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Introduction

The aim of this thesis is the study of the main features and peculiarities of the theory of higher spin fields in a
4-dimensional Anti de Sitter space and its relation via holography with a conformal theory of scalar fields in
a 3-dimensional Minkowski space-time. The holographic principle in the theory of fundamental interactions
originates from the idea that 3-dimensional physics could be described by a theory in 2 spatial dimensions,
which emerged after the computation of the black-hole Bekenstein-Hawking entropy [I]. It was proven that
such entropy is the highest attainable for a given region of space containing a certain mass, according to
General Relativity and Quantum Mechanics [2], and depends only on the surface of the region and not on
its volume. Since entropy is an extensive quantity, it has been suggested by Susskind in [3] that physics in
a volume of space, that we call bulk, could be described by a dual theory that lived only on the boundary
surface, thus explaining the entropy dependence on its extension. This is analogous to what happens with
holograms: an object appears to have 3 dimensions but all its information is actually encoded in the surface
of the screen that projects it. This idea has been therefore called holographic principle ever since.

The AdS/CFT correspondence is a class of conjectured dualities that realize this principle. The bulk is
a curved space in (d 4 1) dimensions which is asymptotically the Anti de Sitter (AdSsy1) space, namely the
vacuum solution of Einstein equations when the cosmological constant is negative. This space is a vacuum
of a specific gravitational theory set in the bulk. Its boundary, located at infinity, is the d dimensional flat
space, where a Conformal Field Theory (CFT), dual to the bulk theory, is set. The correspondence identifies
the asymptotic values of the fields in the bulk near the boundary as sources for fields in the C'FT" and its
partition function with the one of the theory in the bulk. Thus the physical content of the two theories is
the same and one can be used to prove statements about the other. In particular, correlation functions of
the CFT can be found by using the partition function of the bulk. This amounts to the computation of the
so-called Witten diagrams, which depict the (regularized) calculation of a correlator of the bulk theory when
the base points are moved to the boundary. Witten diagrams can thus be seen as Feynman diagrams in such
limit.

The first example of this correspondence has been the Maldacena conjecture [41], which was motivated
by string theory arguments as a duality between open and closed strings and between two interpretations
of branes, respectively as Dirichlet branes where open strings are attached and black-hole-like solutions of
the gravitation theory provided by the closed strings. Under certain limits, this duality involves a weakly
coupled supergravity theory in AdSs x S° and a certain supersymmetric quantum gauge field theory in the
boundary that is conformal and strongly coupled. Moreover, its gauge group is SU(N) with N large. This
has important phenomenological implications: gauge theories with a high coupling constant are difficult to
treat, since perturbation theory does not work and lattice methods have some drawbacks. On the other hand
the duality allows to perform computations on the bulk with a weakly coupled classical theory, that is easier
to handle. Many interesting results have been achieved this way (see for example [4] for a comprehensive
review).

The Maldacena duality could help to shed some light on how to quantize gravity and on string theory.
However, no proof has yet been given due to lack of a non-perturbative formulation of string theory in AdS.
In order to better understand the AdS/CFT framework it could be useful to analyze it in simpler cases.
Since the paper by Maldacena, several other dualities have been proposed.



Introduction

In [43], Klebanov and Polyakov formulated an especially simple version of the correspondence. In the
4-dimensional bulk we have a theory of interacting massless fields, one for each even spin, whose classic limit
is called minimal Vasiliev type A model. This theory has been found after a long sequence of attempts
at formulating a consistent theory of interacting gauge fields with spin greater than two that could extend
General Relativity and is thought to be linked to a tensionless limit of a string theory. As for now, even
though its equation of motion are known, no satisfactory and complete action has been constructed. The
dual CFT is the so-called O(N) model, first introduced in [5] to describe magnets, whose content is a real
massless scalar field in 3 dimensions with a global O(N) symmetry. Depending on certain conditions on the
bulk fields, the duality is realized with the free theory or the critical point of the interacting theory with a
quartic potential. It is the fact that the dual theory can be free and thus extremely simple, that constitutes
the principal attraction of this particular version of the correspondence.

A particular goal of this thesis is to analyze the Klebanov-Polyakov duality with the so-called ambi-
ent formalism, that consists in embedding the (d + 1)-dimensional AdS space AdSg11 and its boundary as
submanifolds in a (d+ 2)-dimensional flat ambient space Ag12. The two spaces are then realized as a pseudo-
hyperboloid .#;,1 and a section of the light-cone £, 1, respectively. Consequently, one extends the tensor
fields defined in these submanifolds to the ambient spaceﬂ This allows to use the ambient tensor fields in
place of the original ones, which significantly simplifies computations. In particular, by these means we will
set up a framework to test the correspondence for what concerns the computation of the 3-point functions.

On the C'FT side, the ambient formalism implements conformal transformations as rotations of the vectors
in A4y 0 that represent the points of the boundary. In this way, imposing conformal invariance on the relevant
physical quantities amounts to requiring invariance with respect to the orthogonal symmetry group of Az, o.
We will employ this symmetry to characterize almost completely the 3-point correlators without making
explicit computations. This will allow us to treat both the critical and the free O(NN) vector model at the
same time.

On the bulk side, we will circumvent the difficulty of not having at our disposal an action for Vasiliev’s
theory by constructing its cubic vertices, which are determined by the higher spin gauge symmetry up to some
coupling constants that are not constrained at that order. In this task the ambient formalism is determinant
to avoid the complications derived from the curvature of the AdS space, since the ambient fields are defined
in a flat space. All the ingredients necessary to compute Witten diagrams will be found in such way.

The work is structured as follows. In the first chapter, we follow the historical development of the theory
of higher spin fields and show how the full non-linear interacting theory is constructed. Then, in the second
chapter we present the general structure of the AdS/CFT correspondence by starting with the first known
and best understood example, namely the Maldacena conjecture. We then describe the Klebanov-Polyakov
proposal. The third chapter is devoted to the ambient formalism and its applications to both the boundary
and the bulk theories. In the final chapter we show how to use the framework developed so far to compute
the correlator between two scalars and one higher spin field, which will confirm the correspondence in that
particular example.

! Actually this is done in some portions of A4y 2 that contain the submanifolds representing AdS4,1 and its boundary.



Chapter 1

Higher spins theories

The first time in which particles of arbitrarily high spin appeared in scientific literature was in a paper by
Majorana of 1932 (see [0, [7, [8]). The purpose of that work was to find a wave equation that possessed only
positive energy solutions, in order to solve the dilemma posed by the Dirac equation about the physical
meaning of its negative energy solutionﬂ He discovered one of the unitary (and thus infinite dimensional)
representations of the Lorentz group and formulated an equation of motion for fields taking values in that
representation. Its solutions were found to describe particles with an arbitrary spin that was related to the
mass, a feature that reminds what happens in string theory, as we will explain in subsection [2.1.3]

Majorana’s results have been ignored at the time and the investigation on theories of higher spin fields
has been resumed by Dirac, who, after the discovery of the equation for a relativistic particle of spin %, wrote
a seminal paper [9] in which he faced the problem of finding the most general form of the wave equation of a
relativistic particle of arbitrary spin in view of possible discoveries of such particles or composite systems that
could be approximately treated in that way. His results, though, were not compatible with the interaction
with an external electromagnetic field, as noticed in a work by Fierz and Pauli [I0], in that the minimal
prescription of replacing the usual space-time derivative with a covariant one led to a contradiction, as we
will explain in the next subsection.

The two authors then proposed to implement gauge invariance through an action principle, that would
guarantee its compatibility with the equation of motion. The goal of finding a proper Lagrangian has been
pursued in [I1], 10] and successfully completed in full generality by Singh and Hagen in [12], by means of the
introduction of a certain number of auxiliary fields that are found to vanish on shell.

