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Chapter 1

Introduction

During last decades, mathematical analysis has become an effective tool to
explore biological phenomena and to detect mechanisms that might be not
evident to the experimenters. In the present work, a model of chemotaxis
is proposed. Chemotaxis is the mechanism by which uni o multicellular
organisms modify their motion in response to a variation of chemicals in
the environment. In particular, this phenomenon influences the motion of
fibroblasts, the stem cells in charge of dermal wound healing. When a trauma
occurs, fibroblasts create a new extracellular matrix and then, driven by
chemotaxis, migrate on it to fill the wound.

Wound healing is a complex and fragile process, factors such as diabetes,
venous or arterial disease and infection can contribute to non-healing chronic
wounds. In particular, diabetic patients can develop wounds that are slow to
heal or might never heal, since high blood glucose levels prevents nutrients
and oxygen from energizing cells, increases inflammation, decreases collagen
deposition in the wound site and prevents the immune system from function-
ing efficiently. Such condition has a high risk of developing infections that
can spread locally, to surrounding tissue and bone, or to further away areas
of the body, eventually causing sepsis.

In order to improve wound repair and minimize scar formation, an inter-
esting tissue engineering technique was developed, which consists in inserting
artificial scaffolds within the wound. This way such structures provide fibrob-
lasts a support to walk. A wide variety of artificial scaffolds made of both
natural and synthetic polymers have been introduced to date. However, the
development of optimal materials and structures for such scaffolds is still
subject to research.

A new approach to describe such phenomenon consists in setting a one
dimensional (1D) model on a network. Indeed, from a mathematical point
of view, a scaffold can be described by an oriented network N composed
of a finite number of oriented arcs. In this thesis the following hyperbolic-
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6 CHAPTER 1. INTRODUCTION

parabolic model is considered
ut + vx = 0

vt + λ2ux = φxu− v

φt −Dφxx = au− bφ

where unknowns are u, v, φ and they respectively represent density of cells,
mean flux and density of chemoattractant. The parameters are: D > 0 the
diffusion coefficient of chemoattractant, a ≥ 0 and b ≥ 0, which are, respec-
tively, its production and degradation rate and finally λ > 0, the modulus of
the constant velocity. The hyperbolic system describes the movement of the
cells from a mesoscopic point of view. Moreover, as opposed to parabolic-
type models, it implies a finite speed of propagation of the cells. Another
feature of the model is that cells can move in two different oriented directions
on the same arc.

The thesis is organised as follows: Chapter 2 briefly recalls some useful
definitions, theorems and notations used throughout the thesis. Chapter 3
first introduces the biological background and some mathematical models
for chemotaxis, then, a hyperbolic-parabolic model is derived and set on a
network, with suitable nodes conditions. Finally, Chapter 4 describes the
analytical results of the current problem.



Chapter 2

Preliminary results

The aim of this chapter is to briefly recall some definitions, theorems and
notations that will be used later on in this work.

2.1 Some functional analysis tools

Here, some classical theorems of functional analysis are presented, these are
necessary for the study of semilinear evolution equations. The proofs can be
found in [6].

Theorem 2.1 (Banach Fixed Point Theorem). Let (E, d) be a complete
metric space and let f : E → E be a mapping such that there ∃k ∈ [0, 1)
satisfying d(f(x), f(y)) ≤ kd(x, y) for every (x, y) ∈ E × E. Then, there
exists a unique point x0 ∈ E such that f(x0) = x0.

Theorem 2.2 (Lax-Milgram Theorem). Let H be a Hilbert space and let
a : H×H → R be a bilinear functional. Assume that there exist two constants
C <∞, α > 0 such that:

(i) |a(u, v)| ≤ C‖u‖‖v‖ for all (u, v) ∈ E × E (continuity),

(ii) a(u, u) ≥ α‖u‖2 for all u ∈ H (coerciveness).

Then, for every f ∈ H? (the dual space of H), there exists a unique u ∈ H
such that a(u, v) = 〈f, v〉 for all v ∈ H.

2.2 Sobolev spaces

It is important to recall Sobolev spaces since they often are the proper set-
tings in which to apply functional analysis techniques in order to gain in-
formation about partial differential equations. To do so it is important to
introduce the notion of weak derivative.
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8 CHAPTER 2. PRELIMINARY RESULTS

Notation 2.3. Let Ω be an open subset of R, C∞
c (Ω) will denote the space

of infinite differentiable functions with compact support Ω. A function φ
belonging to C∞

c (Ω) is called a test function.

Definition 2.1. Set u, v ∈ L1
loc(Ω) and α a multi-index, v is the αth weak

partial derivative of u, written Dαu = v, if∫
Ω
uDαφdx = (−1)|α|

∫
Ω
vφdx (2.1)

for every test function φ ∈ C∞
c (Ω)

Lemma 2.4. A weak αth partial derivative of u, if it exists, is uniquely
defined up to a set of measure zero.

Let Ω be open subset of Rn, fix 1 ≤ p ≤ ∞ and let k be a nonnegative
integer.

Definition 2.2. The Sobolev Space is

W k,p = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for all α ∈ Nks.t.|α| ≤ k}. (2.2)

Definition 2.3. If f ∈W k,p its norm is defined as

‖f‖Wk,p = (
∑
|α|≤k

‖Dαf‖Lp) (2.3)

Note that the Sobolev space W k,p equipped with this norm is a Banach
Space.

Definition 2.4. W k,p
0 (Ω) denotes the closure of C∞

c (Ω) in W k,p(Ω).

With p = 2 one sets Hk(Ω) := W k,2(Ω) and Hk
0 (Ω) := W k,2

0 (Ω). The
letter H is used because it is an Hilbert space with scalar product

〈u, v〉Hk =
∑
|α|≤k

∫
Ω
DαuDαvdx. (2.4)

2.3 m-dissipative operators

Let X be a Banach space endowed with the norm ‖ · ‖.

Definition 2.5. A linear unbounded operator in X is a pair (D,A), where
D is a linear subspace of X and A is a linear mapping D → X. A is called
bounded if there exists c > 0 such that

‖Au‖ ≤ c, (2.5)

for all u ∈ {x ∈ D, ‖x‖ ≤ 1}. Otherwise, A is not bounded.
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Remark 2.5. Note that a linear unbounded operator can be either bounded
or not bounded.

Definition 2.6. Let (D,A) be a linear operator in X, the graph G(A) of A
is defined by

G(A) = {(u, f) ∈ X ×X;u ∈ D and f = Au},

and the range R(A) by
R(A) = A(D).

G(A) is a linear subspace of X ×X and R(A) is a linear subspace of X.

Throughout this section a linear unbounded operator will be just called
an operator where there is no risk of confusion. As usual, the pair (D,A)
will be denoted by A with D(A) = D meaning that the domain of A is D.
Note that when defining an operator it is necessary to define its domain.

Definition 2.7. An operator A in X is dissipative if

‖u− λAu‖ ≥ ‖u‖,

for all u ∈ D(A) and all λ > 0.

Definition 2.8. An operator is m− dissipative if

(i) A is dissipative,

(ii) for all λ > 0 and all f ∈ X, there exists u ∈ D(A) such that

u− λAu = f. (2.6)

Remark 2.6. If A is m − dissipative in X it is clear that for all f ∈ X
and all λ > 0, there exists a unique solution u of the equation u− λAu = f ,
moreover one has ‖u‖ ≤ ‖f‖.

Now some useful proposition regarding properties and characterization of
m-dissipative operators are listed. The proofs are omitted and can be found
in [6].

Proposition 2.7. Let A be a dissipative operator in X. The following are
equivalent :

(i) A is m-dissipative in X;

(ii) there exists λ0 > 0 such that for all f ∈ X there exists a solution
u ∈ D(A) of u− λ0Au = f .

Proposition 2.8. If A is a m-dissipative operator, then G(A) is closed in
X.



10 CHAPTER 2. PRELIMINARY RESULTS

Notation 2.9. From now on L(X,Y ) will denote the space of linear, con-
tinuous mappings from X to Y and L(X) the space of linear, continuous
mappings from X to X.

Corollary 2.10. Let A be an m-dissipative operator. For every u ∈ D(A),
let ‖u‖D(A) = ‖u‖ + ‖Au‖. Then (D(A), ‖ · ‖D(A)) is a Banach space and
A ∈ L(D(A), X).

Remark 2.11. In what follows the Banach space (D(A), ‖ · ‖D(A)) will be
simply denoted with D(A).

Now let X be a Hilbert Space with scalar product 〈·, ·〉.

Proposition 2.12. A is dissipative in X if and only if 〈Au, u〉 ≤ 0 for all
u ∈ D(A).

Corollary 2.13. If A is m-dissipative in X then D(A) is dense in X.

2.4 Contraction semigroups and Hille-Yosida Phillips
Theorem

Let X be a Banach space and let A be an m-dissipative operator in X with
dense domain. For λ > 0 set Aλ = A(I−λA)−1f and Tλ(t) = etAλ for t ≥ 0.

Theorem 2.14. For all x ∈ X the sequence uλ(t) = Tλ(t)x converges uni-
formly on bounded intervals of [0, T ] to a function u ∈ C([0,∞), X) as λ ↓ 0.
Set T (t)x = u(t), for all x ∈ X and t ≥ 0. Then

• T (t) ∈ L(X) and ‖T (t)‖ ≤ 1, ∀t ≥ 0;

• T (0) = I;

• T (t+ s) = T (t)T (s), ∀s, t ≥ 0.

Moreover, for all x ∈ D(A), u(t) = T (t)x is unique solution of the problem
u ∈ C([0,∞), D(A)) ∩ C1([0,∞), X);
u′(t) = Au(t), ∀t ≥ 0;
u(0) = x.

Finally
T (t)Ax = AT (t)x, (2.7)

for all x ∈ D(A) and t ≥ 0.

Definition 2.9. A one parameter family (T (t))t≥0 ⊂ L(X) is a contraction
semigroup in X if the following are satisfied :

(i) ‖T (t)‖ ≤ 1 for all t ≥ 0;
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(ii) T (0) = I;

(iii) T (t+ s) = T (t)T (s) for all s, t ≥ 0;

(iv) for all x ∈ X the function t 7→ T (t)x belongs to C([0,∞), X).

Definition 2.10. The generator of (T (t))t≥0 is the linear operator L defined
by

D(L) = {x ∈ X;
T (t)x− x

h
has a limit in X as h ↓ 0}, (2.8)

and
Lx = lim

h→0

T (t)x− x

h
(2.9)

for all x ∈ D(L).

The following proposition justifies the introduction of m-dissipative op-
erators in the previous section.

Proposition 2.15. Let (T (t))t≥0 be a contraction semigroup in X and let
L be its generator. Then L is m-dissipative and D(L) is dense in X.

Proof. See [6]

Theorem 2.16 (The Hille-Yosida-Phillips Theorem). A linear operator A is
the generator of a contraction semigroup in X if and only if A is m-dissipative
with dense domain.

The following result shows the uniqueness of the semigroup generated by
an m-dissipative operator with dense domain.

Proposition 2.17. Let A be an m-dissipative operator with dense domain
and assume that A is the generator of a contraction semigroup (S(t))t≥0.
Then (S(t))t≥0 is the semigroup corresponding to A given by theorem 2.14.

2.5 Inhomogeneous equations and abstract semilin-
ear problems

Throughout this section X will be a Banach Space, A an m-dissipative oper-
ator with dense domain and (T (t))t≥0 the contraction semigroup generated
by A.

Let T > 0, given x ∈ X and f : [0, T ] 7→ X consider the following
problem 

u ∈ C([0, T ], D(A)) ∩ C1([0, T ], X);
u′(t) = Au(t) + f(t), ∀t ∈ [0, T ];
u(0) = x.
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Lemma 2.18 (Duhamel’s formula). Let x ∈ D(A) and let f ∈ C([0, T ], X),
consider a solution u ∈ C([0, T ], D(A))∩C1([0, T ], X) of the above problem.
Then it satisfies :

u(t) = T (t)x+

∫ t

0
T (t− s)f(s)ds, (2.10)

for all t ∈ [0, T ].

