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Summary

In order to put a spotlight on the fundamental fields that shape the cosmic dynamics, this thesis
discusses in an introductive manner the connection between the realms of dynamical systems
theory and Cosmology. The primary objective is to discuss how mathematical models can be
employed to comprehend the complex dynamics governing the observable universe, by yielding
a nonlinear coupling between the scale factor, on one hand, and a possible cosmological field,
permeating the space at cosmological scale, on the other.

This thesis begins introducting the Lagrangian formalism applicable to cosmological fields,
processing towards an exploration of the Einstein Field Equations and Friedmann solutions, and
finally, delving into the dynamics of scalar-tensor theories and how they affect the scale factor’s
evolution. A fundamental reference for this exploration, especially in the final chapter, is the
ELSEVIER-published article titled ’Dynamical Systems Applied to Cosmology: dark energy
and modified gravity’ (2018). This article serves as a keystone, guiding the main considerations
on cosmological models influenced by dark energy.
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Sommario

Al fine di mettere in evidenza i campi fondamentali che plasmano la dinamica cosmica, questa
tesi discute in modo introduttivo la connessione tra i domini della teoria dei sistemi dinamici
e della cosmologia. L’obiettivo principale è esaminare come modelli matematici possano es-
sere impiegati per comprendere le dinamiche complesse che governano l’universo osservabile,
generando un’accoppiata non lineare tra il fattore di scala, da un lato, e un possibile campo
cosmologico che permea lo spazio a scala cosmologica, dall’altro.

Il percorso di questa tesi inizia con un’introduzione al formalismo lagrangiano applicabile ai
campi cosmologici,procedendo poi con l’esplorazione delle equazioni di campo di Einstein e delle
soluzioni di Friedmann, e infine approfondendo la dinamica delle teorie scalari-tensoriali e il
modo in cui influenzano l’evoluzione del fattore di scala. Un riferimento fondamentale per que-
sta indagine, specialmente nel capitolo finale, è l’articolo pubblicato da ELSEVIER intitolato
"Dynamical Systems Applied to Cosmology: dark energy and modified gravity" (2018). Que-
sto articolo fornisce il fondamento principale guidando le principali considerazioni sui modelli
cosmologici influenzati dall’energia oscura.
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Introduction

The vast array of galaxies, stars, and cosmic structures in the universe offers a captivating tale

of an intricate dynamical system. At the intersection of theoretical physics and cosmology,

this thesis focuses on using dynamical systems theory to understand the dynamical evolution

of the cosmos. Dark energy dynamics, and complex interactions between cosmic elements

(radiation, baryonic matter, dark matter, and dark energy) are the main cosmological study

topics examined in this dissertation.

In the first chapter, we delve into the specifics of the Lagrangian formalism for classical fields.

Adopting the Lagrangian formalism in Field Theory offers several advantages and intuitions

that make it a powerful and wisely used framework, mostly because the Lagrangian approach

provides a unified and elegant description of a wide range of physical systems: from scalar fields

to vector fields and beyond. This uniformity simplifies the theoretical structure, providing a

systematic way to obtain the equations of motions for fields. The Euler-Lagrange equations are

at first constructed analytically. Afterwards, we use the Principle of Least Action to derive the

equations more simply and directly. According to this principle, the configuration or evolution

pursued by a dynamical system is the one for which the action is minimized. We explain how a

system is defined in both cases by constructing a Lagrangian density and by deriving the Euler-

Lagrange equations. Using the Electromagnetic Field and the Schrödinger Field as examples,

we utilize this formalism to derive, by the Euler-Lagrange equations, the Maxwell equations

in the first case, and the Schrödinger equation in the second. The Quantum Electrodynamics

Lagrangian (QED) is presented in the final section. It characterizes a system in which the

electromagnetic field affects the wave function, it’s derived by expressing the current density

and charge density in terms of the wave function.

In the second chapter, we explore the application of the Lagrangian formalism to cosmological

field models. We provide a list of the primary fields in our universe according to the Standard

Model of particle physics. We begin with the fundamental particles, which are represented by
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Introduction

fermionic fields, and their interactions defined via bosonic field. In sec.2.1 we determine the

potential role of gravitation in this collection of fields. The scale factor becomes significant in

the context of the Cosmological Field because it dictates how the cosmological model, and the

related universe, evolve over time. General Relativity establishes a close relationship between

the cosmic scale factor and gravity through the Einstein Equations, which translate into the

Euler-Lagrange equations in the Lagrangian formalism. This relationship is represented by the

stress-energy tensor, which is an energy density of matter and radiation. The features of this

tensor are analyzed and connected to the Einstein Field Equations in sections 2.2 and 2.3, where

we derive the Friedmann solutions of the Einstein equations for a homogeneous and isotropic

cosmological model (all derivations where verified using the symbolic manipulator Wolfram

Mathematica). The Riemann and Ricci tensor are computed whose mathematical formulation

has been provided by Weinberg [SWe72] and Hartle [BHa03].

The last chapter investigates how the choice of different cosmological models influences the

evolution of the scale factor, establishing its dependence over time in distinct energy domi-

nation epochs. Specifically, within the dark energy domination era we observe three primary

modelizations of its origin.
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Chapter 1

The Lagrangian Formulation for

Continuous Systems

In this chapter we delve into the framework of the Lagrangian formulation of Field Theory, the

starting point for the discussion over cosmological fields. At the heart of this formalism lies the

principle of least action, which provides a unified and intuitive perspective on the behaviour

of physics fields. We explore how the Lagrangian density, a function of field values and their

derivatives, captures the dynamics of particles and fields, allowing us to derive the fundamental

equations of motion of the physical field in question.

First we will clarify the physical meaning and the correct terminology to understand what is

meant by the terms "field" and "density", key words in the Lagrangian formulation.

Given a mechanical system of N material points with masses mi, i = 1, ..., N and coordinates

ri subject to m constraints, let q1, ...qn with n = 3N − m be the free coordinates that define

the parameterization of the system’s coordinates on the constrained manifold. According to

the Lagrangian formalism, the mechanical system energy is represented by the Lagrangian

L(q, q̇, t), where q is the generalized coordinate q = (q1, q2, ..., qn) and q̇ is a shortcut for

a time derivative. The Lagrangian is universally defined as L = K(q, q̇, t) − U(q, t), with

K(q, q̇, t) the kinetic energy and U(q, t) the potential energy. From L can be derived the

Equations of Euler-Lagrange [C E22]:

d

dt

∂L

∂q̇i
− ∂L

∂qi
= 0 (1.1)

3



The Lagrangian Formulation for Continuous Systems

The equations of motion derived using the Euler-Lagrange method turn out to be second-order

differential equations. This property of the Lagrangian formalism is due to the fact that, in the

Lagrangian, the kinetic energy term is generally a scalar quantity that depends on the square

of the velocity components (for scalar coordinates i.e. K = m
2 (ẋ2 + ẏ2 + ż2).

To better understand, now, the passing to a continuous system, we consider a system of particles

undergoing oscillations, where each particle is characterized by its position x(j), expressed as a

sum of its fixed equilibrium position xj and a displacement ϕj(t).

ϕj
x1

α

x2

2α

x3

3α

x4

(n− 1)α

xn

Figure 1.1: System of j particles subject to a small perturbation ϕj

The kinetic energy of the system is given by:

K = 1
2m

Ø
j

ϕ̇2
j

while

V =
nØ
j=2

V I (ϕj − ϕj−1)

is the potential energy. From these formulas we can write

L = 1
2m

nØ
j=1

ϕ̇2
j − 1

2

nØ
j=2

V I (ϕj − ϕj−1)

With the addition of an external potential the Lagrangian takes the form:

L =
nØ
j=1

1
2mϕ̇

2
j −

nØ
j=2

V I(ϕj − ϕj−1) −
nØ
j=1

V E(ϕj) (1.2)

When the distance between the particles tends to zero, the system becomes describable in a

continuous manner, and ϕ(xj, t) transforms into ϕ(x, t), becoming a function of both time and

space: a field. We are formalising the transition form a classical system with a finite number

of degrees of freedom qj(t) to a classical field theory in terms of a scalar field ϕ(r, t).
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The Lagrangian Formulation for Continuous Systems

Formally, the transition to the continuum occurs as follows: we first rewrite the Lagrangian as

L = α

 nØ
j=1

1
2
m

α
ϕ̇2
j −

nØ
j=2

1
α
V I(ϕj − ϕj−1) −

nØ
j=1

1
α
V E(ϕj)


where α is the distance between particles. Then, adopting the following rule for the passing to

the continuous case
∂V I

α∂(ξj+1 − ξj)
−→ ∂V I

∂r

-----
r=ϕj+1−ϕj

where r = α(ξj+1 − ξj) has been rescaled with ξ(x, t) = ϕ
α
, as

lim
α→0

ϕj+1 − ϕj
α

= ∂ϕ

∂x

-----
x=xj

we can determine V I(ϕj+1 − ϕj) → V I(∂ϕ
∂x

) . The mass function becomes ρj = mj

α
which

represents the local density at the nominal point xj, and this transforms into ρ(x) in the

continuous limit. Thus, in the transition to the continuum, it follows that:

K =
nØ
j=1

αρjϕ̇
2
j →

Ú
dxρ(x)ϕ̇2

j

with α = ∆x infinitesimal, leading to

U =
nØ
j=2

α
1
α
V I(ϕj − ϕj−1) →

Ú
dxæV I

A
∂ϕ

∂x

B

Finally the external potential is scaled as:

α
nØ
j=1

1
α
V E(ϕj) =

nØ
j=1

∆xçV E(ϕj) →
Ú
dxçV E(ϕj)

In the continuum, we then define the Lagrangian as :

L =
Ú
space

dx

1
2ρ(x)

A
∂ϕ

∂t

B2

− æV I

A
∂ϕ

∂x

B
− çV E(ϕ)

 =
Ú
space

dxL

where L
1
∂ϕ
∂t
, ∂ϕ
∂x
, ϕ, x, t

2
is referred to as the Lagrangian density, a function that depends on

the field variable ϕ, its spatial derivatives and time. While the Lagrangian (L) carries units

of energy, the Lagrangian density (L) has the units of energy per unit volume. From the
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The Lagrangian Formulation for Continuous Systems

continuum we have that:

L =
NØ
j=1

α
1
2
mj

α
ϕ̇2
j −

NØ
j=2

α
1
α
V I(ϕj − ϕj−1) −

NØ
j=1

α
1
α
V E(ϕj)

=⇒ L = α
m1

2α ϕ̇
2
1 − α

1
α
V E(ϕ1) + α

mN

α
ϕ̇2
N − α

1
α
V I(ϕN − ϕN−1) − α

1
α
V E(ϕN)+

+
N−1Ø
j=2

α
31

2
mj

α
ϕ̇2
j − 1

α
V I(ϕj − ϕj−1) − 1

α
V E(ϕj)

4

The first terms represent the boundaries of the problem, the outcomes of which are readily

determined by the boundary conditions, and in the continuous case, they vanish. Therefore,

for the purpose of this discussion, we will limit our study to the Euler-Lagrange equations for

the values of j = 2, ..., n − 1; where the Lagrangian density (last term of the equation above)

is:

L =
N−1Ø
j=2

α
31

2
mj

α
ϕ̇2
j − 1

α
V I(ϕj − ϕj−1) − 1

α
V E(ϕj)

4

The Euler-Lagrange equations, for the j-th body (from eq. 1.4):

d

dt

∂L

∂ϕ̇j
− ∂L

∂ϕj
= 0 =⇒ d

dt

A
α
∂L

∂ϕ̇j

B
= ∂L

∂ϕj

where:

∂L

∂ϕj
= −α 1

α

∂

∂ϕj

è
V I(ϕj − ϕj−1) + V I(ϕj+1 − ϕj)

é
=

= −α ∂

∂ϕj

5 1
α
V I(αϕ′

j) + 1
α
V I(αϕ′

j+1)
6

with 1
α
V I = æV I , and

∂ϕ

∂x
= lim

α→0

ϕj − ϕj−1

α
= ϕ′

j

∂

∂ϕj
æV I(αϕ′

j) =
∂æV I(αϕ′

j)
∂(αϕ′

j)
∂(αϕ′

j)
∂ϕj

where the second term ∂(αϕ′
j)

∂ϕj
= 1. Working similarly for the term in j + 1, we obtain:

=⇒ ∂L

∂ϕj
= −α

 ∂æV I

∂(αϕ′
j)

− ∂æV I

∂(αϕ′
j+1)

− α
∂çV E

∂ϕj

6



1.1. LEAST ACTION PRINCIPLE

The Euler-Lagrange equations thus take the form:

d

dt

∂L

∂ϕ̇j
−

 ∂æV I

∂ϕ′
j+1

− ∂æV I

∂ϕ′
j

 1
α

+ ∂çV E

∂ϕj
= 0

For a continuous system [VBa04]:

d

dt

∂L

∂ϕ̇j
−→ ∂

∂t

 ∂L

∂
1
∂ϕ
∂t

2


1
α

A
∂Ṽ I

∂ϕ′
j+1

− ∂Ṽ I

∂ϕ′
j

B
−→ ∂

∂x

∂Ṽ I

∂ϕ′

∂Ṽ E

∂ϕj
−→ − ∂L

∂ϕj

(1.3)

Therefore,
∂

∂t

 ∂L

∂
1
∂ϕ
∂t

2
+ ∂

∂x

 ∂L

∂
1
∂ϕ
∂x

2
− L

∂ϕ
= 0 (1.4)

Thit is the general equation of motion for natural fields.

The Lagrangian density serves as the starting point for deriving the equations of motion for

physical fields, whether in classical field theory, electromagnetism, fluid dynamics, or quantum

field theory. It is essentially a generalized Lagrangian, appropriate for continuous systems and

fields, and it encapsulates the dynamics of the field. By specifying the Lagrangian density L

appropriately for a particular field, we obtain the specific equations of motion that describe the

behavior of that field in the given physical context.

1.1 Least Action Principle

In the section above, we addressed the classification of physical systems into discrete material

points (particles), characterized by dynamic variables represented through coordinates r, and

continuous fields (waves), which constitute dynamic systems described by one or more contin-

uous functions of coordinates and time ϕ = ϕ(r, t). Furthermore, we examined the transition

in formalism from the treatment of discrete particles to the broader field-based approach. We

can derive the same outcome in a more straightforward and direct way, as elaborated in the

forthcoming section.

In classical mechanics, we formalize the transition from a classical system with a finite number

of degrees of freedom qi(t) to a classical field theory in terms of a scalar field ϕ(r, t) through the

Principle of Least Action. This principle states that the actual path or configuration followed

7



1.1. LEAST ACTION PRINCIPLE

by a physical system between two points is the one for which the action S becomes stationary.

We define the action S as the integral over time of the Lagrangian, between t1 < t2:

S =
Ú t2

t1
Ldt (1.5)

In the context of a system of particles, the Lagrangian is expressed as a sum over the various

degrees of freedom. However, when dealing with fields, these degrees of freedom are distributed

at each point in space. Therefore, as described previously ([LMa22]):

L =
Ú
d3xL(ϕ′, ϕ, x) (1.6)

where with ϕ′ we mean the derivatives of the fields with respect to the coordinates:

ϕ′(x) = ∂ϕ

∂xµ

To deduce the differential equations that determine the evolution of the field, consider a func-

tional defined as

I =
Ú β

α
L(f ′, f, x)dx (1.7)

and let’s discuss the values of f so that I becomes stationary. Let’s examine an arbitrary

perturbation of the paths linking the two points in question: fϵ(x) = f(x) + ϵη(x) where

η(α) = η(β) = 0. To determine the location where the action is stationary, we examine the

partial derivative of the action with respect to ϵ at ϵ = 0. This quantifies how the action’s

variation behaves as the ϵ-parametrized path converges to the original path. If the limit equals

zero, it implies that the action remains relatively unchanged for minor ϵ variations. On the

other hand, a non-zero limit indicates that introducing a perturbation leads to a substantial

alteration in the action.

lim
ϵ→0

I(ϵ) − I(0)
ϵ

= lim
ϵ→0

I[f(x) + ϵη(x)] − I[(f(x)]
ϵ

= 0

We can write

L(f ′
ϵ, fϵ, x) = L(f ′ + ϵη′, f + ϵη, x) = L(f ′(x), f(x), x) + ϵ

A
∂L

∂f ′η
′ + ∂L

∂f
η

B
+ σ(ϵ2)

8



1.2. THE LAGRANGIAN FORMULATION IN FIELD THEORY

using Taylor’s serie. Replacing the expression found in eq.1.7:

δI =
Ú β

α

C
∂L

∂f ′η
′ + ∂L

∂f
η

D
dx

solving the first limit by parts:

Ú ∂L

∂f ′η
′dx = ∂L

∂f ′η −
Ú
η
d

dx

∂L

∂f
dx

⇒ δI =
Ú β

α

A
∂L

∂f
− d

dx

∂L

∂f ′

B
ηdx+ ∂L

∂f ′η

-----
β

α

where the last fraction is the contribution from the interval limits and therefore equal to zero.

Hence, it is observed that by imposing the derivative of the action to be zero, and thus applying

the principle of least action, one obtains the Euler-Lagrange equations:

∂L

∂f
− d

dx

∂L

∂f ′ = 0 (1.8)

Graphically, in the configuration space, the actual path represents a curve. The stationarity

condition asserts that this actual path is an extremum. For every physical system, L(q̇,q, t)

with q = (q1, ...qn), there will be an optimization problem solved by the Euler-Lagrange equa-

tion 1.4, and this problem is formulated based on the action eq.1.5.

In summary, the Lagrangian density, along with the principle of least action and the Euler-

Lagrange equation, provides a powerful and general framework for describing the dynamics of

physical fields in physics. This formalism has been successfully applied to understand a wide

range of phenomena, from classical electromagnetic waves to quantum particles in the Standard

Model of particle physics.

1.2 The Lagrangian Formulation in Field Theory

In this section, we will further discuss how to apply the Lagrangian formalism using the example

of two known fields: the electromagnetic field and a material field.