Unfortunately, even if the program started by Fierz and Pauli had been thus completed, their original
aim of consistently adding an electromagnetic interaction to higher spin fields was not achieved. Indeed, even
if the equations of motion were compatible with an electromagnetic field, their solutions were still unphysical
because they described particles that could move faster than light, as pointed out by Velo and Zwanziger in
[13].

Later, a massless limit of the Singh-Hagen Lagrangian has been investigated by Fronsdal and Fang in
[14], 15]. The result was that free massless higher integer spin fields are described by completely symmetric
tensors whose double trace vanishes and that combine all the Fierz Pauli auxiliary fields. These so-called
Fronsdal fields are subjected to a gauge symmetry.

In the paper about integer spins [I5], Fronsdal proposed a Gupta program for higher spin fields, whose
aim was to find a theory that describes their interaction with other fields. Such theory was expected to
be non-linear, since in the spin 2 case it should coincide with General Relativity. Similarly, the original
linear gauge symmetry should be deformed in a non linear way. However, some results obtained by S-matrix
techniques showed that, under certain general physical hypotheses, no such theory existed at the quantum
level. We will review them in subsection [1.2.1] Investigations [27], 28] at the classical level also showed how

!This problem had been solved the year before with the introduction of the positron, unbeknownst to Majorana



1.1. The original problem Chapter 1. Higher spins theories

the required deformation of the gauge symmetry could not be consistent at the next to linear orders. In this
context, several proposals on how to circumvent the assumptions of these No-Go theorems have been made,
as the presence of infinite higher spin particles, unusual higher derivative couplings and a non flat background
geometry. We review them in the subsection [1.2.2]

In [34] Vasiliev proposed a different formulation of the Fronsdal equations based on higher spin connection
1-forms, called frame-like description because it generalizes the frame-like language proposed in [33] by Cartan
for General Relativity. We will present such formalism in subsection and its extension to higher spin
fields in

In the Anti de Sitter space, the frame-like formulation led to the discovery in [31] by Fradkin and Vasiliev
of cubic vertices of interactions that were compatible with gauge symmetry and featured higher derivative
couplings. These were allowed because of the presence of the dimensional cosmological constant A that makes
it possible for the vertices to have the right dimensions. Moreover, the flat space limit A — 0, was found to
be singular because of the negative power of A, thus explaining the difficulties in the Minkowski space and
the necessity of a curved background.

At the same time, the formalism introduced by Vasiliev unveiled in [35] an infinite dimensional gauge
symmetry algebra behind the equations of motion of higher spin fields. This higher spin algebra will be
reviewed in subsection and has eventually led to the completion of the Fronsdal program, at least for
what concerns massless fields, with the Vasiliev non-linear equations of motion of the interacting theory in 4
dimensions [37] and later in any dimension [3§].

In this thesis we will examine briefly only the higher spin equations in AdS4 in subsection and will
present a conjectured duality of this higher spin gravity with a 3-dimensional Quantum Field Theory in
chapter [2|

1.1 The original problem

In general it is assumed that the laws of physics are covariant under the Poincaré group 150(1,3), which
extends the Lorentz symmetry with the translational one. The corresponding algebra iso(1,3) is given by
the generators of translations P* and of Lorentz transformations M* = —M"#. They obey the following
commutation rules:

[P, PY] =0, [Pt M*P]=i(P? — PPpre)

[]\J/ﬂ/7 Maﬂ} = (MO”’T]“B — Mﬂunua _ Maunzxﬁ 4 Mﬁ,u,nl/a) ) (1.1.1)

Thus all particles are represented by fields which sit in irreducible representations of 150(1,3). These are
labeled by the eigenvalues of the two Casimir operators of iso(1, 3)

Cy=P% Cy=W?
where the Pauli-Lubanski operator has been defined as
w_ L epvpo
W - 55 PI/MpO'-

It can be shown that this operator generates the transformations which belong to the stability groups of
I50(1,3). For a particle of mass m and spin s,

Ci=m? Cy=m’s(s+1).

To generate an irreducible integer higher spin finite-dimensional representation one can start from tensorial
products of the vector representation of the Lorentz subgroup, i.e. by considering fields with many indices
Ouy..us (). A necessary condition for irreducibility is that the ¢ are traceless, since their traceful component

4



Chapter 1. Higher spins theories 1.1. The original problem

is proportional to the metric, which does not change under Lorentz transformations. The spin of ¢, ., ()
is not yet well-defined, because it includes subspaces characterized by all the spins from 0 to s.

In order to fix the spin, let us consider first a massive particle. There always exists a frame in which it is
motionless, i.e. p* = (m,0,0,0). The stability group of this frame is given by three-dimensional rotations,
that is elements of SO(3) < SO(1,3), for which Cy is the associated Casimir. For this reason we decompose
the representation of a four-vector in irreducible representations of SO(3). Under such perspective the 0-
component of a four-vector is a scalar, while the others form a three-vector. So, in order to obtain the highest
spin possible in our construction, we must have that the tensor product of representations of four-vectors
involves only the three-vectors, or, in other words, that all the 0 components of ¢ are zero in the considered
frame. A covariant way to express this condition is the following

pm@m...ui...us(p) =0 = am@m...ui...us(x)a

where a Fourier transform has been performed in the first relation. We say that ¢ is transverse. Finally, tensor
products of three-vectors have spins that range from 0 to s according to the symmetry of the permutations of
the indices. The highest spin is always associated with the totally symmetric tensor, since it has the greatest
number of independent componentf].

All these conditions lead to the following definition of a massive higher spin field:

Ppiropts (T) = Oy (@) (1.1.2)
N2 oy () =0 (1.1.3)
" oy () = 0. (1.1.4)

If we considered higher dimensions, the stability group for the rest-frame would have been some SO(n) with
n > 3. This group has more than one Casimir operator and we would have had also tensor with a mixed
symmetry for their indices.
The equations of motion for this field can be then easily derived by a straightforward generalization of
the Proca equation
O+m*)VFE—0"(0-V)=0 (1.1.5)
by considering that its first member must have the same symmetries of the indices of ¢ as pointed out, for

example, in [12]:

2
(O+m%) Gurcie = Oy (07 0) iy iy + D5 — 4 @0 ©)ps.. ) =0, (1.1.6)

where D is the dimension of space-time, 4 in our case. Contrary to what happens for (1.1.5), by taking the
four-divergence of , it is not possible to derive the constraint of transversality . For this reason
it has to be imposed by hand and it reduces to the expected Klein-Gordon equation.

Suppose now that we want to describe a charged higher spin particle. The minimal prescription suggests
to replace every space-time derivative with a covariant one. If we do this with , we get

(DO‘DQ + m2> s =0, DM py g, =0
but then

0 = [(D*Do+m?),D"]pp. 4.
= Z[Dale“]Da(p,uL..us
= 2ieF" Dopuy. pue-

2Note that any couple of anti-symmetric spatial indices can always be converted to one vector index by means of the totally
antisymmetric Levi-Civita tensor £¥*.



1.1. The original problem Chapter 1. Higher spins theories

Now, this represents an additional constraint on ¢, so that its degrees of freedom reduce and this is not
acceptable. This kind of obstructions to the implementation of interactions for higher spins has been first
pointed out by Fierz and Pauli in [10].

A way to avoid this difficulty would be to start from a Lagrangian description of the theory, that would
immediately translate the U(1) symmetry of the action to the Euler-Lagrange equations. As , also
is associated to an action, which does not give rise to the transversality constraint (|1.1.4)), though.
In order to complete this program, it has been suggested in [10] and [II] to add to the Lagrangian some
auxiliary fields whose equations of motion would reduce to . These fields, moreover, are found to be
zero on-shell. Let us consider a simple example of this technique: the equations for a massive spin 2 particle.
We start from

1
(O+m?) oy = 00 (0-), = 00 (9 9), + 5w (9- (9 0)) =0 (1.1.7)
whose Lagrangian would be the generalization of the Proca one:
1 af o s B, .« m2 af
E2Cr)::§3u¢aﬁ(3“¢ — %M — 9% M)“‘g*@aﬁ@ : (1.1.8)

Now, we take the four divergence of (1.1.7) and get
1
m(0-¢), + 50, (0-(9-)) = 0.

