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Abstract

The analysis of the conditions of materials is a key element for granting safety and
stability in several environments. In particular, localizing cavities in materials,
for instance metals exposed to extreme conditions, helps to prevent greater
damages in potentially unsafe environments. In this thesis, various analysis
methods are presented by scanning images of metals using neural networks in
the form of Mask R-CNNs, that is, Mask Region-based Convolutional Neural
Networks. This neural network architecture is exploited to perform a semantic
segmentation of the electronic microscopy images; the segmentation unveils the
cavities of irradiated metal alloys instead of manually checking the microscopy
images. In this study, the goal is to reproduce and to develop new techniques to
attempt to improve the results obtained in the paper "Materials swelling revealed
through automated semantic segmentation of cavities in electron microscopy
images" [1], by implementing a custom loss function that takes into account the
estimated material swelling, or by adopting a standard segmentation model,
such as DeepLabV3+, for separating the background from the cavities. This
study also showcases the usefulness and ease of access of MATLAB for all of the
aforementioned deep learning applications and implementations.





Sommario

L’analisi delle condizioni di materiali è un elemento chiave per garantire si-
curezza e stabilità in diversi ambienti. In particolar modo, localizzare cavità
nelle superfici di materiali, ad esempio metalli esposti a condizioni estremi, aiuta
a prevenire danni maggiori in ambienti potenzialmente poco sicuri. In questa
tesi, svariati metodi di analisi vengono presentati, attraverso una scansione di
immagini di metalli tramite reti neurali nella forma di Mask R-CNN, ovvero
una Mask Region-based Convolutional Neural Network. Questa rete neurale
è in grado di eseguire la segmentazione semantica di immagini al microscopio
elettronico; in questo caso, la segmentazione rileva eventuali cavità in leghe
metalliche irradiate in modo automatico, invece di eseguire controlli manuali.
In questo studio, lo scopo è sviluppare nuoev tecniche nel tentativo di migliore
i risultati ottenuti nell’articolo scientifico "Materials swelling revealed through
automated semantic segmentation of cavities in electron microscopy images" [1],
implementando una loss function personalizzata che prende in considerazione
il rigonfiamento dei metalli, oppure adottando altre metodologie standard di
segmentazione come DeepLabV3+, per separare lo sfondo dalle cavità. Questo
studio, infine, dimostra l’utilità e la facilità di accesso a MATLAB per tutte le
tecniche e implementazioni di deep learning menzionate precedentemente.
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1
Introduction

Nuclear materials science is essential for the construction and operation of
efficient and reliable nuclear reactors. This field focuses on the study of alloy
swelling, a phenomenon that occurs when metal alloys are subjected to radiation.
Such swelling can compromise the structural integrity of reactor components,
potentially leading to catastrophic failures. Traditionally, the measurement of
radiation-induced swelling in alloys was performed manually by experts who
examined electron microscopy images to identify and quantify defects such as
cavities and voids. However, this manual method is time-consuming, subjective,
and lacks scalability, especially with the increasing volume of high-resolution
microscopy data generated by modern devices. The aim of this paper is to study
new techniques to automatize this process and to potentially improve beyond
human accuracy.

Recent advancements in computer vision, particularly deep learning tech-
niques, provide promising solutions to these manual challenges. Deep learning
models, such as Convolutional Neural Networks (CNNs), have revolutionized
image analysis by enabling automated and highly accurate object detection and
segmentation. Notably, the Mask R-CNN has proven to be a powerful tool for
instance segmentation, providing pixel-level annotations of objects while being
able to distinguish object-per-object within the provided images. Leveraging
these advanced models, it is possible to automate the detection and quantifica-
tion of nanoscale cavities in irradiated alloys, thereby enhancing the efficiency
and accuracy of swelling assessments.

This thesis builds on the initial research presented in our foundational paper,
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"Materials swelling revealed through automated semantic segmentation of cavi-
ties in electron microscopy images" [1]. The study demonstrated the potential of
using Mask R-CNN to detect and measure cavities in irradiated alloys, achiev-
ing encouraging results in terms of precision, recall, and F1 score. Nonetheless,
there remains significant room for improvement, particularly in incorporating
additional segmentation models and developing custom loss functions tailored
to specific material characteristics, such as swelling in this case study.

This thesis aims to advance nuclear material studies by creating more precise
and effective tools for assessing radiation-induced swelling. These innovations
could significantly improve nuclear reactor material design and operational
safety, ensuring more reliable performance under irradiation. Additionally, the
study’s methodology and findings can be applied to other fields requiring pre-
cise image-based defect assessment, highlighting the broad applicability of deep
learning in scientific research. The use of MATLAB as a primary platform un-
derscores the research’s practicality and accessibility, making it highly relevant
to the engineering community.

MATLAB is a powerful and versatile tool widely used in engineering and sci-
entific research, it provides a vast library of built-in functions and toolboxes that
cater to various mathematical, statistical, and engineering computations. These
tools facilitate complex data analysis, numerical modeling, and plenty of deep
learning implementations. To advance the state-of-the-art (SOTA) technologies
in automated swelling identification, the following work, exploiting MATLAB,
proposes to:

• Implement a baseline Mask R-CNN model to begin instance segmentation.

• Tune several parameters to seek for improvements. These parameters
range from network specific properties to neural network training options

• Explore the potential of DeepLabV3+ for background segmentation to
attempt to improve the Mask R-CNN training routine.

• Implement a custom loss function for training that not only takes into
account the pixel classification error and mask size error, but also the
ad-hoc estimated swelling of the materials.

Moreover, most of the MATLAB code was run in the DEI Computing Cluster
"Blade", kindly provided by the university. A blade computing cluster is highly
beneficial for executing MATLAB code, particularly when in need of power-
ful GPUs. Such clusters consist of multiple blade servers, each equipped with
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CHAPTER 1. INTRODUCTION

high-performance GPUs, which significantly enhance computational capabili-
ties. This setup is ideal for running large-scale simulations, more specifically for
the training of deep neural networks. The parallel processing power of GPUs
accelerates tasks like deep learning, image processing, and numerical modeling,
drastically reducing execution time. Additionally, MATLAB’s Parallel Comput-
ing Toolbox and GPU support allow for anyone to seamlessly distribute work-
loads across the cluster, optimizing resource utilization and achieving faster
results. This makes the Blade computing cluster an invaluable asset for any
computational challenge encountered during this thesis.
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2
Research Background

2.1 Alloy Swelling in Nuclear Reactor Environ-
ments

Alloy swelling in nuclear reactors is a critical issue affecting the durability
and safety of reactor components. Irradiation of metal alloys in reactor cores
and surrounding areas induces defects such as dislocation loops, precipitates,
and cavities. These cavities, termed voids when gas-free and bubbles when gas-
filled, deteriorate mechanical properties by increasing hardness, brittleness, and
causing swelling. Hence, understanding when a material needs to be replaced
due to these damages is needless to say, crucial.

Neutron irradiation causes alloy swelling through a complex process involv-
ing various mechanisms. The enlargement of voids, exacerbated by the presence
of helium, leads to the formation of bubbles within the material’s microstruc-
ture. This can result in swelling and grain boundary embrittlement, compro-
mising the integrity of reactor materials. While neutron irradiation increases the
strength of these materials, it also significantly reduces their ductility, causing
radiation hardening and uneven plastic deformation. According to Ghoniem et
al. [2], exposure of structural materials to neutron irradiation creates various
atomic-scale defects. These defects often enhance the material’s strength but
greatly reduce its ability to stretch or deform. Understanding these interactions
and their outcomes is essential for maintaining the structural stability of reactors
and ensuring the safe and efficient operation of nuclear power
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2.2. MEASURING SWELLING USING ELECTRON MICROSCOPY

2.2 Measuring Swelling Using Electron Microscopy

Measuring the extent of swelling in nuclear reactor materials using electron
microscopy, especially Scanning/Transmission Electron Microscopy (S/TEM),
is vital for understanding material degradation due to irradiation. TEM imag-
ing conditions and sample properties can cause variations that lead to perceived
swelling rather than precise measurements. Accurate quantification of swelling
is essential to ensure the structural stability and safety of nuclear reactors. Quan-
tification challenges arise due to phase shifts caused by differences in the mean
inner potential between cavities and the surrounding crystal. These shifts sig-
nificantly impact the observed size of cavities under various imaging conditions.
The foundational paper emphasizes that multi-slice simulations have demon-
strated considerable changes in the perceived size of cavities when using Fresnel
contrast imaging at different underfocus levels [1].

To observe the distinct white centroid and dark fringe contrast of holes while
minimizing black fringe displacement, it is essential to maintain a small un-
derfocus (less than 1 micrometre). This technique is crucial for the precise
measurement of cavities, particularly those smaller than 10 nanometres. How-
ever, the process is complicated by errors resulting from imaging parameters
such as resolution, human measurement accuracy, sample tilt, and changes in
background contrast.

Conventional techniques involve manually counting and measuring indi-
vidual cavities using software like ImageJ. This approach is hindered by the
time-consuming nature of preparing TEM samples and identifying cavities.
Advances in sample preparation methods, such as high-throughput focused ion
beam (FIB) procedures and flash polishing, have alleviated some limitations.
Modern TEM devices have improved data collection rates, producing higher
resolution images and larger datasets. However, the manual labeling of cavities
remains a significant challenge. There is a clear need for automated techniques
capable of quickly processing extensive TEM datasets.

