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Introduction

The aim of this thesis is the study of the main features and peculiarities of the theory of higher spin �elds in a
4-dimensional Anti de Sitter space and its relation via holography with a conformal theory of scalar �elds in
a 3-dimensional Minkowski space-time. The holographic principle in the theory of fundamental interactions
originates from the idea that 3-dimensional physics could be described by a theory in 2 spatial dimensions,
which emerged after the computation of the black-hole Bekenstein-Hawking entropy [1]. It was proven that
such entropy is the highest attainable for a given region of space containing a certain mass, according to
General Relativity and Quantum Mechanics [2], and depends only on the surface of the region and not on
its volume. Since entropy is an extensive quantity, it has been suggested by Susskind in [3] that physics in
a volume of space, that we call bulk, could be described by a dual theory that lived only on the boundary
surface, thus explaining the entropy dependence on its extension. This is analogous to what happens with
holograms: an object appears to have 3 dimensions but all its information is actually encoded in the surface
of the screen that projects it. This idea has been therefore called holographic principle ever since.

The AdS/CFT correspondence is a class of conjectured dualities that realize this principle. The bulk is
a curved space in (d+ 1) dimensions which is asymptotically the Anti de Sitter (AdSd+1) space, namely the
vacuum solution of Einstein equations when the cosmological constant is negative. This space is a vacuum
of a speci�c gravitational theory set in the bulk. Its boundary, located at in�nity, is the d dimensional �at
space, where a Conformal Field Theory (CFT ), dual to the bulk theory, is set. The correspondence identi�es
the asymptotic values of the �elds in the bulk near the boundary as sources for �elds in the CFT and its
partition function with the one of the theory in the bulk. Thus the physical content of the two theories is
the same and one can be used to prove statements about the other. In particular, correlation functions of
the CFT can be found by using the partition function of the bulk. This amounts to the computation of the
so-called Witten diagrams, which depict the (regularized) calculation of a correlator of the bulk theory when
the base points are moved to the boundary. Witten diagrams can thus be seen as Feynman diagrams in such
limit.

The �rst example of this correspondence has been the Maldacena conjecture [41], which was motivated
by string theory arguments as a duality between open and closed strings and between two interpretations
of branes, respectively as Dirichlet branes where open strings are attached and black-hole-like solutions of
the gravitation theory provided by the closed strings. Under certain limits, this duality involves a weakly
coupled supergravity theory in AdS5 × S5 and a certain supersymmetric quantum gauge �eld theory in the
boundary that is conformal and strongly coupled. Moreover, its gauge group is SU(N) with N large. This
has important phenomenological implications: gauge theories with a high coupling constant are di�cult to
treat, since perturbation theory does not work and lattice methods have some drawbacks. On the other hand
the duality allows to perform computations on the bulk with a weakly coupled classical theory, that is easier
to handle. Many interesting results have been achieved this way (see for example [4] for a comprehensive
review).

The Maldacena duality could help to shed some light on how to quantize gravity and on string theory.
However, no proof has yet been given due to lack of a non-perturbative formulation of string theory in AdS.
In order to better understand the AdS/CFT framework it could be useful to analyze it in simpler cases.
Since the paper by Maldacena, several other dualities have been proposed.
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Introduction

In [43], Klebanov and Polyakov formulated an especially simple version of the correspondence. In the
4-dimensional bulk we have a theory of interacting massless �elds, one for each even spin, whose classic limit
is called minimal Vasiliev type A model. This theory has been found after a long sequence of attempts
at formulating a consistent theory of interacting gauge �elds with spin greater than two that could extend
General Relativity and is thought to be linked to a tensionless limit of a string theory. As for now, even
though its equation of motion are known, no satisfactory and complete action has been constructed. The
dual CFT is the so-called O(N) model, �rst introduced in [5] to describe magnets, whose content is a real
massless scalar �eld in 3 dimensions with a global O(N) symmetry. Depending on certain conditions on the
bulk �elds, the duality is realized with the free theory or the critical point of the interacting theory with a
quartic potential. It is the fact that the dual theory can be free and thus extremely simple, that constitutes
the principal attraction of this particular version of the correspondence.

A particular goal of this thesis is to analyze the Klebanov-Polyakov duality with the so-called ambi-
ent formalism, that consists in embedding the (d + 1)-dimensional AdS space AdSd+1 and its boundary as
submanifolds in a (d+2)-dimensional �at ambient space Ad+2. The two spaces are then realized as a pseudo-
hyperboloid Sd+1 and a section of the light-cone Ld+1, respectively. Consequently, one extends the tensor
�elds de�ned in these submanifolds to the ambient space1. This allows to use the ambient tensor �elds in
place of the original ones, which signi�cantly simpli�es computations. In particular, by these means we will
set up a framework to test the correspondence for what concerns the computation of the 3-point functions.

On the CFT side, the ambient formalism implements conformal transformations as rotations of the vectors
in Ad+2 that represent the points of the boundary. In this way, imposing conformal invariance on the relevant
physical quantities amounts to requiring invariance with respect to the orthogonal symmetry group of Ad+2.
We will employ this symmetry to characterize almost completely the 3-point correlators without making
explicit computations. This will allow us to treat both the critical and the free O(N) vector model at the
same time.

On the bulk side, we will circumvent the di�culty of not having at our disposal an action for Vasiliev's
theory by constructing its cubic vertices, which are determined by the higher spin gauge symmetry up to some
coupling constants that are not constrained at that order. In this task the ambient formalism is determinant
to avoid the complications derived from the curvature of the AdS space, since the ambient �elds are de�ned
in a �at space. All the ingredients necessary to compute Witten diagrams will be found in such way.

The work is structured as follows. In the �rst chapter, we follow the historical development of the theory
of higher spin �elds and show how the full non-linear interacting theory is constructed. Then, in the second
chapter we present the general structure of the AdS/CFT correspondence by starting with the �rst known
and best understood example, namely the Maldacena conjecture. We then describe the Klebanov-Polyakov
proposal. The third chapter is devoted to the ambient formalism and its applications to both the boundary
and the bulk theories. In the �nal chapter we show how to use the framework developed so far to compute
the correlator between two scalars and one higher spin �eld, which will con�rm the correspondence in that
particular example.

1Actually this is done in some portions of Ad+2 that contain the submanifolds representing AdSd+1 and its boundary.

2



Chapter 1

Higher spins theories

The �rst time in which particles of arbitrarily high spin appeared in scienti�c literature was in a paper by
Majorana of 1932 (see [6, 7, 8]). The purpose of that work was to �nd a wave equation that possessed only
positive energy solutions, in order to solve the dilemma posed by the Dirac equation about the physical
meaning of its negative energy solutions1. He discovered one of the unitary (and thus in�nite dimensional)
representations of the Lorentz group and formulated an equation of motion for �elds taking values in that
representation. Its solutions were found to describe particles with an arbitrary spin that was related to the
mass, a feature that reminds what happens in string theory, as we will explain in subsection 2.1.3.

Majorana's results have been ignored at the time and the investigation on theories of higher spin �elds
has been resumed by Dirac, who, after the discovery of the equation for a relativistic particle of spin 1

2 , wrote
a seminal paper [9] in which he faced the problem of �nding the most general form of the wave equation of a
relativistic particle of arbitrary spin in view of possible discoveries of such particles or composite systems that
could be approximately treated in that way. His results, though, were not compatible with the interaction
with an external electromagnetic �eld, as noticed in a work by Fierz and Pauli [10], in that the minimal
prescription of replacing the usual space-time derivative with a covariant one led to a contradiction, as we
will explain in the next subsection.

The two authors then proposed to implement gauge invariance through an action principle, that would
guarantee its compatibility with the equation of motion. The goal of �nding a proper Lagrangian has been
pursued in [11, 10] and successfully completed in full generality by Singh and Hagen in [12], by means of the
introduction of a certain number of auxiliary �elds that are found to vanish on shell.

Unfortunately, even if the program started by Fierz and Pauli had been thus completed, their original
aim of consistently adding an electromagnetic interaction to higher spin �elds was not achieved. Indeed, even
if the equations of motion were compatible with an electromagnetic �eld, their solutions were still unphysical
because they described particles that could move faster than light, as pointed out by Velo and Zwanziger in
[13].

Later, a massless limit of the Singh-Hagen Lagrangian has been investigated by Fronsdal and Fang in
[14, 15]. The result was that free massless higher integer spin �elds are described by completely symmetric
tensors whose double trace vanishes and that combine all the Fierz Pauli auxiliary �elds. These so-called
Fronsdal �elds are subjected to a gauge symmetry.

In the paper about integer spins [15], Fronsdal proposed a Gupta program for higher spin �elds, whose
aim was to �nd a theory that describes their interaction with other �elds. Such theory was expected to
be non-linear, since in the spin 2 case it should coincide with General Relativity. Similarly, the original
linear gauge symmetry should be deformed in a non linear way. However, some results obtained by S-matrix
techniques showed that, under certain general physical hypotheses, no such theory existed at the quantum
level. We will review them in subsection 1.2.1. Investigations [27, 28] at the classical level also showed how

1This problem had been solved the year before with the introduction of the positron, unbeknownst to Majorana
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1.1. The original problem Chapter 1. Higher spins theories

the required deformation of the gauge symmetry could not be consistent at the next to linear orders. In this
context, several proposals on how to circumvent the assumptions of these No-Go theorems have been made,
as the presence of in�nite higher spin particles, unusual higher derivative couplings and a non �at background
geometry. We review them in the subsection 1.2.2.

In [34] Vasiliev proposed a di�erent formulation of the Fronsdal equations based on higher spin connection
1-forms, called frame-like description because it generalizes the frame-like language proposed in [33] by Cartan
for General Relativity. We will present such formalism in subsection 1.3.1 and its extension to higher spin
�elds in 1.4.3.

In the Anti de Sitter space, the frame-like formulation led to the discovery in [31] by Fradkin and Vasiliev
of cubic vertices of interactions that were compatible with gauge symmetry and featured higher derivative
couplings. These were allowed because of the presence of the dimensional cosmological constant Λ that makes
it possible for the vertices to have the right dimensions. Moreover, the �at space limit Λ→ 0, was found to
be singular because of the negative power of Λ, thus explaining the di�culties in the Minkowski space and
the necessity of a curved background.

At the same time, the formalism introduced by Vasiliev unveiled in [35] an in�nite dimensional gauge
symmetry algebra behind the equations of motion of higher spin �elds. This higher spin algebra will be
reviewed in subsection 1.4.4 and has eventually led to the completion of the Fronsdal program, at least for
what concerns massless �elds, with the Vasiliev non-linear equations of motion of the interacting theory in 4
dimensions [37] and later in any dimension [38].

In this thesis we will examine brie�y only the higher spin equations in AdS4 in subsection 1.5 and will
present a conjectured duality of this higher spin gravity with a 3-dimensional Quantum Field Theory in
chapter 2.

1.1 The original problem

In general it is assumed that the laws of physics are covariant under the Poincaré group ISO(1, 3), which
extends the Lorentz symmetry with the translational one. The corresponding algebra iso(1, 3) is given by
the generators of translations Pµ and of Lorentz transformations Mµν = −Mνµ. They obey the following
commutation rules:

[Pµ, P ν ] = 0,
[
Pµ,Mαβ

]
= i
(
Pαηµβ − P βηµα

)[
Mµν ,Mαβ

]
= i
(
Mανηµβ −Mβνηµα −Mαµηνβ +Mβµηνα

)
.

(1.1.1)

Thus all particles are represented by �elds which sit in irreducible representations of ISO(1, 3). These are
labeled by the eigenvalues of the two Casimir operators of iso(1, 3)

C1 = P 2, C2 = W 2,

where the Pauli-Lubanski operator has been de�ned as

Wµ =
1

2
EµνρσPνMρσ.

It can be shown that this operator generates the transformations which belong to the stability groups of
ISO(1, 3). For a particle of mass m and spin s,

C1 = m2, C2 = m2s (s+ 1) .

To generate an irreducible integer higher spin �nite-dimensional representation one can start from tensorial
products of the vector representation of the Lorentz subgroup, i.e. by considering �elds with many indices
ϕµ1...µs(x). A necessary condition for irreducibility is that the ϕ are traceless, since their traceful component

4



Chapter 1. Higher spins theories 1.1. The original problem

is proportional to the metric, which does not change under Lorentz transformations. The spin of ϕµ1...µs(x)
is not yet well-de�ned, because it includes subspaces characterized by all the spins from 0 to s.

In order to �x the spin, let us consider �rst a massive particle. There always exists a frame in which it is
motionless, i.e. pµ = (m, 0, 0, 0). The stability group of this frame is given by three-dimensional rotations,
that is elements of SO(3) < SO(1, 3), for which C2 is the associated Casimir. For this reason we decompose
the representation of a four-vector in irreducible representations of SO(3). Under such perspective the 0-
component of a four-vector is a scalar, while the others form a three-vector. So, in order to obtain the highest
spin possible in our construction, we must have that the tensor product of representations of four-vectors
involves only the three-vectors, or, in other words, that all the 0 components of ϕ are zero in the considered
frame. A covariant way to express this condition is the following

pµiϕµ1...µi ...µs
(p) = 0 =⇒ ∂µiϕµ1...µi ...µs

(x),

where a Fourier transform has been performed in the �rst relation. We say that ϕ is transverse. Finally, tensor
products of three-vectors have spins that range from 0 to s according to the symmetry of the permutations of
the indices. The highest spin is always associated with the totally symmetric tensor, since it has the greatest
number of independent components2.

All these conditions lead to the following de�nition of a massive higher spin �eld:

ϕµ1...µs(x) ≡ ϕ(µ1...µs)(x) (1.1.2)

ηµ1µ2ϕµ1...µs(x) = 0 (1.1.3)

∂µ1ϕµ1...µs(x) = 0. (1.1.4)

If we considered higher dimensions, the stability group for the rest-frame would have been some SO(n) with
n > 3. This group has more than one Casimir operator and we would have had also tensor with a mixed
symmetry for their indices.

The equations of motion for this �eld can be then easily derived by a straightforward generalization of
the Proca equation (

�+m2
)
V µ − ∂µ (∂ · V ) = 0 (1.1.5)

by considering that its �rst member must have the same symmetries of the indices of ϕ as pointed out, for
example, in [12]:(

�+m2
)
ϕµ1...µs − ∂(µ1

(∂ · ϕ)µ2...µs)
+

2

D + 2s− 4
η(µ1µ2

(∂ · (∂ · ϕ))µ3...µs)
= 0, (1.1.6)

where D is the dimension of space-time, 4 in our case. Contrary to what happens for (1.1.5), by taking the
four-divergence of (1.1.6), it is not possible to derive the constraint of transversality (1.1.4). For this reason
it has to be imposed by hand and it reduces (1.1.6) to the expected Klein-Gordon equation.

Suppose now that we want to describe a charged higher spin particle. The minimal prescription suggests
to replace every space-time derivative with a covariant one. If we do this with (1.1.6), we get(

DαDα +m2
)
ϕµ1...µs = 0, Dµ1ϕµ1...µs = 0

but then

0 =
[(
DαDα +m2

)
, Dµ1

]
ϕµ1...µs

= 2 [Dα, Dµ1 ]Dαϕµ1...µs

= 2ieFαµ1Dαϕµ1...µs .

2Note that any couple of anti-symmetric spatial indices can always be converted to one vector index by means of the totally
antisymmetric Levi-Civita tensor εijk.
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1.1. The original problem Chapter 1. Higher spins theories

Now, this represents an additional constraint on ϕ, so that its degrees of freedom reduce and this is not
acceptable. This kind of obstructions to the implementation of interactions for higher spins has been �rst
pointed out by Fierz and Pauli in [10].

A way to avoid this di�culty would be to start from a Lagrangian description of the theory, that would
immediately translate the U(1) symmetry of the action to the Euler-Lagrange equations. As (1.1.5), also
(1.1.6) is associated to an action, which does not give rise to the transversality constraint (1.1.4), though.
In order to complete this program, it has been suggested in [10] and [11] to add to the Lagrangian some
auxiliary �elds whose equations of motion would reduce to (1.1.4). These �elds, moreover, are found to be
zero on-shell. Let us consider a simple example of this technique: the equations for a massive spin 2 particle.
We start from (

�+m2
)
ϕµν − ∂µ (∂ · ϕ)ν − ∂ν (∂ · ϕ)µ +

1

2
ηµν (∂ · (∂ · ϕ)) = 0 (1.1.7)

whose Lagrangian would be the generalization of the Proca one:

L2(x) =
1

2
∂µϕαβ

(
∂µϕαβ − ∂αϕµβ − ∂βϕαµ

)
− m2

2
ϕαβϕ

αβ. (1.1.8)

Now, we take the four divergence of (1.1.7) and get

m2 (∂ · ϕ)ν +
1

2
∂ν (∂ · (∂ · ϕ)) = 0.

As anticipated, contrarily to what happens for spin 1, a term with three derivatives appears. In order to
eliminate it, we could introduce a scalar �eld a(x) whose equations of motion eliminate such term. The most
generic action for this �eld is

L2aux(x) = −1

2
∂µa∂

µa− α

2
a2 + βa (∂ · (∂ · ϕ)) (1.1.9)

so that, when a(x) ≡ 0 as it must eventually turn out, its Euler-Lagrange equations will still eliminate the
unwanted contribution by ∂ · (∂ · ϕ). The new equations of motion are then{(

�+m2
)
ϕµν − ∂µ (∂ · ϕ)ν − ∂ν (∂ · ϕ)µ + 1

2ηµν (∂ · (∂ · ϕ))− β
(
∂µ∂νa− 1

4ηµν�a
)

= 0

(−�+ α) a− β (∂ · (∂ · ϕ)) = 0
(1.1.10)

Now, we take the four-divergence of the �rst equation, substitute the �a term by using the second:

2m2 (∂ · ϕ)ν − ∂ν (∂ · (∂ · ϕ))− 3

2
β∂ν�a = 0

m2 (∂ · ϕ)ν − ∂ν (∂ · (∂ · ϕ))− 3

2
αβ∂νa+

3

2
β2∂ν (∂ · (∂ · ϕ)) = 0.

If we put β =
√

2
3 , and apply ∂ν to both members we come to

�a =

√
2

3

m2

α
(∂ · (∂ · ϕ)) (1.1.11)

Now, we insert (1.1.11) into (1.1.10) and we arrive at

αa =

√
2

3

(
+
m2

α
+ 1

)
(∂ · (∂ · ϕ))

so that, for α = −m2, the a �eld is set to zero, while (1.1.11) implies that ∂ · (∂ · ϕ) vanishes and the

transversality constraint follows from (1.1.9). The ugly square root
√

2
3 appearing throughout the equations

and the Lagrangian can be removed by rescaling the auxiliary �eld a into
√

3
2a.
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Chapter 1. Higher spins theories 1.1. The original problem

This procedure has been generalized to all spins by Singh and Hagen in [12]. Their �nal result is that for
a particle with spin s it is necessary to introduce s− 1 auxiliary �elds, one for each spin strictly lesser than
s− 1. They share with ϕ the same properties (1.1.3), (1.1.4) and (1.1.2) and on-shell they vanish, so that ϕ
simply obeys the Klein-Gordon equation:(

�+m2
)
ϕµ1...µs = 0, (∂ · ϕ)µ2...µs

= 0. (1.1.12)

We are ready to examine the case of massless particles, the ones we will be interested in throughout this
thesis. Following the spin 2 example, we set m = 0. After the suggested rescaling, (1.1.10) becomes{

�ϕµν − ∂µ (∂ · ϕ)ν − ∂ν (∂ · ϕ)µ + 1
2ηµν (∂ · (∂ · ϕ))− ∂µ∂νa+ 1

4ηµν�a = 0

−3
2�a− (∂ · (∂ · ϕ)) = 0

(1.1.13)

Substituting in (1.1.13) the second equation into the �rst, after some reordering, we get

�ϕµν − ∂µ (∂ · ϕ)ν − ∂ν (∂ · ϕ)µ − ∂µ∂νa−
1

2
ηµν�a = 0

�

(
ϕµν −

1

2
ηµνa

)
− ∂(µ∂

α

(
ϕαν) −

1

2
ηαν)a

)
− 2∂µ∂νa = 0

�

(
ϕµν −

1

2
ηµνa

)
− ∂(µ∂

α

(
ϕαν) −

1

2
ηαν)a

)
+ ∂µ∂νη

αβ

(
ϕαβ −

1

2
ηαβa

)
= 0 (1.1.14)

We see that ϕ and a can be combined into a new �eld

Φµ1µ2(x) = ϕµ1µ2(x)− 1

2
ηµ1µ2a(x) (1.1.15)

whose trace is non-vanishing and proportional to a. It obeys the following equation of motion:

�Φµ1µ2 − ∂(µ1
∂αΦαµ2 + ∂µ1∂µ2Φα

α = 0 (1.1.16)

Equation (1.1.16) is the so-called Fronsdal equation for spin 2 because it is a particular case of what happens
for every other higher spin, as showed in [14] by Fronsdal. Indeed, he took the limit for m → 0 of the
Singh-Hagen Lagrangian and found that all the auxiliary �elds decouple, except the one with the highest
spin: aµ1...µs−2(x). It can be combined together with ϕ with the obvious generalization of (1.1.15)

Φµ1...µs(x) = ϕµ1...µs −
1

2
η(µ1µ2

aµ3...µs).

Therefore, Φµ1...µs(x) describes in full generality a massless �eld of spin s. Again, a represents the trace of
Φ, but, being itself traceless, leads us to the only constraint on Φ

ηµ1µ2ηµ3µ4Φµ1...µs(x) = 0. (1.1.17)

The Fronsdal action for the �eld Φµ1...µs(x) has the following form

SFronsdal =

ˆ (
1

2
∂αΦµ1...µs∂

αΦµ1...µs − s

2
∂αΦα

µ2...µs∂
βΦµ2...µs

β − s (s− 1)

2
Φα

αµ3...µs∂β∂γΦβγµ3...µs

−s (s− 1)

4
∂βΦα

αµ3...µs∂
βΦ γµ3...µs

γ − s (s− 1) (s− 2)

8
∂βΦα

αβµ4...µs∂δΦ
γδµ4...µs
γ

)
d4x(1.1.18)

It gives rise to the Fronsdal equation

Fµ1...µs ≡ �Φµ1...µs − ∂(µ1
(∂ · Φ)µ2...µs)

+ ∂(µ1
∂µ2Φν

νµ3...µs)
= 0, (1.1.19)

7



1.2. Constraints on the theory Chapter 1. Higher spins theories

where Fµ1...µs(x) is the so-called Fronsdal tensor. As it is expected for a massless �eld, (1.1.19) exhibits a
gauge invariance under the transformation

δΦµ1...µs = ∂(µ1
Λµ2...µs), (1.1.20)

where Λ must be traceless. Indeed, under (1.1.20)

δFµ1...µs = �δΦµ1...µs − ∂(µ1
(∂ · δΦ)µ2...µs)

+ ∂(µ1
∂µ2δΦ

ν
νµ3...µs)

= �∂(µ1
Λµ2...µs) − ∂(µ1

�Λµ2...µs) − 2∂(µ1
∂µ2 (∂ · Λ)µ3...µs)

(1.1.21)

+2∂(µ1
∂µ2 (∂ · Λ)µ3...µs)

+ ∂(µ1
∂µ2∂µ3Λν νµ3...µs)

= 0

only when Λ is traceless.
For the free spin 2, we recognize in

δΦµν = ∂µΛν + ∂νΛµ

the linearized variation of a metric Φ under in�nitesimal di�eomorphisms of the type

δxµ = Λµ(x).

We expect then that (1.1.16) is the linearized Einstein equation for a quasi-�at space, which describes gravi-
tational waves or, from a quantum perspective, the graviton. This amounts to saying that (1.1.16) should be
equivalent to the wave equation. We can show this in general for every spin. Indeed gauge invariance allows
us to eliminate some terms in (1.1.20) by the following gauge-�xing.

First of all, we take a gauge parameter Λ(1) which obeys

∂ · Λ(1)
µ2...µs = −1

2
Φν

νµ3...µs .

so that we can put Φν
νµ3...µs = 0. Now we can perform a second gauge transformation with Λ(2) satisfying

the equations {
∂ · Λ(2)

µ2...µs = 0

�Λ
(2)
µ2...µs = − (∂ · Φ)µ2...µs

that does not spoil the previous result and that gives the following gauge �xing

(∂ · Φ)µ2...µs
= 0, Φν

νµ3...µs = 0 (1.1.22)

which is referred to as transverse traceless (TT) gauge. Thus, (1.1.19) becomes simply

�Φµ1...µs = 0. (1.1.23)

Now that we have a free theory capable of describing every massless particle of arbitrary spin, we would
like to turn on interactions between them and other particles.

1.2 Constraints on the theory

The program outlined above clashes almost immediately with a series of theorems that show how an inter-
acting theory would be inconsistent in many realistic scenarios. In the �rst part of this subsection we will
review the most important and general ones. After that we will list some ways to bypass each of them by
altering slightly their hypotheses. We will choose one, namely the employment of a curved space-time with a
non-zero cosmological constant, even though some of the ideas for the Minkowski space will come back when
the Ambient Space formalism will be treated.
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Chapter 1. Higher spins theories 1.2. Constraints on the theory

1.2.1 No-go theorems

1.2.1.1 The Weinberg argument

Consider in full generality a process involving n particles of momenta pµi and spins si, which causes the
emission of a soft massless particle of momentum qµ → 0 and helicity s as shown in �gure (1.2.1).

Figure 1.2.1: A generic scattering with an emission of a massless particle with momentum q.

Lorentz invariance then imposes on the S-matrix associated to the process the following form as shown
in [19]:

S(q, s, pµi , si) = Eµ1...µs(q)Mµ1...µs(q, pi) (1.2.1)

where E is the polarization tensor of the massless particle and, as the �eld it represents, it is traceless, totally
symmetric and transverse:

qµEµµ2...µs(q) = 0.

Due to gauge �xing performed on E , it should not behave as a proper tensor, in that under Lorentz
transformations the gauge �xing that determines E breaks and so longitudinal components appear. Therefore
one should add additional (longitudinal) terms to the usual transformation law. They must have the form of

δEµ1...µs(q) = q(µ1Dµ2...µs)(q), qµDµ2...µs(q) = 0, Dµµµ4...µs(q) = 0 (1.2.2)

to ful�ll all the algebraic requirements of E . Since S should be a scalar, the spurious components (1.2.2)
should not contribute to its value, and this is achieved by requiring that:

qµMµµ2...µs(pi) = 0. (1.2.3)

Moreover, due to the symmetry of E , we can take M to be totally symmetric too.
Let us now give a closer look at M . Consider �rst the case in which the emission starts from the one of

the external outgoing legs of the diagram. We denote its four-momentum temporarily with p̃ to distinguish
it from the set of the momenta pi. A propagator with momentum p = p̃ + q is then involved. Since every
free �eld, whatever spin it possesses, must ultimately obey a Klein-Gordon equation as we have shown in
the previous section (see (1.1.12) and (1.1.23)), this propagator is proportional to the usual double pole for

p0 = ±
√
|~p|2 +m2 which, for q → 0 becomes (remember that q2 = 0)

1

(p̃+ q)2 −m2 + iε

q→0−→ 1

2p̃ · q + iε
.

9



1.2. Constraints on the theory Chapter 1. Higher spins theories

This kind of term dominates over every other, including the emission from internal lines, where p is o�-shell
and m2 is not canceled. Notice that if the external leg is incoming, conservation of the four-momentum gives
p = p̃− q and so we get a minus sign in front of 2p̃ · q. We denote this sign with a factor σi = ±1.

We still have to determine which terms contribute to the index structure of M . The tracelessness of E
makes ηµν useless as building block. The same happens for qµ, this time because of the transversality of E .
Moreover, since the emission can only involve one of the n particles at a time, we may assume that M is the
sum of the contributions of the type M i

µ1...µs(p̃, q) ≡M
i
(µ1...µs)

(p̃, q) from each kind of si−si−s vertex. Then
the only way in which we may build a symmetric tensor is by means of products of p̃µ. Finally, if we call gi
the coupling constant for the si − si − s vertex, we also get that M i ∝ gi. (We include in gi the sign due
to the positive or negative charge of the ith particle.) We arrive eventually at an expression of the following
form

Mµ1...µs(q, pi) ∝
∑
i

σigi
pµ1
i · · · p

µs
i

pi · q
. (1.2.4)

where any other scalars involved in each M i can be incorporated in gi or vanish if q → 0. Let us impose on
(1.2.4) the transversality condition (1.2.3):∑

i

σigip
µ2
i · · · p

µs
i = 0. (1.2.5)

We see that when the emitted particle is a photon, condition (1.2.5) just implies the conservation of the
charge ∑

i∈outgoing
gi −

∑
i∈incoming

gi = 0 (1.2.6)

in the process. For spin 2, instead, we �nd ∑
i

σigip
µ
i = 0

i.e. the principle of equivalence that states that every particle interacts with the graviton with the same
strength,

gi ≡ g

and the conservation of the four-momentum∑
i∈outgoing

pµi −
∑

i∈incoming
pµi = 0.

For higher spins there is no such a general solution for every n, pi and gi except gi ≡ 0 and we conclude that
it is not possible for them to take part in a process that implies their emission to in�nity.

There are several ways to circumvent this argument. First we observe that it might be possible that
higher spin interactions are at short range and so they cannot appear in the asymptotic states in which the
S-matrix projects. Moreover we have considered only vertices of the kind s − si − si, namely the minimal
coupling to massless gauge �elds: we do not know what could happen in more general cases.

1.2.1.2 The Weinberg-Witten theorem

This no-go example improves the previous one in that it does not rely on the fact that higher spins have long
range interactions. Indeed, even if we do not know which kind of interactions our particles may experience,
(1.2.6) shows that every particle should interact with gravity in the same way as the others. This exposes
our theory to the consequences of the Weinberg-Witten theorem, derived in [21]. Its content (at least the
part we will be interested in) is the following:

10



Chapter 1. Higher spins theories 1.2. Constraints on the theory

A theory with a Poincaré-covariant gauge-invariant conserved energy momentum tensor Tµν

can not allow particles with spin greater than 1 whose four-momentum is pµ =
´
T 0µd3x.

We will give just a sketch of the proof, without delving too much in unneeded technicalities. First, consider
a massless particle with spin s that scatters o� a graviton, so that its momentum changes from pµ to pµ+ qµ.
Then

〈p+ q |Pµ| p〉 = pµ 〈p+ q|p〉
= (2π)3 (p0

)
pµδ3(~q) (1.2.7)

where we used a Lorentz-invariant normalization for the single particle states.
Here we assume that we are dealing with physical states whose momentum is never truly determined

with in�nite precision. For this reason, the reader should consider all the Dirac delta functions as heavily
peaked functions with �nite width a that, in the distributional limit for a → 0, become true deltas. These
functions have basically the same algebraic properties of Dirac delta functions, so that we can forget about
the di�erence. Analogously, every integration is performed on a �nite volume, rather than on the whole space.
(see [22] for a discussion on these matters) This assumption allows us to make expressions as (1.2.7) non-zero
for a �nite (insofar small) range of momenta q and therefore meaningful in our setup. We will therefore be
forced to implicitly take the limit for q → 0 in every expression throughout our derivation.

Another way to express equality (1.2.7) is

〈p+ q |Pµ| p〉 =

〈
p+ q

∣∣∣∣ˆ T 0µ(t, ~x)d3x

∣∣∣∣ p〉
=

ˆ 〈
p+ q

∣∣∣e−i ~P ·~xT 0µ(t,~0)ei
~P ·~x
∣∣∣ p〉 d3x

=

ˆ
e−i~q·~xd3x

〈
p+ q

∣∣∣T 0µ(t,~0)
∣∣∣ p〉

= (2π)3 δ3(~q)
〈
p+ q

∣∣∣T 0µ(t,~0)
∣∣∣ p〉

and thus 〈
p+ q

∣∣∣T 0µ(t,~0)
∣∣∣ p〉 = p0pµ. (1.2.8)

Lorentz covariance then imposes

T µν ≡
〈
p+ q

∣∣∣Tµν(t,~0)
∣∣∣ p〉 ∝ pµpν . (1.2.9)

We notice that for qµ → 0 the matrix element (1.2.9) does not vanish.
Now, let p′µ = pµ + qµ and θ be the angle between ~p′ and ~p. Then(

p′ + p
)2

= p′2 + 2p′ · p+ p2

= 2p′0p0 (1− cos θ) ≥ 0

so that p′ + p is time-like. Then, there exists a frame in which ~p′ + ~p = 0, the so-called brick-wall frame,
where

p′ = (E, 0, 0, E) , p = (E, 0, 0,−E)

for some E > 0. Apply now a rotation of angle α around the x3 axis in this frame. Since the momenta of
the two particles are opposite, the rotation is clockwise for one and anticlockwise for the other.

We may choose to apply this unitary transformation to the states, and then we get

|p〉 → eiαs |p〉 ,
∣∣p′〉→ e−iαs

∣∣p′〉
11



1.2. Constraints on the theory Chapter 1. Higher spins theories

because p and p′ are invariant under such rotation (that belongs to the stability group for both) and therefore
|p〉 and |p′〉 are eigenvectors. (1.2.9) becomes thus

T ′µν = e2iαs
〈
p′
∣∣∣Tµν(t,~0)

∣∣∣ p〉 (1.2.10)

If, on the contrary, we apply the rotation to the operators, it behaves as a Lorentz transformation and so

T ′µν = ΛµαΛνβ

〈
p′
∣∣∣Tαβ(t,~0)

∣∣∣ p〉 . (1.2.11)

Equating (1.2.10) we get

ΛµαΛνβ

〈
p′
∣∣∣Tαβ(t,~0)

∣∣∣ p〉 = e2iαs
〈
p′
∣∣∣Tµν(t,~0)

∣∣∣ p〉
Now, since the Λ are rotation matrices, their eigenvalues can be only e±iα and 1. We deduce that, for s > 1,
(1.2.11) holds only if T µν = 0 and in particular in the limit of vanishing q. But this is not possible, as shown
before. Therefore we have proved the thesis.

The �rst thing that stands out about this theorem is that not even gravity appears to be allowed!
This, though, is not in contradiction with physics, because one of the hypotheses is not satis�ed in such
case: gravity, being sourced by the energy-momentum tensor and therefore also by itself, does not possess
a conserved stress-energy tensor which is also invariant under di�eomorphisms, i.e. gauge invariant. Thus,
under Lorentz transformations Tµν does not behave as a tensor. (The reason is the same that led us to say
that the polarization is not a proper tensor in the the previous subsection.) This argument, though, relies on
this precise property to work.

One may then wonder whether this happens also in the higher spin case and if it is legitimate to apply
this theorem to prove its inconsistency. Porrati found how to avoid this empasse in [23], where instead of the
matrix element (1.2.9), the following has been employed:

T̃ µν =
〈
p′, λ′

∣∣∣Tµν(t,~0)
∣∣∣ p, λ〉 . (1.2.12)

Here, λ and λ′ label spurious polarizations of the higher spin, so that (1.2.12) behaves as a true Lorentz
tensor. Then an argument that shows how T̃ µν should vanish for s > 2 is produced, in contrast with (1.2.9),
so that one can complete the proof just the way we have done here.

1.2.1.3 An Aragone-Deser-like argument

The analysis we carried on for the equations of motion and the action for massless particles with spin s > 1
can be performed in a similar way for fermionic �elds with semi-integer spin s > 3

2 . The result is that they
are described by a totally symmetric spin-tensor Ψµ1...µs− 1

2

such that

γµ1γµ2γµ3Ψµ1...µs− 1
2

= 0

subject to a gauge invariance under the following transformation

δΨµ1...µs− 1
2

(x) = ∂(µ1
Λµ2...µs− 1

2
)(x) (1.2.13)

with
γµ2Λµ2...µs− 1

2

= 0.

In their paper [24], Aragone and Deser considered the action for the spin 5
2 massless particle and tried to

add the interaction with an external gravitational �eld by minimal coupling. They showed how the minimal
prescription, that is replacing each derivative ∂ with a covariant one D, rendered such action non-gauge
invariant, because of the non-commutative nature of the covariant derivatives arising from (1.2.13).
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Chapter 1. Higher spins theories 1.2. Constraints on the theory

Since here we are dealing with integer spins, we will present in detail an analogous argument that shows
this inconsistency for a spin 3 particle. First of all, from (1.1.18), we get the action

S3 =

ˆ (
1

2
∂αΦµ1µ2µ3∂

αΦµ1µ2µ3 − 3

2
∂αΦα

µ2µ3
∂βΦµ2µ3

β − 3Φα
αµ3

∂β∂γΦβγµ3

−3

2
∂βΦα

αµ3
∂βΦ γµ3

γ − 3

4
∂βΦα

αβ∂δΦ
γδ
γ

)
d4x.

