatic
ring, and purynes (G, A), with two aromatic rings (figure 1.1). Nucleoside monophosphates are
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Figure 1.1: Structural formulas of nucleoside phosphates. Green labels are the naming conventions adopted in
this work. Structural formulas and naming conventions are taken from the PDB database.

usually called nucleotides. Another important distinction comes from the sugar that is bound to the
nucleobase: it can be ribose or deoxyribose. Nucleosides with ribose are called ribo-nucleosides, with
deoxyribose deoxy-nucleosides. For sake of clarity the following abbreviations are used:

• NMPs, NDPs, NTPs (nucleoside mono, di and triphosphates) when speaking about different
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Nucleoside phosphates: chemical properties and liquid crystal assemblies

nucleosides, in order to mark the difference; the word nucleotides will be used when only
nucleotides are taken into accont;

• the abbreviations XMP, XDP, XTP, with X substituted by one of the five letters A, T, C, G, U,
when speaking about a specific nucleoside phosphate;

• each abbreviation can be preceded by an r or a d to mark the difference between ribonucleosides
and deoxyribonucleosides

For example, dADP denotes deoxy-adenosine-diphosphate, rNTPs the general class of ribo-nucleoside-
triphosphates.

In the following sections some properties of nucleoside phosphates that are relevant in the context of
this work will be pointed out.

1.2 Chemical and physical properties of nucleoside phosphates

Nucleoside phosphates display a rich variety of chemical properties and supramolecular interac-
tions [7]. Nucleobases are capable of forming hydrogen bonds with complementary ones (A with T
and U, G with C), a phenomenon called pairing; aromatic rings can pile together forming stacking
complexes; the phosphate group is highly charged, it has a complex solvation shell and can bind
cations; the molecule itself, being composed by three different parts (base, sugar and phosphate) has
a certain internal flexibility, and the internal torsions are very important, for example, in determining
the mechanical properties of the DNA double helix.

Figure 1.2: Most relevant interactions in nucleotides.

1.2.1 Phosphate group: acidity and phosphodiester bond
The phosphate acid dissociation constant is so low that it can be considered completely ionized at
all pH values of interest [7]. The phosphorus atom in nucleotides is highly electrophilic and is prone
to react with nucleophiles such as the hydroxyl group. The reaction between the phosphate group
and the hydroxyl group of a second nucleotide produces the so called phosphodiester bond. Phos-
phodiester bonds can link many nucleotides together, forming a polymer (like the well known DNA
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Nucleoside phosphates: chemical properties and liquid crystal assemblies

strand). In a nucleotide polymer the series of bonded phosphate groups and sugar rings is called
backbone.

1.2.2 H bonding and W-C Pairing
The most known supramolecolar interaction between nucleobases is the hydrogen bonding. There
are many hydrogen bonding configurations between nucleobases that are, in principle, possible [7].
These configurations are classified according to the edges that participate in H bonding. The nucle-
obases can form hydrogen bonds along three interaction edges that are called sugar, Hoogsten and
Watson-Crick (W-C) edges, as shown in figure 1.3.
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Figure 1.3: Hydrogen bond edges of the five nucleobases.

The most common configuration is the one between W-C edges: this is the configuration that is found
in the double helix of the DNA. Nonetheless also the other interactions have their importance, as they
were found to stabilize certain RNA conformations or more exotic DNA structures.

1.2.3 Aromatic stacking
Aromatic or π stacking are terms usually employed to name the interaction between aromatic rings.
Stacking is the result of the interplay between three contributions: electrostatic interaction, short
range exchange repulsion and dispersion interaction. The stacking interaction has long been known,
but its strength and its contribution to the stability of DNA helices has not been understood un-
til recently, mainly because the contribution of dispersion forces was not taken into account ade-
quately [8]. The earliest model for the description of π stacking assumed it to be principally due to
electrostatic interaction between the quadrupoles possessed by aromatic rings [9]. In the last years,
as quantum mechanical calculations have become more capable of describing dispersion forces, their
role in stacking interaction has been the subject of a large number of works. Many evidences suggest
that this contribution can be even stronger than the quadrupole one [10].
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1.2.4 H bond versus stacking
The relative importance of H bonding and aromatic stacking in the stabilization of the DNA double
helix has been matter of debate for a long time. Both experimental and computational studies faced
many difficulties in separating these energy contributions. In the last two decades, starting from the
seminal work by Yakovchuk et. al. [11] the consensus has oriented towards considering the stacking
interaction as the most important. Moreover some computational evidences suggest that the double
helix is the preferred conformation of the DNA double strand because of the presence of aromatic
stacking: without it the conformation would be ladder-like [12].

Stable crystal
structure

MD simulation without
stacking interaction

Figure 1.4: Change in DNA structure after artificial elimination of stacking interaction. (adapted from [12]).

1.2.5 Stacking aggregates in aqueous solution
It is known that free nucleoside phosphates in solution tend to form small stacking aggregates. Two
seminal experimental works were carried out in the ‘60 using dNMPs [13] [14]
Stacking of dATP was subsequently observed and studied [15] [16]
In [17] values are proposed for the equilibrium constant of dimerization Kdim of dATP and dADP, in
different conditions. At pH=6.9 the values proposed are:

dATP Kdim = (8± 6)× 103

dADP Kdim = (5± 3)× 103

According to tese values even at low concentration nearly all the molecules are associated in stacking
dimers: for example at an dATP concentration of 5 × 10−3 mol/L the 98.75% of the molecules is
associated in stacking.

1.3 Prebiotic synthesis of nucleic acids
Nucleotides are the monomers of nucleic acids RNA and DNA. The ubiquity of RNA in many cel-
lular function and the diversity of the roles that it fulfills (information carrying, protein synthesis,
catalysis) led in the ‘60s to the so called “RNA world” hypothesis [18]: the idea is that RNA could
have played a main role in the early stages of life origin, functioning both as genetic material and as
a catalyst. The discovery in the ‘80s of RNA complexes with self-replication capacity has made this
hypothesis the most widely accepted in the scientific community. Nonetheless many problems are
still open: how did nucleotides assemble from their different molecular parts (ribose, phosphate, nu-
cleobases) under the physical conditions of the earth billions of years ago? Then, after their synthesis,
what mechanism made it possible the formation of the long chains that are capable of self-replication?
This second question is particularly interesting from a soft-matter point of view. The smallest known
rybozimes are around a hundred bases long [19]. Free polymerization reactions are known to give
only small chains for entropic reasons: the resulting length distribution of the chains is a power law
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with many short chains and few longer ones, with negligible probability of having chains with a
biologically relevant length. So, what mechanism favored the formation of long RNA chains? In
the last decades the research in the field has been focused on finding some autocatalytic process in
which lengthening of the chains favors subsequent lengthening, in a positive feedback loop. A pos-
sible mechanism may be based on the capability of nucleosides to form ordered structures known as
liquid crystals [5].

1.4 Liquid crystal phases
Liquid crystals (LCs) are intermediate phases between liquids and solids. They are fluids, in the sense
that they have the mechanical properties of a fluid, but they possess long-range molecular order,
like crystals. The basic building blocks of LCs are called mesogens: they can be simple molecules,
complex supramolecular aggregate or even bigger objects, like the tobacco mosaic virus.

Figure 1.5: Liquid crystals are intermediate phases between isotropic liquids and crystalline solids.

Figure 1.6: Classification of liquid crystals based on their long-range order.

From a structural point of view LCs can be classified by the type of ordering they possess. When
mesogens are elongated molecules, such that a director vector d can be assigned to each one, their
degree of alignment can be quantified by an order parameter. LCs that posses long range orientatonal
order, i.e. with mesogens that are all meanly aligned along a common direction, are called nematic.
LCs that posses orientatonal and two dimensional positional order, i.e. that form ordered layers, are
called smectic.
As already said, mesogens can be single molecules or bigger aggregates. In columnar LCs molecules
assemble into cylindrical structures that act as mesogens. Columnar phases can be nematic, with no
other order than the mean orientation, or can can have a two dimensional lattice order in the plane
perpendicular to the director.

1.4.1 Nucleoside phosphates LCs
Liquid crystal phases are frequently found in living systems. Cell membranes, for example, posses
liquid crystal character and also DNA forms LC phases: the experiments that led to the discovery of
the double helix structure in 1953 were made on DNA LCs. LC phases of DNA can be found also
in vivo, for example in some bacteriophage, in bacteria and also in human sperms nuclei [20]. Re-
cent experimental work has led to discover that also ultra-short DNA [2]and RNA [3] oligomers (4
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Figure 1.7: Different columnar liquid crystals.

nucleotites pairs) can form LC phases. Furthermore it has been shown [5] that such LC domains can
act as templates in which the chemical ligation is enhanced by the physical supramolecular ordering.
The authors of [5] propose a positive feedback coupling between self-assembly of LC domains and
ligation, with the ligation stabilizing the LC domains and the LC domains favoring ligation: they
named this mechanism “liquid crystal autocatalysis”. This autocatalytic cycle favors the growth of
DNA chains, up to biologically relevant lengths. In this hypothesis the LC acts as a guiding hand for
the polymerization process, determined uniquely by the physical properties of nucleic acids them-
selves. Recently it has been shown that also single backbone-free nucleoside triphosphates [4] have

Figure 1.8: Table showing the NTPs combinations that produce different phases. Two LC phases can form:
COL, which mesogens are of stacked base pairs, and COL2, composed by G-quadruplex, a supramolecular
aggregate formed by guanine only. Reproduced from [4].

Figure 1.9: Hierarchy self-assembly mechanism proposed in [4]. (Image adapted from [4]).

the capability of forming LC domains. Furthermore WC selectivity seems to play an important role
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in the formation of the LC phase: mixtures of non complementary nucleosides do not form LCs,
as shown in figure 1.8. Based on this observation a simple hierarchical self-assembly mechanism
has been proposed by the authors: the hydrogen bonding between base pairs reduces their solubil-
ity, promoting the chromonic stacking of bases, as shown in figure 1.9. Experiments on RNA and
ribo-nucleosides have not been carried out at the moment, but it seems legitimate to expect that also
ribo-nucleosides can display similar behaviors. Research is still ongoing.

1.5 Open problems
Many questions raised by the experimental research need to be addressed trough simulations. As-
pects that remain to be unveiled are:

• the role of pairing and stacking and the mechanism of their mutual collaboration in forming
the LC domains;

• the role of the phosphate group;

• the role of the ions in solution;

• whether helical structures already exist in LC phase.

