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Abstract

The goal of the T2K experiment is to obtain new insights on the phenomena of neutrino
oscillations. In order to improve the near detector of the experiment an upgrade is planned,
with the addition, among other detectors, of two HA-TPCs (High Angle Time Projection
Chambers). The use ofMICROMEGASwith an additional resistive layer (ERAM) adds an
effect of charge spread, enabling higher resolution for a fixed number of electronic channels
and improved spark protection.

The scope of this thesis is to gain a better understanding of the physics of charge spread
and a detailed signal formation description. A finite element simulation is developed, allow-
ing to validate analytical models of this phenomena. Moreover, the previously unaccounted
for effect of the ion drift in the amplification gap is studied. A method exploiting a com-
plete model of signal formation, together with the response of the electronic front-end, is
proposed for the characterization of the acquired pad signals, serving as a starting point for
future calibrations and analyses.

Additionally, the installation and setup of the HA-TPC prototype for a test beam at the
DESY laboratory in Hamburg is reported, together with the application of the aforemen-
tioned analysis method to the early data collected.
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Sommario

L’obiettivo dell’esperimento T2K è l’avanzamento della comprensione del fenomeno delle
oscillazioni dei neutrini. Per migliorare le caratteristiche del rivelatore vicino ne è stato piani-
ficato un aggiornamento che prevede l’installazione, oltre ad altri rivelatori, di due camere a
proiezione temporale ad alto angolo (HA-TPC). L’uso di MICROMEGAS con l’aggiunta
di uno strato resistivo introduce un effetto di diffusione della carica che permette di ottenere
una maggiore risoluzione, a parità di numero di canali di elettronica, migliorandone inoltre
la protezione dalle scariche.

La finalità di questa tesi è ottenere una più completa comprensione della fisica della diffu-
sione della carica e descrivere dettagliatamente la formazione del segnale. Una simulazione
agli elementi finiti è stata sviluppata, permettendo la validazione dei modelli analitici di que-
sto fenomeno. In seguito è stato studiato l’effetto del moto di deriva degli ioni nello strato
di amplificazione, finora mai considerato. È poi stato proposto un metodo che sfrutta un
modello completo di formazione del segnale e della risposta dell’elettronica di front-end, uti-
lizzabile per la caratterizzazione del segnale acquisito da ogni pad e che potrà servire come
punto di partenza per future calibrazioni e analisi.

In aggiunta si descrive la preparazione e l’installazione del prototipo della HA-TPC per
un test beam ai laboratori di DESY, ad Amburgo. La procedura di analisi descritta preceden-
temente è stata poi applicata ai dati appena ottenuti.
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1
An introduction to neutrino oscillations

1.1 Discrete symmetries

Aphysical theorymight possess a number of discrete symmetries, representing the invariance
under noncontinuous transformations. Themain examples of such symmetries are the well-
known P, C, and T. The first one represents the invariance under parity transformations,
i.e., the inversion of spatial coordinates. The second one is the invariance under charge con-
jugation, i.e. the inversion of all particles’ charges. The last one is the invariance under time
inversion.

At first it was thought that physical theories were invariant under all of them. In 1956,
though, Wu showed that weak interactions violate parity [1] *. A new symmetry was then
proposed, the so called CP symmetry, specifically the invariance under a spatial inversion
and the inversion of all particle’s charges. This is equivalent to exchanging particles with
antiparticles. Later, in 1964, searches of forbidden decays in neutral kaons showed [3] that
even this symmetry is violated by weak interactions. Such an effect in the quark sector is
known today in a variety of other systems, includingB0 oscillations.

It is still unknown whether such a violation is also characteristic of the leptonic sector.
This search is the physical case of study of this work of thesis. To understand it better, a brief
introduction to neutrino oscillations is necessary.

*Except where otherwise stated a general reference for this chapter is [2].
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1.2 A toy model of neutrino oscillations

A well established phenomena in neutrino physics are the so-called neutrino oscillations[4,
5, 6]. This effect arises only in the case of massive neutrinos where their flavor and mass
eigenstates do not coincide. In layman terms this is equivalent to saying that a neutrino
is produced and interacts in a well defined flavor state, i.e. like an electron, muon or tau
neutrino, but it undergoes propagation as a superposition of mass states. Mathematically, a
given flavor state can be written as a linear combination of mass states

|να⟩ =
∑
i

U∗
αi |νi⟩

where Uαi are the elements of the unitary mixing matrix. In the following treatment the
flavor states will bewrittenwith greek letter indices, while themass states will use latin letters.

To better understand this abstract statement the classic example is the study of a system
with only two neutrinos havingmassesm1 andm2. The neutrino state can bewritten in two
different basis: the interaction one, where it has a defined flavor, and the hamiltonian one,
where it has a defined mass. Due to the fact that the mixing matrix has to be unitary, it can
be written in the two-dimensional case as a simple rotation matrix of an angle θ

U =

(
cos θ − sin θ

sin θ cos θ

)
By using this mixing matrix parametrization an electron neutrino state can be written as

|νe⟩ = cos θ |ν1⟩ − sin θ |ν2⟩

By definition, themass basis is an eigenstate of the hamiltonianmatrix, so the vector above
evolves in time as

|νe(t)⟩ = cos θe−iE1t |ν1⟩ − sin θe−iE2t |ν2⟩

Using the assumption that neutrinohave a smallmass compared to their energy, the energy
of an eigenstate can be written using the ultrarelativistic approximation as a function of the
neutrino energyE

Ei =
√
p2 +m2

i ≈ p+
m2

i

2p
≈ E +

m2
i

2E

2



It is now possible to calculate the probability that a neutrino that at t = 0 was in an
electron flavor state will still be in that state after a time t

Pe→e(t) = | ⟨νe|νe(t)⟩ |2 = 1− sin2 2θ sin2 ∆m
2 L

4E
̸= 1

where in natural units L = t and∆m2 ≡ m2
1 −m2

2.
This toy model shows that due to their different mass, the hamiltonian eigenstates obtain

a relative phase during their time evolution, resulting in a mixing of the flavor states that
produces the oscillation.

1.3 TheN = 3 case

In case of two neutrinos the mixingmatrix can be written concisely with just one parameter,
namely themixing angle. Experimental evidence shows that the actual number of neutrinos
is three. In this case, though, the number of parameters of the mixing matrix is four, three
mixing angles and one phase†. A common parametrization is the following

U =

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδ

0 1 0

−s13eiδ 0 c13


 c12 s12 0

−s12 c12 0

0 0 1


where the sine and cosine of the three mixing angles θ23, θ13 and θ12 were abbreviated as
cij = cos θij and sij = sin θij . The phase term δ is currently unknown. This mixing
matrix is called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.

1.4 The CP violating phase

It can be shown that the δ phase of the PMNS matrix can produce CP violation. In order
to have a parametrization independent measure of such violation the Jarlskog invariant is
introduced

J ≡ Jmax
CP sin δ

= cos θ12 sin θ12 cos θ23 sin θ23 cos
2 θ13 sin θ13 sin δ

†Precisely there are two additional Majorana phases that will not be treated here because they do not affect
the oscillations.
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This observable clearly depends on both the mixing angles and the phase. A non-zero
phase might not lead to CP violation if any of the mixing angles is zero. Moreover if all the
mixing angles are non-zero, and experimentally this is actually the case, the sine of the phase
still needs to be non-zero.

This potential non-zero value would have a strong impact on the cosmological models
trying to explain the several orders of magnitude discrepancy among the observed matter-
antimatter asymmetry and the one predicted by the StandardModel (SM) of particle physics.
In fact a known source of this asymmetry comes from the CP violation in the quark sector.
This, though, is not sufficiently large to explain the current observations.

Moreover, the neutrino sector has the potential to show a violation several orders of mag-
nitude greater than the quark sector one. In complete analogy to the neutrino PMNS ma-
trix, in the quark sector there is theCabibbo-Kobayashi-Maskawa (CKM)matrix. Although
they are equivalent they exibith a very different structure. The CKM matrix is nearly di-
agonal with small non-diagonal elements (i.e. small mixing angles). In the CKM matrix
J ≈ 3 × 10−5 with a great phase angle of the order of 68◦. So, the small Jarlskog invariant
is mainly due to the smallness of the mixing angles, and not to a small phase.

In the PMNSmatrix, on the other hand, there is a very different structure with two large
mixing angles. If the maximum possible value of J is computed, the value is of the order of
Jmax
CP ≈ 3× 10−2. This sizable difference might lead to an effect several orders of magnitude

greater than the one observed in the quark sector.

1.5 CP violation in neutrino oscillation

A calculation of the oscillation probability analogous to the one shown in section 1.2 can
be performed in the general case as a function of the PMNSmatrix elements and the square
difference of masses, leading to

Pαβ = δαβ − 4
n∑

i<j

ℜ
[
UαiU

∗
βiU

∗
αjUβj

]
sin2Xij

+ 2
n∑

i<j

ℑ
[
UαiU

∗
βiU

∗
αjUβj

]
sin 2Xij

wherePαβ is the probability to find a neutrino of energyE initially of flavor β in flavorα
after a distance L, withXij ≡ (m2

i −m2
j)L/(4E). ℜ[z] andℑ[z] are respectively the real
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and imaginary parts of a complex number z.
The CP transformed version of the above is the probability to find an antineutrino ini-

tially of flavor β in flavor α. This is equivalent to substitutingU withU∗ (and vice-versa) in
the above expression. It is clear that the first line is left unchanged, while the second line gets
a minus sign.

At this point, the probability asymmetry is defined as

Aαβ = Pαβ − Pᾱβ̄

= 4
n∑

i<j

ℑ
[
UαiU

∗
βiU

∗
αjUβj

]
sin 2Xij

This formula is important because it allows to see which kind of oscillation experiments
are sensitive to CP violation. For example, consider a survival experiment where the mea-
surement of probability that a neutrino of flavor α is still in that flavor after the oscillation
is performed. Evaluating the probability asymmetry in such a case gives

Aαα = 4
n∑

i<j

ℑ
[
UαiU

∗
αiU

∗
αjUαj

]
sin 2Xij

= 4
n∑

i<j

ℑ
[
|Uαi|2|Uαj|2

]
sin 2Xij

= 0

because, being themodulus squared always real, its imaginary part is zero. This shows that
no difference can be observed in such survival experiment.

Therefore, the only kind of experiment that might give information on CP violation in
this sector are appearance experiments, where the appearance of neutrinos of a different fla-
vor in an oscillated neutrino beam is measured.

1.6 Matter effects and neutrino mass hierarchy

As shown in the previous sections neutrino oscillation are sensitive only to the difference of
squaredmasses. Thus, oscillations cannot give us informationon the absolutemass scale, nor
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on the ordering of themass eigenstates. This is true, though, only in the casewhere neutrinos
are propagating in a vacuum. In fact, matter contains a great number of electrons. The
interaction of neutrinos with electrons can happen in two different ways, namely charged
current (CC) interactions and neutral current (NC) interactions. NC interaction is flavor
blind, thus is equal for all neutrinos. CC interaction, on the other hand, affects only electron
neutrinos. Thus, the hamiltonian must be modified by adding a potential energy term only
to the electron neutrino state (in the flavor basis this matrix is not diagonal)

H =


√
2GFne 0 0

0 0 0

0 0 0

+
1

2E
U

m2
1 0 0

0 m2
2 0

0 0 m2
3

U †

where GF is the Fermi constant, ne is the electron density per unit volume and U is the
PMNSmatrix.