1.2.1 Electromagnetic Field formulation

The most significant example of a field in classical physics is the electromagnetic field, described

by two vectors at each point, corresponding to the values of the electric field E(r, t) and the

9



1.2. THE LAGRANGIAN FORMULATION IN FIELD THEORY

magnetic field B(r, t). The purpose of the following section is to deduce the Lagrangian1

within the context of an electromagnetic field. We begin the discussion considering the Maxwell

equations in terms of (E,B). Given a charge distribution with current density j(r, t) and charge

density ρ(r, t):

∇ · E(r, t) = 4πρ(r, t) Gauss’ Law for the electric field

∇ ∧ E(r, t) = −1
c

∂B(r, t)
∂t

Faraday’s Law

∇ · B(r, t) = 0 Gauss’ Law for magnetism

∇ ∧ B(r, t) = 4π
c

j(r, t) + 1
c

∂E
∂t

Ampère-Maxwell Law

(1.9)

And the continuity equation:
∂ρ

∂t
+ ∇ · j = 0 (1.10)

that derives from the first and the last of eq.1.9 and expresses the conservation of charge. To

make these equations more tractable, it’s possible to reformulate them in terms of electro-

magnetic potentials. Due to the magnetic field having zero divergence, there exists a function

A(r, t) referred to as the vector potential (or magnetic potential) [Jan20], such that

B = ∇ ∧ A (1.11)

replacing eq.1.11 into Faraday’s Law:

∇ ∧ E = −1
c

∂(∇ ∧ A)
∂t

⇐⇒ ∇ ∧
A

E + 1
c

∂A
∂t

B
= 0 (1.12)

Since the equation represents the curl of an irrotational quantity, there exists a function Φ(r, t)

known as the scalar potential (or electric potential) such that:

E = −∇Φ − 1
c

∂A
∂t

(1.13)

Eq.1.13 and eq.1.11 verify the equations of Faraday’s Law and Gauss’ Law for magnetism, as

∇ ∧ (−∇Φ) = 0 and ∇ · (∇ ∧ A) = 0.

Consequently, we derive a pair of generalized Maxwell’s equations formulated in the context of

1From now on, whenever we refer to the Lagrangian of the system we will actually mean the Lagrangian
density L, since the Lagrangian does not play a pivotal role in the equations of motion.

10



1.2. THE LAGRANGIAN FORMULATION IN FIELD THEORY

the vector potential A, and the scalar potential Φ:

∇2Φ + 1
c
∇ · ∂A

∂t
= −4πρ

∇2A − 1
c2
∂2A
∂t2

− ∇
A

∇ · A + 1
c

∂Φ
∂t

B
= −4π

c
j

(1.14)

To ascertain the second equation, the following relation has been utilized:

∇ ∧ (∇ ∧ A) = ∇(∇ · A) − ∇2A

Φ and A make up four functions in total (one for the scalar function, one for each spatial

component of A), which can be solved and their solutions can be used to find E and B, this is

a simplification over the original equations that make up six functions.

We can achieve additional simplification by applying the Lorenz gauge, which represents a

partial gauge-fixing procedure. A general gauge transformation determines two new fields that

have the same physical significance as the initial ones:

A′ = A + ∇f(r, t)

Φ′ = Φ − ∂f(r, t)
∂t

(1.15)

The Lorenz condition imposes constraints on the choice of the function f , such that the scalar

and vector potential are connected by:

∇ · A′ + 1
c

∂Φ′

∂t
= 0 (1.16)

hence, for a general gauge transformation2:

∇ · A + ∇2f − 1
c2
∂2f

∂t2
+ 1
c2
∂Φ
∂t

= 0 ⇔ −∇2f + 1
c2
∂2f

∂t2
= ∇ · A + 1

c2
∂Φ
∂t

2Given
−∇2f + 1

c2
∂2f

∂t2 = g(r, t)

the general solutions are the so-called green functions:

f(r, t) =
Ú

space

dr′ g(r′, tr)
|r − r′|

+ f0(r, t)

where tr = t − |r−r′|
c .

11



1.2. THE LAGRANGIAN FORMULATION IN FIELD THEORY

As a result of a Lorenz gauge transformation, we consequently derive:

∇2Φ − 1
c2
∂2Φ
∂t2

= −4πρ

∇2A − 1
c2
∂2A
∂t2

= −4π
c

j
(1.17)

given j = ρv.

Considering the four-potential Aµ =
1

Φ
c
,A
2
, the four-current Jµ = (ρc, j) the electromagnetic

Maxwell tensor3 F µν = ∂µAν − ∂νAµ:

F 0i = ∂0Ai − ∂iA0 = −Ei F ij = ∂iAj − ∂jAi = ϵijkBk

The Maxwell equations in terms of the field tensor are:

∂νF
µν = −4π

c
Jµ

ϵµνρσ∂νFρσ = 0
(1.18)

where ϵijk and ϵµνρσ are the Levi-Civita symbols.

We can establish the structure of the Lagrangian for the electromagnetic field by making use of

our prior knowledge of the equations of motion derived from it: the Maxwell equations above.

Given that these equations are first-order partial differential equations concerning the field

tensor F µν , the Lagrangian Lem must necessarily take a quadratic form in F µν [VBa04].

Lem = − 1
4µ0

FµνF
µν (1.19)

When the electromagnetic field is coupled with a current Jµ, the Lagrangian characterizing the

system introduces an interaction term, alongside the inherent kinetic contribution:

L = − 1
4µ0

FµνF
µν − JµA

µ (1.20)

where the first term is the kinetic term and JµA
µ is the interaction term (in vacuum is zero).

As [VBa04]
1
4FµνF

µν = 1
2

A
B2 − E2

c2

B

3The Maxwell equations become □Aµ = µ0Jµ, with the D’Alambert operator □ =
q

a ∂a∂a = 1
c2

∂2

∂t2 − ∇2

12



1.2. THE LAGRANGIAN FORMULATION IN FIELD THEORY

the Lagrangian density can be written also in terms of the fields:

L = ϵ0

2
---E2

---− 1
2µ0

---B2
---− ρΦ + j · A (1.21)

1.2.2 Schrödinger Field formulation

The identical procedure can be replicated in the scenario of a scalar field, in particular for

the Schrödinger Field. In Classical Mechanics, a particle’s dynamics are governed by the time

evolution of its associated wave-function ψ(r, t), according to the non-relativistic Schrödinger

equation:

iℏ
∂

∂t
ψ(r, t) = Hψ(r, t) (1.22)

where the Hamiltonian is given by H = p̂2

2m +V (x̂) = − ℏ2

2m∇2 +V (r, t). Field Theory addresses

the challenges posed by multi-particle frameworks through a radical change of perspective4.

The concept of this theory describes a particle as an oscillation of an abstract field [TWe].

The application of the Lagrangian formulation introduces us to the concept of fields as the

fundamental entities, with particles being construed as localized excitations within these fields.

In the context of Field Theory, the wave function is treated as a field, just like the electric

field, but it’s a field of probability amplitudes. Therefore, ψ is considered a field because it

assigns a complex number (amplitude) to every point in space, which determines the likelihood

of finding a particle there. We will now focus on formulating the Lagrangian that characterizes

a Schrödinger Field.

This Lagrangian contains terms that govern how the field evolves in space-time and how it

interacts with other fields. In the freely evolving case, the Lagrangian takes the form:

LSchr = i

2ℏ
1
ψ∗ψ̇ − ψ̇∗ψ

2
− ℏ2

2m∇ψ∗ · ∇ψ (1.23)

The field’s evolution and particles interactions are determined by the Euler-Lagrange equations.

These equations give back the Schrödinger equation. In ψ the Euler-Lagrange equations are:

∂

∂x

∂L
∂ψ
∂x

+ ∂

∂y

∂L
∂ψ
∂y

+ ∂

∂z

∂L
∂ψ
∂z

+ ∂

∂z

∂L
∂ψ
∂z

+ ∂

∂t

∂L
∂ψ
∂t

− ∂L

∂ψ
= 0 (1.24)

4i.e. the fundamental entities are fields and not particles; particles are regarded as excitations of these fields
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1.2. THE LAGRANGIAN FORMULATION IN FIELD THEORY

yielding

− ℏ2

2m∇2ψ∗ = iℏ
∂ψ∗

∂t
(1.25)

which is the Schrödinger equation.

Both the charge density of matter in space, denoted as ρ(r, t), and the current density j(r, t)

can be described in terms of the wave function [Shu82].

ρ(r, t) = ψ∗(r, t)ψ(r, t)

j(r, t) = ℏ
2mi (ψ∗(r, t)∇ψ(r, t) − ψ(r, t)∇ψ∗(r, t))

(1.26)

definitions that satisfy the equation of continuity given by Eq.1.10. These new definitions

(Eq.1.26) can be substituted into the Maxwell’s equations Eq.1.9.

The resulting Lagrangian (in a static universe) is a function of the two wave functions (ψ,ψ∗)

and their spatial-temporal derivatives, as well as the electromagnetic fields (A and Φ) and

their spatial-temporal derivatives, describing a system in which the wave function is influenced

by the electromagnetic field. To confirm this we demonstrate that the Euler-Lagrange equa-

tions resulting from this Lagrangian align with the Maxwell and Schrödinger equations. Given

Eq.1.20 for the electromagnetic field and Eq.1.23 above:

LQED = i

2ℏ
1
ψ∗ψ̇ − ψ̇∗ψ

2
− ℏ2

2m∇ψ∗ ·∇ψ−ψψ∗Φ+
A
ℏ2

2m(ψ∗∇ψ − ψ∇ψ∗)
B

·A− 1
4µ0

F µν
µν (1.27)

This defines the Lagrangian for Quantum Electrodynamics (QED), a specialized branch of

electrodynamics that explores the interactions between charged particles, it is a comprehensive

Quantum Field Theory that elucidates electromagnetic interactions among charged particles.