As anticipated, contrarily to what happens for spin 1, a term with three derivatives appears. In order to
eliminate it, we could introduce a scalar field a(x) whose equations of motion eliminate such term. The most
generic action for this field is

Loquz () = —% a0t a — %a2 + Ba(0-(0-¢)) (1.1.9)

so that, when a(z) = 0 as it must eventually turn out, its Euler-Lagrange equations will still eliminate the
unwanted contribution by 9 - (9 - ). The new equations of motion are then

(D + mQ) Oy — Ou (0 - ¢), — 0, (0 go)u + %77,“, (0-(0-9))—p (8M8Va — %UM,DCL) =0 (1.1.10)
(-O+a)a—-p(9-(9-9)) =0
Now, we take the four-divergence of the first equation, substitute the Oa term by using the second:
2m2 (8- ), — By (9 (- ) — %B&,Da _—
3 3
m2 (0 9), — 0y (0 (0-9)) — SaBO,a+ 560,00 ¢) = 0.
If we put g = %, and apply 0" to both members we come to
9 2

Now, we insert (1.1.11)) into (1.1.10)) and we arrive at

aa:\/g(ﬂju)(a(w))

so that, for a = —m?, the a field is set to zero, while (T.1.11)) implies that 0 - (0 - ¢) vanishes and the
transversality constraint follows from (1.1.9). The ugly square root \/g appearing throughout the equations

and the Lagrangian can be removed by rescaling the auxiliary field a into %a.
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This procedure has been generalized to all spins by Singh and Hagen in [I2]. Their final result is that for
a particle with spin s it is necessary to introduce s — 1 auxiliary fields, one for each spin strictly lesser than
s — 1. They share with ¢ the same properties (1.1.3), (1.1.4) and (1.1.2) and on-shell they vanish, so that ¢
simply obeys the Klein-Gordon equation:

O+ m) Qs =0, (9-0),, . = 0. (1.1.12)

We are ready to examine the case of massless particles, the ones we will be interested in throughout this
thesis. Following the spin 2 example, we set m = 0. After the suggested rescaling, ((1.1.10}) becomes

Oy — 0, (0-9), —0, (0 QD)M + %mw (0-(0-¢)) — Oudva + %UWD‘L =0 (1.1.13)
300~ (9-(2-¢) =0
Substituting in (|1.1.13]) the second equation into the first, after some reordering, we get
1
Do = 8u(0-9), =8, (0 ¢), = 8udva— gnwba = 0
1 1
Ol <SD,U,1/ — 27],uua) — 8(M8a <(pow) _ 277al/)a> — 2({“)Ht9ya = 0
1 N 1 s 1
U Puv — inuua - a(ua Pav) — inau)a + 8;1&/” Pap — 57704,6’@ =0 (1'1'14)
We see that ¢ and a can be combined into a new field
1
Do (T) = Ppuaps () — 5%1#2‘1(33) (1.1.15)
whose trace is non-vanishing and proportional to a. It obeys the following equation of motion:
U® s — 8(Maa®am + 04, 0, @, =0 (1.1.16)

Equation (1.1.16) is the so-called Fronsdal equation for spin 2 because it is a particular case of what happens
for every other higher spin, as showed in [14] by Fronsdal. Indeed, he took the limit for m — 0 of the
Singh-Hagen Lagrangian and found that all the auxiliary fields decouple, except the one with the highest
spin: ay, .., (). It can be combined together with ¢ with the obvious generalization of

1
q),ul---ﬂs (.’E) = gplﬁl---ﬂs - §n(ﬂlﬂ2a/—¢3~--ﬂs)'

Therefore, ®,,, ., (x) describes in full generality a massless field of spin s. Again, a represents the trace of
®, but, being itself traceless, leads us to the only constraint on ®

nfrrenkstad,, . (v) = 0. (1.1.17)

The Fronsdal action for the field ®,, ., (x) has the following form

SFronsdal = / (;8a¢>#1.,,#saa<pu1...us _ gaa(I)ngusaﬂ@g%--Ms _ 8(82_1)(baaus...usaﬁavq’ﬁwz"’"'us
. (84_ 1)%(I)aa%m”saﬁq)vws---us -: (S — 1; (e 2)86@a&5u4.--us85(1)776%””5) dﬁﬂlS)
It gives rise to the Fronsdal equation
Fut s = OPpyppy = Oy (0-9) 1y 1y + 0100 ®” g iy = 05 (1.1.19)
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where F,, .. () is the so-called Fronsdal tensor. As it is expected for a massless field, (1.1.19)) exhibits a

gauge invariance under the transformation

5(I)M1---lts = a(ulA,uz.‘.,us)y (1120)
where A must be traceless. Indeed, under (1.1.20))
5~7:u1---u5 = D‘S‘I)m---us - 8(#1 (0- 5(1))#2..‘%) + 8(u1au25‘l)y Vi3 fhs)
= Da(mAuz.-.us) - 8(mmAu2...us) - 2a(ulau2 (0 A)Mg...us) (1.1.21)
+28(M16M2 (a : A)/,L3.../,LS) + a(#laIAQaMSAV VUS...[hs)
=0

only when A is traceless.
For the free spin 2, we recognize in
0@, = 0\, +0,A,

the linearized variation of a metric ® under infinitesimal diffeomorphisms of the type
oxt = A (x).

We expect then that is the linearized Einstein equation for a quasi-flat space, which describes gravi-
tational waves or, from a quantum perspective, the graviton. This amounts to saying that should be
equivalent to the wave equation. We can show this in general for every spin. Indeed gauge invariance allows
us to eliminate some terms in by the following gauge-fixing.

First of all, we take a gauge parameter A which obeys

1
A Z v
0-A 2<I>

U2... s vus...(s”

so that we can put ®” = 0. Now we can perform a second gauge transformation with A(?) satisfying

the equations

V3. s

{8 ) Affz).--us =0

DAl(LZQ)...[LS = (8 ’ CI))MQ...;LS

that does not spoil the previous result and that gives the following gauge fixing

(8 ’ ®)M2---Hs
which is referred to as transverse traceless (TT) gauge. Thus, (1.1.19) becomes simply

=0, @ =0 (1.1.22)

Vp3...fs

O®,, ., = 0. (1.1.23)

Now that we have a free theory capable of describing every massless particle of arbitrary spin, we would
like to turn on interactions between them and other particles.

1.2 Constraints on the theory

The program outlined above clashes almost immediately with a series of theorems that show how an inter-
acting theory would be inconsistent in many realistic scenarios. In the first part of this subsection we will
review the most important and general ones. After that we will list some ways to bypass each of them by
altering slightly their hypotheses. We will choose one, namely the employment of a curved space-time with a
non-zero cosmological constant, even though some of the ideas for the Minkowski space will come back when
the Ambient Space formalism will be treated.
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1.2.1 No-go theorems
1.2.1.1 The Weinberg argument

Consider in full generality a process involving n particles of momenta p!' and spins s;, which causes the
emission of a soft massless particle of momentum ¢* — 0 and helicity s as shown in figure ([1.2.1)).

Figure 1.2.1: A generic scattering with an emission of a massless particle with momentum gq.

Lorentz invariance then imposes on the S-matrix associated to the process the following form as shown
in [19]:
S<q7 $7pZH’ Si) = gltl---lts (Q)Mﬂlmus <Q7pz) (121)

where £ is the polarization tensor of the massless particle and, as the field it represents, it is traceless, totally
symmetric and transverse:

0" Eppis..pis (@) = 0.