This additional term allows to obtain information on the ordering of themass eigenstates.
When the formulas of the previous section are corrected to take into account this kind of
effects, the experiment gains sensitivity also to this additional physical observable.
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2
The T2K experiment

The T2K (Tokai to Kamioka) experiment is a long baseline neutrino experiment located
in Japan designed to search for CP violation effects in the neutrino sector and to perform
measurements of neutrino oscillation parameters. The main idea is to produce a beam of
muonic neutrinos and then detect the presence of electron neutrinos after a known dis-
tance (295 km), observing if the oscillation occurs. The ν beam energy is centered around
0.6 GeV, in order to have the maximum of oscillation probability at the far detector dis-
tance. *

The experiment comprises a production facility, several near detectors for the characteri-
zation of the ν beam, and a far detector for the study of the oscillated beam.

2.1 The Super-Kamiokande far detector

SK (Super-Kamiokande) is a well known detector in neutrino physics, thanks to its discovery
of atmospheric neutrino oscillation and the detection of supernova neutrinos. Additionally
it serves as the far detector for the T2K experiment.

SK is a cylindrical water Cherenkov detector located 1 km inside of Mount Ikenoyama,
consisting of an active volume of 50 kt of ultrapure water read by roughly 13000 PMTs
(PhotoMultiplier Tubes). It is divided into two parts: an inner and an outer detector. The
latter serves as a veto to remove cosmic muons and events that are not fully contained in the

*A general reference for this chapter is [7] for T2K and [8] for the upgrade.
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inner detector. When a neutrino interacts with water it can produce charged particles that
might have a velocity greater than the speed of light inwater. In this case they produce a cone
ofCherenkov light that is detected by the PMTs. In order tomeasure the flavor composition
of the incoming beam, only charged current interaction events are used, specifically CCQE
(Charged Current Quasi-Elastic). In such an event the corresponding lepton is produced
allowing the tag of the neutrino thanks to the SK PID (Particle IDentification) algorithms.
Such analysis are based on the fact that, due to the lower electron mass compared to muons,
they are scattered more, thus travelling in a less straight path in this way producing a fuzzier
light ring.

An important aspect is that SK does not posses the ability to differentiate leptons from
their antiparticle, i.e. it is not possible to distinguish µ+ from µ− and similarly for electrons.
Thus, the level ofwrong sign contamination has to be studied in some otherway. In theT2K
experiment this is done using another detector in the vicinity of the beam production site.

2.2 Beam production

Before discussinghow thebeam is characterized, this section explains how theneutrinobeam
is produced. A proton beam is extracted from the the MR (Main Ring) synchrothron at
an energy of 30 GeV after it was accelerated to 3 GeV by the RCS (Rapid Cycling Syn-
chrothron) and at 181 MeV by the LINAC (LINear ACcelerator). This spill, containing
about 3 × 1014 protons, impinges on the helium-cooled target composed of a graphite rod
about 90 cm long with a diameter of 2.6 cm. Here a variety of particles are produced, the
one of interest for the production of neutrinos are pions. Three magnetic horns following
the target focalize the pions and, by inverting their current, allow the selection of either a
positive or negative pions enriched beam. Then, the pion enter a 96 m long decay volume.
Here they decay mainly into a muon and the corresponding neutrino, while the undecayed
particles are stopped by a beam dump. The selection of negative or positive pion enriched
beam allows the production of respectively an antineutrino or a neutrino enriched beam.

An important aspect of the T2K experiment is that it is an off-axis experiment, with the
beam directed downward by about 2.5◦ with respect to the direction of SK. The reason is
the following: in this configuration the neutrino energy spectra is more peaked and is less
affected by the energy spread of the initial pion beam. In order to better understand this
statement, the following example is proposed.

A pion with energy Eπ decaying into a muon and the corresponding neutrino is consid-
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ered. In the center ofmass frame of the pion the two decay products are emitted back to back
with the same momentum equal to p0 and an angle φwith respect to the boost direction of
the pion. Thus, the momentum of the neutrino can be decomposed into two components:
the x-axis along the boost and y-axis parallel to the boost

pCMν = (p0 cosφ, p0 sinφ)

ECM
ν ≈ p0

where the neutrino was assumed massless. The neutrino energy in the laboratory frame can
be obtained with a relativistic boost

Eν = γπ
(
ECM

ν + βπp
CM
ν,x

)
= p0γπ (1 + βπ cosφ)

pν = (p0γπ (βπ + cosφ) , p0 sinφ)

By using the expression for the momentum of the neutrino the angle θ in the laboratory
frame can be obtained

tgθ =
pν,y
pν,x

=
1

γπ

sinφ

βπ + cosφ

Using in the pion ultra-relativistic regime were βπ ≈ 1†

1 + γ2πtg
2θ ≈ 2

1 + cosφ

So, by combining this expression and the one for the energy of the neutrino

Eν ∝ Eπ

1 + γ2πtg2θ
=

Eπ

1 +
(

Eπ

mπ

)2
tg2θ

†This is not actually the case of theT2K experiment. Nonetheless such an approximation helps understand
the qualitative behaviour.
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At θ = 0 the neutrino energy is directly proportional to the energy of the initial pion, thus
the great pion energy spread will result in a spread in the neutrino beam energy. If, though,
the angle is non-zero, the term depending on the angle modifies the energy behaviour: for a
small pion energy linearity is preserved, while at high pion energies a decreasingE−1

π trend is
present. Thus there will be a certain pion energy leading to the maximum neutrino energy,
with higher pion energy leading toneutrino energies lower than such amaximumvalue. This
effect can be tuned in order to strongly limit the high energy behaviour of the neutrino spec-
tra, peaking it to the value of interest with a proper choice of the angle.

2.3 The INGRID andND280 near detectors

The T2K experiment pairs to SK two near detectors located at 280 m from the beam pro-
duction site: INGRID (INteractive Netrino GRID) and ND280. The former is centered
on the beam axis and allows a daily measurement of the neutrino beam profile. It consists
of several identical modules placed in a cross shape, each one containing layers of iron plates
and tracking scintillator planes read throughWLS (WaveLength Shifting) fibers andMPPC
(Multi-Pixel Photon Counter) detectors.

ND280, instead, is located off-axis in the direction of SK. This detector is magnetized
using themagnet obtained from theUA1 experiment after being properlymodified in order
to comply with the Japanese anti-seismic regulations. In this way the detector is placed in
a 0.2 T magnetic field allowing the determination of sign and momenta of the particles
produced in neutrino interactions.

At the moment, the configuration of the ND280 subdetectors (figure 2.1) starting from
upstream is the following. First there is the PØD, a scintillator tracking detector equipped
with fillable water bags. Comparing the detection rate between when such bags are full or
empty, it is possible tomeasure the interaction cross section inwater. The specific interaction
that needs to be studied is the production of aπ0 after theNC interaction of a neutrinowith
a nucleus

ν +N −→ ν +N ′ + π0 +X

Such interaction is an important background in SK: neutral pions, in fact, decay mainly
into two energetic photons. The electromagnetic cascade they produce risks to be misiden-
tified as an electron production event, thus producing an important background that needs
to be well under control.
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Then three TPCs are present: each one allows to track the particles produced by the in-
teractions of ν with the FGDs (Fine Grained Detectors), measuring the emission angle, mo-
mentum, charge and type. The FGDs provide a target mass for the neutrino interactions
inside of ND280. They are composed of several alternating planes of brass or water and of
scintillator bars. These detectors allow the tracking of the particles that are produced with
not enough energy to enter the TPCs.

TPCs, FGDs and PØD are then covered by a layer of electromagnetic sampling calorime-
ters (ECal), allowing an hermetic coverage of the particles emitted in the inner detectors.
Moreover, the stopping of particles allows to measure their full energy, that gives additional
informations useful for the particle’s identification.

Figure 2.1: Schematical drawing of the ND280 detector.

2.4 ND280 upgrade

The use of TPCs allows a complete characterization of the leptons emitted in a neutrino
interaction, which allows the determination of the flavour of such neutrino. This capability
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is thus one of the key characteristic of the ND280 detector.
As a consequence of the positioning of such TPCs, the lepton detection efficiency is high

in the forward region, but decreases abruptly for angle above about 50◦ with respect to the
beam direction, as it is clear from figure 2.2. This effect is due to the fact that the great
majority of the detector’s target mass is located in the FGDs, thus, particles emitted at high
angles do not traverse the TPCs and their identification is more complicated. Otherwise, it
is noteworthy that the SK far detector, due to its structure, has a nearly 4π coverage.
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Figure 2.2: Comparison between the selected νµ event distribution between the current (left) and upgraded (right)
version of ND280. A region with reduced efficiency is clearly visible for angles around 90◦. Figure taken from [8].

The collaboration started studies looking for ways to improve the near detector efficiency
for high angle and low momentum particles. The upgrade modifies only the upstream part,
with the removal of PØD and its substitution with a sandwich of twoHA-TPCs (High An-
gle TPCs) and SuperFGD, a high granularity scintillation detector. In this way, an efficient
reconstruction of particles emitted at high angles is possible, as shown in figure 2.2. More-
over, the detection of low energy electrons emitted inside of SuperFGDwill allow the reduc-
tion of systematic uncertainties linked to the beam contamination of electron neutrinos.

The goal of this work of thesis is the comprehension of the HA-TPCs, particularly the
resistiveMICROMEGAS detector and the preparation of the prototype for testbeam exper-
iments.

2.5 TheHA-TPC

A drawing of the HA-TPC is shown in figure 2.3. The TPC volume is 2.0× 0.8× 1.8 m3,
with the drift volume divided in half by the cathode positioned at the center. The readout
anode is located on each side of the box, thus giving drift length of 90 cm. The volume is
filled with the T2K gas mixture, composed of Ar − CF4 − iCH4 with a ratio respectively
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of 95− 3− 2%, and will be kept at a pressure of 5 mbar above the atmospheric one. Each
charge collection plane will be read with eight resistive MICROMEGAS, each having a pad
size of 10× 11 mm2, for a total of 36864 pads.

Figure 2.3: Schematic drawing of one of the two HA‐TPCs for the upgrade of the ND280 experiment. Image obtained
from [8].

In order to provide the uniform 275 V/m drift field, a voltage of 27 kV needs to be
applied to the cathode. Such a high voltage is degraded with a voltage divider, each node of
which is connected to strips forming the so-called field cage.

13



14



3
Particle detectors

3.1 Charged particle interactionwith matter

A fast charged particle traversing a material interacts with its atoms in a variety of ways. For
the comprehension of this work, though, only ionization and multiple scattering are impor-
tant. In this section a brief introduction to the physics of these mechanisms is reported[2].
Ionization is the process where an energetic charged particle removes electrons from the

atoms of a material. Such a process depends on the characteristics of the material, and on
the energy and mass of the particle.

For a particle with speed β relative to the speed of light and γ ≡ 1/
√

1− β2 such that
0.1 ≲ βγ ≲ 1000, the mean energy loss per unit length is parametrized with the Bethe-
Bloch formula

⟨−dE
dx

⟩ = (4πNAr
2
emec

2)z2
Z

A

1

β2

[
1

2
log

2mec
2β2γ2Wmax

I2
− β2 − δ(βγ)

2

]
where NA is the Avogadro constant, re is the classical electron radius, me is the electron’s
mass, c the speed of light, z is the charge of the particle,Z andA the atomic andmass number
of the material,Wmax is the maximum energy transfer to an electron in a collision, I is the
mean excitation energy for the material while δ is a correction coefficient. Here length is
considered as the actual geometrical length times the density of the material.
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Figure 3.1: Graph showing the energy loss of a muon in copper as a function of its momentum. Image taken from [2].