Utilizing machine learning techniques is essential for addressing these chal-
lenges, with automation playing a key role. Convolutional Neural Networks
(CNNs) have proven to be highly effective for automated microstructure analy-
sis. These networks can accurately and reliably identify specific microstructural
features from images in a cost-efficient and consistent manner.

Anderson et al. [3] employed a region-based convolutional neural network
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to analyze helium bubbles in irradiated X750 Ni alloys. They successfully pin-
pointed the locations of these bubbles in underfocused TEM images. This ap-
proach highlights the potential for efficient data analytics in materials science.
Furthermore, understanding the stability of voids caused by irradiation is crucial
for effectively managing material swelling. A study by Chen et al. [4] provides
valuable insights into the mechanisms governing the stability transition of voids.
Future initiatives involve the improved integration of automated analysis tools
to enable the efficient processing and analysis of large datasets. These advance-
ments will enhance our understanding of material behavior under radiation
exposure and aid in developing and evaluating new materials and production
methods to improve performance and safety in nuclear reactors. Ultimately,
quantifying swelling in nuclear reactor materials using electron microscopy is
crucial for understanding the deterioration caused by irradiation. Automa-
tion and machine learning significantly enhance this process, providing more
precise, reliable, and comprehensive assessments of material swelling. These
technological advancements are vital for maintaining the structural stability of
reactors and ensuring the safe and efficient operation of nuclear power facilities.

2.3 Deep Learning in Material Science

In the past decade, deep learning techniques have revolutionized numerous
scientific fields, including material science. Deep learning, a subset of machine
learning, employs computational models with multiple layers to learn data rep-
resentations at varying levels of abstraction. Convolutional Neural Networks
(CNNs) have been particularly influential, excelling in image classification, ob-
ject detection, and semantic segmentation tasks. These advancements have pro-
foundly impacted material science, especially in analyzing and characterizing
the microscopic structures of materials. Multiple studies have demonstrated the
effectiveness of deep learning in material science. For instance, Stepashkin et al.
[5] investigated thermoplastic unidirectional carbon fiber-polysulfone compos-
ites, using CNN-based models to predict the tensile strength of these materials.
Their algorithms achieved a notably accurate prediction with a Spearman cor-
relation coefficient of 0.988, showcasing the capability of neural networks to
precisely predict material properties by analyzing microstructural attributes.

Mantawy et al. [6] conducted a significant study using CNNs to predict
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fractures caused by low-cycle fatigue in reinforcing bars. By converting strain
time series data into images, the CNN model achieved a testing accuracy of over
96%, demonstrating its effectiveness in forecasting damage.

The field of deep learning continues to advance, introducing new techniques
for material analysis. Roberts et al. [7] developed an innovative convolutional
neural network architecture called DefectSegNet for the semantic segmentation
of crystallographic defects in steels. This model exhibited exceptional pixel-level
accuracy for various defect types, surpassing human expert analysis in both
speed and consistency. Taller et al. [8] have also demonstrated the application
of Dynamic Segmentation Convolutional Neural Networks (DSCNN) to rapidly
and quantitatively identify microstructural features in materials.

Furthermore, Lin et al. [9] demonstrated the use of CNNs to study spatial
correlations among various regions in cementitious materials. This approach
provided new insights into the detailed information and spatial relationships
within materials, enhancing understanding of material dynamics and enabling
precise evaluations and reconstructions.

Sainju et al. [10] have achieved notable advancements in interpreting in-
situ TEM videos with their development of DefectTrack, a one-shot multi-object
tracking model. This model excels in identifying and tracking clusters of defects
in real-time, outperforming human specialists in terms of both accuracy and
speed.

State-of-the-art deep learning models such as ResNet50, ResNet101, and
VGG16, extensively trained on datasets like ImageNet and COCO, are pivotal in
computer vision tasks. These models serve as the basis for advanced frameworks
such as Faster R-CNN and Mask R-CNN, enabling precise object detection and
segmentation. In material science, these architectures have been adapted to
identify and quantify imperfections such as dislocations, precipitates, and voids
in electron microscopy images. Over the last decade, deep learning techniques
have significantly advanced in this domain [1].

Deep learning has profound implications for material science. Automated
analysis techniques reduce the reliance on manual annotations, significantly
speeding up data processing and improving the accuracy of material character-
ization. This capability enables researchers to efficiently handle large datasets,
facilitating more comprehensive investigations into the properties and behav-
iors of materials. Mishra et al. [11] underscore that deep learning models excel
in extracting intricate feature information from images, empowering them to
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accomplish sophisticated tasks like image classification, object detection, and
image segmentation.

2.4 Mask R-CNN model

Instance segmentation models are pivotal in computer vision as they facilitate
the detection and accurate delineation of individual objects within an image. In
material science, these models are invaluable for analyzing and characterizing
microstructures, defects, and other significant features visible in microscopic
images.

Mask R-CNN is an advanced model designed for instance segmentation,
building upon Faster R-CNN by incorporating a dedicated component to pre-
dict segmentation masks for each Region of Interest (RoI). Developed by He
et al. [12] in 2017, Mask R-CNN has set new benchmarks in the domains of
object detection and segmentation. The research underscores that Mask R-CNN
improves upon Faster R-CNN by integrating an additional capability for predict-
ing segmentation masks, thereby combining the advantages of object detection
and semantic segmentation within a unified framework. Let’s break down the
components of this model:

Figure 2.1: Mask R-CNN framework for instance segmentation [12]

RoI Align: A critical innovation in Mask R-CNN is the RoI Align approach,
ensuring precise alignment of extracted features with input pixels. This tech-
nique accurately preserves the spatial positions of RoIs during pooling, thereby
enhancing the accuracy of segmentation masks. The study highlights that RoI
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Align effectively mitigates misalignment issues caused by quantization, thereby
preserving spatial precision.

Segmentation Masks: Mask R-CNN generates a binary mask for each Region
of Interest (RoI), enabling precise delineation of object boundaries at the pixel
level. This is achieved through a mask head that produces separate binary
masks for each class, ensuring accurate segmentation.

In material science, Mask R-CNN has been employed to detect and segment
microstructural features in alloy materials, quantify defects, and analyze grain
boundaries. The precise segmentation capability of Mask R-CNN is invaluable
for conducting comprehensive microstructure analysis, allowing for the extrac-
tion of relevant information from complex images [13].

2.5 SOLOv2 model and comparison with Mask R-
CNN

SOLOv2 represents a cutting-edge instance segmentation model that stream-
lines the process by treating instance segmentation as a direct prediction of object
locations. Introduced by Wang et al. [14], this model introduces a straight-
forward and highly efficient approach to instance segmentation. Research on
SOLOv2 underscores its innovative strategy of framing instance segmentation as
a location prediction task, achieving notable improvements in both efficiency and
accuracy compared to traditional methods. This novel approach enhances the
effectiveness of instance segmentation by directly predicting the spatial extents
of objects within images. Similarly to Mask-RCNN, here follows a breakdown
of SOLOv2’s structure:

Direct Prediction: SOLOv2 predicts object positions directly, eliminating the
need for Region of Interest (RoI) operations and simplifying the segmentation
process. This approach facilitates streamlined training and inference, enhancing
speed and ease of use. Wang et al. [14] emphasize that SOLOv2 simplifies
segmentation by framing it as a direct location prediction problem, thereby
removing the complexity associated with RoI operations.

Efficiency: SOLOv2 is designed for computational efficiency, making it ideal
for real-time applications and processing large-scale datasets. The model lever-
ages dynamic convolutional kernels and a unified mask feature representation to
deliver high performance while keeping computational overhead to a minimum.
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Figure 2.2: Comparison of SOLOv2 to SOLO Architecture[14]

SOLOv2’s efficiency and direct prediction capabilities make it particularly
suitable for material science applications requiring rapid processing of large
datasets. It has been utilized in projects involving real-time monitoring of
construction progress, automated defect identification, and segmentation of
electron microscopy images. Research by Wei et al. [15] demonstrated the effec-
tiveness of SOLOv2 in automated segmentation tasks within material science,
highlighting its reliability for analyzing extensive image datasets.

Both Mask R-CNN and SOLOv2 represent state-of-the-art advancements in
instance segmentation, pushing the boundaries of accuracy, speed, and versatil-
ity in applications. These models have played a crucial role in advancing mate-
rial science by providing accurate and detailed segmentation of microstructural
features.

Precision vs. Speed: Mask R-CNN is renowned for its exceptional precision,
largely due to its meticulous RoI Align and mask generation processes. However,
this advantage comes with increased computational complexity. In contrast,
SOLOv2 delivers faster processing times through its streamlined and direct
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prediction methodology. Mishra et al. [11] demonstrated that Mask R-CNN
excels in precision, whereas SOLOv2 offers a more efficient solution for real-
time applications. The primary publication on SOLOv2 explicitly states that it
achieves higher performance than its predecessor SOLO, with a 1.9% increase
in average precision (AP) while being 33% faster [14].

Figure 2.3: Speed vs. Accuracy with COCO test-dev. [14]

Complexity of Implementation:Implementing and fine-tuning Mask R-CNN
is more intricate and resource-intensive compared to SOLOv2. The straightfor-
ward design of SOLOv2 simplifies its implementation and customization for
diverse applications. Che et al. [13] concluded that the direct approach of
SOLOv2 facilitates easier implementation, making it versatile for a wide range
of applications.