QED provides a detailed, quantum-mechanical description of how charged particles interact

through the electromagnetic field. The detailed process of quantization of the fields themselves,

involves replacing classical fields with field operators. This is outside the scope of this thesis

and will be left to more detailed texts on the subject.
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Chapter 2

The Lagrangian Formulation in

Cosmological Fields

2.1 Fields in our Universe: from the Standard Model to

the Gravitational Field

In the opening chapter, we examined the application to field theory, showing two examples of

fields described by a Lagrangian density.

The present chapter starts with a concise introduction to the diverse fields observed in our

universe. Following this, in the final segment of the initial section, we delve into the role

of gravity and the crucial concept of the scale factor. Transitioning to the second section,

we introduce the fundamental notion of the stress-energy tensor, providing essential insights

into the mass-energy content of a system. The concluding section of this chapter describes

the tensor and space-time curvature within a model of a perfect fluid in a homogeneous and

isotropic cosmological setting. Here, we establish the connection between the two through the

Einstein Field Equations, ultimately deriving the temporal evolution of the scale factor.
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2.1. FIELDS IN OUR UNIVERSE: FROM THE STANDARD MODEL TO THE GRAVITATIONAL FIELD

The Standard Model of particle physics is a remarkably successful theoretical framework that

classifies the fundamental particles and their interactions, developed in the mid-20th century,

it provides a comprehensive understanding of the microscopic world. At its core, the Standard

Model views particles not as small spheres but as excitations of fields that permeate all of space-

time: they are little vibrations in their particular field. The interaction between particle is then

regarded as a coupled vibration between the corresponding fields [PSu19]. Each fundamental

particle (such as quarks, leptons and bosons) corresponds to a unique field.

The Standard Model categorizes elementary particles into two main groups: fermions and

bosons. Fermions, which include quarks and leptons, constitute the building blocks of matter.

Quarks combine to form protons and neutrons, while leptons like electrons and neutrinos play

essential roles in various processes. Bosons, on the other hand, are force carriers that mediate

interactions between particles. Photons γ, for instance, mediate electromagnetism, while W±

and Z bosons are responsible for the weak nuclear force.

In the upcoming discussion, we will only examine free fields with no sources or interactions.

2.1.1 Fermionic Field

Fermionic fields describe the behaviour of quarks and leptons: elementary particles of spin 1
2 ,

each with their own antiparticle. Quarks (up-down, top-bottom, charm-strange) combine to

form the more complex hadrons, that, with leptons (electron-neutrino, muon-muon neutrino,

tau-tau neutrino), depic the atom with the "Thomson model" of an electron orbiting around a

positive nucleus. For this reason, fermions (or fermionics field) are the elementary constituents

of what we call matter.

The dynamics of fermions are governed by the Dirac equation, which is determined by the

Dirac Lagrangian for a Spinor Field. This relativistic wave equation accounts for the behavior

of fermions in the presence of electromagnetic fields. Consider a spinor field (Spin-1
2) ψ, the

Lagrangian [DGr08]:

L = iψ̄γµ∂µψ −mψ̄ψ (2.1)

where ψ and the ajoint spinor ψ̄ are indipendent field variables, γµ are the Dirac gamma

matrices and ∂µ is the partial derivative with respect to spacetime coordinates. Note that the

Lagrangian for a particular system is not unique: one can simply multiply L by a constant,

or add a constant, and see that such terms cancel out when it comes to the application of the

Euler-Lagrange equations, so they do not affect the field equations.
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2.1. FIELDS IN OUR UNIVERSE: FROM THE STANDARD MODEL TO THE GRAVITATIONAL FIELD

Applying the Euler-Lagrange equation to ψ̄, we find:

∂L

∂(∂µψ̄)
= 0

and
∂L

∂ψ̄
= iγµ∂µψ −mψ

so that

iγµ∂µψ −mψ = 0 (2.2)

this is the Dirac equation describing a particle of spin 1
2 and mass m.

iγµ∂µψ̄ −mψ̄ = 0 (2.3)

is the adjoint of the Dirac equation.

2.1.2 Scalar-boson Field

Scalar particles are those without intrinsic angular momentum, their spin-0 nature is described

by scalar fields. The Lagrangian density for a free scalar field ϕ is given by the Klein-Gordon

Lagrangian [DGr08]:

L = 1
2(∂µϕ)(∂µϕ) − 1

2m
2ϕ2 (2.4)

in this case
∂L

∂(∂µϕ) = ∂µϕ = ∂µϕ (2.5)

and
∂L

∂ϕ
= −m2ϕ (2.6)

hence the Euler-Lagrangian formula from Eq.1.4 gives back an equation known as the Klein-

Gordon equation:

∂µ∂
µϕ+m2ϕ = 0 (2.7)

which describes a particle of spin 0 and mass m, hence the dynamic governing a scalar field.

The solutions to the Klein-Gordon equation describe the evolution of the scalar field over space-

time.

The only known example of an existing scalar particle in the Standard Model is the Higgs boson,

which is a fundamental particle discovered at CERN in 2012. The associated Higgs Field is the
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2.1. FIELDS IN OUR UNIVERSE: FROM THE STANDARD MODEL TO THE GRAVITATIONAL FIELD

reason why particles acquire mass in the Standard Model of particle physics ([RMa10]).

2.1.3 Gauge-boson Fields

Gauge bosons are particles of integer spin, they are the elementary particles that govern what

we describe as a force in the everyday world [RMa10]. They are the ones that determine the

interactions, from what we know interactions are governed by some combination of the four

basic forces: gravity, electromagnetism, nuclear (the strong force) and radioactive (the weak

force). The Standard Model successfully unifies three of this four fundamental forces: gravity,

described by general relativity, is not integrated into this "Theory of Almost Everything".

Electromagnetism Electromagnetism is one of the fundamental forces of nature and is me-

diated between particles by the exchange of photons. The behave of the electromagnetic field

is encapsulated in the Lagrangian derived in the last chapter Eq.1.20. Its Lagrangian is a

particular case of the Proca Lagrangian for a vector (spin-1). [RMa10]

The interaction of charged particles with the electromagnetic field is embodied in the Dirac

equation and expressed through the Lagrangian QED derived in the first chapter Eq.1.27.

Weak interaction force The weak force is mediated by three massive bosons: W+, W−

and Z. These exchange particles are responsible for transmitting the weak force between

particles that interact through it. The Lagrangian term that represents the weak force involves

interactions between these fields and fermions under the model of the electroweak theory. It

provides a unified framework for describing both the electromagnetic force and the weak force

within a single theoretical structure. In the electroweak theory, the Lagrangian incorporates

the kinetic terms and interaction terms for both the electromagnetic and weak fields.

Strong interaction force The strong interaction force, also known as the strong nuclear

force is responsible for binding quarks together to form protons, neutrons, and other hadrons,

as well as for holding these hadrons together within atomic nuclei. The force carrier particles

associated with the strong force are called gluons. The Yang-Mills Lagrangian is the one that

describes the strong interaction force, though for the purpose of this dissertation, my analysis

will not concentrate on this topic. Their interactions are described by a Lagrangian that

includes terms representing each of the fundamental forces.

To sum up, in the Standard Model of particle physics we have a roster of fundamental particles

and fields that govern their interactions. Breaking down the smallest components allowed by
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relativity and gauge invariance [RMa10], we find: the Lepton Fields including the electron,

muon, and tau, each paired with its associated neutrino field; the Quark Fields, of six types

that are confined within hadrons, the Higgs Scalar Field, with his unique role to provide mass

to other particles through the Higgs mechanism1. Weak Boson Fields, that include the W+,

W− and Z bosons, responsible for weak interactions; the Electromagnetic Field, described by

the photon field and Gluon Field, responsible for the strong force, which binds quarks inside

protons and neutrons.

While quarks and electrons (of three types) interact electromagnetically through the photon

field, all particles, including neutrinos (of three types), engage via the weak force mediated by

the W± and Z fields [DGr08].

It’s worth noting that, beyond these known fields, there might be additional fields and particles

awaiting discovery. While all particles are assumed to experience gravitational interactions, our

understanding of gravity is not yet incorporated into the Standard Model due to the absence of

a complete "quantum theory of gravity". The Standard Model does not include a description of

gravity and falls short in accounting for dark matter and dark energy (more details will be given

in Chapter 3), which together constitute the majority of the universe’s mass and energy. The

quest for a more comprehensive theory, such as theories of supersymmetry or grand unification,

continues to drive modern research in particle physics.

2.1.4 The role of gravity

Gravity plays a fundamental role in the fabric of the universe, shaping the structure and

behavior of celestial bodies and governing the dynamics of the cosmos [SMC04] [CWM73].

Gravity, a fundamental force shaping the cosmos, was first conceptualized by Sir Isaac Newton

in the form of the law of universal gravitation. According to Newton, every particle of matter

attracts every other particle with a force proportional to their masses and inversely proportional

to the square of the distance between them. Albert Einstein later redefined gravity through

General Relativity, depicting it not merely as a force but as a curvature in space-time caused

by mass and energy \cite{hartle}. Massive objects, like planets and stars, create ripples in the

fabric of space-time, causing other objects to follow the curves created by this curvature.