Such a formula has a well known behaviour. As shown in figure 3.1 above β ≈ 0.1 it is
decreasing, reaching a minimum for a βγ between about 3 and 3.5. It then slowly increases
until the so called radiative losses come into play. This effect consists in the emission of high
energy photons due to the strong acceleration produced by the interaction with the field of
the nuclei. It is important to notice that, due to their lower mass, this represents the main
interaction mechanism for high energy electrons.

Another important effect affecting particle detectors is the production of δ rays. In this
phenomena, one of the ionized electrons obtains sufficient energy to travel a sizeable distance
in thematerial while producing additional ionization. A picture of such an event is reported
in figure 3.2.

An additional effect involves the great number of small deflections mainly due to the in-
teraction with the Coulomb nuclear field of the material. For particles with velocity close
to the speed of light, the deflection angle is inversely proportional to the particle’s momen-
tum and goes as the square root of the material’s thickness. Such an effect is important to
take into account specifically in tracking detectors where this kind of deflections negatively
impact the obtainable resolution.
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Figure 3.2: Example of a delta ray event in the prototype of the HA‐TPC that will be described in the later chapters. A
4 GeV/c electron (horizontal track) scatters on the the electrons of the gas (circular track), transfering a momentum in
the order of 5 MeV.

3.2 Gaseous detectors

A particle detector is a device that allows to convert the energy released by a particle inside
of its active volume into an electrical signal. If this active material is a gas then it is called a
gaseous detector[9].

The electron and ion pairs left after the passage of a charged particle will drift if an electric
field is applied. The drift velocity is usually expressed as

v =
e

m
Eτ

where e andm are respectively the electron’s charge and mass,E is the modulus of the elec-
tric field and τ is the average time between collisions with the gas molecules. Due to the high
number of such collisions the drift velocity appears constant. Moreover, an effect of both lat-
eral and longitudinal diffusion can be observed. In the case where a magnetic field is present
the situation is different, as the Lorentz force on the electrons is relevant. The drift velocity
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of electron in this situation obeys the Langevin equation

m
dv⃗

dt
= − e

µ
v⃗ − e(E⃗ + v⃗ × B⃗) + η⃗(t)

where µ is the mobility. In this equation the three terms in the right hand side represent
different effects: the first is viscous friction, which allows to reach a constant limiting speed
given by the field, the second one is the electromagnetic force due to the external electric and
magnetic fields, while the last one is a stochastic term giving rise to Brownian motion. The
solution to this equation is the following

v⃗ = − µ

1 + ω2τ 2

(
E⃗ +

E⃗ × B⃗

B
ωτ +

E⃗ · B⃗
B2

B⃗ω2τ 2

)

where ω = eB/m.

This formula has a peculiar behaviour. When the magnetic field is parallel to the electric
field, the drift velocity is modified. When they are perpendicular, on the other hand, elec-
trons will drift at an angle called the Lorentz angle. Additionally, the presence of a magnetic
field has a strong impact on diffusion: if it is parallel to the electric field, the spiraling of the
drifting electron around themagnetic field line greatly reduces the transverse diffusion, thus
improving the resolution of the detector.

Moreover, for a strong enough electric field, electrons can be accelerated to a velocity suf-
ficient to further ionize the gas. This process is known as avalanche amplification.

Depending on the electric field, different amplification regimes exist as shown infigure 3.3.
After the secondary ionization process is initiated, the gas is in the so-called proportionality
regime, characterized by a charge production proportional to the initial charge. At an even
greater field, the limited proportionality regime is reached. Here a saturation effect starts to
take place, reducing the amount of charge produced. At even higher fields, in the Geiger-
Mueller regime, no proportionality is present: ionization events produce a discharge of the
samemagnitude. In such a case amean to stop the avalanche discharge is needed, for example
the electric field is reduced or a special quenching gas is added to the gas mixture.

Together, drift and amplification processes can be used to collect and amplify the charge.
At this point it is possible to produce an electrical signal. To do this a grounded electrode
is added, an induced charge will form on it. The drift of electrons and ions will cause this
induced charge to vary in time, thus creating a current from/to ground that can be readwith
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Figure 3.3: Signal output for two different energy deposit as a function of the applied voltage for a gas detector. Picture
taken from [10].

the proper electronic signal chain.
These are the basic building block of a gaseous detector, the signal formationwill bemore

thoroughly discussed in section 5.5 on page 34 of this work.

3.3 The Time Projection Chamber

A TPC (Time Projection Chamber) is a particular type of gas detector. In the active region
a uniform electric field is applied in order to transport the charge, produced in a ionization
event, to a plane where it is amplified and collected. Electrons are usually the charge carriers
of choice because they drift much faster than ions and thus allow a fast detector response.

The charge collection plane is usually segmented in order to obtain a 2D reconstruction
of the event. Furthermore, thanks to the uniform electric field the charge drifts at a constant
speed so by measuring also its time of arrival a full 3D reconstruction of the event can take
place.

The addition of a magnetic field allows the measurement of the traversing particle’s mo-
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menta, although its addition must be designed with care. In fact, the electrons and ions
movement is also affected by the magnetic field. A common configuration, that will also be
used in the following sections, is the onewhere electric andmagnetic field are parallel to each
other. This in turn modifies the drift velocity and charge transverse spread.

3.4 MICROMEGAS

In the previous section the main idea behind TPCs was discussed. This section will instead
explain how the amplification of the electrons produced by ionization is carried out once
they arrive to the collection plane. The amplification device of interest for this work are the
MICROMEGAS (MICROMEsh GAseous Structures).

Such a device consists of a mesh separating a small gaseous gap of thickness ≈ 100 µm

from the active TPC volume (figure 3.4) and a collection plane segmented intometallic pads
or strips. Between themesh and thepadplane there is a voltage difference such that an intense
electric field is produced in the gap. When an electron from the active volume enters such a
region it is accelerated and produces an avalanche, thus amplifying the signal. Compared to
other amplification devices such as Gas Electron Multipliers (GEMs) its main advantage is
that the ions from the avalanche are neutralized by the mesh, thus maintaining a clean TPC
active volume with reduced space-charge effects.

MESH

PAD PLANE

IONIZING PARTICLE

e-

Amplification field

+HV

GND

Avalanche

Figure 3.4: Schematic representation of a conventional MICROMEGAS with the avalanche produced by an electron
created by an ionizing track.

The electron and ion pair produced in the avalanche then drift, thus producing an electric
signal on the pads. It is important to notice that usually the electron signal is fast, thus the
slower ion signal is used.
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One of the issues that such a design poses is that an high voltage terminal (themesh) needs
to be placed into close proximity to the pads at which the front-end electronics is connected.
Without proper protection circuitry a spark can cause the failure of one or more acquisition
channels. Depending on the experiment this might be either costly, difficult to repair, or
both. On the other hand, the addition of such protection circuitrymight take up additional
space (see figure 3.5), that can be problematic because it can create dead layers or occupy
space in a magnetic field.

Figure 3.5: Picture comparing the old electronics (left) with spark protection with the new one without it (right).

A solution allowing the protection of the electronics and reducing the space occupied is
to include a resistive layer in the gap between the pad and themesh. Such a layer can be glued
to the pad with an insulating material. The conductivity of such a component is critical: if
it is too high it will behave like a perfect conductor, effectively shielding the pad underneath
and thus making it impossible to extract a signal; if it is too low, on the other hand, a spark
will not discharge itself through it and thus still damage the electronics. If the right value
is chosen this layer will behave in such a way as to be transparent to the induction signal of
electrons and ions, while still protecting the electronics connected to the pads.

Moreover an additional interesting effect takes place: electrons produced in the gap now
reach the resistive layer. Once there they will diffuse to its edge. Such a movement will also
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induce a signal on the pads underneath. This effects will be examined in greater detail in the
dedicated section 5.4 on page 33.
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4
The HA-TPC prototype

In order to thoroughly test the technology needed to build the High Angle TPCs of the
T2K experiment two prototypes were built. In this work the preparation and first tests of
the second prototype will be described.

4.1 Field cage

A TPC needs a constant and uniform electric field in its active volume to avoid distortions
during the drift of the electrons. Such a field is producedby applying anhighnegative voltage
on the cathode, while keeping the anode grounded. This, though, is not sufficient to get the
desired field uniformity. A series ofmetallic rings enclosing the active volume are added, each
with the voltage linearly decreasing from anode and cathode. This decreasing voltage pattern
is produced thanks to a resistive voltage divider.

The design of such a field cage is not trivial: it needs to be gas tight in order to keep a
controlled gas mixture with contamination of water and oxygen at the part per million level.
Moreover the degradation of the high voltage to the external conductors is needed. An ad-
ditional constraint is defined by the multiple scattering phenomena: if the field cage is too
thick, the additional scattering negatively impacts the momentum determination.

The technology tested is based on strips deposited on a Kapton foil that is then glued to
the mechanical structure of the field cage. This structure is made of a composite material
consisting of polyamide sheets, fiber-fabrics peels and honeycomb panels as spacers. In this
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structure, G10 flanges are embedded in order to allow a tight seal on the endcaps. Each
strip of the field cage is 3 mm wide with a pitch of 5 mm, the ones on the side facing the
active volume are called “field strips”, while the ones staggered on the opposite side are called
“mirror strips”. These strips are accessed through pads with viases penetrating the insulating
foil. A drawing of the geometry of the field cage is shown in figure 4.1. The two voltage
dividers (for redundancy) are built using 5 MΩ SMD resistors. The overall resistance from
anode to cathode is 1 GΩ.

Figure 4.1: Schematic drawing showing a cross section of the field cage, with the staggered mirror and field strips,
together with the voltage divider’s resistors and the connection to cathode and anode.

Several operations were needed before high voltage could be applied to the detector. First
the continuity of the field strips was tested. This showed that some of themwere interrupted
and they had to be repaired. Later, the continuity of the mirror strips was verified by mea-
suring the capacitance with one of the nearby field strips. If it was interrupted, a reduction
in capacitance would be observed due to the reduced overlap length. This test showed that
all the mirror strips were in good condition.

Moreover a test verifying the presence of shorts between different strips was performed,
indicating a short between a mirror and a field strip in the region were the foil was cut. This
was due to a carbon fiber that was deposited during the production. The defect was removed
with a file.

At this point the strip quality was verified and it was time to solder the eight hundred
resistors of the voltage divider. After this, the value of each resistor was verified by applying
a proper voltage. Such an operation allows to test that the viases are properly connected to
the mirror strips. A few were found to be not working and needed a repair.

After these last repairs, the cathode and a test anode were connected and the first high
voltage tests were performed in air up to 35 kV. No leakage current that might be due to
unwanted ohmic paths to ground, possibly leading to discharges, was observed. Later this
test was repeated with pure argon, having a lower dielectric breakdown voltage.
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4.2 Gas system

In order to allow the operation of the detector within the required specifications, a low de-
gree of contamination of water and oxygen (both below 50 ppm) is needed. This is impor-
tant because water affects the interaction of electron leading to a reduction of the drift ve-
locity while oxygen leads to electron attachment, in this way reducing the amount of charge
reaching the collection plane. In addition to provide the active medium, the gas needs to be
continuosly fluxed in order to remove contaminants desorbed from the inner surface of the
chamber. The gas system is providing gas that is not recirculated, with a flow 30 L/hwhich
in turn keeps the chamber’s pressure a few tensmbar above the atmospheric one.