This thesis is the first step toward a systematic study of LC aggregation of nucleosides by means of
molecular dynamics, using recently developed machine learning techniques. The work is focused
on the study of backbone-free nucleotides in water. Nucleotides have been chosen as model sys-
tems, instead of nucleoside triphosphates, in order to limit computational complexity, with the aim
of extending the study to nucleoside di and triphosphates in the future.
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Computational methods
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Computational methods

In this chapter an overview of the computational methods employed is provided. The general frame-
work of Molecular Dynamics is introduced, along with the umbrella sampling technique; classical
Force Fields are briefly described; DFT is revised with a focus on the implementation in the package
CP2K; the machine learning methods employed for the training of the neural network potential are
described.

2.1 Thermodynamic sampling

Consider a system of N atoms, described by the spatial coordinates r = (r1, r2 . . . rN ) ∈ RdN , with
associated momenta p = (p1,p2 . . .pN ) ∈ RdN . At each point (r,p) in the 6N dimensional phase
space a probability density ρ(r,p) can be associated, with the meaning:∫

Ω
ρ(r,p)d3Nrd3Np = Probability of finding the system in a state within the region Ω (2.1)

If ρ is constant in time then the system is said to be at equilibrium. A fundamental assumption
of statistical mechanics is that, for an isolated system (where isolated means most of the times with
constant energy, volume and number of particles) ρ is constant over all the accessible states (i.e. states
for which H(r,p) = E, where H is the system’s Hamiltonian). A system with fixed energy, volume
and number of particles is said to be in the microcanonical (NVE) ensemble.

From the assumption of equal probability in the microcanonical ensemble it can be derived that, for
a system in diathermal contact with an ideal heat bath:

ρ(r,p) =
1

Z
e−βH(r,p) Z =

∫
e−βH(r,p)d3Nrd3Np (2.2)

This system is kept at constant volume, temperature and number of particles, and is said to be in the
canonical (NVT) ensemble.

Since all the quantities of interest for the thesis do not depend on momenta, the following definition
in configuration space will be adopted. Given an Hamiltonian that can be written as a sum of kinetic
and potential terms H(r,p) = T (p) + V (r), the canonical probability density in configuration space
is expressed as:

ρ(r) =
1

Z
e−βV (r) Z =

∫
e−βV (r)d3Nr (2.3)

Where V (r) is the potential energy of the system, function of the N particle positions. The distribu-
tion ρ(r) usually has this remarkable property: it is negligible in the vast majority of the configuration
space except for small, circumscribed regions around the potential energy minima.

2.1.1 Metastable states, collective variables
It can happen that a system displays more potential energy minima separated by barriers, so high
that its dynamics is dominated by long periods of time in which it remains in the close vicinity of
one minimum, separated by fast transitions between them, during which the system crosses a low
probability region. This is usually the case for molecular systems. When dealing with such multiple
minima one might adopt a description based on collective variables (CV), namely, functions of the
coordinates that take different values in the relevant metastable states. For example, for a chemical
reaction in which a certain bond could break, an good candidate as CV would be the distance between
the two atoms forming the bond.

Let the vector of collective variables be ξξξ = (ξ1(r), ξ2(r) . . . ξM (r)) ∈ RM with M<dN. The probability
density in the ξξξ space is simply given by

ρ(ξξξ) =
1

Z

∫
δ
(
ξξξ − ξξξ(r)

)
e−βV (r)d3Nr (2.4)
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This allows the definition of a free energy function associated to the collective variables:

U(ξξξ) = − 1

β
log ρ(ξξξ) (2.5)

The free energy U(ξξξ) is completely defined by the choice of collective variables and the underlying
potential energy. If the CVs are properly chesen, the free energy should have at least two dominating
minima, corresponding to the metastable state that one wants to study.

2.1.2 Equilibrium averages
Given an observable A(r,p) its equilibrium average is defined as:

⟨A⟩ρ =

∫
ρ(r,p)A(r,p)d3Nrd3Np (2.6)

For a moment-independent observable it becomes:

⟨A⟩ρ =

∫
ρ(r)A(r)d3Nr (2.7)

When dealing with systems for which no analytical form of ρ is available the only possibility to
compute averages is to explore the phase space numerically, with a sampling algorithm that ensures
to visit each state with the correct probability, at least in the infinite time limit. Let p(r,p, n) be the
probability of the sampling algorithm to visit the state (r,p) at the timestep n. It is desirable that:

p(r,p, n) −−−→
n→∞

ρ(r,p) (2.8)

If a suitable algorithm is available then a straightforward recipe to compute equilibrium averages is:

• Run the algorithm until a step neq, to let its probability p converge to the correct ρ.

• Run the algorithm until a step nend, long enough to ensure a meaningful sampling of ρ.

• Compute: ⟨A⟩ = 1

nend − neq

nend∑
i=neq

A(ri,pi)

An algorithm suitable for this task, employed in the present work, is the molecular dynamics.

2.2 Molecular Dynamics

Molecular dynamics (MD) is a method of simulating molecular systems by solving Newton’s equa-
tions of motion of the N atoms constituting the system:

mi
d2r

dt2
= fi(r1, r2 . . . rN ) (2.9)

where i is the particle index, mi the mass of the i− th particle, and fi the force on it. Particles may be
atoms or group of atoms in a coarse grained representation. The trajectory of the system is computed
by numerical integration in discretized time domain: at each time step ∆t the forces are computed
and the the positions updated according to their values. Thus the main tasks to carry out during an
MD simulation are force calculation and time integration.
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2.2.1 Force calculation
MD is versatile technique that can be scaled to different sized systems, computing forces at different
levels of physical accuracy:

• Ab Initio Molecular Dynamics (AIMD) is the most fundamental level: forces are computed
solving the many body Schrödinger equation. This is the most reliable way to calculate energy
and forces of a molecular system, but it is computationally demanding.

• Semiempirical methods are based on quantum mechanical formalism, but use many approxi-
mations and some parameters can be obtained from experimental data.

• Force Fields (FF) are sets of purely classical parameters, usually derived from ab initio reference
calculations and experimental data, defining analytical interactions potentials between atoms.

AIMD and FF methods employed for this thesis are briefly reviewed in the next sections.

2.2.2 Time integration
MD is usually employed to extract statistical properties, like free energy and correlation functions;
this means that the sampling of the correct thermodynamic ensemble is more important than the ac-
curate calculation of the trajectories. Thus an integration technique suitable for MD should conserve
the Hamiltonian: this ensures time reversibility of the algorithm and conservation of the probability
in phase space. The family of methods that do this are called symplectic integrators [21].
All the simulations carried out for this thesis use the velocity-Verlet algorithm [22].

ri(t+∆t) = ri(t) + vi(t)∆t+
1

2
ai(t)∆t

2

vi(t+∆t) = vi(t) +
ai(t) + ai(t+∆t)

2
∆t

ai(t) =
1

mi
fi(r1(t), r2(t) . . . rN (t))

(2.10)

Actually symplectic integrators do not conserve the real Hamiltonian of the system, but a slight
perturbed version of it, so there is always a little error in the energy of a long MD simulation [21]. The
error depends on the choice of the integration timestep: discrete timestepping leads to nonphysical
resonance of degrees of freedom with typical frequencies close to the frequency of velocity updates.
Thus the the maximum step that can be chosen is limited by the period of the fastest fundamental
modes of the system under study.

Degree of freedom Period [fs]
O-H, N-H stretch 9.8
C-H stretch 11.1
C=O stretch 19.6
H-O-H bend 20.8
C=C (aromatic) stretch 22.2

Table 2.1: Period of oscillations of some bonds that are present in nucleotides and water. Values from [21].

A usual rule of thumb is to take
∆t ≃

Tfast
10

where Tfast is the period of the fastest oscillation in the system. The fastest oscillation in organic
molecules are usually due to bonds involving hydrogen atoms, as shown in table (2.1). The usual
timestep employed in a MD simulation involving hydrogen atoms is ∆t = 0.5 fs.
Sometimes constraint algorithms are employed to freeze some degrees of freedom, i.e. to keep bond
lengths fixed at their equilibrium values, and larger timesteps (up to 2-5 fs) can be employed [21].
MD can reproduce system’s dynamics faithfully and thus it provides a straightforward way to sam-
ple its probability density ρ. It has nonetheless a series of problems.
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• Bulk systems are macroscopic: they contain a number particles of the order of the Avogadro
number: simulating a whole bulk system is obviously impossible. The solution is to run the
simulation under periodic boundary condition, in order to mimic an infinite system. When
studying molecules in solution one has to choose a unit cell large enough to ensure that the
“interesting” part of the system does not interact directly with its periodic image.

• The plain solution of the equations of motion gives an energy conserving trajectory, or, in a
statistical mechanics language, a sampling in the microcanonical ensemble. To sample differ-
ent ensembles, a coupling with a fictious external system (the reservoir) has to be introduced.
All the simulations for this thesis were carried out in the canonical ensemble, so thermostat
algorithms were employed.

• The computation of a MD trajectory can be too slow to accumulate a significant data in a real-
world lapse of time, especially when dealing with metastable states. This problem can be cir-
cumvented using enhanced sampling techniques.

2.2.3 Thermostats
Thermostats are computational algorithms that couple MD calculation of the trajectories with an
external heath bath. Denote with T0 the target temperature and with T (t) the instantaneous temper-
ature of the system:

T (t) =
1

3NkB

N∑
i

p2i
mi

(2.11)

A thermostat that was used in the computations for this thesis is the Nosé-Hoover thermostat [23],
in which the equation of motions are modified in this way:

mi
d2r

dt2
= fi(r1, r2 . . . rN )− γi(t)vi

dγ(t)

dt
=

1

Q

(
3NkBT (t)− gT0

)
(2.12)

The rationale behind Nosé-Hoover scheme is to couple the degrees of freedom of the system to a
fictious external degree of freedom. Nosé-Hoover equations of motions can be derived from the so
called extended Hamiltonian, an Hamiltonian function containing the fictious degree of freedom. It
can be then shown that Nosé-Hoover equations of motion give trajectories that are microcanonical
for the extended system and canonical for the system.
Another thermostat that has been employed is the Langevin thermostat, which, in contrast to the
deterministic Nosé-Hoover, includes a stochastic term. At each time step a stochastic and a friction
term are added to the force:

fi(t) = f0i (t)− γvi(t) +Φi (2.13)

where f0i (t) is the force due to the internal interactions and Φi is a random vector sampled from a
distribution that is gaussian for the modulus:

p
(
|Φi|

)
=

1√
2πσ

exp

{
|Φi|2

2σ2

}
(2.14)

and uniform for the direction. The standard deviation and the friction coefficient are linked together
by the equation σ2 = 2γmikBT . With this choice the stochastic equations of motion give a correct
canonical trajectory.
Nosé-Hoover and Langevin thermostat can also be used together (this “mixed” thermostat is imple-
mented in the CP2K package used for ab initio calculations) [24].

