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Abstract

Malicious software, ormalware, continues to be a pervasive threat to computer systems andnet-
works worldwide. As malware constantly evolves and becomes more sophisticated, it is crucial
to develop effectivemethods for its detection and analysis. Sandboxing technology has emerged
as a valuable tool in the field of cybersecurity, allowing researchers to safely execute and observe
malware behavior in controlled environments. In this context, a hardware sandbox formalware
analysis, defined as an isolated environment with dedicated hardware and a separate operating
system, is employed to safely execute and study potentially malicious software. This controlled
space ensures the containment of threats through features such as network isolation, snapshot
capabilities, and resourcemonitoring. Analysts utilize the hardware sandbox to observe andun-
derstand malware behavior, generate detailed reports, and develop effective countermeasures,
safeguarding the integrity of the host system. This thesis presents a comprehensive investiga-
tionof the behavior ofmalware sampleswhen executed in bothhardware and virtual sandboxes.
The primary objective is to assess the effectiveness of hardware sandboxing in capturing and an-
alyzing malware behaviors compared to traditional virtual sandboxes. The research methodol-
ogy involves the execution of variousmalware samples in both hardware and virtual sandboxes,
followed by the analysis of key parameters, including memory changes, file system logs, and
network traffic. By comparing the results obtained from the two sandboxing approaches, this
study aims to provide insights into the advantages and limitations of each method. Further-
more, the research delves into the potential evasion techniques employed bymalware to bypass
detection in either sandboxing environment. Identifying such evasion strategies is vital for en-
hancing the overall security posture and developing more robust defense mechanisms against
evolving malware threats. The findings of this research contribute to the field of cybersecurity
by shedding light on the strengths and weaknesses of hardware and virtual sandboxes for mal-
ware analysis. Ultimately, this work serves as a valuable resource for security practitioners and
researchers seeking to improve malware detection and analysis techniques in the ever-evolving
landscape of cybersecurity threats.
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1
Introduction

1.1 Introduction to Sandbox Technology

Cybersecurity plays a crucial role in safeguarding systems against cyber threats and hostile at-

tacks, serving as a protective shield for countries worldwide. A key component of cybersecurity

is the use of sandboxes, which are isolated environments simulating end-user operating condi-

tions. These sandboxes allow the secure execution of suspicious programs, minimizing the risk

to the host device and network. By remaining external to the system, sandboxes prevent system

failures and curb the spread of software vulnerabilities between systems.

In the era of information exchange via the internet, ensuring data security is paramount.

Withmore than 65-70 percent of transactions occurring online, cybersecurity becomes increas-

ingly vital in today’s environment. The advent of emerging technologies emphasizes the impor-

tance of secure protocols in contemporary settings. Cybersecurity applications extend across

various domains, including cloud andmobile computing, net banking, e-commerce, andmore

[11].

Addressing the pervasive threat of cybercrime, which adversely impacts the economy, soci-

ety, and personal information, requires a comprehensive and secure approach to digital trans-

actions. A sandbox serves as a testing environment, allowing users to run programs or execute
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files without affecting the application, system, or platform they are operating on. Widely used

by software engineers and cybersecurity specialists, sandboxes are instrumental in preventing

unauthorized access and protecting system resources, contributing significantly to organiza-

tional security. This study aims to evaluate the utilization of sandboxes in the realm of cyber-

security, exploring their benefits and advantages in enhancing digital security measures.

Figure 1.1: Sandbox working principle

As in the figure 1.1, We have a sandbox environment where we test new applications or files

before sending them to production and preview environments. A sandbox is a controlled and

isolated space that mimics the production environment without posing any risk to critical sys-

tems. In this secure environment, we can assess the behavior and performance of applications

or files, identify potential security vulnerabilities, and ensure they meet our standards before

deploying them to live production or preview systems. This practice adds an extra layer of secu-

rity by allowing us to catch issues early, minimizing the impact on operational environments

and enhancing the overall reliability of our systems.

1.2 Background And Research Problem

Cybersecurity is an ever-evolving discipline, continually facing evolving threats. The objective

of this thesis is to enhancemalware analysis, recognizing the agingnature of current virtualization-

based solutions in the context of rapidly evolving malware. A perpetual competition exists be-

tween security analysts and malicious actors, necessitating constant innovation to detect novel

penetration techniques. While virtual sandboxes prove useful in identifying suspicious activ-

ities, our thesis advocates for the utilization of dedicated hardware for this purpose. Building
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upon past research, ourwork contributes to the exploration ofmore robust and effective strate-

gies in cybersecurity.

1.3 Novel solution

Theproposed solution in this thesis for addressingmodernmalware involves the utilization of a

dedicated hardware equipped with its distinct operating system. This approach aims to reveal

the authentic behavior of malware, allowing it to manifest in its intended manner. By run-

ning malware in this specialized environment, security analysts can glean deeper insights into

its functionalities and characteristics. While this concept is not entirely novel in the research

industry, it serves as an additional perspective to existing work in the field. The fundamental

idea is to provide an alternative means to enhance malware analysis, leveraging dedicated hard-

ware resources for a more accurate depiction of malware behavior, ultimately contributing to

advancements in cybersecurity practices.

1.4 Organization of the Thesis

In this chapter, a concise overview of sandboxes and their background has been provided, aim-

ing to familiarize the reader with the thesis’s objectives. Subsequent chapters will delve into the

following topics:

• In Chapter 2, the literature review we undertake a comprehensive exploration of the
research pertinent to the thesis. The central focus of our discussion revolves around
the imperative need for dedicated hardware in the context of sandboxes and the inher-
ent vulnerabilities that virtual sandboxes face in the realm of modern malware. Despite
the relatively limited body of work dedicated to hardware-based sandboxes, we aspire
to intricately examine and expound upon the conceptual framework and significance
underlying this approach.

• In Chapter 3, we explore system and thread models, focusing on the challenges posed
bymodernmalware. We delve into the tactics employed bymalware to detect virtualiza-
tion, its techniques for self-unpacking, and the evolutionary trends observed inmalware
behavior over the years.

• In Chapter 4, our methodology focuses on the development of a hardware-based sand-
box, aiming to authentically replicate real-world conditions for a more accurate analysis
of malware behavior. Unlike traditional virtual sandboxes, our approach involves using

3



an actual system and carefully selected hardware components to mirror the characteris-
tics of a genuine operating environment. This strategy allows us to closely emulate the
conditions in which malware operates, enhancing our ability to understand and detect
evolving threats. Through this innovative approach, we contribute to advancing cyber-
security practices and strengthening defense mechanisms.

• In Chapter 5, we delve into the database and results section, presenting the experimen-
tal data and outcomes. The analysis includes a comprehensive comparison between our
hardware-based sandbox and a virtual sandbox. We discuss the insights gained from
the experiments and highlight the differences observed in performance and effectiveness.
This chapter provides a detailed examination of the obtained results, shedding light on
the strengths and limitations of our approach in contrast to conventional virtual sand-
box solutions.

• In Chapter 6, the limitations of the work are discussed followed by providing future
research directions and concluding the thesis.
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2
Literature Review

In this chapter, we undertake a comprehensive exploration of the research pertinent to the

thesis. The central focus of our discussion revolves around the imperative need for dedicated

hardware in the context of sandboxes and the inherent vulnerabilities that virtual sandboxes

face in the realm of modern malware. Despite the relatively limited body of work dedicated to

hardware-based sandboxes, we aspire to intricately examine and expound upon the conceptual

framework and significance underlying this approach.

2.1 Virtual Sandbox

Sandboxes play a crucial role in environments where the use of software components is nec-

essary but current verification or trustworthiness is lacking. These isolated components are

often perceived as potential sources of malicious activity or vulnerability. Prominent exam-

ples of sandboxed components include browser engines like Google Chrome and Internet Ex-

plorer, productivity software such as Microsoft Word and Adobe Reader, and even operat-

ing system kernels like Windows 8. Virtual machines, which operate software on simulated

hardware independently from the host system, are commonly employed in malware analysis,

containing potentially harmful computations. Mobile ecosystems, like Android, also utilize

sandboxes to restrict the impact of malicious applications on devices.In the complex landscape

of software systems, sandboxes offer a form of salvation by isolating and containing potentially

problematic components. Rather than attempting to thoroughly scrutinize intricate software
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systems, sandboxes provide a more manageable alternative. Common characteristics of main-

stream sandboxes include reliance on easily composed coarse-grained operating system features,

transparency to users of sandboxed components, and limited utilization of extensive research

in software security sandboxing. Over the past few decades, researchers have dedicated efforts

to constructing diverse sandboxes capable of containing a wide array of computations, rang-

ing from full-fledged desktop applications to various types of applications, such as third-party

libraries in Java programs or ads on websites. These sandboxes serve multifaceted purposes,

from preventingmemory corruption exploits to enforcing control and data-flow integrity, and

introducing diversity to counteract existing monocultures [12].

2.1.1 Virtual Sandbox Issues

In the realm of cybersecurity, the escalating sophistication of malware, ranging from viruses

and worms to bots, necessitates a proactive approach involving vigilant observation, in-depth

analysis of theirmechanisms, and the swift identificationof potential issues. Isolated sandboxes

have proven to be invaluable environments for conducting such endeavors, offering inherent

resilience against external attacks and infections. Technological advancements, particularly in

operating system (OS) and hardware virtualizations, have streamlined the creation of isolated

sandboxes. Given the disruptive nature of malware, which often requires frequent rebuilding

of analyzing environments, thewidespread adoption of virtualization technologies becomes ev-

ident. The ease of rebuilding environments introduced to virtualization technology enhances

the efficiency of the malware analysis process [13].Shifting focus to the mobile landscape, An-

droid has solidified its position as a dominant operating system for mobile platforms, boast-

ing significant market share. Its security measures, including application sandboxing and a

permission framework, aim to regulate system resource access andmanage communication be-

tween applications. However, recent incidents have exposed vulnerabilities in Android’s secu-

rity framework, leading to privilege escalation attacks such as confused deputy and collusion

attacks. Confused deputy attacks involve a malicious application exploiting the vulnerabilities

of a privileged but confused application. On the other hand, collusion attacks see malicious

applications cooperating to combine their permissions, enabling actions beyond their individ-

ual privileges. Despite efforts to address these issues through security extensions like Kirin,

TaintDroid, Saint, QUIRE, and IPC Inspection, none fully tackle both confused deputy and

collusion attacks. Many solutions exhibit shortcomings, such as incompatibility with legacy

applications or inefficiency. This underscores the need for a comprehensive, system-centric
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solution to effectively address Android’s sandboxing issues [14].

2.1.2 Sandbox detection

Virtualization/SandboxEvasion is a tactic employedby adversaries in their defense evasion strat-

egy to identify and steer clear of virtualization and analysis environments, like those found in

malware analysis sandboxes. When the malware recognizes the presence of a virtual machine

or sandbox environment, it either disconnects from the victim or refrains from executing mali-

cious actions, such as downloading additional payloads [15]. Adversaries employ various tech-

niques for Virtualization/Sandbox Evasion, such as examining the presence of security moni-

toring tools like Sysinternals and Wireshark. They may also inspect system artifacts linked to

analysis or virtualization. Additionally, adversaries might observe genuine user activity to as-

sess whether the system is in an analysis environment. Some employ sleep timers or loops in

the malware code to evade detection when operating within a temporary sandbox [16]. Ta-

ble 2.1 presents different malware types and their respective techniques for detecting virtual

environments.

Cloud computing is emerging as a prominent computing model, with virtualization play-

ing a crucial role in its implementation. Virtualization involves the creation and operation of

multiple virtualmachines (VMs) or guest operating systems on a single physicalmachine, facili-

tated by aVirtualMachineMonitor (VMM)orHypervisor. TheHypervisor abstracts physical

machine resources, including CPU, memory, I/O, and NIC, among various virtual machines.

This resource sharing presents security challenges for cloud service providers, as it amplifies

the risks associated with unknown malware and sophisticated rootkits that may compromise

critical kernel data structures. Traditional in-host anti-malware solutions prove insufficient in

ensuring the security of guest operating systems, particularly within a virtualized environment

[17]. VMI, or Virtual Machine Introspection, has the capability to collect the status details of

active VMs while operating within the Virtual MachineMonitor. It can extract valuable infor-

mation, including the process list and kernel driver modules, by examining the visible raw data

in the live virtual machine’s memory. This process is referred to as bridging the semantic gap

[18].
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ID Name Description

S0331 Agent Tesla Agent Tesla has the ability to perform anti-

sandboxing and anti-virtualization checks

[19].

S0534 Bazar Bazar can attempt to overload sandbox anal-

ysis by sending 1550 calls to printf [20].

S0268 Bisonal Bisonal can check to determine if the com-

promised system is running on VMware

[21].

S1070 Black Basta Black Basta can make a random number of

calls to the kernel32.beep function to hin-

der log analysis.

S1039 Bumblbee Bumblebee has the ability to perform anti-

virtualization checks [22].

S0484 Carberp Carberp has removed various hooks before

installing the trojan or bootkit to evade

sandbox analysis or other analysis software.

S0023 CHOPSTICK CHOPSTICK includes runtime checks to

identify an analysis environment and pre-

vent execution on it [23].

G0012 Darkhotel Darkhotel malware has employed just-in-

time decryption of strings to evade sandbox

detection [24].

S0554 Egregor Egregor has used multiple anti-analysis and

anti-sandbox techniques to prevent auto-

mated analysis by sandboxes.

S0666 Gesemium Gelsemium can use junk code to generate

random activity to obscure malware behav-

ior [25].

S0499 Hancitor Hancitor has used a macro to check that an

ActiveDocument shape object in the lure

message is present. If this object is not

found, the macro will exit without down-

loading additional payloads [26].