This force of gravity intricately governs celestial dynamics. It governs the orbits of planets

around stars, moons around planets, and the motion of stars within galaxies. On cosmic scales,

1The Higgs boson is the particle associated with the excitation of this field.
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gravity influences the distribution of galaxies and the formation of celestial bodies, building the

cosmic web that defines the large-scale structure of the cosmos.

The profound connection between gravity and the Cosmological Field2, a hypothetical field

which regulates the rate and exphansion of the Universe, is exemplified by the gravitational

interplay between matter that tends to slow down the universe’s expansion, influencing the

dynamics of the field. The impact of gravity extends further, influencing phenomena such as

early universe density fluctuations, gravitational lensing, and the propagation of gravitational

waves.

In the context of the Cosmological Field the scale factor is introduced, a quantitative measure

of how the universe (particularly one of its models) changes as time progresses, capturing the

expansion or contraction of cosmic structures. Studying the behavior of the scale factor is

essential for understanding the large-scale evolution and fate of the universe in cosmological

models. The evolution of the scale factor is governed by the Friedmann equations, which

describe the dynamics of the universe in the framework of general relativity and will be deeply

analyzed in the last section. The Friedmann equations relate the expansion rate of the universe

to its energy content, including matter, radiation, and dark energy. Gravity enters in these

equations represented by the energy density of matter and radiation.

In the next sections we will dig into the principal components of the Cosmological Field, giving

a detailed overview of their physical meanings and implications.

2.2 Stress-Energy Tensor

In the framework of General Relativity, the concept of mass and energy is unified into the

energy-momentum four-vector pµ. To illustrate, consider a three-dimensional surface denoted

as S, oriented perpendicular to the x direction. If we aim to examine the z component of

momentum, we can assess the density flux of pz specifically in the x direction, denoted as T zx.

The matrix T , referred to as the stress-energy tensor, is a key element in relativity and plays a

central role.

The stress-energy tensor encodes the flux densities of both momentum and energy. This tensor

becomes particularly significant in the realm of General Relativity, where it acts as the source

2In a general term Cosmological Field refers to any field associated with the large-scale structure and evolution
of the universe.

20



2.2. STRESS-ENERGY TENSOR

of gravitational fields.

Given a Lagrangian density L, that we recall is a function of a set of fields ϕρ and their

derivatives but explicitly not of any of the space-time coordinates, we can construct the energy-

stress tensor by looking at the total derivative of L with respect to xµ [HGoon], one of the

generalized coordinates of the system:

∂L

∂xµ
= ∂L

∂ϕρ
ϕρ,µ + ∂L

∂ϕρ,ν
ϕρ,µν + ∂L

∂xµ
(2.8)

where we use the following notation:

ϕρ,ν = dϕρ
dxν

The equation of motion is:
d

dxν

A
∂L

∂ϕρ,ν

B
− ∂L

∂ϕρ
= 0 (2.9)

Substituing the term ∂L
∂ϕρ

ϕρ,µ into the equation 2.8, we obtain:

dL

dxµ
= d

dxν

A
∂L

∂ϕρ,ν

B
ϕρ,µ + ∂L

∂ϕρ,ν

dϕρ,ν
dxν

+ ∂L

∂xµ
= d

dxν

A
∂L

∂ϕρ,ν
ϕρ,µ

B
+ ∂L

∂xµ
(2.10)

this last can be written
d

dxν

A
∂L

∂ηρ,ν
ϕρ,µ − Lδµν

B
= − ∂L

∂xµ

In the case where L represents a free field, i.e., no interaction between the field and point

particles moving in space and time through the field, this last equation takes on the form of a

set of divergence conditions [HGoon],

T νµ,ν = 0 (2.11)

On a quantity with the form of a 4-tensor3 if the second rank:

T νµ = ∂L

∂ϕρ,ν
ϕρ,µ − Lδνµ (2.13)

The formalization of the equations that will be followed ensures the preservation of general

3In Relativity (both general and special) all the equations are expressed in their tensorial form. In general
a tensor is a quantity that transform as follows, under a change in coordinates from xi to xj :

A′kl...
pq... = ∂x′k

∂xm

∂x′l

∂xn
...

∂xr

∂x′p
∂xs

∂x′q ...Amn...
rs... (2.12)

[AFr16]
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covariance4.

Even in General Relativity there are laws of conservation of mass, energy, and momentum,

expressed in general terms in covariant form5 from Eq.2.11: the stress-energy tensor allows us

to express the conservation of energy-momentum tensor.

Physical meaning of T νµ

The time-time component of the tensor is associated with energy density, while the spatial

components T ik represent flux of the i-th component of linear momentum across the xk surface

and behave like vectors in ordinary space. They are associated with pressures and momentum

flux. Within the framework of General Relativity (GR), this tensor characterizes the flow

and distribution of energy and momentum across space-time and serves as the fundamental

source of the gravitational field, determining the overall curvature of space-time [CWM73].

Understanding the energy-momentum tensor is crucial for getting an insight of the geometry

of space-time in the presence of matter and energy. In more details:

• T 0
0 represents energy density

• T 0
i signifies the momentum density

• T i0 indicates the rate of energy transfer

• T ji reflects the momentum flux

The stress-energy tensor is symmetrical, i.e., Tµν = Tνµ [SMC04].

Note that the divergenceless property of the tensor (Eq.2.11) when expressed in terms of spatial

components, can be related to the equations of continuity.

The form of the energy-stress tensor for a perfect fluid provides a simplified yet effective rep-

resentation for understanding the essential characteristics of a dynamic system, making it a

valuable tool for modeling in physics and astrophysics.

Since for a scalar field the Lagrangian does not depend on time or any other coordinate:

∂L

∂xν
= 0 (2.14)

4the equations must remain valid regardless of the reference system (inertial or non-inertial) with respect to
which various quantities are defined.

5The covariant derivative with respect to the coordinate j is, for example, in the case of a two-index tensor:
Aik,j = ∂Aik

∂xj − Γl
ijAlk − Γl

kjAil
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we have a specific form for the equations of continuity ∂µjµ = 0 and for the energy-momentum

conservation requirements (Eq.2.11). Hence, for a perfect fluid:

Tµν = (p+ ρ)uµuν − pgµν (2.15)

p and ρ are the pressure and energy density of matter and ui is the four-velocity of the fluid:

ui = gik
dxk

ds

with xk being the trajectory followed by the object in space-time, and gik the metric.

The stress tensor Tµν for a fluid is diagonal, in an inertial frame where it’s at rest, a perfect

fluid is characterized6 by [BHa03]:

Tµν = diag(ρ,−p,−p,−p) (2.16)

In the context of fluid dynamics, the stress-energy tensor embodies both the fluid’s intrinsic

motion and its response to external forces. While for a gravitational field, it describes the

mass-energy content of the cosmic fluid: the rest mass, total momentum, energy, and pressure

[AFr16]. Einstein as a consequence constructed a relationship between the metric and matter

by equating Tµν to the tensor obtained from the metric gµν , which contains only first and second

derivatives of itself. This will be detailed in the following section. In essence, the stress-energy

tensor is an instrument that describes the shape and the matter dynamics within Einstein’s

Field Equations, defining how space-time deforms and curves in response to the distribution of

matter and energy.

2.3 Einstein Field Equations

The comprehensive connection between the gravitational field sources, namely the matter and

energy distribution in the Universe, and the metric characterizing the space-time geometry is

encapsulated by the field equations of General Relativity [AFr16]. According to GR, a free

particle traverses along a geodesic influenced by the matter distribution. In essence, the metric

itself, denoted as gµν , is determined by the presence of matter. This fundamental principle

6Pressure and density are related by an equation of state: for example the gas of galaxies can be modeled
by p = 0, the cosmic microwave background radiation by p = ρ/3 [BHa03]
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forms the foundation for the derivation of the field equations, representing the desired link that

Einstein aimed to establish. To delve into the Einstein Field Equations, tensors play a central

role as essential components for articulating and describing these equations.

Riemann curvature tensor. The initial tensor introduced in this context is the Riemann

curvature tensor, also referred to as the Riemann-Christoffel tensor. This tensor serves to

characterize the intrinsic curvature of space and plays a crucial role in discerning whether the

space is flat or exhibits curvature [AFr16].The tensor is defined in terms of the Christoffel

symbols Γαµν , that are related to the metric itself [ENe14]:

Γikl = 1
2g

im

C
∂gmk
∂xl

+ ∂gml
∂xk

− ∂gkl
∂xm

D
(2.17)

and

Ri
klm = ∂Γikm

∂xl
− ∂Γikl
∂xm

+ ΓinlΓnkm − ΓinmΓnkl (2.18)

Ricci tensor. From the Riemann curvature tensor, the Ricci tensor can be derived by a con-

traction of the Riemann tensor: summing over one index of the Riemann tensor. An important

property of the Ricci tensor is that it’s symmetric, meaning Rµν = Rνµ [SMC04].