2.2.4 Umbrella sampling
When a system has a sharp, dominating, energy minimum, the thermodynamic sampling is rather
simple: a free MD simulation will correctly explore the relevant states around the minimum. If the
system displays more metastable minima than a free MD sampling is not guaranteed to visit all the
relevant regions of configuration space: it can happen that the mean escape time from a minimum is
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larger than the timescale accessible to the MD simulation. In this case enhanced sampling methods
are needed. These techniques try to make the system escape from the metastable states by adding a
controlled bias potential. This bias potential has to be a function of a set of collective variables.
Suppose to run a MD simulation with a modified potential Ṽ (r) = V (r) + B(ξξξ(r)), where B(ξξξ) is
a term depending on CVs, called bias potential. The simulation will sample a biased probability
density:

ρ̃(ξξξ) =
1

Z

∫
δ
(
ξξξ − ξξξ(r)

)
e−β

[
V (r)+B(ξξξ(r))

]
d3Nr = e−βB(ξξξ)ρ(ξξξ) (2.15)

The idea is to use the bias to let the MD explore states that are rarely accessed by plain MD and then
reconstruct the real free energy function taking into account the effect of the bias.
Umbrella sampling [25] uses an harmonic potential as bias. Usually umbrella sampling is performed
on one monodimensional collective variable at the time (distances between particles and centers of
mass are common choices), and thus ξ is a scalar. The scheme consists in setting up a series of
configurations of the system along the collective variables of interest and run a biased MD on each.
Each run is usually called a window. Let the starting configuration be labeled with the index i and ξi
the values of the collective variable at each starting configuration. The the i − th window has a bias
potential applied:

Bi(ξ) =
k

2
(ξi − ξi(t))

2 (2.16)

The interesting collective variable path is then divided in bins. Let the bins be labelled with the index
j, ranging from 1 to M, each centered at a value ξj of the collective variable, and denote with Cij the
total number of configurations from window i falling in the bin j. The real probability density at the
bin j is:

ρ(ξj) = ωj

∑
i

Cije
−βBi(ξj) (2.17)

ωj is a weight factor that ensure normalization:

M∑
j=1

ωj = 1 (2.18)

The values of ωj are computed with a procedure called Weighted Histogram Analysis (WHAM) [26],
that constructs the set of weights in a self-consistent way. At the end the free energy profile along ξ
is reconstructed from the normalized probability density simply by:

U(ξξξ) = − 1

β
log ρ̃(ξξξ) (2.19)

2.3 Classical Force Fields
A classical approach to force calculation uses a classical potential energy function that approximates
the quantum ground-state potential energy. The classical description works well under the following
conditions:

• the Born-Oppenheimer approximation is valid;

• the temperature is not too low;

• there is no bond breaking or forming;

• electrons are highly localized (metals and pi-bonded systems are delocalized).

Force fields [21] are sets of parameters defining a number of n-body interactions between atoms.
Usually the interactions taken into account are divided into two categories: bonded, short-range
interactions and non bonded, long-range interactions.
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2.3.1 Bonded interactions
Bond interactions describe chemical bonding between atoms. They are of four types: pair stretch,
angle bend, dihedral torsion and impoper dihedral interactions. Parameters defining the interactions
are optimized to fit ab initio and/or experimental data.

Figure 2.1: Definition of bond distance r, bond angle θ and torsion dihedral φ.

• Pair stretch interactions, between covalently bonded atoms:

Vstr(rij) =
kij
2
(rij − r0ij)

2 (2.20)

where rij is the distance between bonded atoms and r0ij the bond equilibrium distance.

• Angle bend interactions, between three consecutive covalently bonded atoms:

Vbnd(θijk) =
kijk
2

(θijk − θ0ijk)
2 (2.21)

where θijk is the angle formed by the three atoms and θ0ijk the equilibrium angle.

• Dihedral interactions, between four consecutive covalently bonded atoms:

Vdih(ψijkl) =
N∑

n=1

(1 + cos(nψijkl − ϕijkl)) (2.22)

where ψijkl is the dihedral and ϕijkl an offset parameter. N is usually equal to the number of
minima the dihedral potential has: most of the times no more than two. Dihedral angle is equal
to the angles between the planes containing the first three and the last three atoms. Dihedral
potentials are generally weaker than the other: in some cases dihedrals can rotate through the
full 360 degrees.

• Improper dihedral interactions, between four consecutive covalently bonded atoms:

Vimp(φ) = k(ψijkl − ψ0
ijkl)

2 (2.23)

Improper dihedrals are employed most of the times to enforce planar geometry, for example of
aromatic rings.

2.3.2 Non bonded interactions
Nonbonded interactions are between atom pairs: they usually include the electrostatic interaction,
the dispersion force and the short range repulsion.

• Electrostatic interaction is computed as the coulomb potential between point atomic charges:

Vel(rij) =
qiqj

4πϵrij
(2.24)

the dielectric constant ϵ depends on the force field used. Most force fields use the vacuum per-
mittivity ϵ0. Atomic charges are usually extracted from ab initio gas phase calculations. Usually
electrostatic is not calculated from the plain coulomb formula, which is computationally expen-
sive, but instead using methods based on Ewald splitting between long-range and short-range
terms [27]. Particle-Mesh Ewald (PME) [28] is the most efficient method for medium and large
systems and it is commonly used.
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• Dispersion and short range repulsion are modeled using the Lennard-Jones potential:

VLJ(rij) = εij

[(r0ij
rij

)12
− 2

(r0ij
rij

)6
]

(2.25)

Usually not all the possible εij and r0ij are defined, but only their values for pairs of atoms of
the same type. Interactions between different atom types are approximated using mixing rules.

2.3.3 Water models
Due to its ubiquity and its importance for molecular systems water is probably the compound that
has been studied more in depth from a FF perspective. The set of FF parameters related to water
molecules are so important that they have their own name: the water model. Many times the vast
majority of the atoms in a simulation box are water oxygens and hydrogens, thus a good water
model has to be not too computationally demanding. For this reason many water models are rigid,
with angles and bond lengths fixed. If one is not interested in resonance spectra usually this can
be a reasonable approximation. Some models include more than three charge centers, adding ghost
charged particles. For the classical calculations here presented the TIP3P water model, a rigid three
charges model, was used.

2.4 Ab initio methods
Although this thesis is mainly focused on machine learning, ab initio calculation are a crucial part
of the whole work. Data for neural network training are generated ab initio: it is obvious that the
accuracy of the final model will have as upper limit the accuracy of the reference ab initio calculations.
From this the importance of having a solid and reliable ab initio method to generate training data.
All the ab initio calculations performed for this work rely on Density functional theory (DFT). All
the calculations were carried out with CP2K: a free, open source package for ab initio and classical
molecular dynamics. A brief recall of the Kohn-Sham formulation of DFT is provided in the next
subsection; a more in depth review of the implementation in the package CP2K is matter of the
second one; while relevant choices of parameters are discussed in the third one.

2.4.1 Kohn-Sham Density Functional Theory
As usual in electronic structure calculations, the nuclei are treated as instantaneously fixed (Born-
Oppenheimer approximation), generating a static external potential V (r), in which the electrons are
moving. The ground state of N interacting electrons is represented by a many-body wavefunction
Ψgs(r1, r2 . . . rN ), a solution of the time independent Schrödinger equation:

ĤΨ = (T̂ + V̂ + Û) =

[
− ℏ

2m
∇2 +

∑
i

Vi(ri) +
∑
i<j

e2

|ri − rj |

]
Ψ = EΨ (2.26)

Here the symbols T̂ , V̂ and Û represent the kinetic energy operator, the core-electron interaction and
the electron-electron interaction.

A theorem due to Hohenberg and Kohn states that the energy of a quantum mechanical system is a
unique functional of the electron density n(r) = ⟨Ψ|n̂(r)|Ψ⟩, where n̂ =

∑N
i=1 δ(r− ri) is the density

operator.

E[n] = T [n] +

∫
V (r)n(r)dr+

e2

2

∫
n(r)n(r′)

|r− r′|
drdr′ + Ex[n] (2.27)

Another fundamental result, the so called variatonal theorem, states that the expectation value of the
hamiltonian on the ground state wavefunction Ψgs (i. e. the ground state energy) is smaller than the
expectation value on every other possible wavefunction Ψ :

⟨Ψgs|Ĥ|Ψgs⟩ < ⟨Ψ|Ĥ|Ψ⟩ (2.28)
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And so, by virtue of the Hohenberg and Kohn theorem:

E[ngs] < E[n] (2.29)

So one can solve (2.27) variationally to obtain the ground state electron density and the ground state
energy, with the constraint on the number of particles:

δ
(
E[n]− µ

( ∫
n(r)dr−N

))
δn

= 0 (2.30)

The most known and commonly employed method to solve this variational problem is due to Kohn
and Sham. For example, if the trial wavefunction is written as a Slater determinant Ψ(r1, . . . rN ) =
1√
N

det[ϕ1ϕ2 . . . ϕN ], where ϕi are single particle wavefunctions (the so called orbitals); the kinetic
energy of a non interacting system with this electron density is:

T0[n] = − ℏ
2m

N∑
i=1

∫
ϕ∗(r)∇2ϕ(r)dr (2.31)

The idea is to write the functional (2.27) as:

E[n] = − ℏ
2m

N∑
i=1

∫
ϕ∗(r)∇2ϕ(r)dr+

∫
V (r)n(r)dr+

e2

2

∫
n(r)n(r′)

|r− r′|
drdr′+Ex[n]+T [n]−T0[n] (2.32)

and to incorporate T [n] − T0[n] and the exchange energy Ex[n] in a unique exchange-correlation
(XC) functional Exc[n] which at this point contains all the terms of the functional that are not exactly
known. The calculation of this term has to rely on approximations: usually the functional is written
in this form:

Exc[n] =

∫
εxc

(
n(r),∇n(r) . . .