S1020 Kevin Kevin can sleep for a time interval between

C2 communication attempts [27].

S0455 Metamorfo Metamorfo has embedded a ”vmdetect.exe”

executable to identify virtual machines at

the beginning of execution [28].

S0147 Pteranodon Pteranodon has the ability to use anti-

detection functions to identify sandbox en-

vironments [29].

Table 2.1: Malware’s techniques for detecting virtual environments.

8
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2.2 DedicatedHardware for Guest Systems

Thewidespread use of virtualized setups is common inmalware analysis. Virtual environments

offer crucial features for this purpose, such as the ability to isolate and swiftly restore the sys-

tem to a known state after analysis. In the first quarter of 2011 alone, McAfee Labs identified

over six million unique malware samples. The continuous surge in new malware highlights

the need for high-performance analysis frameworks capable of examining numerous malware

samples within a specified timeframe. Virtualization-based solutions have been a logical choice.

Unfortunately, a new type of malware, known as VM-aware malware, has emerged. This mal-

ware can detect virtualized or emulated environments and adapt its behavior to evade analysis.

The methods employed by malware to detect virtual machines and emulated environments

have been extensively documented in the table 2.1. These techniques take advantage of certain

artifacts, either software or hardware-related, introduced by the virtualization or emulation

layer situated between the operating system in operation and the underlying hardware. Some

of these detection techniques focus on recognizing specific configurations or I/O ports within

the guest system, while others rely on imprecise system emulation or advanced time-based de-

tection strategies [30]. For instance, a system running within a VMware guest OS can examine

the names of available virtual devices, access themagic I/O port (0x5658, ’VX’), or read the val-

ues of LDTR or IDTR registers, which differ from the known values on a bare-metal system

[31]. Notably, all these detection techniques can be executed in user mode.

In simpler terms, malware has ways of figuring out if it’s running in a virtual machine or

an emulated environment. This is done by looking at specific things, like the names of virtual

devices or certain I/O ports, which are like communication channels between different parts

of the system. Themalware can also check certain registers to see if theymatchwhat’s expected

in a normal, non-virtual environment. These techniques are like tricks that the malware uses

to detect where it’s running, and they can all be done without needing special permissions.It is

crucial to establish a distinct hardware environment for the host system to function as a sand-

box for analyzing modern malware. Two techniques for achieving dedicated hardware for the

host systems, which were proposed in the past are as follow:

1. BareBox.

2. Hardware supported virtual machine.
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2.2.1 BareBox

BareBox, which introduces a methodology of an innovative technique for system restoration

without the need for reboots. BareBox executes and monitors malware in its native environ-

ment. Upon completing an analysis run, the running operating system (OS) is promptly re-

stored to its previously-saved clean state on-the-fly, taking only a few seconds. This restoration

process not only retrieves the underlying disk state but also the volatile state of the entire operat-

ing system, including running processes, memory cache, and filesystem cache. Our restoration

system comprises an overlay-based volatile mirror disk, a symmetric physical memory partition,

and a custom-written operating system namedMeta-OS [32].

Meta-OS facilitates the restoration of the entire physical memory of the running operating

system once a malware analysis run concludes. Due to circular dependencies between physi-

cal memory and CPU context, performing a complete OS restore from within the OS being

restored is practically impossible. To address this challenge, Meta-OS provides out-of-OS ex-

ecution control. The operation of other devices and peripherals is closely dependent on the

state of the main physical memory, requiring careful handling of device states for a safe OS

restoration. BareBox have few challenges, which are as follows [32]:

• Virtualization: While the bare-metal analysis system aims to emulate a realistic envi-
ronment, executing unknown malicious code on actual hardware entails inherent risks,
including potential system-level corruption, particularly through malicious BIOS up-
dates. Achieving complete isolation of BIOS and peripheral devices, like the hard disk,
is more challenging compared to virtualized systems.

• Stealthiness: Bare-metal analysis systems provide superior stealthiness against VM-
aware malware compared to VM/emulation-based systems. However, achieving com-
plete transparency in analysis is theoretically impossible if the malware operates at the
same privilege level as the analyzer, requiring practical approaches like stealth techniques
or a black box method with some trade-offs in contextual information.

• System Restore: In the absence of virtualization, there are restricted choices for swift
and effective system restoration. Many existing solutions primarily focus on restoring
the persistent state of the operating system by recovering the hard disk, necessitating a
system reboot for the restoration process to conclude. However, this reboot is predom-
inantly constrained by I/O operations, resulting in extended downtimes between con-
secutive analysis runs. Additionally, restoring BIOS and other device firmwares poses
another set of challenges.
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2.2.2 Hardware Supported VirtualMachines

The architecture of a hardware-supported virtualization/sandboxing system extends a conven-

tional computer architecture with a virtualization facility. This hardware sandbox is created by

deployingmultiple computers within the virtualization facility, each running a guest operating

system or a natively executed application. To address the dynamic demands for varying sand-

box configurations, including processor cores, memory, and devices, the authors advocate the

use of reconfigurable logic, specifically FPGAs. Two paradigms are defined: the instantiation

paradigm, utilizing reconfigurable logic to create entire computers; and the virtualization/sand-

boxing paradigm, where the host operating system manages all dedicated resources, forming a

virtualization/sandboxing system. The discussion delves into architectural implications, focus-

ing on the processor, memory, and devices [33].

• Number of Guests: The quantity of guest systems is typically unrestricted. Restric-
tions come from the available space in the reconfigurable logic and the space needed to
instantiate a guest machine.

• Processor Issues: A processor serves as the core processing component of a computer.
Implementing the guest processor in reconfigurable logic enables distinct central pro-
cessing elements for the host and guest operating systems and applications. This sepa-
ration prevents conflicts and establishes a physical barrier between them, a feature not
attainable in a typical virtual machine or sandboxing system.

• Memory Issues: Regarding the memory requirements for guest machines, several in-
quiries and challenges emerge [34]:

1. What is the required memory capacity for the guest system?

2. Can the reconfigurable area supply the necessary amount of memory?

3. How is the enforcement of the main idea of virtualization/sandboxing paradigm
(where all resources aremanagedby thehost operating system) applied to the guest’s
memory?

2.3 System VirtualMachines

A system VM environment can concurrently accommodate multiple system images, each op-

erating its own operating system and corresponding applications. Each operating system over-
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sees a set of virtualized hardware resources, encompassing processors, storage, and peripheral

devices essential for input and output (I/O) operations. In a systemVMenvironment, the host

platform’s actual resources are shared among guest system VMs, facilitated by a software layer

called the virtual machine monitor (VMM). The VMM oversees the allocation and access to

the hardware resources of the host platform, providing the illusion to guest operating systems

that they own and allocate resources. These virtual resources may or may not correspond to

physical resources, and theVMMdecides how access is granted to virtualmachines. System vir-

tual machines find various applications, both historically and in current and future scenarios

[35].

System virtual machines serve various purposes, with applications ranging from historical

contexts to current and anticipated future needs. Some specific examples of these versatile ap-

plications are discussed below:

• Multiple single-application virtual machines: This concept builds upon the idea of
having multiple individual virtual machines, each dedicated to running a single applica-
tion. By running each application in its ownvirtualmachine, the overall systembecomes
more robust. Unlike a conventional system where issues with one application could
crash the entire machine, in a virtual machine setup, problems with one application are
less likely to impact others running on different virtual machines. This is particularly
beneficial in scenarios where a new application could potentially harm the entire system
due to bugs or viruses.

• Multiple secure environments: A system virtual machine (VM) creates a secure sand-
box by isolating one system environment from others, offering a level of security beyond
what a single operating system can provide. For instance, if a user is hesitant to move ap-
plications to a web server without assurance that their resources and activities won’t be
accessed or monitored by other users on the same server, a virtual machine can be em-
ployed. This virtual environment ensures isolation, making it practically impossible for
one user to observe or alter another user’s data and activities.

• Mixed-OS environments: A single hardware platform can simultaneously run two dis-
tinct operating systems. This allows a user to utilize office productivity tools on one
operating system and, for example, choose another operating system for application de-
velopment. By installing two virtual machines on a single hardware platform, each dedi-
cated to a specific operating system, users can seamlessly switch between their preferred
environments.
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3
System and Threat Models

Systematic code reuse has been an elusive goal for software engineering practice since the term

was first coined: it represents the use of existing software, or software knowledge, to build new

software, following the reusability principles software engineering scholars have extensively ev-

idenced that more recent iterations of software often build upon the foundations of prior ver-

sions of established software. This principle applies uniformly, even to malicious software,

which frequently evolves to evade detection by anti-malware solutions.

3.1 UnderstandingModernMalware Threats

The evolution of malware, spanning its origins as playful pranks or inadvertent experiments

to its contemporary utilization for commercial purposes, constitutes a compelling narrative

marked by significant milestones and interrelated developments.

Numerous instances of malware generation have been meticulously documented within

controlled laboratory environments. However, these occurrences remained restricted within

the controlled confines of laboratory settings, isolated from broader digital ecosystems. A piv-

otal juncture in the malware’s evolutionary journey unfolded in 1981 with the emergence of

a computer virus that extricated itself from its originative boundaries, coinciding with the

nascent era of personal computing.
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Figure 3.1: The Evolution Of Cyber Threats [1].

In 1986, another milestone was reached as the first Microsoft PC virus surfaced in the wild,

closely mirroring the characteristics of its predecessor by predominantly causing disruption

rather than substantial damage. Notably, this virus ushered in a new phase of malware conceal-

ment, effectively eluding detection by hiding within storage media.

Further complexity in the malware narrative emerged in 1990 with the appearance of a self-

propagating and self-replicating program, known as the Morris worm, released onto the bur-

geoning internet landscape. This period also marked the introduction of the term ”malware,”

signifyingmalicious software, a widely accepted umbrella term encompassing all software with

detrimental intent within computational systems. The subsequent decades witnessed a trans-

formative evolution inmalware, characterizedby a two-folddynamicprogression: an escalation

in both the intricacy and the sheer volume of malware instances (see Figure 3.1). This inter-

connected series of events and developments underscores the intriguing evolution of malware

within the digital age. An investigation into the historical evolution of malware is essential for

a comprehensive comprehension of these malicious software entities. This endeavor enables a

deeper understanding of their development and evolution over the years, ultimately contribut-

ing to enhanced knowledge and insights into the nature of malware.

• The first generation (DOS Viruses) of malware mainly replicate with the assistance of
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human activity.

• Second generation malware self-replicate without help and share the functionality char-
acteristics of the first generation. They propagate through files and media.

• Third Generation utilise the capabilities if the internet in their propagation vectors lead-
ing to big impact viruses.

• Fourth Generation are more organisation specific and use multiple vectors to attack
mainly anti-virus software or systems due to the commercialisation of malware.

• Fifth Generation is characterised by the use of malware in cyberwarfare and the now
popular malware as a service [1].

Each jump in generation is characterised by increase in complexity of themalware andmore

propagation vectors. Tricks of the older generation of malware are always seen to be re-utilised

in newer generations of malware and complexities discovered over the years always seem to

follow the evolving trends in technology [36].

3.1.1 Malware executable code

In contemporary malware, like viruses, trojans, and worms, a common technique for hiding

their true intentions is to create and run program code while the program is already running.

When these types of malware run, they change or reveal a hidden piece of program code that

was kept secret when the programwas originally created. Theway they change this code can be

quite simple, like mixing in some data with the code (for example, using XOR encryption), or

more complex. Regardless of how complex it is, the result is that when someone tries to analyze

the program, it won’t look like regular code, making it harder to figure out what the program

is actually doing. As an example, encrypted viruses are a type of malware that consistently uses

the same method to reveal their hidden code when they run, even in different versions.

In the above figure 3.2, Starting with a malware instance, we begin by perform- ing static

analysis over it to acquire a model of what its ex- ecution would look like if it did not gener-

ate and execute code at runtime; this is depicted in Step 1. The statically derived model and

the malware instance are then fed into the dynamic analysis component where the malware is

ex- ecuted in a sterile, isolated environment. The malware’s execution is paused after each in-

struction and its execution context is compared with the static code model, as shown in Step
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Figure 3.2: Hidden Code Extraction [2].

2. When the first instruction of a sequence not found in the static model is detected, represen-

tations of that unknown instruction sequence are written out and the malware’s exe- cution is

halted [2]. However, this approach doesn’t aim to identify if a program is malware. Instead,

it enhances current malware research and detection methods by using a program’s unpacked

code to conduct a more thorough and faster analysis. For a better understanding, it’s advisable

to analyze malware behavior within a virtual sandbox environment.

3.1.2 Characteristics ofModernMalware

Fundamentally, there are two types of threats to any network and computer systems, Active

Threats and Passive Threats. Passive threats are more often than not, a byproduct or subset of

successful execution of an active threat and can be easily dealt with, once our computer system

or network is free of or immune to active threats [37].

• Active banking malware is designed to steal account credentials by removing the two-
factor authentication system. A popular approach involves TransactionAuthentication
Number (TAN) theft. TANisusedbyonlinebanking services as a formof single use one-
time passwords to authorize financial transactions. When the bank receives a request
from theuser (either viamobile or desktop), it generates theTANand sends it via SMS to
the bank customer’s device. This process is intercepted by the banking Trojan malware
that extracts the TAN and sends it back to the bank to gaining access to bank account
to complete one time the illegal banking transaction (e.g. funds withdrawal). The users
awaiting for the TAN typically think that their request is not delivered and therefore
request another TAN number.