Under the minimal prescription, it becomes

S3 =

ˆ (
1

2
DαΦµ1µ2µ3D

αΦµ1µ2µ3 − 3

2
DαΦα

µ2µ3
DβΦµ2µ3

β − 3Φα
αµ3

DβDγΦβγµ3 (1.2.14)

−3

2
DβΦα

αµ3
DβΦ γµ3

γ − 3

4
DβΦα

αβDδΦ
γδ
γ

)
d4x

while the gauge transformation for Φ is adapted in a similar way:

δΦµ1µ2µ3 = D(µ1
Λµ2µ3). (1.2.15)

Let us compute the variation of (1.2.14) under (1.2.15). First of all, we derive a useful identity:

[Dν , DαDα]V µ1...µn = Dα [Dν , Dα]V µ1...µn + [Dν , Dα]DαV
µ1...µn

= Dα
(
Rν (µ1

α γ V
µ2...µn)γ

)
+Rνα γ

α DγV
µ1...µn +Rνα(µ1

γ DαV
µ2...µn)γ .

The variation then reads

δL3 =

ˆ
(3DαDµ1Λµ2µ3D

αΦµ1µ2µ3

−3DαD
αΛµ2µ3D

βΦµ2µ3

β − 6DαDµ2Λαµ3
DβΦµ2µ3

β

−6DαΛαµ3DβDγΦβγµ3 − 3Φα
αµ3

DβDγD
βΛγµ3 − 3Φα

αµ3
DβDγD

γΛβµ3 − 3Φα
αµ3

DβDγD
µ3Λγβ

−6DβD
αΛαµ3D

βΦ γµ3
γ

−3DβDαΛαβDδΦ
γδ
γ

)
d4x

=

ˆ
(−3DαDαDµ1Λµ2µ3Φµ1µ2µ3

+3DαD
αDβΛµ2µ3Φµ2µ3

β − 3
[
DαD

α, Dβ
]

Λµ2µ3Φµ2µ3

β − 6 [Dα, Dµ2 ] Λαµ3
DβΦµ2µ3

β + 6DαΛαµ3
Dµ2D

βΦµ2µ3

β

−6DαΛαµ3DβDγΦβγµ3 − 3Φα
αµ3

[Dβ, Dγ ]DβΛγµ3 − 6Φα
αµ3

DγDβD
βΛγµ3 − 3Φα

αµ3
DβDγD

µ3Λγβ

+6DαDβDβΛαµ3Φ γµ3
γ − 6

[
Dα, DβDβ

]
Λαµ3Φ γµ3

γ

+3
[
Dδ, D

βDα
]

ΛαβΦ γδ
γ + 3DβDαDδΛαβΦ γδ

γ

)
d4x

=

ˆ (
6Dα

(
Rβα γ

µ2
Λγµ3

)
Φµ2µ3

β + 6Rβα γ
µ2

DαΛγµ3Φµ2µ3

β − 3RβγDγΛµ2µ3Φµ2µ3

β (1.2.16)

−6Rµ2γΛγµ3
DβΦµ2µ3

β − 6R δ
αµ2µ3

ΛαδD
βΦγµ3

β

−6Dβ
(
RδβΛδµ3

)
Φ γµ3
γ − 6Dβ

(
Rα δ

βµ3
Λδα

)
Φ γµ3
γ − 6RδβD

βΛδµ3Φ γµ3
γ − 3Rα δ

βµ3
DβΛδαΦ γµ3

γ

+6RαδDδΛαµ3Φ γµ3
γ

−3RδεD
αΛεαΦ γδ

γ + 3Dβ
(
R ε
δαβ Λαε −RδεΛεβ

)
Φ γδ
γ

)
13



1.2. Constraints on the theory Chapter 1. Higher spins theories

As we can see, the variation is now proportional to the Riemann and Ricci tensors and is not zero in a
curved space. In particular, assuming a free gravitational �eld, even though the Rµν vanishes, Rµνρσ does
not, because it is proportional to the Weyl tensor that is zero only in a �at space. Again, we see that, if
gravity is coupled minimally to higher spins, the theory is inconsistent.

1.2.1.4 The Coleman-Mandula theorem

As we have seen, massless higher spin �elds possess a gauge symmetry. This symmetry is rather di�erent
from the one of a Yang-Mills theory because, contrarily to what happens in that case, the gauge parameters
are tensors, rather than scalars, and therefore are a�ected by Lorentz transformations. This means that the
associated conserved charge is also a tensor. We are going to �nd it, but �rst we compute the traces of the
Fronsdal tensor (1.1.19) that we will need later:

Fααµ3...µs = �Φα
αµ3...µs − 2 (∂ · (∂ · Φ))µ3...µs

− ∂(µ3
(∂ · Φ)ααµ4...µs)

+�Φα
αµ3...µs + 2∂(µ3

(∂ · Φ)ααµ4...µs)

= 2

(
�Φα

αµ3...µs +
1

2
∂(µ3

(∂ · Φ)ααµ4...µs)
− (∂ · (∂ · Φ))µ3...µs

)
Fαβαβµ4...µs

= 0.

The Fronsdal action (1.1.18) can be rewritten integrating by parts in this way:

SFronsdal =

ˆ (
−1

2
Φµ1...µs∂α∂

αΦµ1...µs +
s

2
Φµ1...µsη

µ1α∂α∂
βΦµ2...µs

β − s (s− 1)

2
Φµ1...µsη

µ1µ2∂β∂γΦβγµ3...µs

+
s (s− 1)

4
Φµ1...µsη

µ1µ2∂β∂
βΦ γµ3...µs

γ +
s (s− 1) (s− 2)

8
Φµ1...µsη

µ1µ2ηµ3β∂β∂δΦ
γδµ4...µs
γ

)
d4x

=

ˆ
−1

2
Φµ1...µs

(
�Φµ1...µs − ∂(µ1 (∂ · Φ)µ2...µs) + ∂(µ1∂µ2Φ νµ3...µs)

ν − ∂(µ1∂µ2Φ νµ3...µs)
ν

+2η(µ1µ2 (∂ · (∂ · Φ))µ3...µs) − η(µ1µ2�Φ γµ3...µs)
γ − 1

2
η(µ1µ2∂µ3 (∂ · Φ) γµ4...µs)

γ

)
d4x

=

ˆ
−1

2
Φµ1...µs

(
Fµ1...µs − 1

2
η(µ1µ2F αµ3...µs)

α (1.2.17)

−∂(µ1∂µ2Φ νµ3...µs)
ν + η(µ1µ2 (∂ · (∂ · Φ))µ3...µs)

)
d4x

=

ˆ
−1

2
Φµ1...µs

(
Fµ1...µs − 1

2
η(µ1µ2F αµ3...µs)

α

)
d4x

where in step (1.2.17) the last two terms disappear after integrating by parts one of them. Now, consider the
variation of this expression under a gauge transformation (1.1.20), which leaves the Fronsdal tensor (1.1.19)
unchanged as showed in (1.1.21):

δSFronsdal =

ˆ
−s

2
∂µ1Λµ2...µs

(
Fµ1...µs − 1

2
η(µ1µ2F αµ3...µs)

α

)
d4x

=

ˆ
s

2
Λµ2...µs∂µ1

(
Fµ1...µs − 1

2
η(µ1µ2F αµ3...µs)

α

)
d4x

≡
ˆ
s

2
Λµ2...µs∂µ1Gµ1...µsd4x (1.2.18)

where

Gµ1...µs = Fµ1...µs − 1

2
η(µ1µ2F αµ3...µs)

α
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and
G αµ3...µs
α = (s− 1)F αµ3...µs

α , G αβµ4...µs
αβ = 0.

Gauge invariance of the action then implies that (1.2.18) vanishes and that the current3

Jµ1...µs(x) = Gµ1...µs − 1

2s
η(µ1µ2G αµ3...µs)

α

is conserved. The associated charge is

Qµ2...µs =

ˆ
J0µ2...µs(x)d4x.

If interactions with other particles are turned on, gauge invariance must still be preserved and therefore there
will be a conserved charge Qµ2...µs . This, however, is prohibited by the Coleman-Mandula theorem [25] which
states4 that if G is the connected group of symmetries of the S-matrix of a theory such that

1. ISO(1, 3) < G, i.e. Poincaré invariance is a symmetry of the theory

2. All particles have a positive-de�ned energy and for each M > 0 there is a �nite number of particle of
mass m < M

3. Scattering amplitudes are analytic in the Mandelstam variables s and t

then G is locally isomorphic to the direct product of ISO(1, 3) and an internal symmetry group whose
generators are scalars. Conserved charges such as Qµ2...µs are thus ruled out. Even if a generalization of Lie
algebras is employed, namely graded Lie algebras, a similar conclusion can be drawn. This has been done in
[26], where it has been shown that the only allowed generators that are not scalars, are spinors and give rise
to supersymmetry.

1.2.2 Loop-holes and yes-go examples

1.2.2.1 An in�nite number of particles

When an interaction term for a higher spin particle is added to its free Lagrangian, the overall gauge invariance
under (1.1.20) usually breaks and it is necessary to add a corresponding transformation to the �eld the higher
spin interacts with. If such a �eld carries the higher spin itself, i.e. when self-interactions are investigated, it
is necessary to deform the gauge parameter algebra.

This can be done order by order in a coupling constant g, enumerating all the possible self-interactive
terms, the respective gauge transformations and imposing at the end that the Lie product closes in the so
extended algebra. This procedure is described, for example, in [27], where it is shown that the result for a
spin 1 particle is a Yang-Mills theory, whereas for spin 2 Einstein gravity is ultimately recovered. In these two
examples, it is su�cient to stop at the �rst perturbative order in g to reach a closure of the gauge algebra. On
the contrary, starting from s = 3, this can not happen anymore, and the commutator between two deformed
gauge transformations can never be put in the form of a new gauge transformation at the second order in g.

A possible solution suggested in that paper (but also in the seminal work [14]) is to consider that self-
interaction for a higher spin may be consistent only in presence of other higher spins capable of compensating
the unwanted terms in gauge transformations. Those �elds should interact with each other, or with them-
selves. A whole in�nite tower of higher spin particles may be required in order to complete this program,
which suggests the presence of a higher spin symmetry algebra that acts on this set of �elds.

3Here this current is not given by just Gµ1...µs , because the tracelessness of Λ removes its traceful part.
4Here we are not giving a rigorous statement, nor we enlist the technical hypotheses with no particular relation to the main

topic

15



1.2. Constraints on the theory Chapter 1. Higher spins theories

Even though it has been shown in [28] that actually this proposal does not solve the problem for spin
3 particles, the presence (and necessity) of in�nitely many spins is found a particular feature of higher spin
interactive theory that is known as for now. However, such topic will be addressed in the next subsection. In
this subsection we limit ourselves to notice that if a consistent higher spin theory actually requires an in�nite
set of massless �elds, the Coleman-Mandula no-go theorem (et similia), do not apply, because they require a
�nite number of particles under a �nite mass-shell.

1.2.2.2 From minimal coupling to general couplings

The gravitational interaction has been our main investigative tool in the �rst three examples. Indeed, by
the Weinberg theorem, we deduced that higher-spins should behave as all the other particles when dealing
with gravity. To do so, though, we employed a very speci�c interaction vertex, namely the one between the
graviton (spin 2) and two higher spins (of spin s) of the same type. In general, for a Lagrangian polynomial
in the �elds, this vertex is proportional to

δLmatter
δgµν

gµν = Tµνgµν

where Tµν is the energy-momentum tensor of the matter and is covariantly conserved as a consequence of the
di�eomorphism invariance of the theory: indeed, the variation of Smatter under a di�eomorphism parametrized
by ξµ(x) is (δgµν = D(µξν))

δSmatter =
1

2

ˆ
√
g
δLmatter
δgµν

Dµξνd
4x

= −1

2

ˆ
√
gDµT

µνξνd
4x

and thus
DµT

µν = 0. (1.2.19)

In Weinberg's theorem we have therefore assumed in general that Tµν for a higher spin ϕ is quadratic in
ϕ and contains two derivatives, that appear in the Feynman rule as momenta of the external leg of ϕ. This
led us to derive the following relation for M i (see (1.2.1) and (1.2.4))

M i
µν ∝ pµpν .

We now recognize (1.2.3) as the energy-momentum tensor conservation (1.2.19) in disguise (notice that at
spatial in�nity D is replaced by ∂ and, in Fourier transform, by q).

This assumption is actually equivalent to the minimal prescription for the gravitational coupling. Only in
that case the energy-momentum tensor θµν that one �nds for the free theory by the Nöther theorem is indeed
(equivalent by the Belinfante-Rosenfeld construction to) Tµν . The form of θµν is constrained by the kinetic
term of the free Lagrangian, that is quadratic in ϕ and contains two derivatives, namely what we assumed
for Tµν .

In the Weinberg-Witten theorem, on the contrary, we made no assumptions on the kind of coupling with
gravitons, but we showed anyway that 〈p |Tµν | p〉 ∝ pµpν (see (1.2.9)) by considering the limit of a scattering
of a soft o�-shell graviton on the higher spin particle (a particular case of the one examined in the proof of
Weinberg's theorem). This result, equivalent to minimal coupling, needed only the very general hypothesis
of Lorentz covariance of Tµν to infer from (1.2.8) equation (1.2.9).

However, if interacting higher spins do not possess a covariant energy-momentum tensor (and this is very
likely the case, as already is shown by gravity for s = 2), such argument fails and again the equivalence
principle has to be postulated in order to complete the proof as done by Porrati in [23]. This principle plays
a fundamental role in the argument by Aragone and Deser.
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We now see that if we choose to abandon the minimal coupling in favor of more general vertices, including
non-minimal ones and others between three particles with di�erent spin, the �rst three no-go arguments cease
to apply.

The research on cubic vertices for higher spins has been performed following mainly two paths. In both
a perturbative term is introduced in the form of an interaction with a coupling constant g. The analysis is
then carried at the �rst order in this parameter.

The �rst approach is the non-covariant one, where only the physical degrees of freedom of the �elds are
taken in consideration. This amounts to �xing some convenient gauge, for example the light-cone gauge.
Then, among all the possible deformations of the free Lagrangian, only those that lead to consistent �eld-
theoretic generators of the Poincaré algebra are selected. This has ultimately allowed to �nd a complete
classi�cation of the interactions among any three arbitrary spins that correctly reduces to the known cases
for the smallest spins. For bosonic massless �elds, the ones we are interested in, the list of cubic vertices can
be found in [29]. In chapter (3) we will explain how to list all the possible vertices in a curved background
by employing the �at space ones for �elds in a di�erent gauge: the so-called Transverse Traceless gauge, i.e.
the one imposed in (1.1.22).

A covariant approach is also possible, by the BRST method (see [30]). As already explained, it consists
in �nding all the possible deformations of the gauge algebra that allow to include interaction terms while
maintaining the whole action gauge-invariant.

These results show a remarkable feature: the number of derivatives n needed to build each vertex between
particles of spins s1, s2 and s3 is bounded by the relation(∑

i

si

)
− 2 min (s1, s2, s3) ≤ n ≤

(∑
i

si

)
. (1.2.20)

In particular when one of the spins is 2 and all the others are greater than 2, we �nd that

n ≥ 2

and the equivalence holds only if s1 = s2 = s3 = 2. This simply tells us that the graviton ceases to couple
minimally to particles starting from spin 3, as we anticipated. If instead the lowest spin is 1 and the others
are 2 or greater, n > 2: we �nd the equivalent limit for minimal couplings of electromagnetism. Indeed,
electromagnetism minimal prescription follows the same rules as the gravitational version and one could
prove, along the very same lines of the Aragone-Deser argument, that gauge invariance breaks for electrically
charged higher spins due to the non commutativity of covariant derivatives.

1.2.2.3 A curved space-time with a non-zero cosmological constant

Until now, we have assumed that the space where higher spins propagate was �at. Even when turning on
an interaction with gravity, we considered solutions with an asymptotically �at metric, so that we could deal
with free gravitons at the in�nity and therefore use the S-matrix formalism. This is fairly reasonable, since
the universe that we observe is approximately �at. Beyond its naturalness, this hypothesis is crucial to make
all the no-go theorems we have discussed work, except (apparently) the Aragone-Deser argument.

The most direct conclusion that we drew from the latter was that there can be no minimal coupling with
gravity (or electromagnetism, as noted before). Actually there is a remedy to this troublesome fact and it
involves the either Anti de Sitter (in the following AdS) or de Sitter (dS) spaces, the maximally symmetric
solution for a gravitation theory with a non-vanishing cosmological constant Λ ≶ 0 respectively and therefore
negative (positive) curvature. In such settings, none of the no-gos is of any use. From now on we will consider
only the AdS case.

In their paper [31], Fradkin and Vasiliev showed that it is possible to construct an action in AdS that
describes particles for every spin, which reduces to the Fronsdal action reformulated for a curved background
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in the quadratic approximation and that, at the cubic order, contains higher derivative couplings and the
minimal one. In the limit for a vanishing cosmological constant, the free theory becomes the one described
by the �at Fronsdal action that we wrote in (1.1.18). On the contrary, when interactions are taken into
account, Λ plays a fundamental role. Its physical dimension is the inverse of a square length and therefore
it appears in every vertex with the role of compensating the unwanted extra length dimensions introduced
by the derivatives. For this reason �at space limit Λ → 0 is singular for some of the vertices, where the
cosmological constant appears in negative powers. These are the higher derivative ones and are proportional
to the (linearized) Riemann tensor, so that they can compensate the unwanted terms that we found in our
Aragone-Deser-like argument. This explains why gauge-invariance is broken in the �at limit.

As shown for spin 2 by Zinoviev [32], a similar mechanism makes it possible to couple minimally electro-
magnetism with higher spins only in AdS.

1.3 Gravitation and gauge theories

The yes-go examples provided so far suggest that an non-linear interacting theory for higher spin �elds
should exist in the Anti de Sitter space (see subsection 1.2.2). The remainder of this chapter is devoted to
the construction of such theory, starting from the description of its linearization in sections 1.3 and 1.4 and
then of the complete theory in 1.5.

As we saw in section 1.1, massless higher spin �elds are gauge �elds. However their gauge transformation
(1.1.20) looks rather di�erent from the one present in Yang-Mills theories that describe the other fundamental
interactions, in that the gauge parameters are not scalars but tensors. The goal of this section is then to
develop a uni�ed formalism for these two examples of gauge theory in order to later implement interactions
that are compatible with this symemtry. In particular we will focus on the spin 2 case, namely the gravitational
�eld, leaving the general higher spin case to the next section. In the �rst subsection we present the frame-like
formulation of General Relativity, that we will later generalize to higher spin �elds in subsection 1.4.3. Then,
in 1.3.2, we will employ vector bundles to treat general gauge theories in a similar way. In the last subsection
1.3.3 we come back to gravity and consider the special case of the AdS space.

1.3.1 Cartan formulation of the General Relativity

In this section we review the so-called Cartan formulation of Einstein gravity, that makes contact with other
gauge theories more explicit and will be later generalized to describe a higher spin gravity theory in AdS4.

Let us start from the principle of equivalence, which says that for each point x0 in a curved space-time
M of dimension d there always exists a system of coordinates x̄ in which physics is described at x̄0 as in �at
space. In particular this applies to the metric5, so that

gµν(x0) =
∂x̄a

∂xµ
∂x̄b

∂xν
ηab. (1.3.1)

Here we use, as in the rest of this subsection the following notation: Greek indices, called world indices, refer
to tensorial objects living in a general and possibly curved manifold, while Latin ones refer to its �at tangent
space and are called �ber indices. From (1.3.1) it is clear that x̄(x) is far from being unique, since any

x̄′a = Λabx̄
b (1.3.2)

leaves (1.3.1) invariant if Λ is a Lorentz transformation, de�ned by the property

Λamη
mnΛbn = ηab. (1.3.3)

5In this system of coordinates, the �rst derivatives of the metric vanish and therefore (see (1.3.26)) also the Christo�el symbol
Γρµν is zero at x.
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Let us call vielbein

eaµ(x) ≡ ∂x̄a

∂xµ
, x̄ de�ned for each x by (1.3.1)

one of the coordinate changes that transforms the Minkowski metric into the curved one at each point x.
One can regard eaµ(x) as a local change of basis for the tangent space at x Tx(M) ' R1,d−1 that converts
the local basis ∂µ into a standard one that one may choose for R1,d−1, which is called �ber or tangent space.
With this picture in mind it becomes obvious that

det(e) 6= 0 ∀x (1.3.4)

and therefore there exists (
e−1
)
≡ eµa =

∂xµ

∂x̄a
, eµae

b
µ = δab , eµae

a
ν = δµν (1.3.5)

the inverse of the vielbein.
e encodes all the information contained in the usual metric g and shares the same degrees of freedom.

Indeed e is a d × d matrix subjected to an invariance (1.3.3) with d(d−1)
2 degrees of freedom (from (1.3.3))

and therefore has

d2 − 1

2
d2 +

1

2
d =

d(d+ 1)

2
(1.3.6)

independent degrees of freedom, the same as the metric g.
Given some tensor �eld Tµ1...µk(x) with rank k, we de�ne its �ber version as

Ta1...ak(x) = eµ1
a1
· · · eµkakTµ1...µk(x),

i.e. the tensor �eld expressed in the �ber basis given by e. The �ber indices are lowered and lifted by means
of the standard Minkowski metric as follows from (1.3.1): for example,

Va = eµa (gµνV
ν)

= eµagµνe
ν
bV

b

= ηabV
b.

We would like now to de�ne a covariant derivative acting on �ber tensors. Let us do this for a contravariant
vector, the generalization to general tensors being straight-forward. First of all we have

DµV
ν = ∂µV

ν + ΓνµαV
α

= ∂µ (eνaV
a) + Γνµρe

ρ
aV

a

= eνa∂µV
a +

(
∂µe

ν
a + Γνµρe

ρ
a

)
V a, (1.3.7)

where Γ is the Christo�el symbol associated to g. Converting the ν index to a �ber one (n), relation (1.3.7)
becomes

DµV
n = enνe

ν
a∂µV

a + enν
(
∂µe

ν
a + Γνµαe

α
a

)
V a (1.3.8)

= ∂µV
n + ω n

µ aV
a.

where we used (1.3.5) and de�ned

ω a
µ b(x) = eaν(x)

(
∂µe

ν
b (x) + Γνµρ(x)eρb(x)

)
, (1.3.9)

the so called spin connection. For tensors with rank greater than one, the same rules of the usual covariant
di�erentiation of contravariant tensors are followed.
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In the language of p-forms, we can de�ne a di�erential operator D acting on (tensor-valued) 0-forms, i.e.
objects without world indices, so that (1.3.8) can be expressed as

DV a = dV a + ωabV
b, (1.3.10)

and we treat ωab(x) as a matrix of 1-forms or, more precisely, as member of the space T ∗x (M)⊗Skew
(
R1,d−1

)
,

where Skew
(
R1,d−1

)
is the vector spaces of antisymmetric matrices mapping R1,d−1 onto itself. Indeed, from

Dµg
αβ = Dµ

(
eαaη

abeβb

)
= 0 (1.3.11)

it follows that
Dηab = 0 ⇐⇒ ωacη

cb + ωbcη
ac = 0 ⇐⇒ ωab = −ωba (1.3.12)

if Dea = 0, but this is implied by equation (1.3.9), which can be then written using (1.3.5) as

Dµe
a
ν ≡ ∂µeaν + ωaµbe

b
ν − Γρµνe

b
ρ = 0 (1.3.13)

where the spin connection ω acts on �ber indices, while Γ acts on the world ones. Property (1.3.12) is an
important because

Skew
(
R1,d−1

)
' so(1, d− 1),

i.e. the Lie algebra of the symmetry group of the �ber tensors, so that (1.3.8) looks like the Yang-Mills
covariant derivative for the Lorentz group SO(1, d − 1). We will indeed delve on this similarity in the next
subsection to make contact between the theory of General Relativity and gauge theories.

The vanishing of Dηab allows us to �nd easily the rule for covariant tensors:

DTa1...ak = dTa1...ak +

k∑
i=1

ω b
ai Ta1..b...an ,

namely it is su�cient to lower and raise indices by means of η.
As for now, we de�ned D as a di�erential operator acting on indices of 0-forms, the �ber tensors, that do

not carry any world index. We can generalize this de�nition to arbitrary p-forms guided by the resemblance
to the standard di�erential d: if F a1...ak

p is some tensor-valued p-form belonging to Ωp(M) ⊗X k
(
R1,d−1

)
,

then

DF a1...ak
p = dF a1...ak

p +

k∑
i=1

ωaib ∧ F
a1...b...ak
p , (1.3.14)

where ∧ is the usual antisymmetric wedge product for p-forms6. Contrarily to d, D2 is not zero and is given
by the following expression (again, we treat vectors for simplicity):

D2V a = D
(
dV a + ωabV

b
)

= dωabV
b + ωac ∧ ωcbV b (1.3.15)

We de�ne then the curvature 2-form
Rab = dωab + ωac ∧ ωcb, (1.3.16)

which is the Riemann tensor with two indices converted into �ber ones. Indeed, the �ber version of the known
identity

[Dµ, Dν ]V ρ = R ρ
µν σV

σ

6Notice that in this de�nition all the world indices are antisymmetrized and therefore no Christo�el symbols appear, because
their lower indices are symmetric (see (1.3.17)).
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is
dxµ ∧ dxν [Dµ, Dν ] eρrV

r = 2eρrD
2V r = dxµ ∧ dxνR ρ

µν σe
σ
sV

s

or

Rrs =
1

2
Rµνρσe

ρ
re
σ
s dx

µ ∧ dxν .

Here we see that the symmetry properties of the indices of the Riemann tensor arise naturally from the ones
of the connection and of 2-forms.

Christo�el symbols are not unconstrained. They must respect the following relation:

T ρµν = Γρµν − Γρνµ = 0. (1.3.17)

T ρµν is called torsion. Let us see how (1.3.17) re�ects on connections. From (1.3.9) we get

Γρµν = eρaω
a
µ be

b
ν − ∂µe

ρ
be
b
ν (1.3.18)

that plugged into (1.3.17) gives (we use (1.3.5) to write ∂µe
ρ
be
b
ν = −eρb∂µe

b
ν)

T ρµν = eρaω
a
µ be

b
ν − ∂µe

ρ
be
b
ν − eρaω a

ν be
b
µ + ∂νe

ρ
be
b
µ

= eρb∂µe
b
ν − e

ρ
b∂νe

b
µ + eρbω

b
µ ae

a
ν − e

ρ
bω

b
ν ae

a
µ

or, by (1.3.14),
eρrT

r
µνdx

µ ∧ dxν = eρrDe
r.

We may then de�ne the torsion �ber tensor as a 2-form that vanishes

T a ≡ Dea = 0, (1.3.19)

as follows from (1.3.13).
The formalism we have developed is especially useful to deal with spinors in General Relativity. Indeed,

there is no intuitive way to use the Christo�el symbol to build a covariant derivative suitable for them, since
GL(d) does not have a spinorial representation. In our formalism, though, the connection is just an element
of so(1, d− 1) and we may write it in the representation we prefer and in particular the spinorial one. Let us
take for example a Dirac spinor ψa(x) (letters in roman font as a, b, c are used for spinor indices here). Its
covariant derivative will be then

Dµψa = ∂µψa + ωabµ (σab)
b

a ψb

where σab is a representation of the Mab generator of the Lorentz group (see (1.1.1))

σab =
1

4
[γa, γb]

and γa are the Dirac matrices that obey to

{γa, γb} = 2ηab.

Let us now see how the vielbein changes under in�nitesimal di�eomorphisms xµ → xµ + εµ(x). As it is
well known,

δgµν = Dµεν +Dνεµ

while from (1.3.1) we get
δgµν = δeaµηabe

b
ν + eaµηabδe

b
ν

so that Dµεν = δeaµηabe
b
ν and thus

δea = Dεa.
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However, we saw in (1.3.2) that the vielbein is de�ned up to a Lorentz transformation, that can be in principle
de�ned point by point, realizing thus an additional local symmetry for the e �eld. Then the full in�nitesimal
gauge transformation of e reads

δea = Dεa(x) + εab(x)eb(x), (1.3.20)

where εab(x) = −εba(x) ∈ so(1, d−1) represents the in�nitesimal version of (1.3.2). Equation (1.3.19) requires
that also ωab changes under local Lorentz transformations: if we call D′ the corresponding transformation of
D,

0
!

= D′e′a = D′(ea + εabeb)

is satis�ed at the �rst order if

D′ea = Dea −Dεabeb

equivalent to

δωab = −Dεab. (1.3.21)

More in general, any �ber tensor may be transformed according to a local Lorentz transformation, but the
covariant derivative D is invariant under such transformations if and only if the connection transforms as
(1.3.21).

1.3.2 Gauge symmetries and vector bundles

Di�eomorphisms in General Relativity are local symmetries and indeed we showed in the previous subsection
some resemblance between the associated covariant derivative and the Yang-Mills one. Equation (1.3.8)
suggested that the theory of gravitation can be interpreted as a gauge theory based on a local Lorentz
invariance. In this subsection we generalize the formalism developed in the preceding one to describe a
general gauge theory. The result will be that General Relativity shares many features with gauge theories,
but not all. We will also employ these result to �nd a suitable way to describe higher spin �elds and their
equations of motion, from which a higher spin symmetry algebra will arise.

Let G be a Lie group with Lie algebra g. If we choose a vector space F such that G acts on F as a group
of matrices, we may represent the matter �elds associated to a gauge invariance under G as vectors in F
de�ned at each point x ofM. For example, in QCD, G is SU(3) and the quarks are represented by a vector
in F = C3 on which SU(3) acts in the fundamental representation. If we choose some other representation,
we would employ some other F .

Let us thus de�ne a new manifold with (real) dimension

dim(E) = dim(M) + dim(F )

called vector bundle E on M associated to F such that there exists a surjective di�erentiable projection
function π : E →M that obeys two requirements:

1. Fiber isomorphism: for each x ∈M, π−1(x) is a vector space isomorphic to F , or simply

π−1(x) = F.

2. Local triviality: M can be covered by open sets ui and

π−1(ui) ∼= ui × Rdim(F ),

where ∼= means di�eomorphic.
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These properties tell us that locally E is just a collection of the points of M to each of which a copy of F
is attached. From a physical point of view, E represents all the possible con�gurations of the matter �eld
that lives in F . It would be a mistake, though, to deduce that E is simplyM× F . In such a case E is said
trivial. A familiar vector bundle is the tangent bundle TM, the collection of all the tangents spaces TxM.
Another vector bundle we have encountered is the one of p-forms Ωp(M), for which the �ber is the vector
space of p-forms Λp(T ∗xM).

Since we now have a setting for our gauge theory, we would like to specify a particular con�guration of
our �elds. We call a smooth section of E a di�erentiable function, φ : M→ E, that is one of the inverses of
π, namely

π(φ(x)) = x.

The set of all the possible sections on E is Γ(E). From a physical point of view, φ(x) would be the matter
�eld.

Our goal now is to de�ne a covariant derivative on E. This is usually done in Physics by demanding that
the result behaves as a (contravariant) vector. In our case we prefer to employ the language of p-forms, i.e.
we require that D acts on sections of E, seen as 0-forms with values in F , to give 1-forms also with values in
F .

The covariant derivative is speci�ed by the so-called connection ∇ on E, de�ned as

∇ : Γ(E)→ Ω1(E),

where we used the notation
Γ(Ω1(M)⊗ E) ≡ Ωp(E).

Moreover, ∇ must obey the Leibniz rule for any di�erentiable function f :M→ R:

∇(fφ) = φdf + f∇φ.

It is clear that ∇ = d, the so-called trivial connection, satis�es these requirements and if ∇ is a connection,
so is ∇+ω, for ω ∈ Ω1(End(E)), a 1-form with values in the space of endomorphisms on F . It can be shown
that actually every connection can be obtained from a known one by summing elements from Ω1(End(E)).
For this reason these connections are called a�ne, namely, from a given base point in their space, one can
reach any other by summing with an element from a proper vector space, here represented by End(E).

We may take the trivial connection as a base point and in components we can thus write

∇φa = dφa + ωabφ
b

so that if we choose a particular ω (also called connection with abuse of language), we get the covariant
derivative associated to ω:

Dφa = dφa + ωabφ
b.

This result can be intuitively understood in this formalism in the following way. Suppose that we know the
value of φ at x. If we move a little away from x we expect that φ changes as consequence of the di�erent
point in which we compute it, but we also have to take into account how the �bers F are attached one to the
other to build E. Indeed we expect that for non-trivial bundles, moving from one �ber to the other implies
a local change of basis and therefore the need of a compensating endomorphism to compare φ in the two
locations.

One can extend the map ∇ to forms with higher rank: ∇ : Ωi(E)→ Ωi+1(E) and this extension is unique
if we require that it behaves following the Leibniz rule. It reads

Dφap = dφap + ωab ∧ φbp.
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In particular, it is possible to prove that

D2φa = Rabφ
b, Rab = dωab + ωac ∧ ωcb

where Rab ∈ Ω2(End(E)) is a 2-form with values in the space of endomorphisms on F . It is called curvature
associated to the connection.

Let us consider for example electromagnetism. In this case, G = U(1) and, taking as a matter �eld some
complex scalar �eld, F = C. Then ω = ieA is proportional to the potential 1-form A. As for the curvature
2-form, it is simply given by (the proof consists in a computation similar to the one made in (1.3.15))

(Dω)φ

but
Dω = dω + ω ∧ ω = iedA = ieFµνdx

µ ∧ dxν

with the usual de�nition of the �elds strength.
Suppose now that we want to change locally the basis in the �ber and we do that by acting on F with

an element g ∈ G de�ned point by point:

φ′a(x) = gab(x)φb(x).

Then

D′φ′a = dφ′a + ω′abφ
′b

= dgabφ
b + gabdφ

b + ω′abg
b
cφ
c

but Dφ should transform just as φ, namely

D′φ′a = gabDφ
b

and therefore we get

ω′ab = gacω
c
d

(
g−1
)d
b
− (dgac)

(
g−1
)c
b
. (1.3.22)

This is not the linear transformation we would expect for a matrix, because of the last term. This tells
us that ω does not behave as a tensor under local transformations belonging to G. This is caused by the
presence inside D of the spurious term d that is not a local endomorphism of F . This problem is not present
for the curvature tensor. In order to perform the computation we shorten the notation by considering all the
quantities as matrices with the usual (wedge) product rows by columns, therefore dropping all the indices.
We get

R′ = dω′ + ω′ω′

= d
(
gωg−1 − dgg−1

)
+
(
gωg−1 − dgg−1

) (
gωg−1 − dgg−1

)
= dgωg−1 + gdωg−1 − gωd

(
g−1
)

+ dgd
(
g−1
)

+gωωg−1 − gωg−1dgg−1 − dgωg−1 + dgg−1dgg−1

= gRg−1 + dgωg−1 − gωd
(
g−1
)

+ dgd
(
g−1
)

+gωd
(
g−1
)
− dgωg−1 − dgd

(
g−1
)

= gRg−1 (1.3.23)

where we used the fact that

gg−1 = 1 =⇒ dgg−1 + gd
(
g−1
)

= 0 =⇒ d
(
g−1
)

= −g−1dgg−1.
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In the electromagnetic case (1.3.22) expresses just the appearance of the derivative of the gauge parameter
under gauge transformations of A, which is not present in the transformation law of Fµν .

Having at our disposal a covariant derivative, we may de�ne a notion of parallel transport. Given any
curve γ(s) : [0, 1] → M, and the value of φ at γ(0), we want to determine what is the value of φ at each
point of the curve in order for its covariant derivative along the tangent of the curve γ′(s) to vanish. This is
expressed as

γ′µ(s)Dµφ
a(γ(s)) = 0,

or, in an integral form,

φa(γ(s)) = φa(γ(0))−
ˆ s

0
γ′µω a

µ bφ
b(γ(t))dt.

A generic solution to this equation is given by

φa(γ(s)) = P
[
e−
´ s
0 γ
′µ(t)ωµ(γ(t))dt

]a
b
φb(γ(0)), (1.3.24)

where P stands for path ordering of the matrices in the series expansion of the exponential, i.e.

P [ω(γ(s))ω(γ(t))] =

{
ω(γ(s))ω(γ(t)) s < t

ω(γ(t))ω(γ(s)) s ≥ t
.