)
dr (2.33)

Many formulations for εxc exists and the suitable one has to be chosen depending on the characteris-
tics of the system under study. Exchange correlation functional are divided in a number of categories.
The basic ones are:

• Local Density Approximation (LDA) functionals: εxc depends only on the local density εxc =
εxc

(
n)

• Generalized Gradient Approximation (GGA) functionals: εxc depends on the density and its
derivatives εxc = εxc

(
n, |∇n|,∇2n)

At this point it is possible to reformulate the variational problem (2.30) as a system of N variatonal
problems in which the energy is minimized w.r.t. the complex conjugate of the orbitals ϕi subject to
normalization constraint

∫
|ϕi|2dr = 1:

δδ
(
E[n]− εi

( ∫
|ϕi(r)|2dr− 1

))
δφ∗

i

=
δT0
δφ∗

i

+

[
V (r) +

∫
e2n(r′)

|r− r′|
dr′ +

δEx[n]

δn

]
δn

δφ∗
i

− εiϕi = 0 (2.34)

Define Vxc[n] =
δEx[n]
δn ; the Kohn-Sham equations follow:[

− ℏ
2m

∇2 + V (r) +

∫
e2n(r′)

|r− r′|
dr′ + Vxc[n]

]
ϕi = εiϕi (2.35)

These are Schrödinger equations of N non interacting electrons moving in an effective potential
Veff = V (r) +

∫ e2n(r′)
|r−r′| dr

′ + Vxc and are much simpler than the original problem.It is possible
to obtain a solution in an iterative way: guess an initial set of orbitals {ϕi}, compute the effective
potential, solve the Kohn-Sham equations getting new orbitals to compute a new density. The proce-
dure is iteratively repeated until convergence.
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2.4.2 Gaussian-Plane wave method, Quickstep code
The package CP2K implements DFT in a form called Gaussian and Plane wave (GPW) method [29].
The core of the implementation is a code called Quickstep [30]. The method relies on two representa-
tions of the electron density: one based on atom-centered gaussians-type orbitals (GTO) and another
based on plane waves (PW) . Each representation has its own advantages: GTOs permits a faster
evaluation on the kinetic and ionic core interaction matrix elements, while PWs are better suited for
XC and electron-electron repulsion (Hartree) calculation. The two representations read:

Gaussian representation Plane wave representation⎧⎨⎩n(r) =
∑
Pµνφµ(r)φν(r)

φµ(r) =
∑

mCmµgm(r)
n(r) =

∑
|G|<Gc

n(G)e−iG·r (2.36)

Where n(G) are the Fourier coefficients of the electron density and g(r) are primitive gaussian or-
bitals. PWs provide an efficient representation only if the density varies smoothly and slowly: repre-
senting rapid variation requires an high cutoffGc, and building the PW representation would become
a bottleneck in the calculations. For this reason this method is suited only for valence electrons: core
electrons are to be frozen out by introducing an atomic pseudopotential VPP . Atomic pseudopoten-
tials are effective potential felt by valence electrons when the positive charge of the nuclei is screened
by the core electrons. They are built following different possible procedures, in general fitting all
electron calculations. The choice of the pseudopotential for the present work will be discussed later.
The expressions for the energy functionals in GPW method are:

T [n] = −1

2

∑
µν

⟨ϕµ(r)|∇2|ϕν(r)⟩ EI [n] =
∑
µν

⟨ϕµ(r)|VPP (r)|ϕν(r)⟩

EC [n] =
∑
G

n∗(G)n(G)

G2
Exc[n] =

∫
εxc

(
n(r),∇n(r) . . .

)
dr

(2.37)

The kinetic and pseudopotential matrix elements are computed analytically with recursive formulas
discussed in [29], the Hartree terms are computed in reciprocal space in a Ewald-like manner and XC
term is integrated numerically on a mesh.

2.5 Neural Network potentials
In the last years a new technique, based on Neural Networks (NN) for calculating energy and forces
of molecular systems have emerged [31]. In this section an overview of NN architecture is given, and
the Deep Potential method [32], that was used for this thesis is explained in detail.
A NN [33] consists in an ensemble of nodes, connected by links. Each node receives an input x and
gives an output y = f(x) according to an activation function f . Most of the times the activation
function f is the same for every node. Each link is characterized by a weight: if a node is linked with
n nodes each giving an output xi and each link has weight wi, the output of the node will be

y = f

( n∑
i=1

wixi

)
Sometimes so called bias nodes are be present. A bias node is a node that gives every time the same

output. Then the output of a node is:

y = f

( n∑
i=1

wixi + bi

)

Several NN architectures exist: the one that is mostly used, and that is used in the field of MD, is
the feedforward, layered architecture [34]. The feedforward NNs are NNs that can be represented
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Figure 2.2: Depiction of the input-output scheme in a NN.

by a directed, acyclic graph. The main feature of feedforward NNs is that they do not contain closed
loops: the output of a node cannot influence the node itself. For this reason the feedforward NNs
are static, while their counterpart, the recurrent NNs, have a dynamic time-dependent behavior.
Nodes in a feedforward neural network can be organized in layers: a node belonging to the layer i
receives input only from the nodes belonging to the layer i−1 and gives his output only to the nodes
belonging to the layer i + 1. For historical reasons this architecture is called multilayer perceptron.
From now on the term NN will be used implying that we are referring to a multilayer perceptron

Figure 2.3: A multilayer perceptron with a single hidden layer.

architecture. At this point some nomenclature is nedeed. The input of the NN is, in general, a vector
of real numbers x = (x1, x2 . . . , xn) and it is itself considered a layer, called input layer. Than there
are the hidden layers, each of them receiving the input from the previous layer and firing its output
to the subsequent one. The last layer is called output layer and its dimension gives the dimension of
the output: a vector y = (y1, y2 . . . , ym). Call N the NN, which receives an input x giving an output
N(x). The NN can be viewed as a composition of transformation laws, each one representing a single
layer.

N(x) = L(out) ◦ L(N) ◦ L(N−1) ◦ . . .L(1)(x)
L(i) : RNi−1 → RNi

x → f (i)
(
W (i)x

) (2.38)

where W (i) ∈ RNi×Ni−1 and f(.) represents the application of the activation function element-wise.

2.5.1 Activation functions
Typically activation functions are non-polynomial, non-even functions and are bounded at least in-
feriorly. Many activation functions have been discovered to have good performance. At the present
state of the theoretical research there is only a little and qualitative understanding of why they per-
form well. A (non exhaustive) list of common activation function is:

• hyperbolic tangent: f(x) = tanh(x)

• rectified linear unit (ReLU): f(x)=
{
0 if x < 0 ; x if x ≤ 0

}
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• exponential linear unit (ELU):
{
a(ex − 1) if x < 0 ; x if x ≤ 0

}
• gaussian error linear unit (GELU): f(x) = x(erf(x) + 1)

3 2 1 0 1 2 3
x

1

0

1

2

3

4

f(x
)

tanh
ReLU
ELU
GELU

Figure 2.4: Plot near the origin of some commonly used activation functions.

When the activation function is non-polynomial, then a feedforward neural network with one hidden
layer of arbitrary size can be proven to be a universal function approximator [35]. This is known as
the Universal Approximation Theorem.

The most important feature of an activation function is its behavior in the vicinity the origin: usually
the weights and the inputs are normalized in a way such that every node input stays around zero;
when the inputs start to rise or low too much usually the model i

2.5.2 Training a NN
The NN are well suited for regression problems. A set of possible inputs is given along with their
correct outputs, which are called labels. At each optimization step of the NN takes the training
inputs, gives its output and the weights are updated depending on the difference between output
and labels, following a certain learning algorithm; this process is repeated until the network reaches
a convergence.

Call x∗
i the points in the training set, y∗

i the target labels and yi = N(x∗
i ) the final output of the

network given a training input xi. A function L(yi,y
∗
i ), called loss function, is defined in order to

represent the degree of mismatch between yi and y∗
i . A common loss function is the quadratic loss:

L(yi,y
∗
i ) = |yi − y∗

i |2

The weights w(n)
ij at learning step τ are updated according to:

w
(n)
ij (τ + 1) = w

(n)
ij (τ)−∆w

(n)
ij

(
L(yi(τ),y

∗
i )
)

(2.39)

The form of ∆w(n)
ij is defined by a certain learning algorithm. A learning algorithm that is straight-

forward to implement for NNs is the gradient descent:

∆w
(n)
ij = −η∂L(yi,y

∗
i )

∂w
(n)
ij

(2.40)

where η is a weight called learning rate used to tune the length of algorithm’s steps. The gradients are
calculated with an scheme called backpropagation, obtained by systematic application of the chain
rule [36].

In principle the learning can be conducted feeding the network with all the trainig data at each step,
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calculating the mean loss, and updating the weights according to the learning rule. In practice this
procedure makes the system fall in the first local minimum it finds, and, giving the high dimen-
sionality of the parameter space, this local minimum has a negligible probability of been a “good”
minimum. Usually neural networks are trained using stochastic learning algorithms. Stochasticity is
good for learning, as it gives the algorithm the possibility to jump out from local minima and explore
a bigger area of the parameter space, enhancing the probability of find good solutions. To achieve
this the training set is divided in batches with B elements each; for each batch a mean loss is defined:

Lbatch({yi}, {y∗
i }) =

1

B

∑
i∈batch

L(yi,y
∗
i ) (2.41)

At each optimization step a batch is selected, Lbatch is calculated and used to feed the learning algo-
rithm. Each time all the batches have been used, the set is shuffled, new batches are defined and a
new training epoch begins. This procedure is iterated until convergence. The batch size can affect the
training efficiency: the smaller the batch size is, the bigger is the stochasticity in the training induced
by the random choice of the elements in the batches. In the limit of the batch size equal to the training
set size the training is completely deterministic, once the initial weights and biases are given.

In addition to stochasticity the more advanced optimization algorithms add to ∆w memory terms
that make the learning a non-markovian process. The package DeepMD, which was used for the
present work, implements the so called Adam algorithm [37], a non-markovian stochastic gradient
descent which has become a gold standard in the deep learning field.

When the model is trained it is a standard procedure to test it on data outside the training set. This
data form the so called test set. In this way it is possible to control the phenomenon called overfitting:
the tendency of the machine learning models to perform well on the data they were trained on and
give worse performances on unseen data.

Figure 2.5: An illustration of overfitting.