• Passive bankingmalware. In contrast to the active bankingmalware, the passivemalware
is designed to monitor the use of mobile banking apps. This type of banking Trojan
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disguises itself as legitimate apps (i.e. Google Play Store apps) and once installed, it will
run as a service in the background to monitor events on the host device. This enables
it to capture incoming SMS, monitor installed apps, and communicate with a remote
server. The malware then searches for the existence of any targeted banking apps on the
victim’s mobile. If any results found, it will remove and download a malicious version
to replace the original apps. This malicious version displays a fake user interface asking
for user to input their credential information. The attackers then can sniff the banking
credentials for illegal banking transaction. They can also capture other useful data that
generate revenue for them (e.g. credit card number), see figure 3.3 [3].

Figure 3.3: Active vs Passive Attack [3].

From observing infection patterns of famous malware like Wnna- Cry, we can deduce that

the number of newly infected machines is exponentially and directly proportional to the num-

ber of already infectedmachines. Therefore, it is safe to characterize the nature of actively evolv-

ing threats and their working can be defined as: After a victim host computer identifies and

infects a vulnerable computing system on any given network, this newly victimized computer

system will automatically and autonomously scan all available networks, so as to identify and

infect other vulnerable computer systems [38]. It’s important tomention thatmost current de-

tectionmethods assume that infected computers are constantly scanning the network to spread

themselves as fast as possible.However, malicious programmers have started to create attack

patterns that intend to disrupt and mislead the existing active threat detection systems. Specif-

ically, ‘polymorphic blending’, ‘camouflaging’ and ‘obfuscating’ are the newer attack patterns

being incre- asingly used by a recently discovered set of active threats, which elude detection by

hibernating (i.e., by stopping duplication and propagation) for a pre-programmed or dynam-

ically determined period of time [37]. Furthermore, these modern active threats, in addition
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to the patterns mentioned earlier, also share a characteristic of self-replicating and spreading,

much like traditional active attacks. In other words, they can quickly attack and infect numer-

ous vulnerable computer systems.Nonetheless, they are very different from traditional threats

in the manner where they blend, camouflage or obfuscate any no- ticeable patterns in the cur-

rently affected computer systems for a pre-programmed or dynamically instantiated unit of

time. The camouflaging technique involves manipulating the signatures of infected files. Such

a manipulation of infected files’ signatures prohi- bits existing detection schemes from track-

ing any unwanted activity (e.g., duplication and propagation). This is extremely dangerous as

patterns of exponential infection often go undetected until it’s too late to stop the infection

[39].

3.1.3 Malware Delivery

Malware has changed over the years, as discussed in section 3.1, each version used different

methods to spreador infect computers, for examplemacro viruses intended forMicrosoftWord

must be in Word documents to be effective, and so anti-virus programs typically do not scan

incoming executable for those viruses—but they do scan any incomingMicrosoftWordfiles for

them. This creates a “gap” in protection. If, for example, a macro virus were embedded in an

executable file in such away that the executable filewould ignore itwhen executed, but a second

programcould locate that virus and load it into an existingMicrosoftWorddocument in such a

way that the viruswould be triggeredwhen the filewere opened, the anti-virus programswould

not detect the macro virus’ entry onto the system [40].

Anattackermust achieve twogoals to infect anyuser’s computer system throughwebbrowser.

• Attacker must find an approach to connect with the user or victim.

• Attacker need to install malicious code on the victim’s computer.

Both these goalswill be achieved quickly andwithout the concern of the userwhich depends

on attacker’s tactics. There is another way to infect a user’s system with malware, attacker just

simply ask user to visit a website which contains a malicious code while user visit this site his

system will automatically get infected by malware. These days’ attackers are focusing on differ-

ent delivery mechanisms, and usually send malware infected post over social networking sites,

such as Facebook. Other attackers decide to targetwebsites that potential victimizedpeoplewill

visit on their own. To achieve this, an attacker compromises the targeted site and inserts a little
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piece of HTML code that associates back to their server. This malicious code can be loaded

from anywhere, including a totally distinctive website. Every time a user visits a compromised

website in this manner, the attacker’s malicious code has a chance to infect user’s system with

malware [41]. Sometimes, the author of the malicious file uses a packer software to first parses

portable executable (PE) internal structures. Then, it reorganizes PE headers, sections, import

tables, and export tables into new structures. During packing, a packer software sometimes en-

crypts the code and resource sections using the compression and encryption libraries [42].The

PE files are packed in a manner that significantly hinders both reverse engineering attempts

and the ability of antivirus programs to discern the malicious nature of the PE file. Since April

2019, Japan Computer Emergency Response Team Coordination Center (JPCERT/CC) has

been monitoring a series of attacks involving the distribution of targeted emails to Japanese

organizations. The objective of these emails is to persuade recipients to download a harmful

shortcut file. These emails include a link to a shortcut file hosted on a cloud service. When

this shortcut file is executed, it triggers a downloader.The chart below illustrates the sequence

of events that occur from the moment the shortcut file is executed to when the downloader

successfully infects a host.

Figure 3.4: Shortcut execution leading to host infection [4].

The shortcut files examined by JPCERT/CChave been found to include the following code.

This code initiates the download of an HTML file (as depicted in Figure 3.4), which incorpo-

rates VBScript. Subsequently, this VBScript is responsible for the creation and execution of
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both a VBS file (stwa.vbs) and a BAT file (Autorun.bat).

Figure 3.5: Shortcut‐triggered HTML file download [4].

When stwa.vbs is run, it deciphers the data encoded in Base64 within the shortcut file (as

seen in Figure 3.6). It then stores this decoded data as aWindows executable file (stwa.exe) and

a phonyWord document that appears on the screen.
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Figure 3.6: Base64‐encoded content within the shortcut [4].

The stwa.exe file uses a self-extract format (CAB) and generates a group of files when it’s

launched. Among these files, srdfqm.exe serves as the downloader responsible for carrying out

the primary tasks, including communication.This malware primarily functions as a download

agent. Upon execution, it initiates specific communication procedures with a Command and

Control (C&C) server. Subsequently, it retrieves a file from the C&C server and stores it on

the local device. The nature of themalware determines the subsequent course of action, which

may involve carrying out a particular type of attack [4].

3.2 Virtual Sandbox Threats and Vulnerabilities

Several years ago, manually handling the analysis of hundreds of thousands ofmalware samples

became unmanageable. To address this challenge, sandboxes have been employed to automate

theprocess of examiningmalware samples. This approach enables the collectionof data onhow

the malware behaves dynamically. Malware creators are becoming more clever to achieve their
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goal of infecting and taking control of computer systems. Many industries use virtual sand-

boxes to protect their systems and workflow, but this hasn’t stopped malware creators. They

know that their harmful programs are tested in a safe virtual environment before they can harm

a real system. This awareness has pushed attackers to find smart ways to trick the testing envi-

ronment into not noticing their harmful activities.This ongoing cat-and-mouse game between

cybersecurity professionals and malware creators has prompted a continuous evolution in the

tactics employed by the latter. Malware authors have developed techniques that can detect

when they are running in a virtual environment, allowing them to lay low and avoid arousing

suspicion.Attackers employ multiple techniques to identify the existence of a virtual sandbox.

To overcome the protective virtual environment, the attacker needs a deep understanding of

the underlying sandbox structure.Although notmanymalware use anti-sandbox techniques to

evade detection, some of them do. The traditional anti-sandbox techniques include detection

of virtualization, running processes, detection of debuggers, detection of hooked functions, in-

jected DLLs, etc. Most of these checks can be easily flagged as malicious. Some advanced tech-

niques are also known; detecting whether sleep functions are emulated,detection of network

connectivity, mousemovement, etc.But the traditional virtualization detection techniques can

be detected, and themalware can be blocked.An attacker designs theirmalware with the aim of

tricking the virtual sandbox. During the design process, the attacker considers specific factors

and parameters, as outlined in Table 3.1 below, that the malware should be able to identify.
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Technique’s Approach’s

Virtualization Hiding virtualization from a malicious process is challenging, and even

with tools that aim to conceal it, new detection methods can emerge by

exploiting commonmistakes.

C&C Servers Anti-sandbox techniques, such as IP blacklists, protectC&Cservers. AV-

Tracker is one example, but it has limitations when the C&C server’s IP

is revealed on new sandboxes.

Validator Style Malware APTs employ validator-style malware, which assesses the environment

anddeploys advancedmalware only onvalidated, non-sandboxed targets.

Windows ID Windows product ID – is it a known sandbox product ID? Or a faked

one including alphabetic letters?

HDD Hard Disk Type, layout – is HDD less than 20 GBytes?

Hardware Layout Hardware layout (processor, memory, motherboard, BIOS, network

cards) – is it running with 256 Mbyte of memory? Is this a Qemu? Is

the MAC address known for Virtualbox?

Windows Settings Windows settings (installation date, version, current time) – e.g. is the

current time on the OS years behind the real current time?

Screen Resolution Screen resolution – is it 640x480? Or 800x600?

Username’s Username, computer name, domain – in a targeted attack, attackers

might know the Windows domain name, and only allow running if the

domain is detected.

Networks Available network shares – no network shares in a corporate environ-

ment?

Table 3.1: Modern Malware Approach’s.

3.3 ThreatModels

Aswe have discussed previously, virtual sandboxes have inherent limitations and vulnerabilities

when it comes to analyzing and detectingmalware. These limitations have become increasingly

evident as attackers continue to evolve and employ more sophisticated methods to infiltrate

systems.

In modern times, malware has become adept at assessing specific system parameters, en-

abling it to differentiate between a simulated sandbox environment and an actual, operational
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system. It conceals its true nature during sandbox analysis, only revealing its malicious intent

when executed within a genuine system. This poses a substantial challenge for security re-

searchers aiming to comprehensively understand the behavior of such malware and develop

effective countermeasures to protect systems from future attacks.

To address this dilemma, researchers have explored the concept of hardware-based sandboxes

as a potential solution. A hardware-based sandbox differs from its virtual counterpart in that

it utilizes physical hardware resources, such as dedicated processors andmemory, to isolate and

execute potentially malicious code. The primary idea behind this approach is that when mal-

ware is executed within a hardware-based sandbox, it is more likely to exhibit its genuine behav-

ior. This is in stark contrast to virtual sandboxes, where the malware often remains dormant

or employs evasion techniques, making it difficult to uncover its true nature. Hardware-based

sandboxes offer several advantages in the realm of malware analysis. Firstly, the inherent hard-

ware isolation makes it considerably more challenging for malware to detect that it is running

within a controlled environment. This minimizes the risk of malware altering its behavior to

evade detection, as it commonly does in virtual environments. Secondly, hardware-based sand-

boxes provide researchers with a more accurate view of how the malware interacts with system

resources and how it attempts to exploit vulnerabilities. This insight is invaluable for develop-

ing robust security measures.

Furthermore, by studying the behavior of modern malware within a hardware-based sand-

box, researchers can gain a deeper understanding of its tactics, techniques, and procedures

(TTPs). This knowledge can then be used to develop proactive securitymeasures that not only

detect knownmalware but also anticipate and thwart new and emerging threats.

24



4
Methodology

The core rationale behind the development of a hardware-based sandbox is to delve into the

true nature of malware and comprehensively analyze its behavior in an environment that mir-

rors its intended target. It is well-known that malicious actors tailor their malware to exploit

vulnerabilities and security gaps in real systems, rather than virtual sandboxes. Consequently,

our hardware-based sandbox is meticulously constructed to replicate the characteristics and at-

tributes of a real operating environment. In this chapter, we will provide an in-depth account

of our approach, which involves the utilization of an actual system alongside a carefully chosen

set of hardware components to form the backbone of our sandbox infrastructure. Thismethod

enables us to closely mimic the conditions under which malware typically operates in the real

world. By creating a more faithful representation of genuine systems, we aim to gain a more

precise understanding of how malware behaves and to facilitate advanced threat analysis and

detection. This innovative approach serves as a crucial step towards enhancing cybersecurity

practices and safeguarding against evolving threats.

4.1 Hardware Components

Before we dive into the details of our hardware sandbox’s architecture, it’s essential to take a

closer look at the various components we’ve used. Each of these components has a significant

role to play, and it’s important to understand how they work andwhat functions they perform

within the sandbox. This understanding will provide a solid foundation for comprehending
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the overall structure and operation of our hardware sandbox.

4.1.1 LeetDMA

LeetDMA is a hardware device created by Engima-X, designed to work seamlessly with the

PCILEECH tool developed by Ulf Frisk, an IT security analyst from Sweden. Figure 4.1 pro-

vides an illustration of the LeetDMA board for reference.

Figure 4.1: LeetDMA Device [5].

• PCI XI The LeetDMA device is equipped with a PCIe x1 interface that connects to
the motherboard’s PCIe x1 slot. This connection allows LeetDMA to gain access to
the computer’s physical memory. It appears as a standard PCIe device to the computer,
leading the system to lower its security privileges. Once the device is properly connected
to our sandbox, a redLED indicator illuminates, indicating that the device is successfully
connected and ready for operation.

• USB-C DATA PORT The USB data port is an essential component of the hardware
sandbox, facilitating the connectionbetween the sandbox and the hostmachine through
aUSB cable. When the guest andhost are correctly linked, the process of transferring the
physicalmemory from the guestmachine to the hostmachine becomes a straightforward
task.

• USB-C UPDATE PORT The USB-C update port serves as a means for developers or
users to program the device at a later time when necessary. It provides a way to make
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adjustments or updates to the device’s programming in the future.

• KILLSWITCHThekill switch in theLeetDMAdevice is a safety featureused toquickly
and forcefully shut down the device when needed. It serves as a security measure to pre-
vent unintended or unauthorized actions and is crucial in ensuring the device’s safe and
controlled operation.