Corollary 2.19. For all x ∈ D(A) and f ∈ C([0, T ], X), the above problem
has at most one solution.

Remark 2.20. For all x ∈ X and all f ∈ C([0, T ], X) the formula (Duhamel)
defines a function u ∈ C([0, T ], X). The following proposition gives sufficient
conditions for u to be the solution of the above problem.

Proposition 2.21. Let x ∈ D(A) and f ∈ C([0, T ], X). Assume that at
least one of the following conditions is satisfied :

• f ∈ L1((0, T ), D(A));

• f ∈ W 1,1((0, T ), X); then u given by (Duhamel) is the solution of the
above problem.

The following result is essential in the study of semilinear problems, not
only for showing uniqueness but also for finding bounds on the solutions.

Lemma 2.22 (Gronwall’s Lemma). Let T > 0, λ ∈ L1(0, T ), λ ≥ 0 almost
everywhere and C1, C2 ≥ 0. Let φ ∈ L1(0, T ), φ ≥ 0 almost everywhere, be
such that λφ ∈ L1(0, T ) and

φ(t) ≤ C1 + C2

∫ t

0
λ(s)φ(s)ds, (2.11)

for almost every t ∈ (0, T ). Then we have

φ(t) ≤ C1 exp(C2

∫ t

0
λ(s)ds), (2.12)

for almost every t ∈ (0, T ).



Chapter 3

From biology to the model

Nowadays, mathematical analysis has become an effective tool to explore
complex biological mechanisms. A mathematical model not only can detect
mechanism that might be not evident to experiments, but can also foresee the
evolution of very complex biological systems. For this reason, application of
mathematics to medicine applications is a novel area of research of particular
interest.

One of the most important biological processes is chemotaxis. This
neologism is composed of two greek words chemeia = chemical and taxis
= arrangement, so it is the mechanism by which an organism modifies
its motion in response of a chemical stimulus. For instance, bacteria swim
towards the highest concentration of food molecules (glucose) in order to
survive. Not only it is important for single-cell and unicellular organisms,
but also for multicellular ones. Indeed chemotaxis is important in early
stages of development (e.g., movement of sperm towards the egg during
fertilization) as well as in normal function and health (e.g. the movement
of immune cells, such as leukocytes, towards chemoattractants released at
the region of infection). Moreover, it has been proven that mechanisms that
govern chemotaxis in animals can be subverted during cancer metastasis.

In the last forty years the movement of bacteria, cells or other microor-
ganisms under the effect of chemotaxis has been widely studied and many
PDE’s models have been proposed. The basic unknowns for such models are
the density of individuals of a population and the concentration of chemoat-
tractant. Modelling chemotactic movement of mobile species can be done
from two different perspectives: either from the macroscopic or from the mi-
croscopic perspective. Both approaches have been used over the years and
the derivation of the macroscopic equations from the microscopic is still a
topic of particular interest.

A very important and famous model is the Patlak-Keller-Segel one pro-
posed in 1970 [28], a diffusion model which arises from the study of the slime
mold Dictyostelium Discoideum. This model consists in a parabolic equation

13



14 CHAPTER 3. FROM BIOLOGY TO THE MODEL

governing the evolution of the cell density and a parabolic or elliptic one for
the evolution of the chemoattractant. There are a lot of variations of the
original Patlak-Keller-Segel model (KS), the following is a one-dimensional
version where u describes the evolution of the cell density, φ is the chemoat-
tractant density and f, g are regular function to be specified.{

ut − λ2uxx + (g(φ, φx)u)x = 0

φt −Dφxx = f(u, φ)
(3.1)

A common choice for the function f , in the chemoattractant equation, is

f(u, φ) = au− bφ (3.2)

where a and b are positive constants, which are respectively production and
degradation rates for the chemoattractant. The behaviour of this (KS) sys-
tem is well known: in the one-dimensional case the solution is always global
in time [31, 22], but in bigger dimensions the solution can be global in time
or blow up depending on the size of the initial data [24, 5]. The main reasons
of the success of the (KS) model is its simplicity, analytical tractability, and
its capacity to describe key behaviours of populations driven by chemotaxis
(a.g auto-aggregation). On the other hand one, of the problems of diffu-
sion models is that they lead to a fast dissipation or an explosive behaviour,
implying an infinite speed of propagation of cell which is highly unrealistic.
Moreover, this model is not able to reproduce a typical cells behaviour called
run and tumble. For all these reasons, starting from [35, 13], models based
on hyperbolic equations have been considered since they are characterized
by a finite speed of propagation. In particular, the derivation of diffusive
models from appropriate rescaled hyperbolic equations has been considered
in many works, see for instance [32, 7, 23], showing that, heuristically, hyper-
bolic models can be interpreted as a description of chemotaxis phenomena
at a mesoscopic scale.

3.1 Wound healing process

Skin is our largest organ and plays a fundamental role in protecting us
against the external environment. It is composed of two primary layers:
the epidermis (surface layer) which provides waterproofing and serves as
a barrier to infection, and the dermis (deeper layer), which provides the
physical strength as well as flexibility to skin and supports the extensive
vasculature, lymphatic system, and nerve bundles. The epidermis mainly
consists of layers of keratinocytes separated from the dermis by the base-
ment membrane. The dermis is composed of the predominating Extracel-
lular Matrix (ECM) and other cells, mainly fibroblasts and macrophages.
ECM is a three-dimensional network made mainly of fibrous proteins, such
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as collagen, and serves many functions: it provides support and anchorage
for cells, it regulates cell’s dynamic behaviour (proliferation and apoptosis)
and provides directional information directly through the fibres along which
cells tend to align (this process is called contact guidance).

Wound healing process is divided in four main processes: blood clotting
(hemostasis), inflammation, tissue growth (proliferation) and tissue remod-
elling (maturation). In each of these phases, studying the interaction be-
tween cells and ECM is crucial. In the hemostatis phase, platelets in the
blood activates and begin to stick to the injured site while releasing chem-
ical signals to promote clotting. Once the blood clot has formed, during
the inflammation phase, white blood cells invade the wound region moving
on the ECM in order to clear out damaged areas along with bacteria and
other pathogens or debris. Even before the inflammatory process has ended,
fibroblasts begin to enter the wound site (proliferation), they grow and form
a new, provisional extracellular matrix (ECM) by excreting collagen and
driven by chemotaxis they migrate on it and fill the wound. The last phase
of wound healing (maturation) is when collagen is remodelled from type III
to type I and the wound fully closes, see Fig. 3.1.

Figure 3.1: Tissue repair.

The type of ECM-cells interactions varies during the wound healing pro-
cess and, although a lot of this interactions has been experimentally studied,
several questions still need to be answered such as how the fibroblasts are
stimulated to migrate into specific directions and how the reorganization of
cells is induced.

Wound healing is a complex and fragile process, factors such as diabetes,
venous or arterial disease and infection can contribute to non-healing chronic
wounds. In particular, diabetic patients can develop wounds that are slow to
heal or might never heal, since high blood glucose levels prevents nutrients
and oxygen from energizing cells, increases inflammation, decrease collagen
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deposition in the wound site and prevents immune system from functioning
efficiently. Such condition has an high risk of developing an infections that
can spread locally, to surrounding tissue and bone, or to further away areas
of the body, eventually causing sepsis. Studies show that foot ulcers affect
15 percent of people with diabetes. These are painful sores can ultimately
lead to foot amputation. The World Health Organisation (WHO) estimates
that, annually, 6.5 million individuals suffer from chronic skin ulcers caused
by prolonged pressure, venous stasis, or diabetes mellitus and over 300 000
deaths are attributable to fire-related burn injuries. In order to improve
wound repair and minimize scar formation, artificial scaffolds can be inserted
within the wound, since they provide a substitute ECM on which fibroblasts
can attach and proliferate accelerating their reparation action, see Fig. 3.2.
Both the structure and biochemical composition of the scaffold can affect
cellular reorganization and activity. Not only material composition can affect
cellular proliferation, but also pore sizing, pore orientation, fibre structure
and fibre diameter of scaffolds [30].

In particular, considering the case of extensive burns or skin loss, skin
grafting (i.e skin transplant) has always been a standard procedure. How-
ever, in case of very extensive trauma, autogenic transplants cannot be done
considering the limited amount of donor material and allogenic transplants
are often subject to rejection and pathogen transmission. Therefore, tissue-
engineered solutions regarding the design and fabrication of appropriate scaf-
folds are urgently required.

A wide variety of artificial scaffolds made of both natural or synthetic
polymers have been explored yet [33], but how to build proper material
for such scaffolds is still subject for research. Biological polymers, such as
collagen, keratin or gelatine could be considered as the first bio-degradable
biomaterials used for this type of application, due to its biocompatibility,
biodegradability and low cost. Thereafter, synthetic polymers were taken
into consideration since their properties (e.g. porosity, degradation time
etc) can be tailored for the specific applications.

Recent studies [26, 10] show how ECM-like scaffolds can be produced,
with a high degree of complexity, using three-dimensional printing (3DP)
technologies. The advantages of fabricating scaffolds using 3DP are nu-
merous, including the ability to create complex geometries, porosities, and
incorporate growth factors. For these reasons, three-dimensional printing
has significant potential as a fabrication method in creating scaffolds in the
field of regenerative medicine and tissue engineering.

3.2 Mathematical models of chemotaxis

Wound healing, angiogenesis and tumour invasion are all examples of cell
invasion, lead by chemotaxis. As previously said, mathematical modelling
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Figure 3.2: Confocal fluorescence images of human dermal fibroblasts
(HDFb) cultured on scaffold [34]. The actin cytoskeleton of the HDFb was
stained green, the cell nucleus was stained blue and the collagen was stained
red.

is a powerful tool to describe such complex mechanisms and several models
have been proposed to date. In particular, mathematical models describing
wound healing process have thus far been directed towards the study of the
proliferation and repair stage. For example, in [30], the interaction between
ECM and fibroblasts is modelled using a multi-scale approach, in which
extracellular materials are modelled as continua, while fibroblasts are con-
sidered as discrete units. These models assume a few well-known ECM-cells
interactions properties. First of all, fibroblast movements are directed by
the orientation of the extracellular matrix, a phenomenon known as contact
guidance. Such mechanism was discovered in 1912, but it is with the re-
cent development of tissue engineering that researchers focused increasing
attention on it, seeing the potential of contact guidance in influencing the



18 CHAPTER 3. FROM BIOLOGY TO THE MODEL

reorganization of cells. Second, the extracellular matrix affects the speed of
the fibroblasts. Third, the composition of the ECM alters the production of
different proteins by the fibroblasts. Fourth, the ECM in the wound region
contains a lot of different growth factors which influence fibroblast behaviour.
Finally, it is assumed that fibroblasts produce fibres of ECM align with their
direction of movement. Thus, not only do the fibroblasts affect the orienta-
tion of the matrix, but the matrix orientation also influences the movement
of the fibroblasts. The starting point of the research presented in [30] is the
so called orientation model, modelling the matrix collagen orientation, from
which they derive a model for wound repair. The model is summarized as
follows : 

ḟ i(x, t) = s(||c(f i(t), t)||, ||b(f i(t), t)||) vi(t)
||vi(t)||

vi(t) = (1− ρ) ui(t)
||ui(t)|| + ρ ḟ i(t−τ)

||ḟ i(t−τ)||
ui(t) = (1− α)c(f i(t), t) + αb(f i(t), t)

f(x, t) =
∑N

i=0w
i(f i(t)− x) ḟ i(t−τ)

||ḟ i(t−τ)||

(3.3)

Cell paths are denoted by f i(x, t), ρ is a polarization coefficient, τ is
a time lag, wi(x, t) are weight functions and c, b represents the collagen
and the fibrin, respectively. The last equation represents the total amount
of extracellular matrix produced by N fibroblast, while the others govern
the cell motion. In the last part of their work the model extended further in
order to include a diffusible chemoattractant, mainly produced by leucocytes.
In particular, they show that there is a trade-off between wound integrity
and the degree of scarring. The former is found to be optimized under
conditions of a large chemoattractant diffusion coefficient, while the latter
can be minimized when repair takes place in the presence of a competitive
inhibitor to chemoattractants.