Choosing between Mask R-CNN and SOLOv2 depends on the specific re-
quirements of the task at hand. Mask R-CNN is preferred for applications
demanding high precision and meticulous segmentation. On the other hand,
SOLOv2 offers a more efficient solution for tasks requiring rapid processing of
large datasets. Both models have significantly enhanced the ability to analyze
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and understand complex microstructures in material science, leading to more
accurate and comprehensive characterizations. According to Lin et al. [9], inte-
grating these advanced models into material science has opened new avenues
for in-depth research on microstructure, thereby enhancing the precision and
effectiveness of material characterization.

2.6 Pertinent Research and Discoveries

Deep learning techniques have significantly advanced the analysis of ma-
terials science data, particularly within electron microscopy. The main aim of
these studies has been to automate the detection and characterization of mi-
crostructural features like cavities, particles, and defects, which are essential
for understanding material properties and behavior. This section provides an
overview of key research projects and findings that highlight the effectiveness of
deep learning models, such as Mask R-CNN and SOLOv2, in materials science.

Mask R-CNN is widely used in materials science because it can perform in-
stance segmentation, which is crucial for detecting and quantifying microstruc-
tural features in electron microscopy images. The research applied the Mask
R-CNN model to identify and measure nanoscale cavities in irradiated metals.
The model demonstrated outstanding accuracy in providing swelling measure-
ments for both individual images and specific conditions, which is vital for
understanding how irradiation affects alloy performance.

Cohn et al. [16] conducted a detailed case study that specifically applied
Mask R-CNN for microstructural analysis in materials science. In this study,
Mask R-CNN was used to analyze images of metal powder particles produced
by gas atomization. To handle the limited training set of labeled images, transfer
learning was employed, enhancing the model’s ability to generalize from a small
amount of data. The Mask R-CNN model successfully generated comprehensive
data on particle size distribution and the presence of satellite particles. This
study demonstrated not only the adaptability and precision of Mask R-CNN in
analyzing microstructural features but also its potential for broader applications
in the field of materials science. The findings highlight the model’s ability to
provide valuable insights into the characteristics of metal powders, which are
crucial for various industrial processes and material performance evaluations.

SOLOv2, a recent advancement in instance segmentation technology, has
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been employed to address a variety of complex segmentation challenges in ma-
terials research. In a study conducted by Yang et al. [17], SOLOv2 was enhanced
by integrating additional modules such as Feature Pyramid Grids (FPGs) and
Convolutional Block Attention Modules (CBAMs). These enhancements signif-
icantly improved the model’s feature extraction capabilities and segmentation
speed. As a result, the study reported substantial improvements in both ac-
curacy and efficiency of the segmentation process. This advanced technology
holds great potential for applications in materials science, particularly for seg-
menting microstructural characteristics under various conditions. By utilizing
SOLOv2, researchers can achieve more precise and rapid analysis of microstruc-
tures, aiding in the development and optimization of materials with desired
properties for a wide range of industrial and scientific applications.

Comparative research has shown that deep learning models like Mask R-
CNN and SOLOv2 outperform traditional image analysis algorithms. In a study
by Dang et al. [18], the DeepLabV3+ model with a ResNet-152 backbone was
compared to other advanced segmentation models. The findings highlighted
the model’s exceptional ability to detect and characterize various types of de-
fects, underscoring the potential of these advanced models in materials science
research.

The adoption of these advanced deep learning models has profoundly im-
pacted materials science research. Automated segmentation and analysis have
significantly reduced the time and effort required for manual annotation, allow-
ing researchers to process larger datasets and obtain more accurate statistical
results. This advancement facilitates a deeper understanding of material prop-
erties and behaviors, leading to more informed decisions in material design and
development [19].

Despite the success of deep learning models in materials science, several
challenges remain. These include the need for large, well-labeled datasets, the
integration of specialized knowledge into the models, and the development
of methods to handle complex and diverse microstructures. Future research
should focus on addressing these issues, enhancing the models’ applicability to
various scenarios, and improving the interpretability of their results to advance
the field further.
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3
Methods & Implementation

This section outlines the specific approaches used in this research to build
and utilize the Mask R-CNN and SOLOv2 models for measuring swelling in
nuclear reactor alloys using electron microscopy images. The procedure starts
by preparing the data, which involves converting JSON annotations into PNG
masks and applying data augmentation techniques to improve the resilience
of these models. Next, provided a detailed explanation of the implementation
details for both Mask R-CNN and SOLOv2. Here emphasized the integration
methods used to merge the outputs of both models in order to enhance the
accuracy of segmentation. In addition, investigated the creation of customized
loss functions that are specifically designed to include swelling signs, as well as
the adjustments made to regular loss functions to better align with this specific
application. Ultimately, constructed the guidelines for equitable comparison,
elucidating the training and testing procedures to guarantee impartial assess-
ment of the models’ performance. This rigorous methodology guarantees that
these results are strong, can be replicated, and offer useful insights into the
implementation of deep learning in materials science.
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Toolboxes and System Requirements: The study employs MATLAB R2024a
to implement and execute the segmentation models. The following toolboxes
are utilized:

Mask R-CNN:

• Computer Vision Toolbox: it provides essential functionalities for training
of the Mask R-CNN. These include tools like Region of Interest (RoI) Align,
which ensures precise mask generation, and pre-trained ResNet-based
backbones that facilitate feature extraction.

• Deep Learning Toolbox: facilitates the training of deep neural networks,
it offers opportunities to create custom layers, define loss functions, and
manage the training process effectively.

• Computer Vision Toolbox Model for Mask R-CNN Instance Segmenta-
tion: this toolbox includes pre-trained models and specialized functions
designed for instance segmentation using Mask R-CNN. It streamlines the
process of training and deploying Mask R-CNN models.

• Compatible GPU: it is recommended to use an NVIDIA CUDA-enabled
GPU to take use of GPU support, which enables faster computations and
trainings.

• Parallel Computing Toolbox: it enables anyone to accelerate their com-
putations by exploiting the power of multicore processors, GPUs, and
computer clusters. It simplifies the implementation of parallel algorithms,
allowing for faster execution of tasks such as simulations, data analysis,
and optimization.

Besides this, few experiments, although not with the same degree of depth as
in Mask R-CNN, will be conducted using SOLOv2. SOLOv2 requires these
packages and toolboxes:

• Computer Vision Toolbox

• Deep Learning Toolbox

• Computer Vision Toolbox Model for SOLOv2 Instance Segmentation: ba-
sically the same as for Mask R-CNN.

• Compatible GPU

• Parallel Computing Toolbox

The toolboxes and system configurations are critical elements of this project,
ensuring the effective training and execution of our models. Using a GPU sig-
nificantly accelerates the training processes, which is vital given the complexity
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and size of our datasets. Lastly, DeepLabV3+ for background segmentation
basically uses the same toolboxes plus Deep Learning Toolbox Model for ResNet-
18 Network (or alternatively ResNet-50 and ResNet-101), since the DeepLabV3+
model’s backbone is a residual network.

3.1 Data Preparation

Dataset

The dataset used in this study is made up of electron microscope images of
irradiated metal alloys, specifically chosen to detect and measure microscopic
cavities. It is sourced from two primary locations:

• 1. Canadian Nuclear Laboratory (CNL): This dataset features bright-field
TEM micrographs of Inconel X-750 Ni alloys that have undergone neu-
tron irradiation. After filtering for annotation accuracy, the CNL dataset
includes 238 images.

• 2. Nuclear Oriented Materials & Examination (NOME) Laboratory at the

University of Michigan: This dataset contains 162 images of various steel
alloys, such as CW-316, T91, HT9, and 800H, which have been exposed to
both light and heavy-ion irradiation.

The merged dataset offers a wide variety of images that capture various
irradiation settings and alloy compositions. This dataset provides a strong
basis for training and assessing the segmentation algorithms. Displayed below
are some images from the collection, illustrating the variations in cavity sizes,
densities, and physical appearances across different imaging conditions:

Source Material Irradiation Type Number of Images Notes

CNL Inconel X-750 Ni alloys Neutron irradiation 238 Filtered for annotation
accuracy

NOME CW-316, T91, HT9, 800H steel alloys Light and heavy-ion irradiation 162 Diverse alloy
compositions

Table 3.1: CNL and NOME dataset’s description

3.1.1 JSON to PNG Conversion for Mask Generation

The annotations of the project’s dataset are saved in JSON format, providing
detailed information about the segmentation masks of different cavities found
in nuclear reactor alloys. Nevertheless, numerous deep learning frameworks
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Figure 3.1: CNL and NOME focused and underfocused sample visuals

demand input in the format of images rather than annotations based on coor-
dinates. Hence, the conversion of these JSON annotations into PNG images is
an essential preprocessing step. In order to produce the desired segmentation
masks as seen in figure 3.3, there are several mandatory steps to follow:

• Reading JSON files: The JSON files containing the annotations are pro-
cessed and analyzed to extract the appropriate segmentation data. This
include specific information such as the sizes of the images, the coordinates
of the rectangular bounding box (expressed in the [x y w h] format), and
the points that define the segmentation of each annotated cavity, provid-
ing the exact pixel-per-pixel classification inside the bounding box. This is
accomplished by utilizing a script that loads the JSON file and decodes its
content into a struct data structure that can be read by Matlab.