Rik = Rl
ilk (2.19)

Physically, it represents the local gravitational effects caused by the distribution of matter and

energy in space-time. Ricci scalar derives from the tensor [CWM73]:

R = gikRik (2.20)

Einstein tensor. The combination of the Ricci tensor and scalar denote the Einstein tensor

as follows [CWM73][SMC04]:

Gik = Rik − 1
2gikR (2.21)

From the equations above we can see that the Einstein tensor Gik has the first and second

derivatives of the metric gik.
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Field Equations. The complete set of Einstein’s field equations involves the Ricci tensor, the

scalar curvature (or equivalently the Einstein tensor), and the cosmological constant, offering a

mathematical framework to clarify how matter and energy impact the curvature of space-time.

This equations relate curvature to the stress-energy tensor: a measure of matter energy density

[BHa03],discussed in the previous sec. 2.2.

The Einstein Field Equations for the cosmological field are defined as follows7 [SWe72][BHa03]:

Rµν − R

2 gµν + Λgµν = 8πGTµν (2.22)

G = 6.67 10−11 Nm2/kg2 is Newton’s constant [BNT16],

The symbol Λ represents the cosmological constant, a constant parameter that will be explored

in the subsequent chapter. For the present discussion, it is assumed to be a constant unaffected

by any of the four space-time coordinates, particularly cosmic time.

Initially, Einstein formulated his equations without including the term of the cosmological

constant, but this extension of the field equations maintains the generally covariant nature of

the equation [AFr16]. This is contingent on Λ being a universal constant, as we just mentioned.

The most stringent requirement for the value of this constant is to be sufficiently small not

to modify, for instance, the laws of planetary motion. In the following section 2.3.1, we will

illustrate an example of applying the Einstein Field Equation to derive the Friedmann dynamic

equation. As a result of what has just been stated, we can omit the cosmological constant in

this calculation; we will instead focus on its treatment in the next chapter.

The components of the Einstein equation consist of ten partial differential equations for the

metric coefficient gµν , given the matter sources Tµν , of which only six are independent.8. They

are analogous to Maxwell’s equations, except for their nonlinearity [SMC04]. The Einstein

Field Equations represent the Euler-Lagrange of the Cosmological Field.

2.3.1 Friedmann solutions for a Homogeneous, Isotropic Cosmolog-

ical Model

The Robertson-Walker, or more entirely the Friedmann-Lemaître-Robertson-Walker (FLRW),

metric (Eq.2.24) is formulated to accommodate various scenarios of the scale factor a(t). The

7The velocity of light, that should contribute to the equation as a 1
c4 on the second term, is assumed to be

c = 1 throughout this thesis
8due to Bianchi identities whose topic will be left out for this thesis work
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next step is to apply this metric to Einstein’s equations in order to get the Friedmann equations,

which establish the relationship between the universe’s energy-momentum content and the

scale factor. Although isotropy and homogeneity are essential to the FLRW metric, they don’t

provide insights on the scale factor’s dynamic behavior. The metric is entered into the Einstein

Field Equations (EFE) in order to get this information. Two coupled equations that are referred

to as the Friedmann-Lemaître equations (FLE) or just Friedmann equations are the result.

Together, these equations describe how the scale factor evolves all over time. Both equations

are related to one other, with the equation of state establishing a link between pressure and

density within the cosmic medium9 [SWe08].

In GR, space-time is generally curved due to the presence of gravitating matter and energy.

Based on the metric tensor, the generalized element of space-time distance can be expressed

[AFr16].

ds2 = gikdx
idxj (2.23)

with i, j = 0,1,2,3.

The space-time geometry of a homogeneous and isotropic cosmological model is accurately

described by the Robertson-Walker metric, aligning with these symmetries [SWe08]:

ds2 = −dt2 + a2(t)
C

dr2

1 − kr2 + r2(dθ2 + sin2θdϕ2)
D

(2.24)

where we used the notation of the spherical coordinates r, θ and ϕ as comoving coordinates, t is

the proper time and a(t) is the cosmic scale factor that describes the expansion or contraction

of the universe; k = ±1, 0 is a constant prescribing the spatial curvature.

The derivation of the Robertson-Walker metric can be approached through two distinct meth-

ods. One of them employs the tensor formalism within the framework of General Relativity, uti-

lizing Christoffel symbols and other tensor-related concepts [SWe72]. Alternatively, the FLRW

can be derived by generalizing the metric for an isotropic 3D space (see [AFr16]). In both

cases, we ascertain that this metric originates directly from the symmetrical properties of the

Cosmological Principle10 and remains independent of the General Relativity theory articulated

by the Field Equations.

9The equation of state in the context of cosmology is often related to the properties of the cosmic fluid,
where the pressure p and density ρ are connected. The nature of this connection depends on the components
of the cosmic fluid, such as matter, radiation, or dark energy. Discussions over this topic are not part of this
work but can be found in [SWe08] for instance.

10The universe, as seen by fundamental observers, appears homogeneous and isotropic.
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2.3. EINSTEIN FIELD EQUATIONS

For the purpose of this calculation, we will consider the curvature parameter k = 1.

The FLRW metric is diagonal, i.e. the mixed space-time terms are equal to zero:

gµν =



1 0 0 0

0 −a2(t) 1
1−r2 0 0

0 0 −a2(t)r2 0

0 0 0 −a2(t)r2 sin2 θ


(2.25)

Setting ȧ = da
dt

, using the Christoffel symbols given by Eq.2.17 and knowing that

gimgmk = δik (2.26)

where δik is the Kronecker delta, equals to 1 for i = k and zero for i /= k, we find that:

Γ0
11 = aȧ

1 − r2 Γ2
12 = 1

r
= Γ3

13

Γ0
22 = aȧr2 Γ2

33 = − sin θ cos θ

Γ0
33 = aȧr2 sin2 θ

Γ1
01 = ȧ

a
= Γ2

02 = Γ3
03

Γ1
11 = r

1 − r2 Γ3
23 = cot θ

Γ1
22 = −r(1 − r2)

Γ1
33 = −r(1 − r2) sin2 θ

(2.27)

We determine first the components of the Riemann tensor Ri
klm given by the Eq.2.18 , from

which we can contract the upper index and find Ricci tensor as in Eq.2.19:

R00 = −3 ä
a

R11 = aä+ 2ȧ2 + 2
1 − r2

R22 = r2(aä+ 2ȧ2 + 2)

R33 = r2(aä+ 2ȧ2 + 2) sin2 θ

(2.28)

The result that R12 = R13 = R02 = R03 = R23 = 0 arises from the rotational symmetry of

the metric. Meanwhile, R10 = 0 is due to our choice of setting the clocks such that the metric

remains invariant under time reversal transformations, as deeply discussed in [SWe72]. We
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2.3. EINSTEIN FIELD EQUATIONS

recall the relationship between the Einstein tensor and the curvature Eq.2.21, and we find that

all the components of the Einstein tensor vanish except for:

G00 = 3
a2

1
1 + ȧ2

2
Gii = −

5
2 ä
a

+ 1
a2 (1 + ȧ2)

6 (2.29)

where i = 1,2,3 are the spatial coordinates.

Matter inside a homogeneous and isotropic universe can be described, at large scales and with

high precision, as a perfect fluid [NTa18]. In a cosmological setting, where the geometry is

modeled using the Robertson-Walker metric, the conservation equation of the stress-energy

tensor takes a specific form. In this case, it translates into an equation of continuity that

relates the rate of change of energy density and pressure to the expansion of the universe

[SWe72]. For a perfect fluid, the energy-momentum tensor is written as eq.2.15. We deduce

that gravity is influenced not only by the rest mass of the gravitating object but also by all

terms of an energetic nature, including pressure.

As we discussed in sec.2.2, for a fluid at rest in comoving coordinates, the four-velocity is11:

uµ = (1,0,0,0) (2.30)

and the energy-momentum tensor, recalling Eq.2.15 becomes, in its matricial form:

Tµν =



ρ 0 0 0

0 −p 0 0

0 0 −p 0

0 0 0 −p


(2.31)

Two set of equations have therefore been derived: one for the time component and one for the

space ones, corresponding to the first and second dynamical equations for a homogeneous and

isotropic cosmological model [AFr16][BHa03]:

3
a2

1
1 + ȧ2

2
= 8πρ

2 ä
a

+ 1
a2 (1 + ȧ2) = −8πp

(2.32)

11As already stated, c = 1 through all the work of this thesis
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2.3. EINSTEIN FIELD EQUATIONS

So: 3
ȧ

a

42
= 8πG

3 ρ− 1
a2 (2.33)

and
ä

a
= −4πG

3 (ρ+ 3p) (2.34)

The first equation, widely recognized as the Friedmann equation, is the one that allows one to

express the time derivative ȧ(t) as the scale factor and calculate how it evolves.

The last equation yields a crucial condition: a criterion that distinguishes an accelerating

universe characterized by an increasing expansion rate (ä > 0 and so ρ + 3p < 0) from a

decelerating one with a decreasing expansion rate (ä < 0 and hence ρ+ 3p > 0) [NTa18].
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Chapter 3

Dynamical systems and

Cosmology

3.1 The Evolution of the Scale Factor

The present chapter focuses on the different evolutions of the scale factor a(t), influenced by

the choice of different cosmological models.

A cosmological model is a theoretical framework that describes the structure, evolution, and

dynamics of the universe as a whole. It serves as a mathematical and conceptual representation,

defining a dynamical system influenced by all the energy components (matter, radiation and

dark energy), as will be seen further on. Every cosmological model respects the Cosmological

Principle (homogeneity1 and isotropy2), they all utilise the FLRW metric (Eq.2.24) to describe

the spatial geometry. Finally a cosmological model derives its own equations of motion by

adjusting the Friedmann equations. The cosmological models we will present share identical

initial conditions, aligning with the initial singularity commonly referred to as the Big Bang.