3.2.1 Cattaneo Hillen Model

As previously observed, the Patlak-Keller-Segel model, and all its variations,
are systems of parabolic equations. Such models are not sufficiently precise
to describe the movement of cells for short times, since they lead to a fast
dissipation. For this reason, hyperbolic models have been widely used to
describe different biological phenomena such as population dynamics, forest
fire models and combustion wavefronts. Such models imply a finite speed of
propagation and allow a description of biological phenomena on intermediate
spatial temporal scale.

A fundamental model for chemosensitive movement was introduced by
T. Hillen and, together with Y. Dolak, [11] he showed that the model was
coherent with experimental observation onDicostyostelium discoideum and
E.coli.. They derived a model based on Cattaneos law, a modification of
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Fouriers law of heat conduction that is used to describe heat propagation
with finite speed. Let θ(t, x) ∈ R denote the temperature of a homogenous
medium Ω ⊂ Rn and let q(t, x) denote the heat flux, the Cattaneo law is

τqt + q = −D∇θ (3.4)

with τ > 0 a constant that describes the adaptation time of the heat flux q to
the negative gradient of the temperature θ and D > 0 the diffusion constant.
If the Cattaneo law is considered together with an equation for conservation
of energy the so called "Cattaneo system" is obtained. Assuming u(t, x) ∈ R
to be a particle density and v(t, x) ∈ Rn the particle flux, the Cattaneo model
reads as {

ut +∇v = 0

τvt + v = −D∇u
(3.5)

The main property of Cattaneo models is that the undesired feature of infi-
nite fast propagation is omitted. In [11] a Cattaneo system has been derived
from a moment closure approach of transport equations. In order to do this,
Hillen considered a typical cells behaviour called run and tumble. They move
towards a certain direction with almost constant speed (run) then they sud-
denly stop and choose a new direction (tumble) and restart the process. It is
assumed that individuals choose any direction with bounded velocity. This
type of movement can be modelled by a stochastic process called "velocity
jump process". Since the tumbling intervals are short compared to the
mean run times, the tumbling is assumed to be instantaneous. The model
describing such process reads as the following linear transport equation

∂tu(x, t, v) + v∇u(x, t, v) = −µu(x, t, v) + µ

∫
T (v, v′)u(x, t, v′)dv′ (3.6)

where u(x, t, v) denotes the population density at spatial position x ∈ Rn

at time t ≥ 0 and with velocity v, µ indicates the turning rate or turning
frequency, hence τ = 1

µ is the mean run time and T (v, v′) is the probability
kernel for the new velocity v given the previous velocity was v′. The set V ∈
Rn is the set of possible velocities. In order to ensure particle conservation
it has to satisfy ∫

T (v, v′)dv = 1. (3.7)

Moreover, in order to derive Cattaneo System, it is assumed that the cells
have no preferred turn angle, i.e T (v, v′) = |V |−1.

Although the most meaningful dimensions are n = 1, 2, 3, the theory
describing such cell behaviour works for all n ∈ N. Observe that in vivo mo-
tion corresponds n = 3 and planar motion on a substrate to n = 2. A com-
mon technique to understand the dynamic properties of reaction-transport
equation, called moment method, consists in multiplying the previous linear
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transport equation by powers of v and then integrating, an infinite sequence
of equations for the moments of u is derived. Such sequence has a property,
in the equation for the n-th moment the (n + 1)-st moment appears, so an
approximation of the (n+1)-moment is needed. One of the most important
theories to close the moment equation is due to Hillen and is based on a
minimization principle.

In this scenario the focus will be only in the first two equations. In order
to do so, let introduce the velocity moments of u as

m0(t, x) :=

∫
V
u(t, x, v)dv

mi(t, x) :=

∫
V
viu(t, x, v)dv, i = 1, ...., n

mi,j(t, x) :=

∫
V
vivju(t, x, v)dv i, j = 1, ...n

After multiplying the previous transport equation with 1 or vi for i = 1, ....n
and integrating along V the following system, for the first two moments is
derived : {

m0,t +
∑n

i=1 ∂imi = 0

mi,t +
∑n

j=1 ∂jmi,j = −µmi

(3.8)

In order to close the system the term that needs to be approximated is mi,j .
As thoroughly illustrated in Hillen [21] the above moment system can be
closed by minimizing the L2(V )− norm:

H(u) :=
1

2

∫
Ω
u2dx (3.9)

with constraints ∫
u(t, x, v)dv = m0(t, x) (3.10)

and ∫
viu(t, x, v)dv = mi(t, x) i = 1, ..., n. (3.11)

The minimizer can be explicitly calculated as

umin(t, x, v) =
1

|V |
(m0(t, x) +

n

s2

∑
vimi(t, x)). (3.12)

It is assumed that the second moment mi,j(u) of u is well approximated by
the second moment of the minimizer umin, i.e mi,j(u) ≈ mi,j(umin). Then
the closed system reads{

M0,t +
∑n

i=1 ∂iMi = 0

Mi,t +
s2

n ∂imi,j = −µMi i = 1, ..., n
(3.13)
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Here the capital letters are used to distinguish moment of u from the solution
(M0,Mi) of this Cattaneo system.

There are two main advantages of choosing this type of model. First
of all, this system is independent from T (v, v′) which is really difficult to
measure for all possible cells velocities. Moreover, instead of the diffusive
behaviour of a parabolic model, a good description of the first phase of the
phenomenon is obtained, not only the asymptotic one. Now the correspond-
ing Cattaneo model for chemosensitive movement can be derived in two
different ways. Heuristically, the flux can be considered as

q = −Du∇u+ V (u, S)∇S (3.14)

where V (u, S) is a cross-diffusion coefficient chosen, for example, as V (u, S) =
uβ(u)χ(S), with S(tx) the signal concentration, χ(S) ≥ 0 the chemotatic
sensitivity and β(u) the density control. Then the corresponding Cattaneo
model reads as {

ut +∇q = 0

τqt + q = −Du∇u+ V (u, S)∇S.
(3.15)

As shown by Hillen in [21] this model can also be derived from an associated
transport model, where turning rate and T (v, v′) are chosen appropriately,
using the moment closure procedure as down above.

It is important to highlight that in one space dimension, the Cattaneo
system is equivalent to Goldstein-Kac model for a correlated random walk
[20, 18]. In [21, 23] a one-dimensional version of Cattaneo-Hillen model is
analysed, which reads as the following system


∂tu

+ + λ∂xu
+ = −µ+(φ, ∂xφ)u+ + µ−(φ, ∂xφ)u

−

∂tu
− − λ∂xu

− = µ+(φ, ∂xφ)u
+ − µ−(φ, ∂xφ)u

−

∂tφ−D∂xxφ = f(u+ + u−, φ)

(3.16)

where u± denotes the density of the right/left moving part of the total pop-
ulation u, φ is the chemoattractant and f is linear function. Parameters
λ,D are assumed to be strictly positive, they represent, respectively, the
characteristic speed of propagation of u± and the diffusion coefficient for the
chemoattractant. The terms µ± are the turning rates and they control the
probability of transition from u+ to u− and vice versa, i.e. the change of
direction in the movement of a single individual. Experimental observations
show that cells, in general, change their turning rate in response to external
stimuli but they do not change their turn angle distribution. For this reason
the turning rate should depend on the external signal φ and on its gradient
∂xφ.
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The behaviour of such system is studied in [15] under very general as-
sumptions on the coefficients. A general result of global stability of some
constant states, for both the Cauchy problem on the whole real line and the
Neumann problem on a bounded interval for small initial data, is proven
using linearised operators and the accurate analysis of their non-linear per-
turbations.

3.2.2 Preziosi-Chauvière Cell Migration Model

As previously discussed, cell migration is an essential feature for both nor-
mal and pathological biological processes. Indeed, migration of cells plays
a fundamental role in immune response and tissue homeostasis but also is
the main process of metastasis dissemination and tumour invasion. The
characteristics of migration can vary considerably depending on the proper-
ties of the cells and the external environment. For instance cell movement
can be regulated by external factors that can be either diffusive chemicals
(such as chemoattractant) or non-diffusive chemicals (like ligands bound to
ECM). From recent experimental studies various cell migratory behaviours
in the ECM have been identified. In particular cells can migrate interacting
briefly with one another (individual migration) or they can form clusters
(collective migration). Additionally, individual migration in ECM can be
further split into amoeboid or mesenchymal types. In the mesenchymal
type of migration, cells generate space to move by secreting ECM degrading
enzymes. In the amoeboid case, cells migrate using the ECM as a scaffold,
establishing brief contacts with fibres and frequently changing direction. The
cell behaviour taken into consideration through the following thesis will be
the amoeboid migration type.

In [9] A. Chauvière and L. Preziosi proposed an amoeboid cell migration
model in ECM, under the effect of a chemical signal, that can be summarized
as the following system{

∂u
∂t (x, t, v) + v∇u(x, t, v) = JB

m(x, t, v) + JB
c (x, t, v)

∂φ
∂t (x, t) = K∆φ+ f(u, φ)

(3.17)

where u is the density of the cell population, v is the velocity and φ is
the chemical signal. The functions JB

m = JB
m(x, t, v) and JB

c = JB
c (x, t, v)

represent, respectively, the interaction between ECM and chemical signal
and the interaction between cells and chemical signal. Moreover, they have
shown how macroscopic continuum models can be derived from mesoscopic
transport equation. The hyperbolic-parabolic system that will be analysed
throughout this thesis is a particular one-dimensional case of the previous
model. For this reason here a particular attention is devoted towards A.
Chauvière and L. Preziosi model. The relationship between the model taken
into consideration in this thesis and the Preziosi-Chauvière one will be dis-
cussed in the next section.
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In their work Preziosi-Chauvière considered a cell population moving in
a domain D ∈ Rn described by the distribution function u = u(t, x, v),
depending on time t > 0, space position x ∈ D and velocity v. Each of
the cell moves with its own velocity v ∈ V ⊂ Rn. It is assumed that the
space V is radially symmetric and can be written as V = |V |xSn−1, where
|V | denotes the range of possible speeds and Sd−1 is the unit sphere in
Rn. The fibres of the extracellular matrix are described by the distribution
function m. Since here the amoeboid cell motion is considered, the ECM
distribution function is assumed to be time independent. Moreover the ECM
fibres are symmetrical along their axis, meaning that both fibre directions
are identical. These observation lead to write m = m(x, n) where n ∈ Rn−1

+

is a unit vector, representing the fibre orientation, defined over the half unit
sphere Sn−1

+ . Clearly such distribution can be extended to Sn−1 as

me(x, n) =

{
m(x, n) for n ∈ Sn−1

+

m(x,−n) for n ∈ Sn−1
−

(3.18)

The modelling framework is formulated as the following transport equation,
deriving from velocity-jump processes, that reads as

∂u

∂t
(t, x, v) + v∇u(x, t, v) = M(x, t, v) (3.19)

where M(x, t, v) is an integral operator describing peculiar cell motion with
velocity-jump processes and ∇ denotes the spatial gradient. This transport
equation approach uses a microscopic description of the cell movement, but
it provides an output at the level of a cell population. For this reason such
approach is commonly referred as mesoscopic description.

As previously mentioned the operator M models the characteristic prop-
erties of cell migration. Here some cases are taken into account.