• Setting Up Output Directories: A suitable directory hierarchy is created
to hold the PNG mask images that are generated. The output directory of
the generated instance masks is explicitly defined, verifying the existence of
the directory, and generating it if needed. The output directory is defined
in relation to the current working directory, and the paths are modified
accordingly.

• Iterating Through Annotations: The script sequentially examines the an-
notations of each image. The dimensions of the matching mask are ex-
tracted for each image, and an initial blank mask is constructed with all
values set to zero (black color). The blank mask is sized according to the
source picture to guarantee precise positioning of the cavities.
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• Extracting and Converting Segmentation Data: The segmentation data,
comprising a series of x and y coordinates that define the boundaries of
the cavity, is processed for each annotation in the image. The provided
coordinates are utilized to accurately describe the relevant cavity on the
empty mask. The coordinates in the segmentation data are pairs of con-
secutive x and y numbers, indicating the pixel position of the boundary
points of the instance.

• Generating Masks: The extracted coordinates are utilized to construct a
polygon on the blank mask using Matlab’s image processing algorithms.
The polygon serves as a representation of the cavity, and the inside of the
polygon is filled with the white color to generate a binary mask. The value
within the polygon is assigned as 255, showing the existence of a cavity,
while the background stays 0 (representing black).

• Handling Edge Cases: Errors or noise in the annotation data may cause
certain segmentation points to fall beyond the valid range during mask
construction. These locations are detected and removed to make sure the
mask is generated with precision. If edge cases aren’t handled properly,
the resulting mask might get ruined due to an error in the segmentation
data content. In case of bad coordinates for bounding boxes, the bounding
box is directly thrown away and not considered at all.

• Saving the Generated Masks: Every mask that is created is stored as a
PNG file. The naming convention incorporates the initial picture name
and a numerical counter to distinguish between various cavities within
the same image. This guarantees that each mask is distinctly recognizable
and linked to the accurate image and cavity. For example, an image named
01_01.png has masks named 01_01_0001.png, 01_01_0002.png, etc. as long
as there are annotated cavities for such image.

Figure 3.2: Original image and Ground Truth image with all instances in white

The process of converting JSON to PNG enables to utilize the aforementioned
deep learning techniques and to finally set up the code to run the training of
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Figure 3.3: Examples of Ground Truth instance segmentation masks

the models. This approach guarantees the precise creation of masks, maintain-
ing the spatial integrity of the annotations. Few mistakes were found in the
provided annotations, so it is good practice to always take into account for po-
tential mistakes and to find workarounds in those cases. The step of creating
all instance masks requires a considerable amount of time (1-2 hours), because
reading all data and creating new images when the dataset is big necessarily
time consuming. Hence, this is done before launching a training and all in-
stance masks are saved in the local disk and loaded at training run-time (not
computationally expensive).

3.1.2 Data Augmentation and Preprocessing

Data augmentation is a technique used to increase the diversity and quan-
tity of training data without actually collecting new data. This is achieved
by applying various transformations to the existing dataset, such as rotations,
translations, scaling, flipping, and color adjustments. By introducing these vari-
ations, the models are exposed to a wider range of possible scenarios during
training. As far as the CNL and NOME datasets are concerned, the presence of
round-ish instances lead to believe that only translations (shifting the image by
few pixels) and scaling factors (increasing or decreasing the image sizes) were
useful, however it is not clear whether it is required, given the large amount of
instances available. On the other hand, preprocessing was a much more needed
step to prepare the data for using and training the models considered; the pre-
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processing of data ensures that the data is in the appropriate and consistent
format for the model to use. Another vital step that will be explored in this
section is the stacking of instance masks. As requested by the Mask R-CNN and
SOLOv2 frameworks, for each training or validation image there must be a one
to one correspondence with the entire set of instance masks of that image. This
means that there is another preprocessing regarding how the data is handled.
First of all, a new matlab data file (.mat format) is created, to ensure consistency
between names, this file is named after the image it represents. Secondly, the
.mat file contains a 3D logical array, where the first two dimensions represent
the sizes of the image, and the third dimension represents the amount of binary
masks to be associated with the image. What follows is the sequence of multiple
preprocessing steps required to run the Mask R-CNN or SOLOv2 models:

• Loading Training Data: the first step is to import the training images into
Matlab via the creation of an image datastore. This datastore contains
the explicit path of all training images of our dataset, and it loads them
in a format which is appropriate for processing. By default, the training
images are saved in a directory called train inside the dataset folder.

• Handling Bounding Boxes: bounding boxes are rectangular outlines
used to identify the position and size of objects within images. The anno-
tation file contains bounding boxes for each cavity, for each image. These
bounding boxes are stored in a cell array, with each cell corresponding
to an image and containing its respective bounding boxes. The number
of bounding boxes varies for each image, depending on the number of
cavities present. For example, one image might have 100 bounding boxes,
while another could have 150, as detailed in the table format.

• Categorical Labels: categorical labels, usually in text format, are used to
classify objects within bounding boxes. In this case, each bounding box is
associated with the label "cavity," indicating the object’s category. These
labels are stored in a cell array that mirrors the structure of the bounding
box cell array. Each entry in the label array directly corresponds to an entry
in the bounding box array, in a one-to-one relationship between labels and
bounding boxes.

• Combining Bounding Boxes and Labels: bounding boxes and labels are
combined into a table, which associates each bounding box with its cor-
responding label to ensure precise identification of each cavity. This table
is essential for training the model, as it provides the required structured
framework that enables the model to learn the relationship between image
regions and object categories.

• Loading Instance Masks: Instance masks are binary masks that precisely
depict the shape and position of individual objects inside an image. The
instance masks, as mentioned before, are saved as .mat files, and they
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are loaded using a custom function for reading datastores. This method
parses the .mat files and extracts the binary masks. Each .mat file provides a
collection of instance masks for a single image. The custom read function is
required because the usual datastore reader lacks the capability to directly
process the .mat file format.

• Combining Datastores: a combined datastore is a matlab varibale type
that includes several datastores, in order to ease how data is handled.
In this case, the combined datastore contains the image datastore for the
training images, the datastore made out of the table containing labels plus
categories and finally the ground truth stacked masks in the .mat files. The
integrated datastore contains all the essential data required for training,
guaranteeing that each training image is linked with its corresponding
bounding boxes, labels, and instance masks. This integration guarantees
that the model has full access to all pertinent data during the training
process.

• Data Augmentation: in this optional step, training images, along with
their related masks and bounding boxes, undergo data augmentation
techniques as explained earlier. These augmentations enhance the va-
riety of the training set, improving the model’s ability to generalize with
unfamiliar data. Needless to say, augmentation is implemented so that
correspondences between images and their annotations are preserved.

• Normalization and Preprocessing: The images have been normalized to
a common range, to guarantee consistent input for the deep learning mod-
els. To ensure uniformity throughout the dataset, any extra preprocessing
processes, such as resizing images and masks to a uniform size, are car-
ried out. Normalization helps stabilize the training process and ensures
that input data is properly formatted for the neural network. By following
these procedures, data is configured optimally for training deep learning
models. Augmentation techniques enhance model robustness, and pre-
processing steps normalize the input data, facilitating effective training
and accurate predictions. A comprehensive data preparation strategy is
crucial for achieving the best results in segmentation tasks.
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3.2 Implementation of Mask R-CNN

Now that the preprocessing steps were carefully explained, let’s dive into
the implementation of the Mask R-CNN model. This section outlines the entire
process, from data preparation to training options, incorporating custom scripts
and methods written to conform with the project’s specific requirements.

3.2.1 Data Preparation:

1. Annotation Processing:

The JSON format annotations are processed using proprietary MATLAB
scripts, readJson.m and the optional readJsonVal.m, in case validation data needs
to be used. The scripts in question are responsible for loading the JSON files
and decoding their contents into structures that can be read by Matlab. Again,
these structures contain information about image dimensions, bounding box
coordinates, labels and segmentation points for each annotated cavity. Since
all instance masks are stored locally, only the bounding boxes information and
labels are used.

2. Datastore creation:

• Image Datastore (imds): this datastore contains the training images that
are saved in the "train" folder. It is initialized to simplify the loading and
processing of the images.

• Box Label Datastore (blds): this datastore holds the bounding box coor-
dinates and corresponding labels, where each bounding box is labeled as
’cavity’. The bounding boxes are organized in a cell array, with each cell
corresponding to an image.

• Instance Mask Datastore (imdsInstances): this datastore reads the bi-
nary masks contained in the .mat files. A custom read function dsIm-
ageReader.m is used to load these masks correctly and to make the datas-
tore readable at training time.

3. Combining Datastores:

The datastores are merged into a unified datastore (cmbds) using the combine
function. The combined datastore guarantees the accurate association of each
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training image with its corresponding bounding boxes, labels, and instance
masks. This facilitates efficient data loading throughout the training process.

3.2.2 Network Initialization:

Mask R-CNN is based on the ResNet-50 structure, and then trained on the
widely known COCO (Common Objects in COntext) dataset, containing a hand-
ful of, as the name suggests, everyday objects. This means that the base model
is defined upon this dataset, and not our custom dataset, implying the necessity
of modifying the underlying structure of the neural network. The results of the
modification of such parameters will be explained in chapter 4.