2.5.3 NN for molecular dynamics
The first question to answer, walking into the field of NN applied to molecular dynamics is: why
NNs? The age-old problem of MD is to replicate at the hemical accuracy level the interaction energies
of a system, without relying on expensive quantum mechanics calculations. The idea is to fit a semi-
empirical, completely classical, model on a (relatively) small set of data obtained from AIMD. The
models that were mostly used up to now to tackle this problem pertain to the FF class that will
be described in the last section of this chapter. The main problem with force-fields is their lack of
transferability. Most of the times the force fields are developed in order to match certain structures
(for example the known crystallographic structures of DNA) and are reliable only if the system is
sufficiently close (at least locally) to them. If the system is far from these structures, an error is made,
and the quantification of this error is mainly matter of intuition. The validity of a simulation with
FF models can be inquired, many times, only qualitatively. The lack of transferability arises because
the FFs are built up mostly with pair interactions (three and four-body interactions are present only
for bonded atoms in form restraints on bond angles and dihedrals) while the real interactions have
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complex multi-body nature. Some classes of more refined models, like embedded atom methods,
bond order potentials, polarizable FFs and reactive FFs are based on the idea that the strength of
an interaction may depend also on the local environment around an atom, but the choice of the
functional form of this dependence is somehow arbitrary.

NN based methods are changing the state of the art. Trained on large sets of atomic configurations,
and correspondent energies and forces, these methods can reproduce the original data accurately
and give potential energy functions that are sufficiently transferable. Neural networks are naturally
fit for regression problems, and the reconstruction of a potential energy surface from sparse samples
calculated ab initio is indeed a regression problem. A great advantage w.r.t. classical force field
is that NN models are agnostic, in the sense that no ad hoc choice on the analytical form of the
potential energy has to be done. This can be a great advantage when dealing with very complex
energy surfaces which functional form is difficult to guess.

2.5.4 Beheler-Parrinello architecture
Most of the NN models proposed for potential energy fitting follow the scheme developed by Beheler
and Parrinello in [38]. Consider a system of N atoms and denote their positions as {r1, r2, . . . rN},
being each ri ∈ R3. The potential energy of the system is a function of 3N variables: E = E(r1, r2, . . . rN ).
In the framework of Beheler-Parrinello architecture the potential energy is decomposed into a sum
of atomic contributions:

E =
∑
i

Ei({rij}i ̸=j) (2.42)

where rij = rj −ri is the position of the atom j relative to the atom i. Here an approximation is done:
only the atoms within a certain cutoff radius from the atom are considered in the computation of its
contribution to the energy

E ≃
∑
i

Ei(Ri) (2.43)

where Ri = {rij
⏐⏐ |rij | ≤ rc}i ̸=j the set of positions of atoms inside the cutoff radius, relative to

atom i. This list describes the local environment of atom i. The Beheler-Parrinello architecture is an
ensemble of N identical sub-architectures Si, the i-th representing the function

Ei = Ei(Ri)

This decomposition ensures the extensivity of the resulting energy function and make possible to
apply a model trained on a small system to larger systems. Each sub-architecture is composed of a
standard feedforward neural network and some sort of pre-processing unit. The naivest input for the
NN would be the list Ri, but this choice is not optimal from the computational point of view and it
does not guarantee the translational, rotational, and permutational symmetry of the potential energy.
Invariances can be of course learned by the NN itself, but this process requires a lot of redundant data
(e.g. many identical but rotated-translated-permuted configurations) and the learning process can be
slowed down by orders of magnitude. For this reason a preprocessing of the atomic positions is
performed, and the positions are mapped into a quantity called local environment descriptor. In the
last years a great effort has been put into the development of different local environment descriptors
ans a large variety of possible choices is now available. [39] A brief overview of theory of local envi-
ronment descriptors will be given in the next subsection. The model is trained in the classical way,
defining a loss function and performing a stochastic gradient descent. If continuous and differen-
tiable activation functions are used, the forces on an atom can be directly computed simply taking
the derivative of the resulting energy w.r.t. the specific atomic positions and applying the chain rule
to every NN layer. Therefore the model can be used to run a MD just as a classical FF, and the con-
servation of energy is ensured. Moreover, the simplicity of force calculation makes it feasible to learn
simultaneously the energy and the forces, simply inserting a force deviation term in the loss func-
tion. The possibility of direct force learning improves the efficiency of the whole training: each ab
initio snapshot can give much more information if forces are taken into account. Since in electronic
structure calculations the forces are simply extracted by virtue of the Hallmann-Feynman theorem,
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the simultaneous learning on forces and energies drastically reduces the required size of the training
set, with negligible computational cost.
To sum up, the main advantages of the Beheler-Parrinello architecture are:

• The decomposition of the energy assures its extensivity and allows the generalization of the
model at systems of different size.

• Forces can be directly computed by differentiation, an operation that is usually fast and simple
to implement on feedforward NN models, giving an energy-conserving model.

• The model can be trained on forces and energies at the same time, preventing overfitting and
requiring less AIMD snapshots in the learning set.

The main drawback is the difficulty in treating long-range interactions, given the explicit cutoff. This
fact can limit the effectiveness of the Beheler-Parrinello networks in treating systems in which long-
range correlations dominates the dynamics.

2.5.5 Local environment descriptors
Let R ∈ R3N be the local environment of a certain atom. The local environment descriptor is a map:

D : R3N → V

R → D(R)
(2.44)

where V is a generic real vector space. In practice the usual choices for V are RM and RM1×M2 . A
good descriptor is:

• Invariant under translation, rotation, and permutation of indexes of atoms of the same kind.

• Surjective: different configurations must be mapped into different values of the descriptor. If
the map D is also bijective the descriptor is said to be complete; it is said to be overcomplete if it is
only surjective.

• Continuous and differentiable at least of class C1, since its derivative is needed to calculate the
forces and discontinuity in the forces are to be avoided.

• Computationally efficient.

Beheler and Parrinello originally proposed [38] to use a set of invariant functions (mainly combina-
tions of gaussians and trigonometric functions) of the atomic coordinates as local descriptors. During
the last decade many different descriptors has been developed [39].

2.5.6 The Deep Potential method
The NN model developed for this thesis is based on the package DeepMD [40]. This package imple-
ments the Deep Potential method [32], in particular its smooth variant [41]. The model pertains to the
class of Beheler-Parrinello architectures. The potential energy is decomposed as in eq. (2.43). Thus,
for each atom, a local environment is computed, then, for each rij = (xij , yij , zij) in the environment
the following quantity is calculated:

R̃ij =

(
s(rij)

rij
,
xijs(rij)

rij
,
yijs(rij)

rij
,
zijs(rij)

rij

)
(2.45)

where s(rij) is a smooth cutoff function, that is needed in order to avoid discontinuities.

s(rij) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if rij ≤ rcs

1

2rij

[
cos

(
π
rij − rcs
rc − rcs

)
+ 1

]
if rcs < rij ≤ rc

0 if rij > rc

(2.46)
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The idea behind this choice is quite intuitive: most interactions decay at long distances as powers
of 1/r (1/r the coulomb interaction, 1/r6 the London force ecc...), thus a descriptor like that forces
a physically meaningful convergence of the energies predicted by the NN at long distances. The
presence of a smooth cutoff function serves to avoid discontinuities in the potential.
The vectors R̃ij are organized in a matrix R̃i, each row of it being a vector R̃ij . The this matrix is
processed to the final local environment descriptor Di. It is possible to demonstrate that the matrix
R̃iR̃

T
i is invariant rotation and translation. Thus an invariant descriptor can be constructed as:

Di = GT
i R̃iR̃

T
i Hi (2.47)

where Gi ∈ RNi×M1 and Hi ∈ RNi×M2 are themselves invariant. The local environment descriptor
will be Di ∈ RM1×M2 and so, if Ri if M1M2 < 3Ni, the information it carries will be compressed w.r.t
the original loval environment Ri: the matrices Gi and Hi can be viewed as information filters.
Those matrices have to be functions of variables that are invariants, an obvious choice is:

Gi = Gi

(
{s(rij)}

)
Hi = Hi

(
{s(rij)}

)
(2.48)

In the Deep Potential architecture those functions are themselves trainable neural networks. These
networks, called embeddings, are defined between pairs of different atom types. This means that the
computational cost of training and running a network with k different atom types scales as k(k+1)/2.
Defining more atom types for a single element, like in classical force field, could be beneficial for the
model, since every embedding will learn less atomic environments, but can lead to much poorer per-
formance in terms of computation time. The descriptor Di is passed to a NN called fitting net, which
is different for each atom type. So, a network with k atom types is composed of k(k+1)/2 embedding
NN and k fitting NN. The whole Deep Potential algorithm is summarized in the following scheme.

{ri} → {R1, . . . Ri, . . . , RN} local environments⏐↓
R̃i =

⎛⎝ s(r1i) x̃1i ỹ1i z̃1i
. . .

s(rNii) x̃Nii ỹNii z̃Nii

⎞⎠ −→ Di = GT
i R̃iR̃

T
i Hi −→ fitting NN −→ Ei

local env. descriptor

⏐⏐⏐↓
↑⏐⏐⏐⏐

Embedding NNs −→ Gi, Hi embedding matrices

The loss function of the model is defined as:

L = cEσ
2
E + cfσ

2
f (2.49)

where σ2E and σ2E are the root mean squared errors on energy and forces.

σ2E =
1

N
(ENN − E)2 σ2f =

1

3N
|fNN − f |2 (2.50)

where N the number of atoms in a given training sample.
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This chapter describes the construction, training and testing of the NN model. Premilinarly some
details about the AIMD simulations used to train the network and on the classical MD simulations
used to prepare equilibrated systems and to generate data for comparison are given.

3.1 Classical MD
For the simulations with classical FF the package GROMACS [42], version 2018.1, was used.

3.1.1 Force field
AMBER FF with OL15 refined parameters for nucleic acids has been employed [43]. This force field
is considered, along with AMBER-bsc1, the current state of the art for simulation of the DNA double
helix [6]. However this FF has been refined on double helical structures, so it may give imprecise
results for free nucleotides. As already said, a classical FF specifically developed for nucleotides in
solution does not exist. Moreover, since the AMBER-OL15 FF is developed for nucleotides bound by
a backbone, an ad hoc adjustment of the phosphate charges was necessary. Unfortunately no charge
parametrization for the monophasphate group exists in literature: the charges employed were opti-
mized for the diphosphate head oxygens [44]. Classical simulations are not expected to give correct
quantitative results, but they are only intended as a benchmark for the NN potential: a succesful NN
potential should reproduce DFT results better than the classical FF.