Random Migration This case is the simplest model about cell migration
and well describes the run and tumble motion, in which cells moves towards
a direction and suddenly, interrupted at discrete times, they have an instan-
taneous random reorientation. In this kind of model, the source term of the
above equation becomes

M(x, t, v) = −µu(x, t, v) + µ

∫
V
T (v, v′)u(x, t, v′)dv′, (3.20)

where first term of the right-hand side describes how cells turn away from
velocity v with a frequency µ that may depend on environmental factors. The
second term calculates the rate at which cells reorient into velocity v given
previous velocity v′. The function T (v, v′) defines a probability distribution
for a cell with previous velocity v′ to choose the new velocity v and so it
satisfies ∫

T (v, v′)dv = 1. (3.21)
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Moreover, cell number conservation is needed, which yields∫
V
M(x, t, v)dv = 0 (3.22)

In [9] some examples of T choices are shown. For example T can be an
uniform reorientation probability, this means that the re-orientation has no
memory of the past.

It is important to highlight that this model was the starting point of the
Hillen model derivation as seen in the previous paragraph.

Contact guidance Here a model of the cell movement on a given fibre
network is considered. Contact guidance is a common biological process
where the fibres of the matrix give a selection of preferred directions on
which cells can move. In this case the general expression of the migration
operator is

M(x, t, v) = −L(x, t, v) + G(x, t, v) (3.23)

where the term L is called loss term, that is the rate the rate at which cells
turn away from velocity v , and the term G is called gain term, i.e the rate
at which cells reorient into velocity v. Also in this case the total number
of cells conservation is required. In order to describe such process, Preziosi
and Chauvière assume that the realignment along the fibres of ECM does
not appear at a turning frequency, but it is caused by interactions between
cells and fibres with constant rate ηm. This means that a reasonable choice
for the loss and gain terms of the migration operator is

L(x, t, v) = u(x, t, v)

∫
Sn−1
+

ηmm(x, n′)dn′

G(x, t, v) =
∫
V xSn−1

+

ηmψm(v′, v, n′)u(x, t, v′)m(x, n′)dv′dn′

where the function ψm(v′, v, n′) represent the probability, for a cell, to choose
a new velocity v given the velocity v′ when interacting with a fibre oriented
toward n′. Clearly, since it is a probability distribution, it has to satisfy∫

V
ψm(v′, v, n′)dv = 1. (3.24)

Assuming that ηm is constant and that the alignment process along a fibre
is independent from the prior velocity v′, the migration operator becomes

M(x, t, v) = ηmM(x)

(
u(t, x)ψ(v)

me(x, v)

2M(x)
− u(x, t, v)

)
(3.25)

where
M(x) =

∫
Sn−1
+

m(x, n)dn =
1

2

∫
Sn−1

me(x, n)dn (3.26)
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is the fibre density of the matrix and

u(x, t) =

∫
V
u(x, t, v)dv (3.27)

is the cell density.

Interaction between cells Following the previous approach a similar con-
sideration can be done also for the cell-cell interaction. The interaction
between cells is a complex phenomena, for this reasons is difficult to fully
understand their behaviour. Here the focus is on the dynamical aspects of
the cells interaction and only the orientational effect resulting from two mov-
ing cells is considered. Moreover it is assumed that realignment processes
are dominated by fibre guidance. Under such assumptions the loss and gain
terms become

L(x, t, v) = u(x, t, v)

∫
V
ηcu(t, x, v

′)dv′

G(x, t, v) =
∫
V xV

ηcψc(v
′, v′∗, v)u(x, t, v

′)u(x, t, v′∗)dv
′dv′∗

where the function psic(v
′, v′∗, v) defines the probability, for a moving cell

with given velocity v′, to choose the new velocity v when interacting with a
field cell, that is a surrounding cell with velocity v′∗. Since it is a probability
distribution ψc satisfies ∫

V
ψc(v

′, v′∗, v)dv = 1. (3.28)

For coherence with the previous paragraph, it is assumed that the interaction
between cells occur with rate c that is constant and the re-orientation caused
by the collision has no memory of the past. Choosing ψc as an uniform
transition probability it follows

M(x, t, v) = ηcu(x, t)

(
u(x, t)

ψ(v)

Vn
− u(x, t, v)

)
(3.29)

where Vn represents the surface of the unit sphere in Rn.

Influence of Environmental Factors In this paragraph a mathematical
description of the cell response to environmental signals is briefly discussed.
These signals can be of various natures, in particular, there are diffusible
chemicals secreted into the environment that will trigger a chemotactic move-
ment of the cell in response. Here chemotaxis is described using transport
equations, introduced as a bias of the main movement, which is usually as-
sumed to be a random motion. In order to do so, the starting point is the
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description of cell migration in the ECM as a combination of random mo-
tion, contact guidance, and cellcell interaction as discussed in the previous
paragraphs. Therefore, the idea is to integrate the influence of signalling as
a bias of the main motion described by the operator

M(x, t, v) = Jm(x, t, v) + Jc(x, t, v) (3.30)

where Jm and Jc are function defined as in the previous paragraphs. This
means that the source terms are extended respectively as

Jm(x, t, v) = ηmM(x)

(
u(x, t)ψv

me(x, v)

2M(x)
[1 + B(x, t, v)]− u(x, t, v)

)
Jc(x, t, v) = ηcu(x, t)

(
u(x, t)

ψ(v)

Vn
[1 + B(x, t, v)]− u(x, t, v)

)
where the bias B accounts for an external stimulus that modifies the rate at
which a cell reorients. The simplest expression of B, proposed by Chauvière,
is the following gradient-based bias

B(x, t, v) = ±Γ
∇S(t, x)v
βs + S(x, t)

(3.31)

where the Γ reflects the cell sensitivity to the signal, the ± sign represents
the repellent (-) or attractive (+) effect in the direction of the gradient ∇S,
the signal molecule density is S and βS > 0 is a parameter introduced to
avoid singularity when S = 0. Other, more complicated choices for B can be
found in [9].

3.3 A hyperbolic-parabolic model on a network

In the previous section the Preziosi-Chauvière model was presented and the
adaptation of such model to different biological cases were discussed. As
already mentioned, the biological phenomena considered in this thesis is the
process of dermal wound healing involving fibroblasts, the cells responsible
for the reparation of dermal tissue. During the epidermic healing process,
the fibroblasts create a new extracellular matrix, mainly made of collagen,
and they move along it to fill the wound, driven by chemotaxis produced
by themselves. At the end of this process, a new tissue, called scar tissue
is formed. In order to accelerate this process, a common tissue engineering
technique consists in inserting artificial scaffolds, made of a network of poly-
meric threads, within the wound. Indeed, in vitro experiments show that
inserting such artificial scaffolds in damaged tissue accelerates the fibrob-
lasts repairing action, since they provide a support to walk and they don’t
have to produce ECM fibres. Moreover if the scaffolds are enriched with
growth factors, the process can be accelerated further. A classical approach
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used to describe cell movements, under the effect of chemotaxis, is by con-
sidering the Patlak-Keller-Segel model (PKS). However, there are biological
processes that cannot be well described by this kind of model. Indeed, the
diffusive behaviour of (PKS) leads to a fast dissipation or an explosive be-
haviour, so it is not possible to observe intermediate organized structures for
short times. For this reason the model considered in thesis is a hyperbolic-
parabolic model. The parabolic equation for the population density u of the
(PKS) model is now replaced with a hyperbolic system. On the contrary
the equation governing the chemoattractant is parabolic, given its diffusive
behaviour. Then the system, in one-dimension, reads as :

ut + vx = 0

vt + λ2ux = φxu− v

φt = Dφxx + au− bφ

(3.32)

where u stands for the concentration of cells, v their flux, φ is the concentra-
tion of chemoattractant produced by cells themselves and φxu is a non-linear
chemotactic term. The parameters are D > 0 that is the diffusion coefficient
of chemoattractant, a ≥ 0 and b ≥ 0, which are, respectively, its production
and degradation rate and finally λ > 0 represents the modulus of the con-
stant velocity of each cell, that can move towards the right or left along the
axis. A novel approach, recently introduced in [4], is to consider this one-
dimensional model on a network. More precisely, a system like the above, is
considered on each arc of the network, this means that a set of solutions (u,
v, φ) is considered for each arc. Functions on different arcs will be coupled
using suitable transmission conditions on each node of the network.

Now before setting the model on a network, the relationship between
such model and those proposed in the last section is discussed.

Relationship with Preziosi Chauvière model

Referring to Preziosi Chauvière model
∂u

∂t
(x, t, v) + v∇u(x, t, v) = JB

m(x, t, v) + JB
c (x, t, v) (3.33)

now Jc = 0 since here, only the case of cell-fibre interaction in the presence of
chemoattractant, is considered. An adaptation of such model on a oriented
interval I = [a, b] is here discussed. Let u± be the functions representing
the densities of cells on the arc I, which move respectively from left to right
and viceversa. Let ±λ the corresponding velocities, which are assumed to
be constant, meaning that +λ corresponds to positive orientation and −λ to
negative orientation. Now considering a Preziosi-Chauvière law for each of
the cell density u±, this leads to the following system:{

u+t + λu+x = M+

u−t − λu−x = M− (3.34)
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where the general expression for the source term is

M±(x, t, v) = −L±(x, t, v) +G±(x, t, v). (3.35)

with L± the rate of change of verse and velocity caused by the interaction
with ECM and the presence of chemoattractant, while G± is the rate of
random re-orienting. Since the cells move on the arc with constant velocities
±λ, those function do not depend on the variable v, meaning that

L±(x, t, v) = L±(x, t) (3.36)

and
G±(x, t, v) = G±(x, t, ). (3.37)

With refer to Preziosi Chauvière integral operator M = Jm let ψ−,+ be the
function that represent the probability to pass from velocity −λ to +λ. Since
it is a probability distribution, it is has to satisfy the following conditions{

ψ−,+ + ψ−,− = 1

ψ+,+ + ψ+,− = 1.
(3.38)

Is not restrictive to assume that the probability to pass from velocity −λ to
+λ is the same probability to stand in −λ, the same thing starting from the
velocity +λ. This means that :

ψ−,+ + ψ−,− = 1 (3.39)

and
ψ+,+ + ψ+,− = 1. (3.40)

Following this choice, for each function of cell density, the source term have
the form :

M±(x, t) = ηm(x)

[
1

2
(u+ + u−)(1 + B±(x, t))− u±

]
(3.41)

where the function B±(x, t) represent the external stimulus that modifies the
rate at which a cell reorients, meaning that it is a function of the chemoat-
tractant φ and the cell velocities ±λ. It is important to highlight that the
source terms M±(x, t) do not depend on the velocity, since those are sup-
posed to be constant. It is also assumed the total mass conservation, more
precisely :

M+(x, t) +M−(x, t) =

= −L+(x, t) +G+(x, t)− L−(x, t) +G−(x, t) = 0.

The terms B±(x, t) are chosen as B±(x, t) = φx

±λ . This choice has a physical
meaning. Indeed the cell reorientation is caused by the variation of chemoat-
tractant, i.e its gradient. Moreover, the bigger is the velocity of a cell, less
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effect can have the chemoattractant, released by itself, on the other cells,
since it is moving away. Now, with this choice for B and setting ηm(x) = 1
it follows

M+ =

[
1

2
(u+ + u−)(1 +

φx
λ
)− u+

]
=

[
(
1

2
u+ +

1

2
u−)(1 +

φx
λ
)− u+

]
=

[
1

2
u+ +

φx
2λ
u+ +

1

2
u− +

φx
2λ
u− − u+

]
=

1

2

[
(
φx
λ

− 1)u+ + (
φx
λ

+ 1)u−
]

=
1

2λ

[
(φx − λ)u+ + (φx + λ)u−

]
,

and,

M− =

[
1

2
(u+ + u−)(1− φx

λ
)− u−

]
=

[
(
1

2
u+ +

1

2
u−)(1− φx

λ
)− u−

]
=

[
1

2
u+ − φx

2λ
u+ +

1

2
u− − φx

2λ
u− − u−

]
=

1

2

[
(−φx

λ
+ 1)u+ − (

φx
λ

+ 1)u−
]

= − 1

2λ

[
(φx − λ)u+ + (φx + λ)u−

]
.