1. Custom Anchor Boxes:

There are several way to obtain anchor boxes. One can hand-craft the anchor
boxes and use those, otherwise one can use a k-means clustering algorithm to
generate the anchor boxes that best fit the data at hand. The original base paper
[1] used 7 squared anchor boxes of size [4, 8, 16, 32, 64, 128, 256].

2. Network Architecture:

The Mask R-CNN model is constructed using a ResNet-50 backbone that has
been pre-trained on the COCO dataset. The backbone of this system extracts fea-
tures from the input images, which are subsequently processed by the following
components:

• Region Proposal Network (RPN): Generates region proposals from the
extracted features.

• Detection Head: Performs bounding box regression and classification.

• Mask Head: Predicts segmentation masks for each region of interest.

With the current Matlab tools and availability, only a ResNet-50 backbone is
available.

Transfer Learning:

Transfer learning utilized to customize the pre-trained ResNet-50 backbone
for the project’s particular dataset consisting of nuclear reactor alloy cavities.
This process entails optimizing the network by training the feature extraction
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layers again using the dataset at hand. Transfer learning enhances the model’s
accuracy and performance on specialized task by enabling it to acquire the
specific features of cavities, since, obviously, the task does not contain the same
categories as in the COCO dataset. Through the process of re-training the feature
extraction layers, the model is capable of modifying its weights and biases in
order to improve its ability to accurately detect and segment the cavities that are
visible in the alloy images. The process of fine-tuning is essential in order to
customize the general pre-trained model to the individual application.

3.2.3 Training Configuration

Training Parameters:

• Initial Learning Rate: set to 0.005 to begin the adjustments to our data.

• Learning Rate Schedule: to refine learning, every 10 epochs the learning
rate decays by a factor of 0.95.

• Momentum: set to 0.9 for stable convergence.

• Max Epochs: several hundreds, this however will be better explained in
chapter 4.

• Mini-Batch Size: 4, using as much GPU memory as possible and to ob-
tain the great accuracy in output. Usually this does not imply a faster
convergence, but a better performance in the output model.

• Execution Environment: configured to utilize a GPU for faster compu-
tations. In the provided Blade Cluster, an NVIDIA A40 graphics card
was used to satisfy the huge memory demands of the batch size and the
512x512 training image sizes.

Training Procedure:

• The network is trained using Stochastic Gradient Descent with Momentum
(SGDM). The training loop monitors the loss and adjusts the learning rate
as per the predefined schedule.

• Early Stopping: optional, not used, it is implemented to prevent overfitting.
Training halts if the validation loss does not improve for a specified number
of epochs.

• Validation Checkpoints: Regular evaluation on the validation set to obtain
the best-performing model, based on validation metrics.
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3.3 Implementation of SOLOv2

The Matlab framework to build a SOLOv2 model essentially follows the same
preprocessing steps described in the Mask R-CNN implementation section. For
this reason, there won’t be a repetition of these steps. A SOLOv2 model was
built as a research for better results, however it was not dealt with to the same
degree as for the Mask R-CNN model. It is however important to mention the
capabilities and functionalities of SOLOv2, for eventual future implementations.

3.3.1 Network Initialization:

1. Grid Cell Assignment:

SOLOv2 assigns objects to grid cells on feature maps, where each grid cell
predicts the presence of an object and generates a mask for that object. Unlike
traditional R-CNN-based models, SOLOv2 does not use anchor boxes. Instead,
it utilizes direct grid cell assignments for detecting and segmenting objects.

2. Network Architecture:

• Backbone Network: just like Mask R-CNN, the SOLOv2 model uses
a ResNet-50 backbone for feature extraction, pre-trained on the COCO
dataset. This backbone is responsible for extracting rich feature maps
from the input images.

• Feature Pyramid Network (FPN): the FPN enhances feature maps at mul-
tiple scales, improving the detection and segmentation of objects at various
sizes.

• Mask Kernels and Features: SOLOv2 divides the mask prediction into two
branches: mask kernels and mask features. The mask kernels dynamically
create masks for each object, while the mask features offer detailed spatial
information for an accurate segmentation.

Transfer Learning:

Following the same reasoning for the Mask R-CNN model, transfer learning
is used to learn how to extract features from the CNL/NOME datasets.
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3.3.2 Training Configuration

Training Parameters:

• Initial Learning Rate: set to 0.01, suitable for the SOLOv2 architecture
according to the Matlab documentation

• Learning Rate Schedule: no clear rule was used here, therefore the same
settings as for Mask R-CNN were used

• Momentum: set to 0.9..

• Max Epochs: 50, providing sufficient training time for an output, although
the amount of epochs might need to be reconsidered.

• Mini-Batch Size: 4 or 8, balancing memory usage and training efficiency.

• Execution Environment: configured to utilize a GPU for faster computa-
tions. In this case, the home laptop was utilized, using an RTX 3060 (laptop
version, slower than the correspondent PC version).

Training Procedure:

• The network is trained using Stochastic Gradient Descent with Momentum
(SGDM). The training loop monitors the loss and adjusts the learning rate
periodically based on the predefined schedule.

• Early Stopping: implemented to prevent overfitting. Training halts if the
validation loss does not improve after few consecutive epochs. In this
case early stopping was implemented to obtain a "quicker" model, not
necessarily implying it is the best model.

• Validation Checkpoints: the model is evaluated on the validation set at
regular intervals, and the best-performing model is saved.

Since SOLOv2 uses essentially the same preprocessing procedures for a Mat-
lab implementation, it became a trivial task to implement it for instance segmen-
tation. That is the underlying reason as to why it was implemented, offering
a comparison of results with Mask R-CNN. This is thanks to Matlab’s easily
accessible documentation and interface, and cohesion between models, despite
SOLOv2 architecture being quite different compared to Mask R-CNN’s architec-
ture.
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Figure 3.4: DeepLabV3+ architecture

3.4 DeepLabV3+

DeepLabV3+ (figure 3.4) is a state-of-the-art deep learning model designed
for semantic image segmentation tasks, which aims to label each pixel in an
image with a corresponding class. In this thesis, the purpose of implementing
a DeepLabV3+ model is to attempt to obtain a background segmentation to
be exploited by Mask R-CNN in some ways to be defined. By segmenting
the training images in background-cavity classes, the hope is to extract extra
information to run the training from. This is the framework to build a functional
DeepLabV3+ model in Matlab, after having implemented a Mask R-CNN:

• Have the appropriate toolboxes, they’re essentially the same ones required
by Mask R-CNN and SOLOv2, plus the extra Deep Learning Toolbox Model
for ResNet-50 Network toolbox, since DeepLabV3+’s backbone is a Residual
Network.

• This model utilizes binary masks, not instance masks. Therefore, the
ground truth images must be built by combining all instance masks related
to the same image, in order to create a black and white image where each
circle represents a cavity, as shown in figure 3.5. These masks are built
before training the model.

• Two datastores are initialized. One that contains the training images, the
second one that contains the ground truth binary masks and that holds the
pixel information (white=cavity, black=background). Data augmentation
is applied in the form of translation.
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• Without spending too much time on training parameters, standard training
option parameters, available in Matlab’s documentation, were used.

Figure 3.5: Binary ground truth mask used for DeepLabV3+

3.5 Mask R-CNN and SOLOv2 inference time

Once both models were trained on the dataset, it was required to build
a way to evaluate and potentially compare the results obtained. In order to
also have a fair comparison with the baseline paper’s results, the same metrics
were implemented: precision, accuracy and f1 scores; ground truth number
of cavities, number of predicted cavities and number of cavities found; true
density of cavities within an image and the corresponding predictions; true size
of cavities versus predicted size of cavities; finally, ground truth swelling of an
image and predicted swelling.

Again, the implementation of the inference time is relatively simple given
Matlab’s documentation. To run the models on the validation set, all it took
was to prepare the validation set data the same way used for the training data,
that is, to load the data into the required datastores. Using the segmentObjects
function, a new datastore and folder of stacked masks in the form of .mat files are
created. Then, a non-maximum suppression (NMS) algorithm is run on those
stacked masks, removing potential overlapping masks. Infact, it can happen
that a small instance is detected within an instance, which doesn’t make sense
in this application.
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The final step that retrieves precision, accuracy and f1 scores is to simply use
the evaluateInstanceSegmentation function, ran on the datastore that contains the
stacked masks after applying NMS.
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4
Experiments and Analysis

4.1 Finding Mask R-CNN parameters

This section is dedicated to all experiments and parameter tuning to attempt
to find a way to improve the accuracy of the Mask R-CNN model. In fact, after
having set up the data correctly, the natural question that rose to mind was
"What values should be assigned to the various parameters?"

A lot of testing was done in the first place, mostly due to the difficulties
with actually finding those parameters and understanding what changes they
produced when edited. This is usually one of the most challenging aspects in
deep learning, since there is no guide that tells you how to set your parameters,
rather, you have to search for them.

In the following subparagraphs there will be a discussion about the reasons
why certain parameters were changed, in a more or less chronological order.

4.1.1 Default Mask R-CNN

The default version of the model comes with fixed anchor boxes sizes, and
it is pretrained on the COCO dataset. The training loss, a metric used while
training a model to establish how well the model is performing on the training
set, was always performing badly. This naturally lead to believe that maybe
longer a longer was required, however this hypothesis turned out to not be true,
because no matter the learning rate, batch size the training loss was somewhat
flat at a relatively high number. Moreover, the output of the model when given
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the test set was essentially empty, indicating that the model didn’t learn.