• RESET-SWITCHThe reset switch in the LeetDMAdevice is used to restore the device
to its default or initial state. It can be helpful in situations where the device encounters
issues ormalfunctions, allowing it to be reset to a known configuration for troubleshoot-
ing or regular operation. The reset switch provides a convenient way to address opera-
tional challenges and maintain the device’s reliability and functionality.

• POWER PORT The ”power port” in LeetDMA is typically used to provide electrical
power to the device. It serves as the connection point for the power source, often an ex-
ternal power adapter, to supply the necessary electrical energy to operate the LeetDMA
device. The power port ensures that the device receives a stable and consistent power
supply, which is essential for its proper functionality and performance.

• ARTIX-7 FPGA CHIP Field Programmable Gate Arrays (FPGAs) are special com-
puter chips made up of a grid of tiny customizable building blocks and pathways that
connect them. What makes FPGAs unique is that you can change how they work even
after they’ve been made. This sets them apart from Application Specific Integrated Cir-
cuits (ASICs), which are created to do specific jobs and can’t be changed once they’re
made. The Artix-7 FPGA within the LeetDMA device serves as a versatile and pro-
grammable component that plays a pivotal role in memory access and data manipula-
tion. It enables tasks such as data extraction, memory control, buffering, and the imple-
mentation of custom functionality. This programmable hardware adds flexibility and
adaptability to the LeetDMA device, allowing it to effectively interface with and ana-
lyze the memory of target systems for various purposes, making it a valuable asset for
memory-related operations[10]
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Artix-7

FEATURES

Advanced high-performance FPGA logic based on real 6-input lookup table (LUT) technology config-

urable as distributed memory.

36 Kb dual-port block RAMwith built-in FIFO logic for on-chip data buffering.

High-performance SelectIO™ technology with support for DDR3 interfaces up to 1866Mb/s.

High-speed serial connectivity with built-in multi-gigabit transceivers from 600 Mb/s to max. rates of

6.6 Gb/s up to 28.05 Gb/s, offering a special low- power mode, optimized for chip-to-chip interfaces.

A user configurable analog interface (XADC), incorporating dual 12-bit 1MSPS analog-to-digital con-

verters with on-chip thermal and supply sensors.

DSP slices with 25 x 18 multiplier, 48-bit accumulator, and pre-adder for high-performance filtering,

including optimized symmetric coefficient filtering.

Powerful clock management tiles (CMT), combining phase-locked loop (PLL) and mixed-mode clock

manager (MMCM) block for high precision and low jitter.

Quickly deploy embedded processing withMicroBlaze processor

Integrated block for PCI Express® (PCIe), for up to x8 Gen3 Endpoint and Root Port designs.

Wide variety of configuration options, including support for commodity memories, 256-bit AES en-

cryption with HMAC/SHA-256 authentication, and built-in SEU detection and correction.

Low-cost, wire-bond, bare-die flip-chip, and high signal integrity flipchip packaging offering easymigra-

tion between family members in the same package. All packages available in Pb-free and selected.

Designed for high performance and lowest power with 28 nm,HKMG,HPL process, 1.0V core voltage

process technology and 0.9V core voltage option for even lower power.

Table 4.1: Artix‐7 Features [10].

Table 4.1 above highlights the noteworthy features of the Artix-7 series. Meanwhile, Figure

4.2 below illustrates the schematic representation of the Artix-7 series chip.
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Figure 4.2: Artix‐7 35T Block Diagram [6].

4.1.2 KVM SWITCH

AKVM (Keyboard, Video, andMouse) switch is a device that allows users to control multiple

computers with a single keyboard, monitor, and mouse. It works by enabling you to switch

between different connected computers, effectively giving you control over multiple machines

without the need for separate input devices for each.

To connect two monitors with a KVM switch, you would typically have the KVM switch

connected to both computers and each computer connected to a monitor. The KVM switch

enables you to toggle control between these computers, allowing you to use one keyboard and

mouse to operate both machines. This simplifies the process of working with multiple com-

puters.

We implemented a KVM switch between the host and the guest (sandbox) machine. The

KVM switch allowed us to connect twomonitors while providing control over bothmachines

29



with a single mouse and keyboard. This streamlined our workflow, making it more efficient.

In Figure 4.3 below, you can see the KVM switch connected to two monitors.

Figure 4.3: Dual KVM Switch.

4.1.3 network-attached storage (NAS)

A Network-Attached Storage (NAS) device is like a special kind of storage box that’s part of

your network, not directly connected to a single computer. It’s like a smart storage box because

it has its own computer brain and system to run software. This brain helps make sure that files

stored in it can be easily shared with the right people.

The great thing about aNAS device is that it’s like a magic box that can be opened by lots of

people, different computers, phones, and even from far away if it’s set up correctly. It’s a handy

way to store and share files on your network.There are mainly two ways to add extra storage
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to your computer. First, you can directly connect a hard drive or SSD to your computer using

USB or other cables, and it’s usually exclusive to that computer. This is called ”direct-attached

storage” (DAS). Second, you can connect storage devices to your home or business network,

either through wired (ethernet) or wireless (Wi-Fi) connections. These network-connected

storage devices are known as ”network-attached storage” (NAS). NAS systems can be accessed

by multiple users on the same network, and sometimes even from the internet.

Figure 4.4: Network Attached Storage [7].

As depicted in Figure 3.5, an illustration reveals the interconnection of a NAS (Network-

Attached Storage) device with three client machines. This configuration enables the trio of

clients to engage in file sharing and data exchange. Notably, should the administrator opt to ex-

pand the network to include additional clients, such an integration can be seamlessly executed.

Notably, the salient characteristic of this arrangement lies in the absence of physical intercon-

nections among the clients, with all data interactions facilitated through the intermediaryNAS

device.

4.2 Operating System Reset

It is imperative to highlight that a fundamental characteristic of a sandbox environment is the

requirement for a pristine operating system for the analysis of each new malware instance. In

the case of virtual sandboxes, this need is readilymet by simply shutting down the system; upon

its subsequent activation, a fresh operating system is made available for the analysis of a differ-

ent malware specimen. In our hardware-based sandbox implementation, we have addressed
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this necessity by integrating the software solution ”Reboot Restore Rx” provided by Horizon

DataSys. This software ensures the restoration of a clean operating environment after each

analysis session, facilitating the seamless transition to a newmalware analysis task.

4.2.1 Data Encryptionwith RollBack Rx

The software architecture employed in Reboot Restore Rx Pro/ RollBack Rx Pro relies on the

mapping of hard drive sectors. This sector-oriented safeguard is inherently encrypted, render-

ing it concealed within the file system. Consequently, it remains imperceptible to potential

threats such as viruses and malware.Data encryption, a well-known practice among PC users,

serves the purpose of safeguarding computer data against unauthorized access. Various tech-

niques exist to achieve this goal, but they all share a fundamental concept: transforming data

into a different, coded format, accessible only to those possessing a secret key, often referred

to as a decryption key or password. RollBack Rx, a software akin to Windows time machine,

offers instant data recovery for computers. While on the surface it may not seem related to data

encryption, in practice, RollBackRx provides a distinctive and effectivemethod for protecting

data from unauthorized entry. This paper elucidates how RollBack Rx accomplishes data en-

cryption through its unique, straightforward, and efficient approach—a fortuitous outcome

of its instant data recovery design.

standard Data Encryption

Before delving into RollBack Rx’s method of data encryption, it’s helpful to briefly review the

standard approach to data encryption. Data encryption’s primary objective is to safeguard the

confidentiality of digital data when stored on computer systems. To grasp the various tech-

niques employed in data encryption, it’s essential to have a fundamental understanding of how

data is both stored and accessed on computer systems.

Computer data storage is a multifaceted process, with Windows-based computers entrust-

ing much of this responsibility to the operating system’s file systemmanager. Simplifying this

intricate process, it can be divided into two core steps: first, locating the stored data (handled

by the indexing system), and second, reading or writing the stored data (the actual data). Stan-

dard data encryption primarily focuses on the second step, which involves the data itself. It

utilizes encryption algorithms such as DES and AES to take the data and subject it to a series

of intricate operations, resulting in a fixed-length ciphertext. This encryption process is highly
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effective but can be time-consuming, often requiring hours to encrypt or decrypt an entire

drive’s worth of data.

RollBack Rx encryption

RollBack Rx places its data encryption emphasis on the initial step of data storage, which in-

volves the indexing system. WhileRollBackRxprimarily serves as data protection software and

not originally intended as data encryption software, the data encryption feature emerged as an

unforeseen outcome of its data protection design.

In aWindows system lackingRollBackRx, the IO filemanager’s perspective on data storage

simplifies to a binary representation: used space is depicted as black, and free space is depicted

as white, as shown in figure 4.5 below.

Figure 4.5: File system in the absence of RollBack Rx

On a computer with RollBack Rx, the way data is managed is still like a basic ”black and

white” picture. But in this case, it’s just a small part of the whole colorful picture. Below figure

4.6 shows the imaginary view of file systems with RollBack snapshots.
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Figure 4.6: File system using RollBack Rx

Using RollBack Rx, we’ve observed that within a single snapshot, we can’t see data from

other snapshots. This happens because the current snapshot’s file systemdoesn’t have informa-

tion about files in other snapshots. This approach aligns with RollBack Rx’s data protection

philosophy, which aims to shield data from potential corruption by keeping it separate.

This same philosophy extends to data encryption: the most effective way to prevent unau-

thorized access to data is by keeping it hidden from unauthorized users. This forms the basis

of data encryption within RollBack Rx.

The question arises: how do we actually achieve this invisibility of data to unauthorized

access?

Data stored inRollBackRx snapshots can only be seenwhen you’re inside that specific snap-

shot. To access the data, you need to use the right key to enter that particular snapshot. This

access or openingof aRollBackRx snapshot ismanagedbyRollBackRx’s pre-operating system

subsystem. It reads information from hidden snapshot tables, which are not visible as regular

files in the file system. Moreover, the contents of these snapshot tables are encrypted usingAES

encryption. To ensure that only authorized users can load a snapshot table, the process of load-

ing and decrypting these snapshot tables is protected by a pre-operating system password. This

password system ensures that access to the protected data remains completely secure.For a cau-

tious user, concernsmay linger about the security of their actual data. Theymightwonder how

RollBack Rx prevents unauthorized access to their data if someone not allowed were to some-
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how get their hands on it. Here’s where the brilliance ofRollBackRx’s design becomes evident.

RollBack Rx addresses this concern by essentially doing nothing different from its regular op-

eration for instant data protection and recovery. The noteworthy aspect of RollBackRx is that

it doesn’t back up or restore the actual data, which could be a time-consuming process. The

way RollBack Rx reads and writes protected data can be likened to an ”encryption” technique.

Data encryption typically involves taking plain data, using an encryption algorithm and key

to transform it into ciphertext, which can only be viewed in its original form when decrypted

with the correct key. In the case of RollBack Rx, it applies a similar concept to protect your

data. RollBack Rx safeguards data stored on a PC using a combination of a subsystem and

a kernel system. These components work together to create a sector map and a virtual shield,

making it so the operating system is not privy to data movements at the sector level.

Each sector that has a corresponding entry on the sector map is marked as ”Used.” In con-

trast, sectors without data entries in the sector map are labeled as ”Free.” When RollBack Rx

is installed, the kernel system designates the hard drive, safeguarding the ”Used” sectors under

this virtual shield. This classification operates independently of the operating system.

Any alterations made after RollBack Rx’s installation fall into the ”Snapshot Used” sector

category. These sectors are an extension of the ”Used” ones, with linked pointers connecting

them. Importantly, the operating system remains unaware of this two-stage link pointer that

exists between the data, bridging the gap between the ”Used” and ”Snapshot Used” sectors.
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Figure 4.7: RollBack Rx encryption.

As shown in Figure 4.7, within a system using RollBack Rx, the contents of sector 40 are

not encrypted. However, unless you access RollBack Rx’s snapshot tables and re-interpret the

sector links, there’s no way to discern that the actual content of sector 40 is mirrored in sector

41. The data in sector 40 becomes unintentionally disguised through a series of redirections.

This aspect is where the brilliance of RollBack Rx’s design shines. In contrast to standard

encryption software that transforms data into a different form, RollBack Rx dissects the data

within a file into smaller components and connects them through redirection and indexing

within the snapshot tables. Consequently, thedata becomes effectively ”disguised” into another

form without undergoing a traditional encryption process[43].

The map of the snapshot tables, which is essential for reconstructing all the links forming

the data stored in snapshots (essentially, the data’s disguise), is encrypted. It is also conveniently
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protected

4.2.2 DATA STORAGE

Figure 4.8: Different Types of Storage [8].
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Above figure 4.8 represents the different types of storage’s in the computer world. NAS is

considered to be in the “Secondary storage” which also includes all types of hard disks. here are

various types of secondary data storage options accessible today. The most widespread one is

themagnetic disk, which you can find in almost every PC and server. This kind of disk employs

a magnetic coating to record data as tiny magnetic particles. However, the challenge with this

storage is that it’s a mechanical device, and although it may function well for a long time, there

are no guarantees. To safeguard against potential data loss due to amagnetic disk failure, there’s

a solution known as RAID. Different RAID types are accessible, with the most common ones

for home use being RAID 0 and RAID 1.Network-attached storage (NAS) is a type of hard

disk storage, but it differs in that it’s like an external server with its dedicated hardware and

network connection. Typically, a NAS is set up to function primarily as a file server, equipped

with tools for overseeing network shares, users, and their permissions [44].

Is it possible for Ransomware to compromise a NAS Drive?

The ZDNet ransomware attack stands out as one of the most notable cyberattacks in recent

history, extending its reach to impact even local government offices in the United States. This

malicious ransomware attack did not discriminate, targeting a wide array of devices including

corporate supercomputers, personal computers, mobile phones, and even supposedly secure

NAS devices. Consequently, the concise response to the question ”can ransomware infect

NAS” is affirmative.