The term φ, which is the concentration of chemoattractant produced by
the cells themselves, satisfies the parabolic diffusion equation

φt = Dφxx + f(u+, u−, φ), (3.42)

whereD is a positive constant and f a function which influences the diffusion,
depending on the cells density and the chemoattractant. The function is
chosen as

f(u+, u−, φ) = a(u+ + u−)− bφ (3.43)

where a and b are positive constants, which are respectively production and
degradation rates for the chemoattractant. All this considerations yield at
the following hyperbolic-parabolic system

u+t + λu+x = 1
2λ ((φx − λ)u+ + (φx + λ)u−) ,

u−t − λu−x = − 1
2λ ((φx − λ)u+ + (φx + λ)u−) ,

φt −Dφxx = a(u+ − u−)− bφ.

(3.44)
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Now recalling that the one-dimension Catteon-Hillen model is
∂tu

+ + λ∂xu
+ = −µ+(φ, ∂xφ)u+ + µ−(φ, ∂xφ)u

−

∂tu
− − λ∂xu

− = µ+(φ, ∂xφ)u
+ − µ−(φ, ∂xφ)u

−

∂tφ−D∂xxφ = a(u+ + u−)− bφ

, (3.45)

the system obtained above is exactly an one-dimension Cattaneo-Hillen model
with turning rates

µ+ =
1

2
(1− φx

λ
), (3.46)

and
µ− =

1

2
(1 +

φx
λ
). (3.47)

Now, the density of cells is chosen as

u := u+ + u− (3.48)

and their average flux, that is the net rate at which the cells cross a unit
square perpendicular to the x-axis, as

v := λ(u+ − u−). (3.49)

With this in mind, the sum of the first two equations of the Cattaneo-Hillen
model lead to

∂t(u
+ + u−) + λ∂x(u

+ − u−) = ∂tu+ ∂xv = 0 (3.50)

that is a standard conservation law. On the other hand, the subtraction of
the first two equations of the Cattaneo-Hillen model yield

∂t(u
+ − u−) + λ∂x(u

+ + u−) = −2µ+u+ − 2µ−u−

∂t(
v

λ
) + λ∂xu = −[(µ+ + µ−)(u+ − u−) + (µ+ − µ−)(u+ + u−)]

∂t(
v

λ
) + λ∂xu = −(µ+ + µ−)

v

λ
− (µ+ − µ−)u

∂tv + λ2∂xu = −(µ+ + µ−)v − λ(µ+ − µ−)u,

with the choice of turning rates provided above

µ+ + µ− = 1

µ+ − µ− = −φx
λ

meaning that the equation becomes

∂tv + λ2xu = φxu− v. (3.51)

Summing up all this results, the obtained system is
ut + vx = 0

vt + λ2ux = φxu− v

φt = Dφxx + au− bφ.

(3.52)
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3.4 Formalization of the model on a network

In previous sections the wound healing process and tissue engineering appli-
cations that accelerate this phenomenon were discussed. The healing process
is a very complex biological phenomenon, here the focus is on the process of
healing repair by fibroblasts.

In normal epidermic wound healing, the fibroblasts start wound healing
process moving on the boundary of the damaged tissue and producing new
extracellular matrix, essentially made of collagen, they move along it to
fill the wound. During this process they are driven by chemotaxis, such
chemoattractant is produced by themselves. At the end of the process a new
tissue, called scar tissue, is formed. It is important to highlight that the cells
move along the ECM fibres in both verses.

A common tissue engineer technique consists in inserting artificial scaf-
folds, within the wound, in order to provide a support to walk for fibroblasts.
In this way their repairing action is accelerated. A novel approach, first pro-
posed in [4], is to consider a one dimensional model on a network. More
precisely, a system of the form

ut + vx = 0

vt + λ2ux = φxu− v

φt −Dφxx = au− bφ

(3.53)

is considered, on each arc of the network. This means that a set of solutions
(u, v, φ) is considered in each arc. This simple model of chemotaxis on a
network is a good candidate for reproducing this configuration: the arcs of
the network represent the fibres of the scaffold and the transport equations
give the evolution of the density of fibroblasts on each fibre. Three reasons
justify this kind of approach : cell dimension is of the same order of fibre
section, so the choice of 1-D modelling is suitable, fibre width is much litter
then its length, fibre density is much litter then ECM density.

Other models for the same purpose have been proposed in literature, but
the ECM matrix was always been considered as a continuum support. This
approach provide a much detailed study of the wound healing process since
the one-dimensional arcs of the network mimic the fibres of the scaffold.

Here the definition of a network is recalled.

Definition 3.1. A one dimensional network is a connected graph G =
(N ,A) formed by two finite sets, N = {Nν : ν ∈ P = {1, ..., n}} a set of n
nodes (or vertices) and A = {Ii : i ∈ M = {1, ..,m}} a set of m arcs.

Here ej with j ∈ J = {1, ..., l} indicates the external vertices of the
graph. The internal nodes are indicated with Nν with index ν ∈ P. Each
arc is a closed and bounded interval of R and connects a pair of nodes. Arcs
are indexed by i ∈ M = {1, ...,m}.
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Since arcs are bidirectional, the graph is non-oriented, but an "artificial"
orientation is fixed in order to give a sign to the cell velocities. This means
that every arc is parametrizes as an interval Ii = [0, Li] where 0 is the
coordinate of the node at the beginning of the arc, and Li is the coordinate
of the ending node. Clearly Li is also the length of the arc ∀i ∈ {1, ....,m}.
Since an artificial orientation is set, there are incoming and outgoing arcs
for each internal node Nν ∈ P . The set of incoming arcs for an internal
node Nν is denoted as Aν

in = {Ii : i ∈ Iν} and the set of outgoing ones as
Aν

out = {Ii : i ∈ Oν}. This means that Mν = Iν∪Oν is the set of all indexes
of arcs that have an edge in Nν .

Definition 3.2. A function defined on a network (N ,A), represented as
f : A → R is a m-tuple f = (f1, ..., fm) with fi : Ii → R for all i = 1, ...,m.

Functional spaces on the network are defined in the same manner, mean-
ing that L2 is defined as

L2(A) :=

m∏
i=1

L2(Ii), (3.54)

and both can be done for C0(A),Hs(A).
Norms on such spaces are defined as

||f ||2 :=
∑
i∈M

||fi||2, ||f ||Hs :=
∑
i∈M

||fi||Hs (3.55)

Remark 3.1. A continuous function on a network is a function that has
continuous components on each arc, this means that it may not be continuous
globally.

Setting the hyperbolic-parabolic model proposed above on each arc means
ui,t + vi,x = 0

vi,t + λ2iui,x = φi,xui − vi x ∈ I, t ≥ 0, i ∈ M
φi,t −Diφi,xx = aui − bφi

(3.56)

where λi, a ≥ 0, b,Di > 0, ui stands for the concentration of cells, vi is their
average flux and φi is the concentration of chemoattractant. The coefficients
a and b could depend on the arc Ii but a(i)

b(i) should be constant for i ∈ M.

3.4.1 Discussing initial and boundary conditions

The system is coupled with initial conditions

ui(x, 0) = ui0(x), vi(x, 0) = vi0(x), φi(x, 0) = φi0(x), (3.57)
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with x ∈ Ii and i ∈ M. The regularity of such functions changes in view
of the problem. For the local existence, that will be discussed in the next
chapter, the following assumptions are made

ui0, vi0 ∈ H1(Ii), φi0 ∈ H2(Ii) for i ∈ M. (3.58)

The boundary conditions change in view of the phenomenon that needs to be
modelled. For the hyperbolic part, the general Dirichlet boundary conditions
are: {

u+i (0, t) = αi(t)u
−
i (0, t) + βi(t), if i ∈ Iout

u−i (Li, t) = αi(t)u
+
i (Li, t) + βi(t), if i ∈ Oout

(3.59)

where Iout and Oout are the set of arcs incoming and out-coming from the
outer boundaries. Moreover

u± :=
1

2

(
u± v

λ

)
. (3.60)

For the parabolic part Neumann boundary conditions are chosen.

Modelling fibroblasts chemotaxis in vitro Studying the movement
of fibroblasts chemotaxis on a network in vitro, means that the system is
isolated. This translates into null flux conditions, both for the cells and the
chemoattractant, i.e

vi(ej , t) = 0 t > 0, i ∈ M, j ∈ J ,
φix(ej , t) = 0 t > 0, i ∈ M, j ∈ J .

This means that αi(t) = 1 and βi(t) = 0 from the above Dirichlet condition,
more specifically

u+i (·, t) = u−i (·, t), (3.61)

that is equivalent to
v(·, t) = 0. (3.62)

Modelling fibroblasts in the wound In order to improve fibroblasts
repairing action, artificial scaffolds are inserted within the wound, providing
them a support to walk. Clearly in this case the network, modelling such scaf-
fold, is not isolated from the undamaged extracellular matrix. This means
that the null flux condition is no longer suitable. Contrariwise is much more
realistic that the fibroblasts enter the scaffold from some "external" nodes,
i.e nodes which communicates with the undamaged ECM. Following these
considerations let Cext = {ak, k ∈ K} be a class of such external nodes, i.e
a set of nodes which are connected with the original ECM. For each of them
the boundary conditions will be∑

i∈Ij

λivi(aj , t)−
∑
i∈Oj

λivi(aj , t) = g(t), t > 0 (3.63)
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and
φix(aj , t) = 0, t > 0 (3.64)

where Ij ,Oj are the set of incoming and out-coming arcs from these nodes.
In particular the first condition means that, for each time t > 0, there is an
incoming flux of fibroblasts, from the ECM to the network, modelling the
artificial scaffold. Since such flux can vary over time, the difference between
the incoming and out-coming flux is expressed as a function of time. The
function g is supposed to have enough regularity. In this case is not restrictive
to assume there is a continuity of chemoattractant flux.

Improving wound healing As previously discussed, fibroblasts produce
chemoattractant which influences their motion. When an extensive skin
trauma occurs, artificial scaffolds are inserted within the wound. In order to
further improve fibroblasts action, extra chemoattractant can be deposited
on top of the scaffold. In this way more fibroblasts, driven by chemotaxis,
will enter the scaffold starting from the surrounding undamaged ECM. This
approach can be modelled as follows. Let Cext a class of external nodes,
i.e nodes that are on the top of the scaffolds. This means that in each
arc that communicates with such node, a source term can be added to the
chemoattractant parabolic equation, more specifically

φi,t = Dφi,xx + aui − bφi + fi(x, t) ∀i ∈ Iext

where fi(x, t) > 0. The set Iext indicates the set of all arcs which have one
node in Cext.

This function can also be defined as a feedback fi = hi(ui(x, t)), mean-
ing that the amount of chemoattractant released, depends on the density of
fibroblasts. Such hypothesis makes sense, there will be the higher concentra-
tion of external chemoattractant where there are less fibroblasts, since the
aim is to attract them where there are not many cells yet. From a math-
ematical point of view, this means that hi can be defined as a monotone
decreasing function of ui.

3.4.2 Transmission conditions at nodes

In the internal nodes more than a solution (ui, vi, φi) is defined. For this
reason it is important to derive transmission conditions on such nodes.

Transmission conditions will couple solutions on contiguous intervals and
will relate different densities. Not only transmission conditions determine
how all the edges piece together but also they heavily condition the whole
solution. Indeed, under these constraints it is possible to prove local existence
for the system. Transmission conditions are chosen in order to guarantee two
main properties of the model; first, the conservation of the flux (continuity)
both for the density of cell and for the chemoattractant, second the energy
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dissipation at the nodes. More precisely, the sum of the incoming fluxes
balances the sum of outgoing ones, in this way the energy of the linearised
homogeneous version of the system decays in time.

Transmission conditions at each node Nν , for φi(Nν , t), reads as :
Diφix(Nν , t) =

∑
j∈Mν αν

ij (φj(Nν , t)− φi(Nν , t)) i ∈ Iν , t > 0

−Diφix(Nν , t) =
∑

j∈Mν αν
ij (φj(Nν , t)− φi(Nν , t)) i ∈ Oν , t > 0

αν
ij ≥ 0, αijν = αjiν , ∀i, j ∈ Mν

these conditions imply the continuity of the flux of chemoattractant at each
node Nν , for all t > 0, i.e∑

i∈Iν

Diφix(Nν , t) =
∑
i∈Oν

Diφix(Nν , t).