4.3 DAQ

The resistive MICROMEGAS detector (ERAM-01) is connected to four ARC (Another
Readout Card) electronics cards. Four AFTER (ASIC For TPC Electronic Readout)[11]
front-end chips, sampling 72 pad signals, are present on each card, together with an ADC
(Analog to Digital Converter) and a FPGA (Field Programmable Gate Array) chip taking
care of the communication with the back-end electronics.

Each channel of the AFTER chip has the following electronic chain (figure 4.2). First the
signal is amplified and integrated with charge sensitive amplifier with variable gain from 120

to 600 fC. The signal is then fed into a pole-zero cancelling stage to avoid undershots in the
output signal. At this point the signal is shaped with aRC2 Sallen-Key filter followed by an
amplification stage with gain−2. The shaped and amplified signal is stored into an analog
memory based on a circular buffer of 511 capacitors per channel, called an SCA (Switched
Capacitor Array).

In this way it is possible to perform a continuous analog sampling of the signal. When the
trigger signal arrives, the writing of the SCA is stopped and each capacitor voltage is multi-
plexed to the ADC in the ARC card. In this way it is possible to sample several hundreds of
channels with just a single ADC, although with the trade-off of an higher dead time.

The back-end electronics is based around a TDCM (Trigger and Data Concentration
Module) that is connected to the ARC cards and takes care of the synchronization and the
trigger distribution. Moreover, this module performs zero-suppression, baseline equaliza-
tion of the channels and merges the data frames coming from the front-end building com-
plete events.
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TheTDCMis connected to a computer taking care of the configuration of the electronics,
the storage of the events, slow control and monitoring.

Figure 4.2: Block diagram of the AFTER chip: the front end CSA and filter and SCA are shown. Picture from reference
[11].

4.4 First data acquisition

After the installation of the DAQ and when the gas purity inside of the TPC attained a
sufficient level it was possible to acquire data. A square plastic scintillator with a surface of
15 × 15 cm2 read by a PMT was used as a trigger. By looking at tracks crossing cathode
and the anode it was possible to estimate the drift velocity of electrons which agreed with
expectations (7.8 cm/µs at 275 V/cm drift field).

4.5 DESY test beam

The prototypewas then transported toHamburg at theDeutsches Elektronen-Synchrotron
(DESY)[12] in order to perform a full characterization of the detector, including the new
version of the electronics. Here it was possible to employ the T24 experimental area, where
a superconducting magnet enabled the test of the TPC in a magnetic field up to 1 T. The
magnet is located on a movable platform which allows translations and rotation. A beam of
4 GeV electrons with an intensity ranging from a few Hz to 2 kHz was used for scanning
the detector. Specifically, scan along the drift direction allow the characterization of drift
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velocity and transverse diffusion. Data at twodrift fieldswere taken, namely 275 V/cmwere
the velocity reaches a plateau at the maximum value, and at 140 V/cm where the diffusion
is minimal. Moreover, several vertical and angular scans were performed in order to study
the non-uniformities of the TPC field. In addition, such a scan provides data that will be
used to measure the charge spread time constant of the ERAM detector. This topic will be
covered in detail in a later chapter. Angular scans, instead, allow to study the reconstruction
of inclined tracks.

A picture of the TPC inside of the superconducting magnet is shown in figure 4.3.

Figure 4.3: Picture of the HA‐TPC prototype inside of the magnet at DESY.
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5
Signal formation in ERAM detectors

The ERAM (Encapsulated Resistive Anode MICROMEGAS) detector is the resistive MI-
CROMEGASused for theHA-TPCsof theND280upgrade. They consist of aPCB(Printed
Circuit Board) were 1152 pads, each with dimension of 10.09×11.18 mm2 are spread over
a surface of 32× 36 cm2. Each pad is then routed through the board to the connectors for
the electronics cards. On top of the pads an insulation layer is placed, composed of 150 µm

of glue and 50 µmofAPICAL foil, on top ofwhich a layer ofDLC (DiamondLikeCarbon)
was deposited through sputtering. This latter layer is the resistive one, with a surface resistiv-
ity of around 0.3 MΩ/□. On top of this is positioned the mesh, after an amplification gap
of 128 µm.
In order to better understand the behaviour of such a detector, an introduction to the

physics of the charge on resistive layers will follow, alongside the experimental studies carried
out to try characterizing them.

5.1 Surface resistivity

The secondOhm’s law allows to obtain the resistanceR of a conductive wire given its length
l, its cross sectional surface S and the material dependent parameter know as resistivity ρ,
measured inΩ/m

R =
ρl

S
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If this law is combined with the first Ohm’s law, stating that for an ohmic conductor the
resistance is the proportionality constant between current and voltage, a vectorial expression
can be obtained

E⃗ = ρ⃗j

where E⃗ is the electric field inside of the material and j⃗ is the current density linked to such
a field. An important quantity linked to the resistivity is its reciprocal, the conductivity,
denoted by σ = ρ−1.

When the conduction inside of a thin sheet of thickness a is considered, the surface of the
conductor can be written as the product of such thickness and of the width w of the sheet.
Thus the second Ohm’s law can be rewritten as

R =
ρ

a

l

w
≡ RS

l

w

where RS is the sheet resistance. Such a value is dimensionally a resistance, but in order to
distinguish it from a normal resistance it is measured inΩ/□.

The vectorial form of Ohm’s law can be updated as

E⃗2D = RS j⃗2D

here E⃗2D is the electric field in the plane of the sheet, while j⃗2D is the two-dimensional cur-
rent density, measured in A/m. Such an expression is equivalent to integrate the previous
vectorial equation along the thickness of the sheet.

5.2 Electromagnetismwith conductors

The laws governing the electromagnetism are theMaxwell’s equation, reported below in the
SI unit form 

∇ · D⃗ = ρf

∇ · B⃗ = 0

∇× E⃗ = −∂B⃗
∂t

∇× H⃗ = j⃗f + σE⃗ + ∂D⃗
∂t

where ρf and j⃗f are the externally impressed charge and current densities, D⃗ = ϵE⃗ and H⃗ =
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B⃗/µ are respectively the displacement and magnetizing field in the case of linear materials.
Notice how in the last equation an additional term was added in order to take into account
the flow of current due to the resistivity of the material.

If the divergence of the last equation is computed, the continuity equation governing
charge conservation is obtained

∇ ·
(
∇× H⃗

)
= 0

∂ρf
∂t

+∇ ·
(⃗
jf + σE⃗

)
= 0

In the case of slowly varying charges an useful regime is the quasi-electrostatic approxima-
tion, where

∂B⃗

∂t
≈ 0 =⇒ ∇× E⃗ ≈ 0

This allows in turn to express the electric field as the gradient of a potential φ, namely
E⃗ = −∇φ.

5.3 Free charges in ohmic conductors

Considering a given charge density inside of an infinite ohmic conductor with uniform con-
ductivity σ and electric permittivity ϵ, the continuity equation, in absence of external cur-
rents, can be written as

∂ρf
∂t

= −σ∇ · E⃗ = −σ
ϵ
∇ · D⃗ = −σ

ϵ
ρf

where the uniformity is an important requirement, necessary to add the ϵ factor inside of the
divergence. In this way, thanks to the first Maxwell equation, an expression involving only
the charge density is obtained.

Such an expression is also easily solvable giving

ρ(x⃗, t) = ρ(x⃗, 0)e−
t
τ

with τ = ϵ/σ. The charge distribution undergoes a process known as charge relaxation
were it simply decays to zero. This result might seem shocking: for a point charge Q in a
given point in space, the result is simply that charge decaying with a characteristic time τ . At
first, it might seem like charge is not conserved, as this is indeed the case.
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Amore enlightening situation is the one of a chargeQ located at the center of a uniform
conducting sphere of radiusR in free space. The same calculation performed above applies
everywhere except on the surface of the sphere. There, if a cylinderC of infinitesimal surface
A and height h is taken, the continuity equation in the general case can be integrated

∂

∂t

∫
C

ρdV +

∫
C

∇ ·
(
σE⃗
)
dV = 0

The applicationofGauss’s theoremon the second integral, transforming it into an integral
on the surface of the cylinder, gives

∂q

∂t
+

∫
top ofC

σE⃗ · dA⃗+

∫
bottom ofC

σE⃗ · dA⃗+

∫
side ofC

σE⃗ · dA⃗ = 0

where q is the charge inside of the cylinder. Notice that in free space the conductivity is zero,
thus the first term vanishes. Moreover also the term corresponding to the side ofC vanishes,
due to its vanishing height and for symmetry reasons. So

∂q

∂t
= −

∫
bottom ofC

σE⃗ · dA⃗ = AσE

where the orientation of the cylinder surface gives the minus sign in the last equality. At
this point, substituting the electric field for a charge at the center of a dielectric sphere, one
obtains

∂q

∂t
= Q(t)

σ

ϵ

1

4πR

where q here is the surface charge density. Integrating over the surface of the sphere, i.e. mul-
tiplying by 4πR, one obtains an expression for the charge that moved to the surface

∂Qsurface

∂t
= Q(t)

σ

ϵ
= Q

1

τ
e−

t
τ

if the above is integrated over time from t = 0 to a given time t, the resulting value is

Qsurface(t) = Q
(
1− e−

t
τ

)
Notice how in this case charge is clearly conserved, in factQsurface(t) + Q(t) = Q at all

times. The issue with the previous model is that, without a boundary, the charge migrated
to infinity and got lost. Another important remark is the following: in this simplified case
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the only charge producing an electric field in the conductive region is the one at the center.
In general, though, this is not true. The charge at the surface will in turn produce an electric
field that will influence the current density.

5.4 Free charge on a conductive sheet

Another interesting case is the one of a charge on a resistive sheet with surface conductivity
RS . This case, even though apparently simple, is difficult to solve. A solution in the limiting
case of an infinite thickness parallel plate capacitor is reported in reference [13].
If a chargeQ is positioned at the origin at time t = 0, the surface charge density is

q(r, t) =
Q

2π

vt

(r2 + (vt)2)3/2

where v = (2ϵRS)
−1. This solution corresponds to the charge distribution induced on an

ideal conductor plane, with the charge moving with velocity v in the direction orthogonal
to it.

Such a solution is difficult to obtain from simple electrostatic consideration. In fact, if
one tries to compute the potential produced by a rotationally symmetric distribution q(r)
the following integral appears

φ(r) =

∫ +∞

0

η dη

∫ 2π

0

dθ
q(η)

4πϵ

1√
(r − η cos θ)2 + (η sin θ)2

this complicated elliptic integral then needs to be substituted inside of the continuity equa-
tion, this time in the bidimensional case

∂q

∂t
= − 1

RS

∇2D · E⃗ =
1

RS

∇2
2D φ

here the 3D continuity equation was integrated along the z axis, thus producing a surface
density on the left hand side and a bidimensional divergence on the right hand side.

This last formula is indeed satisfied by the solution above, but obtaining such an expres-
sion from the above equations is not at all trivial.