Now, we may introduce an additional requirement on our connection. We want to admit only �elds
that under parallel transport transform according to an element of G. Therefore it is clear from (1.3.24)
that ωµ ∈ g. In light of this result we compute the in�nitesimal version of the gauge transformations of the
connection (1.3.22). Let gab(x) = δab+ε

a
b(x) where εab(x) ∈ g is an in�nitesimal element of the Lie algebra in

the same representation as ω and is a 0-form. Then (1.3.22) can be written at the �rst order in the matricial
notation as

δω = ([ε, ω]− dε) = −Dε (1.3.25)

where ω acts on ε ∈ g in the adjoint representation, i.e. via the Lie product. The di�erential in (1.3.25) does
not appear in the in�nitesimal transformation of the curvature:

δR = [ε, R] .

Returning to our example for a U(1) gauge symmetry,

φ(γ(s)) = e
−ie
´ γ(s)
γ(0)

Aµdxµφ(γ(0))

is simply the expression of the phase that a �eld acquires along a curve and the exponential is the so called
Wilson line. Here path ordering is not necessary, being Aµ a real number, as expected, since u(1) = R.

1.3.3 Gravity as a gauge theory in AdS

As we saw in (1.3.1), General Relativity seems to be based on the gauging of the Lorentz group, which acts
on the vector bundle TM, i.e. the tangent bundle and, more generally, on X k,l(M), the set of all the smooth
tensor �elds with k contravariant and l covariant indices, and Ψ(M), the set of all possible smooth spinorial
�elds on M. However, the torsion constraint (1.3.19) puts some restriction on the connection that is not
present in gauge theories such as electromagnetism. This relation is just the �ber form of the known relation
between Christo�el symbols and the metric. Indeed by substituting gµν = emµ e

n
νηmn into

Γρµν =
1

2
gρσ (∂µgσν + ∂νgσµ − ∂σgµν) (1.3.26)
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we can write Γ as a function solely of the vielbein and therefore we can do the same for ω by using (1.3.9).
So, even though e appears to be a matter �eld, it is actually the fundamental �eld of the theory. It is

this feature that makes General Relativity di�erent from a conventional gauge theory. In this subsection, our
aim is to restore at least partially the similarity we hinted before. To do that, we will have to abandon some
of the characteristics of General Relativity.

First of all, we notice that the vielbein is a 1-form that carries �ber indices and has its own gauge variation
(1.3.20). We are thus led to identify it with some connection that in turn should belong to some Lie algebra.
Its vectorial nature makes it natural to associate ea with the translations generator P a of the Poincaré group.

Consider now a generalization of the Poincaré algebra7 (1.1.1) in which we replace the commutator of the
momenta with [

P a, P b
]

= −ΛMab, (1.3.27)

where Λ ∈ R is some parameter and the right hand side is determined by the symmetry of the indices. The
Poincaré algebra is restored when Λ = 0. When Λ 6= 0, (1.3.27) gives the SO(1, d) or SO(2, d − 1), the
symmetry group of a space-time with one more dimension 0′ (either space-like or time-like). The signature
of the metric of this space depends on the sign of Λ. Using proper indices A,B, ... = 0′, 0, 1, ..., d− 1, we can
decompose MAB, the generators of the extended space symmetry group, into

Mab, Ma0′ ≡ 1√
|Λ|

P a,

so that, by using the so commutation rules, we come to[
Ma0′ ,M b0′

]
= −M b0′ηa0′ +M0′0′ηab +M baη0′0′ −M0′aη0′b = −Mabη0′0′

and therefore η0′0′ = sign(Λ).
If we de�ne a connection with values in this algebra

Ω =
1

2
ωabMab + eaPa (1.3.28)

the associated covariant derivative is DΩ = d+ Ω and the corresponding curvature reads

RΩ ≡ dΩ + Ω ∧ Ω

=
1

2
dωabMab + deaPa +

(
1

2
ωabMab + eiPi

)
∧
(

1

2
ωcdMcd + ejPj

)
=

1

2
dωabMab + deaPa +

1

8
ωab ∧ ωcd [Mab,Mcd] +

1

2
ei ∧ ej [Pi, Pj ]

1

4
ei ∧ ωab [Pi,Mab] +

1

4
ωab ∧ ei [Mab, Pi]

=
1

2

(
dωab + ωac ∧ ωcb − Λea ∧ eb

)
Mab +

(
dea + ωab ∧ eb

)
Pa

=
1

2

(
Rab − Λea ∧ eb

)
Mab + T aPa (1.3.29)

where Rab = dωab + ωac ∧ ωcb is the curvature in the usual sense of General Relativity, i.e. when only the
Lorentz spin-connection is used. Notice, though, that for Λ 6= 0 there is an additional term proportional to
Λ that can be understood once we rewrite it with world indices:

Λgµ[νgρ]σ = RΛ
µνρσ,

7Here we prefer the real version of the algebra given in (1.1.1) that can be obtained by the substitutions P a → −iP a and
Mab → −iMab, that causes all the commutators to change sign.
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the Riemann tensor of the (A)dS space, namely the maximally symmetric solution of Einstein equations in
presence of a cosmological constant Λ. This is in accordance with the symmetry group associated to Λ.

We see that if we enforce
RΩ = 0

we get simultaneously
Rab = RabΛ , T a = 0, (1.3.30)

that is, the equations that describe a maximally symmetric space and the torsion constraint. If instead we
impose only the latter, we will have Einstein gravity around the AdS background.

Gauge symmetry is realized at the in�nitesimal level (see (1.3.25)) by

δΩ = DΩε, ε ≡ 1

2
εabMab + εaPa, εab = −εba

or, in components,

δΩ = dε+ [Ω, ε]

=
1

2
dεabMab + dεaPa +

[
1

2
ωabMab + eiPi,

1

2
εcdMcd + εjPj

]
=

1

2
dεabMab + dεaPa +

1

4
ωabεcd [Mab,Mcd] + eiεj [Pi, Pj ]

1

2
eiεab [Pi,Mab] +

1

2
ωabεi [Mab, Pi]

=
1

2

(
dεab + ωacε

cb + ωbcε
ac − Λeaεb

)
Mab +

(
dεa + ωabε

b − ebε a
b

)
Pa.

=
1

2

(
Dεab − 2Λeaεb

)
Mab +

(
Dεa − ebε a

b

)
Pa. (1.3.31)

or, in components

From now on we will set our theory in the AdS space in 4 dimensions and employ both the connections
D and D. However, since we would like to restore a dynamical gravity, at least at the perturbative level, we
change a bit our notation. We call

haµ(x), $ab
µ (x)

the vielbein and the spin-connection for AdS respectively, while we reserve the old symbols for their dynamical
perturbation:

eaµ(x), ωabµ (x).

Our de�nition of the covariant derivatives becomes thus

D = d+
(
$ab + ωab

)
Lab, DΩ = d+

(
$ab + ωab

)
Lab + (ha + ea)Pa, (1.3.32)

and we denote with D0 the background derivative

D0 = d+$abLab.

The two relations in (1.3.30) then can be written as

D0h
a = 0, D0$

ab = RabΛ = Λha ∧ hb. (1.3.33)

More in general, we assume that every higher spin �eld is a small �uctuation around the gravitational
background of order O(h).
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1.4 Unfolding and frame-like formalism of higher spin �elds

In this section we reformulate the Fronsdal equations in the frame-like formalism, namely by using 1-forms
and 0-forms analogous to those employed for the gravitation equations linearized around AdS presented in
the previous section. To do so, we will make also use of the so-called unfolding procedure. It consists in
introducing in�nitely many auxiliary �elds that parametrize the derivatives of the fundamental ones, so that
the equations of motion are always of �rst order. This will render manifest the gauge algebra of higher spin
�elds, which will be in�nite dimensional and require the presence of all integer spins to be closed, as hinted
by one of the yes-go examples.

In the �rst subsection we introduce unfolding by applying it to the gravitational �eld. Then, with the aid
of the spinor formalism to describe tensors with complicated symmetry properties, we employ it to higher
spins in subsection (1.4.3). In the last subsection we will show that the resulting equations are just the
linearized version of a zero curvature condition of the higher spin connection.

1.4.1 Unfolding gravity

In this subsection we will analyze the spin 2 �eld Φµν and its equations of motion employing the techniques
that we will use to describe higher spin �elds in the AdS4 space. In our setting, where the torsion constraint
is an equation of motion, this �eld is encoded by the perturbation of the vielbein, eaµ(x), and the connection,
ωabµ , to which we associated two gauge transformations under (in�nitesimal) di�eomorphisms

δeaµ = Dµε
a − hbµε a

b (1.4.1)

δωabµ = Dµε
ab − Λh[a

µ ε
b] (1.4.2)

that come from (1.3.31).
It is interesting to compare these results with the ones that we obtained in subsection (1.3.1). There we

saw that if we wanted to represent the �eld gµν with haµ we would have had the problem that the second
is in principle just a 4 × 4 matrix, while the �rst has a symmetry property that reduces its independent
components (see (1.3.6)). Local Lorentz invariance, though, reduced the count of the degrees of freedom.
Here this role for Φµν is played by the second term in (1.3.20) hbµε

a
b . Indeed εab is antisymmetric in a and b,

so that, thanks to the vielbein that converts �ber indices into world ones, hbµε
a
b is antisymmetric in a and µ.

This allows to gauge away any unwanted antisymmetric contributions to eaµ.
Now let us write down the equations of motion associated to ea, namely the vanishing of the torsion.

From (1.3.33) we get8

0 = D (ea + ha) = D0e
a + ωab ∧ hb. (1.4.3)

We may now perform a consistency check on (1.4.3): applying D0 do both the members we get

0 = D2
0e
a +D0ω

a
b ∧ hb

= −Λha ∧ eb ∧ hb +D0ω
a
b ∧ hb. (1.4.4)

In order to interpret this equation, let us write down the equation of motion for ωab:

Rab = d
(
ωab +$ab

)
+ (ωac +$a

c) ∧
(
ωcb +$cb

)
− Λha ∧ eb − Λea ∧ hb − Λha ∧ hb

= dωab + d$ab + ωac ∧$ b
c +$ac ∧$ b

c +$ac ∧ ω b
c

−Λha ∧ eb − Λea ∧ hb − Λha ∧ hb

= D0ω
ab − Λh[a ∧ eb]. (1.4.5)

8Here and in the rest of the section, we will work at the �rst order in perturbations
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We recognize then (1.4.4) as the �rst Bianchi identity,

0 = Rab ∧ hb = dxµ ∧ dxν ∧ dxρR σ
µνρ h

a
σ, (1.4.6)

which simply �xes the symmetry properties of the four world indices of the Riemann tensor. We could have
come to the same conclusion directly from (1.4.4). First of all, we need to write down the curvature form
appearing in (1.4.4) as a rank 4 �ber tensor, by means of the vielbein, doing in a certain sense the opposite
of what we did in (1.4.6). For this purpose we de�ne

Ra,b|c,dhc ∧ hd ≡ D0ω
a,b − Λh[a ∧ eb]. (1.4.7)

Let us explain the notation used here. Every irreducible representation of SO(1, 3) is related to a Young
tableau that describes the symmetry properties of the indices of tensors sitting there. We group these indices
by separating them with commas, so that each group corresponds to a row of the related Young diagram. If,
instead, we deal with tensor products, we juxtapose the additional indices by separating them with a vertical
bar. For instance

T a,b|c = T a,b ⊗ T ′c.

Using (1.4.7), (1.4.4) reads
Ra,b|c,dhc ∧ hd ∧ hb = 0. (1.4.8)

Equation (1.4.8) gives some constraints on the symmetry properties of Ra,b|c|d. We can always write

Ra,b|c|d ≡ Ra,b,c,d +Rac,b,d +Rac,bd

and it is clear that in general only the last term is such that (1.4.8) is always satis�ed. In our case, the
energy-momentum tensor of the higher spin �elds and the gravitational perturbation e itself, being (more
than) quadratic in the �elds, is negligible at �rst order and therefore the Einstein equations imply that both
the Ricci tensor and scalar vanish, so that the Riemann tensor coincides with the Weyl tensor, i.e. its traceless
part. We call it Cab,cd ≡ Rab,cd.

In the following we will employ the so-called unfolding procedure to solve the equations of motion of the
Weyl tensor. It consists in the de�nition of in�nite auxiliary �elds that represent the derivatives of Cab,cd.
These auxiliary �elds obey equations that are derived by the one involving Cab,cd by di�erentiating it with
D0 a proper number of times. The resulting in�nite system of equations, when solved, determines all the
derivatives of Cab,cd and hence the Weyl tensor itself. Even though this seems to complicate the description
of the theory, it will unveil in the general case a gauge symmetry involving all the spins together.

Let us start from (1.4.5). Applying D0 to both members we �nd

D0R
a,b − Λha ∧ hc ∧ ωc,b − Λhb ∧ hc ∧ ωa,c + Λha ∧ ωbc ∧ hc − Λhb ∧ ωa,c ∧ hc = 0

D0R
a,b = 0,

which we recognize as the (linearized) second Bianchi identity for the Riemann tensor

D0
[µR

γδ
αβ] haγ ∧ hbδ = 0.

We can solve in general this equation by de�ning an auxiliary �eld that represents D0R
a,b. Let us rewrite

this equation by using Cab,cd:
D0C

a1a2,b1b2 ∧ ha1 ∧ hb1 = 0. (1.4.9)

Now, let us call
Ca1a2,b1b2|c ≡ hcµD0

µC
a1a2,b1b2

so that (1.4.9) reads
Ca1a2,b1b2|chc ∧ ha1 ∧ hb1 = 0. (1.4.10)

29



1.4. Unfolding and frame-like formalism of higher spin �elds Chapter 1. Higher spins theories

Again, since
⊗ = ⊕ ⊕

we can rewrite Ca1a2,b1b2|c as

Ca1a2,b1b2|c ≡ Ca1a2,b1b2,c + traces+ Ca1a2c,b1b2 (1.4.11)

where traces denotes the traceful terms (i.e. proportional to ηac or ηbc), while Ca1a2,b1b2,c and Ca1a2c,b1b2 are
not. Only the last term in (1.4.11) has the right symmetry properties that make (1.4.10) vanish identically.
We can thus rewrite (1.4.9) as

D0C
a1a2,b1b2 = P

[
hcC

a1a2c,b1b2
]
, (1.4.12)

where P is some projector that imposes on the right hand side of (1.4.12) the symmetry properties of
the Weyl tensor. Here we avoid to derive precise expressions for such projections, because they are quite
complicated if we use the 4-dimensional notation. Since, on the contrary, with the formalism that we develop
in the next subsection these results are written in a much simpler form, we prefer to focus on the general
structure of the equations of motion for the C tensors.

Following our unfolding algorithm, we solve (1.4.12) by applying to both its sides D0 to get

ΛP
[
(ha1 ∧ hd)Ca2d,b1b2 +

(
hb1 ∧ hd

)
Ca1a2,b2d

]
= P

[
hcD0C

a1a2c,b1b2
]

(1.4.13)

If we write

Ca1a2a3,b1b2|d ≡ hµdD0
µC

a1a2a3,b1b2 , (1.4.14)

equation (1.4.13) reads

P
[
hc ∧ hdCa1a2c,b1b2|d

]
= P

[
(Λha1 ∧ hd)Ca2d,b1b2 +

(
Λhb1 ∧ hd

)
Ca1a2,b2d

]
. (1.4.15)

By a reasoning analogous to the previous one with Young diagrams, (1.4.15) implies

D0C
a1a2a3,b1b2 = P

[
hdC

a1a2a3d,b1b2 + Λhdη
a1a2Ca3d,b1b2

]
. (1.4.16)

where both the C tensors appearing in the r.h.s are traceless, i.e. reside in an irreducible representation of
the Lorentz group. The �rst term in (1.4.16) makes the left member of (1.4.15) vanish, while the other one
gives the contributions proportional to the Weyl tensor found in the right hand side of (1.4.15)9.

If we now unfold equation (1.4.16) we get

D2
0C

a1a2a3,b1b2 = P
[
hdD0C

a1a2a3d,b1b2 + Λhdη
a1a2D0C

a3d,b1b2
]

= P
[
hdD0C

a1a2a3d,b1b2 + Ληa1a2hd ∧ hcD0C
a3dc,b1b2

]
= P

[
hdD0C

a1a2a3d,b1b2
]
,

which looks like (1.4.13), but this time involves a tensor Ca1a2a3a4,b1b2 with one more index of the a type. It
is now clear that by induction one �nds that all the unfolded equations associated to the Weyl tensor are
constraints on traceless �elds of type

Ca1...ak,b1b2 ∈ k − 3

They read {
D0ω

a1,b1 = ha2 ∧ hb2Ca1a2,b1b2

D0C
a1...ak,b1b2 = P

[
hak+1

Ca1...akak+1,b1b2 + Ληa1a2hdC
a3...akd,b1b2

] (1.4.17)

9It is the projector that makes it possible for both of them to appear.
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1.4.2 The spinorial notation

Unfolding the linearized Einstein equations required the de�nition of an in�nite number of tensorial 0-forms
with arbitrary rank. These tensors should sit in irreducible representations of the Lorentz group, i.e. they
must be traceless and with a de�nite symmetry of the indices. In order to put them in such form, we
had to employ some projectors in equations (1.4.17). This task can be simpli�ed if we work with another
representation of the Lorentz group: the spinorial one.

As it is well known, SL(2,C) is a double covering of SO+
↑ (1, 3), the subgroup of SO(1, 3) in which lie

the orthocronous proper Lorentz transformations. The homomorphism between the two is realized in the
following way. A vector vµ ∈ R1,3 is represented by the 2× 2 Hermitean matrix

V = vµσµ =

(
v0 + v3 v1 − iv2

v0 + iv2 v0 − v3

)
= V † (1.4.18)

where the σµ are the Pauli matrices

σ0 =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

We see from (1.4.18) that
det(V ) = v2,

so that Lorentz transformations are given by left and right multiplication10 with 2× 2 matrices that preserve
the determinants, i.e. SL(2,C):

V → V ′ = SV S†, S ∈ SL(2,C). (1.4.19)

It is clear that this representation is 2 to 1, for S and −S give the same Lorentz transformation. The spinorial
representation of the Lorentz group is associated with the fundamental representation of SL(2,C) acting on
vectors in C2 that we call Weyl spinors. From now on, we use the �rst Greek letters α, β, ... to denote spinor
indices that can be equal only to 1 or 2, while dotted indices α̇, β̇, ... = 1, 2 are used for the the conjugated
spinors, i.e. the elements of the dual of C2. Then we have that ψα transforms according to the fundamental
representation (denoted by 2)

ψ′α = S β
α ψβ

while for ψα̇ we need to use the conjugate of S (in the so-called anti-fundamental representation, denoted by
2̄)

ψ′α̇ = (S∗) β̇
α̇ ψβ̇.

The two representations are inequivalent and, by tensorial products, produce every irreducible representation
of the Lorentz group. For instance, we see from (1.4.19) that vectors sit in 2⊗ 2̄.

It is also possible to introduce a �metric�, namely a way to contract spinorial indices in order to get a
scalar product of the vectors written in the spinorial form (1.4.18). Indeed,

det(vαα̇) = v11v22 − v12v21

=
1

2
εαβεα̇β̇vαα̇vββ̇, (1.4.20)

and we see that

εαβ ≡
(

0 1
−1 0

)
≡ εα̇β̇, εαβεγβ = δαγ (1.4.21)

10To see that it is necessary to take two (and not one) SL(2,C) matrices and that they must be multiplied with V in the
order given by (1.4.19), it su�ces to impose V ′† = V ′
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is the sought �metric�, which, contrarily to the usual one, is anti-symmetric. This implies that when we lower
or raise indices by means of ε in the following way (see 1.4.21)

ψα = εαβψβ = −ψβεβα, ψα = εγαε
γβψβ = ψβεβα = −εαβψβ

we need to use the convention that indices are raised by left multiplication and lowered by right multiplication
with ε, which is also coherent with

εαβ = εγδεγαεδβ .

From (1.4.20) we also recover the spinorial version of η, the four-dimensional metric:

ηαα̇,ββ̇ =
1

2
εαβεα̇β̇. (1.4.22)

In the following we will need only a particular class of irreducible representations of the Lorentz group,
namely those represented by the following Young tableaux:

Let us see what they look like in the spinor notation. First, we derive a useful identity. Any spin-tensor of
rank 2 can be written as

Tαβ =
1

2
T(αβ) +

1

2
T[αβ]

and

εαβTαβ =
1

2
εαβT[αβ] =

1

2
T γγ ,

so that

Tαβ =
1

2
T(αβ) +

1

4
εαβT

γ
γ . (1.4.23)

Given a tensor T a,b which is antisymmetric in two indices, applying repeatedly (1.4.23), its spinorial
version reads11

T a,bσαα̇a σββ̇b = T a,b
(

1

2
σ(αα̇
a σ

β)β̇
b +

1

4
εαβσαγ̇a σβbγ̇

)
= T a,b

(
1

4
σ(α(α̇
a σ

β)β̇)
b +

1

8
εαβσ(αγ̇

a σ
β)
bγ̇ +

1

8
εα̇β̇σ(αγ̇

a σ
β)
bγ̇ +

1

16
εαβεα̇β̇σδγ̇a σbδγ̇

)
= T a,b

(
εαβT α̇β̇ + εα̇β̇Tαβ

)
where we used the antisymmetry of T a,b to rule out the �rst and the last term and de�ned the tensors

Tαβ =
T a,b

8
σ(αγ̇
a σ

β)
bγ̇ , T α̇β̇ =

T a,b

8
σγ(α̇
a σ

β̇)
bγ .

Since T a,b is real, Tαβ =
(
T α̇β̇

)∗
. This procedure can be applied similarly to the case of a traceless tensor

T a1...ak+l,b1...bk , which is represented by

Tα1...α2k+lα̇2k+1...α̇2k+lεα̇1α̇k+1 · · · εα̇kα̇2k + T α̇1...α̇2k+lα2k+1...α2k+lεα1αk+1 · · · εαkα2k , (1.4.24)

where both dotted and undotted indices of the T spin-tensors are symmetric, so that and the �rst is the
complex conjugated of the second. The reason why no mixed terms with both εαα and εα̇α̇ appear is that
they do not vanish when contracted with ηαα̇,αα̇, while T a1...ak+l,b1...bk should be traceless.

11Dotted and undotted indices are symmetrized separately.
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Completely symmetric traceless tensors T a1...ak have the following spinorial form:

Tα1...αkα̇1...α̇k = T a1...akσα1α̇1
a1

· · · σαkα̇kak
, (1.4.25)

that is symmetric in both the dotted and undotted indices and therefore traceless under contractions with
ηαα̇,αα̇.

We conclude by applying these results to some of the tensors encountered in the previous subsections.
The vielbein and the spin connection in the spinorial formalism read, using (1.4.23),

hαα̇, $αα̇,ββ̇ ≡ $αβεα̇β̇ +$α̇β̇εαβ

and therefore D0 acts on spin tensors as if there were two separate spin connections $αβ and $α̇β̇ for each
type of index. For example, if we consider a vector V αα̇,

D0V
αα̇ = dV αα̇ +$αα̇,ββ̇Vββ̇

= dV αα̇ +$αβV α̇
β +$α̇β̇V α

β̇
. (1.4.26)

The same happens for the curvature form, that acts on undotted and dotted indices respectively with

Rαβ = hαγ̇ ∧ hβγ̇ , and Rα̇β̇ = hγα̇ ∧ hβ̇γ . (1.4.27)

Analogously, the symmetry generators of AdS4 M
ab and P a are substituted by

Pαα̇, Mαα̇,ββ̇ ≡Mαβεα̇β̇ +M α̇β̇εαβ.

In the following we will also need two of their commutators:[
Pαα̇, P ββ̇

]
= −Λ

(
Mαβεα̇β̇ +M α̇β̇εαβ

)
(1.4.28)[

Pαα̇,Mβγεβ̇γ̇ +M β̇γ̇εβγ
]

= −
(
P ββ̇εαγεα̇γ̇ − P γγ̇εαβεα̇β̇

)
,

which implies [
Pαα̇,Mβγ

]
= −P βα̇εαγ − P γα̇εαβ,

[
Pαα̇,M β̇γ̇

]
= −Pαβ̇εα̇γ̇ − Pαγ̇εα̇β̇. (1.4.29)

1.4.3 Unfolding of an arbitrary spin �eld

Let us consider now a generic spin s �eld. Our goal is to reproduce for this case the analysis carried out
in section 1.4.1. Analogy suggests to promote Φµ1...µs to a vielbein-like �eld e

a1...as−1
µ , that is completely

symmetric in the �ber indices, can be interpreted as a tensor-valued 1-form and is related to Φ by

ha1(µ1
· · · has−1µs−1e

a1...as−1

µs)
≡ Φµ1...µs . (1.4.30)

The double tracelessness constraint (1.1.17) is replaced by

ea1...as−1ηa1a2 = 0, (1.4.31)

which simply states that e is traceless, as well as symmetric, and therefore sits in an irreducible representation
of SO(1, 3), a more natural condition with respect to double tracelessness, which is in turn implied by (1.4.31).

In a curved background, Φ undergoes the gauge transformation

δΦµ1...µs = D
(µ1

0 εµ2...µs), (1.4.32)
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which (1.4.30) suggests that ea1...as−1 transforms in the following way:

δea1...as−1 = D0ε
a1...as−1 , (1.4.33)

where εa1...as−1 is a completely symmetric 0-form. Equation (1.4.32) is the immediate generalization of
(1.3.20).

Now, let us compare the degrees of freedom of Φ and e. There is no way to express the symmetry between
the world index µs and the �ber ones, so that e comes with some additional non-physical degrees of freedom
with respect to the Fronsdal �eld. This is depicted by Young tableaux as follows

e = ⊗ = ⊕ (1.4.34)

We already encountered a similar situation for the gravity vielbein in section 1.4.1. There the issue was solved
by the gauge transformation (1.4.1). Let us adopt that solution also in our case and generalize (1.4.33) to

δea1...as−1
µ = D0

µε
a1...as−1 + ρhµbε

a1...as−1,b, (1.4.35)

where we introduced a dimensional quantity
ρ ≡
√
−Λ

and a new gauge parameter εa1...as−1,b that has the symmetry of the �rst term in (1.4.34) in the b and a indices
and, therefore, thanks to the background vielbein h, in the µ and a indices. This new gauge invariance allows
us to subtract the unwanted degrees of freedom. From an analogy with gravity, we expect that the new gauge
parameter is associated to a 1-form �eld

ωa1...as−1,b (1.4.36)

that plays the role of the spin-connection whose gauge transformation is a generalization of (1.4.2) and reads

δωa1...as−1,b = D0ε
a1...as−1,b − ρ

(
hbεa1...as−1 − h(a1εa2...as−1)b

)
(1.4.37)

Before proceeding further, let us convert all the quantities into spin-tensors:

ea1...as−1 → eα1...αs−1α̇1...α̇s−1 ,

εa1...as−1 → εα1...αs−1α̇1...α̇s−1 , εa1...as−1,b → εα̇s−1β̇εα1...αs−1βα̇1...α̇s−1 + εαs−1βεα1...αs−1α̇1...α̇s−1β̇

ωa1...as−1,b → εα̇s−1β̇ωα1...αs−1βα̇1...α̇s−1 + εαs−1βωα1...αs−1α̇1...α̇s−1β̇

so that (1.4.35) and (1.4.37) become respectively

δeα1...αs−1α̇1...α̇s−1 = D0ε
α1...αs−1α̇1...α̇s−1 − ρhα̇s−1

β εα1...αs−1βα̇1...α̇s−2 − ρhαs−1

β̇
εα1...αs−2α̇1...α̇s−1β̇. (1.4.38)

and
δωα1...αsα̇1...α̇s−2 = D0ε

α1...αsα̇1...α̇s−2 − ρhαs
β̇
εα1...αs−1α̇1...α̇s−2β̇ (1.4.39)

Here we introduced a convention that we will employ throughout this subsection: spinor indices denoted by
the same Greek letter and of the same (un)dotted kind are implicitly symmetrized, with the rules explained
in the �Notation� appendix. Moreover, when we use the shorthand notation Tα(k)α̇(l) to mean Tα1...αkα̇1...α̇l

in the text.
Following the analogy with gravity, we need to eliminate the unphysical degrees of freedom of the spin

connection (1.4.36), which is a purely auxiliary �eld. To do so, we impose a torsion-like constraint:

D0e
α1...αs−1α̇1...α̇s−1 + ρωα1...αs−1βα̇1...α̇s−2 ∧ hα̇s−1

β + ρωα1...αs−2α̇1...α̇s−1β̇ ∧ hαs−1

β̇
= 0. (1.4.40)
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where the appearance of hαα̇ instead of eαα̇ is due to the fact that we are making a �rst order approximation,
where terms like eαα̇ωα(s)α̇(s−2) are of second order. Relation (1.4.40) is meant to allow us to determine
ωα(s)α̇(s−2) and ωα(s−2)α̇(s) as functions of eα(s−1)α̇(s−1), just like happens for spin 2. We need to check, though,
if (1.4.40) contains enough independent components to constrain completely ωα(s)α̇(s−2) and ωα(s−2)α̇(s). By
using the spinorial version of (1.3.5)

hαα̇µ hναα̇ = 2gµν ,

we can decompose ωα(s)α̇(s−2) in the following way

ωα1...αsα̇1...α̇s−2
µ =

1

2
ωα1...αsα̇1...α̇s−2
ν hνγγ̇hµγγ̇

=
1

4
ω(α1...αsα̇1...α̇s−2
ν hνγ)γ̇hµγγ̇ +

1

8
ωα1...αs−1βα̇1...α̇s−2
ν hνγ̇β ε

γαshµγγ̇

=
1

8
ω(α1...αs(α̇1...α̇s−2
ν hνγ)γ̇)hµγγ̇ +

1

16
ω(α1...αsα̇1...α̇s−3β̇
ν h

νγ)

β̇
εα̇s−2γ̇hµγγ̇

+
1

16
ωα1...αs−1β(α̇1...α̇s−2
ν h

νγ̇)
β εγαshµγγ̇ +

1

32
ωα1...αs−1βα̇1...α̇s−3β̇
ν hν

ββ̇
εγ̇α̇s−3εγαshµγγ̇

≡ ω̃α1...αs+1α̇1...α̇s−1hµαs+1α̇s−1 + ω̃α1...αs−1α̇1...α̇s−1hαsµα̇s−1

+ω̃α1...αs+1α̇1...α̇s−3hα̇s−2
µαs+1

+ ω̃α1...αs−1α̇1...α̇s−3hαsα̇s−2
µ

and we see that the third term can not be determined by (1.4.40), since

ω̃α1...αs−1βγα̇1...α̇s−3hα̇s−2
γ ∧ hα̇s−1

β ≡ 0.

An analogous issue involves ωα(s−2)α̇(s). We may solve this problem by introducing a generalization of the
gauge transformation (1.4.39):

δωα1...αsα̇1...α̇s−2 = D0ε
α1...αsα̇1...α̇s−2 − ρhα̇s−2

β εα1...αsβα̇1...α̇s−3 − ρhαs
β̇
εα1...αs−1α̇1...α̇s−2β̇. (1.4.41)

so that the new gauge parameter εα(s+1)α̇(s−3) is able to remove the unwanted �ctitious degrees of freedom
encoded in ω̃α(s+1)α̇(s−3). Moreover, we expect that this gauge transformation is associated to a new spin
connection-like �eld ωα(s+1)α̇(s−3) that descends from ωα(s)α̇(s−2) and transforms according to

δωα1...αs+1α̇1...α̇s−3 = D0ε
α1...αs+1α̇1...α̇s−3 − ρhαs+1

γ̇ εα1...αsα̇1...α̇s−1γ̇ . (1.4.42)

ωα(s+1)α̇(s−3), being auxiliary, should be expressed as a function of eα(s−1)α̇(s−1), ωα(s)α̇(s−2) and ωα(s−2)α̇(s).
The equation that speci�es this relation, should also be gauge invariant under (1.4.42), (1.4.41) and (1.4.38).
It is then clear that it should have a form that generalizes (1.4.40):

D0ω
α1...αsα̇1...α̇s−2 + ρωα1...αsβα̇1...α̇s−3 ∧ hα̇s−2

β + ρeα1...αs−1α̇1...α̇s−2β̇ ∧ hαs
β̇

= 0, (1.4.43)

where the �elds involved have been identi�ed according to the indices they carry. Again, just like (1.4.40),
(1.4.43) is invariant also under the following transformation

δ′ωα1...αs+1α̇1...α̇s−3 = −ρhα̇s−3
γ εα1...αs+1γα̇1...α̇s−4 ,

which signals the fact that (1.4.43) is not able to constrain all the components of ωα(s+1)α̇(s−3). Those that
are una�ected by (1.4.43) can be anyway gauged away if we deform (1.4.42) into

δωα1...αs+1α̇1...α̇s−3 = D0ε
α1...αs+1α̇1...α̇s−3 − ρhαs+1

γ̇ εα1...αsα̇1...α̇s−1γ̇ − ρhα̇s−3
γ εα1...αs+1γα̇1...α̇s−4 .
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We can repeat this argument inductively and de�ne step by step a ωα(k+1)α̇(l−1) descending from ωα(k)α̇(l).
The same can be done with ωα(s−2)α̇(s), and leads to the introduction of ωα(k−1)α̇(l+1) as the gauge �eld
associated to the gauge parameter εα(k−1)α̇(l+1). The spin s �eld is then represented by the following 1-forms

ωα(k)α̇(l), k + l = 2s− 2, k, l ≥ 0,

where we used ωα(s−1)α̇(s−1) in place of eα(s−1)α̇(s−1) to simplify our notation, as we will often do in the
following. The Young tableau12 associated to the four dimensional form of ωα(k)α̇(l) is

. . . k + l . . . . .

. . . k − l . .
(1.4.44)

The equations for the connections ωα(k)α̇(l) that we have thus derived is

D0ω
α1...αs−1+kα̇1..α̇s−1−k = ρh

α̇s−1−k
β ∧ ωα1...αs−1+kβα̇1...α̇s−2−k + ρh

αs−1−k
β̇

∧ ωα1...αs−2+kα̇1...α̇s−1−kβ̇ (1.4.45)

and the related gauge transformations that leave them invariant are

δωα1...αs−1+kα̇1..α̇s−1−k = D0ε
α1...αs−1+kα̇1...α̇s−1−k (1.4.46)

−ρhα̇s−1−k
β εα1...αs−1+kβα̇1...α̇s−2+k − ρhαs−1

β̇
εα1...αs−2+kα̇1...α̇s−1+kβ̇,

where 1− s < k < s− 1 is some integer. It is clear that we could not write (1.4.45) for ωα(2s−2) or ωα̇(2s−2),
since they can not have contributions from both the terms proportional to ρ. These two 1-forms represent a
tensor with the following symmetry

. . . s − 1 . . .

. . . s − 1 . . .
(1.4.47)

so that the 2-form
D0ω

α1...α2s−2 + ρωα1...α2s−3β̇ ∧ hα2s−2

β̇

and its conjugate, once one converts world indices to �ber ones, represent a tensor with a Young diagram of
the kind

. . . s . . .

. . . s . . .
(1.4.48)

that we interpret as the higher spin curvature, since it reduces to the Weyl tensor in the gravitational case.
We may therefore write for ωα(2s−2)

D0ω
α1...α2s−2 + ρωα1...α2s−3β̇ ∧ hα2s−2

β̇
= hγ̇α2s

∧ hγ̇α2s−1C
α1...α2s . (1.4.49)

This equation corresponds to (1.4.4) for spin 2. We will solve it as in section 1.4.1, by the unfolding
algorithm. Applying D0 to (1.4.49), by using (1.4.27) and (1.4.45) we �nd

0 = hγ̇α2s
∧ hγ̇α2s−1 ∧D0C

α1...α2s . (1.4.50)

Equation (1.4.50) is solved13 by

D0C
α1...α2s = −ρhα2s+1α̇1C

α1...α2s+1α̇1 . (1.4.51)

12In this section all the Young tableaux are referred to the vector-tensor version of the �elds.
13In order to see this, it is useful to go back to the vector-tensor formalism and write (1.4.50) as

has ∧ hbs ∧D0C
a1...as,b1...bs ,

that is solved by
−ρhas+1 ∧ C

a1...as+1,b1...bs = D0C
a1...as,b1...bs .
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This equation is invariant under the higher spin gauge transformations.
Let us now apply D0 to (1.4.51):

ρhα2sγ̇ ∧ hβγ̇Cα1...α2s−1β = hα2s+1α̇1 ∧D0C
α1...α2s+1α̇1 . (1.4.52)

Equation (1.4.52) is solved by

D0C
α1...α2s+1α̇1 = −ρhα2s+2α̇2C

α1...α2s+2α̇1α̇2 − ρhα2sα̇1Cα1...α2s−1α2s+1 . (1.4.53)

If we apply again D0 to (1.4.53), we get

ρhα2s+1γ̇ ∧ hβγ̇Cα1...α2sβα̇1 + ρhγα̇1 ∧ hγβ̇C
α1...α2s+1β̇ =

hα2s+2α̇2 ∧D0C
α1...α2s+2α̇1α̇2 + ρhα2s+1α̇1 ∧ hβα̇1C

α1...α2s−1α2sβα̇1 ,

and thus
ρhγα̇1 ∧ hγβ̇C

α1...α2s+1β̇ = hα2s+2α̇2 ∧D0C
α1...α2s+2α̇1α̇2 ,

i.e. an equation of the same form as (1.4.52). We see then that the unfolding procedure goes on for in�nitely
many steps, in each of which a tensor with one more couple of dotted and undotted indices appears:

D0C
α1...α2s+kα̇1...α̇k = −ρhα2s+k+1α̇k+1

Cα1...α2s+k+1α̇1...α̇k+1 − ρhα2s+kα̇kCα1...α2s+k−1α̇1...α̇k−1 . (1.4.54)

These correspond to the descendants of the Weyl tensor encountered in section 1.4.1 and, by (1.4.24) are
represented by a Young tableau of the following kind:

. . . s . . . . . . k . . .