In a similar way, the conditions for the unknowns vi(Nν , t) and ui(Nν , t) are
−λivi(Nν , t) =

∑
j∈Mν Kν

ij (λjuj(Nν , t)− λiui(Nν , t)) i ∈ Iν , t > 0

λivi(Nν , t) =
∑

j∈Mν Kν
ij (λjuj(Nν , t)− λiui(Nν , t)) i ∈ Oν , t > 0

Kν
ij ≥ 0, Kijν = Kjiν , ∀i, j ∈ Mν

the above conditions ensure the conservation of the flux of the density of
cells at each node Nν , for t > 0, i.e∑

i∈Iν

λivi(Nν , t) =
∑
i∈Oν

λivi(Nν , t).

It is important to highlight that the previous equation corresponds to the
conservations of the total mass, meaning that no death or birth of individuals
occurs. Such physical property reads as∑

i∈M

∫
Ii

ui(x, t)dx =
∑
i∈M

∫
Ii

ui0(x, t)dx.

Now a full explanation of these transmission conditions is carried on, follow-
ing [17].

Dissipative conditions

Here the attention is restricted to dissipative conditions. Consider a linear
version of the hyperbolic system, namely :{

ui,t + vi,x = 0

vi,t + λ2iui,x = −vi
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and consider the sum of the m energies of such system, i.e

E1(t) =
∑
i∈M

∫
Ii

(
v2i (x, t) + λ2iu

2
i (x, t)

)
dx. (3.65)

With the same idea, consider the sum of the m energies of the homogeneous
parabolic equation of the chemoattractant,

φi,t = Diφi,xx − bφi

that is

E2(t) =
∑
i∈M

∫
Ii

φ2i (x, t)dx. (3.66)

The following sufficient conditions at nodes ensure that the energies decay
in time :

Γν
1(t) =

∑
i∈Iν

λ2i viui(Nν , t)−
∑
i∈Oν

λ2i viui(Nν , t) ≥ 0, ν ∈ P

Γν
2(t) =

∑
i∈Iν

Diφiφix(Nν , t)−
∑
i∈Oν

Diφiφix(Nν , t) ≤ 0, ν ∈ P

Moreover such conditions imply that the linear unbounded operators, ap-
pearing in the linearised equations above, are dissipative. This property is
important in order to apply the theory of linear contraction semigroups that
will be used to prove local existence in the next chapter.

Starting from Γν
1(t), since the inequality holds for each node, it follows

∑
ν∈P

(∑
i∈Iν

λ2i viui(Nν , t)−
∑
i∈Oν

λ2i viui(Nν , t)

)
≥ 0 ⇔

∑
ν∈P

(
−
∑
i∈Iν

λ2i viui(Li, t) +
∑
i∈Oν

λ2i viui(0, t)

)
≤ 0
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rearranging sums on the arcs∑
i∈M

[−λ2iuivi]
Li
0 ≤ 0 ⇔

∑
i∈M

∫
Ii

d

dxi
[−λ2iuivi]dxi ≤ 0 ⇔

∑
i∈M

∫
Ii

[−λ2iui,xvi − λ2iuivi,x]dxi ≤ 0 ⇒

∑
i∈M

∫
Ii

[−λ2iui,xvi − λ2iuivi,x − v2i ]dxi ≤ 0 ⇔

∑
i∈M

∫
Ii

[−λ2i vi,xui + vi(−λ2iui,x − vi)]dxi ≤ 0 ⇔

∑
i∈M

∫
Ii

2(λ2iuiui,t + vivi,t)dxi ≤ 0 ⇔

d

dt
E1(t) ≤ 0.

Now similar computations are done for Γν
1(t). Starting from∑

ν∈P

(∑
i∈Iν

Diφiφi,x(Nν , t)−
∑
i∈Oν

Diφiφi,x

)
≤ 0 ⇔

∑
ν∈P

(∑
i∈Iν

Diφiφi,x(Li, t)−
∑
i∈Oν

Diφiφi,x(0, t)

)
≤ 0∑

i∈M
[Diφiφi,x]

Li
0 ≤ 0 ⇒

∑
i∈M

[Diφiφi,x]
Li
0 −

∑
i∈M

∫
Ii

Diφ
2
i,xdxi ≤ 0,

this last result is obtained integrating by parts on every arc the following
expression ∑

i∈M

∫
Ii

Diφiφi,xxdxi ≤ 0 ⇒

∑
i∈M

∫
Ii

Diφiφi,xx − bφ2i dxi ≤ 0 ⇔

∑
i∈M

∫
Ii

φi (Diφi,xx − bφi) dxi ≤ 0 ⇔

∑
i∈M

∫
Ii

2φiφi,tdxi ≤ 0 ⇔

d

dt
E2(t) ≤ 0.
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Transmission conditions for u and v

In order to derive the transmission conditions of u and v, first the simple
case of two arcs with one node is considered. Let Nν be the internal node
and I1, I2 respectively the incoming and outcoming arcs. The conservation
flux equation and the sufficient conditions for the energy dissipation leads to

λ1v1 = λ2v2,

λ21v1u1 − λ22v2u2 ≥ 0,

substituting the first equation in the second one, this leads to

λ2v2(λ1u1 − λ2u2) ≥ 0,

it is possible to make this condition true for ∀t > 0 choosing

λ1v1 = λ2v2 = k(λ1u1 − λ2u2),

with k > 0. In this way the following constraint is obtained

λ1v1(λ1u1 − λ2u2)
2 = λ2v2(λ1u1 − λ2u2)

2 ≥ 0.

In the case of m arcs intersecting in Nν , following the same method provides

−
∑
i∈Iν

λivi(λjuj − λiui) +
∑
i∈Oν

λivi(λjuj − λiui)

hence some relations among values vi and (λjuj−λiui) are needed. Following
the case of one node with two arcs, it is possible to assume that such relation
is linear, meaning that

− λivi(Nν , t) =
∑

j∈Mν

Kν
ij (λjuj(Nν , t)− λiui(Nν , t)) i ∈ Iν , t > 0,

λivi(Nν , t) =
∑

j∈Mν

Kν
ij (λjuj(Nν , t)− λiui(Nν , t)) i ∈ Oν , t > 0.

Now inserting the above relationship into the flux continuity

−
∑
i∈Iν

∑
i∈Mν

kνij(λjuj − λiui) =
∑
i∈Oν

∑
i∈Mν

kνij(λjuj − λiui)∑
i,j∈Mν

kνij(λjuj − λiui) = 0,

summing the symmetrical terms

kνij(λjuj − λiui) + kνji(λiui − λjuj) = λiui(k
ν
ji − kνij) + λjuj(k

ν
ij − kνji)
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and so the sum can be written as∑
i<j

λiui(k
ν
ji − kνij) + λjuj(k

ν
ij − kνji) =∑

i<j

(kνij − kνji)(λjuj − λiui)

now symmetry implies

1

2

∑
i,j

(kνij − kνji)(λjuj − λiui) = 0 ⇔

1

2

∑
j

λjuj [
∑
i

(kνij − kνji)]−
1

2

∑
i

λiui[
∑
j

(kνij − kνji)] = 0 ⇔

1

2

∑
j

λjuj [
∑
i

(kνij − kνji)] +
1

2

∑
j

λjuj [
∑
i

(kνij − kνji)] = 0 ⇔

∑
j

λjuj [
∑
i

(kνij − kνji)] = 0

this means that a sufficient condition is∑
i∈M

(kνij − kνji) = 0 ∀j ∈ Mν .

Now, considering dissipation conditions, it follows

∑
i∈Iν

λiui

−
∑

j∈Mν

kνij(λjuj − λiui)

−
∑
i∈Oν

λiui

 ∑
j∈Mν

kνij(λjuj − λiui)

 ≥ 0 ⇔

∑
i,j∈Mν

kνijλi(λi − λj) ≥ 0,

sufficient conditions to make it true are

kνij = kνji ≥ 0 ∀i, j ∈ Mν .

Transmission conditions for φ

In order to derive the transmission conditions of φ, first the simple case of
two arcs with one node is considered, as done for u, v

D1φ1,x = D2φ2,x,

D1φ1φ1,x −D2φ2φ2,x ≤ 0

replacing the first equation in the second, it follows

D1φ1,x(φ1 − φ2) = D2φ2,x(φ1 − φ2) ≤ 0,
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imposing transmission conditions

D1φ1,x = α(φ2 − φ1), −D2φ2,x = α(φ2 − φ1),

for every α ≥ 0 and ∀t ≥ 0, the third inequality becomes

−D1α(φ2 − φ1)
2 = −D2α(φ2 − φ1)

2 ≤ 0.

Now, for the general case of m arcs intersecting in Nν , fix an index j ∈ Iν ,
from the sufficient conditions for energy dissipation an the flux continuity it
follows∑

i∈Iν

Diφiφi,x(Nν , t)−
∑
i∈Oν

Diφiφi,x(Nν , t) ≤ 0 ⇔

Djφjφj,x(Nν , t) +
∑

j 6=i∈Iν

Diφiφi,x(Nν , t)−
∑
i∈Oν

Diφiφi,x(Nν , t) ≤ 0 ⇔

∑
j 6=i∈Iν

Diφi,x(φi − φj)(Nν , t)−
∑
i∈Oν

Diφi,x(φi − φj)(Nν , t) ≤ 0

∑
i∈Iν

Diφi,x(φj − φi)(Nν , t) +
∑
i∈Oν

Diφi,x(φj − φi)(Nν , t) ≤ 0

and the same is obtained with j ∈ Oν . Following these computations the
transmission conditions at nodes become{

Diφix(Nν , t) =
∑

j∈Mν αν
ij (φj(Nν , t)− φi(Nν , t)) i ∈ Iν , t > 0

−Diφix(Nν , t) =
∑

j∈Mν αν
ij (φj(Nν , t)− φi(Nν , t)) i ∈ Oν , t > 0

In order to obtain constraints for coefficients, the above conditions are in-
serted in the relations for flux conservation and energy dissipation. The
computations are the same as done for u and v, with φ in role of u and φx
in role of v. Substituting the previous conditions in the conservation of flux,
it follows ∑

i∈Iν

∑
j∈Mν

αν
ij(φj − φi) = −

∑
i∈Oν

∑
j∈Mν

αν
ij(φj − φi)∑

i,j∈Mν

αν
ij(φj − φi) = 0

ensured by the constraint∑
i∈Mν

(αν
ij − αν

ji) = 0 ∀j ∈ Mν .