A related situation, geometrically similar to an ERAM detector, corresponds to the addi-
tion of a ideally conducting grounded plane parallel to the previous one at a distance d. In
reference [13] a complete analytic solution of this problem is reported. If the above situation
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is seen as a parallel plane capacitor an useful approximation can be obtained. In such a case,
the potential φ at a given point will be proportional to the charge q on such a point, that
will induce another charge on the ideal plane of value−q. This situation clearly resembles a
parallel plane capacitor, so it is possible to write

Q = C∆V q = C φ

The formula on the left is the well known one defining the capacityC in terms of the charge
Q on a capacitor where a potential difference ∆V is applied. This formula is valid for the
complete capacitor. On the left side, instead, a local formula is written, linking the charge
density at a given location to its potential. This is equivalent to dividing the system above
into a great number of infinitesimal capacitors. In this case, C represents the capacity per
unit area. If such an equality is substituted inside of the continuity equation, it results in

∂q

∂t
=

1

RSC
∇2

2D q

This equation is called the 2DTelegrapher’s equation[14], as it resembles a 2D version of
the completely lossy equations used to study transmission lines. Remarkably, this equation
is also the 2D diffusion equation, with a diffusivity given by theRSC constant.
Despite its simplicity and ease of use this expression needs care in order to be used in a

simulation. First of all for time and distance scales much smaller than the diffusion’s, the in-
duced charge on the perfectly conductive plane is not exactly equal to the one above it, thus
even for a point charge at time t = 0 this will appear to be already partially diffused. More-
over, the geometry of an ERAM is different: the conductive mesh behaves as an additional
charge plane on the other side of the Ohmic sheet. This, will in turn induce charge on the
lower one. Moreover, these induced charges will produce an electric field that influences the
evolution of the charge spread.

5.5 Shockely-Ramo’s theorem

A well known result of electrostatic applied to detectors is the Shockely-Ramo’s theorem.
This states that, if there is a charge q with velocity v⃗, it is possible to calculate the current
induced on a grounded electrode, when all other metals are grounded, using the formula

I(t) = −qE⃗W (x⃗) · v⃗(t)
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where E⃗W is the weighting field, defined as the field when the potential on the electrode is
set to one, while all other conductors are grounded. This result is important, as it shows that
the signal is produced not by the charge reaching the electrode, but rather by electrostatic
induction.

Such a result is proven using the reciprocity theorem. This theorem states that, if there are
i conductors enclosed into a region of space, for two configuration of voltages and charges
(Vi, Qi) and (V̄i, Q̄i) it holds that ∑

i

QiV̄i =
∑
i

Q̄iVi

If two correct configurations are chosen, it is possible to prove Shockley-Ramo’s theorem.
It is important, though, to consider the charge q as a very small conductor with a deposited
charge equal to q. This special conductor will be the zero-th of the following treatment:

• Detector configuration: Vi = 0 unknownQi for i ̸= 0, whileQ0 = q

• Weighting field configuration: V̄n = 1 and V̄i = 0 unknown Q̄i for i ̸= 0, while
Q̄0 = 0

It is important to notice that an infinitesimal conductor with no charge deposited will
have the same potential as the point it is located in. If this was not the case a radial electric
field would be produced by the potential difference, thus it will behave in the same manner
as if it was charged, that is absurd. So, V̄0 will have the value of the weighting potential at
the position of the charge, V̄0 = VW (x⃗). Substituting these values inside of the reciprocity
theorem gives

qV̄0 +Q1 = 0 =⇒ Q1 = −qVW (x⃗)

If this expression is derived over time, the current signal on the electrode is obtained by
simple application of the chain rule

I(t) =
dQ1

dt
= −q d

dt
VW (x⃗(t)) = −q∇VW (x⃗) ·

dx⃗

dt
= qE⃗W (x⃗) · v⃗

For completeness, a proof of the reciprocity theorem is reported. Starting from Gauss’s
theorem ∫∫

A

K⃗ · dS⃗ =

∫∫∫
V

∇ · K⃗dV
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If two fields φ and ψ are taken, by building the auxiliary vector field K⃗ = φ∇ψ and K⃗ ′ =

ψ∇φ, their substitution into the above formula gives∫∫
A

φ∇ψ · dS⃗ =

∫∫∫
V

∇ · (φ∇ψ)dV =

∫∫∫
V

(φ∇2ψ +∇φ ·∇ψ)dV∫∫
A

ψ∇φ · dS⃗ =

∫∫∫
V

∇ · (ψ∇φ)dV =

∫∫∫
V

(ψ∇2φ+∇ψ ·∇φ)dV

If the two expression are subtracted this results in∫∫
A

(φ∇ψ − ψ∇φ) · dS⃗ =

∫∫∫
V

(φ∇2ψ − ψ∇2φ)dV

Applying this formula in the reciprocity’s theorem case, namely when φ and ψ are po-
tentials, i.e. solution of the Laplace’s equation in the volume V so ∇2φ = ∇2ψ = 0 it
becomes ∫∫

A

(φ∇ψ) · dS⃗ =

∫∫
A

(ψ∇φ) · dS⃗

If the volume contains a number of conductors the surface integral on themwill be pecu-
liar: the field before the nabla will be constant, because it is evaluated on a conductor. Thus,
it can be extracted for the integral and, using Gauss’s theorem for the electric field:

∑
i

φi

∫∫
Ai

(∇ψ) · dS⃗ =
∑
i

Vi

∫∫
Ai

(−E⃗) · dS⃗ =
∑
i

Vi
Q̄i

ϵ

Performing an identical calculation on the other side proves the theorem.

5.6 Finite Element Simulation

In order to understand the effects discussed at the end of the section 5.4 on page 33 and in
order to study the impact of the drift of ions in the amplification gap on the Ohmic layer,
a full finite elements electrostatic simulation was developed in C++. As discussed in the
previous section, the charge induced on an electrode produces the signal, so this simulation
allows not only to study the charge spread, but also the signal formation.

A box of size lx × ly × lz was discretized into nx × ny × nz cells, each with a step size in
each direction of hx, hy and hz . Using the quasistatic approximation where

E⃗ = −∇φ
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and substituting it in the first of Maxwell’s equations, one obtains

∇ · D⃗ = ∇ · (ϵE⃗) = ρf

or
ϵ∇2φ+ (∇ϵ) · (∇φ) = −ρf

The above expressions needs now to be discretized. There are several ways in which this op-
eration can be performed. Two of themwhere tested. The first one consists in the following:

φ(x⃗) −→ φ(x, y, z)

ϵ(x⃗) −→ ϵ(x, y, z)

where nowx, y and z represent the index of the cell. At this point care needs to be taken in or-
der to compute the derivatives with the greatest possible accuracy. A well known expression,
stemming from the definition of derivative, is

df

dx
≈ f(x+ 1)− f(x)

hx

notice how in f(x + 1) the function is defined on cell index, thus equivalent to evaluating
the undiscretized function in f(x+hx). Using aTaylor expansion, one notices the following

f(x+ 1)− f(x)

hx
=
f(x) + f ′(x)hx +O(h2x)− f(x)

hx
= f ′(x) +O(hx)

A different expression can be used, leading to

f(x+ 1)− f(x− 1)

2hx
=

=
f(x) + f ′(x)hx +

1
2
f ′′(x)h2x − f(x) + f ′(x)hx − 1

2
f ′′(x)h2x +O(h3x)

2hx
=

=f ′(x) +O(h2x)

here the cancellation of the second order terms allows the derivative to be computed with a
much higher accuracy.
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In a completely similar way the second derivative can be defined as

d2f

dx2
=
f(x+ 1)− 2f(x) + f(x− 1)

h2x
+O(h2x)

By using these expressions the first of Maxwell’s equations for a cell x, y and z becomes

1

4h2x
(ϵ(x+ 1)− ϵ(x− 1)) (φ(x+ 1)− φ(x− 1)) +

ϵ

h2x
(φ(x+ 1) + φ(x− 1))+

+
1

4h2y
(ϵ(y + 1)− ϵ(y − 1)) (φ(y + 1)− φ(y − 1)) +

ϵ

h2y
(φ(y + 1) + φ(y − 1))+

+
1

4h2z
(ϵ(z + 1)− ϵ(z − 1)) (φ(z + 1)− φ(z − 1)) +

ϵ

h2z
(φ(z + 1) + φ(z − 1))−

−2ϵ

(
1

h2x
+

1

h2y
+

1

h2z

)
φ = − Q

hxhyhz
(5.1)

where, in order to have a cleaner expression, indexes equal to x, y and z were omitted. More-
over, the charge density was substituted with the amount of charge Q in the cell, divided
by the cell’s volume. Notice this formulation can be used in the case were the step size are
different in each direction.

It is noteworthy, however, that in the above case the dielectric constant is defined in the
same position as the potential. A different approach consists in the use of a slanted lattice,
where the function ϵ(x, y, z) is offset by half of a lattice step in every direction.

Consider a cell of the lattice centered in (x, y, z), at its center the potential φ(x, y, z) is
defined. One can thus integrate Maxwell’s equation on such a cell, leading to∫∫∫

cell
dV ∇ · (ϵ∇φ) = −

∫∫∫
cell
dV ρ

Using Gauss’s theorem on the left hand side and the definition of charge density on the
right the above expression can be written as∫∫

cell surface
ϵ∇φ · dS⃗ = Q

whereQ is the charge inside of the cell. At this point, it is possible to separate the integral of
each face and compute them separately. As an example, the face with normal equal to+ẑ is
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considered: ∫∫
S+ẑ

ϵ∇φ · dS⃗ =

∫∫
S+ẑ

ϵ∇φ · ẑdS =

∫∫
S+ẑ

ϵ
∂φ

∂z
dS

A simplifying assumption can be performed: the derivative of the potential can be con-
sidered constant on the surface of the cell, this is true in the case of a sufficiently fine lattice.
The derivative is thus approximated using one of the expressions just discussed, leading to

∫∫
S+ẑ

ϵ
∂φ

∂z
dS ≈ φ(z + 1)− φ(z)

hz

∫ x+hx
2

x−hx
2

dx

∫ y+
hy
2

y−hy
2

dy ϵ(x, y, z)

The last integral can be approximated using the average of the four values taken by ϵ on the
edge of the surface, thus resulting in∫∫

S+ẑ

ϵ∇φ · dS⃗ ≈ hxhy
ϵ̄(x, y, z)

4

φ(z + 1)− φ(z)

hz

where ϵ̄ is the average of ϵ on the vertices of S+ẑ . An indentical computation can be per-
formed for the six sides of the cube, leading to the discretized version of the expression. A
comparison between these two formulation will be presented in the next section.

An equation completely analogous to the two expressions above can be written for each
cell of the box that is not fixed at a given value by a boundary condition. A completely equiv-
alent way of expressing the above set of equations is as a linear system

AΦ⃗ = b⃗

where Φ⃗ is a vector containing all the potentials of each cell, b⃗ contains the right hand side
part, so the charge of the corresponding cell divided by its volume. The matrix A can be
constructed row by row using the elements given by the above equation. All the entries will
be zero apart from the ones of the cell itself and its neighbours. For example, for the first type
of discretization, using of equation 5.1, the matrix element corresponding to φ(x + 1) for
cell (x, y, z)will be

ϵ(x+ 1)− ϵ(x− 1)

4h2x
+

ϵ

h2x
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and the diagonal element will be

−2ϵ

(
1

h2x
+

1

h2y
+

1

h2z

)

Some cell, though, will need to be at a fixed potential given by the boundary conditions.
This can be performed by setting as non-zero only the diagonal element of matrix A to 1

and then the corresponding element of b⃗ to the boundary value. In this way the equation
corresponding to that row in the linear system will become

φ(x, y, z) = boundary value

Now, in order to easily build the matrix and to then read the solution, a rule pairing the
index Φ⃗ to its corresponding cell site (x, y, z) is needed. An easy expression is the following

index = x+ ynx + znynx

This allows an easy computation of the index of neighbouring cells, for example the z + 1

neighbour can be obtained by increasing the index by nynx. A similar thing can be per-
formed for x and y neighbours.