Due to gauge fixing performed on &, it should not behave as a proper tensor, in that under Lorentz
transformations the gauge fixing that determines £ breaks and so longitudinal components appear. Therefore
one should add additional (longitudinal) terms to the usual transformation law. They must have the form of

SEMHs (g) = q(mDuz---us)(q)’ Q”Duz...us(Q) =0, Duum-uus(Q) -0 (1.2.2)

to fulfill all the algebraic requirements of £. Since S should be a scalar, the spurious components (1.2.2)
should not contribute to its value, and this is achieved by requiring that:

¢ Mups...us (Pi) = 0. (1.2.3)

Moreover, due to the symmetry of £, we can take M to be totally symmetric too.

Let us now give a closer look at M. Consider first the case in which the emission starts from the one of
the external outgoing legs of the diagram. We denote its four-momentum temporarily with p to distinguish
it from the set of the momenta p;. A propagator with momentum p = p + ¢ is then involved. Since every
free field, whatever spin it possesses, must ultimately obey a Klein-Gordon equation as we have shown in

the previous section (see ((1.1.12)) and (|1.1.23))), this propagator is proportional to the usual double pole for
p° = +£1/]p1* + m2 which, for ¢ — 0 becomes (remember that ¢2 = 0)

1 q—0 1
—

(54 q)* —m2 +ie 2p - q+ie
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This kind of term dominates over every other, including the emission from internal lines, where p is off-shell
and m? is not canceled. Notice that if the external leg is incoming, conservation of the four-momentum gives
p =P — ¢q and so we get a minus sign in front of 2p - q. We denote this sign with a factor o; = £1.

We still have to determine which terms contribute to the index structure of M. The tracelessness of £
makes n*¥ useless as building block. The same happens for ¢*, this time because of the transversality of £.
Moreover, since the emission can only involve one of the n particles at a time, we may assume that M is the
sum of the contributions of the type M;iu---us (p,q) = M(im...,us)(ﬁ’ q) from each kind of s; —s; — s vertex. Then
the only way in which we may build a symmetric tensor is by means of products of p*. Finally, if we call g;
the coupling constant for the s; — s; — s vertex, we also get that M® oc g;. (We include in g; the sign due
to the positive or negative charge of the ith particle.) We arrive eventually at an expression of the following

form

pit . plte
Myy.n (4, Pi) o E oigi————— b q . (1.2.4)
. (2
7

where any other scalars involved in each M? can be incorporated in g; or vanish if ¢ — 0. Let us impose on
(1.2.4) the transversality condition (1.2.3)):

Zaigipﬁu .- -pfs =0. (1.2.5)

We see that when the emitted particle is a photon, condition (1.2.5) just implies the conservation of the

charge
o g— > gi=0 (1.2.6)

i€outgoing i€incoming

in the process. For spin 2, instead, we find
> oigipl =0
i

i.e. the principle of equivalence that states that every particle interacts with the graviton with the same
strength,

9i=4g

and the conservation of the four-momentum

> - X a0

1€outgoing 1€incoming

For higher spins there is no such a general solution for every n, p; and g; except g; = 0 and we conclude that
it is not possible for them to take part in a process that implies their emission to infinity.

There are several ways to circumvent this argument. First we observe that it might be possible that
higher spin interactions are at short range and so they cannot appear in the asymptotic states in which the
S-matrix projects. Moreover we have considered only vertices of the kind s — s; — s;, namely the minimal
coupling to massless gauge fields: we do not know what could happen in more general cases.

1.2.1.2 The Weinberg-Witten theorem

This no-go example improves the previous one in that it does not rely on the fact that higher spins have long
range interactions. Indeed, even if we do not know which kind of interactions our particles may experience,
shows that every particle should interact with gravity in the same way as the others. This exposes
our theory to the consequences of the Weinberg-Witten theorem, derived in [2I]. Its content (at least the
part we will be interested in) is the following:

10
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A theory with a Poincaré-covariant gauge-invariant conserved energy momentum tensor T+
can not allow particles with spin greater than 1 whose four-momentum is p* = [ T3y,

We will give just a sketch of the proof, without delving too much in unneeded technicalities. First, consider
a massless particle with spin s that scatters off a graviton, so that its momentum changes from p* to p* + g*.
Then

(p+q|P'[p) = p"(p+4qlp)
= (2m)’ (»°) p"6*(9) (1.2.7)

where we used a Lorentz-invariant normalization for the single particle states.

Here we assume that we are dealing with physical states whose momentum is never truly determined
with infinite precision. For this reason, the reader should consider all the Dirac delta functions as heavily
peaked functions with finite width a that, in the distributional limit for @ — 0, become true deltas. These
functions have basically the same algebraic properties of Dirac delta functions, so that we can forget about
the difference. Analogously, every integration is performed on a finite volume, rather than on the whole space.
(see [22] for a discussion on these matters) This assumption allows us to make expressions as non-zero
for a finite (insofar small) range of momenta g and therefore meaningful in our setup. We will therefore be
forced to implicitly take the limit for ¢ — 0 in every expression throughout our derivation.

Another way to express equality (1.2.7) is
wralptn = (pa| [T 00n)

— / <p +q ‘efiﬁ-fTO,u(t, 6)611353’
= /e_ﬁ'fdgx <p +q ’To“(t, 6))p>

= 8@ (p+ [T, 0)| p)

p> 3z

and thus
<p+q‘T0“(t,5)’p> = p’pt. (1.2.8)

Lorentz covariance then imposes
TH = <p+q’T’“’(t,6)’p> o pHp¥. (1.2.9)

We notice that for ¢* — 0 the matrix element (1.2.9)) does not vanish.
Now, let p’* = p# + ¢* and 6 be the angle between p’ and p. Then

2
(P +p)” = p*+20 p+p
2p°p% (1 — cos @) > 0

so that p’ + p is time-like. Then, there exists a frame in which p’ + p = 0, the so-called brick-wall frame,
where

p=(E,0,0,E), p=(E,0,0,—F)

for some E > 0. Apply now a rotation of angle o around the 2% axis in this frame. Since the momenta of
the two particles are opposite, the rotation is clockwise for one and anticlockwise for the other.
We may choose to apply this unitary transformation to the states, and then we get

’p> — eias ‘p>7 ‘p/> N efias ‘p/>

11
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because p and p’ are invariant under such rotation (that belongs to the stability group for both) and therefore
|p) and [|p’) are eigenvectors. (1.2.9) becomes thus

T/;Ll/ — eQias <p/

T (£, () ) p> (1.2.10)
If, on the contrary, we apply the rotation to the operators, it behaves as a Lorentz transformation and so

T/ul/ — AHOCAV/B <p/

T‘“ﬁ(t,ﬁ))p> . (1.2.11)

Equating (|1.2.10)) we get
AHQAVB <p/ Taﬁ(t7(_)’)‘p> — e2ias <p/ T‘Lw(t, 6)‘p>

Now, since the A are rotation matrices, their eigenvalies can be only e™*® and 1. We deduce that, for s > 1,
holds only if 7#” = 0 and in particular in the limit of vanishing ¢. But this is not possible, as shown
before. Therefore we have proved the thesis.

The first thing that stands out about this theorem is that not even gravity appears to be allowed!
This, though, is not in contradiction with physics, because one of the hypotheses is not satisfied in such
case: gravity, being sourced by the energy-momentum tensor and therefore also by itself, does not possess
a conserved stress-energy tensor which is also invariant under diffeomorphisms, i.e. gauge invariant. Thus,
under Lorentz transformations T"" does not behave as a tensor. (The reason is the same that led us to say
that the polarization is not a proper tensor in the the previous subsection.) This argument, though, relies on
this precise property to work.

One may then wonder whether this happens also in the higher spin case and if it is legitimate to apply
this theorem to prove its inconsistency. Porrati found how to avoid this empasse in [23], where instead of the
matrix element (1.2.9), the following has been employed:

TH = <p’, N

THY (¢, 6)’19, A> . (1.2.12)

Here, A and X label spurious polarizations of the higher spin, so that (1.2.12) behaves as a true Lorentz
tensor. Then an argument that shows how 7+ should vanish for s > 2 is produced, in contrast with (1.2.9)),
so that one can complete the proof just the way we have done here.