Substituting in the dissipation conditions∑
i∈Iν

φi
∑

j∈Mν

αν
ij(φj − φi) +

∑
i∈Oν

φi
∑

j∈Mν

αν
ij(φj − φi) ≤ 0

∑
i,j∈Mν

αν
ijφi(φj − φi) ≤ 0.
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with the constraint

αν
ij = αν

ji ∀i, j ∈ Mν , αν
ij ≥ 0.

it follows ∑
i,j∈Mν

αν
ijφi(φj − φi) ≤ 0 ⇔

∑
i<j

αν
ijφi(φj − φi) + αν

ijφj(φi − φj) ≤ 0 ⇔

∑
i<j

αν
ijφi(φj − φi)− αν

jiφj(φj − φi) ≤ 0 ⇔

∑
i<j

αν
ijφi(φj − φi)(−)(φj − φi) ≤ 0 ⇔

−
∑
i<j

αν
ij(φj − φi)

2 ≤ 0.
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Chapter 4

Analytical results

Here recalling [17], the following system is now analysed from an analytical
point of view

ui,t + λivi,x = 0

vi,t + λiui,x = φi,xui − vi x ∈ I, t ≥ 0, i ∈ M
φi,t −Diφi,xx = aui − bφi

(4.1)

with λi, a ≥ 0, b,Di > 0 and β = 1. The system is completed with initial
conditions

ui0, vi0 ∈ H1(Ii), φi0 ∈ H2(Ii) (4.2)

for i ∈ M. On the outer points of the graph, ai, null flux conditions are set,
i.e

vi(ai, t) = 0 i ∈ M, t > 0 (4.3)

φi,x(ai, t) = 0 i ∈ M, t > 0. (4.4)

Moreover, at each node Nν , transmission conditions for the unknowns ui, vi
are {

−λivi(Nν , t) =
∑

j∈Mν Kν
ij (uj(Nν , t)− ui(Nν , t)) i ∈ Iν ,

λivi(Nν , t) =
∑

j∈Mν Kν
ij (uj(Nν , t)− ui(Nν , t)) i ∈ Oν ,

(4.5)

for t > 0, with Kν
ij ≥ 0 and Kν

ij = Kν
ji, for all i, j ∈ Mν . Similarly, the

transmission conditions for φi are{
Diφix(Nν , t) =

∑
j∈Mν αν

ij (φj(Nν , t)− φi(Nν , t)) i ∈ Iν ,

−Diφix(Nν , t) =
∑

j∈Mν αν
ij (φj(Nν , t)− φi(Nν , t)) i ∈ Oν ,

(4.6)

for t > 0, where αν
ij ≥ 0 and αν

ij = αν
ji, for all i, j ∈ Mν .

A local solution is obtained by means of linear contraction semigroups
theory, abstract theory of non-homogeneous and semilinear evolution prob-
lems. Transmission conditions at nodes are a key element here. Unknowns
are proven to exist locally considering separately the hyperbolic and parabolic
part of the whole system and then unified with a fixed point method.

43
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Remark 4.1. It is important to highlight that the chemoattractant equation
for (4.1) is the same as the one for (3.52). Moreover, choosing ui = λiwi and
replacing it in the hyperbolic part of (4.1), it follows

λiwi,t + λivi,x = 0

vi,t + λ2iwi,x = λiφi,xwi − vi

φi,t = Diφi,xx + λiaiwi − bφi

then, rescaling the coefficient φi,xλi = ϕi,x of the non-linear part, the system
reads as 

wi,t + vi,x = 0

vi,t + λ2iwi,x = ϕi,xwi − vi

ϕi,t = Dϕi,xx + a′iwi − bϕi

which is exactly (3.52), the system obtained in the previous chapter. The
same argument applies for the transmission conditions of (3.52). This means
that the systems, coupled with their respective conditions at the nodes, are
equivalent.

4.1 Local existence for φ

Let X := L2(A) be the space taken into consideration. An element here is
a function defined on the whole set of oriented arcs by means of {φi}i=1,...,n

and such that φi ∈ L2(Ii). Let A2 : D(A2) → X be a linear operator defined
by

D(A2) = {φ ∈ H2(A) : (4.4), (4.6), }
A2(φ) = {Dφi,xx − bφi}i∈M

This space is endowed with the norm

|| · ||H1(A) = || · ||L2(A) + || ·,x ||L2(A)

that adapted to a network reads as

||φ||H1(A) =
∑
i∈M

||φi||L2(Ii) +
∑
i∈M

||φi,x||L2(Ii).

In order to prove the local existence of the parabolic equation involving the
chemoattractant, the following equivalent problem is considered

φ ∈ C([0, T ];D(A2)) ∩ C1([0, T ];X)

φ′(t) = A2φ(t) + g(t) t ∈ [0, T ]

φ(0) = φ0 ∈ D(A2)

(4.7)
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where g(t) = au(t) and T > 0.
Local existence of such problem is proven following inhomogeneous evo-

lution equations theory.
The proof here is given in the case of a graph composed of a single node

N and m arcs Ii connecting that node to the external points ei, i ∈ M =
1, 2, ...,m. When integrating on internal arcs Ii = (Nν , Nµ), two transmission
terms arise, each one corresponding to a node. In this case, the sum of all
the transmission terms at each node of the graph can be treated separately,
as in the case of a single node.

Proposition 4.2. Let T < 1, g ∈ C([0, T ];H1(A))∩ C1([0, T ], L2(A)), with
M > sup[0,T ] ||g(t)||H1 , and K > ||φ0||H2 + 4M , then there exists a unique
solution to the problem (4.7) and

sup
t∈[0,T ]

||φ(t)||H2 ≤ K.

Moreover, φ ∈ H1((0, T );H1(A)).

Proof. The first step consists in proving that A2 generates a contraction
semigroup in X. This is achieved by showing that A2 is m-dissipative in X.
A2 is dissipative in X, i.e (A2φ, φ) ≤ 0 for every φ ∈ D(A2) :

(A2φ, φ) =
∑
i∈M

∫
Ii

(Diφi,xx − bφi)φidx =

∑
i∈M

∫
Ii

(Diφi,xxφi − bφ2i )dx =

integrating by parts the left term in the integral and then using transmission
conditions for φ it follows

= −
∑
i∈M

∫
Ii

(Diφ
2
i,x − bφiφi)dx+

∑
i∈I

Diφi,x(N, t)φi(N, t)

−
∑
i∈O

Diφi,x(N, t)φi(N, t)

= −1

2

∑
i,j∈M

αij(φj(N)− φi(N))2 −
∑
i∈M

∫
Ii

(Diφ
2
i,x − bφ2i )dx ≤ 0.

Since A2 is dissipative, now is sufficient to show that for all ϕ ∈ L(A), there
exists φ ∈ D(A2) such that φ−A2φ = ϕ. In order to prove this, the following
bilinear form a(φ, ϕ) : (H1(A))2 → R is introduced

a(φ, ϕ) =
∑
i∈M

∫
Ii

(Diφi,xϕi,x + (1 + b)φiϕi)dx

−
∑

i,j∈M
αij(φj(N)− φi(N))2ϕi(N).
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This form is continuous, i.e |a(φ, ϕ)| ≤ C||φ||H1 ||ϕ||H1 , indeed :

|a(φ, ϕ)| ≤
∑
i

∫
Ii

|Diφi,xϕi,x|dx+
∑
i

∫
Ii

|(1 + b)φiϕi|dx

+
∑
i,j

αij |φj − φi||ϕi|(N)

≤
∑
i

Di||φi,x||2||ϕi,x||2 +
∑
i

(1 + b)||φi||2||ϕi||2

+
∑
i,j

αij max{||φj ||1, ||φi||1}||ϕi||1

≤ C1||φ||H1(A)||ϕ||H1(A) + C2||φ||H1(A)||ϕ||H1(A)

+
∑
i,j

αij max{||φj ||2, ||φi||2}||ϕi||2

≤ C||φ||H1(A)||ϕ||H1(A).

Moreover a(·, ·) is coercive, i.e a(·, ·) ≥ C||φ||2H1 :

a(φ, φ) =
∑
i

∫
Ii

Di(φi,x)
2 + (1 + b)(φi)

2dx

−
∑

i,j∈M
αij(φj − φi)φi(N)

≥
∑
i∈M

∫
Ii

Di(φi,x)
2dx+

∑
i∈M

∫
Ii

(1 + b)(φi)
2dx

≥ C||φ||2H1 .

This means that all hypothesis of Lax-Milgram Theorem hold, that is ∀ϕ ∈
L2(A), there exists a unique φ ∈ H1(A) such that, for all ψ ∈ H1(A), it
holds that

a(φ, ψ) =
∑
i∈M

∫
Ii

φiψidx,

taking ψi ∈ H1
0 (Ii) for all i ∈ M, it follows that φi,x ∈ H1(Ii), then∑

i

∫
Ii

(−Diφi,xx + (1 + b)φi)ψidx+
∑
i∈I

Di(φi,x(N)ψi(N)− φi,x(ei)ψi(ei))

−
∑
i∈O

Di(φi,x(N)ψi(N)− φi,x(ei)ψi(ei))−
∑

i,j∈M
αij(φj − φi)(N)ψi(N)

=
∑
i∈M

∫
Ii

ϕiψidx.

The above inequality hold for all ψi ∈ C∞
0 (Ii), then

−φi,xx + (1 + b)φi = ϕi
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almost everywhere for all i ∈ M, moreover, with suitable choices of ψi(N), ψi(ai)
φ satisfies the right boundary and transmission conditions to belong to
D(A2). Since A2 ism-dissipative it generates a contraction semigroup τ2(t) ∈
X. Since g ∈ C([0, T ], L2(A)), it is possible to apply the theory for non-
homogeneous problems to conclude that there exists a unique solution to
the problem (4.7). Such solution is given by

φ(t) = τ2(t)φ0 +

∫ t

0
τ2(t− s)g(s)ds.

Posing

F(t) :=

∫ t

0
τ2(t− s)g(s)ds

it follows that F ∈ C1([0, T ];L2(A)) ∩ C([0, T ];D(A2)) and, thanks to con-
volution properties,

F ′(t) =

∫ t

0
τ2(s)g

′(t− s)ds+ τ2(t)g(0).

Moreover A2F(t) = F ′(t) − g(t). Now keeping in mind that T < 1 and the
definitions of M,K it follows

||φ(t)||D(A2) = ||φ(t)||X + ||A2φ(t)||X
≤ ||φ0||D(A2) + ||F(t)||X + ||A2F(t)||X

≤ ||φ0||D(A2) +

∫ t

0
||g(s)||Xds+ ||F ′(t)||X + ||g(t)||X

≤ ||φ0||D(A2) + ||g(0)||X + ||g(t)||X + T sup
t∈[0,T ]

||g(t)||X + T sup
t∈[0,T ]

||g′(t)||X

≤ ||φ0||D(A2) + 2TM + 2M

≤ ||φ0||D(A2) + 4M ≤ K.

The inequality holds for any t, this means

sup
t∈[0,T ]

||φ(t)||H2 ≤ K.

Now, in order to prove the last claim, i.e φ ∈ H1((0, T );H1(A)), it is suffi-
cient to prove that there exists C > 0 such that, for all 0 < t1 < t2 < T∫ t2

t1
||φx(t+ h)− φx(t)||22 ≤ C|h|2.

for all h ∈ R, with |h| < {t1, T − t2}. Let ∆hψ(t) := ψ(t+ h)− ψ(t)), using
the equation it is possible to write∫ t2

t1

∫
Ii

(∆hφi,t∆
hφi −Di∆

hφi,xx∆
hφi +∆hgi∆

hφi − (∆hφi)
2)dxdt = 0,
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then it follows

∑
i∈M

(∫
Ii

(∆hφi(t2))
2dx+

∫ t2

t1

∫
Ii

(∆hφi,x)
2dxdt

)

≤ C

∫ t2

t1

(∑
i∈I

Di(∆
hφi,x)(∆

hφi)(N, t)−
∑
i∈O

Di(∆
hφi,x)(∆

hφi)(N, t)

)
dt

+ C
∑
i∈M

(∫
Ii

(∆hφi(t1))
2dx+

∫ t2

t1

∫
Ii

(∆hgi)
2dxdt

)
,

hence the requested inequality follows thanks to the non-positivity of the
first term on the right-hand side, since φ, g ∈ C1((0, T );L2(A)).

Remark 4.3. In the previous chapter improving wound healing was dis-
cussed. This was modelled including a function fi, depending on the space-
time or as a function of the density of fibroblasts, in the chemoattractant
equation as

φi,t = Dφi,xx + aui − bφi + fi ∀i ∈ Iext

where fi(x, t) > 0 or fi = hi(ui(x, t)), with Cext a class of external nodes, i.e
nodes that are on the top of the scaffolds and Iext the set of all arcs which
have one node in Cext.