By first determining the energy densities’ dependency on a(t), we may obtain the scale factor’s

immediately apparent evolutions. From the conservation of the energy-momentum tensor:

multiplying Eq.2.33 by a2, differentiating and using Eq.2.34; or similarly applying the first law

of thermodynamics (as explained in [AFr16]) we derive the energy conservation equation for

1The universe appears the same to all the fundamental observers on large scales without preferred location.
2The universe looks the same in all directions when viewed from any fundamental observer.
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3.1. THE EVOLUTION OF THE SCALE FACTOR

matter fluid [NTa18]:

ρ̇+ 3 ȧ
a

(ρ+ p) = 0 (3.1)

The mass-energy terms include both the gravitational ρm and relativistic ργ particles.

For a dust-like (or gravitational matter dominated) universe, i.e., with pm = 0, we obtain:

ρm(t) ∝ a(t)−3 (3.2)

while for a radiation dominated universe p = pr = ρr/3:

ρr(t) ∝ a−4(t) (3.3)

Consequently, by substituting the equations mentioned above in the Friedmann equation, a

specific simple set of solutions for ȧ(t) can be obtained.

In the last chapter, we explained the derivation of the Friedmann solutions imposing k = +1,

but the cosmological Friedmann equation can be expressed as a function of the general curvature

parameter k and with 8πG = 1:
k

a2 +H2 = k2

3 ρ (3.4)

H is Hubble parameter H = ȧ/a.

Depending on the various interpretations of cosmological models, in particular relaying on the

curvature value k, there are different write-ups of the dynamic equations and thus different

scale factor trends. Some are illustrated in [AFr16], we will report the essentials.

For the case of a flat universe (k = 0) the scale factor evolves as a power-law function of time,

in particular:

1. For a gravitational matter dominated universe:

a(t) ∝ t2/3 (3.5)

This is known as the Einstein-De Sitter model: for t → ∞ ȧ(t) becomes zero, therefore

the universe tends to a static model.

2. For a radiation domination:

a(t) ∝ t1/2 (3.6)
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3.1. THE EVOLUTION OF THE SCALE FACTOR

Another important model is the Milne Universe, for whom k = −1 and a(t) = ±t: the

universe expands and contracts uniformly and homogeneously.

To generalize the form of the evolution of the scale factor, we consider the case in which the

Universe is dominated by a single component with a non-vanishing matter contribution and a

linear equation of state:

p = wρ (3.7)

ρ > 0 and w is the equation of state parameter that characterizes the ratio of pressure to energy

density. With w constant, we find the evolution of ρ and a, replacing the EoS in Eq.3.1:

ρ ∝ a−3(1+w) (3.8)

then, solving the differential equations for ȧ/a [STs10]:

a(t) ∝ (t− t0)
2

3(w+1) (3.9)

where t0 is a constant. The general evolution described by Eqs.3.7 to 3.9 corresponds to the

relations found earlier, with w = 1/3 for the radiation-dominated era giving a radiation density

as Eq.3.3 and a scale factor evolution in Eq.3.6.

Non-relativistic matter ("dust") corresponds to the case with a negligible pressure relative to

its energy density, i.e. w ≃ 0, and the evolution during the matter-dominated era given by

Eqs.3.2 and3.5.

As a result, we have established the dependence of the scale factor on the two primary compo-

nents and generators of energy in the universe. However, as discussed in the last chapter, these

are not the only contributors: 70% of the energy budget of the universe is composed by dark

energy. The remaining part is therefore dominated by a gravitating matter component, divided

into standard baryonic matter (about 4% [AFr16]) and another invisible entity called dark mat-

ter (∼ 26%), which is needed to explain discrepancies in the observed rotation curves of galaxies

[NTa18]. The relativistic component (radiation) includes the Cosmic Microwave Background,

photons and neutrinos and contributes 1% of the total energy budget. The concept of dark

energy was introduced to account for the observed accelerated expansion. It is defined as a

type of matter characterized by negative pressure pdarken < −ρdarken/3 [NTa18][AFr16].

As of our current knowledge, the following is the most widely accepted interpretation of the

evolution of the scale factor. The early universe is characterized by a radiation-dominated
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3.2. ΛCDM MODEL

era3 where relativistic particles dominated the energy density and the scale factor evolved

as Eq.3.6. As the universe continued to expand and cool, it entered a gravitational-matter

dominated era, where the energy density was dominated by matter, including dark matter and

baryonic matter. During this era the scale factor continued to increase as Eq.3.5, and the

expansion rate gradually slowed. In the more recent cosmic history, the universe has entered

a phase where dark energy dominates the energy budget, with an accelerated expansion. This

expansion can be modeled by the cosmological constant Λ, as detailed in sec.3.2, through what’s

known as the ΛCDM model, returning a scale factor trend that follows the Eq.3.9. There are

otherwise several models that parameterise this acceleration, we will list some of them below.

These various interpretations on the generation of the dark energy lead to different dynamical

scenarios, determining different outcomes on the evolution of the scale factor in the expansive

era dominated by dark energy.

3.2 ΛCDM model

The most straightforward model of dark energy is embodied by the cosmological constant Λ,

initially introduced by Einstein to formulate a cosmological model that would lead to a static

universe. Its physical interpretation is that of a constant repulsive energy term of the vacuum

that opposes gravity, filling space homogeneously.

In the ΛCDM model, while dark energy is represented by Λ, dark matter is assumed to be a

non-relativistic matter component, specifically cold dark matter (CDM). With the inclusion of

the cosmological constant, the Einstein Field Equations take on the following form:

Rµν − 1
2Rgµν + Λgµν = Tµν (3.10)

and the Friedmann equations, with k = +1:

3
ȧ

a

42
= 8πG

3 ρ− 1
a2 + Λ

3
ä

a
= −4πG

3 (ρ+ 3p) + Λ
3

(3.11)

From these equations we can derive the evolutions of the cosmic scale factor if the cosmological

3excluding the rapid expansion that followed the Big Bang known as cosmic inflation that is out of the
purpose of this thesis
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3.2. ΛCDM MODEL

constant completely dominates the evolution:

a(t) ∝ eηt with η =
ó

Λ
3 (3.12)

Hence, Eq.3.9 presents the expected behavior associated with dominance by matter at early

times and dominance by the cosmological constant at late times. In mathematical terms, we

have that:

a(t) ∝ t
2

3(w+1) as t → 0

a(t) ∝ exp
C

2t
3(w + 1)

D
as t → ∞

Reading Λ as a vacuum energy and writing Λ/3 in the Friedmann equations in terms of vacuum

density and pressure, i.e., we add a ρv and 3pv = −ρv, the dynamical equation becomes:

ä = −4πGa(t)
3 (ρm − 2ρv) (3.13)

where ρm and ρv are respectively the density of gravitating matter and the density equivalent

mass density of vacuum energy, we can deduce:

Λ = 8πGρv (3.14)

Einsten’s cosmological model is an unstable solution, since any small deviation, even if only

local, of the density will cause that portion of the universe to fall into a state of exponential

expansion or exponential contraction [AFr16].

We note from the Friedmann solutions (Eq.2.34) that, in order to give rise to the observed

acceleration ä > 0, the cosmological constant has a negative pressure pv = −ρv/3, as previously

mentioned. Therefore it corresponds with an equation of state parameter w = −1, implying

that the dark energy behaves like a vacuum energy exerting negative pressure that drives the

accelerated expansion of the universe.

The cosmological equations with both matter (pm = 0) and radiation (pr = ρr/3) are written

as [NTa18]:
3H2 = k2ρm + k2ρr + Λ

2Ḣ + 3H2 = −k2

3 ρr + Λ
(3.15)
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By introducing the relative energy densities of matter, radiation and cosmological constant as:

Ωm = k2ρm
3H2 , Ωr = k2ρr

3H2 and ΩΛ = k2ρΛ

3H2 (3.16)

we can express the Friedmann equations in their most simplified form:

1 = Ωm + Ωr + ΩΛ (3.17)

To obtain the dynamical system for this cosmological model one can differentiate Ωm = x

and Ωr = y with respect to a variable η so that dη = Hdt. This approach facilitates an

examination of the associated phase portrait, as elaborated in the Physical Report [NTa18],

which is recommended for a more in-depth exploration.

Despite its potential role in explaining cosmic acceleration, the observed value of Λ is signif-

icantly smaller than expected from theoretical considerations [Wei00]. There are alternative

interpretations of dark energy that, instead of manifesting as a cosmological constant, exhibit

dynamics; for the purpose of this dissertation, the analysis will now concentrate on these mod-

els.

In the next sections therefore, scalar-tensor theories will be presented. These gravitational

theories extend General Relativity by introducing a scalar field in addition to the tensor field

that describes the gravitational interaction. In these theories, gravity is mediated not only by

the curvature of space-time (Ricci tensor) but also by a scalar field that can vary in space and

time.

3.3 Quintessence models

Quintessence refers to a hypothetical form of dark energy postulated to explain the observed

accelerated expansion of the universe. Unlike the cosmological constant in the ΛCDM model,

which has a constant energy density, quintessence involves a dynamic, time-varying scalar field

with an evolving energy density permeating the cosmos and somehow manifesting itself in dark

energy.