1.2.1.3 An Aragone-Deser-like argument

The analysis we carried on for the equations of motion and the action for massless particles with spin s > 1
can be performed in a similar way for fermionic fields with semi-integer spin s > % . The result is that they

are described by a totally symmetric spin-tensor W, , , such that
5=

fymvm,y#s\ymmuk% =0
subject to a gauge invariance under the following transformation

s,y () = O Mg, 1) (@) (1.2.13)

with
7“21\“2_.“57% =0.
In their paper [24], Aragone and Deser considered the action for the spin % massless particle and tried to
add the interaction with an external gravitational field by minimal coupling. They showed how the minimal

prescription, that is replacing each derivative 0 with a covariant one D, rendered such action non-gauge
invariant, because of the non-commutative nature of the covariant derivatives arising from (|1.2.13]).

12
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Since here we are dealing with integer spins, we will present in detail an analogous argument that shows
this inconsistency for a spin 3 particle. First of all, from ([1.1.18)), we get the action

1 3
S = / <28aq)uw2ﬂgaaq)ulﬂ2“3 N 586“'1)32%85@22“3 B 3q)aocu3af3a7q)57%

3 3
—5050%,,07 @7 — 4aﬂq>aaﬁaa<1>ﬂ5) d'z.

Under the minimal prescription, it becomes

1 3
S3 = / <2DO‘(1>M1M2M3DQ(I>M#2“3 B §Da<1)fjw3D5q)g2“3 a B(I)aaustBD'Yq)B’WS (1'2'14)
3 3
—5Dp @y, D70 — 4D'3<I>aa5D5<bﬂ5> d'z

while the gauge transformation for ® is adapted in a similar way:

0P pops = Dy Npiopas) - (1.2.15)

Let us compute the variation of (1.2.14)) under (1.2.15)). First of all, we derive a useful identity:

[D”,DO‘DQ] VL - DO [D”,Da] VHLbn [D”,DO‘} D, VH1i-bn

= D (RVOL(L’L)} VM2~~~Mn)’Y> + RV YD VHbn Rva(glpavm---un)y

The variation then reads
0Ls = /(BDQDMAW,@DO‘(I)“WWS

—3Do DA 1y DY — 6D, Dy, A, D BI2HS

—6D%Nayy, DDy @748 — 38, DgD, DA™ — 3%, DgD,DVAPHs —30°, DgD., D' AP

—6D3D" Aoy, DP D18
—3D7 DN Ds®,") d'x
N / (_3DQDGDM1AM2M3®H1u2H3
+3D0 D D7y @2 — 3 DD, DP| Ay @ = 6D, D] Afs, DPBI + 6D A, Dy, DRI
—6D%A oy, DgDy @718 — 30 [Dg, D] DPAs — 68, , D, DgDP A" — 30~ DsD.,D"3 AP
+6D° D Dy ®," — 6| D, D7 Dg| Ay @
+3 [ D5, DPD°| Aqp®,® + 3D D Dyhas®, ) d'
- / <6Da (Rﬂggmm) BHA 4 6RO T Doy 4 — BRTD, Ay B (1.2.16)
—6R.,, A} DP®IMS —6R,, 0 Ag DR
~6D" (RjAsug ) @, = 6D (R, 050 ) 0,7 = 6RED" Nsyy @79 — BR%, 1D A5 @74
+6R DsA oy @13
A€ é EAQ € 6
~3RscDNG®,"% + 3D (Rys AL — Rach) .7°)
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As we can see, the variation is now proportional to the Riemann and Ricci tensors and is not zero in a
curved space. In particular, assuming a free gravitational field, even though the R, vanishes, R, ,, does
not, because it is proportional to the Weyl tensor that is zero only in a flat space. Again, we see that, if
gravity is coupled minimally to higher spins, the theory is inconsistent.

1.2.1.4 The Coleman-Mandula theorem

As we have seen, massless higher spin fields possess a gauge symmetry. This symmetry is rather different
from the one of a Yang-Mills theory because, contrarily to what happens in that case, the gauge parameters
are tensors, rather than scalars, and therefore are affected by Lorentz transformations. This means that the
associated conserved charge is also a tensor. We are going to find it, but first we compute the traces of the
Fronsdal tensor that we will need later:

F = 0o, . —2(0-(0-9))

i fls Oy (O - @)aal%m#s) + 00 + 20, (0 - ®)°

H3ells Q3. fbs apid...fis)

(0% 1 «
=2 (D(I) s pis T 58(“3 (0-2) Qg pis) @-(0- ¢))u3---us>

af _
afug...ps 0.

The Fronsdal action ([1.1.18)) can be rewritten integrating by parts in this way:

s(s—1)

5 P, 1111200, 0T e

1 S
SFTOTLSdal = /(2®“1-~~“Saaaa‘b“1“‘“s+2‘Pm...usﬁ“la@aaﬁ@g?'”“s

s(s—1
+(4)(I)“l---us77’””28565(1)77;@...#5 n

s(s—1)(s—2)
8

®M1---ll/snulu2 7]“358585¢’Y’76M4Ms> d4x

= / _%q)m...us (Dq)m---us — olm (- (I))M---Ns) + a(mauzq)yvm---us) _ 3(#13;@@1/%3---#5)

cfhs) T 1 wphs) \ g4
+277(u1u2 (8- (- ®))Hs-Hs) — 77(”1“QD<I)WW3 Bs) _ 577(“1“23“3 - @)77#4 2 > dir

1 1
:/—Q‘I)m-.-us (j:m..-us _ in(uluzfaaus---us) (1.2.17)
_a(#lauz@yvusmus) + n(uluz (d-(0- @))u3~-us)> diz
= / _%(I)m---us (fu1~~~us _ ;n(mm;aausmus)) d*x

where in step (1.2.17)) the last two terms disappear after integrating by parts one of them. Now, consider the
variation of this expression under a gauge transformation (1.1.20)), which leaves the Fronsdal tensor (1.1.19)
unchanged as showed in (|1.1.21)):

S

1
0SFronsdal = /—2(9“11&,12,_”5 (f/“'”'us _ 27](H1H2JT_‘OLO<H3-‘.MS)> diz

1

_ / Mo Opu GV (1.2.18)

where )
GH1-ts — 1 _ 5,7(#1M2_7:aaua---us)
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and
Gyt = (5 — 1) F, bt G o0t —,

Gauge invariance of the action then implies that ((1.2.18)) vanishes and that the currentﬂ

JHLHs (1) = G %n(ungaammus)

is conserved. The associated charge is

N RO

If interactions with other particles are turned on, gauge invariance must still be preserved and therefore there
will be a conserved charge Q#2-#s. This, however, is prohibited by the Coleman-Mandula theorem [25] which
statesE] that if G is the connected group of symmetries of the S-matrix of a theory such that

1. ISO(1,3) < G, i.e. Poincaré invariance is a symmetry of the theory

2. All particles have a positive-defined energy and for each M > 0 there is a finite number of particle of
mass m < M

3. Scattering amplitudes are analytic in the Mandelstam variables s and ¢

then G is locally isomorphic to the direct product of ISO(1,3) and an internal symmetry group whose
generators are scalars. Conserved charges such as (Q#2-#¢ are thus ruled out. Even if a generalization of Lie
algebras is employed, namely graded Lie algebras, a similar conclusion can be drawn. This has been done in
[26], where it has been shown that the only allowed generators that are not scalars, are spinors and give rise
to supersymmetry.

1.2.2 Loop-holes and yes-go examples
1.2.2.1 An infinite number of particles

When an interaction term for a higher spin particle is added to its free Lagrangian, the overall gauge invariance
under (|1.1.20]) usually breaks and it is necessary to add a corresponding transformation to the field the higher
spin interacts with. If such a field carries the higher spin itself, i.e. when self-interactions are investigated, it
is necessary to deform the gauge parameter algebra.