The issue at this point is the following: for a reasonably sized lattice, for example 100 ×
100 × 100, 106 cell are needed. This will make A a matrix with 1012 elements. If each
element is represented with a single precision floating point value it will need roughly 8 TB

of storage, a clearly impractical value for such a computation. Thismethod of storage, where
all the elements are saved, is the so-called dense representation. In the case shown, though, a
far more efficient way is possible if one notices that the matrix is sparse. In fact, each line has
only at most seven non-zero entries (the cell plus its six neighbours). If only these non-zero
values are stored, together with indexes allowing to find their row and column position inA,
will lead to a much more reasonable size of around 70 MB.

Several libraries that allow this kindof computation exist, for thiswork theGSL (GNUSci-
entific Library) was chosen. After building the matrix in the so-called COO (COOrdinate)
format, where three arrays are used, one for thematrix element value and the other two for its
row and column index, it was converted in the CSC (Compressed Sparse Column) format.
This formatwas chosen because it simplifies the computation ofmatrix-vector products that
will be needed in the later stage of this simulation. This format consists of three arrays, one

40



containing the matrix element, one with the row index, and a third with a column pointer.
If the i-th element of this last array is accessed, it will point to the position in the other two
arrays where the i-th column is stored. In this way, random column access can be performed,
allowing for a fast matrix-vector product.

Once both the matrix A and the source vector b⃗ are ready, the program calls the func-
tion gsl_splinalg_itersolve_gmres of the GSL library is called. This implements the
GeneralizedMinimumResidualMethod (GMRES), an iterativemethod that allows to solve
sparse linear equations. Starting from an initial guess Φ⃗0, the residue r⃗0 = AΦ⃗0 − b⃗ is com-
puted. From it, the Krylov subspace is computed with a given numberm of vectors

Km ≡ span(r⃗, Ar⃗, A2r⃗, ..., Am−1r⃗)

At this point, the vector with that minimises the norm of the r vector inKm is computed. If
a value ofm equal to the dimension of the matrix is chosen, then the algorithm returns the
exact solution. In this simulation a value ofm = 10was chosen, as it represents a value that
allows the algorithm to converge at a reasonable rate.

The algorithm stops when the residue reaches a given tolerance value, i.e.

||⃗b− AΦ⃗||
||⃗b||

< tolerance

5.7 Simulation consistency with known systems

In order to test that the simulation described in the previous section works a consistency
check with an analytically solvable case is shown. The geometry consists of a grounded box
1 m long in the x and y directions, while it is 1 cm thick in the z direction. Each direction
was discretized in 100 bins. The box was divided into two halves on the z axis, with different
relative dielectric constants equal to four in the lower half and one in the upper half. Two
parallel planes, one at 0.4 cm and the other at 0.6 cm are set respectively at ±1 V. The
simulation was run until a tolerance of 10−3 was reached.

In figures 5.1 and 5.2 one can see the result of the simulation compared with the analyt-
ical case. There is clear agreement outside of the two planes, while inside of the capacitor
the two discretization schemes show two very different behaviours. The first one exposed
in the previous section, where the derivatives were directly substituted with their discretized
expression, clearly disagrees with the analytical solution. The reason for this is the behaviour
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Figure 5.1: Comparison of the potential for the parallel plane capacitor between the two discretization methods and
the analytical model.

of the discrete equation on the boundary between the two dielectrics. FromMaxwell’s equa-
tions, it is possible to show that the component of the D⃗ field normal to the surface must be
conserved. This translates to the condition that

ϵ1E
⊥
1 = ϵ2E

⊥
2

for a boundary between two regions 1 and 2. If this situation is written using the discretized
equations only the secondkindof procedure enforces this condition. Thus, for the following
simulation, only such expressions will be used.

5.8 Simulation of the ERAMdetector

A first simulation of the ERAM detector was carried out. To allow a faster computation
time, a 10 × 10 cm2 detector was studied. The boundary of the box was grounded, in this
way the top and bottomboundaries are respectively themesh and the pad plane. A thickness
of 253 µm was set on the other axis, the lower 125 µm of which are the insulating plane,
with a relative dielectric constant of 3.2, while the remaining part is set to be the 128 µm
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Figure 5.2: Comparison of the electric field for the parallel plane capacitor between the two discretization methods and
the analytical model.

amplification gap with dielectric constant of one. On the drift direction (z-axis) the step
was set to 1 µm, while it was 1 mm on the other. See figure 5.3 for a schematic.

Figure 5.3: Schematic drawing of the ERAM detector simulated. Notice that only the parte between pad and mesh
modelled. Courtesy of CEA IRFU of Saclay.

The DLC sheet was set with a sheet resistance of 500 kΩ/□. After the solution of the
electrostatic equation with the method of the previous section was carried out, the charge
on the DLC was updated. Using the 2D continuity equation

∂q

∂t
=

1

RS

∇2
2D φ
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after its discretization, the rule for updating the charge in each cell of the DLC is

∆Q =
∆t hxhy
RS

(
φ(x+ 1)− 2φ+ φ(x− 1)

h2x
+
φ(y + 1)− 2φ+ φ(y − 1)

h2y

)
The factor∆t hxhy is obtained when the right hand side is multiplied by the time step

and by the area of the cell, in this way converting it to a charge value.
Whereupon the source vector is updated with the new charge value and the eventual new

position of the ion or some changed boundary conditions. Then the system is solved, the
charge is updated and so on, until the required time is reached.

What is left to do now is to compute the charge induced on the pad plane in order to
obtain meaningful information like the signal. This is achieved by using the well known
fact in electrostatic that the electric field at the surface of a conductor is linked to the surface
charge by the relation

Esurface(x⃗) =
q(x⃗)

ϵ

Sowhat is left to do is to compute such an electric field. On the boundary of the box, though,
the symmetric derivative shown in section 5.6 on page 36 cannot be used. Instead the follow-
ing can be used

df

dx
=

−3f(x) + 4f(x+ 1)− f(x+ 2)

2hx
+O(h2x)

that allows to keep the second order error.

5.9 Simulation output analysis

The above geometry was tested with two different charge configurations in order to gain
insight on the validity of the 2D Telegraph equation and on the effect of the ions. The first
scenarioused a charge of103 times the electron’s onedeposited at the center of theDLC layer.
This allows to study the spread of a point-like charge. Such a valuewas chosen because, given
the gain of around 103 of the ERAM detector, it corresponds to the amplified charge of a
single primary electron.

For the second scenario, a chargewith opposite sign but equalmagnitudewas added above
the DLC layer and drifted to themesh with a velocity of≈ 360 m/s. This value was chosen
because it is of the order of magnitude of the ion drift velocity for the field in the gap. This
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simulation allows to study the effect that ions have on the charge spread in the DLC layer.
The first step of the analysis was to compute the standard deviation of the charge distri-

bution over time. To do so, a slice of the distribution was taken, and each cell was weighted
with the absolute value of the charge present

s2 ≡ 1

QTOT

∑
i

|Qi|(xi − x̄)2

whereQTOT is the total charge in the slice, the i index runs on all the cells of the slice, xi is the
position of the center of the i-th cell,Qi the charge in the cell and x̄ is the average position
of the charge distribution, computed as

x̄ =
1

QTOT

∑
i

|Qi|xi

The 2D Telegraph equation in the case of a point chargeQ has a peculiar solution of

q(r, t) = Q
RC

4πt
e−r2 RC

4t

this is a normal distribution with standard deviation equal to

stel =

√
2t

RC

The standard deviation of the electron only simulation can be fit with such a formula to
obtain the value ofRC . The plot of the standard deviation for both theDLC and pad plane
distribution, together with the fit, is shown in figure 5.4.

The RC value results equal to 0.1469 ± 0.0002 s/m2. There is moreover a clear agree-
ment between the three curves. Notice, though, how for time values lower than about 20 ns

the pad standard deviation is clearly larger than the one on the DLC. This is due to the fact
that the induced charge is not perfectly mutual, but rather has a distribution.

In order to better understand this aspect, consider the well known case of the charge in-
duced on an infinite perfectly conducting plane by a nearby chargeQ at distance z

q(r) = −Q z

2π(z2 + r2)3/2

TheFWHM(FullWidth atHalfMaximum)of such adistribution is approximately0.766 · z,
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Figure 5.4: Graph showing the standard deviation of the charge distribution on the pad plane, the DLC layer and the
Telegraph equation fit.

so it is possible to say that the standard deviation s ≈ 2 · FWHM ≈ 0.2 mm. This value is
of similar order of magnitude to the discrepancy of the initial point.

The capacitance C from the DLC point of view can be calculated as the parallel of the
capacitance to the mesh and the one to the pad plane

C = Cmesh + Cpad =
ϵ0ϵr
dmesh

+
ϵ0ϵr
dpad

≈ 300 nF/m2

that gives an RC value of 0.1485 s/m2. Such a value is of the same order of magnitude
to the one obtained by the simulation, and they agree within 1% with the simulated value.
This validates the charge spreadmodelledwith theTelegraph equation in the casewhere only
electrons are present.

An identical standard deviation analysis can be performed for the second simulation sce-
narios. The standard deviation compared the the one in the previous section is shown in
figure 5.5. It is clear how the ion limit the spread of the charge. If theRC value is obtained
with a fit as above, but computing it in the during the time when the spread is affected by
ions, one obtainsRC = 0.3950± 0.0003 s/m2. This value is a factor 2.7 greater than the
one obtained without considering the ion contribution. To understand such a phenomena
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the following toy model can be used.
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Figure 5.5: Graph comparing the standard deviation of the charge distribution on the pad plane with and without the
effect of ions.

A chargeQ at a distance z0 of an infinite conducting plane is considered. The potential
in such a condition is easy to compute and is given by the potential of the charge itself and
of its image, thus giving

φ(r, z) =
Q

4πϵ

(
1√

r2 + (z − z0)2
− 1√

r2 + (z + z0)2

)

This can be used to compute the radial component of the electric field, by the appropriate
component of the gradient

Er(r, z) = r̂ · (−∇φ) = −∂φ
∂r

=
Q

4πϵ

(
r

(r2 + (z − z0)2)3/2
− r

(r2 + (z + z0)2)3/2

)
If this function is plotted, as in figure 5.6, it will show a peculiar behaviour: it has the same

long distancemagnitude of the one of an equal charge in theDLC layer. These electric fields
will thus eliminate each other, in this way limiting the long distance effects and functionally
slowing the rate of diffusion while the ion drift is present. This sizable shepherd dog effect
will need to be taken into account in the future models of charge spread, as it impacts the
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RC value that might be obtained during the characterization of the detector.
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Figure 5.6: Comparison of the modulus of the radial component of the electric field for a charge on the DLC and an ion
at a distance double the one between pad and DLC from the pad plane.

An additional consistency check that is needed to validate the simulation is to compare
the induced charge with an analytic model. Using the simulation with the ion, the induced
charge on the pad plane was computed and compared with the one expected from Shockley-
Ramo theorem, corrected in the case of dielectrics. The result is shown in figure 5.7.