4.1.2 Anchor boxes linear estimation

Naturally, the first parameter that came to mind to tweak was the anchor
boxes. As a reminder, the anchor boxes define the windows that capture the
regions of interests that contain instances/objects to be found. Therefore it was
assumed that the default version of Mask R-CNN was not able to find enough
instances to even train efficiently.

Hence the conclusion that the dataset required better anchor boxes, because
there was a need for anchor boxes that were representative for the data. Without
going into a lot of details, a linear model for estimating the anchor boxes was
made following this procedure: obtain all ground truth cavity sizes and plot
them in a width-height graph, in the x and y axes, then linearly fit some square
anchor boxes to make sure that they can capture the cavities.

Few amount of anchor boxes were attempted, 8, 16 and 24. Using more than
24 anchor boxes leads to unnecessary slowdowns in the RoI selection at training
time, since more anchor boxes implies a bigger search for instances. No results
were obtained and this procedure was discarded completely.

4.1.3 Anchor boxes estimation using k-means clustering

"Well, maybe using a linear estimation isn’t enough to be representative of the data."
So a k-means clustering algorithm was implemented quickly, thanks again to
Matlab documentation and the Statistics and Machine Learning toolbox. In the
figure 4.1, a plot is shown to better understand how the anchor boxes work.
Essentially each anchor box should be dedicated to capture as many instances
as possible around its centroid.

Despite trying 9, 16 and 25 anchor boxes, none of them worked, therefore
this method was also discarded, even though several training options were tried
as always.

4.1.4 Subset of training images

Another idea was that perhaps it wasn’t because of the training options but
because the model simply needed more time to train. The idea behind this
strategy was to select few images (about 30% of the training set), without a
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Figure 4.1: Plot of 16-means clustering to fit the ground truth masks in order to
spot instances for Mask R-CNN

specific criterion, to overfit the model on this subset to potentially find the issue
behind the high training loss. If the model actually had no problems learning
how to detect instances, it would overfit more quickly.

So by still using k-means clustering, since it anyways gave the best perfor-
mance thus far, more training routines were launched. The training loss did
become smaller but the results were still disappointing, so the attention on
improving the model shifted elsewhere.

4.1.5 Different network input sizes and different image subset

Another idea was that the network wasn’t able to learn to detect enough
instances because the resolution of the images wasn’t satisfactory. The images
were upscaled by 2x their size, along with adjusted annotations and anchor
boxes sizes. Furthermore, another different image subset was used, using the
criterion that the images shouldn’t contain more than 100 instances.

However, despite these attempts, nothing really worked. It was also hy-
pothesized that in the default Matlab implementation the model cannot detect
more than 100 instances, which obviously might have affected the training. This
theory will be explored more in detail in 4.3.

33



4.2. EVALUATION METRICS

4.1.6 Best anchor boxes

In the original paper, they reported a given set of 7 anchor boxes, values that
originally were not chosen to first experiment freely. However, since nothing
worked, the set of square sizes [4; 8; 16; 32; 64; 128; 256] anchor boxes provided
great results, despite requiring an enormous amount of training.

The overall training loss kept decreasing even after more than 200 epochs,
so the final proposed model was trained on 500 epochs in the Blade Cluster, a
training that took about 20 hours to complete, using a minibatch size of 4 and a
decaying learning rate from 0.005 to 0.001.

Despite the long training, no overfitting was ever observed. This is probably
due to the amount of instances in the training dataset, which contains over 20.000
cavities.

4.2 Evaluation metrics

When training a deep learning model, such as fine-tuning models like Mask
R-CNN and SOLOv2, it is extremely important to evaluate their performance on
a test set that the model has not encountered before during training time. The
aim of this evaluation is to determine the model’s ability to effectively generalize
to new and unseen data. When the model is tested on the same dataset used
for training or validation, the results might be overly optimistic. This occurs
because the model might merely memorize patterns in the training data instead
of genuinely learning to apply that knowledge to novel examples. Accuracy,
a common metric in model evaluation, measures the proportion of correctly
predicted instances out of the total number of observations. However, its use-
fulness can be limited with imbalanced datasets, where one class predominates.
In addition to evaluating the model’s performance, it is important to conduct a
thorough analysis of other subsequent metrics [20].

1. Precision is the degree of accuracy or exactitude in measuring. In simple
words, it is the ratio between the number of correctly found instances over
the number of found instances and the mistakenly predicted positive instances.
Achieving low precision might either mean that the model didn’t find enough
true labels or that it mistakenly detected too many labels to be positive. The
metric relates to the accuracy of positive forecasts. The precision formula is
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defined as:
Precision =

True Positives
True Positives + False Positives

2. Recall, also known as sensitivity or the true positive rate, is the proportion
of correctly identified positive instances out of the total number of actual positive
instances in a classification model. This metric evaluates the model’s ability to
detect and capture all relevant events. In other words, recall measures how well
the model predicts positive observations from the total number of true positive
instances. The formula for calculating recall in a binary classification problem
is:

Recall = True Positives
True Positives + False Negatives

3. The F1 Score is a commonly used metric in machine learning and statistics
to evaluate the performance of a classification model. It offers a balance between
precision and recall, making it particularly useful in scenarios with class imbal-
ance. It is also regarded as the harmonic sum between precision and recall, and
often mentioned as the "F1 curve/plot". The formula for calculating the F1 score
is as follows:

F1 Score = 2 × Precision × Recall
Precision + Recall

In the field of instance segmentation, as in other areas of deep learning, it is
almost mandatory to employ metrics such as Precision, Recall, and F1 Score to
evaluate a model’s performance. These metrics provide insightful information
regarding the model’s ability to accurately detect relevant data while minimizing
false positives and false negatives. When assessing a model on a test set, it is
ideal to achieve high precision and recall, which subsequently results in a high
F1 Score. The F1 Score, as just mentioned, represents a harmonious balance
between precision and recall, offering a comprehensive measure of the model’s
effectiveness.

In addition to these metrics, the Confusion Matrix serves as an excellent
tool for evaluating a model’s performance. This matrix is particularly valuable
for understanding the classification system’s performance across multiple cate-
gories. It provides detailed insights into the specific types of errors the model
makes, not just the overall error rate. The confusion matrix visually maps actual
classes to rows and predicted classes to columns, breaking down the model’s
predictions into four categories: True Positives (correctly predicted positive in-
stances), True Negatives (correctly predicted negative instances), False Positives
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Figure 4.2: Visualization of True/False Positive and True/False Negative

(incorrectly predicted positive instances), and False Negatives (incorrectly pre-
dicted negative instances). This is visualized in figure 4.2.

Using the confusion matrix, one can derive Precision, Recall, and Accuracy
values, which, along with the F1 Score, offer a detailed assessment of the model’s
performance. These metrics collectively ensure a thorough evaluation of the
model’s suitability for specific tasks in instance segmentation, highlighting both
its strengths and areas for improvement. This comprehensive analysis is vital
for developing models that are not only accurate but also reliable and efficient
in real-world applications.

Additional metrics from the base paper [1] are listed and represented below:

4. Total True represents the total number of ground truth masks in the
dataset. Assuming N ground truth masks for an image, the total true formula
is defined as:

Total True =

𝑁∑︂
𝑖=1

Ground Truth Masks

5. Total Pred represents the total number of detected instances by the seg-
mentation model. Assuming the model finds M instances, the total pred formula
is defined as:

Total Pred =

𝑀∑︂
𝑖=1

Predicted Positive Instances
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6. Total Found represents the total number of masks found, where a mask
is considered found if there is an overlap between the predicted mask and a
ground truth mask. Clearly, the number of found masks is less than or equal to
the number of predicted masks. The total found formula is defined as:

Total Found = True Positives

7. True Density measures the actual density of cavities in the images. It
is calculated as the ratio of true positive instances to the image area. There
can be several indices for the image area. In this thesis, not knowing the exact
dimensions of the S/TEM images, the image area in pixels was used. The total
density formula is defined as:

True Density =
Total True Masks (from GT)

Image Area

8. Pred Density measures the predicted density of cavities by the model. The
pred density formula is defined as:

Pred Density =
Total Pred Masks

Image Area

9. Density Error quantifies the error in the predicted density compared to
the true density. The density error formula is defined as:

Density Error =
(︃ |True Density − Pred Density|

True Density

)︃
× 100

where the error in density is reported as a percentage of our predicted density
w.r.t. true density, in absolute value.

10. True Size measures the actual size of the cavities in the images. This is
quantified by calculating the average size of all true positive instances. The true
size formula is defined as:

True Size =

∑︂
Area of Ground Truth Masks

Meaning that the true size of an image i is the sum of the areas of the GT masks
in pixels. In the base paper, they report a per-cavity true size measure, however
here the total area in pixels is reported.
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11. Pred Size measures the predicted size of the cavities by the model. The
pred size formula is defined as:

Pred Size =

∑︂
Area of Predicted Masks

12. Size Error is the error in the predicted size compared to the true size.
The size error formula is defined as:

Size Error =
|︁|︁|︁|︁True Size − Predicted Size

True Size

|︁|︁|︁|︁
13.True Swelling is the measure of the actual swelling in the material as

determined from the ground truth masks. The swelling indicator basically
estimates how swollen the material is, that is, how much the material protrudes
from the 2D plane. The true swelling formula is defined as:

True Swelling = 100 ×
(︄ 𝜋

6
∑︁𝑛

𝑗=1 𝑑
3
𝑗

imageArea − 𝜋
6
∑︁𝑛

𝑗=1 𝑑
3
𝑗

)︄
where 𝑛 is the number of true masks and 𝑑𝑖 is the i-th mask.