3.1.2 MD parameters
The Nosé-Hoover thermostat has been employed. The electrostatic interactions were treated using
PME algorithm. The bond involving hydrogen were constrained using LINCS algorithm [45] and
the integration timestep was set to 2 fs. All the simulations were carried out in periodic boundary
conditions.

3.2 AIMD
For the DFT simulations the package CP2K [46], version 6.1, was used.

3.2.1 DFT parameters
The BLYP exchange correlation functional has been used. BLYP is a GGA functional that combines
Becke’s exchange functional [47] with the correlation functional developed by Lee, Yang and Parr
[48]. This functional is known to reproduce well the properties of liquid water: in particular it gives
a good description of the hydrogen bond [49]. The GTH pseudopotential [50] has been employed,
along with the DZVP-MOLOPT-GTH basis set [51].

Gaussian orbitals in CP2K are represented on multiple grids, the sharpest on finer grids, the smoother
on sparser ones. The thickness of the grids can be set choosing the reciprocal space cutoff of the
finer one. Normally a cutoff around 280 Ry (CP2K’s preset value) is considered adequate for having
energy and forces correctly converged and has been employed for pure water [52]. However this
cutoff seems too low for the systems under study: the Na cations tend to remain frozen in their initial
positions during the MD run and there is a constant energy drift. The cutoff has consequently been
increased to 600 Ry, a value at which no ion freezing is observed and no energy drift displays. This
is in line with other values employed in literature for simulations involving cations [53].

3.2.2 Dispersion correction
As pointed out in the first chapter the dispersion forces play an important role in the interaction
between nucleotides. There are two main ways to treat these forces in the framework of DFT. One
is to incorporate them completely ab initio in the exchange-correlation functional, the other is to
add an explicit attraction term between atoms, parametrized to fit ab initio calculations. Since the
inclusion of dispersion ab initio is computationally too expensive for our purposes the second way
was chosen. In particular the D3 correction parametrized by Grimme et al. [54] has been employed.
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D3 consist in a classical correction that depend on interatomic distances. It incorporates the 1/r6 and
1/r8 dependencies that are found when dispersion interaction is treated by means of perturbation
theory, with terms fitted on reference, fully ab initio, data. This method has become widely popular
in the last years and has proven to be reliable in the simulation of nucleobase stacking [55]. As
suggested in [55] the variant of this method with the damping proposed by Becke and Johnson, with
a cutoff range of 8 Å was adopted.

3.2.3 MD parameters
The mixed Langevin Nosè-Hoover thermostat has been used. The integration timestep has been set
to 0.5 fs. All the simulations were carried out in periodic boundary conditions.

3.2.4 Generation of the training set
The training data for the NN were taken from DFT MD trajectories with different starting configu-
rations of nucleotides solvated in water. The reference from which the starting configurations were
built is the crystallographic structure of the Dikerson dodecamer [56], available from the Protein Data
Bank [57]. To have the starting configuration the interesting part has been isolated, the residual phos-
phodiesteric bon cut and the missing phosphate oxygen added. The structure were then relaxed in
gas phase and solvated using GROMACS before starting the DFT MD run. Sodium ions were added
in order to balance the phosphate charges. The starting configuration that were used are:

• Free nucleotides: dAMP and dTMP in cubic boxes of 153 Å.

• Stacking dimers: dAMP/dAMP, dTMP/dTMP and dAMP/dTMP in cubic boxes of 223 Å.

• Pairing dimer: dAMP-dTMP in a 20× 30× 20 Å3 box.

• Pairing-stacking quadruplet: dAMP/dTMP - dTMP/dAMP in a 20× 30× 20 Å3 box.

Figure 3.1: Starting structures for dataset generation.

For every starting configuration two NVT trajectories have been computed: one at 300 K and one at
1000 K. The rationale behind this choice is to have both a thick sampling of the regions around the
equilibrium, but also an out of equilibrium sampling of configurations that are difficult to explore at
ambient temperature. A ∼ 6 ps trajectory of a system containing only water, generated at 1000 K, has
been added to that data to have a better sampling of solvent interactions. Table 3.1 reports in detail
the features of each training subset.
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system n. frames time [ps] box [Å3]
A 16370 ∼ 8.2 153

T 12180 ∼ 6.4 153

A/A 30560 ∼ 15.3 223

A/T 18900 ∼ 9.5 223

T/T 21350 ∼ 10.7 223

A-T 8670 ∼ 4.3 20× 30× 20
QUAD 30300 ∼ 15.2 20× 30× 20
WATER 12744 ∼ 6.4 15.64043

Total 151074 ∼ 75.5

Table 3.1: Size of each system in training set.

3.3 NN potential training
For the neural network training the package DeepMD [40], version 1.1.4 has been used. All the
simulations with NN potential were performed with LAMMPS [58].

3.3.1 Network testing
The network hyperparameters have been chosen after a series of numerical experiments on training
performance and model stability. First of all the network has to give a stable, converging learning.
Typical root mean square errors (RMSE) on the test set of a NN potential trained for bulk systems are
σE ∼ 10−3 eV and σf ∼ 10−1 eV/Å [59]. RMSEs are here defined as

RMSEE =
1

M

M∑
i=1

1

Ni

√
(ENN

i − Ei)2 RMSEf =
1

M

M∑
i=1

1

3Ni

√
|fNN
i − fi|2 (3.1)

where M is the size of the test batch and Ni the number of atoms in each tested frame.
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Figure 3.2: Typical learning curves for a correctly converging training. The full lines are moving averages on
100 steps windows-

Figure 3.2 shows typical learning curves for energy and forces. The splitting of the points on different
lines is due to the fact that DeepMD conducts the test, at each step, on a single system and the model
performs differently on different systems. The energy contribution associated to the complex bond
geometry of a nucleotide is obviously much more difficult to describe than the simple water molecule:
in figure 3.2, for example, the net was trained on three systems: A, A/A and WATER. A contains 101
water molecules for one nucleotide, A/A contains 320 water molecules: 160 for each nucleobase.
Thus the error on the nucleotide contribution to the energy is more “diluted” by the lower error on
water. To be sure that this splitting is effectively due to this effect and not some other unknown
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factor one can simply check that the error on different systems scales with the inverse of the number
of water molecules per nucleotide. In this example the final error on the force on the system A is ∼ 0.1
and the one on A/A is ∼ 0.06; their ratio is ∼ 0.6. The inverse ratio between the number of water
molecules per nucleotide in the two systems is 100/160 = 6.38 so the “dilution of error” appears to
explain well this difference.

3.3.2 Stability of the model
After a correctly converged training, the stability of the trajectories that the models generates has
to be checked. In this case the test set has little significance in unveiling overfitting: the test set is
taken from the same trajectories as the training one, so it is possible to spot overfitting only in re-
gions very close to the training, something that is very unlikely to happen. Moreover, as discussed
in [60] networks that are trained both on a function and its derivatives do not produce the classical
oscillatory overfitting, while they are more prone to point-like failures, in narrow zones of the input
space. Those failures are generated from groups of neurons whose responses cancel at all training
points [60]. This neurons tend to develop spurious energy minima that can be dramatically wrong
outside the region covered by the training set. This failures are much more difficult to identify with
a simple test set than classical overfitting.

Given that, the only way to effectively test a model is directly through a MD run. The simplest test
one can think of is a stability test: run a MD and see if something blatantly unphysical happens. The
typical instability that has been observed is the breaking and formation of bonds, or an abrupt modi-
fications of their geometry. In this case the network predicts spurious energy minima for unphysical
conformations. Since energies involved in covalent bonds are quite high (50-100 kcal/mol) this fail-
ure can be detected simply looking at the time evolution of the potential energy of the system. See
for example figure 3.3.
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Figure 3.3: How failures typically affect the time evolution of the potential energy: on the right a whole rear-
rangement of the geometry of a dAMP molecule, on the right the breaking of an O-H covalent bond of a water
molecule. Energy is shifted giving a zero value to the starting configuration.

Stability seems to be strongly affected by the choice of the activation function. In general unbounded
activation functions give networks that have good performance on training and test set, but are very
prone to dramatic point-like failures. Unbounded activation funtion that have been tested are GELU
and ELU. Bounded activation functions like the hyperbolic tangent give more stable models, even
if they seem to learn slower than unbounded ones. This intuitively makes sense: nodes with un-
bounded activation function can give arbitrary high outputs and thus develop deep (sometimes
hundreds of kcal/mol) spourios minima (see for example figure 3.4). The use of unbounded acti-
vation functions was then discarded. Then the effect of the network size was studied.

One of the hardest things to achieve was to obtain potential capable of modeling nucleobases in water
as well as pure water. Many models that had a good stability on systems with solvated nucleotides
gave bad performances on pure water: the phenomenon that was observed most of the times is the
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Figure 3.4: Typical failures of networks with unbounded activation functions: the system falls abruptly in a
spurious potential energy well.

formation of vacuum bubbles in the simulation box. Interestingly these bubbles form without abrupt
changes in the potential energy. Figure 3.5 shows the time evolution of the potential energy of a
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Figure 3.5: Potential energy change during the formation of a vacuum bubble in water.

system with 128 water molecules: for the first 6 ps the model seems to reproduce the properties of
water: an inspection of this first part of the trajectory reveals that the O-O and O-H radial distribu-
tion functions are qualitatively correct. Than, at 6 ps, a bubble nucleates, and enlarges for 4 ps. The
model appears to have a systematic tendency to form surfaces, giving them a negative energy, and
the energy gain in creating a surface is high enough to compress the rest of the water.
This is quite surprising, since NN potentials have shown to be capable of reproducing properties of
pure water with high accuracy [40], [61], [62]. The only difference in this case is that the training is
carried out simultaneously on pure water and water solvating molecules. An intuitive explanation
to this failure could be that, since nucleotides exclude a certain volume to water molecules, some
neurons are wrongly learning that “empty is better” from the systems containing nucleotides.
The occurrence of this type of failure appears to be linked with the network size. The developers of
DeepMD suggest the use of networks that are rather big (three layers with 100-200 neurons per layer
for the fitting network and embedding matrices with M2 ∼ 100) [40] and their tests on water and
metals give good results with networks of this size. In the tests carried out for this thesis such big
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networks perform very poorly, and the bubble phenomenon occurs systematically. Smaller networks
are less prone to this type of failure.