In other words, the quintessence field, often represented by a scalar field with a potential

energy function, introduces a dynamic component to the dark energy content of the universe.

The dynamics of quintessence can lead to variations in the equation of state, influencing the

expansion rate of the universe over cosmic time.
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3.3. QUINTESSENCE MODELS

As reported in [NTa18], if we consider a scalar field minimally coupled to gravity, the related

Lagrangian is:

Lϕ = −1
2g

µν∂µϕ∂νϕ− V (ϕ) (3.18)

with V (ϕ) being a general self-interaction potential for ϕ. This leads to the gravitational field

equations in the form of:

Rµν − 1
2gµνR = k2

1
Tµν + T (ϕ)

µν

2
(3.19)

where T ϕµν is the energy-momentum tensor of the scalar field. Considering the FLRW metric

Eq.2.24, and a linear equation of state (EoS) p = wρ assumed for the matter field, the Einstein

field equations lead to the following Friedmann equations:

3H2 = k2
3
ρ+ 1

2 ϕ̇
2 + V

4
2Ḣ + 3H2 = −k2

3
wρ+ 1

2 ϕ̇
2 − V

4 (3.20)

The dynamics of quintessence are governed by the Klein-Gordon equation, describing the evo-

lution of the scalar field across space-time:

ϕ̈+ 3Hϕ̇+ ∂V

∂ϕ
= 0 (3.21)

The potential energy plays a crucial role in shaping the behavior of quintessence, allowing for

a variety of scenarios: V (ϕ) can assume any form, from an exponential potential, for instance

V (ϕ) = V0e
−αkϕ, to a power-law potential V (ϕ) = Mα+4/ϕα. Given an explicit form of the po-

tential one can derive the precise dynamical system and the phase portrait of that cosmological

model.

Understanding the evolution of quintessence involves investigating the EoS parameter w, which

characterizes the ratio of pressure to energy density. Unlike the cosmological constant with a

fixed w = −1, quintessence allows for a time-varying equation of state. It implies that the dark

energy field possesses a dynamic and evolving nature, allowing it to track the dominant energy

component in the universe and become the dominant component as the universe expands.

Quintessence fields are in fact characterized by a tracking behavior: as the universe expands,

the energy density of various components (matter, radiation, etc.) changes at different rates;

the key feature of tracking behavior is that the energy density of the quintessence field adjusts

itself to be of the same order of magnitude as the dominant energy component in the universe.

It also means that regardless of where the field starts in its potential, it tends to converge
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3.4. PHANTOM MODELS

to a trajectory that tracks the dominant energy density. In the early stages, when matter or

radiation dominates, the quintessence field behaves like them. As the universe expands and

the energy density of matter or radiation decreases, the energy density of the slowly rolling

quintessence field becomes significant, eventually leading to its dominance [STs10].

In theory, it is possible that dark energy is constituted by more than one scalar field:

Lϕ1,...,ϕN
= −

NØ
i=1

∂ϕ2
i − V (ϕ1, ...ϕN) (3.22)

where N represents coupled canonical scalar fields.

3.4 Phantom models

In this section, we consider an alternative model that explores the concept of dark energy from

non-canonical scalar fields.

Canonical refers to the standard or usual form of the kinetic term for a scalar field ϕ in the

Lagrangian density: typically it’s proportional to the square of the first derivative of the field

with respect to space-time coordinates. Mathematically, it takes the form 1
2(∂µϕ)2, where ∂µ as

before represents the partial derivative with respect to space-time coordinates. Non-canonical

scalar fields involve kinetic terms that deviate from this standard form.

Non-canonical scalar fields introduce new degrees of freedom and dynamics that can lead to

unique cosmological consequences. The behavior of these fields can differ significantly from

that of canonical scalar fields.

The simplest example of a non-canonical scalar field model differs from the canonical one only

for the sign of the kinetic term, this scalar field is known as Phantom field:

Lϕ = +1
2∂ϕ

2 − V (ϕ) (3.23)

The effective equations of state for non-canonical scalar fields can lead to departures from the

simple w = −1 behavior associated with a cosmological constant, for phantom dark energy

wde < −1. Recalling Eqs.3.8 and3.4:

a(t) ∝ (t0 − t)
2

3(wde+1) (3.24)

with t0 set. Knowing that the exponent is negative for wde < −1, thus a(t) is indeed expanding

37



3.5. QUINTOM MODELS

as t increases, [NTa18] considers the interesting case where, with a particular set of initial

conditions, the scale factor diverges. This leads to a future singularity known as big rip, where

the universe will expand so fast that everything will be ripped apart.

The cosmological equations arising from this Lagrangian 3.23 are:

3H2 = k2
3
ρ− 1

2 ϕ̇
2 + V

4
2Ḣ + 3H2 = k2

3
−wρ+ 1

2 ϕ̇
2 + V

4 (3.25)

and the Klein-Gordon equation:

ϕ̈+ 3Hϕ̇− ∂V

∂ϕ
= 0 (3.26)

As mentioned above, the EoS parameter wde < −1 leads, in general, to an accelerated expansion,

just like the cosmological constant. However, in the case of a phantom field, this acceleration

becomes even more pronounced, leading in extreme cases to the big rip.

3.5 Quintom models

Quintom dark energy is a theoretical scenario that combines the features of both quintessence

and phantom dark energy models. While quintessence satisfy wde ≥ −1, and the phantom

model wde < −1, there’s a scenario of dark energy that gives rise to an EoS larger than −1 in

the past and less that −1 today, satisfying the current observations. Quintom dark energy can

exhibit tracking behavior similar to quintessence, where its energy density tracks that of the

dominant component in the universe. As the universe expands and the energy density of other

components decreases, quintom dark energy can enter a phantom-like phase with w < −1,

driving accelerated expansion [Zha05].

The simplest model is represented by the following Lagrangian with two scalar fields, one

canonical ϕ and one phantom field σ [NTa18]:

L = −1
2∂ϕ

2 + 1
2∂σ

2 − V (ϕ, σ) (3.27)

This quintom scenario can distinguish between interacting and non-interacting potentials for

the two scalar fields ϕ and σ, leading to different Friedmann equations and therefore dynamical

evolutions. Notably[NTa18]:

1. Non-interacting V (ϕ, σ) = V1(ϕ) + V2(σ);
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2. Interacting potentials V (ϕ, σ) = V0e
λϕkϕ−λσkσ with λϕ = − 1

kV1
∂V1
∂ϕ

and λσ = − 1
kV2

∂V2
∂σ

Overall we can conclude that our current understanding of the evolution of the scale factor in

the universe, influenced by the presence of dark energy, has been significantly shaped by the

framework of the ΛCDM model. This model, supported by observational evidence, has provided

a robust description of the observed cosmic expansion history. However, despite the success

of the ΛCDM model, the exploration of alternative dark energy models, such as quintessence,

phantom, and quintom dark energy, provide a new perspective on the evolution of the scale

factor and on the fate of the universe beyond the standard framework.

Current and upcoming observational endeavors, including surveys and experiments, are set to

deepen our understanding of dark energy. Precise measurements of the Cosmic Microwave

Background and Type Ia supernovae, along with an in-depth theoretical investigation of scalar-

tensor fields, have the potential to provide crucial insights into the nature of dark energy.
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Conclusion

This thesis delves into the intricate dynamics of dynamical systems coupling the evolution of

the scale factor with cosmological fields, particularly exploring various models within the cos-

mological field, by combining principles from theoretical physics and cosmology. Starting with

a comprehensive exploration of the Lagrangian formalism, the study extends to the foundations

of General Relativity and the description of the Cosmological Field, encompassing its funda-

mental Einstein Field Equations. The research aims to unravel nuanced relationships between

the scale factor and cosmological fields, navigating complexities introduced by scalar-tensor

theories such as quintessence and phantom theories.

After a general introduction to the Lagrangian formalism for field theory, we explored the

dynamics of cosmological fields, utilizing the Lagrangian formalism to shed light on two well-

known examples: the Schrödinger Field and the Electromagnetic Field. We then discussed

field theory for the Standard Model of particle physics, providing an overview of the primary

fields that define our universe. Moving beyond, we delved into the formulation of gravitational

interaction, the only fundamental interaction not covered by the Standard Model. The Cosmo-

logical Field was then introduced, elucidating the power of gravity and detailing the elements

of Einstein’s cosmological field equations. We derived the dynamics equations, specifically the

Friedmann equations, which play a fundamental role in describing the evolution of the uni-

verse. A detailed analysis was then conducted on the stress-energy tensor, a key component in

understanding the role of gravity in these equations.

We then explained how the observed cosmic acceleration can be attributed to dark energy,

often modeled as a cosmological constant, and its impact on the scale factor. While the ΛCDM

model successfully explains cosmic acceleration, the observed value of the cosmological constant

raises questions. As a consequence, the study further delved into alternative models for dark

energy, including scalar-tensor theories and quintessence models. Observational tests and future

experiments are highlighted as crucial in refining our understanding of dark energy properties
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and potential deviations from the cosmological constant. The Lagrangian formalism, applied to

dynamical systems, emerges as an effective tool for disclosing the interactions that have shaped

cosmic evolution.
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