. . . s . . .
(1.4.55)

Our �nal result is then that to a Fronsdal �eld Φ with spin s we can associate a vielbein-like �eld e with
s−1 dotted and undotted indices. e has some additional �ctitious degrees of freedom, that can be eliminated
by some gauge transformations that involve e and spin connection-like 1-forms ωα(k)α̇(l) such that

k + l = 2(s− 1). (1.4.56)

These obey equations that allow to determine systematically every auxiliary �eld by torsion-like constraints
and eventually to de�ne a gauge-invariant Weyl-like tensor Cα(2s) whose derivatives are parametrized by the
unfolding procedure as a series of tensors Cα(k)α̇(l) with

|k − l| = 2s. (1.4.57)

The Fronsdal equations in AdS can be retrieved by solving the �rst two equations for the connections,
namely (1.4.40) and (1.4.43), to get a di�erential equation of the second order, which, in the four dimensional
notation, reads

�Φµ1...µs −m2Φµ1...µs −D(µ1

0 D0νΦµ2...µs)ν +
1

2
D

(µ1

0 Dµ2
0 Φ νµ3...µs)

ν + 2Λg(µ1µ2Φ νµ3...µs)
ν = 0. (1.4.58)

m2 = −Λ ((s− 2) (d+ s− 3)− 2) (1.4.59)

Equation (1.4.58) is not simply obtained by replacing all the derivatives in (1.1.19) with the covariant
ones. Indeed, the non-commutativity of the latter implies that one should add a factor 1

2 to the fourth term
in (1.4.58) to get the same amount of terms after symmetrization. Moreover, gauge invariance under (1.4.32)
requires a mass-like termm2 given by (1.4.59) that cancels all the unwanted contributions from commutations
of covariant derivatives. This does not imply that the �elds are massless. Indeed, since in the AdS space
translations are not commutative anymore by (1.3.27), they cannot de�ne a Casimir by PµPµ = m2, so
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that mass is not connected with the irreducible representation of the symmetry group in which the �elds we
are considering sit. The value of m2 is �xed by the gauge and space-time symmetries satis�ed by the �eld
equation.

The formulation of the Fronsdal theory we described here and in general of higher spin �elds is called
frame-like, because it is a generalization of the Cartan description of gravitation by local inertial frames eaµ.
The formalism involving Φµ1...µs , which generalizes the metric �eld, is called metric-like formulation.

1.4.4 A hidden symmetry

Our analysis of a spin s �eld produces two sets of equations involving 0- and 1-forms, that take values in
the space of completely symmetric spin-tensors. Each set is characterized by equations that share the same
form, even though applied to tensors with di�erent ranks. Moreover, there is no particular di�erence between
those involving two di�erent spins. This hints that it is possible to pack them all into two equations involving
respectively the ω and C �elds for all spins.

Let us thus de�ne

ω(x, y, ȳ) =

+∞∑
k = 0
l = 0

1

k!l!
ωα1...αkα̇1...α̇l(x)yα1 · · · yαk ȳα̇1 · · · ȳα̇l (1.4.60)

C(x, y, ȳ) =
+∞∑
k = 0
l = 0

1

k!l!
Cα1...αkα̇1...α̇l(x)yα1 · · · yαk ȳα̇1 · · · ȳα̇l (1.4.61)

ε(x, y, ȳ) =
+∞∑
k = 0
l = 0

1

k!l!
εα1...αkα̇1...α̇l(x)yα1 · · · yαk ȳα̇1 · · · ȳα̇l , (1.4.62)

where yα and ȳα̇ are two auxiliary spinors that have the purpose of incorporating every tensor we encountered
into a scalar function of y and ȳ14. It is obvious that these functions are C∞ in y and ȳ and form a vector
space, that we call F (y, ȳ). We see then that if one considers all spins together, all the �elds that describe
them belong to the same vector space F (y, ȳ), that may thus be assumed as the �ber space of the higher
spin theory. On the other hand, if f ∈ F (y, ȳ), it can be written in its Taylor expansion around y = ȳ = 0 as

f(y, ȳ) =
+∞∑
k = 0
l = 0

fα1...αkα̇1...α̇lyα1 · · · yαk ȳα̇1 · · · ȳα̇l

for some suitable tensor coe�cients fα1...αkα̇1...α̇l . They are symmetric in every (un)dotted index, since, if it
were not so, by means of (1.4.23) we could write for example

fα1α2yα1yα2 =

(
1

2
εα1α2fγγ +

1

2
f (α1α2)

)
yα1yα2 =

1

2
f (α1α2)yα1yα2 ,

14These functions must be even under y, ȳ → −y,−ȳ, namely

f(y, ȳ) = f(−y,−ȳ), (1.4.63)

because of (1.4.56) and (1.4.57) and thus belong to a subspace of F (y, ȳ). However, for simplicity, we will leave this implicit in
the following. It is interesting to notice that this restriction comes from the fact that the vielbeins ekl are built from tensors Φ
by (1.4.30). If they came from by spin-tensors, namely if we were considering also higher spin fermions, we would have had also
odd functions. The resulting theory would not be much di�erent from the one we are going to develop.
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and only the symmetric part survives. These tensors span thus a basis for F (y, ȳ) and in the four-dimensional
formalism, have the symmetry properties of one- and two-row tableaux, as shown by (1.4.25) and (1.4.24).

In this setting15 equations (1.4.45), (1.4.49) can be reformulated in the following way

Dω ≡ D0ω − hα̇β ∧ ȳα̇
∂

∂yβ
ω − hα

β̇
∧ yα

∂

∂ȳβ̇
ω = hγ̇α1

∧ hγ̇α2

∂2C(x, y, 0)

∂yα1∂yα2

+ hγα̇1
∧ hα̇2γ

∂2C(x, 0, ȳ)

∂ȳα̇1∂ȳα̇2

, (1.4.64)

where

D0 = d−$α
βyα

∂

∂yβ
−$α̇

β̇
ȳα̇

∂

∂ȳβ̇

acts as the covariant derivative and D is a di�erential operator acting on p-forms that are functions of
x, y, and ȳ. Indeed, (1.4.64) can be expanded in a power series of y and ȳ and imposes on each tensorial
coe�cient the proper equation from (1.4.45).

Let us clarify this point by an example. Consider the contribution from 1
2ω

α1α2yα1yα2 . The covariant
derivative acts directly on the yy term of ω(x, y, ȳ)

D0

(
1

2
ωα1α2yα1yα2

)
=

1

2

(
dωα1α2 +$α1βωα2

β +$α2βωα1
β

)
yα1yα2 ,

while derivatives ∂
∂yα

and multiplications by y select terms with respectively one more and and one less
undotted index, so that, in order to get tensors with exactly two undotted indices, we have to refer to the
term proportional to yȳ:

hα
β̇
∧ yα

∂

∂ȳβ̇

(
ωα1α̇2yα1 ȳα̇2

)
=

1

2

(
h

(α1

β̇
∧ ωα2)β̇

)
yα1yα2 .

Finally, C(x, y, 0) selects the C tensors with only undotted indices and therefore we recognize (1.4.40) for
spin 2 particles in the component of (1.4.64) proportional to 1

2yα1yα2 .
Similarly, the gauge transformations (1.4.46) can be encoded into

δω = Dε = D0ε− hα̇β ∧ ȳα̇
∂

∂yβ
ε− hα

β̇
∧ yα

∂

∂ȳβ̇
ε (1.4.65)

Since ω(x, y, ȳ) is associated to a gauge invariance under a parameter that lives in F (y, ȳ) too, it should
be related to a connection taking values there, so that (1.4.65) plays the role of (1.3.25). We may then
see ω(x, y, ȳ) as a perturbation of the background AdS connection Ω and write the complete connection
W (x, y, ȳ) ∈ F (y, ȳ) as

W (x, y, ȳ) ≡ Ω(x, y, ȳ) + ω(x, y, ȳ), (1.4.66)

where the �rst term is the zero order contribution to W (1.3.28) and ω is of �rst order. We recognize then
D as the zero order action on F (y, ȳ) of DW = d+W ≈ DΩ, the covariant derivative associated to W , and
(1.4.60) as the linearization of

RW = dW +W ∧W = dΩ + Ω ∧ Ω + dω + [Ω, ω] +O(ω2) = dω + [Ω, ω] +O(ω2) (1.4.67)

where we used the fact that RΩ = 0. RW is then the curvature form, represented by the r.h.s of (1.4.64),
where it is thus natural for the Weyl tensor to appear. Moreover, the terms proportional to the background
vielbein in (1.4.64) are those that come from the action of the hµPµ part of Ω on ω.

Our aim, now, is to �nd a suitable product that renders F (y, ȳ) a Lie algebra, that we call higher spin
algebra hs(1, 3). This algebra must contain as a subalgebra so(2, 3), de�ned by Mab, P a and the commutator
relations (1.1.1) and (1.3.27).

15Here we put ρ = 1, for simplicity of notation.
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First of all we need to de�ne a product ? on this space that is not commutative. Given f(y, ȳ), g(y, ȳ) ∈
hs(1, 3), the right choice is

f ? g = f exp

(
−
←−
∂

∂yα
εαβ

−→
∂

∂yβ

)
exp

( ←−
∂

∂ȳα̇
εα̇β̇

−→
∂

∂ȳβ̇

)
g, (1.4.68)

where the arrows indicate on which factor the derivative acts. (1.4.68) de�nes the Lie bracket on hs(1, 3) as

[f, g]? = f ? g − g ? f. (1.4.69)

It is clear that this de�nition transforms elements of F (y, ȳ) in other members of that space. (1.4.69) is
bilinear, as derivatives and multiplication in (1.4.68) are, while the alternating property follows from the fact
that [·, ·]? is built as a commutator. This also implies the Jacobi identity, because it can be shown that ? is
associative. hs(1, 3) is therefore a Lie algebra and, contrarily to the ones usually used in Physics, is in�nite
dimensional.

We now show that this de�nition reproduces the known commutation relations for the so(2, 3) sub-algebra.
If we use the following representation for the SO(2, 3) generators16

Mαβ =
1

2
yαyβ, Mα̇β̇ = −1

2
ȳα̇ȳβ̇, Pαβ̇ =

1

2
yαȳβ̇

[Pαα̇, Pββ̇]? reads

1

4
yαȳα̇ ? yβ ȳβ̇ −

1

4
yβ ȳβ̇ ? yαȳα̇ =

1

4
yαȳα̇yβ ȳβ̇ −

1

4
yβ ȳβ̇yαȳα̇ +

1

4
εα̇β̇yαyβ −

1

4
εαβ ȳα̇ȳβ̇

−1

4
εβ̇α̇yβyα −

1

4
εβαȳβ̇ ȳα̇ −

1

4
εαβεα̇β̇ +

1

4
εβ̇α̇εβα

= εαβMα̇β̇ + εα̇β̇Mαβ

while

[Pαα̇,Mβ̇γ̇ ]? = −1

4
yαȳα̇ ? ȳβ̇ ȳγ̇ +

1

4
ȳβ̇ ȳγ̇ ? yαȳα̇

= −1

2
εα̇β̇yαȳγ̇ −

1

2
εα̇γ̇yαȳβ̇

= −εα̇β̇Pαγ̇ − εα̇γ̇Pαβ̇

and similarly
[Pαα̇,Mβγ ]? = −εαβPγα̇ − εαγPβα̇.

They correspond to (1.4.28) and (1.4.29) and therefore, also the [M,M ] commutators are correctly reproduced
thanks to the Jacobi identity.

In order to use Ω as a connection we need the following bracket:

[Pαα̇, f(y, ȳ)]? = −ȳα̇εαβ
∂f

∂yβ
+ yαεα̇β̇

∂f

∂ȳβ̇
.

We then see that we can rewrite D as17

Df = df +$αβ [Mαβ, f ]? +$α̇β̇
[
Mα̇β̇, f

]
?

+ hαα̇ [Pαα̇, f ]? = df + [Ω, f ]? ,

16Their form is determined by the indices they carry.
17It is important to remember that for general p-forms, the wedge products give additional signs to the star products and this

can transform some commutators in anti-commutators. For example, $αβ [Mαβ , ω]? = {$,ω}?.
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i.e. the �rst order approximation of the covariant derivative associated to hs(1, 3) acting on p-forms with
values in hs(1, 3).

Let us now write the equations associated to C (1.4.54) in the new formalism:

D̃C = D0C + hαα̇
∂2C

∂yα∂ȳα̇
+ hα̇αȳα̇yαC = 0. (1.4.70)

We see that this time we had to de�ne a di�erent operator on hs(1, 3) D̃ , that acts di�erently in the part
involving Pαα̇. However, if we consider the anti-commutator between P and some f ∈ hs(1, 3),

{Pαα̇, f}? = yαȳα̇f − εαβεα̇β̇
∂2f

∂ȳβ̇∂yβ
,

we �nd that
D̃f = df +$αβ [Mαβ, f ]? +$α̇β̇

[
Mα̇β̇, f

]
?

+ ρhαα̇ {Pαα̇, f}? . (1.4.71)

The representation in which Ω acts in (1.4.71) is called twisted adjoint representation and can be realized as

Ω ? f − f ? π(Ω),

where π : hs(1, 3)→ hs(1, 3) is an automorphism of the higher spin algebra de�ned by

π(f(y, ȳ)) = f(−y, ȳ). (1.4.72)

We can thus interpret (1.4.70) as the Bianchi identity of the curvature C.
In light of these results we understand now why it is necessary to have in�nite spins in the theory, as

hinted by one of the yes-go examples in subsection 1.2.2: h(1, 3) does not have any �nite subalgebra besides
so(2, 3).

1.5 Turning on interactions: the Vasiliev equations

As for now, we treated all higher spin �elds as perturbations around an AdS background, so that the resulting
equations of motion are linear. Here we present their extension to a full non-linear theory, which was found
by Vasiliev in [37] for the four dimensional case and later extended to any dimension in [38].

In general, the full non-linear equations of motion should be of the same form of (1.4.67) and (1.4.70):

dW +W ∗W = RW (1.5.1)

dRW +W ∗RW −RW ∗ π(W ) = 0, (1.5.2)

where (1.5.1) encodes the higher spin curvature 2-form associated with the connection 1-form18. An integra-
bility check, namely the veri�cation that (1.5.1) is consistent with d2 ≡ 0 gives

dW ∗W −W ∗ dW = dRW .

Inserting (1.5.1) in this expression, one gets, remembering that the representation of RW is the twisted adjoint
one,

dRW = RW ∗ π(W )−W ∗W ∗W −W ∗RW +W ∗W ∗W,

i.e. (1.5.2), the Bianchi identity for the curvature.

18Here the ∗ product incorporates also the ∧ product.
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The curvature was implemented in the previous subsection as a 0-form C that was promoted to a 2-
forms by the two vielbeins contracted with y derivatives in (1.4.64). This complicates the treatment in the
interacting case, because h is part of W .

A solution to this problem is to provide our space with additional spinorial coordinates zα and z̄α̇, to
which the 1-forms dzα, dz̄α̇ are associated. These coordinates, along with y and ȳ, are called twistors. We
can use them to produce 2-forms

dzα ∧ dzα, dz̄α̇ ∧ dz̄α̇. (1.5.3)

with which we can construct the curvature without the necessity of derivatives in y, since the 2-forms (1.5.3)
carry no indices. We then de�ne

RW = R+ R̄ ≡ B(x, y, z)dzα ∧ dzα +B(x, y, z)dz̄α̇ ∧ dz̄α̇ (1.5.4)

by a 0-form B(x, y, z) on the extended space. Also the connection has to be coherently replaced with a new
one that depends also on z, z̄:

W (x, y)→W(x, y, z) ≡ Wµ
x dxµ +Aαdzα + Āα̇dz̄α̇. (1.5.5)

The di�erential d must similarly be extended to d ≡ dx + dz + dz̄, where we denote the one acting on x as dx
and those on the coordinates z and z̄ as dz, dz̄. Finally, we de�ne

π(f(y, ȳ, z, z̄)) ≡ f(−y, ȳ,−z, z̄), π̄(f(y, ȳ, z, z̄)) ≡ f(y,−ȳ, z,−z̄), (1.5.6)

the generalization of the twisted automorphism (1.4.72) and its complex conjugate.
In order for (1.5.1) and (1.5.2) to make sense, it is necessary to give a de�nition for the Weyl product

that involves also z and z̄ and that we denote by ?. It turns out that z, z̄ should be dual to y,̄ y, namely

[z, y]? = [z̄, y]? = 0,
[
zα, z̄β

]
?

= 0,
[
zα, zβ

]
?

= 2εαβ,
[
z̄α̇, z̄β̇

]
?

= −2εα̇β̇

whereas (1.4.68) gives [
yα, ȳβ

]
= 0,

[
yα, yβ

]
= −2εαβ,

[
ȳα̇, ȳβ̇

]
= 2εα̇β̇.

The correct extension of (1.4.68) is thus

f ? g = f exp

(
−

( ←−
∂

∂yα
+

←−
∂

∂zα

)
εαβ

( −→
∂

∂yβ
−
−→
∂

∂zβ

)
+

( ←−
∂

∂ȳα̇
+

←−
∂

∂z̄α̇

)
εα̇β̇

( −→
∂

∂ȳβ̇
−
−→
∂

∂z̄β̇

))
g, (1.5.7)

where f ≡ f(y, ȳ, z, z̄) and g ≡ g(y, ȳ, z, z̄)

By (1.5.7) we can realize the automorphisms π, π̄ in (1.5.6) as19

π(f) = κ ? f ? κ, π̄(f) = κ̄ ? f ? κ̄

κ ? κ = 1 = κ̄ ? κ̄ (1.5.8)

κ ≡ eyαzα , κ̄ ≡ eȳα̇z̄α̇ .

19In order to prove these identities it is better to employ an alternative de�nition of ?, equivalent to (1.5.7):

f ? g =

ˆ
d2ud2ūd2vd2v̄f(y + u, ȳ + ū, z + u, z̄ + ū)g(y + v, ȳ + v̄, z − v, z̄ − v̄)eu

αvα−ūα̇v̄α̇ ,

where integration is performed along (1 + i)R for u, v and (1− i)R for ū, v̄ for convergence reasons.
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Then the proper equations for the interacting theory read

dW +W ?W = R+ R̄

dR+W ? R−R ? π(W) = 0 (1.5.9)

dR̄+W ? R̄− R̄ ? π̄(W) = 0

or, by de�ning R ≡ R ? κ, R̄ ≡ R̄ ? κ̄, ?-multiplying the last two equations in (1.5.9) by κ20 and using (1.5.8)

dW +W ?W = R ? κ+ R̄ ? κ̄

dR+ [W,R]? = 0 (1.5.10)

dR̄+
[
W, R̄

]
?

= 0

The connection W can be gauge transformed by

δW = dε+ [W, ε]? , ε ≡ ε(x, y, ȳ, z, z̄)

and the related transformation of B reads

δB = B ? π(ε)− ε ? B.

Equations (1.5.10) acquire a simpler form under the rede�nition

Aα =
1

2
(Sα + zα) , Āα̇ =

1

2

(
S̄α̇ + z̄α̇

)
,

that allows us to eliminate the derivatives on z, z̄ coming from the di�erentials by

[f, zα]? = −2∂αz f

and its complex conjugate. The result of this operation is

dxWx +Wx ?Wx = 0 dxB +Wx ? B −B ? π(Wx) = 0

dxS
α + [Wx, S

α]? = 0
[
Sα, Sβ

]
= 4εαβ (1 +B ? κ) (1.5.11)

[Sα, B ? κ̄] = 0[
Sα, S̄α̇

]
= 0

and their complex conjugates.
Until now we did not impose conditions (1.4.56) and (1.4.57) that insured the fact thatW and B describe

bosons, namely

W(−y,−ȳ,−z,−z̄) =W(y, ȳ, z, z̄), B(−y,−ȳ,−z,−z̄) = B(y, ȳ, z, z̄), (1.5.12)

(see (1.4.63) in a note of the previous subsection). By (1.5.8) we can write (1.4.63) in a simple way:

κ ? κ̄ ?W ? κ̄ ? κ =W, κ ? κ̄ ? B ? κ̄ ? κ = B. (1.5.13)

20Notice that from
dzα ∧ dzβ ∧ dzγ ≡ 0, dxκ = 0

follows
dR ? κ = d(R ? κ)

and the analogous statement for the conjugated quantities.

43



1.5. Turning on interactions: the Vasiliev equations Chapter 1. Higher spins theories

Equation (1.5.13) for Sα, which is present in (1.5.5) multiplied to dzα, is equivalent to the following condition:

κ ? κ̄ ? Sα ? κ̄ ? κ = −Sα. (1.5.14)

We then get from the third of (1.5.11)

0 = Sα ? B ? κ̄ ? κ−B ? κ̄ ? Sα ? κ

0 = Sα ? B ? κ̄ ? κ+B ? κ ? Sα ? κ ? κ̄ ? κ

0 = {Sα, B ? κ}? , (1.5.15)

where we used (1.5.14) in the second step and ?-multiplied both sides for κ ? κ̄ ? κ in the third one. System
(1.5.11) supplemented by constraint (1.5.15) constitute the Vasiliev equations, that describe non-linearly
interacting higher spin �elds.

It is possible to generalize these equations, for example by substituting B in the �rst of (1.5.9) with f(B)
for some analytic odd function f that can be expanded in a ?-product series. It can be shown that the only
theories that are parity-invariant are, up to rede�nitions, those with f ≡ 1, i. They are called respectively A
and B type. However, in the following we will be interested in a model that is simpler than the one presented
so far, namely the restriction to even spins. The latter is achieved by de�ning the inversions ι±

ι±(f(y, ȳ, z, z̄)) ≡ f(iy,±iȳ,−iz,∓iz̄), ι(f ? g) = ι(g) ? ι(f)

and imposing
ι+(W) = −W, ι−(B) = B. (1.5.16)

We can understand why it is so by examining the linearized case, where ω, the �rst order contribution to W,
was restricted to contain in its expansion only terms of the kind

(y)k (ȳ)l , k + l = 2s− 2

for a spin s by (1.4.56). Under ι+ these terms transform as

(y)k (ȳ)l →

{
(y)k (ȳ)l k + l = 4j

− (y)k (ȳ)l k + l = 4j − 2
, j ∈ N

and we see that we fall in the �rst case for odd spins s = 2j + 1 and in the second for s = 2j, for which
then ω → −ω. Similarly, C, the linearized version of B, was allowed by (1.4.57) to contain only terms with
|k − l| = 2s and, under ι− they transform as

(y)k (ȳ)l →

{
(y)k (ȳ)l k − l = 4j

− (y)k (ȳ)l k − l = 4j − 2
, j ∈ N

and we get C → C for even spins.
Let us conclude with a comment on the twistorial extension of the space. Notice that the �rst equation

of (1.5.11) is a zero curvature condition

dxWx +Wx ?Wx = 0 (1.5.17)

and thus its solution can be put in the following form:

g−1(x, y, ȳ) ? dxg(x, y, ȳ),

for some arbitrary function g. Indeed, from

dx
(
g−1 ? g

)
= 0
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we get
dg−1 = −g−1 ? dxg ? g

−1

and then (1.5.17) follows directly. These solutions are called pure gauge, because there exists a gauge
transformation that makes them vanish21, namely the one with parameter g: using (1.3.22) we get indeed

W ′x = g ?Wx ? g
−1 − dg ? g−1

= g ? g−1 ? dg ? g−1 − dg ? g−1

= 0.

These transformations do not eliminate the dynamical degrees of freedom, that are just shifted in the twistorial
space. Its function is then to encode part of the physics in order to render the Vasiliev equations as simple
as possible.

21This is a general fact: no curvature means that the space is Wx-�at and therefore describable by a vanishing connection.
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Chapter 2

AdS/CFT for higher spin theories

This chapter is dedicated to the Klebanov-Polyakov conjecture that relates the Vasiliev higher spin �eld
theory in AdS4 with a conformal quantum �eld theory of scalars in a �at 3-dimensional space. In particular,
correlation functions of the latter can be found by computations that involve the �elds of the former. This
correspondence between two �eld theories, one classical living in an AdSd+1 space and the other quantized, set
in a d-dimensional �at space, is just an example of a more general class of conjectures that have been veri�ed
in numerous examples but not yet proven. The aim of this thesis is to present a test of the Klebanov-Polyakov
conjecture.

In the �rst section, we give a short review of the �rst and best known of the so-called AdS/CFT con-
jectures, the Maldacena correspondence. We will focus on the most salient features and we will specify the
formalism that realizes the duality in the second section. Then, we will present in 2.2 a �eld theory that
shows some remarkable properties that will lead us to the formulation of the Klebanov-Polyakov conjecture.
We dedicate the last part of the chapter to some checks of this duality.

2.1 The original Maldacena conjecture

The Maldacena conjecture is a duality between a classical supergravity (or, more generally, string) theory
set in AdS5 × S5 space and a supersymmetric quantum theory of gauge �elds living in 4 dimensions and
possessing conformal symmetry. For this reason, in the next two sections we will treat some basic aspects of
conformal theories, that will be later investigated in more detail in chapter 3, and the geometric properties
of the AdS space.

Since the duality stems from string theory, in subsection 2.1.3 we give a very brief introduction to strings
that will be focused on the aspects that brought Maldacena to formulate his conjecture, which will be �nally
stated in the last subsection.

2.1.1 Conformal symmetry

In the following, we will consider theories in �at space that share an enhanced symmetry: conformal invari-
ance. Conformal Field Theories are generally labeled CFTd, where d stands for the dimensions of the space
in which they are set.

Let us start with the simplest example of a CFT : a free theory of massless scalars in d dimensions:

Sϕfree =

ˆ
1

2
∂µϕ∂

µϕddx. (2.1.1)

The �eld ϕ has the mass dimension ∆ = d−2
2 . Now, if we rescale all lengths according to

x→ λx, (2.1.2)
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we expect that
ϕ(x)→ ϕ′(x′) = λ−∆ϕ(x) (2.1.3)

and therefore

S′ϕfree =

ˆ
1

2
∂′µϕ

′(x′)∂′µϕ′(x′)ddx′

=

ˆ
1

2
λ2 2−d

2
−2∂µϕ(x)∂µϕ(x)λdddx

= Sϕfree,

namely the free theory is invariant under rescalings. More in general, if ϕ(x) is a generic �eld sitting in some
arbitrary irreducible representation of the Poincaré group, the generic action that describes it is

S[ϕ] =

ˆ
L(ϕ(x), ∂ϕ(x))ddx. (2.1.4)

After a rescaling (2.1.2), (2.1.4) takes the form

S′[ϕ′] =

ˆ
L(ϕ′(λx), λ−1∂ϕ′(λx))λdddx.

Since we consider only local actions, namely those that are polynomial in the �eld and its derivatives, it is
clear that in order for (2.1.4) to be invariant under rescalings, the λ factors arising from derivatives and the
measure of integration must be compensated by the transformation law of ϕ, which has to rescale according
to equation (2.1.3). In this context, we call conformal dimension (or weight) of ϕ the parameter ∆ appearing
in (2.1.3). For example, in an interaction term like

ˆ
ddxgϕp(x),

the power p is �xed by conformal invariance and the weight ∆ as

p =
d

∆
. (2.1.5)

Scaling invariance is often associated to a broader symmetry, that involves transformations whose result
is to rescale the metric of a space by a factor that may depend on the point.

gµν(x)→ c(x)gµν(x), ⇐⇒ ∂xµ

∂x′α
gµν(x)

∂xν

∂x′β
= c(x)gαβ(x) (2.1.6)

Transformations of this kind include rescalings xµ → λxµ, for which c(x) = λ2 and Lorentz transformations,
for which c(x) = 1. A less trivial example is the inversion xµ → xµ

x2 that acts on gµν as

g′αβ(x′) =
∂
(
x′µ

x′2

)
∂x′α

gµν(x)
∂
(
x′ν

x′2

)
∂x′β

=

(
δµα
x2
− 2xµxα

)
gµν(x)

(
δνβ
x2
− 2xνxβ

)
=

1

(x2)2 gαβ(x). (2.1.7)

These symmetries form the Conformal group Conf(1, d− 1), the in-depth analysis of which we postpone to
section 3.1. Here we just anticipate that

Conf(1, d− 1) ' SO(2, d) (2.1.8)
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(see subsection 3.1.2).
Fields are called primary if under the action x→ x′(x) of the conformal group they transform as follows:

ϕ(x)→
∣∣∣∣det

∂x′

∂x

∣∣∣∣−∆
d

ϕ(x). (2.1.9)

Equation (2.1.9) generalizes (2.1.3). The free scalar theory presented at the beginning is a typical example
in which scale invariance is extended to a full conformal invariance. Taking the determinant of (2.1.6) we see
that

c(x) =

∣∣∣∣det
∂x

∂x′

∣∣∣∣ 2
d

and therefore the transformation of (2.1.1) under (2.1.9) can be written as

S′ϕfree =

ˆ
1

2
∂′µϕ

′(x′)∂′µϕ′(x′)ddx′

=

ˆ
1

2
c−1+ d

2 ηµν
∂xα

∂x′µ
∂αϕ

∂xβ

∂x′ν
∂βϕc

− d
2 ddx. (2.1.10)

ˆ
1

2

(
2c

d−2
4 ϕ∂′µc

d−2
4 ∂′µϕ+ ϕ2∂′µc

d−2
4 ∂′µc

d−2
4

)
ddx′ (2.1.11)

If we now consider the matrix

Λαµ ≡
1∣∣det ∂x
∂x′

∣∣ 1
d

∂xα

∂x′µ
,

we see from (2.1.6), using g ≡ η, that Λ is a Lorentz transformation by de�nition

ΛαµηαβΛβν = ηµν

and thus line (2.1.10) coincides with Sϕfree in (2.1.1). For S′ϕfree to be conformally invariant, then, line
(2.1.11) should vanish. Let us perform an integration by parts of the �rst term to get

(2.1.11) =

ˆ
1

2

(
−c

d−2
4 ϕ2∂′µ∂′µc

d−2
4

)
ddx′

and we see that (2.1.11) is zero if

∂′µ∂′µc
∆
2 = 0. (2.1.12)

We see that the so-called Weyl factor c is constrained by (2.1.12). We will �nd a condition equivalent to
(2.1.12) when we will analyze in full generality the conformal group1.

These considerations allow us also to better understand (2.1.9) in the case of tensors:

ϕµ1..µk(x) →
∣∣∣∣det

∂x′

∂x

∣∣∣∣−∆
d ∂xν1

∂x′µ1
· · · ∂x

νk

∂x′µk
ϕµ1..µk(x)

=

∣∣∣∣det
∂x′

∂x

∣∣∣∣−∆+k
d

Λν1
µ1
· · · Λν1

µ1
ϕµ1..µk(x) (2.1.13)

and we see that conformal transformations act as rescaling plus a Lorentz transformation due to the tensorial
nature of the object.

1Indeed equation (3.1.9) is just (2.1.12) when one considers in�nitesimal transformations x′µ = xµ + εµ and c(x) = 1− 2
d
∂ · ε,

namely
∆

d
∂µ∂µ∂ · ε = 0.
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2.1.2 The Anti-de Sitter space

In presence of a negative cosmological constant Λ, a maximally symmetric solution of the Einstein equations
in d+ 1 dimensions2 in vacuum

RMN − 1

2
gMNR = ΛgMN

can be found by embedding the d+ 1 dimensional space-time into a d+ 2 �at space as a (pseudo)hyperboloid
that obeys (

X0
)2

+
(
Xd+1

)2
−

d∑
i=1

(
Xi
)2

= L2 (2.1.14)

where Xd+1 is an additional coordinate and L is the curvature radius related to Λ by

Λ = −(d− 1) d

2L2
.

This solution3 is called Anti de Sitter space AdSd+1. As we have shown in section 1.3.3 the isometry group
of AdSd+1 is SO(2, d). Note that the antipodal map, that acts by sending XM , Xd+1 into −XM ,−Xd+1,
belongs to this group.

Our goal is to �nd a suitable set of coordinates to describe the AdS space that makes the metric form as
simple as possible. In general the AdS metric is given by the pull-back of the �at (d+ 2)-dimensional metric

ds2 =
(
dX0

)2
+
(
dXd+1

)2
−

d∑
i=1

(
dXi

)2
, (2.1.15)

i.e. by expressing one of the coordinates as a function of the other by means of (2.1.14) and substituting this
expression into (2.1.15). However all the coordinates in (2.1.14) appear quadratically, so that each of them
is related to the others by a square root, which complicates all computations. Due to the time-like nature of
the new coordinate Xd+1, it proves useful to employ �light-cone� coordinates

u ≡ Xd +Xd+1 v ≡ −Xd +Xd+1. (2.1.16)

Indeed, (2.1.14) becomes

uv +
(
X0
)2 − d−1∑

i=1

(
Xi
)2

= L2

and solving for v now involves no square root

v =

L2 −
(
X0
)2

+

d−1∑
i=1

(
Xi
)2

u
. (2.1.17)

2From now on we will employ capital letters like M,N to denote indices of tensors in AdSd+1 and Greek letters as µ, ν, ρ
for indices that can go only from 0 to d − 1. Analogously, the (d + 1)-dimensional coordinates are denoted by XM , while the
d-dimensional ones are xµ. These conventions are listed in the �Notation� appendix.

3Actually (2.1.14) features time-like closed world-lines, which would allow to a particle to travel backwards in time. This is
not physically acceptable, because it spoils causality. The existence of these curves can be seen by considering a curve γ(τ) in

the (d+ 2)-dimensional space which obeys
(
γ0
)2

+
(
γd+1

)2
= L2 and γM ≡ 0 for M 6= 0, namely travels on a circle. The tangent

vectors of γ are time-like and, from (2.1.14) it follows that γ(τ) is in AdSd+1. In general (2.1.14) tells us that topologically
AdSd+1 is S

1×Rd and therefore has a non-trivial �rst group of homotopy, which corresponds to closed time-like loops. A solution
to this issue is to take the universal cover of this space, that is then considered to be the true physical solution to (2.1.14), since
locally it is indistinguishable from the pseudohyperboloid.
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Equation (2.1.17) is not well de�ned for u = 0 and therefore we have to assume either u > 0 or u < 0.
Since AdS is naturally divided in two patches related by the antipodal map, we would like to identify them
according to the sign of u. This can be done by performing a rescaling on Xµ

Xµ ≡ u

L
xµ 0 ≤ µ ≤ d− 1,

so that the antipodal map is realized by u → −u. From now on we restrict ourselves to u > 0 and use the
standard �at metric ηµν to contract xµ. Using

dv =

(
−L

2

u2
− xµxµ

L2

)
du− 2u

L2
xµdxµ

the pull-back of (2.1.15) is then

ds2 = dudv +

(
u

L
dxµ +

xµ

L
du

)(u
L
dxµ +

xµ
L
du
)

=

(
−L

2

u2
− xµxµ

L2

)
du 2 − 2u

L2
xµdxµdu+

u2

L2
dxµdxµ + 2

xµ

L2
udxµdu+

xµxµ
L2

du 2

= −L
2

u2
du 2 +

u2

L2
dxµdxµ (2.1.18)

It is also useful to de�ne an alternative form of (2.1.18) by the change of variable

z ≡ L2

u
, z > 0,

The resulting metric is

ds2 =
L2

z2
(−dz2 + dxµdxµ) (2.1.19)

We will refer to (z, xµ) as Poincaré patch coordinates.
Metric (2.1.19) is said to be conformally �at because it can be turned into a �at metric by a local rescaling

and therefore by a conformal transformation. The spatial in�nity, namelyXi →∞ (i = 1, ..., d) orXd+1 →∞
by (2.1.14), is situated at u→ ±∞ by (2.1.16) or z → 0. In this limiting point, (2.1.19) assumes the form of
the usual d-dimensional �at metric and therefore the boundary at in�nity of the AdS space is given by the
d-dimensional �at space. This is the geometrical ground for the AdSd+1/CFTd correspondence.