The interpretation of the induced charge is the following: at t = 0 the ions and electrons
are in the same position, so their net charge is zero, thus there is no induced charge. As the
ions start to migrate, they induce less charge on the pad plane, thus the induction effect of
electrons prevails. At around t ≈ 350 ns the ions reach themesh and are neutralized, leaving
only the induced charge of the electrons on the DLC.

5.10 Shepherd dog effect in the 2D telegraph equation

The shepherd dog effect can be included in the 2D telegraph equation if it is assumed that
the motion of the ions is not affected by the charge distribution on the DLC. This can be
considered the case due to the strong electric field in the amplification gap. In section 5.4 on
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Figure 5.7: Comparison of the expected induced charge on the pad plane using the simulation and the analytic result of
Ramo theorem.

page 33 it was shown that
∂q

∂t
=

1

RS

∇2
2D φ

where q is the charge density, φ the potential and RS the sheet resistance. Such a formula
holds in the general case and yields the 2D telegraph equation if q = Cφ is assumed.

The potential can be written as the sum of two components sourced respectively by the
ions in the amplification gap and by the electrons in the DLC. In this way it is possible to
write

φ = φDLC + φion =
q

C
+ φion

The potential of the ion, though, is not affected by q in any way, thus the corresponding
component can be used as a source term in the differential equation

∂q

∂t
=

1

RSC
∇2

2D q +
1

RS

∇2
2D φion

The computation ofφion is critical. The first idea that might come to mind is the analytic
solution of the electrostatic equation for the ions in the desired geometry. In the resistive
MICROMEGAS case under study it is not trivial.
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To avoid such a calculation, one might use again the idea of the infinitesimal capacitor
approximation already used for the telegraph equation. This time, though, a virtual floating
conductor is placed in the position of the ion and has the ion’s charge deposited on it. As
shown in the schematic of figure 5.8, it is possible to obtain the potential on the DLC for an
ion charge density qion at height z by solving the capacitive divider. This results in

φion =
qion
CTOT

CPAD-z

CDLC-PAD

that, using the expressions for the parallel plane capacitor, becomes

φion =
qion
ϵ0

1

1 +
b
ϵr

+z

g−z

b

ϵr

MESH

DLC

PAD

C DLC-Z

C DLC-PAD

C Z-MESH

Figure 5.8: In the capacitor approximation each section of the ERAM with its charge distribution can be viewed as a
separate capacitor divider. If the charge moves out of plane, the capacitances are not constant.

Using this expression requires great care. In fact, qion is a Dirac delta function and thus
its laplacian is not a trivial mathematical concept. In order to better understand the proper
way to setup this problem, consider the case of the diffusion of a point chargeQ starting at
the origin at t = 0. A way to see this problem is to use the Green’s function properties. The
point charge is originated by an impulsive current at the origin, namely

i(x, y, t) = Qδ(x) δ(y) δ(t)

Notice how this is dimensionally a variation of charge density per unit time.
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The Green function for the telegraph equation is

G(x, y, t, x′, y′, t′) = θ(t− t′)
1

4kπ(t− t′)
e
− (x−x′)2+(y−y′)2

4k(t−t′)

where k = (RC)−1.

The solution for the above current is then obtained as

q(x, y, t) =

+∞∫
−∞

dx′
+∞∫

−∞

dy′
+∞∫

−∞

dt′ G(x, y, t, x′, y′, t′) i(x′, y′, t′)

=

+∞∫
−∞

dx′
+∞∫

−∞

dy′
+∞∫

−∞

dt′ θ(t− t′)
Q

4kπ(t− t′)
e
− (x−x′)2+(y−y′)2

4k(t−t′) δ(x′) δ(y′) δ(t′)

= θ(t)
Q

4kπt
e−

r2

4kt

due to the properties of the Dirac delta function. As it is clear, the well known solution
already described is obtained.

When the ions are present, though, the situation changes. On the ohmic sheet there will
be no net charge at t = 0, due to the equal and opposite charges of electrons and ions. When
the ions start to drift, the charge is weighted with the z dependent factor shown in equation
5.10. This is equivalent to the appearance of negative charge at a rate governed by such a
factor. In this case the current expression will be

i(x, y, t) =


Qδ(x) δ(y)

d

dt

 1

1 +
b
ϵr

+z(t)

g−z(t)

 for 0 < t < T

0 otherwise

If a motion in the insulation gap with constant velocity taking a time T to reach the mesh is
considered, then

z(t) = g
t

T
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So the current becomes

i(x, y, t) =


−Qδ(x) δ(y) 1

T (1 +m)
for 0 < t < T

0 otherwise

wherem ≡ b
gϵr

When this expression is convoluted with the Green’s function, this leads to

q(r, t) = Q


Ei
(
− r2

4kt

)
4πkT (m+ 1)

for 0 < t < T

Ei
(
− r2

4kt

)
− Ei

(
− r2

4k(t−T )

)
4πkT (m+ 1)

for t > T

where Ei(x) is the exponential integral function defined as

Ei(x) =
∫ x

−∞

et

t
dt

A graph of the solutions in the two regimes for t smaller and greater than T are shown in
figure 5.9. The two curves show a very different behaviour. When t is smaller than T , there
is a divergence at the origin, this is compatible with the expected behaviour of having a delta-
like current injected there. Moreover, a tail is clearly visible, due to the spread of the charge
injected previously. Afterwards, when t is greater than T , the divergence disappears, leaving
a bell-shaped distribution.
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Figure 5.9: On an example of the charge distribution when t < T , while on the right t > T .

It is now possible to calculate observables that can be compared with the simulation, in
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order to validate this method. As shown in the previous section, the standard deviation of a
slice was computed. This can also be computed analytically as

s2(t) =

∫ +∞
0

dr r2 q(r, t)∫ +∞
0

dr q(r, t)

Notice how in the above expression no jacobian is present, even though the charge density
is defined in polar coordinates. This is due to the fact that a projection, for example on x, is
taken.

If the above calculation is performed in the case of a point charge the usual result of

s2no ion(t) =
2t

RC

is obtained. In the case just described, on the other hand, this leads to

s2shepherd =


2t

3RC
for 0 < t < T

2

3RC

(
2t+

√
t(t− T )− T

)
for t > T

This formula reproduceswell the complexbehaviourpredictedby the simulation, as shown
in figure 5.10.

This result exhibits some interesting properties:

1. during the time when the ion affect the charge spread theRC value is increased by a
factor of three;

2. this increase inRC does not depend on the geometry;

3. this increase inRC does not depend on the drift time of the ions;

4. the ion’s drift time affects only the amount of time this the limited diffusion occurs.

To confirm these properties an additional simulation with slower drift speed (200 m/s)
was performed, the result is shown in figure 5.10. It is clear that the result of the two sim-
ulations exhibit an identical behaviour in the period of time where ions directly affect the
charge spread, as predicted by the analytical model.

Moreover, notice how for t ≫ T the standard deviation recovers the behaviour of the
charge spread without ions.
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Figure 5.10: Comparison of the simulation shown in the previous section with another with slower ions and with the
prediction of the analytic formula just described.

5.11 Tracks in the 2D telegraph equation

Another interesting case to analyze is the one of a straight track with a linear charge density
equal to λ. In the case where the effect of ions are neglected, the external source current can
be written as

i(x, y, t) = λ δ(x) δ(t)

in the case of a straight track located on top of the y axis. This is identical to the one of the
point charge, except there is a constant density along the track.

The convolution with Green’s function gives

q(x, y, t) =

+∞∫
−∞

dx′
+∞∫

−∞

dy′
+∞∫

−∞

dt′ θ(t− t′)
λ

4kπ(t− t′)
e
− (x−x′)2+(y−y′)2

4k(t−t′) δ(x′) δ(y′) δ(t′)

= θ(t)
λ

4kπt

∫ +∞

−∞
dy′ e−

x2+(y−y′)2
4kt

= θ(t)
λ

2
√
πkt

e−
x2

4kt

The standard deviation of a slice along the x-axis can be computed as discussed in the
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previous section, resulting in

s2 =
2t

RC

In the same way as in the previous section, the source term with the effect of ions can be
expressed as

i(x, y, t) =


−λ δ(x) 1

T (1 +m)
for 0 < t < T

0 otherwise

where the last factor comes from the the fact that the ion’smovement is “showing” the charge
of the electron.

The convolution with the Green’s function gives

q(x, y, t) = −
+∞∫

−∞

dx′
+∞∫

−∞

dy′
T∫

0

dt′ θ(t− t′)
1

4kπ(t− t′)
e
− (x−x′)2+(y−y′)2

4k(t−t′)
λ δ(x)

T (1 +m)

= −
T∫

0

dt′
λ

T (1 +m)
θ(t− t′)

1

4kπ(t− t′)
e
− x2

4k(t−t′)

+∞∫
−∞

dy′ e
− (y−y′)2

4k(t−t′)

= − λ

2T (1 +m)

T∫
0

dt′ θ(t− t′)
e
− x2

4k(t−t′)√
πk(t− t′)

This integral is not trivial to evaluate. Todo this first it is necessary to understand the effect
of the Heaviside theta function. Notice how, if t < T , the values of such that t < t′ < T

will make the it vanish. In this way it is possible to write∫ T

0

dt′ θ(t− t′) −→
∫ min{t,T}

0

dt′

At this point, using the definition of the incomplete gamma function

Γ(s, x) ≡
∫ +∞

x

zs−1 e−z dz

and performing the substitution

z =
x2

4k(t− t′)
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the integral is evaluated as

q(x, y, t) =
λx

4kT (m+ 1)
√
π


Γ

(
−1

2
,
x2

4kt

)
for 0 < t < T

Γ

(
−1

2
,
x2

4kt

)
− Γ

(
−1

2
,

x2

4k(t− T )

)
for t > T

It is now possible to evaluate the standard deviation of a slice along the x-axis that results
equal to

s2shepherd =


2t

2RC
for 0 < t < T

2

RC

(
t− T

2

)
for t > T

This result shows that a different behaviour emerges in this case. The new “effective”RC
value gains a factor of two with respect to the case where ions are not taken into account,
while the usual spread is recovered when this effect is removed.
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6
Model comparison with data

6.1 The signal induced in aMICROMEGAS

In the previous chapter amodel of the charge spread of electrons in the ohmic sheet inside of
an ERAM detector with and without the effect of ions was presented. It is now interesting
to use this information to predict the signal observed in the detector.

To calculate the charge induced on a pad the analytic solutions have to be integrated over
the pad area. In that case, we consider a pad with sides along the x and y axis respectively lx
and ly long, with its center at distance d from the track. Given the translational symmetry
along the y, the integration on the y axis gives simply a factor of ly, so the charge induced on
the pad at any time can be written as

Q(t) = ly

∫ d+ lx
2

d− lx
2

q(x, t) dx

In the next section it will be shown how the actual observable needed is the current I(t),
the derivative ofQ(t). It is important to notice, however, how in the casewith ions it ismuch
simpler to first compute the derivative of q(x, y, t) and then integrate it. This computation
in the case without ions leads to

I(t) =
kλly

8
√
π(kt)3/2

(
(2d− lx)e

− (lx−2d)2

16kt − (2d+ lx)e
− (2d+lx)2

16kt

)
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This formula shows an interesting behaviour with varying distance from the track, as it
is clear from figure 6.1. The leading pad, i.e. the one actually containing the charge, has a
strictly negative current, while the neighbouring onehas a positive current. This phenomena
can be explained as follows: the leading pad contains some charge, that diffuses away, while
the neighbouring pad gains charge. Notice however, that the signal becomes negative also for
the neighbouring pad. This can be seen algebrically: when t goes to infinity, the exponentials
tend to one. This leaves a factor

(2d− lx)e
− (lx−2d)2

16kt − (2d+ lx)e
− (2d+lx)2

16kt
t→+∞−−−−→ −2lx

This makes the current negative at very long times, when the charge is escaping its initial
position.
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Figure 6.1: Comparison between the signal of the leading and neighbouring pad.