In this case, the parabolic equation with homogenous boundary condi-
tions 4.4 and transmission conditions 4.6 reads as the problem 4.7 with g
function defined as g = au+ z, where

z = (zi)i∈M

{
fi(x, t) > 0, i ∈ Iext

0 otherwise

where the set Iext is the set of the arcs which communicates with a defined
set Cext of external nodes. In the case of a feedback fi = hi(ui(x, t)) it follows

z = (zi)i∈M

{
hi(ui(x, t)) > 0, i ∈ Iext

0 otherwise

In it important to highlight that transmission conditions 4.6 hold also in this
case, since they were derived keeping in mind flux conservation and dissipa-
tion of m energies of the linearised problem φi,t = Diφi,xx−bφi, meaning that
g does not play a role in the computation. In both cases fi can be defined
sufficiently regular such that z ∈ C([0, T ];H1(A))∩ C1([0, T ], L2(A)) mean-
ing that g ∈ C([0, T ];H1(A))∩ C1([0, T ], L2(A)) and M > sup[0,T ] ||g(t)||H1 ,
and so using proposition 4.2 local existence holds also in this case.
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4.2 Local existence for (u,v)

Let Y = ∪i∈M(L2(Ii))
2 be a functional space and A1 : D(A1) → Y be a

linear operator with

D(A1) = {U = (u, v) ∈ (H1(A))2 : (4.3), (4.5)}
A1U = (−λivi,x,−λiui,x)i∈M

and the hyperbolic problem
U ∈ C([0, T ];D(A1)) ∩ C1([0, T ];Y )

U ′(t) = A1U(t) + F (t, U(t)), t ∈ [0, T ]

U(0) = (u0, v0) ∈ D(A1)

(4.8)

where

F (t, U(t)) = {(0, fi(t)ui(t)− vi(t))}i∈M

with the function fi defined as

fi(t) = φi,x(t).

In order to prove local existence for (4.8), the following lemma is needed.

Lemma 4.4. Let W = (w, z) ∈ ∪i∈M(C∞
0 (Ii))

2, there exists a unique U =
(u, v) ∈ D(A1) such that (I −A1)U =W .

Proof. Let δi = 1 if i ∈ I and δi = −1 if i ∈ O. Consider the following
elliptic problem

−λ2iui,xx + ui = −λizi,x + wi,

δiλ
2
iui,x(N) =

∑
j∈MKij(uj(N)− ui(N)),

ui,x(ai) = 0.

In proposition 4.2, in the steps to obtain m-dissipativity of A2, after applying
Lax-Milgram theorem, the uniqueness of the solution for the same type of
problem was shown. Moreover the components of the unique solution u,
belongs to C∞(Ii). Setting vi = zi − λiui,x, if follows that vi ∈ C∞(Ii) and

λivi,x + ui = wi,

−δiλivi(N) =
∑

j∈MKij(uj(N)− ui(N)),

vi(ai) = 0.
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It is important to highlight that if f ∈ (C([0, T ];H1(A)), since in the
previous section was shown that ||φ(t)||H2 is bounded, this means that
F (t, U(t)) = f(t)u(t)− βv(t) is a globally Lipschitz function, meaning that
for anyK > 0 there is a constant LF (K), such that for all f ∈ C([0, T ];H1(A))
with sup[0,T ] ||f(t)||H1(A) ≤ K, it follows

sup
[0,T ]

||F (t, U1(t))− F (t, U2(t))||E ≤ LF (K) sup
[0,T ]

||U1(t)− U2(t)||E

where E = ∪i∈M(H1(Ii))
2.

Proposition 4.5. Let f ∈ C([0, T1];H
1(A))∩H1((0, T1);L

2(A)). TakeK >
sup[0,T1] ||f(t)||H1 andM > 2(||u0||H1+||v0||H1). Fix T < min{T1, (2LF (K))−1},
then there exists a unique solution to the problem (4.8) on the interval [0, T ]
and

sup
t∈[0,T ]

||U(t)||E ≤M.

Proof. The first thing to prove is that A1 is a m-dissipative operator in Y .
Let U ∈ D(A1), using the transmission conditions at the nodes it follows

(A1U,U) =
∑
i∈M

∫
Ii

(λivi,xui − λiui,xvi)

= −

[∑
i∈I

λivi(N)ui(N)−
∑
i∈I

λivi(N)ui(N)

]

= −1

2

∑
i,j∈M

Kij(uj(N)− ui(N))2 ≤ 0.

In order to complete the proof of the m-dissipativity of A1, the following
bilinear form a : D(A1)×D(A1) → R is introduced

a(U, Ū) =
∑
i∈M

∫
Ii

((λivi,x + ui)(λiv̄i,x + ūi) + (λiui,x + vi)(λiūi,x + v̄i))dx.

Such bilinear form is continuous and coercive, meaning that Lax-Milgram
theorem applies, i.e for all Ψ = (ψ1, ψ2) ∈ (L2(A))2, there exists a unique
U ∈ D(A1) such that, for all Ū ∈ D(A1), the following inequality holds:

a(U, Ū) =
∑
i∈M

∫
Ii

(ψ1(λiv̄i,x + ūi) + ψ2(λiūi,x + v̄i)).

Then, following 4.4, (I−A1)U = Ψ almost everywhere. This means that A1

is a m-dissipative operator, hence the generator of a contraction semigroup
in Y , τ1. Let introduce the following set

BM = {U ∈ C([0, T ];E) : sup
t≤T

||U(t)||E ≤M}



4.3. LOCAL EXISTENCE FOR THE WHOLE SYSTEM 51

equipped with the distance generated by the norm of C([0, T ];E). The
solution to the problem (4.8) is the unique fixed point in BM of the function

Φ(U) = ΦU (t) = τ1(t)U0 +

∫ t

0
τ1(t− s)F (s, U(s))ds

with ΦU ∈ C([0, T ];E). Now thanks to the Lipschitz continuity of F in E,
for U ∈ BM , it follows

||ΦU (t)||E ≤ ||U0||E + TLF (K)M ≤M

and, for V ∈ BM ,

||ΦU (t)− ΦV (t)||E ≤ LF (K)

∫ t

0
||U(t)− V (t)||E ≤ 1

2
sup
[0,T ]

||U(t)− V (t)||E .

Then it is possible to conclude and say that Φ is a contraction in BM and it
has a unique fixed point U ∈ BM

U(t) = τ1(t)U0 +

∫ t

0
τ1(t− s)F (s, U(s))ds.

Using the above expression, it is possible to deduce that, for t ∈ [0, T − h],
h > 0

||U(t+ h)− U(t)||Y ≤ ||τ1(h)U0 − U0||Y +

∫ h

0
||F (s, U(s))||Y ds

+

∫ t

0
((||f(s)||H1 + 1)||U(s+ h)− U(s)||Y + ||U(s)||E ||f(s+ h)− f(s)||2)ds.

Since f ∈ C([0, T ];H1(A)) ∩H1((0, T );L2(A)), using Gronwall’s lemma

||U(t+ h)− U(t)||Y ≤ C(M,K, T )h.

Using the above inequality and, again, the assumptions on f , it follows

||F (s+ h,U(s+ h))− F (s, U(s))||2 ≤ C1(K,M,T )h

and then U is the solution to the problem (4.8) since U0 ∈ D(A1).

4.3 Local existence for the whole system

In the previous sections local existence for the unknowns (u, v), φ was dis-
cussed, considering separately the hyperbolic and parabolic part of the sys-
tem (4.1). Now the local existence for the whole system is obtained combin-
ing the local solutions of the two disjointed problems with the fixed point
technique.
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Remark 4.6. The solutions of the disjoint systems verify

sup
[0,T ]

||ut(t)||2, sup
[0,T ]

||vt(t)||2, sup
[0,T ]

||φt(t)||2 ≤ Q(K,M),

where the quantity Q depends only on a, b, λi, Di besides M and K.

Theorem 4.7. (Local existence) There exists a unique local solution (u, v, φ)
to the hyperbolic-parabolic system

(u, v) ∈ (C([0, T ];H1(A) ∩ C1([0, T ];L2(A)))2,

φ ∈ C([0, T ];H2(A) ∩ C1([0, T ];L2(A)).

Moreover, φ ∈ H1((0, T );H1(A)).

Proof. LetM > 2(||u0||H1+||v0||H1),K > ||φ0||H2+4M , T ≤ min{(2LF (K))−1, 1}
and

BMK ={(u, v, φ) ∈ (C([0, T ];H1(A)))2 × C([0, T ];H2(A)) :

sup
[0,T ]

||u(t), v(t)||E ≤M, sup
[0,T ]

||φ(t)||H2 ≤ K,

u, φ ∈ C1([0, T ];L2(A)), sup
[0,T ]

||u(t)||2, sup
[0,T ]

||φt(t)||2 ≤ Q(K,M)}.

Then consider the function G defined in BMK as:

(u0, v0, φ0) ∈ BMK ,

G(u0, v0, φ0) = (u1, v1, φ1),

where U1 = (u1, v1) is the solution to (4.8) with f = φ0x and φ1 is the solution
to problem (4.7) with g = au1. Moreover the previous proposition ensures
that G is well defined from BMK to itself. Now let

(û0, v̂0, φ̂0), (ū0, v̄0, φ̄0) ∈ BMK ,

(ū1, v̄1, φ̄1) = G(ū0, v̄0, φ̄0),

(û1, v̂1, φ̂1) = G(û0, v̂0, φ̂0),

F̄ = (0, φ̄0xū
1 − v̄1),

F̂ = (0, φ̂0xû
1 − v̂1);

C(M,K) constants depending only on the quantities K,M and γ(t) func-
tions of t which go to zero when t goes to zero. Then estimates follows

||Ū1(t)− Û1(t)||E = sup
[0,T ]

||
∫ t

0
τ1(t− s)(F̄ (s)− F̂ (s))ds||E

≤ C(K,M)

∫ T

0

(
||Ū1(t)− Û1(t)||E + ||φ̄0(t)− φ̂0(t)||H2

)
dt,
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from which

sup
[0,T ]

||Ū1(t)− Û1(t)||E ≤ γ(T )C(M,K) sup
[0,T ]

||φ̄0(t)− φ̂0(t)||H2 .

Moreover, using the equations and the above inequality, it follows

sup
[0,T ]

||ū1t (t)− û1t (t)||2 ≤ C(M,K)γ(T ) sup
[0,T ]

||φ̄0(t)− φ̂0(t)||H2 .

Finally using, again, the previous inequalities

sup
[0,T ]

||φ̄1t (t)− φ̂1t (t)||2 ≤ γ(T )C(M,K) sup
[0,T ]

||φ̄0(t)− φ̂0(t)||H2 .

If T is sufficiently small, then G is a contraction function in BMK and let
(U, φ) = (u, v, φ) be its unique fixed point :

U(t) = τ1U0 +

∫ t

0
τ1(t− s)F (s, U(s))ds,

φ(t) = τ2φ0 + a

∫ t

0
τ2(t− s)u(s)ds.

Now u ∈ C1([0, T ];L2(A)), φ ∈ H1((0, T );H1(A) and u ∈ C1([0, T ];L2(A)),
therefore (U, φ) = (u, v, φ) is the claimed solution.
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Chapter 5

Conclusion and future work

The study of partial differential equations defined on a network has been
developed in recent years but is still a novel area of research. In this work
a one-dimensional model on a network for modelling wound healing process
was proposed. Starting from the biological background and some mathe-
matical models, the hyperbolic-parabolic system was derived and set on a
network, with suitable nodes conditions. Finally, some analytical results for
the boundary homogenous case where presented.

Lots of questions now arise from modelling the wound healing process
as a hyperbolic-parabolic system on networks. For instance it would be in-
teresting to model a suitable feedback, in the chemoattractant equation, in
order to reach a target stationary state, where fibroblasts are spread all over
the network. This could have a direct application in the field of regenera-
tive medicine, because it would allow to understand how to distribute the
chemoattractant in the scaffold, in order to lead to an optimal reconstruction
of the tissue. Moreover is interesting to explore new suitable conditions at
nodes and to rediscuss local existence. Indeed, during dermal wound healing
the scaffold is not isolated, meaning that null flux boundary conditions are
not suitable. Last but not least, numerical simulations could be carried on,
since they provide a preliminary tool to explore the analytical properties of
the model.
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