Once one device within the network becomes infected, the zdnet ransomware has the ca-

pacity to spread its infection to other interconnected devices. The malware’s modus operandi

involves encrypting the data on affected computers, and the only means to regain access to

this data is by paying a specified ”ransom” fee. For those who are unable to meet this financial

demand, the consequence is data loss and the potential compromise of other sensitive informa-

tion.

Can NAS Drives Fall Victim to the New Ransomware?

It’s not sufficient to just comprehend whether ransomware can infiltrate NAS. We must also

recognize the potential consequences of a ransomware attack on our computer systems. Be-

yond the risk of losing crucial personal and sensitive data stored on our devices, the zdnet ran-

somware could open doors to threats from terrorist organizations and other entities seeking
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to disrupt our communities. Data holds immense power, and those who gain access to our

sensitive information can potentially wield it against us.

In scenarios where ransomware infiltrates NAS, users of NAS devices are typically provided

with instructions on how to recover their lost data. Making the ransompaymentmay seem like

a path to decrypt their computer files, but there’s no guarantee that files will be fully restored

even after payment. The delays in data recovery for both private and public institutions could

significantly impact the services they offer to their customers, patrons, and constituents [45].

In our project, we utilize a NAS device primarily for file sharing rather than storing critical

data. Moreover, all data sharing occurs within a secure environment. Even in the event of data

loss due to a possible attack or network-related issue, the impact on our operations would be

negligible.
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4.3 Hardware Sandbox

Figure 4.9: Hardware Sandbox.

Figure 4.9 illustrates the hardware-based sandbox setup, comprising two central processing

units (CPUs): one dedicated to our hostmachine and the other to the hardware-based sandbox.

Notably, our sandboxmaintains no physical connectionwith the hostmachine. The hardware
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sandbox features distinct processing and memory units reserved exclusively for malware analy-

sis. It operates on a segregated network, distinct from our host and NAS device, which share a

common network. This separation is integral to isolate the sandbox from the broader network

within the lab.

In addition, we incorporate LeetDMA hardware, establishing a connection with the sand-

box motherboard via a PCIe x1 interface. This hardware component is further linked to our

host machine through a USB-C data port. Both the host and sandbox are interconnected via a

KVM switch, and a single mouse and keyboard are also integrated into the KVM switch setup.

The KVM switch, in turn, connects to the monitor to facilitate visualization.

Our choice of the Windows 10 operating system for the sandbox is motivated by the preva-

lence of malware targeting theWindows OS, a common platform in various real-world scenar-

ios, such as hospitals, offices, and stock exchanges. In contrast, we utilize Ubuntu for the host

machine.

Consider the scenario involving individuals Luca and Rosa, who operate within an office

environment. If either of them receives a suspicious email containing a link or executable file,

they transmit this file or link to the sandbox operator, depicted in Figure 4.10 below. The sand-

box operator’s role is to execute the provided executable file within the sandbox environment

to assess its behavior. Following the execution, the sandbox operator scrutinizes network traf-

fic, inspects system log files, and conducts a physical memory dump.For the physical memory

dump process, we employ the pcileech tool, designed to be compatible with the LeetDMA de-

vice, as elaborated earlier, and integrated within the sandbox. This configuration allows us to

extract the system’s memory after executing the malware.Upon conducting a comprehensive

analysis, if the sandbox operator deems the provided executable or link non-malicious, they is-

sue a green signal, permitting Luca and Rosa to proceed with opening or executing the file on

their respective host systems.
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Figure 4.10: Working of Sandbox.
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5
Database and Results

5.1 Malware Database

In order to assess the functionality of our sandbox environment, it is imperative to carry out

tests involving the execution of malware and observe its behavior. To do so, we must first ac-

quire contemporary datasets of malicious software. For our experimental purposes, we have

accessed a selection of malware samples fromMalwareBazaar, a platform where IT security re-

searchers continually update their findings of new malware samples. Researchers can submit

these samples to the community after confirming their malicious nature. This practice ensures

that the malware executed in our experiments is indeed confirmed as such.

It is worth noting that all themalware uploaded toMalwareBazaar by IT security researchers

are verified instances of malicious software. Furthermore, the malware submitted to Malware-

Bazaar is typically novel or newly discovered by these researchers. MalwareBazaar permits both

commercial and non-commercial utilization of their data, making it a highly suitable resource

for our malware analysis endeavors.

To locate recently identified malware samples on MalwareBazaar, one can establish an alert

as follows:

• Tag: In the context ofmalware analysis, a ”tag” is a descriptive label or identifier assigned
to a specific piece of malware or a related attribute. Tags help researchers and analysts
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categorize and organize malware samples based on their characteristics or behavior.

• Signature: A ”signature” is a specific pattern, code, or unique characteristic that is used
to identify and detect malware. Signatures are like fingerprints for malware; they are
created by security experts to recognize and block knownmalicious code.

• YARA Rule: YARA is a tool used in malware analysis to define and identify patterns
or characteristics within files or data. A ”YARA rule” is a set of criteria or conditions
specified in the YARA language that helps analysts search for and classifymalware based
on those criteria.

• ClamAV Signature: ClamAV is an open-source antivirus software. A ”ClamAV sig-
nature” is a specific pattern or rule used by ClamAV to detect and quarantine known
malware. These signatures are regularly updated to stay current with emerging threats.

• VendorDetection: In the realmof cybersecurity, ”vendor detection” refers to the ability
of security software or solutions provided by various cybersecurity companies (vendors)
to identify and flag potential threats or malware. Each vendor may have its own unique
detection methods and databases for recognizing malicious software.

The figure provided below illustrates the daily count of distinct malware samples shared on

MalwareBazaar over a span of 30 days.

Figure 5.1: Malware samples shared in last 30 days [9].

Malware on MalwareBazaar is categorized based on its behavior by IT security researchers,

enabling us to identify andunderstand the behavioral characteristics of differentmalware types.

The following figure presents a pie chart representing the distribution of malware families and

associated tags.
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Figure 5.2: Malware families and their tags

5.1.1 Malware’s SHA-256

For our project, we utilized a total of 8 malware samples, all of which were sourced fromMal-

wareBazaar. It’s worth noting that malware samples can occasionally be removed from Mal-

wareBazaar, but you can still verify and obtain additional information about these samples by

checking them on VirusTotal. Below are the SHA-256 hashes for these samples, and for more

comprehensive details, you can refer to VirusTotal.

• 1dec94b960f40e3a95e4aaa81f5783c221e4792d429701701052a03686aeb2cd

• 5c55eec6f12aa60ac02540ebb2af7b7780d148d76a07ad27bfad0d4f3bc1a067

• 9fde5ae1eb2789887b7513a950bd2fb41f5b44d6ec0756a081ccfa7d9b4d63fd

• 94e2aab4a036f8788be69af92be5568812541993f735732ec0f0d00dec17126b

• 307f012f74f209e4b8371400455ee296585a6d6a0d4c2195df2186ecaf0acd79

• bec11b766972a7bb42603a2e6f1452cc5a769779586b17120eaf4299db06fb00

• e5615a6c90478a371040d8f7d4721e183b5efcc0b0e6ce64b7ab4ee1d04bf0be

• f58fea7363083d8ad73358f871c6483ab17d804ce34eb6558c62b3350ad368df

Each of these samples was individually executed within a controlled sandbox environment.

Subsequently, the network traffic generated was captured using Wireshark and subjected to

analysis through VirusTotal and BrimSecurity tools. Moreover, the physical memory was ex-

tracted through theutilizationofLeetDMAhardware, a compatible solutionwith thePCILeech

tool [46]. Lastly, an analysis of the sandbox’s log files was conducted to complete the compre-

hensive examination.

45



5.2 Analysis ofMemory Dumps

We initially acquired a pristine memory dump from a clean, malware-free system, serving as a

baseline reference. This reference dumpwill be employed for comparisonwithmemory dumps

from infected systems, facilitating the rapid identification of alterations induced by the mal-

ware. Additionally, we will assess the changes introduced by the same malware in a controlled

virtual sandbox environment.During the analysis, we will examine the following Volatility tool

plugins to detect systemmodifications introduced by malware:

• Pslist: Lists running processes, allowing you to identify any malicious processes created
by the malware.

• Psscan: Scans for terminated or hidden processes, which may include remnants of mal-
ware activity.

• Filescan: Lists open files, which can reveal files accessed or modified by the malware.

• Malfind: Scans for injected code and suspicious memory regions, making it useful for
detecting process injection by malware.

• Dlllist: Lists loaded DLLs, helping you identify any malicious or injected DLLs.

• Driverirp: Focuses on driver-related information, which can be important for identify-
ing driver-based malware.

• Windows.privileges: Lists processes with privileges.

• Windows.cmdline: It is used to extract and display the command line arguments asso-
ciated with processes in a memory dump of a Windows system.

• Handles: Provides information about file and registry handles, helping you identify sus-
picious file or registry access.

5.2.1 Pslist and Psscan

First, we will examine the initial or clean system process lists using pslist and psscan. This

will provide us with a baseline of the system’s normal state. These baselines will help us detect

any alterations or the execution of malicious software within the system. We will also inspect
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the hash of any malware once it has been executed. The figure 5.3 illustrates the results of

psscan and pslist before any malware was executed.

Figure 5.3: Psscan and Pslist before execution.

Uponexecuting themalware identifiedby thehash1dec94b960f40e3a95e4aaa81f5783c221-

e4792d429701701052a03686aeb2cd, it becomes evident that the malware has been success-

fully executed within the system.

Figure 5.4: Hardware sandbox changes after execution.
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Figure 5.5: Virtual sandbox chnages after execution.

In the figure 5.4, It’s worth noting that following the execution of the malware, two ad-

ditional executables, namely v642880.exe and v1974809.exe, emerged in the system. These

executables were not present in our system prior to the malware’s execution.The emergence

of v642880.exe and v1974809.exe following malware execution likely indicates that the initial

malware was designed to drop or download additional files as part of its malicious activity, po-

tentially for persistence, expansion, or further malicious actions. This behavior is common in

malware to achieve specific objectives.

In Figure 5.5, we observe a consistent pattern with the executed executables, v642880.exe

and v6742880.exe. However, it’s noteworthy that the malware executed a distinct executable,

v6742880.exe, in the virtual environment instead of v642880.exe. This variation in behavior

can be attributed to environment detection, dynamic adaptation, and potential configuration

disparities between the hardware and virtual setups, reflecting common tactics employed by

malware authors to obfuscate analysis and cater to specific environmental conditions. Some

factors also involved are:

• Environment Sensing: Some malware is designed to detect the specific environment
it is running in, such as a physical hardware system versus a virtual machine. Malware
authors may build inmechanisms to identify virtualized environments to avoid analysis,
as analysts often use virtual machines to safely investigate malware. The malware may
behave differently based on this detection.

• Dynamic Behavior: Malwaremay exhibit dynamic behavior, adapting its actions based
on its environment. It might have been programmed to choose different executable
names, or the environment-specific payloads may have varied filenames.

• Payload Delivery: The malware in the two environments may have fetched different
payloads from remote servers or dropped different files onto the system. The choice of
payload candependon the environmentormaybe randomlydeterminedby themalware
itself.
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• ConfigurationDifferences: The hardware and virtual environmentsmight have subtle
differences in their configuration, such as file paths or system properties, which could
lead to variations in the behavior of the malware.

• Anti-Analysis Techniques: Malware authors often employ anti-analysis techniques to
make it more challenging for security researchers to analyze their code. Running differ-
ent executables in different environments can be one such technique.

5.2.2 Filescan

Algorithm 5.1 Set Intersection Pseudocode

Input:
Hb - Set of elements forHb
Ha - Set of elements forHa
Vb - Set of elements forVb
Va - Set of elements forVa

// CalculateHd by finding the intersection ofHb andHa
Hd← Hb ∩Ha

// CalculateVd by finding the intersection ofVb andVa
Vd← Vb ∩ Va

// Calculate Final_output by finding the intersection ofVd andHd
Final_output← Vd ∩Hd

Output:
Final_output - Set of elements that are common to bothVd andHd

In our algorithm, ”Hb” represents the files we collected before the malware infection, ”Ha”

represents the files we collected after the malware infection, ”Vb” represents the set of files

or elements before the virtual memory dump, and ”Va” represents the files we collected after

running the malware in a virtual environment. We compared these sets of files to identify the

differences.
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After applying the algorithmmentioned earlier, when we look at Figure 5.6, we will observe

the following results.

Name Type Size Values

Before1(Hb) set 3109 \Windows\System32\....

Before2(Vb) set 1850 \Users\asad\....

After1(Ha) set 2502 \ProgramData\Mozilla-.....

After2(Va) set 2246 \Windows\System32\....

Difference1(Hd) set 309 \Users\asadj\AppData\....

Difference2(Vd) set 788 \Windows\Microsoft.NET\....

Difference combined set 16 \Windows\System32\drive....

Table 5.1: Results from the Algorithm.

Upon reviewing ”difference1 (Hd),” it becomes apparent that the algorithmyielded a total of

309 files. This indicates that there is a disparity in the files between the pre-malware execution

and post-malware execution states within the hardware sandbox, with a variance of 309 files.
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Figure 5.6: Hb and Hd comparison.

Upon examining the disparities between Hb and Hd, we can discern the alterations intro-

duced to thefile systemby themalware. InFigure 5.6, we canobserve a portionof these changes.