This can be done order by order in a coupling constant g, enumerating all the possible self-interactive
terms, the respective gauge transformations and imposing at the end that the Lie product closes in the so
extended algebra. This procedure is described, for example, in [27], where it is shown that the result for a
spin 1 particle is a Yang-Mills theory, whereas for spin 2 Einstein gravity is ultimately recovered. In these two
examples, it is sufficient to stop at the first perturbative order in g to reach a closure of the gauge algebra. On
the contrary, starting from s = 3, this can not happen anymore, and the commutator between two deformed
gauge transformations can never be put in the form of a new gauge transformation at the second order in g.

A possible solution suggested in that paper (but also in the seminal work [14]) is to consider that self-
interaction for a higher spin may be consistent only in presence of other higher spins capable of compensating
the unwanted terms in gauge transformations. Those fields should interact with each other, or with them-
selves. A whole infinite tower of higher spin particles may be required in order to complete this program,
which suggests the presence of a higher spin symmetry algebra that acts on this set of fields.

3Here this current is not given by just G#1-*#*  because the tracelessness of A removes its traceful part.
‘Here we are not giving a rigorous statement, nor we enlist the technical hypotheses with no particular relation to the main
topic
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Even though it has been shown in [28] that actually this proposal does not solve the problem for spin
3 particles, the presence (and necessity) of infinitely many spins is found a particular feature of higher spin
interactive theory that is known as for now. However, such topic will be addressed in the next subsection. In
this subsection we limit ourselves to notice that if a consistent higher spin theory actually requires an infinite
set of massless fields, the Coleman-Mandula no-go theorem (et similia), do not apply, because they require a
finite number of particles under a finite mass-shell.

1.2.2.2 From minimal coupling to general couplings

The gravitational interaction has been our main investigative tool in the first three examples. Indeed, by
the Weinberg theorem, we deduced that higher-spins should behave as all the other particles when dealing
with gravity. To do so, though, we employed a very specific interaction vertex, namely the one between the
graviton (spin 2) and two higher spins (of spin s) of the same type. In general, for a Lagrangian polynomial
in the fields, this vertex is proportional to

5£matter
O%matter . _ rppv
59/“/ v 9uv

where T is the energy-momentum tensor of the matter and is covariantly conserved as a consequence of the
diffeomorphism invariance of the theory: indeed, the variation of S;,q¢ter under a diffeomorphism parametrized

by {H(z) is (g = D(ufu))
0Lma e
dSmatter = /\/> i uéyd4x

— / VaD, :ﬂ“fgyd4

and thus
D,TH = 0. (1.2.19)

In Weinberg’s theorem we have therefore assumed in general that 7" for a higher spin ¢ is quadratic in
o and contains two derivatives, that appear in the Feynman rule as momenta of the external leg of ¢. This
led us to derive the following relation for M* (see (1.2.1)) and (1.2.4)))

Mfw X PuPv-

We now recognize as the energy-momentum tensor conservation (1.2.19)) in disguise (notice that at
spatial infinity D is replaced by 0 and, in Fourier transform, by ¢).

This assumption is actually equivalent to the minimal prescription for the gravitational coupling. Only in
that case the energy-momentum tensor ¥ that one finds for the free theory by the N6ther theorem is indeed
(equivalent by the Belinfante-Rosenfeld construction to) T#”. The form of §*" is constrained by the kinetic
term of the free Lagrangian, that is quadratic in ¢ and contains two derivatives, namely what we assumed
for TH”.

In the Weinberg-Witten theorem, on the contrary, we made no assumptions on the kind of coupling with
gravitons, but we showed anyway that (p|T""|p) o ptp” (see (1.2.9)) by considering the limit of a scattering
of a soft off-shell graviton on the higher spin particle (a partlcular case of the one examined in the proof of
Weinberg’s theorem). This result, equivalent to minimal coupling, needed only the very general hypothesis
of Lorentz covariance of TH" to infer from (|1.2.8]) equation .

However, if interacting higher spins do not possess a covariant energy-momentum tensor (and this is very
likely the case, as already is shown by gravity for s = 2), such argument fails and again the equivalence
principle has to be postulated in order to complete the proof as done by Porrati in [23]. This principle plays
a fundamental role in the argument by Aragone and Deser.
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We now see that if we choose to abandon the minimal coupling in favor of more general vertices, including
non-minimal ones and others between three particles with different spin, the first three no-go arguments cease
to apply.

The research on cubic vertices for higher spins has been performed following mainly two paths. In both
a perturbative term is introduced in the form of an interaction with a coupling constant g. The analysis is
then carried at the first order in this parameter.

The first approach is the non-covariant one, where only the physical degrees of freedom of the fields are
taken in consideration. This amounts to fixing some convenient gauge, for example the light-cone gauge.
Then, among all the possible deformations of the free Lagrangian, only those that lead to consistent field-
theoretic generators of the Poincaré algebra are selected. This has ultimately allowed to find a complete
classification of the interactions among any three arbitrary spins that correctly reduces to the known cases
for the smallest spins. For bosonic massless fields, the ones we are interested in, the list of cubic vertices can
be found in [29]. In chapter we will explain how to list all the possible vertices in a curved background
by employing the flat space ones for fields in a different gauge: the so-called Transverse Traceless gauge, i.e.
the one imposed in ((1.1.22).

A covariant approach is also possible, by the BRST method (see [30]). As already explained, it consists
in finding all the possible deformations of the gauge algebra that allow to include interaction terms while
maintaining the whole action gauge-invariant.

These results show a remarkable feature: the number of derivatives n needed to build each vertex between
particles of spins s1, s2 and s3 is bounded by the relation

(Z si> — 2min (s1, $2,83) <n < (Z sl-) ) (1.2.20)

i i
In particular when one of the spins is 2 and all the others are greater than 2, we find that
n>2

and the equivalence holds only if s; = so = s3 = 2. This simply tells us that the graviton ceases to couple
minimally to particles starting from spin 3, as we anticipated. If instead the lowest spin is 1 and the others
are 2 or greater, n > 2: we find the equivalent limit for minimal couplings of electromagnetism. Indeed,
electromagnetism minimal prescription follows the same rules as the gravitational version and one could
prove, along the very same lines of the Aragone-Deser argument, that gauge invariance breaks for electrically
charged higher spins due to the non commutativity of covariant derivatives.

1.2.2.3 A curved space-time with a non-zero cosmological constant

Until now, we have assumed that the space where higher spins propagate was flat. Even when turning on
an interaction with gravity, we considered solutions with an asymptotically flat metric, so that we could deal
with free gravitons at the infinity and therefore use the S-matrix formalism. This is fairly reasonable, since
the universe that we observe is approximately flat. Beyond its naturalness, this hypothesis is crucial to make
all the no-go theorems we have discussed work, except (apparently) the Aragone-Deser argument.

The most direct conclusion that we drew from the latter was that there can be no minimal coupling with
gravity (or electromagnetism, as noted before). Actually there is a remedy to this troublesome fact and it
involves the either Anti de Sitter (in the following AdS) or de Sitter (dS) spaces, the maximally symmetric
solution for a gravitation theory with a non-vanishing cosmological constant A < 0 respectively and therefore
negative (positive) curvature. In such settings, none of the no-gos is of any use. From now on we will consider
only the AdS case.