2.1.3 Some basic facts about superstrings and branes

The Maldacena conjecture has its roots in Superstring theory. Strings are a generalization of point particles,
in that they are 1-dimensional physical objects that one can picture as short deformable lines. At �xed time,
they are described in some space-time with dimension DMD by the coordinates Xm of each of their points,
identi�ed by some parameter σ ∈ [0, 1]. During their motion, they span a 2-dimensional manifold in space,
called world-sheet, that generalizes the world line. Therefore we need an additional parameter that plays the
role of proper time for the string: τ . The world-sheet is thus determined by a function X :→ [0, 1]×R→MD:

Xm(σ, τ). (2.1.20)

There are two types of strings, the closed ones, for which

Xm(0, τ) = Xm(1, τ)

and the open ones, for which the endpoints do not coincide. One may then impose two kinds of boundary
conditions on each endpoint coordinate Xm(0, τ), Xm(1, τ) independently: Neumann, for which they are

51



2.1. The original Maldacena conjecture Chapter 2. AdS/CFT for higher spin theories

free to move but ∂σXm = 0, and Dirichlet, namely ∂τXm = 0. In this latter case, the ending points are
constrained to belong to some (p+1)-dimensional hyperplanes ofMD , the so-called Dp-branes (the D stands
for Dirichlet, here).

The world-sheet can be also seen as a 2-dimensional space-time, where σ is the spatial coordinate and
τ the temporal one, and the Xm coordinates as d scalar �elds. By this identi�cation, a suitable action for
strings can be written with a dimensional parameter α′ is thus introduced, a squared length, the so-called
the Regge slope. Upon quantization of this bosonic world-sheet �eld theory, it can be shown that the excited
states of the Xm �elds represent in the physical space-time particles with masses proportional to α′−1 growing
with the spin s and that belong to a discrete in�nite set, the Regge trajectory. Closed strings give rise to
particles represented by tensor �elds with even rank. Rank 2 tensors are the only massless ones4: one is
antisymmetric and is called Kalb-Ramond �eld, the other is associated with the graviton. Similarly, open
strings represent every integer spin and s = 1 is the only massless mode.

Strings can interact with each other and the coupling constant is universal and denoted by gs. It is then
possible to analyze the theory perturbatively in powers of gs and derive transition amplitudes in a way that
is analogous to the computation of amplitudes in Quantum Field Theory by Feynman diagrams.

As for now we have considered only the bosonic string, that gives rise only to bosons. Fermions can be
introduced too, by adding to the world-sheet D fermionic �elds Ψm

α (α = 1, 2). Then the world-sheet action
is supersymmetric and so is the resulting space-time theory, called Superstring Theory. It is possible to show
that the world-sheet quantum theory is anomaly-free and hence consistent only if D = 10.

The Maldacena conjecture consists in a duality between two speci�c open and closed string theories. Let
us analyze them separately.

2.1.3.1 Closed strings and black 3-branes

Closed strings generate spin 2 massless modes that are therefore associated with a gravitational interaction
propagating in the wholeMD. In the supersymmetric case, there are several consistent nonequivalent closed
string theories. Here we consider just the IIB type. In the limit α′ → 0, this theory is equivalent to the
type IIB supergravity theory, a classical theory that is one of the supersymmetric extensions of General
Relativity. Its �eld content consists in a graviton, its superpartner gravitino with spin 3

2 , the Kalb-Ramond
�eld mentioned previously, the Ramond-Ramond �elds with even rank, namely gauge �elds that are p-forms
with p even, a scalar dilaton and its superpartner dilatino. In this setting, a possible solution of the equations
of motion of the metric is the black p-brane, namely a higher dimensional analog of a black hole. Let us
consider a stack of N coincident 3-branes. The resulting metric reads

ds2 =
1√

1 +
(
L
y

)4
dxµdxµ −

√
1 +

(
L

y

)4

d~y · d~y, (2.1.21)

where xµ are the 4-dimensional coordinates of the brane contracted with the usual metric ηµν , ~y are the 6
directions perpendicular to the brane contracted with the euclidean metric, y ≡

√
~y · ~y and L is a length

given by

L ≡
(
4πNgsα

′2) 1
4 . (2.1.22)

The isometries of (2.1.21) are the rotations in the subspaces that are parallel or orthogonal to the brane,
namely elements of SO(1, 3) and SO(6) respectively. Far away from the black 3-brane, at y → +∞ the
metric (2.1.21) becomes constant, so that in such region the space is asymptotically �at.

Near the horizon, namely where y → 0, we get

ds2 y→0−→ y2

L2
dxµdxµ −

L2

y2
dy2 − L2dΩ2

5, (2.1.23)

4There is also a massless scalar, the dilaton, that we will not be concerned with.
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where we used the 6-dimensional spherical coordinates and wrote dΩ2
5 to denote the line element of the 5-

sphere S5. We recognize in the �rst two terms of (2.1.23) the AdS metric (2.1.18) and therefore we see that
near the horizon of a D3-brane the space looks like AdS5 × S5. Particles situated there are trapped in the
gravitational well, so that they decouple from those propagating at y →∞.

2.1.3.2 Open strings on D3-branes

Due to the fact that they can generate massless particles with spin 1, open strings are naturally associated
to gauge �elds. For instance, for the bosonic string, the ending points attached to N coinciding Dp-branes
behave as U(N) gauge �elds living in a (p+ 1)-dimensional �at space-time, i.e. the subspace ofMD given by
the brane. Actually, it is possible to write an action for the �elds in the brane, the Dirac-Born-Infeld (DBI)
action, that in the limit of α′ → 0 reduces to Yang-Mills one.

In the supersymmetric case, on D3-branes and for a small α′, one can obtain the super Yang-Mills N = 4
SU(N) theory, that is a conformal gauge theory invariant also under supersymmetric transformations with 4
fermionic supersymmetry generators. This implies an additional SU(4) global invariance, called R symmetry.
Since SU(4) ' SO(6), this corresponds to the fact that rotations in the 6-dimensional sub-space orthogonal
to the 4-dimensional brane leave the latter invariant (SO(6) is also the isometry group of S5).

The spin 1 �elds generated by open strings living on the brane, interact with closed strings that propagate
in the wholeMD. In the limit α′, gs → 0, the DBI action prescribes a coupling with the (super)gravitational
background given by

G10 ∝ g2
sα
′4,

the 10-dimensional Newton constant. This small coupling implies that, away from the branes, supergravity
behaves as a free theory, decoupled from the particles on the branes.

Let us now consider a further contact point between strings and quantum �eld theories. 't Hooft showed
in [40] that the Feynman diagrams of a gauge theory with symmetry group SU(N) and coupling constant g
admit a limit for N →∞ if the so-called 't Hooft coupling

λ ≡ g2N (2.1.24)

is kept �xed. In this limit, they can be put in correspondence with those representing scattering amplitudes
in a certain string theory with

gs = g2. (2.1.25)

2.1.4 The Maldacena argument

We have presented two theories, each involving N 3-branes. In the limit for α′ → 0 they share two symmetries:

1. A SO(2, 4) invariance, realized as the conformal group (see (2.1.8)) for N = 4 SU(N) Super Yang-Mills
living on the 3-branes and as the isometry group of AdS5 near the 3-branes.

2. A SO(6) global symmetry, realized as the R symmetry and as the isometry group of the S5 coordinates
of the space near the branes.

Moreover, in both cases we saw that the region far from the branes is governed by free supergravity around
a �at space, decoupled from the particles that propagate near the branes. To reach this conclusion for open
strings, we assumed that also

gs → 0. (2.1.26)

On the other hand, if we keep �xed L, α′ → 0 imposes

gsN � 1, (2.1.27)
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by (2.1.22). Limits (2.1.26) and (2.1.27) together imply N →∞ and therefore, in the open string side we are
considering the 't Hooft limit of the gauge theory in presence of a strong 't Hooft coupling λ ≡ gsN (2.1.27)
(see (2.1.24) and (2.1.25)).

The fact that in both settings away from the branes physics is the same, while near them it is governed
by two theories with the same symmetries, led Maldacena in [41] to conjecture that those two theories should
be dual as prescribed by the famous AdS5/CFT4 correspondence:

A super Yang-Mills N = 4 SU(N) theory in 4 dimensions with a strong coupling λ in the
large N limit is dual to type IIB supergravity in a AdS5 × S5 background.

In particular this suggests that the 't Hooft limit relates this gauge theory with type IIB superstrings.
Moreover, one can think that this CFT lives at the boundary of AdS5 × S5, where supergravity is set. We
will refer to this space as bulk in the following.

One of the reasons for which this duality is so important is that it relates a perturbative and classical theory
in the gravitational side, with a strongly coupled quantum �eld theory that cannot be treated perturbatively.
This allows one to study properties of the �eld theory that would be otherwise much more di�cult to �nd.

2.1.5 Holography basics and Witten diagrams

As for now, we just noticed the similarities between the theory at the boundary and the one living in the bulk
and stated that they should be dual. In this section we specify further this point and develop a formalism
that allows us to translate some statements of one side of the correspondence into the formalism of the other
side. We will do this by considering a more general case of a correspondence between a classical theory that
lives in a space that is asymptotically AdSd+1 and a conformal quantum �eld theory in d dimensions, without
any further speci�cation. Our results are a realization of the holographic principle of which AdS5/CFT4 is
an example. We will later apply them to a bulk theory of interacting higher spin �elds to formulate the
Klebanov-Polyakov conjecture.

To simplify our computations, we will use a Wick rotation on the metric of the boundary theory. This im-
plies that ηµν = −δµν and that the signature of the AdS metric varies accordingly: sign(gMN ) = diag(−...,−).

2.1.6 Bulk-to-Boundary propagators

The simplest theory that we can have in the bulk is the one that contains only some free scalar �eld φ(X) with
mass m. As for now, we do not try to specify what is its dual on the boundary. φ obeys the Klein-Gordon
equation

1
√
g
∂M
√
ggMN∂Nφ+m2φ = 0. (2.1.28)

where gMN is the AdSd+1 metric, while g is its determinant. If we employ the coordinates (z, x) and insert
the relative metric (2.1.19) into (2.1.28) we obtain

( z
L

)2
∂µ∂µφ−

( z
L

)d+1
∂z

((
L

z

)d−1

∂zφ

)
+m2φ = 0. (2.1.29)

The solutions of this equation are determined by the boundary conditions. As we showed in subsection
2.1.2, the boundary of AdSd+1 is Rd at z = 0. This space can be compacti�ed into Sd by adding a point at
in�nity that we denote by ∞. We identify such point in the AdS coordinates as z = +∞. In this way, we
compacti�ed AdSd+1 too.

Let us analyze the behavior of φ near the boundary. By Fourier transforming the x variables, we set
φ(z, x) = φ̃(z)eip

µxµ in (2.1.29). The �rst term in (2.1.29) is proportional to z2p2

L2 and is negligible at z ∼ 0,
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so that we are left to solve

−
( z
L

)d+1
∂z

((
L

z

)d−1

∂zφ̃

)
+m2φ̃ = 0. (2.1.30)

The presence of powers of z in (2.1.30) suggests a solution of the kind φ̃ = Cz∆ for some C,∆ ∈ R given by
(2.1.30):

−∆ (∆− d)

L2
Cz∆ +m2Cz∆ = 0.

This equation implies
∆ (∆− d) = m2L2 (2.1.31)

solved by

∆± =
d±
√
d2 + 4m2L2

2
≷ 0. (2.1.32)

We see therefore that there are two possible asymptotic behaviors for φ: one that diverges at z = 0 as z∆−

and the other that is regular and asymptotic to z∆+ .
If we want to express the values of φ in the interior of AdS by means of the boundary conditions, it is

clear that we need to consider only solutions that approach Cz∆− as z → 0, so that their value at z ∼ 0 is
not vanishing. However, we still have the problem that at z = 0 every such solution diverges. We can anyway
circumvent this di�culty by considering the behavior at, say, z = ε for some arbitrarily small ε, namely by
requiring that

φ(z, x)
z∼0∼ c(z, x)∆− φ̄(x), (2.1.33)

where φ̄(x) is a function de�ned on the boundary and c(z, x) is some function with the only requirement that
c(z, x) ∼ z at z ∼ 0.

This function is related to the conformal symmetry of the boundary. Indeed, suppose we wanted to extend
the AdS metric to the region with z = 0. It is clear that we cannot do this by using gMN from (2.1.19), which
is singular at the boundary. However

ds2 =
c(z, x)2

z2

(
−dz2 + dxµdxµ

)
(2.1.34)

is not and, by restricting it to the x coordinates, can be our sought extension gµν(x). The simplest possible
choice for c(x, z) = z, for example, gives gµν = ηµν , as follows from (2.1.19). The arbitrariness in choosing
c(z, x) just re�ects the conformal symmetry of the boundary.

We would then like to express the values of φ in every point of AdSd+1 in terms of φ̄ by means of (2.1.29).
Suppose indeed that we can de�ne a �Green function� K∆−(z, x) such that it solves (2.1.29)

( z
L

)2
∂µ∂µK∆− −

( z
L

)d+1
∂z

((
L

z

)d−1

∂zK∆−

)
+m2K∆− = 0 (2.1.35)

and that
lim
z→0

z−∆−K∆−(z, x) = δd(x), (2.1.36)

then

φ(z, x) =

ˆ
K∆−(z, x− y)φ̄(y)ddy (2.1.37)

solves (2.1.29) and obeys (2.1.33). We call K∆− bulk-to-boundary propagator.
The simplest way to �nd K∆− is by exploiting the compacti�cation explained above as done by Witten

in [42]. The idea is to �nd K∆− at some particular point P of the boundary. Then, we can perform on K∆−

a transformation that brings P to some other Q also in the boundary. If this transformation is a symmetry
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of the boundary, we get another valid form of the propagator. We take P to be the point at in�nity ∞.
Since in this case K∆− should not depend on x, (2.1.35) becomes equivalent to (2.1.30) and we �nd again the
solutions z∆± . As we show later, to get the correct behavior at z = 0 of K∆− (2.1.36), we have to assume
that the propagator at in�nity is

K∆−(z,∞) = C∆−z
∆+ . (2.1.38)

Now, consider the transformation

z, xµ → z

z2 − x2
,

xµ

z2 − x2
(2.1.39)

that brings ∞ to the point on the boundary z = 0, xµ = 0. At z = 0, (2.1.39) acts as xµ → xµ

x2 and is a
conformal transformation as we showed in (2.1.7) and therefore a symmetry of the boundary. It transforms
(2.1.38) into

K∆−(z, x) = C∆−

(
z

z2 − x2

)∆+

(2.1.40)

where C∆− is yet to be determined.
Let us verify the fundamental property (2.1.36). It is clear that (2.1.40) for z = 0 is zero everywhere

except where x = 0, since we are using a metric with a de�nite sign −δµν . There, it diverges, as a Dirac delta
function. To prove this formally, we need to show that

S ′ − lim
z→0

z−∆−K∆−(z, x) = S ′ − lim
z→0

z−∆−C∆−

(
z

z2 − x2

)∆+

= δd(x),

where S ′ − lim denotes a limit in the space of distributions S ′. Performing a limit in S ′ on the distribution
K∆− means computing an ordinary limit of its application to a test function ψ:

lim
z→0

ˆ
K0(z, x)ψ(x)ddx = lim

z→0

ˆ
z−∆−C∆−

(
z

z2 + r2

)∆+

ψ(x)rd−1drdΩd

= lim
z→0

ˆ
C∆−

(
1

1 + r2

)∆+

ψ(zx)rd−1drdΩd (2.1.41)

= I∆−ψ(0) (2.1.42)

= I∆−

ˆ
δd(x)ψ(x)ddx

where in the �rst step we used spherical coordinates and the solid angle measure Ωd; in (2.1.41) we performed
a rescaling r → rz to make z appear only inside ψ. This happens only if one chooses ∆+ in (2.1.38). Finally
in (2.1.42) we de�ned the always-converging integral

I∆− = C∆−

ˆ (
1

1 + r2

)∆+

rd−1drdΩd (2.1.43)

and we used the dominated convergence theorem and the fact that ψ is bounded to perform the limit inside
the integral.

Equation (2.1.43) can be solved and allows to determine C∆− = I−1
∆−

, which results in

C∆− =
Γ(∆+)

πd/2Γ
(
∆+ − d

2

) . (2.1.44)

In the following we will write just K∆, C∆ and ∆ in place of K∆− , C∆− and ∆+, if it is not ambiguous.
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As for now, we analyzed the simplest possible �eld: the scalar one. What happens with a generic tensorial
�eld φM1...Ms? Like before, we consider only free �elds and interactions perturbations. In general these �elds
will solve a Klein-Gordon equation similar to (2.1.29)(

DND
N +m2

)
φM1...Ms = 0 (2.1.45)

either after a gauge �xing for massless �elds5, or after removing all the auxiliary �elds coming from the
Singh-Hagen Lagrangian in AdS (see subsection 1.1).

As before, we would like to analyze the behavior of this �eld at z ∼ 0, where we set φzM2...Ms → 0. Using
(1.3.26) one �nds that the only non-vanishing components of the Christo�el symbol are

Γzµν =
1

z
δµν , Γνµz = −1

z
δνµ, Γzzz =

1

z

and therefore the expansion of (2.1.45)(
DND

N +m2
)
φM1...Ms = DN

(
− z

2

L2
δPN

(
∂PφM1...Ms − ΓQP (M1

φQM2...Ms)

))
+m2φM1...Ms

= −
( z
L

)d+1
∂N

((
L

z

)d−1 (
∂NφM1...Ms − δPNΓQP (M1

φQM2...Ms)

))
+m2φM1...Ms

+
z2

L2
ΓRN(M1

δPN
(
∂PφRM2...Ms) − ΓQPRφQM2...Ms) − ΓQP (M2

φQRM3...Ms)

)
becomes for the components of φM1...Ms tangential to the boundary

0 = −
( z
L

)d+1
∂N

((
L

z

)d+1

∂Nφµ1...µs

)
+
sd

L2
φµ1...µs −

2sz

L2
∂zφµ1...µs +

(
m2 − s(s− 1)

L2

)
φµ1...µs (2.1.46)

We can then �nd the behavior at z ∼ 0 of the solutions of (2.1.46) as we did for (2.1.29), namely by a Fourier
transform and the ansatz φµ1...µs(z, x) ∼ zδ. We �nd the relation

(δ + s− d) (δ + s)− s = m2L2 (2.1.47)

solved by

δ± =
d− 2s±

√
d2 + 4s+ 4m2L2

2

If we replace m2 with its value for Fronsdal �elds (1.4.59), we get

δ± =
d− 2s± 2

(
d
2 + s− 2

)
2

. (2.1.48)

We choose the asymptotic solution with δ− and thus set the boundary conditions

φ̄µ1...µs(x) = lim
z→0

z−δ−φµ1...µs(z, x), (2.1.49)

The bulk-to-boundary propagator for higher spin �elds will then be

KM1...Msµ1...µs
δ−

(z, x), φM1...Ms(z, x) =

ˆ
KM1...Msµ1...µs
δ−

(z, x− y)φ̄µ1...µs(y)ddy. (2.1.50)

Equations (2.1.49) and (2.1.50) impose that

lim
z→0

z−δ−KM1...Msµ1...µs
δ−

(z, x) = δd(x)δM1(µ1 · · · δMsµs).

In section 3.6.2 we will derive the precise form of these propagators by means of the ambient formalism, that
simpli�es greatly the computations.

5The transverse traceless gauge that we found for the �at space case (1.1.22) can be imposed also on Fronsdal �elds in AdS
obeying (1.4.58), which contains also a mass-like term (1.4.59) due to the non-vanishing curvature.
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2.1.7 Witten diagrams

The content of a generic quantum �eld theory involving the �elds ϕi that sit in some irreducible representation
of the Poincaré group is completely speci�ed by its classical action

S [φi] =

ˆ
L(ϕi, ∂ϕi)d

dx.

that determines all the correlators by

〈O1(x1) · · · On(xn)〉 =

´
O1(x1) · · · On(xn)e−S[ϕi]Dϕi´

e−S[ϕi]Dϕi
, (2.1.51)

where Ok are some observables that are functions of ϕi. Equation (2.1.51) can also be rewritten as

〈O1(x1) · · · On(xn)〉 =
δnW

[
φ̄k
]

δφ̄1(x1) · · · δφ̄n(xn)

∣∣∣∣∣
jk=0

,

where

W
[
φ̄j
]

= log

ˆ
e−S[ϕi]+

∑
k

´
φ̄k(x)Ok(x)ddxDϕi (2.1.52)

is the generating functional of connected diagrams and we de�ned some suitable auxiliary sources φ̄k that are
coupled to the various observables Ok. Since we are dealing with a conformal theory, also Ok and φ̄k should
be primary �elds. We label their weights with ∆k and d − ∆k respectively, so that (2.1.52) is conformally
invariant. In the classical limit,

W [φ̄j ]
}→0−→ −S[ϕi] +

∑
k

ˆ
φ̄k(x)Ok(x)ddx

and therefore we recognize W as the quantum version of the classical functional S.
The AdS/CFT correspondence then states that the W functional of the theory at the boundary should

be equal to SAdS of the theory in the bulk. However, we need to associate the sources φ̄k(x) with �elds in
the gravitational side of the correspondence. Let us �rst assume that Ok and φ̄k are scalars. Since our aim
is to express SAdS as a functional of �elds that live on the boundary, it is natural to associate to φ̄k(x) the
source for a scalar �eld φk(z, x) in the bulk through (2.1.37). However, to make this identi�cation, we need
to verify that φ̄k(x) behaves as a primary �eld with weight d−∆k. Indeed, from (2.1.33) we saw that φ̄k(x)
is de�ned up to a factor c(z, x)∆k− . Rescaling the function c(z, x) by λ rescales the boundary metric (2.1.34)
with a factor λ2 and we can thus interpret it as conformal rescaling. At the same time φ̄k(x) rescales too by
a coe�cient equal to λ−∆k− , so that it behaves as a primary �eld with dimension ∆k− = d−∆k. Therefore
the weight of Ok is ∆k = d−∆k− = ∆k+.

If we consider tensorial �elds, then both φ̄µ1...µs
k and Oµ1...µs

k will be tensors of the same rank and symmetry
type and we can still write (2.1.52) by assuming that φ̄µ1...µs

k and Oµ1...µs
k have been implicitly completely

contracted one with each other. Then we can identify φ̄µ1...µs
k (x) with the boundary source of a tensor �eld

φM1...Ms by (2.1.50). Notice that if φM1...Ms is a gauge �eld in the bulk, then the coupling between φ̄µ1...µs
k

and Oµ1...µs
k should be invariant under the transformations induced by the bulk gauge symmetry. Its variation

would be, for instance in the case of a completely symmetric Fronsdal �eld,

δ

ˆ
φ̄µ1...µsOµ1...µs(x)ddx =

ˆ
∂µsΛ̄µ1...µs−1Oµ1...µs(x)ddx

= −
ˆ

Λ̄µ1...µs−1∂µsOµ1...µs(x)ddx (2.1.53)
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and therefore O should be a conserved current on the boundary, namely

∂µsOµ1...µs = 0.

To �nd the weight of Oµ1...µs , consider as before a rescaling of the c(z, x) function, corresponding to a
scale transformation on the boundary CFT . In order for it to leave invariant the source term in the action,
the �elds should transform as followsˆ

λ−δ− φ̄µ1...µsλ−d+δ−Oµ1...µs(x)λdddx.

Using (2.1.13) and remembering that contractions of tensors are invariant under Lorentz transformations, we
�nd

∆ + s = d− δ−,

which, for higher spins obeying (2.1.48), implies

∆ = δ+ − s = d+ s− 2. (2.1.54)

With these identi�cations, the AdS/CFT correspondence is realized by conjecturing that

〈O1(x1) · · · On(xn)〉 =
δnSgrav

[
φ̄k
]

δφ̄1(x1) · · · δφ̄n(xn)

∣∣∣∣∣
φ̄k=0

Let us make an example. Consider a theory in the bulk with the simplest action of a free scalar:

Sgrav[φ] =

ˆ
1

2
∂Mφ(x)gMN (x)∂Nφ(x)

√
gddxdz. (2.1.55)

We now rewrite (2.1.55) as a function of φ̄(x) integrating by parts and using the equations of motion (2.1.29)

Sgrav[φ̄] =

ˆ
1

2
∂M
(
φgMN∂Nφ

√
g −m2φ2

)
ddxdz −

ˆ
1

2
φ∂M (∂Mφ

√
g) ddxdz (2.1.56)

= C∆

ˆ
lim
z→0

φ(z, x)∂z

ˆ z∆+ φ̄(y2)ddy2(
z2 − (x− y)2

)∆+

 Ld−1

zd−1

 ddx
= C∆L

d−1

ˆ
lim
z→0

z∆− φ̄(x)
∆+z

∆+−1φ̄(y)(
z2 − (x− y)2

)∆+

1

zd−1

 ddxddy
= ∆C∆L

d−1

ˆ
φ̄(x)φ̄(y)

|x− y|2∆
ddxddy (2.1.57)

and therefore

〈O(x)O(y)〉 =
δ2Sgrav[φ̄]

δφ̄(x)δφ̄(y)
=

2∆C∆L
d−1

|x− y|2∆
(2.1.58)

As we will see in (3.5.5) this is the form of a correlator between two primary �elds with the same weight ∆.
We can rewrite (2.1.58) as

〈O(x)O(y)〉 = lim
z→0

∆Ld−1K∆(z, x− y), (2.1.59)

namely the 2 point Green function at x, y of the �eld O is given by the bulk-to-boundary propagator of its
dual that connects the two points on the boundary x and y.
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Figure 2.1.1: A Witten diagram connecting two boundary points where O is inserted.

Figure 2.1.2: A Witten diagram for a 3 point correlator of the operator O inserted in the boundary points
y1, y2 and y3. The vertex is at the bulk point (z, x) that is integrated over the whole AdS space.

Let us then consider a perturbation to the bulk theory and supplement our original action with a cubic
vertex given by

S3 =

ˆ
λ

3!
φ3(z, x)

√
gddxdz. (2.1.60)

Using (2.1.40) we can rewrite S3 as

S3 =
λ

3!

ˆ
φ̄(y1)φ̄(y2)φ̄(y3)K∆(z, x− y1)K∆(z, x− y2)K∆(z, x− y3)

√
gddy1d

dy2d
dy3d

dxdz.

We can now compute the three point correlator

〈O(y1)O(y2)O(y3)〉 =
δ2S3[φ̄]

δφ̄(y1)δφ̄(y2)δφ̄(y3)

= λ

ˆ
K∆(z, x− y1)K∆(z, x− y2)K∆(z, x− y3)

√
gddxdz (2.1.61)

As we see it amounts to an integral over the AdS space of three propagators from the integration variable
and the three external points y1,2,3. This happens for every vertex of the bulk theory.

These examples can be generalized to a standard procedure to compute boundary correlators by means
of bulk calculations. It can be depicted by Feyman-like diagrams, called Witten diagrams and introduced in
[42]. The rules to compute them are the following:

1. The boundary is represented by a circle that encloses the bulk.

2. The points x1, ..., xn at the boundary, where operators Ok with weight ∆k are inserted, are attached
to the outer circle and connected to inner points by bulk-to-boundary propagators derived from proper
�elds φk that at z ∼ 0 are asymptotic to zd−∆k .

3. According to the vertices in the bulk action, these propagators are attached to common points (z, x) in
the bulk.
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4. The sought correlator is given by the integration over all the bulk interaction points.

For instance the computation performed in (2.1.61) is represented graphically by �gure 2.1.2, while the one
of the 2-point function (2.1.59) is represented by (2.1.1).

These are the correlators which involve only O that we can compute if we consider only the classical limit
of the theory in the bulk de�ned by the action (2.1.60). If we go back and focus on the original Maldacena
conjecture, however, we must remember that it does not state simply a duality between the Super Yang-Mills
N = 4 SU(N) gauge theory and type IIB supergravity, but between two string theories that reduce to them
in certain limits. These limits, in the gravitational side, allowed us to consider quantum corrections as lower
order contributions to the action. If we want to make computations at the next-to-leading order, we have
to include such corrections. Witten diagrams will then also employ the so-called bulk-to-bulk propagators,
namely the Green functions of the bulk theory that one uses to compute Feynman diagrams in the bulk.
Their usage is the same as bulk-to-boundary propagators with the only di�erence that they are attached to
two points in the bulk. Since we will not be dealing with them in this thesis, we will not delve in further
details.

2.1.8 Expectation values of the dual operators

The computation of the 2 point correlator that we just performed allows us to give an interesting interpretation
to the class of solutions for the scalar �eld that we ignored, namely those that at z ∼ 0 scale as z∆+ . Let the
complete solution of the equations of motion (2.1.29) be

φ(z, x)
z∼0∼ φ̄(x)z∆− + E(x)z∆+ . (2.1.62)

Then, the free action is in general divergent, because of the pole given by φ̄(x)z∆− at z = 0. However, we
can de�ne

φ(z, x) = z∆−χ(z, x),

so that χ is regular on the boundary. Action (2.1.55) can be rewritten as

Sgrav[χ] = −
ˆ

1

2
δMN∂M

(
z∆−χ

)
∂N
(
z∆−χ

) Ld−1

zd−1
ddxdz

= Ld−1

ˆ
1

2

(
−∆2

−z
−2χ2 −∆−z

−12χ∂zχ− (∂zχ)2 + ∂µχ∂
µχ
)
z2∆−−d+1ddxdz.

To regolarize this action, we can subtract the �rst two terms and assume

∆− >
d− 2

2
, (2.1.63)

so that we are left with the �nite action

S̃grav[χ] = Ld−1

ˆ
1

2

(
− (∂zχ)2 + ∂µχ∂

µχ
)
z2∆−−d+1ddxdz.

Now we can extract by an integration by parts a boundary term, analogous to (2.1.56):

S̃grav[χ] = lim
z→0

z2∆−−d+1Ld−1

2

ˆ
χ∂zχd

dx

= lim
z→0

z2∆−−d+1Ld−1

2

ˆ (
φ̄(x) + E(x)z∆+−∆−

)
∂z
(
φ̄(x) + E(x)z∆+−∆−

)
ddx. (2.1.64)

If we assume
d− 1

2
< ∆− <

d

2
(2.1.65)
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the only term that survives the limit in (2.1.64) is

S̃grav =
∆+ −∆−

2
Ld−1

ˆ
φ̄(x)E(x)ddx (2.1.66)

and we can extract E(x) by a functional derivative:

E(x) =
2L1−d

∆+ −∆−

δS̃grav

δφ̄(x)
= 〈O(x)〉 .

We can therefore interpret E(x) as the expected value of the dual CFT operator. Another possible way to
obtain E(x) from (2.1.66) is to assume

φ̄(x) ≡ δd(x).

This equation tells us that an operator insertion on the boundary theory at x is equivalent to a point-like
source of the �eld φ located there. This relation holds also for a more general action: the E(x) �eld that
solves the equations of motion in presence of sources located at x1, ..., xn is

E(x) ∝ 〈O(x)O(x1) · · · O(xn)〉 . (2.1.67)

Moreover the limitation (2.1.65) can be removed by suitable further regularizations of the action.

2.2 Higher spin AdS/CFT

After having developed a formalism of a generic AdS/CFT duality, we will now consider an example of
AdS/CFT holography which involves a higher spin generalization of gravity, the Vasiliev theory. We start by
describing a simple CFT that we will relate to a minimal model of the higher spin �eld theory in the second
part of this section.

2.2.1 The O(N) model

Let us consider a theory in 3 dimensions with N real scalar �elds ϕa(x) with a global O(N) symmetry. The
action for this �eld reads

S [ϕa] =

ˆ
∂µϕ

a(x)∂µϕa(x)d3x (2.2.1)

and the relative equation of motion is
�ϕa(x) = 0. (2.2.2)

This theory is conformal, as we saw in (2.1.1)6 if the conformal dimension of the scalar is ∆ = 1
2 .

We can use equation (2.2.2) to construct an in�nite number of conserved currents that are O(N) singlets,
the simplest one being7

J µ1µ2 ≡ ϕa∂µ1∂µ2ϕa − ∂µ1ϕa∂µ2ϕa.

6The fact that this �eld is an O(N) vector does not in�uence the proof.
7There are only currents with even spin. Indeed, suppose, for example that we wanted to construct the spin 1 one. It should

read
J µ ≡ ϕa∂µϕa, (2.2.3)

but
∂µJ µ = ∂µϕ

a∂µϕa

that cannot be set to zero by any compensating terms, since (2.2.3) is already the most general form for J µ. A similar problem
arises when considering general odd spin currents J µ1...µ2k+1 de�ned by a relation similar to (2.2.5), in which the coe�cient ck
of the term

ck∂
µ1 · · · ∂µkϕ∂µk+1 · · · ∂µ2k+1ϕ

has to be set to zero because
ck∂µ∂

µ1 · · · ∂µkϕ∂µk+1 · · · ∂µ2k∂µϕ

can not be compensated by any of the other terms in expansion (2.2.5) of J µ1...µ2k+1 , but, as we will see later, by (2.2.8) this
sets all the coe�cients cj to 0.
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In general, we can construct an in�nite number of symmetric conserved tensors J µ1...µ2k

∂µ1J µ1...µ2k = 0 (2.2.4)

with even rank s = 2k (k ∈ N0) whose most general form is

J µ1...µ2k ≡ 1

2

2k∑
j=0

cj

(
∂(µ1 · · · ∂µjϕa

)(
∂µj+1 · · · ∂µ2k)ϕa

)
(2.2.5)

for some ci. If we contract J with an auxiliary vector uµ, we get

Js(x, u) ≡ uµ1 · · · uµ2k
Oµ1...µ2k(x)

=

k−1∑
j=0

(
2k

j

)
ci (u · ∂)j ϕa (u · ∂)2k−j ϕa +

1

2

(
2k

k

)
ck (u · ∂)k ϕa (u · ∂)k ϕa (2.2.6)

and the conservation condition implies

∂µ
∂Js(x, u)

∂uµ
= 0. (2.2.7)

Using (2.2.6) and (2.2.2) we can expand the left hand side of (2.2.7) as

∂µ
∂Js(x, u)

∂uµ
=

k−1∑
j=1

(
2k

j

)
cjj (u · ∂)j−1 ∂µϕa (u · ∂)2k−j ∂µϕ

a

+

k−1∑
j=0

(
2k

j

)
cj (2k − j) (u · ∂)j ∂µϕ

a (u · ∂)2k−j−1 ∂µϕa

+

(
2k

k

)
cks (u · ∂)k−1 ∂µϕa (u · ∂)k ∂µϕ

a

=
k−1∑
j′=0

(
2k

j′ + 1

)
cj′+1

(
j′ + 1

)
(u · ∂)j

′
∂µϕa (u · ∂)2k−j′−1 ∂µϕ

a

+

k−1∑
j=0

(
2k

j

)
cj (2k − j) (u · ∂)j ∂µϕ

a (u · ∂)2k−j−1 ∂µϕa

where in the second step we replaced j with j′ ≡ j − 1 in the �rst term and combined it with the third term
in the �rst step. (2.2.7) then imposes

cj+1 = −
(
s
j

)
(s− j)(

s
j+1

)
(j + 1)

cj = −cj , (2.2.8)

i.e. all the coe�cients cj are determined up to a normalization c0 by

cj = (−1)j c0.

Since ϕ is a primary �eld with dimension ∆ = 1
2 , as we will show in subsection (2.1.58), in virtue of (3.5.5)

and the O(N) global symmetry, the correlator of ϕi has the following form

〈
ϕi(x)ϕj(y)

〉
=

δij

|x− y|
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where we chose a suitable normalization for ϕ. Therefore

〈J (x)J (y)〉 = c2
0

〈
ϕi(x)ϕj(y)ϕi(x)ϕj(y)

〉
= c0

δij

|x− y|
δij
|x− y|

=
Nc2

0

(x− y)2

A similar dependence on N holds for the other currents. To make their 2 point function independent of N
we then choose

c0 =
1√
N
.

Due to their de�nition (2.2.5), the currents in d = 3 naturally have conformal dimension

∆s = (d+ s− 2) = s+ 1 (2.2.9)

where s is the number of derivatives and therefore the rank of J µ1...µs .