For instance, after the executionof themalwarewith thehash ”1dec94b960f40e3a95e4- aaa81f5783c221e4792d429701701052a03686aeb2cd,”

wewitness a sequence of subsequent file executions, including the appearance of seemingly ran-

domChinese characters in ”str 8.”Additionally, at ”str 40,”we encounter thefile ”\LOCAL\mojo.572.2064.9701869632372263-

643,” among others. As previously noted, these alterations amount to a total of 309 files mod-

ified by the malware.
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Figure 5.7: Va files section of the algorithm.

In Figure 5.7, ”Va” denotes the section containing virtual sandbox files after the malware’s

execution. As observed in table 5.1, this section initially had 1850 files, but post-malware execu-

tion, it increased to 2246. When we compare the files in ”Va” with those in ”Vb,” representing

the virtual files section before malware execution, we identify ”Vd,” denoting the second set of

differences. Notably, ”Vd” reveals 788 discrepancies, indicating that the malware introduced

788 file changes that were not present in ”Vb.”

Interestingly, when we examine the overlap between ”Vd” and ”Hd,” which represents the

final output of our algorithm, we find only 16 files in common. Several explanations could

account for this observation. It’s possible that the malware adapts its behavior depending on

whether it’s in a hardware sandbox or a virtual sandbox. Alternatively, the malware might de-

tect the environment and adjust its actions accordingly. Another possibility is that in the virtual

environment, themalware generates seemingly benign files, potentially employing obfuscation

techniques to mislead researchers. However, when executed in a real system, it might initiate

harmful files meant to compromise the system’s security.
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5.2.3 malfind

Figure 5.8: Code injection by the malware sample.

In the figure 5.8, the image on the top represents the hardware sandbox, while the one on the

bottom corresponds to the virtual sandbox. In both images, we can observe the presence of

b4574510.exe, indicating a process that has been subjected to code injection. This injection is

associatedwith the executionof 1dec94b960f40e3a95e4aaa81f5783c221e4792d42970170105-

2a03686aeb2cd.exe. The existence of the b4574510.exe process in the memory dump strongly

implies that the malware has effectively injected its code into the active system.

Analysis and Comparison

• Process Name: The presence of the b4574510.exe process in both memory dumps
indicates that the same process is injected into both the hardware and virtual machines.
This process is likely the result of the execution of themalware sample with the specified
hash.

• Virtual Address Descriptor (Vad): In both datasets, the Vad descriptor is identical and
marked asVadS.This suggests that the samememory regionor section is involved inboth
instances. This consistency is a strong indicator of similarity in memory structures.

• Protection: The memory region is marked with PAGE_EXECUTE_READWRITE protec-
tion in both cases. This protection level allows both execution and modification of
memory contents. Such permissions are often associated with code injection and are
a significant indicator of potential malicious activity.
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• Commit Charge and Private Memory: While there are slight differences in the values
for Commit Charge and Private Memory between the hardware and virtual machine
datasets, these discrepancies may not be of substantial significance in this analysis. They
could be attributed to variations in system configurations.

• Disabled Status: In both cases, the b4574510.exe process is marked as ”Disabled,”
indicating that it is not currently active or running. The status suggests that this process
is not in use at the time of the memory dumps.

The findings reveal that the same b4574510.exe process, associated with the malware sam-

ple’s hash, is present in both the hardware and virtual machine memory dumps. The shared

characteristics, including the identical Vad descriptor and PAGE_EXECUTE_READWRITE protec-

tion, are compelling evidence of a commonmemory structure or injected code.

The PAGE_EXECUTE_READWRITE protection and the process’s ”Disabled” status raise con-

cerns about potential code injection and unauthorized memory modifications. It is crucial to

conduct further in-depth analysis to determine the specific behavior and purpose of this in-

jected process, as well as to assess any potential threats it may pose to the system.

5.2.4 Dlllist

Following the executionof themalware sample, 1dec94b960f40e3a95e4aaa81f5783c221e4792-

d429701701052a03686aeb2cd.exe, in both virtual and hardware sandboxes, and subsequent

analysis of the dllists, the following results were obtained.

Hardware Sandbox (Execution on 2023-05-15)

• 1dec94b960f40e.exe: Executes themalware sample located in auser’sDownloads folder.Loads
system DLLs, including wow64.dll, wow64win.dll, and wow64cpu.dll.

• v6742880.exe: Executes themalware sample located in a temporary folder (IXP003.TMP).Loads
wow64.dll, wow64win.dll, and wow64cpu.dll.

• v1974809.exe:Executes themalware sample located in a temporary folder (IXP004.TMP).Loads
wow64.dll, wow64win.dll, and wow64cpu.dll.

• b4574510.exe: Executes themalware sample located in a temporary folder (IXP005.TMP).
Loads wow64.dll, wow64win.dll, and wow64cpu.dll.
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Virtual Sandbox (Execution on 2023-05-22)

• 1dec94b960f40e.exe: Loads wow64cpu.dll, ntdll.dll, wow64.dll, and wow64win.dll.
Executes the malware sample located in a temporary folder.

• v6742880.exe: Executes themalware sample located in a temporary folder (IXP003.TMP).Loads
ntdll.dll, wow64.dll, wow64win.dll, and wow64cpu.dll.

• v1974809.exe: Executes themalware sample located in a temporary folder (IXP004.TMP).
Loads ntdll.dll, wow64.dll, wow64win.dll, and wow64cpu.dll.

• b4574510.exe: Executes themalware sample located in a temporary folder (IXP005.TMP).
Loads ntdll.dll, wow64.dll, wow64win.dll, and wow64cpu.dll.

red flags: In both the hardware and virtual sandboxes, themalware demonstrates a con-

sistent pattern of behavior that raises red flags and poses a potential threat to the system’s se-

curity. This behavior includes the execution of the malware sample and, more critically, the

loading of essential system DLLs.

What’s particularly concerning is the consistent loading of specific system DLLs, namely

wow64.dll, wow64win.dll, andwow64cpu.dll. These DLLs serve as fundamental components

in the way applications interact with the Windows operating system. When a piece of mal-

ware manipulates or loads these DLLs, it can potentially gain unauthorized access to system

functions and resources.

Such actions can lead to a range of threats, including but not limited to:

• Privilege Escalation: Malicious software can exploit vulnerabilities within these DLLs
to elevate its privileges within the system, gaining more control and access to sensitive
data.

• System Manipulation: By tampering with these critical system components, malware
can manipulate or disrupt system operations, leading to instability and poor perfor-
mance.

• Data Theft: Themalware may exploit the loaded DLLs to access, exfiltrate, or manipu-
late user data, potentially leading to data breaches or identity theft.

55



• Remote Control: Loading theseDLLsmight allow themalware to establish a backdoor
or remote control over the infected system, giving cybercriminals unauthorized access to
the machine.

5.2.5 Driverirp

Figure 5.9: Hardware offset difference before and after malware execution.

Hardware: In our research, we examined the computer’s memory using ’windows.driver

module.Driver-Module.’ We did this before and after running malware on a protected system,

and the results are visible in Figure 5.9. The part that’s highlighted in the figure representswhat

the malware did in the computer’s memory.

Our analysis revealed that therewere noticeable differences in the list of systemdrivers before

and after the malware event. It’s worth noting that malware often focuses on these drivers

because they are essential for the computer’s operation. Malware may try to change them to

gain unauthorized access or control over the system.

The data we collected showed that after the malware was executed, some drivers were either

added or changed. This is a noteworthy observation because the new drivers didn’t have any

built-in safeguards, and the existing drivers lost their protective measures. This alteration in
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the driver landscapemay raise concerns, suggesting the possibility of themalwaremakingmod-

ifications or adding its own drivers.

This differencebecomes evenmore apparentwhenwecompare thenumberof drivers present

before themalware (only two) to the number after themalware (more than two, as highlighted),

also the fact thatwe couldn’t find theoffsets ’0xb306454058c8,’ ’0xb30645435918,’ and ’0xf806-

713b5a6a’ in the ’DriverRip’ module of Volatility, especially in a memory dump taken after

malware execution, raises concerns. It suggests that themalwaremay have influenced or altered

the system’s drivers, which can impact the behavior of the system.

While the ’DriverModule’ output indicates the presence of certain drivers with offset values,

the absence of these offsets in the ’DriverRip’ resultsmay signify that themalwaremanipulated

the system drivers or their associated information, making them undetectable or invisible to

certain analysis tools like ’DriverRip.’

This scenario is consistent with the idea that malware often seeks to modify drivers to evade

detection and operate stealthily. The absence of these offsets in ’DriverRip’ could be a deliber-

ate attempt by the malware to hide its presence and actions.

Here are a few possible explanations for this situation:

• Malware Modification: The malware may have loaded a driver or modified an existing
oneduring its execution, causing theoffset0xb306454058c8 to appear in theDriverModule
output.

• Rootkit Activity: Some types ofmalware, especially rootkits, are designed to hide their
presence and tampering with the system. They might manipulate the memory analysis
tools, making it challenging to detect their activities.

57



Figure 5.10: Virtual offset difference before and after malware execution.

Virtual: When we compare Figure 5.9 and Figure 5.10, we notice differences in the offset

values. These differences can be explained by the nature of the environmentwhere thememory

dumps were taken. In virtualized settings, memory dumpsmight not capture the same level of

detail or exhibit the same offset variations as in physical hardware.

It’s important to understand that the waymalware behaves can be influenced by the specific

environment it operates in. Different types ofmalwaremay exhibit varying behaviors, and how

they interact with the system’s drivers can be influenced by whether the system is running on

physical hardware or within a virtualized environment.

Furthermore, we also observed a similar behavior with the offset ’0x800654393a58’ as it was

not found in the list of offsets in the ’DriverRip’ module. In general, when we compare the

memory dumps, it appears that themalware did not introducemore offsets in the ’DriverMod-

ule’ of Volatility in the virtual environment compared to the hardware-based environment.

58



5.2.6 Windows Privileges

Figure 5.11: System privileges granted to the malware.
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In the presented data (Figure 5.11), it is evident that the malware application has sought nu-

merous privileges. When the malware was executed, it initiated requests for specific privileges

from the system, aiming to acquire enhanced capabilities and perform malicious actions. To

comprehensively understand the implications of these privileges, we need to analyze their in-

tended purposes and the potential harm that could arise if the malware were to be granted or

able to request these privileges.

1. SeLockMemoryPrivilege:

• Allows a process to lock pages in memory.

• Potential risk: This privilege could be used to prevent the operating system from
swapping the process’s memory to disk, making it harder for the system tomanage
memory usage.

2. SeIncreaseQuotaPrivilege:

• Allows a process to increase its resource quotas.

• Potential risk: This privilege could be abused to consume additional system re-
sources beyond the normal limits.

3. SeMachineAccountPrivilege:

• Allows a process to add workstations to the domain.

• Potential risk: Ifmisused, this privilege could potentially allow themalware to join
the system to a domain, gaining unauthorized access.

4. SeTcbPrivilege (Act as part of the operating system):

• Allows a process to act as part of the operating system.

• Potential risk: This privilege is highly sensitive and dangerous. It grants the pro-
cess significant control over the system, and if exploited, it could lead to system
compromise.

5. SeSecurityPrivilege (Manage auditing and security log):
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• Allows a process to manage auditing and security logs.

• Potential risk: An attacker can manipulate the logs to hide their activities, making
it difficult to detect and investigate malicious actions.

6. SeTakeOwnershipPrivilege:

• Allows a process to take ownership of files and objects.

• Potential risk: This privilege can be used to manipulate file and object ownership,
making it harder to track changes and investigate unauthorized access.

7. SeLoadDriverPrivilege:

• Allows a process to load and unload device drivers.

• Potential risk: Loading unauthorized or malicious drivers can lead to system insta-
bility or compromise.

8. SeShutdownPrivilege:

• Allows a process to shut down the system.

• Potential risk: Unauthorized shutdowns can disrupt system operations and poten-
tially lead to data loss.

9. SeDebugPrivilege:

• Allows a process to debug other programs.

• Potential risk: Debugging privileges can be misused to analyze, modify, or con-
trol other processes, potentially enabling malware to evade detection and perform
malicious actions.

The processes named v6742880.exe, b4574510.exe, v1974809.exe, and 1dec94b960f40e.exe

have been endowed with certain privileges. This is a cause for concern because these privileges

bestow the processes with the potential to inflict harm upon the system.
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However, the malware exhibits a consistent pattern of requesting the same privileges in the

virtual sandbox as observed in the hardware environment. This uniformity suggests that the

malware’s approach to exploiting system permissions remains consistent across different execu-

tion contexts. This behaviormay be attributed to themalware’s static characteristics, its ability

to operate independently of the specific environment, or its unchanging focus on specificmali-

cious objectives associatedwith the requested privileges. It’s worth noting that this consistency

could be a deliberate tactic employed by malware developers to avoid detection by minimizing

conspicuous variations between environments. While the malware’s actions related to privi-

leges remain similar, it’s crucial to recognize that its overall behaviormay encompass additional

evasion and obfuscation techniques that go beyond the analysis of privileges alone.

5.2.7 Cmdline

Figure 5.12: hardware and virtual sandbox cmdline.

In Figure 5.12 presented above, we are able to observe a potential invasion technique employed

by the malware sample. By examining and contrasting the behaviors in both hardware and

virtual sandboxes, the distinctions become apparent, as outlined below:

In the virtual sandbox memory dump, several notable findings were observed:

1. MultipleTemporaryExecutables: Thepresenceofmultiple executablefiles (v6742880.exe,
v1974809.exe, and b4574510.exe) within user-specific directories, specifically un-
der C:\Users\asad, raises concerns. Malware often disguises itself as legitimate files in
these locations to evade detection.