14.Pred Swelling is the predicted amount of swelling by our model. The
formula is omitted since it’s basically the same as the True Swelling formula.

15.Swelling Error measures the difference between the true swelling and the
predicted swelling. It’s calculated as the absolute difference between the true
swelling and the predicted swelling over true swelling, in terms of percentage.
The swelling error formula is defined as:

Swelling Error = 100 ×
|︁|︁|︁|︁True Swelling − Predicted Swelling

True Swelling

|︁|︁|︁|︁
Given all of these metrics, it is possible to estimate the model’s performance

to a great degree of comprehension, further understanding where the model is
lacking and where the model shines, in this specific dataset.

4.3 Implementation Analysis and Results

Before evaluating the Mask R-CNN, it is important to note that a major change
in the provided Matlab code was made. In fact, by running the segmentObject
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function that finds all instances within images, it was noticed that the output
always contained at maximum 100 instances. By doing some manual inspection,
it was found that "100" is hardcoded in the Matlab library to be the maximum
number of detectable objects in an image. It is not clear whether this is exactly the
case, however after modifying this value within the Matlab installation files (the
file is simply called MaskRCNN.m), to 800, assuming that no image contained
more than 700 instances by inspecting the ground truth data, the model found
all instances.

It is never recommended to edit installation files, however this was the only
workaround that solved momentarily the issue.

It is important to note that this change was not made inside the Blade Cluster,
therefore it is unknown whether the model predicted all instances at training
time.

4.3.1 Mask R-CNN Evaluation

The general evaluation procedure works as follows:

• Dataset Splitting: The dataset was split into training and testing sets,
ensuring that the testing set contains images not seen by the model during
training to evaluate its generalization capabilities.

• Model Inference: The trained Mask R-CNN model segmented the test set
images to generate predictions for bounding boxes, instance masks, and
segmentation outputs.

• Metric Calculation: The evaluation script calculates the precision, recall,
F1 score, density error, size error, and swelling error for each image in the
test set. These metrics were computed by comparing the predicted outputs
to the ground truth annotations.

• Visualization and Analysis: The results were visualized and analyzed to
identify any patterns or areas of improvement. The confusion matrix in
this case was not used due to the presence of just one class.
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Figure 4.3: Evaluation of Mask-RCNN, standard metrics

4.3.2 Results for Mask R-CNN

The first table as seen in image1 4.3 displays the results for the Mask R-CNN
model as far as the standard metrics are concerned. This includes precision,
recall, F1 score and the true number of instances, the predicted and found
number of instances.

The second table, image 4.4, instead contains the results as far as the custom
metrics are concerned, namely the true, predicted densities and density error;
true, predicted sizes and size error; true, predicted swellings and swelling errors.

Summary of Metrics

1. F1 Score:

• The F1 score ranges from 0.0976 (Image 10) to 0.8859 (Image 05), indicating
variability in the model’s performance across different images.

1The author understands that it is ugly to report the results as images of excel sheets.
Nevertheless, formatting the table in a space-efficient way was an impossible task, given tables
of size 20x18.
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Figure 4.4: Evaluation of Mask-RCNN, custom metrics

• The average F1 score indicates how well the model balances precision and
recall.

• The average F1 score for the reported values is 0.5878, indicating an average
score.

2. Precision and Recall:

• Precision values range from 0.0563 (Image 10) to 0.9305 (Image 17), indi-
cating the presence of a lot of false positives (since the corresponding F1
scores are by and large medium).

• Recall values range from 0.3667 (Image 10) to 1.00. For this application, it
is thought that obtaining a high recall but a low precision is fine, since it
is better to highlight the presence of more cavities rather than to miss the
cavities entirely.

• High precision and recall for certain images indicate good detection accu-
racy, while lower values suggest missed or incorrect detections.

3. Density and Size Errors:

• True and predicted densities, along with their errors, provide insights into
the model’s ability to estimate the concentration of cavities in an image.
Given the great amount of false positives, despite the NMS to eliminate
part of them, the model presents several defects in the density estimation
of instances.
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• Size errors explain the difference between the predicted and true cavity
area within each image, except few cases, the model has obtained alright
results in guessing the amount of cavity area in a material.

4. Swelling error: Swelling errors indicate that the model is somewhat
capable of estimating the swelling of an image, again, despite few bad cases.
One might obtain a better swelling estimation if the a coefficient for the image
area is utilized, instead of using pixel analysis.

Detailed Analysis

High Performance Image:

• Image 05: This image (figure 4.5) has the highest F1 score with high preci-
sion and recall. The density and size errors are relatively low, indicating
accurate predictions.

Figure 4.5: The blue spots indicate the ground truth cavities, while the red
boxes indicate what the model perceived to be a cavity, with the segmented area
omitted for visibility purposes

Low Performance Image:

• Image 10: This image shows the lowest F1 score (0.3246119) and precision
(0.3037037). The high density and size errors indicate significant discrep-
ancies between true and predicted values.

42



CHAPTER 4. EXPERIMENTS AND ANALYSIS

Figure 4.6: Similar to figure 4.5, the amount of non-existing small cavities is
remarkable

Density and Size Estimation: Most images show some level of error in den-
sity and size estimation, but the model performs reasonably well in maintaining
these errors within acceptable ranges for other high-performing images.

Bias in Predictions: The total true/pred/found columns help in under-
standing whether the model overestimates or underestimates the objects. For
example, images 01, 10 and 16 have an over-prediction bias, while images 17
and 18 are under-predicted.

4.3.3 Custom Swelling Loss Function

In this section, a complete and comprehensive explanation of the creation of
the custom loss function will be provided. The idea behind the creation of this
extra component in the loss function stems from the belief that it will help the
Mask R-CNN model to better estimate the swelling of images and to hopefully
achieve better results.

Similarly as done before (4.3), Matlab installation files will be edited. In
particular, during training, a fixed, hardcoded loss function is used. This loss
function only takes into account mislabeled instances, mislabeled pixels.
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Incorporating Swelling Indicators

Swelling indicators are key measurements that show how much alloys swell
after being exposed to radiation. These measurements provide fundamental
insights into how materials behave under radiation, ensuring the safety and
durability of nuclear reactors. Incorporating swelling indicators into the loss
function aims to improve the model’s ability to accurately detect and measure
these cavities. The MaskRCNNLoss.m loss function script is specifically modi-
fied to hopefully improve the conventional segmentation loss by incorporating
indicators for swelling. The main components of this customized loss function
are:

• Segmentation Loss: This is the standard loss component that measures
the accuracy of the predicted masks compared to the ground truth masks.
It includes binary cross-entropy and dice loss for pixel-wise classification.
This part remains unchanged

• Swelling Indicator Loss: This new component specifically targets the
accuracy of swelling predictions. Bearing in mind the formulas presented
in 4.2, the estimated ground truth volume(s) and the predicted volume(s)
are easily calculated since the loss function has total access to the ground
truth data and to the prediction data. The swelling error (=loss) is again
calculated using the aforementioned formulas.

The custom loss function can be mathematically expressed like this:

Total Loss = 𝛼 · Segmentation Loss + 𝛽 · Swelling Indicator Loss

where 𝛼 and 𝛽 are weighting factors that balance the contributions of the seg-
mentation loss and the swelling indicator loss. As far as 𝛼 is concerned, it
remained untouched because it is normalized based on the amount of received
ground truth + predicted data. For 𝛽, the swelling loss by itself is not normal-
ized with respect to all data, hence 𝛽 is set to be the inverse of the number of
predicted masks, in order to obtain coherence with the values already calculated
by default. Empirically, it is considered to be a good scaling factor.

4.3.4 Results for Custom Loss Function

Due to the unavailability of required hardware to run the training, it was not
possible to obtain the results for the custom loss function. However an attempt
was still made, with a sort of toy example. This was the procedure:
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• Instead of training a new model based on the real image sizes ([512 512 3]), a
much smaller input was chosen, [128 128 3]. This was executed on the local
computer and such input size made the network run without encountering
GPU memory issues, and it allowed for a relatively fast training.

• Using this procedure, the custom loss function was debugged successfully.
By constantly checking the value of the training loss, the normalization
factor 𝛽 was implemented. Still during training, it was indeed noticed a
considerable difference in the training loss, indicating that the changes to
the loss function actually took place.

• The results on the test set obtained by this model are not comparable given
the fact that it’s a reduced version of the original network.

One can make several predictions about the outcome of implementing the
new custom loss function, regarding the metrics:

1. Precision, Recall and F1 score might change. For example, by implement-
ing the swelling loss, the amount of false positives might decrease because
necessarily, in order to obtain the same amount of swelling in output of
the model, there will not be a great number of false positives because these
would contribute to the swelling directly. However this might also mean
that fewer instances are found, giving a lower Recall score.

2. The density error should also decrease, or maybe the amount of detected
instances will be lower than the actual amount of cavities, indicating a
negative density percentage error. This again makes sense if you assume
a lower number of false positives.