2.2.2 The Klebanov-Polyakov conjecture

In the previous chapter, in section 1.5 we saw that it is possible to construct in AdS4 a complete interacting
theory of massless particles with every integer spin. They are gauge bosons in a representation of a higher
spin symmetry algebra. One may wonder whether this system has a holographic dual on the AdS boundary
and what is the dual theory.

First of all, as we saw in section 2.1.7, we expect that every higher spin �eld ΦM1...Ms
8 that is non-

vanishing on the boundary is a source for some observable in the CFT. Moreover, since ΦM1...Ms(z, x) is a
gauge �eld, it should be coupled to a completely symmetric conserved current Jµ1...µs(x). So it is natural
to identify these currents with those of the O(N) model (2.2.5). This is also hinted by the fact that the
conformal dimensions of the dual of ΦM1...Ms and of Jµ1...µs (2.1.54) and (2.2.9) are the same.

However in the progress of identi�cation of �elds in the two sides we immediately encounter two issues.
First of all, the O(N) model has currents with only even spin, while in general Vasiliev theory involves also
the odd ones. This is solved by considering the minimal model with only even spins as explained in section
1.5. Here we consider the A type theory, see section 1.5. The second di�culty is more subtle and is related
to the scalar �eld. In subsection 2.1.6 we saw that the dual of φ(z, x) should have dimension

∆+ >
d

2
=

3

2

by (2.1.32), but in the O(N) theory the scalar current is ϕaϕa(x), whose weight is 1. Therefore our identi�-
cation between boundary and bulk �elds can not work, even though only for spin 0.

We can now proceed in two di�erent ways, as suggested by Klebanov and Polyakov in the paper where
they introduced the higher spin/O(N) model duality [43]. First of all notice that for the bulk scalar �eld

∆− = 1, ∆+ = 2.

These relations suggest to change the identi�cation rules (2.1.36) and (2.1.37) and consider the solution that
is asymptotic to z∆+ instead of z∆− and de�ne

φ̄(x) ≡ lim
z→0

z−∆+φ(z, x)

8Here the metric-like form of Fronsdal �elds is more convenient.
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so that the dual operator has dimension ∆− ≡ ∆ = 1 and the correct bulk-to-boundary propagator is

K̃∆(z, x) ≡ C∆+

(
z

z2 + x2

)∆−

.

This restores the duality rules. Indeed, it has been shown in [46] that, if9

∆± >
d− 2

2

both choices of the conformal weight for the dual operator ∆ = ∆± lead to a consistent AdS/CFT duality
between two related theories. As a consequence of our identi�cation of φ̄ and E in (2.1.62) as the source
and the expectation value of the dual operator, we see that choosing ∆ = ∆− amounts to exchanging the
roles of φ̄ and E. Since J and φ̄ can be seen as conjugated variables, we can expect that the CFT partition
function of the theory associated to ∆− is the Legendre transform of the usual one where the scalar operator
has dimension ∆+. Indeed it has been shown in [46] that this transformation leads to the correct bulk-to-
boundary propagator K∆− .

If to z∆+ we associated the free O(N) model, we should �nd by choosing z∆− another CFT with a scalar
operator with weight 2. Consider then the following deformation of our original action

δS
[
ϕi
]

=

ˆ
λ

2N

(
ϕiϕi

)2
d3x, (2.2.10)

namely an interaction vertex with a 't Hooft-like coupling λ
2N . The resulting action Sint

[
ϕi
]
is not conformally

invariant from the classical point of view, since the dimension of ϕ is 1
2 and therefore (2.2.10) is not even scale

invariant (see (2.1.5)). However quantization can alter the symmetry properties of a theory. In this case the
renormalization group �ow brings the interacting theory to an IR critical point where it is conformal. Currents
J µ1...µs are not conserved exactly, but only in the large N limit. Similarly, the (anomalous) dimension of
J is 2 + O

(
1
N

)
, coinciding thus with ∆+ only for N → +∞. The weights of every other spin is the same

as in the free theory up to terms of order 1
N . These results are more general, as it has been proven in [44],

where the addition of a multitrace deformation to the original action on the boundary can lead an operator
to change its dimension from ∆− to ∆+ , by a renormalization group �ow.

We may then summarize the so-called Klebanov-Polyakov conjecture in the following way

The A-type minimal Vasiliev theory in AdS4 is dual to a Conformal Field Theories of scalars
with global O(N) symmetry through the identi�cation of the Fronsdal �elds in the bulk with
sources of conserved currents on the boundary. If one takes as dimension of the dual scalar
operator ∆+, the theory at the boundary is a free CFT , while if ∆− is taken, it is the critical
point of the theory at large N with a

(
ϕiϕi

)2
interaction.

This conjecture can be further generalized. Type B minimal Vasiliev theory has been conjectured by Sezgin
and Sundell to be dual to an O(N) model where the real scalar is replaced by a real fermion �eld. When
considering the ∆+ dimension, the boundary theory is the free one, while in the other case it is the critical
point of the one with an interaction of the kind

(
ψ̄iψi

)2
. Non-minimal theories appear to be linked with

a CFT endowed with a global U(N) symmetry that allows currents of all spins. For example, the spin 1
current is

J µ = ϕ∗∂µϕ− ϕ∂µϕ∗.

9This limitation comes from the fact that it is possible to regularize the action in such a way that it is �nite for both the
possible asymptotic behaviors of φ, see (2.1.63) in the previous subsection for the free case.
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2.3 Tests of the KP conjecture

The AdS/CFT correspondence is an equivalence that involves the actions of the theories on both sides. For
this reason, the way in which we formulated the interacting theory of higher spin �eld in subsection 1.5 is not
very suitable to test the Klebanov-Polyakov conjecture, in that it is based solely on the equations of motion.
Indeed the most direct test would be to compute correlators by Feynman diagrams on the boundary and by
Witten diagrams in the bulk and verify that they coincide. However, without a higher spin action this is
not possible. A possible solution to this issue would be to construct a part of the action by carrying out a
perturbative analysis of the Vasiliev equations and derive the interaction vertices order by order. This would
allow to compute Witten diagrams in the way described in subsection 2.1.7. We will pursue this approach in
chapter 4.

In their paper [48], Giombi and Yin proposed an alternative approach, based on the equations of motion
and the results of subsection 2.1.8. Namely, the idea is to compute the correlator10〈

J (s1)(x1)J (s2)(x2)J (s3)
2 (x3)

〉
(2.3.1)

by solving the equations of motion in presence of point-like sources located at x2 and x3 and computing the
limit value E(x1), which represents by (2.1.67) the sought correlator (2.3.1). More precisely

E(x1) = Cs1as2as3
〈
J (s1)(x1)J (s2)(x2)J (s3)

2 (x3)
〉
.

where Cs, as1 , as2 , as3 are some unknown normalization factors. Comparing the di�erent results coming from
E(x2) and E(x3) and from

〈
J (sj)(x)J (sj)(y)

〉
one can determine also the unknown normalizations up to a

common factor, which is interpreted as the coupling constant associated to that particular cubic vertex. In
this way a veri�cation of the conjecture for 3-point correlators has been carried out for the case s3 = 0 and
s2 = s3 = 0.

As we saw in subsection 1.5, the dynamics of interacting higher spin �elds can be reduced to the twistorial
space parametrized by y, ȳ, z, and z̄, since the space-time connection is �at and can be gauged away. Natu-
rally, it is always in principle possible to do the opposite, namely to use the equations of motion to reformulate
the theory in AdS and eliminate the dependence on the twistors. Through the unfolding formalism, Vasiliev
noticed in [49] that this means that a certain system can have the same description in twistorial space but
di�erent realizations in space-time. In particular, one can link theories living in di�erent dimensions, thus
giving rise to a holographic duality. In [49] it has been shown that in 3 dimensions conserved currents are
described by unfolded equations that are equivalent to the Vasiliev ones in 4 dimensions.

The goal of the thesis is to present the 3-point correlator test with a di�erent formalism, that employs the
standard way to compute Witten diagrams by di�erentiating an action. To do so, we will need to �nd the
cubic interaction vertices between three higher spins in a particular gauge. To do so, we will introduce in the
next chapter the so-called ambient space, that will also allow us to �nd the functional form of correlators in
the CFT without computing them by Feynman diagrams and thus to make a comparison in a simpler way.

10Here we use a shorthand notation to denote currents with spin s1, s2 and s3.

66



Chapter 3

Ambient space formalism

As we have seen in chapter 2, the symmetries of the theories in the bulk and the boundary are one of the
fundamental reasons to conjecture the AdS4/CFT3 duality. We would like to employ them to simplify our
computations, but we encounter some di�culties in doing so. In the bulk, the SO(2, 3) symmetry is realized
by isometries of the AdS4 background space, which is a curved manifold. Therefore, we have to employ
covariant derivatives, which are non-commutative and hence di�cult to handle. On the other hand, SO(2, 3)
appears in the theory at the boundary as the conformal group (see 3.1.2), that acts non-linearly on the
coordinates.

These two problems have actually a common solution: the so-called ambient space formalism. In this
chapter we will explain how to describe both theories in a greatly simpli�ed way by embedding them in an
extended space-time that will be �at, and thus will allow us to get rid of covariant derivatives and employ
the usual ones, and whose symmetry group is SO(2, 3) acting as the usual Lorentz group.

3.1 The conformal group

3.1.1 De�nition of the group

A conformal transformation between two open sets U, V ⊆ Rn is a continuous and di�erentiable map C(x) :
U → V that preserves the angles between the tangent vectors of any two curves in their intersection. The
angle between two vectors v(x) and w(x) is computed from their scalar products in the following way (we
omit the arguments of v and w not to clutter the notation and we denote the standard metric as ηij ≡ δij)

cos(θ) =
viwjηij√

(vivjηij) (wiwjηij)
(3.1.1)

Therefore, imposing invariance of cos(θ) under the transformation C(x), by (3.1.1) we �nd

viwjηij√
(vivjηij) (wiwjηij)

=
vawb ∂C

i

∂xa
∂Cj
∂xb

ηij√(
vavb ∂C

i

∂xa
∂Cj
∂xb

ηij

)(
wawb ∂C

i

∂xa
∂Cj
∂xb

ηij

) . (3.1.2)

Now, if we take v ⊥ w, (3.1.2) becomes simply

vawb
∂Ci

∂xa
∂Cj

∂xb
ηij = 0 (3.1.3)

and therefore, since (3.1.3) holds for every v and w (perpendicular to each other),

∂Ci

∂xa
∂Cj

∂xb
ηij = f(x)ηab (3.1.4)
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for some f(x), the so-called conformal factor, that in general may be di�erent from point to point. This
expression resembles the de�ning relation of a rotation. Indeed, it would be such if f ≡ 1. Here, though,
vectors appear not only to be rotated, but also rescaled, so that we deduce that a conformal transformation
is equivalent to a local rescaling and rotation of the metric.

In a more general setting, a conformal transformation C is a di�eomorphism between two di�erentiable
manifoldsM1 andM2 endowed with two metrics (or pseudo-metrics) g1(x) and g2(x) such that

f(x)g1(x) = g∗2(x) (3.1.5)

where ·∗ denotes the pull-back associated to C. Conformal transformations between a manifoldM and itself
are then a sub-group Conf(M) of the di�eomorphisms that have the following properties:

• The identical map belongs trivially to Conf(M) with f ≡ 1

• Each conformal transformation has an inverse for which the conformal factor is 1/f

• The composition of C1, C2 ∈ Conf(M) with conformal factors f1 and f2 is a new conformal transfor-
mation with f = f1 · f2

Conf(M) is a Lie group.
Our aim is now to classify all possible conformal transformations associated with the Minkowski d-

dimensional space-time and its usual pseudo-metric ηµν . Since we are interested in the ones connected with
the identity, we can start from their in�nitesimal version Cµ(x) = xµ + εµ(x) (f(x) = 1 + c(x)). Equation
(3.1.4) becomes then

∂µεν + ∂νεµ = cηµν . (3.1.6)

Now, we can eliminate c by taking the trace of (3.1.6) to obtain

c =
2

d
∂ · ε (3.1.7)

and inserting this relation back into (3.1.6):

∂µεν + ∂νεµ =
2

d
(∂ · ε) ηµν . (3.1.8)

Take twice the divergence of (3.1.8):

�εν = −2

d
∂ν (∂ · ε) (3.1.9)(

1− 2

d

)
� (∂ · ε) = 0. (3.1.10)

Notice that (3.1.10) is non-trivial only for d 6= 2. We will assume d > 2 for the rest of the discussion. From
(3.1.10) we can deduce that c is a function at most quadratic in x and thus we can parametrize it as

εµ(x) = aµ + qµνxν + rµνρxνxρ.

where bµνρ = bµρν . Then, from (3.1.8), choosing r = 0, we get

q(µν) =
1

2
qααη

µν

that is, we can express q as a sum of its symmetric and antisymmetric parts

qµν = ∆ηµν + ωµν , ωµν = −ωνµ.
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Applying a derivative on (3.1.8) and permuting indices we �nd that rµνσ is expressed in terms of its trace
rααρ, namely:

∂ρ∂µεν + ∂ρ∂νεµ = 2
dηµν∂ρ (∂ · ε) |+

∂µ∂νερ + ∂µ∂ρεν = 2
dηνρ∂µ (∂ · ε) | −

∂ν∂ρεµ + ∂ν∂µερ = 2
dηρµ∂ν (∂ · ε) |+

⇓
2∂ν∂ρεµ = 2

d (ηµνηαρ − ηνρηαµ + ηρµηαν) ∂α (∂ · ε)

or

rµνρ =
1

d

(
ηµνr

α
αρ − ηνρrααµ + ηρµr

α
αν

)
so that, introducing the vector bµ = rααµ, we �nally get the most general form of a conformal transformation:

εµ(x) = aµ + ∆xµ + ωµνxν +
1

d

(
xµrααρx

ρ − x2r αµ
α + xµrαανx

ν
)

= aµ + ∆xµ + ωµνxν − x2bµ + 2 (x · b)xµ.

We see that c comprises

• Translations with parameter aµ (xµ → xµ + aµ) generated by Pµ = −i∂µ.

• Lorentz transformation with parameter ωµν (xµ → ωµνxν) generated by Mµν = i (xµ∂ν − xν∂µ).

• Dilations with parameter ∆ (xµ → λxµ), generated by D = −ixα∂α.

• Special Conformal Transformations with parameter bµ generated by Kµ = −i
(
2xµx

α∂α − x2∂µ
)
.

The �nite version of the latter transformation is

xµ → xµ + bµx2

1 + 2 (bx) + b2x2
=

xµ + bµx2

(xν + bνx2)2x
2 (3.1.11)

that can be obtained as an inversion (i.e. xµ → xµ

x2 ), followed by a translation with parameter bµ, followed
by another inversion:

xµ → xµ

x2
→ xµ

x2
+ bµ =

xµ + bµx2

x2
→ xµ + bµx2

(xµ + bµx2)2x
2.

We would like now to determine the Lie algebra of Conf
(
R1,d−1

)
. It is obvious that SO(1, d − 1) <

Conf(R1,d−1). Therefore, in addition to the known commutators of so(1, d− 1) presented in (1.1.1), we have

[D,Mαβ] = 0

[Kα,Mβγ ] = iηαγKβ − iηαβKγ ,

determined by the Lorentz algebra of a scalar D and a vector Kα and

[D,Pα] = (∂α (xµ∂µ)− xµ∂µ∂α) = ∂α = iPα

[Pα,Kβ] = −∂α (2xβx
γ∂γ − xγxγ∂β) + (2xβx

γ∂γ − xγxγ∂β) ∂α

= −2ηαβx
γ∂γ − 2xβ∂α + 2xα∂β (3.1.12)

= −2iηαβD − 2iMαβ
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[D,Kα] = −xµ∂µ (2xαx
γ∂γ − xγxγ∂α) + (2xαx

γ∂γ − xγxγ∂α)xµ∂µ

= −2xαx
γ∂γ − 2xαx

γ∂γ + 2xγxγ∂α + 2xαx
µ∂µ − xγxγ∂α

= +x2∂α − 2xαx
γ∂γ

= iKα

[Kα,Kβ] = − (2xαx
γ∂γ − xγxγ∂α)

(
2xβx

δ∂δ − xδxδ∂β
)

+
(

2xβx
δ∂δ − xδxδ∂β

)
(2xαx

γ∂γ − xγxγ∂α)

= −8xαxβx
δ∂δ + 2xαx

2∂β + 2x2ηαβx
δ∂δ + 2x2xβ∂α + 2x2xα∂β

+ 8xαxβx
δ∂δ − 2xβx

2∂α − 2x2ηαβx
δ∂δ − 2x2xα∂β − 2x2xβ∂α

= 0.

3.1.2 Embedding the conformal group in the ambient space

The representation of the conformal group that led us to its de�nition is not linear. Therefore, we would like
to �nd a space where Conf

(
R1,d−1

)
acts linearly, namely an extension of the Minkowski space with extra

coordinates. We call this manifold Ad+2, the ambient space, for which R1,d−1 is just a sub-manifold. The
simplest extension possible is a vector space that contains R1,d−1 as a sub-space. We can therefore endow
Ad+2 with a diagonal metric ηmn (m, n = 0, 1, ..., N) and parametrize it with N coordinates Xm so that ηmn

reduces to ηµν in the Minkowski sub-space. To keep things as simple as possible, we may simply set Xµ = xµ

and add a number of coordinates starting from Xd.
Conf

(
R1,d−1

)
is de�ned by the property of acting on the R1,d−1 metric just as a rescaling, that is not

always constant, but depends on the coordinates when the transformation considered is non-linear. On the
other hand, we want to realize every element of the conformal group linearly on Ad+2. Thus conformal
transformations may cause the ambient metric to rescale only by a constant coe�cient. From

XmXm = x2 +
∑

m̃>d−1

(
Xm̃

)2
ηm̃m̃

we see that this implies that also x2 acquires just a constant coe�cient, that is in contrast to what we expect
to happen. If, on the other hand, we applied a local rescaling to X after the linear transformation, we would
solve our problem. This rescaling can be justi�ed only if we say that a point x of the physical space is
represented by a class of vectors X that di�er one from each other only by a scale factor that may depend
on x. In this class obviously a vector such that Xµ = xµ has to be present.

This observation suggests to take as a sub-manifold representing R1,d−1 one that is left invariant under
rescalings. The simplest non trivial one is the light-cone Ld+1 de�ned by

XmXm = x2 +
∑

m̃>d−1

(
Xm̃

)2
ηm̃m̃ = 0. (3.1.13)

Since our xµ are unconstrained, x2 can be both positive and negative and thus we have to add at least 2
coordinates to satisfy (3.1.13), where at least one is time-like and the other is space-like. If we stick to this
lower limit and assume Ad+2 = R2,d, then we can put (3.1.13) in the useful form

XmXm = x2 + 2X+X−

by switching to the light-cone coordinates

X+ =
Xd + Xd+1√

2
, X− =

−Xd + Xd+1√
2
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so that the metric is represented by

η =

 ηµν 0 0
0 0 1
0 1 0

 .

Equation (3.1.13) is just one constraint: we have to �nd another one in order to have a manifold with
dimension d. Since it has to a�ect only the two additional coordinates, we may take

X+ = 1 (3.1.14)

not to spoil (3.1.13). The sub-manifold described by (3.1.13) and (3.1.14) is

Ld+1/R =
{
Xm|X2 = 0,X+ = 1

}
(3.1.15)

the set of light rays or, with abuse of language, simply the light-cone. Here the Lorentz group SO(1, d − 1)
is implemented trivially by matrices acting only on the �rst d coordinates and leaves Ld+1/R invariant.

As it is known, SO(1, d− 1) < SO(2, d), the symmetry group of the ambient space. Let us then see what
is the e�ect of the remaining symmetry of Ad+2 on Ld+1/R. After a transformation of SO(2, d), in general
(3.1.14) does not hold anymore. Since we are free to take rescalings of the light-cone points, we may perform
an additional dilation of factor λ(X) = X−1

+ to return to Ld+1/R: Xm → X ′m. The combination of these
two transformations results in the following change of the metric of Ld+1/R:

dX ′mdX ′m =

(
λ(X)dXm + Xm∂λ(X)

∂Xn dXn

)2

= λ2(X)dX2 + 2λXm∂λ(X)

∂Xn dXndXm + X2

(
∂λ(X)

∂Xn dXn

)2

= λ2(X)dX2 (3.1.16)

where we exploited that X2 = 0 and therefore XmdXm = 1
2d
(
X2
)

= 0. Equation (3.1.16) is just the
de�ning relation of the conformal group, once we restrict ourselves to the metric of the �rst d coordinates.
We may then deduce that SO(2, d) ∼= Conf

(
R1,d−1

)
.

It is thus possible to reconstruct the conformal Lie algebra from so(2, d). Its generators form an antisym-
metric tensor of rank 2 which respects the following commutation relation[

Mmn,Mab
]

= i
(
Manηmb −Mbnηma −Mmaηnb +Mbmηna

)
. (3.1.17)

Let us decompose it into relations involving the components µ,+,−. First, consider M+µ and M−µ[
M+ν ,M+β

]
= 0,

[
M−ν ,M−β

]
= 0 (3.1.18)[

M+ν ,M−β
]

= i
(
−Mβνη+− −M+−ηνβ

)
. (3.1.19)

since η±∓ = 1 and η±µ = 0. Pµ and Kµ introduced earlier generate a two Abelian sub-algebras of the
conformal algebra. Therefore we are led by (3.1.18) to recognize them as

M+µ =
1√
2
Pµ, M−µ =

1√
2
Kµ.

Here the coe�cients are determined in order to get from (3.1.19) the same coe�cients as in (3.1.12). We
therefore see that

D = M+−.
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The other commutation rules are compatible with (3.1.17).
In general it can be shown that there is an isomorphism between the conformal group of Rm,n and the

orthogonal group SO(m+ 1, n+ 1). This relation is not valid in 2 dimensions, where the conformal group is
much larger and its algebra is in�nite dimensional.

Finally we write the most general expression for a point in Ld+1/R for future use:

Xm ∈ Ld+1/R ⇐⇒ Xm =

(
xµ, 1,−1

2
x2

)
(3.1.20)

3.2 Embedding AdS in the ambient space

As it is well known, the (d+ 1)-dimensional Anti de Sitter space, as every maximally symmetric solution
to the Einstein equations, can be described as a (pseudo)hyperboloid embedded into a (d+ 2)-dimensional
space that we call Ad+2 (since it coincides with the one de�ned in (3.1.2)) as

XMXNηMN +
(
Xd+1

)2
= L2 (3.2.1)

where XM are the usual coordinates in d+ 1 dimensions, while Xd+1 is an additional time-like one and L is
the curvature radius. If we combine these coordinates in the form Xm =

(
XM , Xd+1

)
, where m = 0, ..., d+1,

equation (3.2.1) can be rewritten as
XmX nηmn = L2 (3.2.2)

where ηmn = diag (1,−1, ...,−1, 1) and coincides with ηMN for the �rst d+1 entries. We call the sub-manifold
of Ad+2 described by (3.2.2) Sd+1. Now the symmetries of AdS, namely translational and Lorentz invariance,
are both explicitly uni�ed in a general SO(2, d) symmetry that preserves (3.2.2).

We may employ the light-cone coordinates in place of the last two (we keep using m = 0, 1, ...,d− 1,+,−)

X+ =
Xd + Xd+1√

2
, X− =

−Xd + Xd+1√
2

.

Then any point in Sd+1 can be expressed by using the Poincaré coordinates z, xµ (see (2.1.19)) as

Xm ∈ Sd+1 ⇐⇒ Xm =
L

z

(
xµ, 1,−1

2

(
xµxµ − z2

))
. (3.2.3)

The boundary of the AdS manifold Sd+1 is given by the points for which XM → ∞, that can be obtained
by z → 0 in (3.2.3). In this limit equation (3.2.3) may be written (asymptotically) as

Xm ∝
z→0

(
xµ, 1,−1

2
xµxµ

)
that we can recognize as a point of the light-cone Ld+1 as described by (3.1.20). The fact that the boundary
of AdSd+1 is a Minkowski space-time with a dimension d is then expressed in the ambient space by saying
that Sd+1 is asymptotic to Ld+1 at in�nity.

3.3 Tensors in the Ambient space

In the previous two sections we showed how AdSd+1 and its boundary R1,d−1 can be embedded as sub-
manifolds of Ad+2. The aim of this section is to extend the formalism we developed for the coordinates of
these two spaces to every other physical quantity. Namely, we want to convert each tensor �eld de�ned in
one of the two sub-manifolds into a tensor �eld of the embedding Ad+2.
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Let us generalize our task by considering a submanifold N of R2,d = Ad+2, whose dimensions is n,
embedded in R2,d by an injective di�erentiable map ι : N → R2,d. It induces a map, the so called pull-back
ι∗ : X k(U) → X k(N ), between tensor �elds of rank k de�ned on some subset U ⊂ R2,d containing N ,
X k(U), and those de�ned on N , X k(N ):

Ti1...ik(p) ≡ (ι∗T )i1...ik (p) = dιj1i1(ι(p)) · · · dιjkik(ι(p))Tj1...jk(ι(p)) (3.3.1)

where p ∈ N and dι(p) : Tp(N ) → Rd+2 is the di�erential map induced by ι between the tangent space of
N in p (Tp(N )) and R2,d. This allows to express a tensor �eld in the embedding manifold as a �eld in the
embedded one.

In our case, however, we want to do the opposite, namely to extend a tensor �eld de�ned on N =
Sd+1 and Ld+1/R to R2,d. To do so, we need to characterize a subspace of X k(U) for which there can be
an isomorphism with X k(N ). First of all we notice that the tangent space of R2,d, namely a copy of R2,d

itself, can be decomposed as
R2,d = Tp(N )⊕ T⊥p (N ),

where T⊥p (N ) is the space of the vectors orthogonal to N . Therefore we take the ambient tensors that do
not have components in T⊥p (N ), namely

T ∈X k(U) such that T (p) ∈ T k
p ≡

k
⊗
i=1
Tp(N ). (3.3.2)

We call this condition ambient transversality1.
Their domain of de�nition U should be such that the value of the ambient tensor T at every point q ∈ U

is uniquely determined by the value of its counterpart T on N at some p ∈ N . In this way ambient tensors
do not encode more information than those living in the sub-manifold.

In our case, both Ld+1/R and Sd+1 are de�ned by a condition of the kind

~X2 = α (3.3.3)

for some α ≥ 0, which makes every vector X̃m belong to T⊥(N ). We then choose

US =
{
X|X2 > 0

}
, UL =

{
X|X2 = 0

}
as domains of de�nition. Since the Us are invariant under rescalings, a natural way to determine the values
of tensors in UL and US outside N is to set

T (λX) = f(λ)T (X)

so that the values on N determine those all over U . We choose f(λ) = λ−∆ for some ∆ ∈ R, that we call
degree:

T (λX) = λ−∆T (X). (3.3.4)

Moreover (3.3.3) implies that the vectors in T⊥(N ) are those parallel to X̃m in UL and US . To them, in
the case of N = Ld+1/R, we should add the linear combinations with δm+, which comes from the condition
X+ = 1 in (3.1.15). Therefore condition (3.3.2) can be expressed by saying that X k(N ) is isomorphic to

T k (US ) =
{
T ∈X k (US ) |XmiT m1...mk(X) = 0∀i = 1, ..., k, X ∈ US

}
(3.3.5)

where

X (X) ≡
(
X2

L2

)− 1
2

X

1Not to be confused with transversality in the sense of (1.1.4)
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and

T k (UL ) =
{
T ∈X k (UL ) |XmiT m1...mk(X) = 0 = δ+

mi
T m1...mk(X)∀i = 1, ..., k, X ∈ UL

}
(3.3.6)

for N = Sd+1 and N = Ld+1/R respectively2.
In our calculation, we can realize the spaces (3.3.5) and (3.3.6) in the case of Sd+1 by

T m1...mk(X) =

(
X2

L2

)−∆
2 ∂Xm1

∂XM1
· · · ∂X

mk

∂XMk
TM1...Mk (X (X)) (3.3.7)

where one should di�erentiate (3.2.3) and for Ld+1/R by

T m1...mk(X) =
(
X+
)−∆ ∂Xm1

∂xµ1
· · · ∂X

mk

∂xµk
Tµ1...µk (X(X)) (3.3.8)

where
X(X) ≡ X

X+
.

Let us check that (3.3.7) is consistent with our requirements. We do this just for (3.3.7) and with vectors,
for simplicity, the proof for the general case being the same. First of all, (3.3.1) composed with (3.3.7) should
be the identity:

TM =
∂Xm

∂XM
Tm =

∂Xm

∂XM
ηmn

∂X n

∂XN
TN = gMNT

N = TM .

Here we used (3.3.1) applied to the metric tensor:

ηαβ =
∂Xm

∂xα
∂Xn

∂xβ
ηmn, gAB =

∂Xm

∂XA

∂X n

∂XB
ηmn. (3.3.9)

Transversality, on the other hand, follows from

XmT m(X ) = Xm
∂Xm

∂XM
TM (X) =

1

2

∂ (XmXm)

∂XM
TM (X) = 0.

Similar considerations are valid for tensors in Ld+1/R. In this case, though, the transversality constraint
must be formulated in a stronger way. Indeed, suppose that it was possible to write an ambient tensor as

Tm1...mk
(X) = Xm1Sm2...mk

. (3.3.10)

When considering contractions with the �rst index, (3.3.6) is trivially satis�ed in virtue of the light-cone
de�ning relation X2 = 0. Let us inspect the Ld+1 tensor associated to (3.3.10):

Tµ1...µk(x) =
∂Xm1

∂xµ1
· · · ∂X

mk

∂xµk
Tm1...mk

(X(x))

=
∂Xm1

∂xµ1
· · · ∂X

mk

∂xµk
Xm1Sm2...mk

=
∂
(
X2
)

∂xµ1
Sµ2...µk

= 0. (3.3.11)

Therefore ambient transversality for the light-cone acquires the further condition that a tensor must never
be of the form (3.3.10). We call this requirement strong ambient transversality. Anyway, most of the time,
we will just refer to (3.3.6), which is easier to use.

2Actually the �rst condition in (3.3.6) is not enough, as we explain later.
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Notice that also the ηαβ and gAB have ambient counterparts, but they do not coincide with ηmn, because
ηmn is not transversal and equations (3.3.9) are not invertible. For example, the ambient version of gAB is

Pmn =
∂Xm

∂XA

∂X n

∂XB
gAB = ηmn − X

mX n

X 2
, (3.3.12)

that is also a projector onto ambient transversal tensors. Indeed, given any T m1...mk ∈X k(US )

T̄ m1...mk ≡ Pm1
n1
· · · Pm1

n1
T n1...nk

is a transversal tensor, since
XmPm

n = Pm
n X n = 0. (3.3.13)

Equation (3.3.9) allows us to formulate a rule to automatically convert any expression in Sd+1 and
Ld+1/R into an ambient one. Let us focus on AdS. Given any scalar expression f(X), from (3.3.7) and
(3.3.8) we know that its ambient version F(X ) is such that

f(X) = F(X (X)),

namely scalars do not transform (except for their homogeneity property away from Sd+1). This should
also happen with any scalar expression that is obtained by contractions of AdS tensors. We expect that its
ambient version is also such a contraction. Indeed

VmWm =
∂Xm

∂XM
ηmn

∂X n

∂XN
VMWN = VMWM (3.3.14)

by (3.3.9). So whenever we need to convert an expression from AdS we just need to replace every tensor with
its ambient version and perform the same contractions. This rule is also compatible with the metric (3.3.12)

VmPmnWn = VnWn = VNW
N = VMgMNW

N , (3.3.15)

where we used in the �rst step the transversality of V that reduces P to just η, while in the second one we
employed (3.3.14).

3.4 Index-free formalism

In this section, we develop a formalism similar to the one used in subsection 1.4.4 to deal with tensors with
an arbitrary rank without cluttering our notation with many indices and complicating our computations.

Let Um be an auxiliary vector that in general depends on the coordinates of AdS XM or the ones of the
Minkowski d-dimensional space xµ. We choose it so that

UmUm = 0 (3.4.1)

UmXm = 0, UmXm = 0. (3.4.2)

Conditions (3.4.2) admits at least one solution. Indeed, if we parametrize Um as Um = (uµ, U+, U−), it
follows from (3.2.3) and (3.1.20) that

UmXm =
L

z

(
xµuµ + U− − 1

2
U+

(
xµxµ − z2

))
UmXm = xµuµ + U− − 1

2
U+xµxµ.
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We obtain (3.4.2) if
U+ = 0, U− = −xµuµ (3.4.3)

and compatibility with (3.4.1) gives then

2U+U− + uµuµ = 0 =⇒ uµuµ = 0.

Notice that, since U is transversal, it is the ambient version of some world vector and indeed by (3.1.20) and
(3.2.3) we can write

Um = uµ
∂Xm

∂xµ
, Um = uM

∂Xm

∂XM
(3.4.4)

where
uM =

z

L
(uµ, 0) , uMuM = 0.

Then, consider a tensor in ambient space that in principle ful�lls only the homogeneity condition (3.3.4).
Now, contract it with U to obtain a scalar

T (X, U) = Tm1...mk
(X)Um1 · · · Umk . (3.4.5)

T (X, U) uniquely3 represents a tensor that is

1. Symmetric, because the symmetry of Um1 ···Umk removes any antisymmetric contribution to Tm1...mk
(X)

2. Traceless by virtue of (3.4.1) that removes any traceful part of Tm1...mk
(X)

3. Transverse in the ambient sense of (3.3.5) and (3.3.6). Indeed the longitudinal part of Tm1...mk
for Sd+1

is given by (if both previous two constraints hold)

1

L2
X(m1

(
XmTmm2...mk)

)
+ traces

where traces means terms proportional to ηmn that is not necessary to specify further. It is easy to
see that when (3.4.1) and (3.4.2) are satis�ed, this contribution disappears from (3.4.5). As for tensors
from Ld+1, by (3.4.4), if we consider for the sake of simplicity k = 1 (but this holds for any k)

UmTm(X) = uµ
∂Xm

∂xµ
Tm(X)

= uµTµ(x)

so that T (X, U) = T (x, u), where T (x, u) is the polynomial associated to a tensor in the Minkowski
space when contracted with a vector u that obeys the same zero norm condition (3.4.1) as U . Since
Tµ(x) is the world version of Tm, the latter must then obey the transversality constraint (3.3.6). Besides,
it is obvious that (3.4.2) rules out also the tensors that do not obey the strong transversality condition
(see (3.3.10) and the related discussion)

One may also say that a tensor Tm1...mk
(X) is represented by the class of equivalence of polynomials in X and

U that di�er from each other by terms proportional to U2 or (X · U). In order to extract the tensor from
the corresponding polynomial, one could in principle di�erentiate with respect to U4. However ∂U is not
compatible with the constraint (3.4.1), since

∂

∂Um
U2 = 2Um 6= 0

3As we said, U is the ambient version of some world vector u and therefore world tensors that can be schematically written
as T = uS would be represented by T = US and thus by vanishing polynomials. To prevent this, we assume that u is complex
and therefore no world or ambient tensors may be proportional to u or U . For further details about this see section 3.1 of [50].

4Derivatives ∂
∂U

and ∂
∂X

here and in the following are meant to act formally only on the explicit dependence on U and X and
therefore, even though U is a function of X, derivatives in U and X have no e�ect on X and U respectively.
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even when U2 = 0. For this reason polynomials in the same equivalence class would correspond to di�erent
tensors. This problem can be solved by using

Dm ≡
(
d

2
− 1 + U · ∂

∂U

)
∂

∂Um
− 1

2
Um

∂2

∂Ua∂Ua
(3.4.6)

instead of ∂U . Indeed DmU
2 = 0.