2. User Interaction: The location of these executables hints at potential user-initiated ac-
tions, suggesting that the malware may have been triggered by user interaction. This is
a concerning red flag as it could indicate a social engineering component, such as email
attachments or malicious downloads.
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In the hardware sandbox memory dump, the focus was on identifying ”Required memory

at” entries indicating inaccessible (swapped)memory regions. The following observationswere

made:

1. MemoryCorruption: Thepresenceofmultiple ”Requiredmemory at” entries strongly
suggests that the malware engaged in memory manipulation and manipulation tactics
to evade analysis. Memory corruption is a common technique used bymalware tomake
the analysis more challenging.

Comparative Analysis: The key differences between the two sandbox environments lie

in their behavior. The virtual sandbox showed signs of user interaction with potentially mali-

cious files, while the hardware sandbox exposed memory manipulation tactics by the malware.

The discrepancies are vital and need to be addressed:

• In the virtual sandbox, the malware’s initial execution was successful, and it posed a risk
to user systems. The executables located in user directories could potentially exfiltrate
sensitive information, posing a threat to data privacy and system security.

• In the hardware sandbox, themalware’s behavior ismore evasive. It activelymanipulates
memory, causing memory corruption, which indicates an intent to disrupt analysis and
conceal its activities.

Red Flags:

1. Execution in User Directories: The presence of executables in user directories is a sig-
nificant concern as it suggests user interaction with potentially malicious files.

2. Inaccessible Memory Regions: The ”Required memory at” entries in the hardware
sandboxmemory dump indicate memory corruption and active evasion techniques em-
ployed by the malware.
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5.2.8 handles

Figure 5.13: Malware interaction with critical system process.

In figure 5.13 abovewe can see that in hardware based sandbox, ”564 csrss.exe 0xb3064f631080

0x8d8Thread 0x1fffffTid 9272Pid 9368” indicates that ”csrss.exe” is holding a handle (0x8d8)

that references a thread (Tid 9272) in the process with PID 9368 (the malware). This suggests

that the ”csrss.exe” process is interactingwith ormanaging a specific threadwithin themalware

process. This interaction between ”csrss.exe” and a malware thread is highly suspicious and a

red flag. ”csrss.exe” should not normally be involved with the management of threads within a

malware process.

red flags

1. Data theft or exfiltration: ”csrss.exe” may be accessing or manipulating sensitive data
within the malware process, leading to data theft or exfiltration.

2. Manipulation of malware behavior: ”csrss.exe” could potentially control or influence
the actions of the malware process, redirecting it to performmalicious activities.

3. Privilege escalation: If ”csrss.exe” is communicating with the malware process, it may
attempt to elevate its privileges, giving it more control over the system.

4. Obfuscation or evasion: The malware might use ”csrss.exe” as a means to obfuscate its
presence, making it harder for security tools to detect and analyze the malicious activity.

5. Payload delivery: The interactions could be part of amulti-stage attack, with ”csrss.exe”
delivering additional payloads or instructions to the malware process.

6. Execution of malicious code: There’s a possibility that ”csrss.exe” is executing code or
commands within the malware process, potentially leading to further harmful actions.
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Figure 5.14: Malware interaction for virtual.

In Figure 5.14, representing the virtual environment, a similar pattern of malware interac-

tion with critical system processes is observed, paralleling the behavior depicted in the physical

environment. However, the virtual environment provides additional insights, as detailed in

the figure.

The process ID 1892, which is associated with amalware sample, shows various handles and

their respective types. Each handle type indicates different interactions or resources accessed

by the process. Here’s what you can infer from the information, along with potential damage

that could be done:

1. EtwRegistration handles: Two EtwRegistration handles are observed. These are re-
lated to Event Tracing for Windows (ETW) registration, a component used for moni-
toring and logging events in Windows. Potential damage: The malware could manip-
ulate or interfere with event tracing, which might allow it to cover its tracks and avoid
detection.

2. Event handles: Three Event handles are present, indicating the use of events for syn-
chronization and inter-process communication. Potential damage: Events can be used
to coordinate actions between processes. The malware might use this for launching at-
tacks or managing malicious activities.

3. Key handles: Two Key handles are found, which are associated with specific registry
keys in the ”MACHINE\SYSTEM\CONTROLSET001” path. These keys could be
accessed for various purposes. Potential damage: Unauthorized access to registry keys
can lead to changes in system settings, potentially causing instability, and enabling fur-
ther malware persistence or privilege escalation.

4. Semaphore handles: FourSemaphorehandles are listed, suggesting theuse of semaphores
for synchronization andcoordinationbetweenprocesses. Potential damage: Semaphores

65



can be used for synchronization. The malware might utilize these for timing or coordi-
nation of malicious actions.

5. File handles: TwoFile handles are seen. One is related to ”\Device\DeviceApi\CMApi,”
and the other is related to ”\Device\KsecDD.”These handles could indicate interactions
with these device drivers or files. Potential damage: File handles can be used for reading,
writing, ormanipulating files and drivers. Themalwaremight attempt tomodify critical
system files or steal sensitive information.

6. Mutant handles: TwoMutant handles are found, which are used for synchronization
and coordination. Mutants are often used to ensure exclusive access to resources. Poten-
tial damage: Malware could usemutants to control access to specific resources or ensure
only one instance of the malware runs, making it harder to detect and remove.

The presence of these various handles indicates that the malware process is interacting with

different system resources, events, and synchronizationmechanisms. These interactions could

be used for malicious purposes such as evasion, privilege escalation, communication, or re-

source manipulation. The potential damage includes compromising system stability, enabling

persistence, launching attacks, and interfering with system functions.

5.3 network traffic

We obtained four pcap files, each divided into two sets—one from a virtual sandbox and the

other from a hardware sandbox. Utilizing a malware traffic analysis website, we extracted data.

To analyze the traffic and identify potential issues, we employed Wireshark and Brim Security

Zui.

5.3.1 Malware’s traffic database

As previously noted, we employed four malware samples for analysis, namely:

• Brazil-Targeted malware infection from email.

• Google AD—> fake libre office page.

• Italian template word docs push ursnif.

• Rigek and redline.
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5.3.2 Malware Traffic Analysis

Sandbox IPv4 Address Subnet Musk Default Gateway

Hardware 192.168.0.3 255.255.255.128 192.168.0.1

Virtual 192.168.0.4 255.255.255.128 192.168.0.1

Table 5.2: Hardware and Virtual sandbox configurations with the network.

Brazil-targeted malware infection from email.

Hardware sandbox: Following the execution ofmalware, a connection is observed be-

tween IP address 192.168.0.3 and IP address 192.168.0.2, as captured inWireshark, as depicted

in the figure below.

Figure 5.15: Ip’s handshakes

As we analyze the pcap file of the respective malware sample, these are the findings observed

in our hardware sandbox. Initially, we initiatedWireshark and subsequently executed the mal-

ware sample within the system, capturing approximately 3736 packets. This dataset is deemed

sufficient for uncovering the malware’s interactions within the network traffic.

Figure 5.16: Suspicious Handshake.

Observing the depicted Figure 5.15 reveals an unusual handshake occurring between two IP

addresses.Uponconducting amore in-depth examinationof these two IP addresses (192.168.0.2

and 40.125.122.151), it becomes evident that they have already been flagged by previous secu-

rity researchers. Ip 192.168.0.2 is related to a malware who is trying to make connections with
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other domains and ip’s. We initiated Wireshark, ran the malware sample, and captured net-

work packets for analysis. Upon examination, we observed a connection between IP addresses

192.168.0.2 and 40.125.122.151, raising suspicions. Figure 5.16 below illustrates the network

activity graph for IP address 192.168.0.2, depicting its interactions with both communicating

and referred files.

Figure 5.17: Infamous Chisel graph.

Infamous Chisel, a comprehensive set of components designed for persistent access to com-

promised Android devices via the Tor network, periodically collects and exfiltrates victim in-

formation. This includes system details, commercial applications, and apps specific to the

Ukrainian military.

Themalware conducts routine scans on thedevice, specifically targetingfileswithpredefined

extensions. It also features functionality for scanning the local network to gather data on active

hosts, open ports, and banners.

Remote access is achieved by configuring and executing Tor with a hidden service, directing

to a modified Dropbear binary for SSH connectivity.
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Furthermore, the malware, associated with the IP address 192.168.0.2, expands its capabil-

ities to encompass network monitoring, traffic collection, SSH access, network scanning, and

SCP file transfer. Notably, the IP address 192.168.0.2 is a known element of the Infamous

Chisel malware infrastructure.

The IP address 192.168.0.2 is linked to malicious activity. Figure 5.16 displays its connec-

tions with reference and communicating files, which are categorized in the figure 5.17 below

for further examination.

Figure 5.18: 192.168.0.2 refer and communicating files.

In Figure 5.17, the left side represents communicating files, while the right side represents

reference files associated with the IP address 192.168.0.2. Upon closer examination of a node

from the communicating files, a noteworthy instance emerges. A Win32 executable named

”file.exe,” sized at 133.87 kB, is identified. This file, initially observed onOctober 11, 2020, has

undergone one submission and is flagged as malicious by security tools such as DeepInstinct,

Cybereason, AVG, BitDefenderTheta, and Fortinet. These collective detections strongly sug-

gest the involvement of the IP address 192.168.0.2 in previous malicious activities. As shown

in the figure 5.18 below.
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Figure 5.19: One of the nodes from the communicating files.

Figure 5.20: One of the nodes from the refer files.

In Figure 5.19, a noteworthy entry in the ”Refer Files” section is highlighted. The focus is

on aWin32 executable named ”LOD.EXE,” with a size of 877.00 kB. This file was initially de-

tected on February 4, 2008, and its most recent appearance was on December 9, 2021, with a

total of 12 submissions. The file has raised concerns as it has been flagged asmalicious by several

cybersecurity tools, including Cybereason, MaxSecure, Yandex, DeepInstinct, and Kingsoft.
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Cybereason identifies it as ”malicious.fc4c3c,”MaxSecure labels it as ”Trojan.Malware.300983.susgen,”

Yandex categorizes it as ”Trojan.Hooker!TBsub9OIVh0,” and DeepInstinct marks it as ”MA-

LICIOUS.” This collective identification highlights potential security risks associated with

”LOD.EXE,”.

The presence of theWin32 executable ”file.exe” and ”LOD.EXE” associated with the IP ad-

dress 192.168.0.2 raises red flags due to their consistent identification as malicious by multiple

cybersecurity tools. The unified detection by tools such as DeepInstinct, Cybereason, AVG,

BitDefenderTheta, Fortinet, MaxSecure, Yandex, and Kingsoft indicates a high likelihood of

malicious activities linked to this IP address. The historical involvement of ”file.exe” and the

persistent threat posed by ”LOD.EXE” underscore the need for immediate attention and mit-

igation efforts to address the potential security risks introduced by 192.168.0.2.

Examining Figure 5.15 reveals a network handshake between IP addresses 40.125.122.151

and 192.168.0.2, prompting further attention to this connection.

Figure 5.21: Ip 40.125.122.151 graph.
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By examining a node from the refer and communicating files of IP address 40.125.122.151,

depicted in Figure 5.20, we observe recurring malicious behavior, as detailed below.

Upon examining a node from the refer files associatedwith IP address 40.125.122.151, a sus-

picious JavaScript file named ”baa29ee86782076df01c2a7e0df4d189dbc27a3da7a6ee10c0cf5-

94e5cffa8f5.js” is identified. This file, first observed on April 16, 2023, has undergone one sub-

mission and is flagged asmalicious by security tools such asMAX,ALYac, Google, GData, and

ZoneAlarm. Simultaneously, a corresponding node from the communicating files reveals an

HTMLfilenamed”payload2.html”with a size of 557.00B, first observedon June1, 2022. This

file has also undergone one submission and is detected as malicious by Fortinet, ZoneAlarm,

Sophos, Kaspersky, and ESET-NOD32. The collective detection of these files underscores a

concerning association with malicious activities related to IP address 40.125.122.151, signify-

ing a red flag, we can see it in figure 5.20 below.

Figure 5.22: Nodes of refer and communicating files.

virtual sandbox: In comparing the virtual and hardware sandboxes during the execu-

tion of the samemalware, a notable distinction emerges. In the virtual sandbox, the IP address

192.168.0.4 engages directly with IP 40.125.122.151. Conversely, in the hardware-based sand-

box, a two-step process occurs: first, a handshake is established with 192.168.0.2, followed by

a subsequent handshake with 40.125.122.151. As shown in figure 5.23 below.
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Figure 5.23: Handshake in virtual sandbox.

The observed difference in network behavior between the virtual sandbox and hardware

sandbox, specifically regarding the sequence of handshakes with different IPs (192.168.0.2 and

40.125.122.151), may be attributed to several factors related to the environment and the mal-

ware’s behavior:

1. Environment Configuration: Virtual environments often have different network con-
figurations, including network interfaces, settings, and virtualization-specific parame-
ters. Themalwaremay respond differently based on the network environment it detects.

2. Malware Evasion Tactics: Malware is known to employ evasion tactics to avoid detec-
tion. By introducing an additional handshakewith a local IP (192.168.0.2), themalware
may be attempting to confuse or bypass security measures. This could be a deliberate
strategy to make the analysis more challenging.

3. Dynamic Behavior: Malware can exhibit dynamic behavior based on its analysis of the
environment. It might perform certain actions conditionally, adapting its behavior to
the specifics of the system it is running on. This adaptability could lead to variations in
the observed network interactions.

4. Network Segmentation: The hardware sandbox might have a more complex network
setup, includingnetwork segmentationor additional security layers. Themalwaremight
be responding to this by adjusting its communication strategy.

5. Stealth and Persistence:Making an initial connection to a local IP (192.168.0.2) before
reaching out to the final destination (40.125.122.151) could be a technique to establish
persistence, evade detection, or blend into the local network environment.