Moreover, with big networks, it appears that after a certain amount of steps (usually after 500000
steps) the prosecution of the training starts to worsen the model. This can be due to the rich variety
of complex atomic environment of the systems under study: group of neurons become highly spe-
cialized in modeling certain atomic environment, giving bad performances on others; the larger the
network, the more nodes can overspecialize in different environments.

After all it seems that models with M1 ∼ 10 − 20 and fitting networks with two layers and 20 − 40
neurons per layer give better results in term of stability. In literature there is no clear consensus about
the right size of the networks for MD applications: many works used small networks with few tenths
of nodes [63] [64] [65] [66] [59]. In particular a recent study of water permation in boron nitride [59]
used a network with two fitting layers and 20 nodes per layer. This is the system found in the liter-
ature that comes closest to the ones studied in this thesis: it certainly lacks of the richness of atomic
environments of the present ones, but it contains four different atomic elements (the present ones
have six) and water interacting with another compound. Thus the choice of a small network seems
to be rather founded.

The architecture that was chosen is the following.

• Fitting NN: 2 layers with 40 neurons each.

• Embedding NN: 2 layers with 10 and 20 neurons.

• DImension of the embedding matrices: M1 = 20, M2 = 4

• Atom types: carbon (C), nitrogen (N), phosphorus (P), nucleotide oxygen (On), nucleotide hy-
drogen (Hn), water oxygen (On), water hydrogen (Hn), sodium (Na); 8 atom types in total.

Table 3.2 reports the test RMS errors of the model on each system in the dataset.

system RMSEE [eV] RMSEf [eV/Å]
A 8.1× 10−3 9.3× 10−2

T 8.4× 10−3 9.8× 10−2

A/A 6.5× 10−3 7.3× 10−2

A/T 6.1× 10−3 7.8× 10−2

T/T 6.3× 10−3 47.5× 10−2

A-T 5.7× 10−3 6.5× 10−2

QUAD 7.2× 10−3 8.1× 10−2

WATER 2.3× 10−3 5.2× 10−2

Mean 6.3× 10−3 7.6× 10−2

Table 3.2: Test error on the dataset’s systems.

If a model has proven to be stable, than a more refined test is performed, training multiple models
with different weight initialization. One model serves to evolve the dynamics of a reference trajectory,
while the others are used only to compute energies and forces and check how much their predictions
deviate from the reference. A good indicator to look at, as suggested by the developers [40] is the
maximum force deviation (MFD). If m+1 different models are used for testing then MFD for a given
trajectory frame is defined as:

MFD = maxj
m∑
k=1

1

m
|f (0)j − f

(k)
j | (3.2)

Where the index j runs over the atoms in the simulation, |f (0)j is the force on the atom j predicted by
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the model that evolves the dynamics and |f (k)j are the forces predicted by the other m testing models.
This indicator is useful because it highlights large deviations on single atoms.
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Figure 3.6: Potential energy change during the formation of a vacuum bubble in water.

Figure 3.6 reports the histogram of the MFD for a simulation performed on the system AA. The mean
value is ⟨MFD⟩ = 0.1 eV/Å. This value can be taken as a reasonable estimate of the error made in
the force calculation.

3.3.3 MD parameters
For MD simulations with NN potential the Nosè-Hoover thermostat implemented in LAMMPS has
been used. The integration timestep has been set to 0.5 fs. All the simulations were carried out in
periodic boundary conditions.
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In this chapter the results obained from MD simulations with the NN potential are discussed and
compared with the ones given by the OL15 FF and DFT. The model systems that have been stud-
ied are pure water and a single dAMP molecule in water. The analysis is focused primarly on the
structural properties, characterized using average bond lenghts, dihedral angles and distribution
functions. All the radial distribution functions were calculated using the software VMD [67]; the dis-
tributions involving angular components and the correlation functions using TRAVIS [68] [69]; the
order parameters using the ORDER python package.

4.1 Water

The first model system is a cubic box of 128 water molecules of side 15.6404 Å. The simulations
were carried out in the NVT ensemble. DFT water trajectory has been gently provided by the prof.
Sulpizi’s group. The trajectory is 40 ps plus long and the system was equilibrated for 10 ps before
production. The NN and classical MD simulations were carried out from the same starting configu-
ration of the DFT one and both trajectories are 100 ps long, after 10 ps of equilibration.
The simplest way to characterize the local structure of liquid water is through radial distribution
functions. The following notation is adopted: let the atoms be labeled with indexes i ∈ {1, 2 . . . N}
and the sets of atoms of the same type be denoted with capital letters A, B . . . . Atomic types can
be simply the atom elements or more specific categories, like the oxygens of water molecules, or the
aromatic carbon atoms.
The radial distribution function (rdf) between two atomic types is defined as:

gAB(r) =
V

NANB

⟨∑
i∈A

∑
j∈B

δ
(
r − |ri − rj |

)⟩
(4.1)

Water is characterized using oxygen-oxygen and oxygen-hydrogen rdfs.
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Figure 4.1: Water O-O (left) and O-H (right) radial distribution functions.
O-O first peak integrals: IDFT
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As shown in figure 4.1, the MD simulations performed with the NN potential reproduces quite well
the rdfs obtained ab initio. However the precision of this result is lower than other published ones,
obtained with similar methods, for example in [40]. This is probably due to the difficulty in learning
simultaneously water-water interactions and water-solute interactions. Another descriptor that gives
important information is the angular distribution function (adf). The angular distribution function
between two vectors is defined as:

gr1,r2(θ) =
1

sin(θ)

⟨∑
i∈A

∑
j∈B

δ
(
θ − θ(r1, r2)

)⟩
(4.2)
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In the case of water two adfs are particularly important. The first one is the adf between the vector
going from an hydrogen to the oxygen of the same molecule and the vector going from the same
hydrogen to an oxygen of another water molecule; it will be called, for simplicity, OHO adf. The
second one is between the vectors going from an hydrogen to the oxygen of the same molecule and
the vector going from the oxygen of another molecule to an hydrogen of the same molecule; it will
be called OHOH adf. These vectors are depicted in figure 4.2.

Figure 4.2: Depiction of the vectors defining OHO (left) and OHOH (right) adfs.

The rationale behind these definitions is to obtain information about the directionality of the hydro-
gen bond. Usually the hydrogen bond distances are reproduced quite well by FFs, as can be seen in
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Figure 4.3: OHO (left) and OHOH (right) adfs.

figure 4.1, but they fail in the description of its directionality (figure 4.3); hydrogen bonds in FFs are
the result of the interplay between coulomb and Lennard-Jones interactions, and this two potentials
are completely centrosymmetric: they cannot reproduce the directionality of a real hydrogen bond,
which orientation is determined by the oxygen lone pairs. The NN appears to do better, capturing at
least qualitatively the preferred mutual orientations of water molecules.
The last descriptor that has been computed is the tetrahedral parameter q, as defined in [70]. This
parameter is calculated locally for every oxygen atom (here labeled as i) as:

qi = 1− 3

8

3∑
ji=1

4∑
k=j+1

(
cosψijk +

1

3

)2
(4.3)

where ψijk is the angle formed by the three oxygens and the sum runs over the 4 nearest neighbors
of the atom i. If qi is equal to one than the i− th oxygen is the center of a perfect tetrahedron with its
4 nearest neighbors at the corners. Its average ⟨q⟩ is an order parameter of the water-tetrahedral ice
transition [71]. Figure 4.4 shows the probability distribution of the q parameter obtained using the
three methods. Even in this case the predictions of the NN potential are in line with DFT data. In
general it seems that the model is capable of describing the local structure of water at a satisfactory
level of precision.
Another interesting aspect is the dynamics of the hydrogen bond formation and breaking: this as-

37



Analysis of MD trajectories

0.0 0.2 0.4 0.6 0.8 1.0
q

0

1

2

3

4

5

no
rm

al
ize

d 
fre

qu
en

cy

q DFT
q TIP3P
q NN

Figure 4.4: Distribution of the tetrahedral parameter q.

pect can be studied observing the changes in mutual orientation of water molecules in time. Reori-
entation of water molecules is connected with the oscillation and rearrangements of the hydrogen
bonds [72]. Water reorientation has two components: a fast oscillatory one, called libration, with
typical timescales of ∼ 0.1 ps, due to thermal motion of the acceptor hydrogen atom around its equi-
librium bonded position; and a slow one, due to hydrogen bond breaking and slow rotations of the
whole H-bonded water dimer, with a typical timescale of 10 ps. The simplest way to quantify of
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Figure 4.5: Orientational autocorrelation function C2(t) (left), a focus of the same graph on the sub-picosecond
region (right).

reorientation dynamics is to compute a time autocorrelation function of the molecular orientation.
Usually the time correlation function is defined in terms of the second Legendre polynomial of the
dot product between a vector defining water orientation at time t0 and at time t0 + t [72].

C2(t) = ⟨P2

(
u(t0) · u(t0 + t)

)
⟩ (4.4)

Here u is as an adimensional orientation vector. Figure 4.5 shows the results obtained with the three
different methods. The NN potential gives a good description of the libration component, but seems
to fail in describing correctly the long time decorrelation. The decay time of the hydrogen bond is
usually quantified as the integral of the correlation function: τ =

∫∞
0 C2(t)dt [72]. The results in the
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present case are:
τDFT = 4.21 ps
τTIP3P = 0.69 ps
τNN = 10.83 ps

The hydrogen bonds predicted by the NN potential “live longer” than the ones predicted ab initio.
Classical force field, on the other hand, produces a very fast decorrelation compared to DFT data.

4.2 Free dAMP in water: molecular conformations
Free dAMP in water is a rather complex system to describe: the NN has to learn in a consistent
way many different interactions at the same time. Reproducing the intramolecular interactions is by
its own a challenging task, and the interaction with the surrounding water and ions is even more
complex. In this section the question on how good the NN potential can reproduce the internal
conformations of dAMP in water is addressed. The system that has been studied consists in dAMP
molecule solvated with 101 water molecules and 3 sodium ions, in a cubic box of side 15 Å, starting
from the same initial configuration a DFT, a NN, and a classical FF trajectory were generated. All the
trajectories were equilibrated for 10 ps. The DFT trajectory is 20 ps long, while the other two are 100
ps.

4.2.1 Bond lengths
The simplest parameter to look at is the mean bond length. In figure 4.6 the mean bond lengths
predicted by DFT are plotted against the ones predicted by NN potential.

1.0 1.2 1.4 1.6 1.8
DFT bond length (Å)

1.0

1.2

1.4

1.6

1.8

NN
 b

on
d 

le
ng

th
 (Å

)

Figure 4.6: Correlation of bond lengths predicted by DFT and by NN.