3. The swelling error will naturally tend towards 0, because it is directly
optimized at training time.
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Figure 4.7: Standard metrics of the baseline paper

4.4 Comparative Analysis with Base Paper

It is now possible to compare the results obtained between the Matlab im-
plementation of Mask R-CNN and the Mask R-CNN python implementation of
the baseline paper. The reported results they presented in [1] are visible in the
pictures 4.7 and 4.8.

Quantitative metric comparison:

• Precision and Recall: to start things off, the paper reports precision and
recall metrics the same way this thesis proposed earlier. Their overall
precision spans from 0.28 up to 1.00, indicating some problems in detecting
precise instances in few cases, however still robust. Similarly for recall,
recall spans from 0.45 up to 1.00. The mean F1 score across all images is
0.73 (73%), while precision’s and recall’s respective mean values are 0.76
and 0.72.

• Density and Size errors: the overall density and size errors are relatively
low, meaning that the model is able to provide a great estimation for both
of these metrics, either by getting the density right or not being further
away than a 50% from the true density.

• Swelling Error: the reported per-image percent swelling error returns
great errors in absolute value, however often times the model actually un-
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Figure 4.8: Custom metrics of the baseline paper

derestimates the swelling of the material, leading to lower errors according
to the formulas used. The reported swelling error ranges from -50% up to
+20%.

Qualitative metric comparison:

• Precision and Recall: the results obtained in the Matlab implementation
are slightly worse regarding precision and F1 score. This is due to the
presence of plenty of false positives that drastically reduce the precision
metric value, for a very slight increase in the recall metric. In the the-
sis version of Mask R-CNN, the mean average precision almost reached
0.50 (23% difference with the baseline precision), while the recall value is
slightly off 0.81 (5% better than the baseline) and the mean F1 score is 14%
worse, at roughly 0.59.

• Density and Size errors: in the Matlab model, the estimated density
offered worse results. This is again due to the presence of a high amount
of false positives which in turn increase the overall density of an image,
since for the model it contains a lot of cavities when there are actually
fewer. The size error cannot be compared to the baseline paper because in
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the original paper they calculated the size errors cavity by cavity, and not
by using the image area.

• Swelling Error: this error also got accentuated by the presence of false
positives. In fact, while the baseline paper on average detects less instances
than the actual amount of instances, the Matlab model detects too many
of them, leading to an inevitable higher density estimation.

4.5 DeepLabV3+ Results

DeepLabV3+ is an advanced deep learning model designed for semantic
image segmentation. The idea behind using DeepLabV3+ is to train this model
using the same training images used for Mask R-CNN, in order to obtain a
segmentation of the images. This segmentation does not contain additional
information such as bounding boxes, instead it simply classifies each pixel to
whatever classes the network is trained on.

In this instance, setting up the training was relatively simple, as already de-
scribed briefly in 3.4. DeepLabV3+ is based on a ResNet, by leveraging ResNet
as its backbone, DeepLabv3+ inherits the robustness and efficiency of resid-
ual learning, enabling it to perform accurate and detailed segmentation even in
deep networks. This combination allows DeepLabv3+ to capture rich contextual
information while maintaining high-resolution details, which is crucial for pre-
cise boundary delineation in segmentation tasks. The integration of ResNet into
DeepLabv3+ enhances its ability to balance feature extraction and computational
efficiency. Two important tests were run:

• ResNet-18 backbone. This is a great compromise for easy tasks, since it
offers great precision and great training speed, as well as optimal inference
time executions. The downside of using this architecture is the limited
capability of learning complex patterns in hard datasets. In the CNL
dataset case, ResNet-18 did not obtain amazing precision scores, therefore
it was discarded and moved to the second test.

• In the second test, ResNet-50 was adopted as the backbone for DeepLabV3+.
A bigger architecture implies longer training times and execution speed, for
the upside of better precision and segmentation results in output. Usually,
bigger architectures are more suited for offline tasks, contrary to real-time
applications. Despite the choice of a bigger network, the model still doesn’t
seem to learn enough from the data, despite reaching the validation loss
criterion, indicating a halt in the improvements on the validation set.
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Figure 4.9: Output of DeepLabV3+ segmentation compared to Ground Truth
binary mask, of the validation set

• To mention a few parameters, the standard input size was used, corre-
sponding to the image sizes provided in the dataset. Data augmentation
in the form of translation was applied, with a starting learning rate of 0.001,
decaying every 6 epochs, for a maximum training time of 36 epochs.

The image 4.9 displays a sample segmentation of an image in the validation
set, using the ResNet-50 version of the model. It is clear that the model struggles
to pin down the exact region of a cavity, often joining cavities together, hence
the obtained segmentations cannot be exploited in any form by Mask R-CNN.

In this case, it was also possible to draw a plot at training time, shown in
figure 4.10. The orange line represents the validation loss, while the blue line
represents the training loss. As one can see, the blue line contains a lot of spikes,
probably indicating that the model struggles to smoothly converge towards a
minimum, regardless of the training options. This behaviour was actually also
observed during the training of Mask R-CNN, it is supposed that this uncommon
behavior has to do with the complexity of the data at hand.
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Figure 4.10: Matlab plot of the training, DeepLabV3+ model

4.6 SOLOv2 experiments

Few experiments were conducted using the SOLOv2 model, provided by
Matlab. Having set the data up for Mask R-CNN already, all it took to set up
SOLOv2 for training was simply editing a couple of lines of code. A short training
was run on the local computer, since this model requires less GPU memory to
be trained and it is definitely faster than Mask R-CNN while training. However,
given the low amount of resources dedicated and given that SOLOv2 is outside
the scope of this thesis, no long experiments were conducted. Moreover, the
results obtained were not comparable in any shape or form with Mask R-CNN.

While it is undoubtable that SOLOv2 can achieve great results, it is definitely
material for someone who wants to pick up this architecture and begin explor-
ing the intricacies offered by the CNL and NOME datasets; leaving eventual
progress, improvements and implementations to the reader.

Nevertheless, a training plot image is still provided in figure 4.11. A very
spiky behavior is observed, again similar to how Mask R-CNN behaved at
training time. Not much parameter tuning was done, also it is visible how the
validation set loss begins worsening after a while, indicating overfitting.
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Figure 4.11: Matlab plot of the SOLOv2 training.
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5
Conclusions and Future Works

This thesis demonstrates significant advancements in the automated mea-
surement of material swelling in nuclear reactor alloys through the use of so-
phisticated deep learning models in Matlab. By employing Mask R-CNN and
creating custom loss functions tailored to detect swelling indicators, a highly
reliable and precise method for analyzing electron microscopy images has been
developed. Thus it is possible to understand irradiated material behaviors, by
adopting deep learning techniques in materials science.

The experimental results indicate that the Mask R-CNN model acquired a
somewhat good F1 score, precision, and recall rates, demonstrating its utility
in detecting and segmenting cavities. Nevertheless, it was seen that the model
still generated a substantial amount of inaccuracies. Let’s recap and breakdown
potential improvements for future research.

1. False Positives. At inference time it was noticed that on several images
from the test set many false positives were found. Despite the use of non maxi-
mum suppression, in some cases false positives were still abundant. Especially
when compared with the baseline paper and results, it is possible to improve.
Going back to the tables (figure 4.3) containing the segmentation results, images
such as number 15 can be improved a lot. Perhaps this needs to be fixed at
training time, in some ways.

2. Metric tuning. Some metrics might not be final and might need some
tuning. For example, the swelling loss and the size error metrics can benefit
with further tuning on how they are calculated. For the sizes proposed, maybe
it is more suited to take into account errors cavity by cavity instead of using the
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total area.
3. Custom Loss Function Implementation. The loss function has not been

refined extensively. It might need more tuning with the parameters that balance
the weight of each loss component, plus the way the swelling loss is calculated
might need some extra refinement. Future research can be done in this area for
this specific task.

4. Segmentation Models for the background. The results of DeepLabV3+
were not satisfactory. However there might still be potential in this technique.
For example, in Matlab there exists a possibility to use ResNet-101, an even
bigger architecture as a backbone for DeepLabV3+, instead of ResNet-50. Future
research should look into this problem, and then use the ground truth cavity
segmentation provided by DeepLabV3+ ran on the training images.

5. Reworking the dataset. Not a lot of attempts were spent in looking for
subsets of the training set to seek for overall improvements. It is believed that
using less data but more efficiently from the training set could improve the
model generalization capabilities.

6. Two-Round Fine-Tuning with Loosely Similar Datasets. The advantages
of using this technique is to optimize the Mask R-CNN model by using similar
datasets, for example the dataset provided by NOME. Using weakly supervised
ways to manage the training process might improve the performance of the
network thanks to broader datasets. It hasn’t been tested but there is a possibility
it might improve the accuracy and robustness of the model.

7. SOLOv2: SOLOv2 also has some potential regarding instance segmen-
tations. It is an inherently different architecture that performs the same job as
Mask R-CNN. However this model hasn’t been looked into in this thesis, and it
offers its own collection of tunable parameters before training.

8. Different applications. It is also interesting to leverage these models to
learn on different datasets, it is recommendable to explore new datasets to learn
more about the capabilities of these models.

9. Wait for updates. Perhaps in the future bigger Mask R-CNN models will
be adopted in Matlab, therefore making some difficult tasks, such as this one,
easier.
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