In Figure 5.24 and 5.25, a node from the communicating files associated with IP address

199.201.110.204 reveals the presence of a potentiallymalicious file. Thefile, identified as anOf-

fice Open XMLDocument named ”CT6034_Assignment_2_-_ .docx,” has a size of 1003.10

73



kB. This document was first observed on March 29, 2023, with a single submission. Cyber-

security tools, including Antiy-AVL and ESET-NOD32, have flagged it as a potential threat,

categorizing it as a Trojan or a document with VBA (Visual Basic for Applications) code.

Figure 5.24: Ip 199.201.110.204 communicating file node.
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Figure 5.25: Communicating file node details.

After executing the same malware on both hardware and virtual sandboxes, we observed

a notable discrepancy in the network traffic when monitoring with Wireshark. Specifically,

the IP address 199.201.110.204, identified as malicious by various security researchers, was

absent from the virtual sandbox traffic. This deviation raises concerns about potential eva-

sion or altered behavior based on the sandbox environment.The absence of the IP address

199.201.110.204 in the virtual sandbox trafficmay be attributed to themalware’s ability to rec-

ognize the virtualized environment and alter its behavior accordingly. Malware often employs

evasion techniques to detect virtualization or sandboxing, allowing it to behave differently or

remain dormant to avoid detection and analysis. In this case, the malware might have checks

in place to identify characteristics of a virtual environment, leading to the decision not to com-

municate with the IP address in question. This adaptive behavior is a common tactic employed

by malware to evade detection and hinder analysis efforts in virtualized settings.

NOTE: The variations in traffic are substantial, and we cannot address all of them compre-

hensively.
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5.4 Log Files

We captured PML files using Microsoft’s Procmon tool while running various processes. As

part of our analysis, we executed amalware sample identifiedby thehash: 1dec94b960f40e3a95-

e4aaa81f5783c221e4792d429701701052a03686aeb2c. Our aim is toobserve the changesmade

by themalware andunderstand its behavior inbothourhardware andvirtual sandboxes. Along-

side memory dumps and network traffic analyses, we utilized Process Monitor to gain insights

into the malware’s actions and interactions with the system.

5.4.1 Log’s of Hardware sandbox

In the figure 5.26 below, we can see that upon executing the malware sample in our dedicated

hardware sandbox,weobserved that themalware, identifiedby thehash1dec94b960f40e3a95e-

4aaa81f5783c221e4792d429701701052a03686aeb2cd.exe, was successfully launched and is

now prepared for analysis. Notably, upon the initiation of the process, a thread was also gener-

ated.

Figure 5.26: Malware sample process log’s.
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Process Thread: Upon executing the providedmalware sample within our controlled en-

vironment, a stack trace analysis was conducted. The stack as shown in figure 5.27, includes

entries related to the kernel (ntoskrnl.exe), indicating interactions at the system level. Notably,

several entriesmarked as <unknown> raise concerns, as they suggest intentional obfuscation to

conceal specific operations. User space addresses lacking module information further compli-

cate the identification of themalware’s origin and purpose. The absence of clearmodule details

and the potential use of anti-analysis techniques highlight the sophistication of the malware.

Figure 5.27: Process threads

Query Normalized Files: The analysis of the QueryNormalizedFileNameInformation-

File event in the malware sample reveals a concerning ”BUFFER OVERFLOW.” The associ-

ated stack trace provides insights into the execution path and potential exploitation of system

drivers. Notably, the stack involves the FLTMGR.SYS driver, suggesting interaction with the

file system filter manager. Furthermore, the presence of the Shieldf.sys driver, which is not a

standard Windows driver, raises suspicions about its involvement in the execution flow. The

repetition of calls to the kernel (ntoskrnl.exe) and the file system filter managermay indicate an

attempt to manipulate or compromise system-level functionalities. The presence of an <un-

known> module in the stack adds an additional layer of obscurity, possibly employed as an

evasion technique.
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Load Image: The examination of the malware sample reveals suspicious behavior marked

by the successful execution of a ”load image” operation. The involvement of critical kernel

components, such as ntoskrnl.exe, signifies an attempt by themalware to interact with core sys-

tem functions. The presence of an <unknown> module within the stack trace suggests delib-

erate obfuscation, raising concerns about the legitimacy and transparency of the loaded image.

This obscured module could potentially be part of an evasion strategy employed by the mal-

ware to subvert analysis and detection mechanisms. The success of the operation highlights

the incorporation of external code or data into the process, indicating a potential avenue for

malicious activities. The overall behavior poses a significant threat as it allows the malware to

clandestinely introduce and execute arbitrary content within the system, potentially leading to

further compromise or exploitation. Immediate action is recommended, including reporting

these findings to the security team for prompt mitigation measures against potential security

risks.further an other loadimage by the malware shows In the recent ”load image” operation,

the malware sample extended its activities to involve the critical system component ntdll.dll.

The presence of ntdll.dll in the stack trace suggests that the malware is dynamically linking

with this essential Windows Dynamic Link Library for specific functions. ntdll.dll plays a cru-

cial role in providing low-level access to the Windows kernel and various system services. The

direct association of the malware with ntdll.dll during a ”load image” operation raises red flags.

This interaction could indicate an attempt by the malware to leverage advanced system-level

functions, potentially for malicious purposes. The specific actions performed by the malware

through ntdll.dll remain undisclosed,making it challenging to discern the exact nature of its ac-

tivities. Given the criticality of ntdll.dll in system operations, the malware’s involvement with

this library poses a significant risk. The potential exploitation of system-level functionalities

through ntdll.dll could lead to unauthorized access, systemmanipulation, or the introduction

of further malicious elements.

File Creation: The analysis of the malware sample reveals a concerning progression in its

activities, particularly in a subsequent ”create file” operation where the result indicates ”name

not found.” The associated stack trace sheds light on the sequence of events: The operation be-

gins with interactions involving the file system filter manager (FLTMGR.SYS), emphasizing

the malware’s engagement with file-related functions. Notably, the stack involves the non-

standard driver Shieldf.sys, underscoring its continued participation in the malware’s execu-

tion flow. The subsequent calls to ntoskrnl.exe and ntdll.dll indicate the malware’s attempt to

manipulate core system functionalities. The involvement of these critical system components
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during a ”create file” operation raises significant concerns. The result of ”name not found”

implies an attempt by the malware to access or create a file that does not exist, suggesting po-

tential reconnaissance or data manipulation. The use of the non-standard driver Shieldf.sys

in conjunction with system-level components intensifies the suspicion surrounding the mal-

ware’s behavior. The complexity of the stack trace and the dynamic interactions with essential

system elements make it challenging to discern the exact nature of the threat. This activity

poses a severe risk, as it indicates the malware’s intent to manipulate file-related operations at a

fundamental level. The potential consequences include unauthorized access, data tampering,

or the introduction of malicious files.

FileReading: Following the ”load image”operation, themalware sample engages in a ”read

file” operation, achieving success with I/O flags indicating non-cached, paging I/O, and syn-

chronous paging I/O. The associated stack trace provides insights into the sequence of events:

1. FLTMGR.SYS Involvement: The stack initiates with interactions in FLTMGR.SYS,
suggesting the malware’s engagement with file system filter manager functions. This
could indicate attempts to manipulate or read specific files within the system.

2. ntoskrnl.exe and Shieldf.sys Interaction: Subsequent involvement ofntoskrnl.exe and
Shieldf.sys in the stack implies the malware’s influence on core kernel and system func-
tions. The combination suggests a multifaceted approach, potentially for evasive ma-
neuvers or deeper system penetration.

3. ntdll.dll Dynamic Linking: The stack traces into ntdll.dll, showcasing the malware’s
reliance on advanced system-level functions. Dynamic linking with ntdll.dll is often in-
dicative of sophisticated malware seeking to leverage powerful system capabilities.

Red Flags andObservations:

• Non-Cached and Paging I/O: The utilization of non-cached, paging I/O, and syn-
chronous paging I/O flags suggests a strategic approach to file reading. These flags may
be employed to ensure data consistency or facilitate covert operations by bypassing stan-
dard file caching mechanisms.

• Infiltration of Kernel and System Functions: The interaction with ntoskrnl.exe and
Shieldf.sys indicates the malware’s intrusion into crucial system components. This type
of behavior is concerning as it signifies potential attempts to subvert security measures
and gain deeper control over the system.
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• Dynamic Linking Complexity: The reliance on dynamic linking with ntdll.dll show-
cases a level of sophistication in the malware’s design. This complexity may contribute
to its ability to adapt to different system environments and evade detection.

The malware’s combination of file system manipulation, kernel interaction, and dynamic

linking raises concerns about its potential for advanced evasion and control capabilities. The

strategic use of I/Oflags further indicates a deliberate approach to file reading, possibly for data

exfiltration or the execution of specific malicious payloads.

Registries: Themalware sample, identified as ”1dec94b960f40e3a95e4aaa81f5783c221e4-

792d429701701052a03686aeb2cd.exe,” exhibits concerning behavior by interacting with the

system registry. The operation in question is a ”regopenkey” within the registry class, with

a result of ”reparse” and desired access specified as ”query value.” The stack trace reveals the

following sequence of events:

1. ntoskrnl.exe Involvement: The stack begins with interactions in the Windows kernel,
specifically ntoskrnl.exe. This suggests that the malware is manipulating core kernel
functions to access or modify the registry.

2. ntdll.dll Interaction: The stack includes calls to ntdll.dll, a crucial Windows Dynamic
Link Library. This dynamic linking indicates themalware’s use of advanced system-level
functions, possibly for malicious purposes.

3. Registry Operation Details: The ”regopenkey” operation signifies an attempt by the
malware to open a specific registry key, a critical component of the Windows system
configuration.

4. Result: Reparse and Success: The result being ”reparse” indicates that the operation
requires further processing, and after reparse, the final result is reported as ”success.”
This indicates that the malware successfully opened the specified registry key.

Red Flags and Potential Threats:

• Unusual Registry Interaction: The engagement with the registry, especially with a
result of ”reparse,” is uncommon and raises suspicions. This suggests that the malware
is employing non-standard techniques, potentially to obfuscate its activities or bypass
security measures.
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• QueryValueAccess: Thedesired access of ”query value” indicates themalware’s interest
in retrieving specific values from the registry. This behavior aligns with reconnaissance
activities, as the malware may be gathering information about the system configuration.

• Dynamic Linking with ntdll.dll: The involvement of ntdll.dll in the stack trace in-
dicates the malware’s attempt to leverage advanced system functions. Such dynamic
linking is often associated with sophisticated and evasive malware.

• Potential for Persistence and Control: Registry manipulation is a common tactic for
malware seeking persistence on a compromised system. The ability to open and modify
registry keys provides a means for the malware to control its execution and potentially
evade detection.

The malware’s interaction with the registry, coupled with dynamic linking and the use of

non-standard techniques, poses a significant threat. The potential for reconnaissance and the

manipulation of critical system settings could lead to unauthorized access, data exfiltration, or

further compromise of the system’s integrity.

5.4.2 LOGSOF VIRTUAL SANDBOX

After conducting an analysis, it is evident that the malware sample with the process name

”1dec94b960f40e3a95e4aaa81f5783c221e4792d429701701052a03686aeb2cd.exe” initiated and

concluded its operations both in the virtual and hardware sandboxes. Thus, there is no dispar-

ity in the activities performed by the malware in the respective systems. As we can see it in the

figure below.
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Figure 5.28: Consistent Malicious Operations Across Different Environments.
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6
Conclusion

This thesis introduces a pioneering concept for constructing hardware-supported sandboxes,

leveraging adaptablehardware. Specifically, the implementation incorporatesLeetdma formem-

ory dump, Reboot Restore RX software for system restoration after malware execution, and a

KVM switch for seamless control between the host and guest environments. The primary fo-

cus is on establishing the architectural requirements for a system virtual machine environment

that executes guest machines on dedicated physical hardware within the Leetdma framework.

A proof of concept has been implemented, showcasing the application of these architectural

requirements to construct an effective hardware-supported sandbox.

A notable advantage of this approach lies in its inherent design, preventing stealth-malware

from detecting virtual execution and breaking out of the virtual machine/sandbox. The thesis

delves into the theoretical advantages, emphasizing the need for further exploration to validate

its effectiveness. Since the system executes malware on actual hardware, it remains resilient to

VM/emulation-baseddetection attacks. The evaluationdemonstrates successfulmonitoringof

truemalicious behavior inVM/emulation-awaremalware samples that remained undetected in

emulated or virtualized environments. Following each analysis, the system efficiently restores

the system using Reboot Restore RX, ensuring readiness for subsequent analyses.

In conclusion, this thesis presents a hardware-supported sandboxing approach, integrated
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with Leetdma, Reboot Restore RX, and a KVM switch, offering a robust solution for mal-

ware analysis. By executing malware on dedicated hardware, the system enhances security by

preventing detection evasion tactics. The methodology proves effective in uncovering the gen-

uine behavior of sophisticated malware samples, showcasing its potential as a valuable tool in

cybersecurity practices.

6.1 Limitation

In a virtual sandbox, the host system maintains control over resource allocation, including

memory and processors. The proposed concept in this thesis has limitations, as it operates

within fixed parameters formemory andprocessing power. The host’s intervention is restricted

unless FPGAs are employed to dynamically adjust attached storage and processing capabilities

based on the environment. However, for research purposes, a single central processing unit

suffices. Unlike the dynamic resource management in a virtual sandbox, where the host sys-

tem governs resource distribution among virtualized instances using hypervisors or sandboxing

software, the thesis’s approach faces constraints due to predetermined resource settings. These

limitations highlight the need for further exploration and adaptation in addressing varying en-

vironmental demands.
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