While, in the case with ions

I(t) =

√
π

2

λly
2(m+ 1)T

(
erf
(
lx − 2d

4
√
kt

)
+ erf

(
2d+ lx

4
√
kt

))
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for 0 < t < T and

I(t) =

√
π

2

λly
2(m+ 1)T

(
−erf

(
lx − 2d

4
√
k(t− T )

)
− erf

(
2d+ lx

4
√
k(t− T )

)
+

+erf
(
lx − 2d

4
√
kt

)
+ erf

(
2d+ lx

4
√
kt

))
for t > T .
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Figure 6.2: Plot of the current predicted by the two different model: with ions (solid blue line) and without ions (dashed
red line).

Notice how the leading pad signal is significantly different among the two models (figure
6.2): for the case without ions only a negative current is present, while if ions are considered
an initial positive current is present. This current is due to the induction of the ions. No-
tice that, in order to compare the model without ions with the data, it is necessary to add a
positive Dirac delta in order to mimic the effect of the ions’ induced charge.

6.2 Front-end electronics transfer function

The signal discussed in the previous section is not directly sampled but is first shaped with
a front-end electronic chain composed of a charge sensitive preamplifier, a pole-zero cancel-
lation stage and a filter. The Laplace transform of the transfer function can be written after
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combining each of these stages

Vout(s) = I(s)×

(
1

Cf

−1

s+ 1
τf

)
×

(
−Cp

Cs

s+ 1
τp

s+ 1
τs

)
×

(
3

2

1

s2 + 3
2

s
τs
+ 1

τ2s

)
= I(s)T (s)

where Vout(s) is the Laplace transform of the output signal of the electronic chain for an
input current I(s). τf is the time constant of the charge amplifier, representing the decay
time of the discharge of the capacitance integrating the input current. Notice how, for big
decay times where s >> τ−1

f , this term becomes equivalent to 1/s, namely the integration
in the Laplace domain. The finiteness of this time constant leads to the appearance of long
tail to the signals, due to the discharge of the capacitor. To avoid this, the pole is simplified
with a zero having τp = τf , modifying the signal time characteristic and filtering it in the
next stage. In this way the electronics response has a small tail. Here T (s) represents the
transfer function.

Using theproperties of theLaplace transform linkingmultiplication and convolution, one
finds that

Vout(t) = L−1[I(s)T (s)](t) = I(t) ⋆ T (t)

where ⋆ represents the convolution andT (t) is the response of the electronic to aDirac delta
current.

The delta response of the electronics can be computedwith the inverse Laplace transform
of the transfer function, that in the case where τf = τp leads

T (t) = 3e−t/τs +
3

7
e−3t/4τs

(
√
7 sin

(√
7t

4τs

)
− 7 cos

(√
7t

4τs

))

A plot of this function is visible in figure 6.3.

6.3 Mesh pulsing run

To study the transfer function of the front-end electronics a potential relative to groundwas
applied to themesh of theERAMdetector. When this is done, charge is deposited on it, thus
inducing a current on the underlying pads. The applied potential was a negative signal with
a sharp increase followed by an exponential decay with a timing constant of 10 ms and with
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Figure 6.3: Theoretical impulse response of the AFTER chip for τs equal to 206 ns, roughly corresponding to a shaping
time of 412 ns. The curve exhibits a small undershoot.

an amplitude in the order of 10 mV (for the 120 fCAFTER range). The signal is produced
with an arbitrary function generator and the cable is terminated with a 50 Ω resistor before
being applied to the mesh.

It is important, however, to consider the effect of the capacitance between the mesh and
the pads. This, together with the generator output’s impedance, behaves like an RC filter.
Such an effect has to be added to the response function of the electronics. The capacitance
between mesh and the pad plane can be computed using the infinite parallel plane capacitor
approximation. For the ERAM-01 detector employed in this measurement this capacitance
is equal to 5.54 nF, resulting in a time constant τmesh = 277 ns.

The signal of a channel was averaged with several pulses, in order to get rid of electrical
noise, and the response function amplitude and delay were fitted, while the shaping time
and the τmesh were fixed. An example is shown in figure 6.4. There is clearly an agreement
between the signal and the red curve. Thefit of theunconvoluted response function is shown
with the blue curve. It is important to notice how these two fits have the same number of
degrees of freedom. Moreover, the signal is widened and the undershoot disappears.

The agreement of these two signal shapes is important: in fact, during the production pro-
cess the thickness and dielectric constant of the insulation layer is not fully under control. If
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a discrepancywas observed, it wouldmean one of this twoquantities will not be the designed
one. In turn, if a measurement of theRC constant of the ERAM has a strong discrepancy
with the expected value, this allows to rule out a possible cause.
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Figure 6.4: Averaged mesh pulsing signal (black dots) and fits of the response function unconvoluted (blue) and convo‐
luted with an exponential (red).

6.4 Pad signal fit

With the techniques discussed in the previous Sections it is possible to perform a fit of the
pad’s waveforms in order to determine unknown parameters of the model, where the main
goal is the measurement of theRC constant and of the track impact parameter with respect
to the pad center.

To this purpose a dedicated data sample was collected during the DESY test beam with
“zero-suppression” disabled: during the normal data taking, the TPC electronics records
only those waveform portion which are above a certain threshold, plus some samples in the
immediate vicinity of those regions. This “zero-suppression”mode of operation is necessary

62



to limit the amount data recorded to disk. Charge spread in the leading pad, though, man-
ifests itself as an undershot that is usually not completely recorded due to zero-suppression.
As a consequence, for avoiding to loose information encoded within the signal undershoot,
zero-suppression has to be disabled.

The example of a non zero-suppressed event is shown infigure 6.5. The track, propagating
along the horizontal direction, is the analyzed by splitting it in vertical clusters of three pads.
A simultaneous fit of the threewaveforms is performed by linearly combining the relatedχ2s.
The fitting function for each waveform is the convolution of the electronics response with
the current signal, as discussed in the previous Sections. The free parameters in the fitting
functions are the following: the characteristic time constant (RC), the time of arrival of the
signal (t0), the impact parameter of the track (projected on the ERAM) with respect to the
center of the pad (d) and a common normalization factorA.
An example of such a fit is shown in figure 6.6.
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Figure 6.5: Example of electron track used in the fit. The red box shows one of the three pad clusters.

From a small statistic sample of selected tracks we estimated an average value ofRC at the
level of 130± 20 ns/mm2. This result is in clear tension with the expected value of around
50 ns/mm2.

Several explanations are possible, due to effects which are at the moment not accounted
by the fit. The main effects that could bias the fit are the following. First, fluctuations of
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Figure 6.6: Example of fit of the signal of a pad cluster. From top to bottom the leading pad and the two neighbouring
pad. The red line is the fit curve.

the primary charge produced along the track might play a role. In the case of a uniform
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charge distribution along the track, the “longitudinal” charge spread along the track trajec-
tory projected on the DLC would cancel out due to opposite, symmetrical charge spread
currents. On the contrary the ionization is actually fluctuating and these effect should play
a role. Additional effects which might bias the fit are space charge effects on the DLC layer
(due to the long diffusion time) and non uniformity inDLC resistivity. Effects related to the
electronics or abnormal DLC-pad orMesh-DLC capacitance are ruled out by mesh pulsing
measurements (see previous Section).

Biases to the fit will be studied in detail with the large statistics that are presently being col-
lected at the DESY test beam. In addition systematical studies will be performed by illumi-
nating the ERAMmodule with X-rays (from a 55Fe source) and by laser ionization induced
“tracks”. Of course biases will be also studied with the help of Monte Carlo simulations.

Concerning the effect of ions (shepherd dog effect, see previous Chapter), it appears not
to modify toomuch the results of the fit. Additional not zero-suppressed data are needed in
order to verify the impact of the effect on the fit. An important parameter which should be
studied in order to limit the number of free parameters is the ion’s drift time in the ampli-
fication gap. Experimental verification of this effects will be addressed in future studies, as
described in the next paragraph.

6.5 Possible experimental tests of the shepherd dog effect

Carrying out an experiment to directly show the presence of the shepherd dog effect is chal-
lenging. The goal of such a measurement would be to compare the signals seen on the pads
of a MICROMEGAS when electrons spread with and without the ions. The issue is that
avalanche multiplication inevitably produces electron-ion pairs, so it must be avoided if the
ions’ effect has to be removed.

One possibility (figure 6.7) is to use more ionizing particles, for example the Helium-4
nuclei produced in an α decay. Such a particle is about a factor of 500more ionizing than a
minimum ionizing muon. Due to the fact that the MICROMEGAS gain is of the order of
103, electrons produced by an α particles might be detectable without avalanche amplifica-
tion.

In this way, a detectable amount of electrons can be produced already in the active volume
of the TPC and be deposited on the DLC of an ERAMwith low electric field in the gap, in
this way observing the charge spread without the ion contribution. If, on the other hand,
the α particle traverses the amplification gap, ions will be present and will affect the spread.

65



Comparing the two conditions an enhanced charge would clearly show the presence of
the shepherd dog effect.

Technically this measurement is difficult: the source needs to be collimated in order to
have an electron distribution with a reproducible shape. Moreover, placing a source in the
active region of the TPC would potentially alter the electric field, thus making difficult to
predict the charge transport. A transport effect might also arise from space charge effects
produced by the high density of charge produced by ionization.

MESH

DLC

𝞪

clean e- on DLC
𝞪

e- and ions

Low DLC to mesh voltage to avoid amplification

Figure 6.7: Schematic drawing of a possible experiments to test the effect of ions on the charge spread.
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7
Conclusion

The study of the signal formation in the ERAM detector was presented. Specifically, using
a Finite Elements simulation it was possible to validate the 2D telegraph equation for the
description of the charge spread of the electrons on the resistive layer within the ERAM. In
addition, the ions effect, which was previously not accounted for, was introduced showing
a possibly sizable effect in limiting (delaying) the electrons spread.

The complete setup of a prototype of theHA-TPCof the T2K experiment was described,
alongside the first data taking during a test beam in June 2021 at DESY, where the TPC
prototype was exposed to 4 GeV/c electrons. From such data, it was possible to perform
a rough estimation of the characteristic charge spread time constant (RC) that was found
in tension with the expected value. More work will be needed to accurately characterize the
charge spread.

In particular the contributions due to the fluctuation of the numbers of primary electrons
produced along the track and the their diffusion during the drift shall be addressed bothwith
analyzing new data obtained with X-ray sources and laser induced ionization and with a full
Monte Carlo simulation.

In summary, this work represents an initial attempt to accurately fit pad signals, which
might be quite useful to calibrate the detector: in fact it will allow to build an RC time
constantmap as a function of the position on the ERAMdetector, which in turnwill enable
very accurate track reconstruction algorithms.
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