In their paper [31], Fradkin and Vasiliev showed that it is possible to construct an action in AdS that
describes particles for every spin, which reduces to the Fronsdal action reformulated for a curved background
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in the quadratic approximation and that, at the cubic order, contains higher derivative couplings and the
minimal one. In the limit for a vanishing cosmological constant, the free theory becomes the one described
by the flat Fronsdal action that we wrote in . On the contrary, when interactions are taken into
account, A plays a fundamental role. Its physical dimension is the inverse of a square length and therefore
it appears in every vertex with the role of compensating the unwanted extra length dimensions introduced
by the derivatives. For this reason flat space limit A — 0 is singular for some of the vertices, where the
cosmological constant appears in negative powers. These are the higher derivative ones and are proportional
to the (linearized) Riemann tensor, so that they can compensate the unwanted terms that we found in our
Aragone-Deser-like argument. This explains why gauge-invariance is broken in the flat limit.

As shown for spin 2 by Zinoviev [32], a similar mechanism makes it possible to couple minimally electro-
magnetism with higher spins only in AdS.

1.3 Gravitation and gauge theories

The yes-go examples provided so far suggest that an non-linear interacting theory for higher spin fields
should exist in the Anti de Sitter space (see subsection . The remainder of this chapter is devoted to
the construction of such theory, starting from the description of its linearization in sections and and
then of the complete theory in

As we saw in section massless higher spin fields are gauge fields. However their gauge transformation
looks rather different from the one present in Yang-Mills theories that describe the other fundamental
interactions, in that the gauge parameters are not scalars but tensors. The goal of this section is then to
develop a unified formalism for these two examples of gauge theory in order to later implement interactions
that are compatible with this symemtry. In particular we will focus on the spin 2 case, namely the gravitational
field, leaving the general higher spin case to the next section. In the first subsection we present the frame-like
formulation of General Relativity, that we will later generalize to higher spin fields in subsection Then,
in [1.3.2] we will employ vector bundles to treat general gauge theories in a similar way. In the last subsection
we come back to gravity and consider the special case of the AdS space.

1.3.1 Cartan formulation of the General Relativity

In this section we review the so-called Cartan formulation of Einstein gravity, that makes contact with other
gauge theories more explicit and will be later generalized to describe a higher spin gravity theory in AdSy.

Let us start from the principle of equivalence, which says that for each point x( in a curved space-time
M of dimension d there always exists a system of coordinates Z in which physics is described at Ty as in flat
space. In particular this applies to the metricﬂ so that

oz 0z°
guv(@0) = Dt O et (1.3.1)

Here we use, as in the rest of this subsection the following notation: Greek indices, called world indices, refer
to tensorial objects living in a general and possibly curved manifold, while Latin ones refer to its flat tangent
space and are called fiber indices. From ((1.3.1)) it is clear that Z(x) is far from being unique, since any

7' = A4 z° (1.3.2)
leaves (1.3.1)) invariant if A is a Lorentz transformation, defined by the property

A% ™AL = b, (1.3.3)

®In this system of coordinates, the first derivatives of the metric vanish and therefore (see (1.3.26])) also the Christoffel symbol

I'%,, is zero at w.
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Let us call vielbein
a 0z

en(r) = i z defined for each x by (1.3.1)

one of the coordinate changes that transforms the Minkowski metric into the curved one at each point z.
One can regard ej(z) as a local change of basis for the tangent space at x T(M) ~ RYM4~1 that converts
the local basis 0, into a standard one that one may choose for R4~ which is called fiber or tangent space.
With this picture in mind it becomes obvious that

det(e) # 0 Vz (1.3.4)
and therefore there exists
Wy mer = O b _ge epen = (1.3.5)
(e ):ea—aja, eqe, =0y, €he, =0, 3.

the inverse of the vielbein.
e encodes all the information contained in the usual metric g and shares the same degrees of freedom.
Indeed e is a d x d matrix subjected to an invariance (|1.3.3]) with @ degrees of freedom (from (|1.3.3)))

and therefore has
d(d+1)

5 (1.3.6)

1 1
2 _ 12 tg
d 2d +2d—

independent degrees of freedom, the same as the metric g.
Given some tensor field T, . ,, () with rank k, we define its fiber version as

Tal...ak (l‘) = ea/»"ll T 65:T/L1.--,U,k (.T),

i.e. the tensor field expressed in the fiber basis given by e. The fiber indices are lowered and lifted by means
of the standard Minkowski metric as follows from (1.3.1): for example,

Vo = € (guuvy)
= eggu,,eZVb
= Uabe-

We would like now to define a covariant derivative acting on fiber tensors. Let us do this for a contravariant
vector, the generalization to general tensors being straight-forward. First of all we have

DV" = 8,V¥ + T, Ve
= 0u(efV) + TV elVe

el 0,V + (Ouel + T eh) V', (1.3.7)

where T' is the Christoffel symbol associated to g. Converting the v index to a fiber one (n), relation (|1.3.7)
becomes

D, V™ = epetd Ve +ep (Ouen + Dhpea) Ve (1.3.8)
e auvn + w#nava-

where we used ((1.3.5)) and defined
w,1(2) = €8(2) (Opel (2) + Ty (@) ()) (13.9)

the so called spin connection. For tensors with rank greater than one, the same rules of the usual covariant
differentiation of contravariant tensors are followed.
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In the language of p-forms, we can define a differential operator D acting on (tensor-valued) 0-forms, i.e.
objects without world indices, so that ((1.3.8)) can be expressed as

DV® = dvV® + w4 V?, 1.3.10
b

and we treat w®(z) as a matrix of 1-forms or, more precisely, as member of the space T} (M) ® Skew (Rl’d_l),
where Skew (RLd*l) is the vector spaces of antisymmetric matrices mapping R14~! onto itself. Indeed, from

D,g*® = D, (egn“bqff) =0 (1.3.11)

it follows that
D =0 = w' P +wb =0 = w?=—w" (1.3.12)

if De® = 0, but this is implied by equation (1.3.9)), which can be then written using (1.3.5) as

Dyel = el + wiyel, — T b =0 (1.3.13)
where the spin connection w acts on fiber indices, while I acts on the world ones. Property (|1.3.12) is an
important because

Skew (Rl’d_1> ~so0(l,d—1),

i.e. the Lie algebra of the symmetry group of the fiber tensors, so that looks like the Yang-Mills
covariant derivative for the Lorentz group SO(1,d — 1). We will indeed delve on this similarity in the next
subsection to make contact between the theory of General Relativity and gauge theories.

The vanishing of Dn® allows us to find easily the rule for covariant tensors:

k
DTal...a;C = dTal...ak + ZwafTal..b...ana

=1

namely it is sufficient to lower and raise indices by means of 7.

As for now, we defined D as a differential operator acting on indices of O-forms, the fiber tensors, that do
not carry any world index. We can generalize this definition to arbitrary p-forms guided by the resemblance
to the standard differential d: if Fjp'®* is some tensor-valued p-form belonging to QP(M) @ 2% (R14-1),

then
k

DFIC)LL--ak _ ngl'"ak + Zwag A Fgl~~~b---ak” (1.3.14)
=1

where A is the usual antisymmetric wedge product for p—formsﬂ Contrarily to d, D? is not zero and is given
by the following expression (again, we treat vectors for simplicity):

D2ve = D(ave 4wtV
= dw% V0w AWV (1.3.15)

We define then the curvature 2-form
Rab = dwab =+ (.Uac A wcb, (1316)

which is the Riemann tensor with two indices converted into fiber ones. Indeed, the fiber version of the known
identity
[Dyu, D) VP =R,V

5Notice that in this definition all the world indices are antisymmetrized and therefore no Christoffel symbols appear, because
their lower indices are symmetric (see (1.3.17)).
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is
dz" A dz” [D,, D,] efV" = 2e!D*V" = dz" A dax" R’ eI V*

uv o-s

or
1
R,.s = iRw,poefe;'dx“ Adzx” .