One can show (see [50]) that

Tm1...mk
(X) =

1

k!
(
d
2 + k − 1

)
d
2

Dm1 · · ·Dmk
T (X, U),

where we used the Pochhammer symbol de�ned in the �Notation� appendix. By means of Dm the usual
tensor operations can be performed in the index-free formalism. The scalar product

Um2...mk
≡ VmTmm2...mk

is represented by

U(X, U) =
1

k
(
d
2 + k − 1

)VmDmT (X, U) (3.4.7)

The tensor product is trivially obtained by the usual product between scalars: given Tm1...mk
(X), Sm1...ml

(X)
and their associated polynomials T (X, U) and S(X, U),

Um1...mk+l
(X) =

(
k + l

l

)−1

T(m1...mk
(X)Smk+1...mk+l)(X)

is represented by

U(X, U) = Tm1...mk
(X)Smk+1...mk+l

(X)Um1 · · · UmkUmk+1 · · · Umk+l

= T (X, U)S(X, U). (3.4.8)

Using

DmDm = −1

2
U · ∂

∂U

∂2

∂Ua∂Ua

we �nd that the contraction T n
nm3...mk

(X) is associated to

T ′(X, U) ≡ T n
nm3...mk

Um3 · · · Umk

= − 1

2k (k − 1)
(
d
2 + k − 1

) (
d
2 + k − 2

)U · ∂
∂U

∂2

∂Ua∂Ua
T (X, U) (3.4.9)

Ambient transversality 3.3.5 and (3.3.6) can be translated in this formalism by (3.4.7) as

1

k
(
d
2 + k − 1

)XmDmT (X, U) = 0,

equivalent to

Xn ∂

∂Un
T (X, U) = 0. (3.4.10)
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3.5 Application to the boundary

By means of the ambient formulation of the theory at the boundary of the AdS space we are able to describe
the duals of the higher spins that live in the bulk, i.e. some composite �elds that share the same properties
of higher spins for what concern their tensorial nature. Our goal, now, is to employ our new language to
enforce the conformal symmetry on correlators of these �elds, thus constraining their possible form. In our
formalism, this will amount to just imposing manifest SO(2, d) invariance, along with the ambient constraints
on tensors (3.3.6) and (3.3.4). This kind of task is familiar in theoretical physics and is easily solved. We will
�nd that 2-point functions are completely determined by these requirements, while for 3-point correlators
this happens only for s < 1 and for higher spins there are anyway strong restrictions.

In this section, �rst we consider only primary scalar �elds, de�ned by (2.1.9), and we employ some
standard CFT techniques to derive powerful restrictions on 2-point and 3-point correlators. Then, our aim
will be to extend these results to primary tensorial �elds using the ambient space formalism that will contrast
with the lower dimensional derivation for its simplicity.

3.5.1 2-point functions of scalars

As our �rst example of a CFT correlator we examine the 2-point function between φ1, φ2 two primary scalar
�elds with dimensions ∆1,∆2. We require that the correlator

f(x, y) = 〈φ1(x)φ2(y)〉

is invariant under each class of conformal transformations:

1. Translations: if we perform xµ → xµ − yµ we get

f(x, y) = 〈φ1(x− y)φ2(0)〉

so that f depends actually only on x− y.

2. Lorentz transformations: f must be a scalar and therefore, since the only scalar that one can build
with (x− y)µ is its norm, we have that

f(x, y) ≡ f (|x− y|)

3. Special conformal transformations. This check is a bit more complicated. First of all we have that in
(2.1.9) ∣∣∣∣det

∂x′

∂x

∣∣∣∣ =

(
1

1 + 2b · x+ b2x2

)d
for (3.1.11) with parameter b. Now, let us employ some short-hand notation:

βx ≡ 1 + 2b · x+ b2x2 (3.5.1)

(
xµ + bµx2

)2
= x2β(x) (3.5.2)

To perform the transformation of f we avail ourselves of translational invariance to eliminate y and we
�nd

f ′(x′, 0) =
1

β∆1
x

〈
φ1(x′)φ2(0)

〉 !
= f(x, 0)
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but, at the same time, from (3.5.4) and (3.5.2) we get

f(x′, y′) =
C12∣∣∣xµ+bµx2

βx

∣∣∣∆1+∆2

=
C12√

x2 βx
β2
x

∆1+∆2
(3.5.3)

=
C12β

∆1+∆2
2

x

|x|∆1+∆2

that produces the last constraint ∆1+∆2
2 = ∆1 or

∆1 = ∆2.

4. Rescalings: under a rescaling we must get

f ′(λx, λy) = λ∆1λ∆2 〈φ1(λx)φ2(λy)〉 !
= f(x, y)

Since the only length that scales with λ that we have at our disposal is |x− y|, it follows that

f(x, y) =
C12

|x− y|∆1+∆2
(3.5.4)

where C12 is some proportionality constant.

The �nal form of a correlator of scalar primary �elds is then

〈φ1(x)φ2(y)〉 =
C12δ∆1∆2

|x− y|2∆1
. (3.5.5)

3.5.2 3-point functions of scalars

Let us now analyze the following 3-point correlator

f(x, y, z) = 〈φ1(x)φ2(y)φ3(z)〉 , (3.5.6)

where the �elds have conformal dimension of ∆1,∆2 and ∆3 respectively. Analogously as before, translational
invariance implies that

f(x, y, z) ≡ f ((x− y) , (y − z) , (z − x)) ,

and by Lorentz invariance, one can use only scalar products of these quantities, i.e.

|x− y| , |y − z| , |z − x| (3.5.7)

By ≡ (x− y) · (y − z) , Bz ≡ (y − z) · (z − x) , Bx ≡ (x− y) · (z − x) . (3.5.8)

We now notice that, for example

By +Bz = (y − z) · ((x− y) + (z − x))

= − |y − z|2 ,

so that none of the terms in (3.5.8) is independent of (3.5.7). We can thus write

f(x, y, z) =
∑

a1,a2,a3

Ca1,a2,a3
123 |x− y|a1 |y − z|a2 |z − x|a3 (3.5.9)
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for some constants Ca1,a2,a3
123 . Scale invariance, on the other hand imposes

∆1 + ∆2 + ∆3 = − (a1 + a2 + a3) . (3.5.10)

Let us now also require the invariance under special conformal transformations with parameter bµ, again
putting one of the arguments to zero by means of a translation to simplify our computation. Referring to
(3.5.1), we get from (3.5.6)

f ′(x′, y′, 0) =
1

β∆1
x

1

β∆2
y

〈
φ1(x′)φ2(y′)φ3(0)

〉
while from (3.5.9) (see (3.5.2) and the computation in (3.5.3))

f(x′, y′, 0) =
∑

a1,a2,a3

Ca1,a2,a3
123

∣∣∣∣xµ + bµx2

βx
− yµ + bµy2

βy

∣∣∣∣a1 |y|a2

|βy|
a2
2

|x|a3

|βx|
a3
2

=
∑

a1,a2,a3

Ca1,a2,a3
123

(
x2

βx
− 2

(
xµ + bµx2

) (
yµ + bµy

2
)

βxβy
+
y2

βy

)a1
2 |y|a2

|βy|
a2
2

|x|a3

|βx|
a3
2

=
∑

a1,a2,a3

Ca1,a2,a3
123

(
x2βy − 2

(
x · y + (bx) y2 + (by)x2 + b2x2y2

)
− y2βy

βxβy

)a1
2 |y|a2

|βy|
a2
2

|x|a3

|βx|
a3
2

=
∑

a1,a2,a3

Ca1,a2,a3
123

|x− y|a1

|βxβy|
a1
2

|y|a2

|βy|
a2
2

|x|a3

|βx|
a3
2

from which we get {
a2
2 + a1

2 = −∆2

a3
2 + a1

2 = −∆1

that, along with (3.5.10), completely determines a1, a2, a3:

a1 = − (∆1 + ∆2 −∆3) , a2 = − (−∆1 + ∆2 + ∆3) , a1 = − (∆1 −∆2 + ∆3) .

We come �nally to the following expression for the conformally invariant 3-point correlator of scalar �elds:

〈φ1(x)φ2(y)φ3(z)〉 =
C123

|x− y|∆1+∆2−∆3 |y − z|−∆1+∆2+∆3 |z − x|−∆1+∆2+∆3
. (3.5.11)

3.5.3 2-point functions of higher spins and the 0-0-s correlator

In the ambient approach, imposing conformal invariance amounts to requiring invariance under the SO(2, d)
linear transformation of the ambient coordinates. At the same time, though, we must remember that our
�elds obey the homogeneity condition (3.3.4) and the ambient transversality condition (3.3.6).

Let us delve a bit more on the �rst. From (3.3.4) it is obvious that there is a connection between
homogeneity and the de�ning property of primary �elds (2.1.3). To explore it, we write the e�ect of a
dilatation xµ → x′µ = λxµ on a point X(x) ∈ Ld+1/R by (3.1.20):

Xm

(
xµ, 1,−1

2
x2

)
→
(
λxµ, 1,−1

2
λ2x2

)
∼
(
xµ,

1

λ
,−1

2
λx2

)
≡X ′m. (3.5.12)

Now notice that this is a Lorentz transformation in Ad+2

Xm =
(
Xµ, X+, X−

)
→ X′m =

(
Xµ,

1

λ
X+, λX−

)
(3.5.13)
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since it obviously preserves scalar products, where the + component is always multiplied by the − one and
λ is canceled by 1

λ . This conclusion is obvious in light of our construction in 3.1.2, where we showed how
any element of the conformal group is equivalent to an SO(2, d) transformation followed by a rescaling in the
light-cone.

From (3.5.13) we see that the scale factor does not depend on the coordinates, even though in general it
happens. This implies that, from (3.3.1) and (3.5.12),

T ′µ1...µk
(x′) =

∂X ′m1

∂xµ1

· · · ∂X
′mk

∂xµk
Tm1...mk

(λX ′(x)),

T ′µ1...µk
(x′) = λ−∆∂X

′m1

∂xµ1

· · · ∂X
′mk

∂xµk
Tm1...mk

(X ′(x))

i.e. the homogeneity condition on T with degree ∆ coincides with the conformal dimension ∆ of T .
A remark is in order here: homogeneity is an algebraic condition on the values of ambient tensors away

from the domain of de�nition of their low dimensional counterparts, not a transformation law, because
dilations are not symmetries of Ad+2. The fact that the degree agrees with the conformal dimension is just a
consistency requirement. Therefore, when we check the homogeneity of correlators, we need to do it separately
for each coordinate, for we are not verifying dilation invariance.

We are now ready to explain how to �nd the simplest two correlators: the 2-point function of two higher
spins and the 3-point function between two scalars and one higher spin.

So, �rst we compute the correlator between two �elds Φ
m1...mk1
1 (X) and Φ

m1...mk2
2 (X) with degree ∆1,∆2

respectively: 〈
Φ

m1...mk1
1 (X1)Φ

n1...nk2
2 (X2)

〉
. (3.5.14)

Our �rst goal is to replicate the index structure of (3.5.14) by tensor multiplication of some fundamental
building blocks that are (strongly) ambient transversal with respect to X1 and X2 in the m and n indices,
respectively.

In order to construct these building blocks, we have only X1, X2 and η at our disposal. Then, it is clear
that

Xm
1 , Xn

2

Pm,n =

(
Xn

1X
m
2

X1 ·X2
− ηmn

)
(3.5.15)

are the simplest terms that satisfy the transversality criterion. Actually we are forced to rule out the �rst
two because they violate the strong ambient transversality requirement (see (3.3.10)). Let us show that there
are no more general ones.

Proposition 3.5.1. Every (strongly) ambient transversal tensor that can be built out of Xm
1 and Xn

2 is a

weighted sum of tensor products of Pm,n de�ned by (3.5.15) and therefore possesses an equal number of m
and n indices.

Proof. Suppose that it is not so. Then there exists at least a tensor

Gm1...mk1
,n1...nk2

that obeys our transversality request. Then

X2m1X1n1Gm1...mk1
,n1...nk2 = Hm2...mk1

,n2...nk2 (3.5.16)

for some H with the same algebraic properties of G. From (3.5.16) it follows that

Gm1...mk1
,n1...nk2 = Bm1n1Hm2...mk1

,n2...nk2 + Im1...mk1
,n1...nk2 (3.5.17)
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where I is a tensor that in addition to the algebraic properties of G obeys

X2m1Im1...mk1
,n1...nk2 = X1m1Im1...mk1

,n1...nk2 = 0, (3.5.18)

or the same relation with contractions in the n indices. As we will show later, (3.5.18) is equivalent to

Im1...mk1
,n1...nk2 = 0.

On the other hand the only rank 2 tensor that one can build out of X1 and X2 and η that is (strongly)
transversal is Pm,n, so that

Bmn = − Pm,n

X1 ·X2

and therefore G is just the product of H and P. We could repeat the same argument to reduce all possible
building blocks to P or tensors with only m or n indices.

Take then for example Gm1...mk1 . It has to be the sum of terms of the schematic form

(X1 ·X2)l ηmm · · · ηmm ·Xm
2 · · ·Xm

2

for some power l ∈ R. It is easy to see that if we contract one of these with Xm
1 , it must never happen with

an index coming from a metric, because there can be no compensating term containing Xm
1 to cancel it. If

no metric appears in G, then it shares the same algebraic properties (3.5.18) of I (the distinction among m
and n is meaningless, since it has to be transverse for both X1 and X2.) On the other hand, with only Xm

2

at our disposal, it is obvious that we cannot build any transversal tensor with respect to Xm
1 . Therefore

Gm1...mk1 and similarly Gn1...nk2 and Im1...mk1
,n1...nk2 vanish and we conclude our proof.

We have thus proven that Φ1 and Φ2 must have the same rank k. From now on we write

Smn(X1,X2) = Xn
1X

m
2 − (X1 ·X2) ηmn. (3.5.19)

and the only tensor that reproduces the algebraic properties of (3.5.14) is the tensor product of k (3.5.15):

S(m1|n1 · · · Smk)nk

(X1 ·X2)k
,

where the symmetrization acts only on m.
We still have to �x the scaling degree, separately for each tensor5 as explained before. Under rescalings

of factor λ1 for X1 and λ2 for X2 (3.5.14) acquires the coe�cient

λ−∆1
1 λ−∆2

2 ,

while (3.5.15) would give none. In general, we need some scalar to compensate this di�erence in powers of
λ1,2. The only non-vanishing one is X1 ·X2 that, however, contributes with λ1λ2, i.e with equal powers of
λ1 and λ2. This implies that

∆1 = ∆2

so that we come to

〈Φm1...mk
1 (X1)Φn1...nk

2 (X2)〉 = C12δ∆1∆2

S(m1|n1 · · · Smk)nk

(X1 ·X2)∆1+k
, (3.5.20)

5Notice that here we are not imposing scaling invariance, that has been already set when we required that our �eld should
be an SO(2, d) tensor. This is an algebraic property that the ambient tensor have to obey and therefore has to be required
separately for each of them.
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where C12 ∈ R is some constant. It is clarifying to convert (3.5.20) into the physical space-time form.

〈φµ1...µk
1 (x1)φν1...νk

2 (x2)〉 = C12δ∆1∆2

S(µ1|ν1 · · · Sµk)νk∣∣−1
2x

α
1x1α − 1

2x
α
2x2α + xα1x2α

∣∣∆1+k

= C12δ∆1∆2

S(µ1|ν1 · · · Sµk)νk

|x1 − x2|2∆1+2k
,

where we de�ned C12 ≡ 2∆1+kC12. This form resembles closely (3.5.5) and is clearly its proper tensorial
generalization. The ambient approach used here, even though was more straight-forward than the one used
in subsection (3.5.1) for imposing the symmetry, required a detailed and lengthy analysis for what concerns
the tensorial structure of the correlator.

The index-free formalism simpli�es this task. Ambient transversality will be automatic and there will be
no distinction between (3.3.6) and its strong form. We show this feature for a slightly more complex task:
the derivation of the three point function for two scalars and one higher spin �eld.

The correlator in question is written in the index-free form as〈
Φ1(X1)Φ2(X2)Φk

3(X3, U3)
〉

(3.5.21)

where we wrote U3 to refer to U computed in relation to xµ3 (see (3.4.3)), k refers to the rank of Φ3 and the
conformal dimensions of the three �elds are ∆1,∆2 and ∆3. (3.5.21) must be a polynomial in U3 of degree k.

Analogously as before, we want to build (3.5.21) as a polynomial function of some suitable basic polyno-
mials Bi(X1,X2,X3, U3). They must obey (3.4.10), i.e.

Xm
3

∂

∂Um
3

Bi = 0 (3.5.22)

and are thus the scalars built from X1,X2,X3

X1 ·X2, X2 ·X3, X1 ·X3,

and the ones in which U3 is used, (X1 · U3) and (X2 · U3). Let f(α, β) : R2 → R be any function of these.
(3.5.22) requires that

Xm
3

∂

∂Um
3

f(X1 · U3,X2 · U3) = X1 ·X3
∂f

∂α
+ X2 ·X3

∂f

∂β

!
= 0

or
f(α, β) ≡ g ((X2 ·X3)α− (X1 ·X3)β)

for some g : R→ R, so that we may use as the building block the following expression

B3 ≡
(

X1

X1 ·X3
− X2

X2 ·X3

)
· U3, (3.5.23)

that generates any polynomial g. We can then write (3.5.21) as weighted sum of terms of the following form

k∑
e=1

(
k

e

)
(X1 ·X2)a (X2 ·X3)b (X1 ·X3)c

(
X1 · U3

X1 ·X3

)k−e(
−X2 · U3

X2 ·X3

)e
. (3.5.24)

where we have already imposed the degree k with respect to U3. If we require that (3.5.24) has the correct
behavior under rescalings of X1,2,3 , we come to the following system of equations:

a+ c = −∆1

a+ b = −∆2

b+ c− k = −∆3
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from which we �nd

a = −∆1 + ∆2 −∆3 + k

2
, b = −−∆1 + ∆2 + ∆3 − k

2
, c = −∆1 −∆2 + ∆3 − k

2
.

Inserting these exponents back into (3.5.24) we �nally get,

〈
Φ1(X1)Φ2(X2)Φk

3(X3, U3)
〉

=
C123

(
X1·U3
X1·X3

− X2·U3
X2·X3

)k
(X1 ·X2)

∆1+∆2−∆3+k
2 (X2 ·X3)

−∆1+∆2+∆3−k
2 (X1 ·X3)

∆1−∆2+∆3−k
2

.

(3.5.25)
for some constant C123.

3.5.4 3-point functions for general higher spins

Here we want to generalize further the result of the previous subsection and consider three higher spin �elds
of rank k1, k2 and k3 and degree ∆1,∆2 and ∆3:〈

Φk1
1 (X1, U1)Φk2

2 (X2, U2)Φk3
3 (X3, U3)

〉
. (3.5.26)

Let us list all the basic polynomials. First of all, we use Xi and Uj (i, j = 1, 2, 3) to �nd all possible scalars:

Xi ·Xj , Xi · Uj , Ui · Uj i 6= j. (3.5.27)

Now impose (3.4.10)6:

Xj ·
∂

∂Uj
Xi · Uj = Xi ·Xj (3.5.28)

Xj ·
∂

∂Uj
Ui · Uj = Xj · Ui, Xi ·

∂

∂Ui
Ui · Uj = Xi · Uj . (3.5.29)

We see from (3.5.28) and (3.5.29) that only the �rst scalar in (3.5.27) can be a basic building block. The
other two have to be put into a transverse combination suggested by (3.5.28) and (3.5.29),

Bij = (Xi ·Xj) (Ui · Uj)− (Xi · Uj) (Xj · Ui) , i < j

and the generalization of (3.5.23)

Bk =
Xi · Uk
Xi ·Xk

− Xj · Uk
Xj ·Xk

, i < j, i, j 6= k.

The 6 building blocks Bij ,Bk exhaust all the possible choices for the polynomials containing the Ui. This can
be proven in the same way as we proved that B3 was the unique building block containing U3 in the previous
subsection: one de�nes a function of 9 arguments7 f(Xi · Uj , Ui · Uj) and enforces the 3 constraints (3.4.10)
to �nd that actually f must depend on 6 transversal polynomials built with these scalar products. Since we
already have found 6 suitable combinations, it is not necessary to repeat that procedure.

Following our scheme, we impose the proper degree in each Ui and Xi to the most general term that can
be obtained from our building blocks

Ba1
12B

a2
13B

a3
23B

b1
1 B

b2
2 B

b3
3 (X1 ·X2)c1 (X2 ·X3)c2 (X1 ·X3)c3 .

6Indices i, j... etc. that label di�erent �elds are not meant to obey the Einstein convention on summations
7Since Xi · Ui = 0, there are just 3 · 2 = 6 non vanishing scalar products between the Xis and the Ujs, while Ui · Ui = 0

allows only 3 non-zero products of the kind Ui · Uj .
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Notice that both ai and bi must be positive, because the Ui can appear only in positive powers. We come
thus to 6 conditions for the 9 unknowns ai, bi, ci:

a1 + a2 − b1 + c1 + c3 = −∆1

a1 + a3 − b2 + c1 + c2 = −∆2

a2 + a3 − b3 + c2 + c3 = −∆3

a1 + a2 + b1 = k1

a1 + a3 + b2 = k2

a2 + a3 + b3 = k3

ai > 0

bi > 0

. (3.5.30)

We decide to leave unconstrained the bi and to determine ai and ci as their functions. System (3.5.30) then
can be put in the following form (we omit the domains for ai and bi for brevity)

c1 + c3 = −∆1 − k1 + 2b1

c1 + c2 = −∆2 − k2 + 2b2

c2 + c3 = −∆3 − k3 + 2b3

a1 + a2 = k1 − b1
a1 + a3 = k2 − b2
a2 + a3 = k3 − b3

(3.5.31)

and easily solved to get 

c1 = − δ1+δ2−δ3
2 + (b1 + b2 − b3)

c2 = −−δ1+δ2+δ3
2 + (−b1 + b2 + b3)

c3 = − δ1−δ2+δ3
2 + (b1 − b2 + b3)

a1 = k1+k2−k3
2 − b1+b2−b3

2

a2 = k1−k2+k3
2 − b1−b2+b3

2

a3 = −k1+k2+k3
2 − −b1+b2+b3

2

,

where we de�ned
δi = ∆i + k1. (3.5.32)

We then get the most general form for (3.5.26):

〈
Φk1

1 (X1, U1)Φk2
2 (X2, U2)Φk3

3 (X3, U3)
〉

=
∑
bi∈B

Cb1b2b3
Cb1b2b3

(X1 ·X2)
δ1+δ2−δ3

2 (X2 ·X3)
−δ1+δ2+δ3

2 (X1 ·X3)
δ1−δ2+δ3

2

.

(3.5.33)
Here Cb1b2b3 are some constants and

Cb1b2b3 ≡ B
k1+k2−k3

2
− b1+b2−b3

2
12 B

k1−k2+k3
2

− b1−b2+b3
2

13 B
k1−k2+k3

2
− b1−b2+b3

2
23 Db11 D

b2
2 D

b3
3

is the tensorial part that gives a scale factor of λkii for each Xi, in which we used

Dk ≡
(Xj ·Xk) (Xi · Uk)− (Xi ·Xk) (Xj · Uk)

Xi ·Xj
i < j, i, j 6= k,
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while B is the set where the bi can vary and is given by the following constraints8

k1+k2−k3
2 ≥ b1+b2−b3

2 (a1 ≥ 0)
k1−k2+k3

2 ≥ b1−b2+b3
2 (a2 ≥ 0)

−k1+k2+k3
2 ≥ −b1+b2+b3

2 (a3 ≥ 0)

b1 ≥ 0

b2 ≥ 0

b3 ≥ 0

=⇒


0 ≤ b1 ≤ k1

0 ≤ b2 ≤ k2

0 ≤ b3 ≤ k3

. (3.5.34)

If we let one of the �elds, say the �rst, to be a scalar, this picture simpli�es considerably. Indeed, this
assumption is equivalent to imposing

a1 = a2 = b1 = k1 = 0

so that (3.5.31) becomes 

c1 + c3 = −∆1 − k1

c1 + c2 = −∆2 − k2 + 2b2

c2 + c3 = −∆3 − k3 + 2b3

a3 = k2 − b2
a3 = k3 − b3

whose solution is 

c1 = − δ1+δ2−δ3
2 + (k2 − k3)

c2 = −−δ1+δ2+δ3
2 + (k2 − k3 + 2b3)

c3 = − δ1−δ2+δ3
2 + (k3 − k2)

a3 = k3 − b3
b2 = k2 − k3 + b3

. (3.5.35)

The related Green function is then〈
Φ1(X1)Φk2

2 (X2, U2)Φk3
3 (X3, U3)

〉
=
∑
b3∈B

Cb3
Bk3−b3

23 Dk2−k3+b3
2 Db33

(X1 ·X2)
∆1+δ2−δ3

2 (X2 ·X3)
−∆1+δ2+δ3

2 (X1 ·X3)
∆1−δ2+δ3

2

.

(3.5.36)
Again the numerator scales as λkii . Let us analyze the allowed values for b3, i.e. the set B3. From (3.5.35),
positivity of a3, b2, b3 provides the following system:

b3 ≤ k3

b3 ≥ k3 − k2

b3 ≥ 0

=⇒ max(0, k3 − k2) ≤ b3 ≤ k3. (3.5.37)

In particular, when the spins k2 and k3 are equal, (3.5.36) is completely determined by b3 = k3.
As we showed in subsection 2.1.7, the �elds, whose correlators we will need to compute in the boundary

CFT , are conserved currents, that obey (see (2.2.4))

∂µ1φ
µ1...µs = 0. (3.5.38)

8Notice that (3.5.33) is redundant in 3 dimensions, because X1,2,3 and U1,2,3 can not be linearly independent, since the
ambient space has only 5 dimensions and therefore the structures B12,B13 and B23 and D1,2,3 are not independent. Indeed, one
can show that

(D1B23 +D2B13 +D3B12 −D1D2D3)2 ∝ B23B13B12.

This relation can be translated into a constraint for the set B.
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Using (3.4.7) this condition is equivalent in Ambient space to

∂ ·DΦ = 0. (3.5.39)

Equation 3.5.39 allows to further restrict the set B3. In the case of the correlator with two scalars and a
spin s particle with weight ∆3, instead, it just imposes

∆3 = d+ s− 2.

We conclude this subsection with a �nal remark. Both (3.5.36) and (3.5.33) show the same structure at
the denominator (and the same can be said for (3.5.25) after some algebraic manipulation) that resembles the
one we got for scalars (3.5.11) but with a di�erence: the replacement of ∆i with δi. This change is �ctitious
though, because the numerator scales in such a way that it completely cancels this di�erence.

3.6 Application to the bulk

In section 1.5 we presented the full interacting non-linear theory of higher spins by means of its equations of
motion. However, in order to realize the AdS/CFT correspondence described in 2.2.2, namely the Klebanov-
Polyakov conjecture, we need to compute Witten diagrams, whose rules are determined by the action of the
bulk theory, which is not presently known. Therefore, a possible approach is to consider the perturbation
theory of the Vasiliev equations and write a part of its complete action by starting from the free Lagrangian,
that gives rise to the standard Fronsdal equations, and adding order by order every vertex of interaction.
This can be done by expanding the Vasiliev equations around the AdS background and seeking the proper
Lagrangian that produces all the perturbative terms. For the simplest case, though, namely the cubic vertices,
imposing invariance under the AdS symmetry group and gauge transformations is su�cient to completely
determine the vertices (up to constant factors).

This task is more easily carried out in the ambient space. For this reason, the goal of this section will be
to develop the rules to compute Witten diagrams for the Fronsdal �elds in this formalism. To do so we will
simplify the problem by setting a traceless transverse gauge similar to (1.1.22) in AdS. We start by �nding
the proper ambient covariant derivative in subsection (3.6.1) and employ it in subsection 3.6.2 to write the
general propagators for higher spin �elds, solving (2.1.50). After this, we �nd the most general expression
for cubic vertices of higher spins in AdS.

3.6.1 Covariant derivatives in the ambient space

Covariant derivatives assume a specially simple form in the ambient space and this is one of the main
advantages of its usage. Indeed they correspond to taking the transverse part of an ambient derivative of the
tensor in question:

DBTA1...Ak

(3.3.5)−→ Pm
b Pm1

a1
· · · Pmk

ak
∂mTm1...mk

≡ DbTa1...ak . (3.6.1)

This is actually the �rst de�nition of DM proposed by Levi-Civita in [52] for manifolds embedded in a �at
space. In the following we will use the following short-hand notation:

k∏
i=1

Vmi ≡ Vm1 · · · Vmk

for products of an arbitrary number of tensors V.
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Let us apply de�nition (3.6.1) to the computation of the Laplacian operator gMNDMDN acting on a
symmetric tensor in the ambient formalism, where it becomes PbcDbDc by (3.3.15):

PbcDbDcTa1...ak = PbcDb

(
Pm

c

k∏
i=1

Pmi
ai ∂mTm1...mk

)

= PbcPd
bPe

c

− 1

L2
ηdeXm

k∏
i=1

Pmi
ai ∂mTm1...mk

−
k∑
j=1

Pm
e

L2
ηdajX

mj
∏
i 6=j
Pmi

ai ∂mTm1...mk

+Pm
e

k∏
i=1

Pmi
ai ∂m∂dTm1...mk

)

= −d+ 1

L2
Xm

k∏
i=1

Pmi
ai ∂mTm1...mk

− k

L2
Pm

aj

∏
i 6=j
Pmi

ai X
mj∂mTm1...mk

+Pdm
k∏
i=1

Pmi
ai ∂m∂dTm1...mk

= P
(
∂m∂

m − 1

L2
(Xm∂

m) (Xn∂
n + d) +

k

L2

)
Ta1...ak (3.6.2)

where we denoted by a generic P all the transversal projections in the last step. Notice that, due to homo-
geneity (3.3.4), the operator Xm∂

m, which merely counts the powers of X , can be replaced by −∆.
We can use ambient transversality to simplify considerably expression (3.6.1) for totally symmetric �elds.

Indeed, consider the following term in the expansion of (3.6.1) that one obtains after substituting P with the
expression given in (3.3.12):

1

L2
Pn

bXaiXmi∂nTm1...mk
= − 1

L2
Pn

bXai∂nXmiTm1...mk

= −Xai

1

L2
Tm1...m̂i...mkb (3.6.3)

where we used the Leibnitz rule and ambient transversality. We can use (3.6.3) to prove that in
∏k
i=1 Pmi

ai

only the terms with at most one of the
XaiX

mi

L2 factors coming from the projectors survive, the others being
ruled out by ambient transversality. On the other hand, using homogeneity (3.3.4),

Pn
b∂nTa1...ak = ∂bTa1...ak +

∆

L2
XbTa1...ak .

Our conclusion is then that we can rewrite (3.6.1) as

DbTa1...ak = ∂bTa1...ak +
∆

L2
XbTa1...ak −

1

L2
X(a1
Ta2...ak)b. (3.6.4)

The transverse traceless gauge (1.1.22) in the ambient space is expressed as

Dm1Φm1...ms = 0, Φm1...msηm1m2 = 0, (3.6.5)

but, by contracting (3.6.4) with P, transversality can be rewritten as

∂m1Φm1...ms = 0.

In this gauge, the equations of motion for a Fronsdal �eld are of the Klein Gordon type (2.1.45). If we choose
−∆ = s−2 the second and the third term in (3.6.2) are exactly −m2

L2 with m given by (1.4.59), and therefore
in the ambient space the equation of motion is

∂n∂nΦm1...ms = 0. (3.6.6)
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3.6.2 The propagators

Now that we have at our disposal the expression of the AdS Laplacian DMD
M in the ambient space (3.6.2)

we are able to solve equations (2.1.46) for the higher spin bulk-to-boundary propagators.

3.6.2.1 Scalars

The bulk-to-boundary propagator for scalar �elds (2.1.40) from a boundary point x2 to a bulk point (z1, x1)

K∆(z1, x1, x2) = C∆

(
z

z2 − (x1 − x2)2

)∆

(3.6.7)

can be rewritten in the ambient formalism as

K∆(X1,X2) = C∆L
∆ 1

(2Xm
1 X2m)∆

(3.6.8)

by using (3.2.3) and (3.1.20) to express (z1, x1) and x2 as X1 and X2. Notice that the ambient scalar (3.6.8)
is homogeneous of degree ∆ by (3.3.4). Verifying that (3.6.7) actually obeys the Klein-Gordon equation
(2.1.29) is simpler in the ambient formalism9. Indeed, by (3.6.2), it amounts to

(
∂m

1 ∂1m −
1

L2
(X n

1 ∂1n) (X p
1 ∂1p + d) +m2

)
K∆(X1,X2) = C∆L

∆−
∆2

L2 + d
L2 ∆ +m2

(2Xm
1 X2m)∆

= 0 (3.6.9)

The numerator of (3.6.9) is zero exactly when ∆ = ∆± given by (2.1.31). To get the right behavior at the
boundary we must take ∆ ≡ ∆+.

Another form for (3.6.8) that we will need later is obtained by the Schwinger parameter method:

K∆(X1,X2) = N0
∆

ˆ +∞

0

dt

t
t∆e−2(Xm

1 X2m)t (3.6.10)

where

N0
∆ =

C∆L
∆

Γ(∆)
.

3.6.2.2 Vectors

The bulk-to-boundary propagator of a vector �eld is a function Kn|m
∆ (X1,X2) that, as every ambient tensor,

must be transversal
X1mK

n|m
∆ (X1,X2) = 0 = X2nK

n|m
∆ (X1,X2) (3.6.11)

and obeys the Klein-Gordon-like equation (2.1.45) for vectors

P
(
∂m

1 ∂1m −
1

L2
(X n

1 ∂1n) (X p
1 ∂1p + d) +m2 +

1

L2

)
K

n|m
∆ (X1,X2) = 0 (3.6.12)

by (3.6.2).

First of all, due to the similarity between (3.6.12) we decompose Km|n
∆ as

K
n|m
∆ (X1,X2) ≡ Sn|m(X1,X2)K∆. (3.6.13)

9Here we used ∂m
1 for derivatives in X1
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Then we write the most general form for Sn|m

Sn|m(X1,X2) ≡ aηmn + bXm
1 Xn

2 + cX n
1 X

m
2 + eXm

1 X n
1 + fXm

2 Xn
2

where a, b, c, e, f are some undetermined coe�cients and we impose (3.6.11) to (3.6.13), �nding the conditions
a+ (X1 ·X2)c+ X 2

1 e = 0

L2b+ (X1 ·X2)f = 0

(X1 ·X2)c+ a = 0

(X1 ·X2)e = 0

solved by

c = − a

X1 ·X2
, f = − X 2

1

(X1 ·X2)
b, e = 0.

so that, up to (X1 ·X2) factors that can be absorbed by Kδ, we can write

Sn|m(X1,X2) = α

(
ηmn − X

n
1 X

m
2

X1 ·X2

)
+ β

(
Xm

1 Xn
2 −

X 2
1

X1 ·X2
Xm

2 Xn
2

)
.

However, due to strong transversality of the light-cone tensors (see (3.3.10)), we must set β = 0. We get thus

Sn|m(X1,X2) ≡ α
(
ηmn − X

n
1 X

m
2

X1 ·X2

)
.

and we can now impose (3.6.12) to obtain

P
(
∂q

1∂1q −
1

L2
(X n

1 ∂1n) (X p
1 ∂1p + d) +m2 +

1

L2

)
K

n|m
∆ =

(
− 1

L2
(−∆) (−∆ + d) +

1

L2
+m2

)
K

n|m
∆

up to terms that are not transversal in the strong sense and therefore project to zero by (3.3.11). This
equation is solved by

∆ (∆− d)− 1−mL2 = 0. (3.6.14)

We recognize in (3.6.14) equation (2.1.47) upon the rede�nition ∆ = δ + 1 and we remind that one has to
take δ ≡ δ+ to have the correct asymptotics at the boundary. The vector propagator is therefore

K
n|m
∆ (X1,X2) = N1

∆N∆
(X1 ·X2) ηmn −X n

1 X
m
2

(2Xm
1 X2m)∆+1

, (3.6.15)

for some normalization coe�cient N1
∆.