The RMS error on bond lengths is σbond = 0.047 Å. It can be noticed that there is a tendency to
slightly underestimate bond lengths. It is worth to point out that the NN predicts some bonds to
have exactly the same lengths: a closer look reveals that this bonds are all between identical atom
pairs. For example the seven C-H bonds of the ribose are all predicted to be 1.09 Å long: the network
tends to describe all hydrogen atoms bonded to a ribose carbon in the same way.

4.2.2 Nucleobase dihedrals
Other important parameters are the nucleobase dihedral angles. Their equilibrium values and prob-
ability distribution say how much the nucleobase remains flat during a simulation.
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Figure 4.7: Definition of ψ1 and ψ2 dihedral angles.
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Figure 4.8: Iso level plot of the probability distribution of the two dihedral angles ψ1 and ψ2 computed from
DFT MD (up left), NN MD (up right) and FF MD (down).

In figure 4.7 the two dihedral angles that were chosen for this analysis are defined. Figure 4.8 shows
the joint probability distribution of the two dihedrals calculated from a DFT, NN and FF simulations.
Figure 4.9 reports instead the separate distributions of the two angles calculated with the three meth-
ods. The values have been shifted in order to have a zero angle when all the three vectors defining
the dihedrals lie on the same plane. The NN predicts a shift of the minimum from the correct value,
i.e. the nucleobase is not flat at the NN energy minimum, but there is a spurious torsion of its bonds.
The OL15 FF gives correct nucleobase torsions.
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Figure 4.9: Comparison of the ψ1 (left) and ψ2 (right) distributions.

4.2.3 Base-ribose and ribose-phosphate torsional angles
Two other important angles are the ribose-phosphate and the nucleobase-phosphate dihedrals. Their
value defines the mutual orientation of the three parts of the nucleotide.

Figure 4.10: Definition of χ and γ dihedral angles.
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Figure 4.11: Iso level plot of the joint χ− γ distribution, computed from DFT MD (left) and NN MD (right).

Figure 4.10 depicts the definition of the two dihedral angles. In figures 4.11 and 4.12 the distri-
bution of the dihedrals from NN MD is compared with the distribution from DFT MD. Mean val-
ues of the dihedrals from DFT simulations are: ⟨χ⟩ = −116◦ ⟨γ⟩ = 58◦, while the NN predicts
⟨χ⟩ = −97◦ ⟨γ⟩ = 103◦. The NN fails in describing both dihedrals, in particular γ is shifted by 45◦.
These dihedrals are not correctly described by the classical force field either: since OL15 parame-
ters are tuned on helical structures of DNA, χ and γ are strongly restrained in order to reproduce

41



Analysis of MD trajectories

140 120 100 80 60
 dihedral angle (deg)

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

P(
)

DFT
NN

40 60 80 100 120 140 160
 dihedral angle (deg)

0.00

0.01

0.02

0.03

0.04

P(
)

DFT
NN

Figure 4.12: Comparison of the χ (left) and γ (right) distributions obtained ab initio and with NN potential.

this geometries. This can be seen in figure 4.13, that shows the joint probability distribution of the
two dihedrals calculated from a 100 ns trajectory evolved with OL15 force field.The four different
peaks correspond to different conformation that are found in biological polynucleotides [73] are not
compatible with backbone free dAMP in solution.
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Figure 4.13: Iso level plot of the χ− γ distribution during a 100 ns classical simulation.

4.2.4 Phosphate group solvation shell

Water interacts with dAMP mainly forming hydrogen bonds: the phosphate group is a strong hydro-
gen bond acceptor, and some nitrogens of the nucleobase are acceptors too. We begin by studying
the interaction between solvent and phosphate group. Figure 4.14 shows the rdf between water hy-
drogens and phosphate oxygens. The NN appears to reproduce quite well the solvation of the phos-
phate, giving the right value for the first peak integral, as well as matching the structure of the outer
solvation shells. The OL15 FF, in contrast, tends to overestimate the strength of water-phosphate
H-bonds, ginving a higher value for the first peak integral.
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Figure 4.14: Op-Hw radial distribution function.
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4.2.5 Interaction with ions
Another interesting feature of the phosphate group is its interaction with sodium ions. The phosphate
group is charged, it can directly bind ions, or it can interact with them through the water molecules
in the solvation shell.
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Figure 4.15: Op-Na radial distribution function.

Figure 4.15 shows the rdf between sodium ions and phosphate oxygens. The FF appears to predict
an incorrect binding of the ions. The first sharp peak in the rdf predicted by the FF is at 2.4 Å, a
distance that is very close to the Van der Waals radius of sodium, which is 2.3 Å. Thus the sodium
can be considered completely bound to the phosphate. This does not happens in the MD simulations
with DFT and NN potential: the peak at 3.8 Å that is seen in the NN rdf indicates that the sodium
ion interacts with the phosphate group through the solvation shell. A closer look at the trajectory
reveals that both DFT and NN predicts a configuration in which the ion is bound to the N7 nitrogen
of the nucleobase and to the phosphate through a water molecule, forming a bridge-like structure, as
shown in figure 4.16.

This structure correspond to the peak at 4.8 Å of NN rdf and at 5.2 Å of the DFT rdf in figure 4.15.
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Figure 4.16: Different binding configurations predicted by DFT and NN (left) and by FF (right).

This structure remains stable for the whole DFT MD, while in the NN simulation the sodium moves
after some times and remains bound only to the phosphate, giving the 3.8 Å peak in the rdf.

4.2.6 Adenine solvation shell
The solvation shell of the adenine has been studied looking at water hydrogen - acceptor nitrogen,
and water oxygen - aminic hydrogen radial distribution functions.
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Figure 4.17: N1-Hw (up left), N3-Hw (up right) N7-Hw (down left) and H6-Ow (down right) radial distribu-
tion functions.

In figure 4.18 the nomenclature of these atoms, introduced in section 1.1, is recalled. In figure 4.17
the three rdfs centered on the acceptor nitrogens, plus the rdf centered on the two equivalent aminic

44



Analysis of MD trajectories

Figure 4.18: Nomenclature of donor nitrogens and aminic hydrogens.

hydrogens are plotted. The NN reproduces well the rdfs obtained from DFT MD, except for the first
peak in the N7 rdf: this is due to the stability of the binding configuration previously described,
that lasts for the whole DFT trajectory, preventing the water from forming H-bonds with the N7
nitrogen. The DFT trajectory is probably too short to observe the unbinding of the sodium ion and
the formation of H-bonds on N7, but this is probably what would happen during a longer trajectory.
This is probably the source of the discrepancy in the third plot of figure 4.17.

4.3 dAMP-dAMP stacking dimer
At the moment the NN potential is not capable of reproducing correctly the stacking interaction.
During a DFT MD carried out for 20 ps the stacking dimer remains stable, while in MD runs with
the NN potential the stacking dimer dissociates after 10 ps. To have a better, although approximate,
idea of the strength of the stacking interaction, a free energy calculation by umbrella sampling has
been performed with classical OL15 force field. The collective variable used is simply the distance
between the centers of mass of the nucleobases.
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Figure 4.19: dAMP/dAMP stack PMF.

Figure 4.19 shows the PMF profile along the center of mass distance. The estimated free energy of
dimerization is ∆GdAMP

dim = −3.2± 0.4 kcal/mol. This value can be compared with the dimerization
constant for ADP that was calculated from experimental data in [17] (see also section 1.2.5). The
value proposed for the dimerization constant is KdADP

dim = (5± 3)× 103, at which corresponds a free
energy of dimerization ∆GdADP

dim = −5.4±0.2 kcal/mol. The value calculated for dAMP dimers is not
completely reliable, being computed using the classical FF, but it is of the same order of magnitude
of an experimental value for a very similar molecule, so it can be taken at least as a rough estimation
of the stacking interaction strength.
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Conclusions and future perspectives

The use of machine learning approaches to bridge the gap between AIMD accuracy and long timescales
is currently an active, rapidly developing, area of research.

Liquid crystal aggregation of nucleotides in solution is a phenomenon that involves many different
interactions and effects at different scales. The description of such molecules, their mutual inter-
actions and their solvation can correctly be achieved by quantum mechanical calculations, but the
time-scales that are accessible to these methods is not long enough to study complex supramolecular
aggregates like liquid crystals. Using a neural network it is possible, in principle, to fit ab initio refer-
ence data and to obtain a potential energy function that is accurate and fast to evaluate. Using Deep
Potential, a neural network architecture that was previously used only on water, solids and gas-phase
molecules, the possibility of simulating nucleotides in water has been explored. The model has been
trained on a set of ab initio trajectories of nucleotides in water; it was capable of fitting the training
set with a mean accuracy on 10−3 eV on energies and 0.1 eV/Å on the forces. At the current state the
model is capable of carrying out a stable molecular dynamics simulation for a time of the order of
hundreds of picoseconds.
The model has been tested on three model systems: pure water, a solvated dAMP molecule and
a solvated dAMP stacking dimer. The properties of the solvent are correctly reproduced, includ-
ing the hydrogen bond formation and its directionality. The correlation time of water orientation is
overestimated: this indicates the presence of spurious energy barriers that make the hydrogen bond
kinetics slower. The geometry of the dAMP molecule is predicted correctly, and the solvation proper-
ties of the nucleobase and phosphate group are well reproduced. Learning correctly dihedral angles
seems to be one of the main difficulties: in particular the model gives incorrect predictions for the
ribose-phosphate torsion and the nucleobase is not predicted to be perfectly planar. The stacking
interaction between different dAMP molecules is not reproduced at the moment: the stacking dimer
is stable during a 20 ps ab initio trajectory, while it dissociates after 10 ps of a trajectory evolved with
the NN potential.
Future developments could consist in the augmentation of the training set, using iterative procedures
as described in [40], and the construction of models with more atom types associated to different hy-
bridization states of the same elements. Another approach could be to combine a classical force field
with a neural network potential, like in [74]. The idea in this case is to promote the force field to a
DFT accuracy adding a neural network term to it. This approach could solve some stability problems
like bond breaking in long simulations. NN appears to perform well in reproducing intermolecular
interactions like the hydrogen bond, but has difficulties in learning complex covalent geometries. An
approach that combines NN and FF together would possibly take benefit of the strengths of the two
approaches: stability and simplicity of FF binding geometries and good description of many body
intermolecular interactions of NN potentials.
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