Equation (3.6.13) can also be rewritten by applying a di�erential operator to the scalar propagator

K
n|m
∆ (X1,X2) = N1

∆D
n|m
∆ K∆(X1,X2) (3.6.16)

where

D
n|m
∆ = ηmn +

1

∆
Xm

2

∂

∂X2n
. (3.6.17)
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3.6.2.3 Higher spins

Analogously to the vector case, one can show that the spin s propagator is

K
n1...ns|m1...ms

∆ (X1,X2) = N s
∆N∆

S(n1|m1 · · · Sns)|ms

(2X1 ·X2)∆
. (3.6.18)

It is possible to rewrite also (3.6.18) in an integral form by the Schwinger parameter method
ˆ +∞

0

dt

t
S(n1|m1 · · · Sns)|mst∆e−2(X1·X2)t (3.6.19)

and express (3.6.19) by a di�erential operator similar to (3.6.17) applied to the scalar propagator (3.6.7):

K
n1...ns|m1...ms

∆ (X1,X2) = N s
∆D

n1...ns|m1...ms

∆ K∆(X1,X2). (3.6.20)

Indeed, consider the following integral

ˆ +∞

0

dt

t
t∆e−2(X1·X2)t

k∏
i=1

X ni
1 Xmi

2

X1 ·X2
=

ˆ +∞

0
dt

dk

dtk

(
t∆+k−1

)
(∆ + k − 1)∆−1

e−2(X1·X2)t
k∏
i=1

X ni
1 Xmi

2

X1 ·X2

=

ˆ +∞

0
dt

(−1)k t∆+k−1

(∆ + k − 1)∆−1

dk

dtk

(
e−2(X1·X2)t

) k∏
i=1

X ni
1 Xmi

2

X1 ·X2
(3.6.21)

=

k∏
i=1

Xmi
2

ˆ +∞

0
dt

2kt∆+k−1

(∆ + k − 1)∆−1

e−2(X1·X2)t
k∏
j=1

X nj
1

= (−1)k

 k∏
i=1

Xmi
2

k∏
j=1

∂

∂X2nj

ˆ +∞

0

dt

t

t∆e−2(X1·X2)t

(∆ + k − 1)∆−1

. (3.6.22)

where we used repeatedly integration by parts in (3.6.21) and the Pochhammer symbol nm de�ned in the
notation appendix. Applying relation (3.6.22) to (3.6.19), one can derive the operator de�ned in (3.6.20).
The resulting expression is quite convoluted and can be simpli�ed by using the index-free formalism. For this
purpose we de�ne the index-free bulk-to-boundary propagator as

Ks
∆(X1,X2, U2, V ) ≡ Kn1...ns|m1...ms

∆ (X1,X2)Vm1 · · · VmsU2n1 · · · U2ns . (3.6.23)

Here we used a vector V in place of U1 to avoid dependence on X1. This does not guarantee transversality
but only total symmetry. The index-free version of (3.6.20) then reads

Ks
∆(X1,X2, U2, V ) ≡ N s

∆D
s
∆(X2, V, U2)K∆(X1,X2),

where
Ds

∆(X2, V, U2) ≡ Vm1 · · · VmsU2n1 · · · U2nsD
n1...ns|m1...ms

∆ (X1,X2). (3.6.24)

Using (3.6.22) and

s∏
i=1

U2niS
ni|miVmi =

s∑
i=0

(
s

i

)
(−1)s−i (U2 · V )i

(V ·X2)s−i (U2 · X1)s−i

X1 ·X2

on (3.6.19), we �nally get

Ds
∆(X2, V, U2) ≡

s∑
i=0

(
s
i

)
(∆ + s− i− 1)∆−1

(U2 · V )i (V ·X2)s−i
(
U2 ·

∂

∂X2

)s−i
. (3.6.25)
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3.6.3 Cubic vertices

Our aim now is to complete the set of tools that allow us to compute Witten diagrams of the Klebanov-
Polyakov correspondence with the ambient formalism by �nding the 3-point vertices of the higher spin inter-
acting theory. We do this following [54].

First of all, we need to de�ne an ambient version of the interacting part of the action. The most natural
candidate is an integral over the ambient space, but we need to evaluate it only on the Sd+1 sub-manifold.
We can do this by inserting a Dirac delta function:

ˆ
dd+2X

L
δ

(√
−X2

L
− 1

)
=

ˆ
√
gdzddx

ˆ +∞

0
δ(R− 1)dR =

ˆ
√
gdzddx,

where we used R ≡ 1
L

√
−X2 and

dd+2X = L

∣∣∣∣det

(
∂X
∂X

)∣∣∣∣ dd+1XdR = L
√

det(g) ≡ L√g.

Then, the vertex is a scalar quantity obtained by the contractions between 3 higher spin �elds and a certain
number of covariant derivatives (as explained in subsection 1.2.2 one needs to consider higher derivative
vertices). We want to write it by means of the index-free formalism as an operator acting on a polynomial
Φ(X , U) that represents the �elds10

Φ(X , U) =
+∞∑
i=0

Φm1...mi(X )Um1 · · · Umi .

A simple way to write it will be then

S3 ≡
ˆ
dd+2X

L
δ

(√
−X2

L
− 1

)
V (X , ∂1, ∂2, ∂3, ∂U1 , ∂U2 , ∂U3) Φ(X1, U1)Φ(X2, U2)Φ(X3, U3)| X1 = X2 = X3 = X

U1 = U2 = U3 = 0

,

(3.6.26)
where11 ∂im ≡ ∂

∂Xm
i

and V is a function that can be expanded in a power series of its arguments with X
being always before the derivatives, so that they do not interfere with each other12. V speci�es every kind of
vertex that one can build with the �elds contained in Φ(X , U). For example,

V = ∂1 · ∂U2∂2 · ∂U3

identi�es13

∂nΦm∂mΦnΦ,

Notice that we did not employ covariant derivatives inside (3.6.26), contrarily to what one would expect. We
made this choice because, as showed by (3.6.4), D is equivalent to ∂ plus terms proportional to X , but these
can be absorbed into the de�nition of V.

10This is analogous to what we did in section 1.1.2 for the ω and C tensors with (1.4.60) and (1.4.61).
11In this subsection we employ i, j, k, l = 1, 2, 3 to denote the three �elds Φ. We do not use Einstein's convention on repeated

indices in this case.
12As in subsection 3.4 here derivatives ∂i are not meant to act on Ui, even if, by (3.4.3), it depends on the coordinates Xi.

This is just a convention that allows us to have compact expressions as (3.6.26). Since at the end no Ui is present in the result,
this ambiguity disappears.

13As we saw in the last part of section 3.4, to extract the tensor from its corresponding polynomial we should employ D
instead of ∂U . In the example this does not matter, since we deal only with vectors and at the end we put Ui = 0, so that D is
proportional to ∂U . However in the general case it is not so. However, D is a function of ∂U and so it �ts into the de�nition of
V. Moreover, in the following we will need to contract D with X and again this is equivalent to using ∂U . For these reasons we
will always employ ∂U instead of D .
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Our goal is then to constrain the form of V as much as possible. The �rst property is that it should
be compatible with our redundant description of the vertex by 3 di�erent polynomials Φ, namely that it is
invariant under

∂m
i � ∂m

j , ∂m
Ui � ∂m

Uj . (3.6.27)

Secondly we require invariance under isometries, that here appear as the elements of the SO(2, d) symmetry
algebra of the ambient space. This amounts to requiring that V is a scalar. Since it is a function of vectors,
this is equivalent to saying that it must be a function of all the possible contractions of its elements. Let us
analyze them one by one:

1. X 2 = L2 can be absorbed by the de�nition of V.

2. X · ∂i counts the power of Xi and therefore is always equivalent to a number and we ignore it.

3. X · ∂Ui acts generically on a higher spin �eld that has been di�erentiated a certain amount of times.
By using (3.4.10) we get

X · ∂Ui∂m
j Φ = ∂m

j (X · ∂UiΦ)− ∂m
UiΦ = −∂m

UiΦ

and similar relations in case of higher derivatives of Φ. Since this term is equivalent to those where ∂Ui
appears, we do not consider it.

4. ∂i · ∂j , if i = j is proportional to the equation of motion (3.6.6) if we choose the proper ∆i
14 and

therefore vanishes. If instead i 6= j, for each term in which ∂i · ∂j appears, there are always two others
where it is replaced by ∂i ·∂k and ∂j ·∂k, for the exchange symmetry (3.6.27). We have then the following
schematic equivalence:

∂mΦ∂mΦΦ + ∂mΦΦ∂mΦ + Φ∂mΦ∂mΦ = ∂mΦ∂m(ΦΦ)

∼ −ΦΦ∂m∂mΦ

up to total derivative terms (which we will deal later with), so that we fall in the previous case and
reach the same conclusion: ∂i · ∂j can not appear in V.

5. ∂Ui · ∂j can be transformed by integration by parts into

∂Ui · ∂k, ∂Ui · ∂l, l 6= k 6= j,

up to total derivative terms. However, if we use the combinations

D1 ≡ ∂U1 · (∂2 − ∂3), cyclic permutations of 1, 2, 3

we see that integration by parts transforms D1 into −D1. These combinations exhaust all the possible
cases because of the exchange invariance of V (3.6.27).

6. ∂Ui · ∂Uj is equivalent to 0 if i = j for tracelessness (3.6.5) expressed by (3.4.9). For i 6= j it establishes
a contraction by the double application of (3.4.7). We then de�ne

Ci =
∑
j,k

|εijk| ∂Uj · ∂Uk

14If we made some other choice we would however had an equation of the kind ∂2Φ... = αΦ... for some α in place of (3.6.6),
and therefore this term amounts to a number.
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Let us analyze the case of total derivatives that we left behind. When we write the total derivative of the
integrand given by V and the Φs, we can use the de�nition of the derivative of a distribution with the Dirac
delta appearing in (3.6.26): schematically

ˆ
dd+2X

L
δ

(√
−X2

L
− 1

)
∂m (VΦΦΦ)m = −

ˆ
dd+2X

L
∂m

(√
−X2

L

)
dδ

dt

(√
−X2

L
− 1

)
(VΦΦΦ)m

= −
ˆ
dd+2X

L

1

L

dδ

dt

(√
−X2

L
− 1

)
Xm (VΦΦΦ)m (3.6.28)

We see thus that a total derivative acts as a di�erentiation on the δ times one of the �rst 3 terms we listed
before, namely the contractions with X , that we already absorbed inside the de�nition of V. For this reason
we rewrite (3.6.26) as

ˆ
dd+2X

L

+∞∑
n=0

δ(n)

(√
−X2

L
− 1

)
V(n) (C1, C2, C3, D1, D2, D3) Φ(X1, U1)Φ(X2, U2)Φ(X3, U3)

∣∣∣ X1 = X2 = X3 = X
U1 = U2 = U3 = 0

,

(3.6.29)
where δ(n)(t) ≡ dn

dtn δ(t) and V(n) are functions that share the same properties of V and together express its
dependence on total derivatives:

δ

(√
−X2

L
− 1

)
V ∼

+∞∑
n=0

δ(n)

(√
−X2

L
− 1

)
V(n).

Now that we narrowed down the possible terms appearing in (3.6.29), it is time to impose higher spin
gauge invariance. By the rule explained at the end of section 3.3 we can write the gauge transformation in
AdS (1.4.32) as

δΦm1...ms = D(m1
εm2...ms). (3.6.30)

In the index-free formalism we group the gauge parameters into

ε(X , U) =
+∞∑
k=1

εm1...mkUm1 · · · Umk
. (3.6.31)

When dealing with gauge transformations, our choice to use U such that U · X ≡ 0 (see (3.4.2)) may hide
some important terms proportional to X coming from the covariant derivatives (3.6.30). For this reason, let
us ignore this property for a moment and show how to circumvent this di�culty. We express (3.6.4) as

δΦ(X , U) = Dε(X , U) ≡
(
U · ∂ − (U · X )

X · ∂ + U · ∂U
L2

)
ε(X , U), (3.6.32)

where we de�ned the index-free covariant derivative operator D by means of (3.4.8). The operators X ·∂ and
U · ∂U just count the number of U and X in each term appearing in (3.6.31), namely k and the homogeneity
degree −∆k. Therefore, if we choose for every εm1...mk

∆k = k,

we have
(X · ∂ + U · ∂U )ε(X , U) = (k − k)ε(X , U) = 0

and transformation (3.6.32) simpli�es to

Dε(X , U) = U · ∂ε(X , U),
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so that it is correct to replace U · D with U · ∂ in our computations as (3.4.2) suggests.
With this choice and using (3.6.27) we can compute the variation of (3.6.29) as

δS3 =

ˆ
dd+2X

L

+∞∑
n=0

δ(n)

(√
−X2

L
− 1

)
V(n)U1 · ∂1εΦΦ

∣∣∣ X1,2,3 = X
U1,2,3 = 0

= 3

ˆ
dd+2X

L

+∞∑
n=0

δ(n)

(√
−X2

L
− 1

) [
V(n), U1 · ∂1

]
εΦΦ

∣∣∣ X1,2,3 = X
U1,2,3 = 0

since U1 is set to zero at the end and therefore the terms proportional to U1 · ∂1V(n) vanish. Thus, gauge
invariance is achieved if

+∞∑
n=0

δ(n)

(√
−X2

L
− 1

)[
Ui · ∂i,V(n)

]
= 0 (3.6.33)

up to terms that vanish on shell. As shown in [54], equation (3.6.33) is equivalent to the following condition
on V(n) (

D1
∂

∂C2
− D2

∂

∂C1

)
V(n) +

1

L

(
3

(
D1

∂

∂D1
− D2

∂

∂D2

)
∂

∂D3
− 2C3

(
∂2

∂D1∂C1
− ∂2

∂D2∂C2

))
V(n−1)

− 1

L2
3

(
C1

∂

∂D2
− C2

∂

∂D1

)
∂2

∂D2
3

V(n−2) = 0 (3.6.34)

For n = 0, condition (3.6.34) is a homogeneous di�erential equation solved by any function of the form

V(0)(Ci, Di) ≡ V(0)(Di,
∑
j

CjDj). (3.6.35)

This solution suggests an ansatz for V:
V ≡ V(Ei, G),

where
Ei ≡ Ci + αi∂ · ∂Ui , G ≡

∑
j

(Cj + βj∂ · ∂Ui) Dj

take into account also total derivatives, represented by ∂ =
∑

i ∂i, and αi, βi are constant factors. Equation
(3.6.34) �xes all the coe�cients αi, βi except two, that we call α and β. Expanding in a power series the
resulting V one gets

S3 =
1

3!

∞∑
s1,s2,s3

min(s1,s2,s3)∑
n=0

gns1s2s3

ˆ
AdS

dX [∂U1 · (∂23 + α∂)]s1−n
[
∂U2 ·

(
∂1 −

α− 1

α+ 1
∂

)]s2−n
(3.6.36)

[
∂U3 ·

(
∂1 −

1 + α

α− 1
∂

)]s3−n [
(∂U2 · ∂U3) (∂U1 · (∂23 + β∂))− 2(∂U3 · ∂U1)

(
∂U2 ·

(
∂1 +

α− β
α+ 1

∂

))
+2 (∂U1 · ∂U2)

(
∂U3 ·

(
∂X1 +

α− β
α− 1

∂

))]n
Φ(X1, U1)Φ(X2, U2)Φ(X3, U3)| X1 = X2 = X3 = X

U1 = U2 = U3 = 0

where ˆ
AdS

dX =

ˆ
dd+2X

L
δ

(√
−X2

L
− 1

)
.
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Notice that the coupling constants gs1s2s3n are not determined, since they do not appear in the resulting
Vasiliev equations. Moreover, to shorten notation, we left some spurious contributions in (3.6.36) coming
from terms like

∂U1 · ∂ ∼ ∂U1 · (∂2 + ∂3) ,

since ∂U1 · ∂1 ∼ 0 due to the gauge constraints (3.6.5).
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Chapter 4

The comparison of correlators

In this �nal chapter we employ the tools that we have developed so far to compute correlation functions by
Witten diagrams in the bulk and compare them with those in the boundary. We will focus on the simplest
cases, namely the 2-point function and the 3-point correlator between a higher spin �eld and two scalars with
a weight ∆ depending on the boundary conditions of the bulk scalar �elds (see section (2.2.2)).

4.1 The two point correlator

The easiest CFT correlator that we can compare with the one in the bulk given by the AdS/CFT corre-
spondence is the 2-point function between the currents J µ1...µr and J ν1...νs . From the CFT point of view,
equation (3.5.20) tells us that r = s and

〈Jm1...ms(X1)J n1...ns(X2)〉 = C12
S(m1|n1 · · · Smk)nk

(X1 ·X2)s+1 . (4.1.1)

where we used the proper weight given by (2.2.9). On the other hand, as we learned in subsection 2.1.7,
the 2 point function of the operator dual to Φm1...ms is given by the boundary limit of the bulk-to-boundary
propagator (3.6.18) (see (2.1.59)):

〈Jm1...ms(X1)J n1...ns(X2)〉 = (s+ 1)Ld−1 lim
X1→X1

K
n1...ns|m1...ms

s+1 (X1,X2)

= (s+ 1)Ld−1Ns+1N
s
s+1

lim
X1→X1

S(n1|m1 · · · Sns)|ms

(2X1 ·X2)s+1 ,

which coincides with (4.1.1) after the identi�cation

C12 =
(s+ 1)Ld−1N s

s+1Ns+1

2s+1

since

lim
X1→X1

Sn|m =
Sm|n

X1 ·X2
.

4.2 The scalar-scalar-higher spin diagram

In this section our goal is to compute the correlator between two scalars and a higher spin �eld:

C m1...ms
00s (X1,X2,X3) ≡ 〈J∆(X1)J∆(X2)Jm1...ms(X3)〉 . (4.2.1)
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Here we are assuming the N →∞ limit that makes the scalar currents to have weight ∆ = 1, 2, depending on
the boundary condition chosen, and the higher spin current to have dimension s+ 1, as explained in section
2.2.2. Before proceeding with the computation, we show how to compute the class of integrals that we will
be dealing with and prove some basic facts about the operators de�ned by (3.6.25).

4.2.1 The bulk cubic vertex integral

In our computation of the three point function we will employ the Schwinger parametrization of the bulk-to-
boundary propagator (3.6.20) and so we will deal with integrals that can be put in the following form:

V(Xi, li) ≡
ˆ 3∏

i=1

dti
ti
tlii

ˆ
AdS

e−2X·(t1X1+t2X2+t3X3). (4.2.2)

Our aim is to �nd a simpler form of (4.2.2). Let T be de�ned as

T ≡ (t1X1 + t2X2 + t3X3) .

T does not belong to the light-cone1 and therefore we can perform an SO(2, 3) transformation in the ambient
space so that

T = |T |
(

0, 1,
1

2

)
, |T | ≡

√∣∣T 2
∣∣

without changing the measure in (4.2.2). Then, using parametrization (3.2.3), equation (4.2.2) becomes

ˆ 3∏
i=1

dti
ti
tlii

ˆ
AdS

e2X·T =

ˆ 3∏
i=1

dti
ti
tlii

ˆ +∞

0
dz

(
L

z

)4 ˆ
d3xe−2X·T

=

ˆ 3∏
i=1

dti
ti
tlii

ˆ +∞

0
dz

(
L

z

)4 ˆ
d3xe|T |

L
z (−1+xµxµ−z2)

= π
3
2

ˆ 3∏
i=1

dti
ti
tlii

ˆ +∞

0

dz

|T |
3
2

(
L

z

) 5
2

e−|T |
L
z (1+z2)

= L4π
3
2

ˆ 3∏
i=1

dti
ti
tlii

ˆ +∞

0
dz

(
1

z

) 5
2

e−
|T |2L2

z
−z

where we performed a gaussian integral2 in the third step and rescaled z → L−1 |T |−1 z. Let us also rescale

ti into ti
√
z
L :

V(Xi, li) = L4−
∑
j ljπ

3
2

ˆ 3∏
i=1

dti
ti
tlii

ˆ +∞

0
dz

(
1

z

) 5
2
− 1

2

∑
j lj

e−ze−|T |
2

= L4−
∑
j ljπ

3
2 Γ

1

2

∑
j

lj −
5

2

ˆ ( 3∏
i=1

dti
ti
tlii

)
e−

∑
k 6=j tktjXj ·Xk (4.2.3)

Now, consider the following change of variables

mk =

3∑
i,j=1

1

2
|εijk| titj , ⇐⇒ ti =

√
mi+1mi+2

mi

1Unless X1,X2 and X3 are proportional to each other, which means that the three points where the correlator is evaluated
coincide and this never happens.

2Remember that ηµν = −δµν because we are using the Euclidean signature, and therefore xµxµ ≤ 0.
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and de�ne

δi =
1

2

∑
j

lj

− li.
Equation (4.2.3) then becomes

V(Xi, li) =

ˆ ( 3∏
i=1

dti
ti
tlii

)
e−

∑
k 6=j tktjXj ·Xk

=

ˆ 3∏
i=1

dmi

mi
mδi
i e
−

∑
j,k|εijk|miXj ·Xk

=
∏
i

Γ(δi)(∑
j,k |εijk|Xj ·Xk

)δi (4.2.4)

4.2.2 Light-cone projectors and bulk-to-boundary propagators

Let us now give a closer look at the di�erential operator Dn|m
∆ de�ned by (3.6.17). We originally used it to

render the bulk-to-boundary propagator ambient transversal both in the AdS and light-cone sense. In a more
general setting, it acts as a projector onto ambient tensors in the light-cone and is analogous to P de�ned
in (3.3.12). Indeed, consider a generic tensor T a1...ak(X) with homogeneity degree ∆ and its projection

D
a1|m
∆ T a2...ak

m . Then, in view of (3.3.4)

Xa1D
a1|m
∆ T a2...ak

m = XmT a2...ak
m +

1

∆
XmXa1

∂

∂Xa1

T a2...ak
m = 0.

On the other hand, if XmT a2...ak
m = 0 and therefore T is transversal,

D
a1|m
∆ T a2...ak

m =
∆− 1

∆
T a1...ak +

1

∆

∂

∂Xa1

XmT a2...ak
m =

∆− 1

∆
T a1...ak .

So the proper de�nition for the projector is

P
n|m
∆ =

∆

∆− 1
D

n|m
∆ . (4.2.5)

However, contrary to P, ambient transversality for every index of T can not be achieved by concatenations
of P n|m

∆ , because it is a di�erential operator and it does not commute with itself. Therefore one needs a

projector for each rank, given by 1
Hs

∆
D

n1...nk|m1...mk

∆ (see (3.6.16)), where Hs
∆ is some normalization constant,

which, for the spin 1 case, reads H1
∆ ≡

∆−1
∆ by (4.2.5). This projector can be extracted from equation (3.6.25)

in the index-free formalism. Indeed, Ds
∆ can be converted into a di�erential operator acting on polynomials

in V by replacing3 V with ∂V in (3.6.25):

P s
∆(X, V, U) ≡ 1

Hs
∆

s∑
i=0

1
s!

(
s
i

)
(∆ + s− i− 1)∆−1

(U · ∂V )i (X · ∂V )s−i
(
U · ∂

∂X

)s−i
, (4.2.6)

so that
Un1 · · · UnkD

n1...nk|m1...mk

∆ Tm1...mk
(X) = Hs

∆P s
∆(X, V, U)T (X, V ).

3Notice that, due to the fact that the n-th ∂V derivative of V n gives a factor n!, we needed to add a constant factor 1
s!
.
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Let us show that indeed P s
∆(X, V, U) projects onto transversal tensors. Using (3.4.10) we get

X · ∂UDs
∆(X2, V, U)T (X, V ) =

1

Hs
∆

X · ∂U
s∑
i=0

1
(s−i)!i!

(∆ + s− i− 1)∆−1

(U · ∂V )i (X · ∂V )s−i
(
U · ∂

∂X

)s−i
T (X, V )

=
1

Hs
∆

s∑
i=1

1
(s−i)!(i−1)!

(∆ + s− i− 1)∆−1

(U · ∂V )i−1 (X · ∂V )s−i+1

(
U · ∂

∂X

)s−i
T (X, V )

+
1

Hs
∆

s−1∑
i=0

1
(s−i−1)!i!

(∆ + s− i− 1)∆−1

(U · ∂V )i (X · ∂V )s−i

· (−∆− s+ i+ 1)

(
U · ∂

∂X

)s−i−1

T (X, V )

= 0

where in the last step we used a rede�nition of the index in the second sum:

i′ = i+ 1.

There is a straight-forward way to compute Hs
∆. Let us illustrate it �rst with the spin 1 case. We compute

P 1
∆ on a particular transversal tensor with weight ∆ given by4

T m
T (X) ≡ Um (T aXa)−∆ . (4.2.7)

for some ambient vector T . Indeed,

D
a|m
∆ Um (T nXn)−∆ = Ua (T nXn)−∆ +

1

∆
Xm ∂Um

∂Xa
(T nXn)−∆ (4.2.8)

since all the terms proportional to XmUm = 0 vanish because of the transversality of U (3.4.2) and, if we
di�erentiate that constraint, we obtain

Xm
∂

∂Xa
Um = −Ua,

so that (4.2.8) reads

D
a|m
∆ TTm(X) =

∆− 1

∆
T a
T (X).

Therefore, if we apply P 1
∆ to the polynomial given by TT (X, V ) ≡ T m

T (X)Vm and we forget for a moment
that U2 = 0, we can extract the normalization constant from the coe�cient in front of the resulting TT (X, U).
This procedure readily generalizes to higher rank case by the de�nition of

T m1...ms
s,T (X) ≡ Um1 · · · Ums (T aXa)−∆

4As showed by (3.4.4), Um is the ambient representative of some vector uM in the AdS space. We choose its weight to be 0
for simplicity.
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that we use to compute5

P s
∆Ts,T (X, V ) =

1

Hs
∆

s∑
i=0

1
s!

(
s
i

)
(∆ + s− i− 1)∆−1

(U · ∂V )i (X · ∂V )s−i
(
U · ∂

∂X

)s−i
(U · V )s (T aXa)−∆

=
1

Hs
∆

s∑
i=0

1
i!(s−i)!

s!
i!

(∆ + s− i− 1)∆−1

(U · ∂V )i (X · ∂V )s−i
(
Um ∂Un

∂XmVn

)s−i
(U · V )i (T aXa)−∆

=
1

Hs
∆

s∑
i=0

s!
i!

(∆ + s− i− 1)∆−1

(
Um ∂Un

∂XmXn

)s−i (
U2
)i

(T aXa)−∆

=
1

Hs
∆

(
s∑
i=0

(−1)s−i s!i!
(∆ + s− i− 1)∆−1

)(
U2
)s

(T aXa)−∆

so that

Hs
∆ =

s∑
i=0

(−1)s−i s!i!
(∆ + s− i− 1)∆−1

.

4.2.3 Computation of the correlator

From (3.6.36) we see that there are two kinds of vertices involved in the computation of (4.2.1): if we choose
α = 0, we get

V1
00s ≡

s!

3!
g0
s00φ

m1...msφ

s∏
i=1

(←−
∂ −

−→
∂
)

mi

φ (4.2.9)

V2
00s ≡

s!

3!

(
g0

0s0 + g0
00s

)
φm1...msφ

s∏
i=1

(
2
←−
∂ +

−→
∂
)

mi

φ. (4.2.10)

However, by partial integrations, we can rewrite the (4.2.10) in the same form as (4.2.9) up to total derivatives
that, as we showed in (3.6.28), are equivalent to di�erentiating in (3.6.36) the Dirac δ function implicitly
contained in

´
AdS dX and contracting the rest of the integrand with X . In our case, since the only indices

come from the higher spin �eld φm1...ms , these contributions vanish by ambient transversality (3.3.5). For
this reason we can de�ne a unique coupling constant for cubic vertices that involve two scalars:

g00s ≡
s!

3!

(
g0
s00 +

g0
0s0 + g0

00s

2
.

)

The computation that we have to perform is thus the following: by using �rst (4.2.3)6 and then (4.2.4)
we get

5As in the spin 1 example, U · ∂
∂X

must act only on U · V , otherwise terms proportional to X · U appear.
6Notice that we are using the same formula for terms that actually have di�erent powers of t1 and t2. In our case this is

allowed by the fact that
∑
j lj = 2s+ 2∆ + 1 and, by (4.2.3), no relative coe�cients appear.
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C00s(X1,X2,X3, U3)=N s
s+1g00sH

s
s+1P

s
s+1ˆ

AdS
dX
(
K∆(X1,X )

[
V ·
(←−
∂ −

−→
∂
)]s

K∆(X2,X )
)
Ks+1(X3,X )+(1� 2)

=(N∆)2N s
s+1Ns+1g00sH

s
s+1P

s
s+1

ˆ
dt1
t1

dt2
t2

dt3
t3
ts+1
3 t∆1 t

∆
2 2s

ˆ
AdS

dX (t1 (X1 · V )− t2 (X2 · V ))s e−2X·(t1X1+t2X2+t3X3)+(1� 2)

=(N1)2N s
s+1Ns+1g00sH

s
s+1L

4−2∆−sπ
3
2 Γ (s− 2) 2s

P s
s+1

ˆ
dt1
t1

dt2
t2

dt3
t3
ts+1
3 t∆1 t

∆
2 (t1 (X1 · V )− t2 (X2 · V ))s e−

∑
k 6=j tktjXjk+(1� 2)

=(N1)2N s
s+1Ns+1g00sH

s
s+1L

4−2∆−sπ
3
2 Γ (s− 2) (−1)s

P s
s+1

(
(X1 · V )

∂

∂X13
− (X2 · V )

∂

∂X23

)s ˆ dt1
t1

dt2
t2

dt3
t3
t3t

∆
1 t

∆
2 e
−

∑
i 6=j titjXij+(1� 2)

=
L4−2∆−s

2∆+ 1
2

(
N0

1

)2
N s
s+1Ns+1g00sH

s
s+1π

3
2 Γ (s− 2) (−1)s

P s
s+1

(
(X1 · V )

∂

∂X13
− (X2 · V )

∂

∂X23

)s Γ2
(

1
2

)
Γ
(
∆− 1

2

)
X

1
2
23X

1
2
13X

∆− 1
2

12

+(1� 2) , (4.2.11)

where (1� 2) just indicates the similar terms with X1 and X2 exchanged and we de�ned

Xij ≡Xi ·Xj .

We can now compute the projection in (4.2.11) by the following observation:(
(X1 · V )

∂

∂X13
− (X2 · V )

∂

∂X23

)s 1

X
1
2
23X

1
2
13X

∆− 1
2

12

=

= −1

2

(
(X1 · V )

∂

∂X13
− (X2 · V )

∂

∂X23

)s−1 X1·V
X13

− X2·V
X23

X
1
2
23X

1
2
13X

∆− 1
2

12

=

=

(
(X1 · V )

∂

∂X13
− (X2 · V )

∂

∂X23

)s−2

1

4

(
X1·V
X13

− X2·V
X23

)2

X
1
2
23X

1
2
13X

∆− 1
2

12

+

(
X1·V
X13

)2
−
(
X2·V
X23

)2

X
1
2
23X

1
2
13X

∆− 1
2

12

 (4.2.12)

but the second term in (4.2.12) is not transversal and does not contain any transversal part, as one can verify
directly7. We can therefore drop it. By induction, we �nally arrive at

C00s(X1,X2,X3, U3) = N00s

(
X1·U3
X13

− X2·U3
X23

)s
X

1
2
23X

1
2
13X

∆− 1
2

12

, (4.2.13)

where

N00s ≡
L4−2∆−s

2∆+s+ 1
2

(
N0

1

)2
N s
s+1Ns+1g00sπ

5
2 Γ

(
∆− 1

2

)
Γ (s− 2)Hs

s+1.

7The simplest way to do this without computations (that otherwise would require the explicit form of D2
3) is by observing that

the second term (4.2.12) is antisymmetric under the exchange 1 � 2, and therefore so is its projection, by linearity. However,
the only transversal polynomial that one can construct with these ingredients is obviously given by the �rst term of (4.2.12) (we
proved it in subsection 3.5.3), which is symmetric under the aforementioned swap.
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Notice that only for even spins (4.2.13) is di�erent from zero, since it does not change sign under the
exchange of X1 and X2. Equation (4.2.13) has the same functional form as the 3-point correlator (3.5.25),
in compliance with the Klebanov-Polyakov conjecture.
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Conclusions and outlook

In this thesis we presented the interacting higher spin �eld theory in both the frame-like and the metric-like
formalism. The �rst has the advantage to show through unfolding the underlying higher spin symmetry
algebra and indeed the Vasiliev equations rest on this formulation. On the other hand, the presence of
in�nitely many auxiliary �elds and of the additional twistorial coordinates tends to hide the physical meaning
of the �elds. Moreover, the corresponding AdS/CFT duality cannot be expressed in the standard terms,
since no explicit form of partition function is available in this formulation. Indeed, the check of the duality
performed in [48] is quite involved. The correspondence in this formalism may be anyway formulated as the
twistorial holography introduced in [49], which in turn could explain the origin of the duality.

The metric-like formalism o�ers a more direct physical interpretation of the �elds. We used it together with
the ambient formalism. In this way we found the bulk-to-boundary propagators easily. Also the cubic vertices
can be recovered by imposing gauge invariance to the �rst order in the �elds as showed in [54] and explained
in section 3.6.3. This formalism has proven to be useful also to treat the 4-points function case, in particular
to �nd the bulk-to-bulk propagator [56, 55]. The ambient space provides a natural environment also for the
boundary CFT , since it realizes the conformal symmetry in a linear way. This simpli�es considerably the task
of �nding the 3-point correlators by imposing conformal invariance without making explicit computations,
thus avoiding the issues caused by the fact that di�erent boundary conditions for the scalar �eld lead to
di�erent dual theories. This way, we determined the most general form of such correlation functions (3.5.33),
which can be further constrained because the �elds involved are conserved currents.

In this framework we could compare such correlators with those computed with Witten diagrams in a
simple case, the one involving two scalars and higher spin �eld, which was completely determined up to a
normalization factor in (3.5.25) on the CFT side. This test, which has already been done in [48], amounts to
a computation that is conceptually much simpler in this formalism. We found accordance between the two
results.

However, while computing the 3-point correlator we did not perform the projection onto (strongly)
transversal ambient tensors represented by P s

s+1 by using its explicit form (4.2.6), since the result was
simple enough to do it �by hand�. This procedure, though, cannot be employed in a more general case, where
more than one projector appears and the tensor to be projected is more complicated.

Consider for example the immediate generalization of the computation performed in the last chapter, the
3-point correlator between two �elds with spin r and s and a scalar. Using the same techniques that allowed
us to arrive at (4.2.11), one can write

C0rs(X1,X2, U2,X3, U3) ∝
∑
h

P r
r+1(2)P s

s+1(3)

(
Ah (X1 · V2)

∂

∂X12
+Bh (X3 · V2)

∂

∂X23

)r
(
Dh (X1 · V3)

∂

∂X13
+ Eh (X2 · V3)

∂

∂X23

)s 1

X
−∆

2
+1

23 X
∆
2

13X
∆
2

12

, (4.2.14)

where P s
∆(i) ≡ P s

∆(Ui, Vi,Xi) and the sum in h and the coe�cients Ah, Bh, Dh, Eh take into account the
di�erent vertices that one can extract from (3.6.36). The dependence of (4.2.14) on Xij is in accordance with
our boundary computation (3.5.36) and the presence of the projectors implies a tensor structure like the one
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given by (3.5.36). However the determination of the coe�cients Cb3 is much more complicated due to the
high number of di�erential operators present in (4.2.14). Even in the simplest case with only one higher spin
�eld examined so far, the explicit computation by means of (4.2.6) is quite convoluted.

A way to circumvent these di�culties would be to perform the whole calculation by means of a computer
program. This should not present particular issues, since the only operations involved are di�erentiations,
easily handled by symbolic processors such as Mathematica. However an analytical way to solve the question
would be preferable and is surely a road to explore in future developments.

A more ambitious problem for further study will be the computation of 4-point functions correlation
functions of higher spin �elds and their comparison with the corresponding CFT correlators. By now, only
a 4-point correlator of scalars on the boundary has been computed [55].
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Notation

This appendix is devoted to resume some of the conventions that occur throughout the thesis and help the
reader to �nd quickly the meaning of the notation used.

For de�nitions we use the symbol ≡, while, when we impose some equality yet to be veri�ed, we write
!

=.
The Minkowski metric in generic dimensions is taken to be

η = diag {1,−1...}

unless otherwise speci�ed.
The symmetrization and anti-symmetrization of indices are denoted respectively by

T(µ1...µs) ≡
∑
σ∈Ss

Tµσ(1)...µσ(s)
, T[µ1...µs] ≡

∑
σ∈Ss

sgn(σ)Tµσ(1)...µσ(s)
,

where Sn is the symmetric group of the permutations of n objects and sgn(σ) is the sign of the permutation.
Notice that when a certain symmetrization is applied to tensor products, we assume that the least number
of addends is used.

Derivatives with respect to vectorial quantities di�erent from the coordinates are denoted by

∂µU ≡
∂

∂Uµ
.

Index contractions may also be denoted with the dot product as in

∂µVµ ≡ ∂ · V

or with exponents as in
VµV

µ ≡ V 2.

While describing a theory by means of the AdSd+1/CFTd duality, the coordinates of AdS (the bulk) are
denoted with X and their indices will beM,N,P, S, ... = 0, 1, ..., d, while we will employ x for the coordinates
of the boundary and we use the indices µ, ν, ρ, σ, ... = 0, 1, ..., d− 1.

In the ambient space formalism we embed AdS in the ambient space Ad+2 with d+ 2 dimensions, whose
points are denoted byXm or Xm depending whether they are in the light-cone Ld+1 or in the AdS hyperboloid
Sd+1, and the indices m,n, r, s, ... =0, 1, ..., d+1 or m, n, r, s, ... =0, 1, ..., d−1,+,− if the light-cone coordinates

X± =
±Xd + Xd+1√

2
, X± =

±Xd + Xd+1√
2

are in use.
The Pochhammer symbol is de�ned as follows

nm ≡
Γ(n)

Γ(m)
, n,m ∈ N,

where Γ is the Euler gamma function.
Proper subgroups are denoted by the sign <: for example

SO(2) < SO(3).
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