Here we see that the symmetry properties of the indices of the Riemann tensor arise naturally from the ones
of the connection and of 2-forms.
Christoffel symbols are not unconstrained. They must respect the following relation:

%, =T%, —T%, =0. (1.3.17)
T}, is called torsion. Let us see how (1.3.17) reflects on connections. From (1.3.9) we get
I egwuabel; — E)Melfel; (1.3.18)

that plugged into (L.3.17) gives (we use (L.3.5)) to write d,ele’, = —ebd,€b)

T, = egwjbefj — Oepel — egwyabez + &,elfez
= egauel; - ega,,ez + egwﬂbaeg - egwl,baez
or, by (1.3.14)),
ep T, da" N dx” = el De'.
We may then define the torsion fiber tensor as a 2-form that vanishes
T = De =0, (1.3.19)

as follows from ([1.3.13)).

The formalism we have developed is especially useful to deal with spinors in General Relativity. Indeed,
there is no intuitive way to use the Christoffel symbol to build a covariant derivative suitable for them, since
GL(d) does not have a spinorial representation. In our formalism, though, the connection is just an element
of s0(1,d — 1) and we may write it in the representation we prefer and in particular the spinorial one. Let us
take for example a Dirac spinor ¢2(x) (letters in roman font as a, b, ¢ are used for spinor indices here). Its
covariant derivative will be then

D;ﬂpa = a/ﬂwba + Wzb (Uab)ab @Z}b
where o4 is a representation of the My, generator of the Lorentz group (see (1.1.1]))

1
Oab = 1 [711) ’Yb]

and v, are the Dirac matrices that obey to

{’Yaa ’Yb} = 277ab-

Let us now see how the vielbein changes under infinitesimal diffeomorphisms a# — x# + e#(x). As it is
well known,
09w = Dye, + Dye,

while from (1.3.1) we get

5g,uu = 56,‘1%1)63 + eznabéeg

so that D, e, = 56277{11)61; and thus
0e® = De“.
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However, we saw in ([1.3.2]) that the vielbein is defined up to a Lorentz transformation, that can be in principle
defined point by point, realizing thus an additional local symmetry for the e field. Then the full infinitesimal
gauge transformation of e reads

6e? = De(x) 4 €(z)ey(z), (1.3.20)

where €% (z) = —€"*(z) € s0(1,d—1) represents the infinitesimal version of (1.3.2). Equation (I.3.19) requires
that also w® changes under local Lorentz transformations: if we call D’ the corresponding transformation of
D

7

0= D¢ = D'(e® 4 €%ey)

is satisfied at the first order if
D'e® = De — De%ey,

equivalent to
dw® = —De. (1.3.21)

More in general, any fiber tensor may be transformed according to a local Lorentz transformation, but the
covariant derivative D is invariant under such transformations if and only if the connection transforms as

@32,

1.3.2 Gauge symmetries and vector bundles

Diffeomorphisms in General Relativity are local symmetries and indeed we showed in the previous subsection
some resemblance between the associated covariant derivative and the Yang-Mills one. Equation (|1.3.8]
suggested that the theory of gravitation can be interpreted as a gauge theory based on a local Lorentz
invariance. In this subsection we generalize the formalism developed in the preceding one to describe a
general gauge theory. The result will be that General Relativity shares many features with gauge theories,
but not all. We will also employ these result to find a suitable way to describe higher spin fields and their
equations of motion, from which a higher spin symmetry algebra will arise.

Let G be a Lie group with Lie algebra g. If we choose a vector space F' such that G acts on F' as a group
of matrices, we may represent the matter fields associated to a gauge invariance under G as vectors in F'
defined at each point z of M. For example, in QCD, G is SU(3) and the quarks are represented by a vector
in F' = C3 on which SU(3) acts in the fundamental representation. If we choose some other representation,
we would employ some other F'.

Let us thus define a new manifold with (real) dimension

dim(F) = dim(M) + dim(F)

called vector bundle F on M associated to F' such that there exists a surjective differentiable projection
function 7 : E — M that obeys two requirements:

1. Fiber isomorphism: for each x € M, 771(x) is a vector space isomorphic to F, or simply
Yz) =F.
2. Local triviality: M can be covered by open sets u; and
7 (wy) 2wy x RAmM(F)
where = means diffeomorphic.
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These properties tell us that locally E is just a collection of the points of M to each of which a copy of F
is attached. From a physical point of view, E represents all the possible configurations of the matter field
that lives in F'. Tt would be a mistake, though, to deduce that F is simply M x F. In such a case F is said
trivial. A familiar vector bundle is the tangent bundle 7'M, the collection of all the tangents spaces T, M.
Another vector bundle we have encountered is the one of p-forms QP(M), for which the fiber is the vector
space of p-forms AP(T:M).

Since we now have a setting for our gauge theory, we would like to specify a particular configuration of
our fields. We call a smooth section of E a differentiable function, ¢ : M — FE, that is one of the inverses of
7, namely

m(¢(z)) = .

The set of all the possible sections on E is I'(E). From a physical point of view, ¢(z) would be the matter
field.

Our goal now is to define a covariant derivative on F. This is usually done in Physics by demanding that
the result behaves as a (contravariant) vector. In our case we prefer to employ the language of p-forms, i.e.
we require that D acts on sections of E, seen as 0-forms with values in F', to give 1-forms also with values in
F.

The covariant derivative is specified by the so-called connection V on E, defined as
V: I(E) = QY(E),

where we used the notation
N(Q' M) ® E) = QP(E).

Moreover, V must obey the Leibniz rule for any differentiable function f: M — R:

V(f¢) = ddf + V.

It is clear that V = d, the so-called trivial connection, satisfies these requirements and if V is a connection,
s0 is V +w, for w € Q1 (End(F)), a 1-form with values in the space of endomorphisms on F. It can be shown
that actually every connection can be obtained from a known one by summing elements from Q'(End(E)).
For this reason these connections are called affine, namely, from a given base point in their space, one can
reach any other by summing with an element from a proper vector space, here represented by End(F).

We may take the trivial connection as a base point and in components we can thus write

v¢a — d(ba +Wab¢b

so that if we choose a particular w (also called connection with abuse of language), we get the covariant
derivative associated to w:

D¢a _ d¢a +wab¢b'

This result can be intuitively understood in this formalism in the following way. Suppose that we know the
value of ¢ at z. If we move a little away from x we expect that ¢ changes as consequence of the different
point in which we compute it, but we also have to take into account how the fibers F' are attached one to the
other to build E. Indeed we expect that for non-trivial bundles, moving from one fiber to the other implies
a local change of basis and therefore the need of a compensating endomorphism to compare ¢ in the two
locations.

One can extend the map V to forms with higher rank: V : QY(E) — Qi*1(E) and this extension is unique
if we require that it behaves following the Leibniz rule. It reads

Doy = dey + wy A ).
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In particular, it is possible to prove that
D2¢a = Rabqbb, Rab = dwab + (JJaC VAN wcb

where R%, € Q*(End(E)) is a 2-form with values in the space of endomorphisms on F. It is called curvature
associated to the connection.

Let us consider for example electromagnetism. In this case, G = U(1) and, taking as a matter field some
complex scalar field, FF = C. Then w = ieA is proportional to the potential 1-form A. As for the curvature
2-form, it is simply given by (the proof consists in a computation similar to the one made in ({1.3.15]))

(Dw) ¢
but
Dw = dw +w ANw = iedA = ieF),, dx" N dx”

with the usual definition of the fields strength.
Suppose now that we want to change locally the basis in the fiber and we do that by acting on F' with
an element g € G defined point by point:

¢(x) = g%(x)¢" (x).
Then

Dl¢/a — dgb/a _|_ wlab¢/b
= g0’ + g"de’ + g’
but D¢ should transform just as ¢, namely
D/¢/CL — gabD¢b

and therefore we get
—_1\d —_1\¢
w/ab = gacwcd (g 1) b (dgac) (g 1) b (1322)
This is not the linear transformation we would expect for a matrix, because of the last term. This tells
us that w does not behave as a tensor under local transformations belonging to G. This is caused by the
presence inside D of the spurious term d that is not a local endomorphism of F. This problem is not present
for the curvature tensor. In order to perform the computation we shorten the notation by considering all the

quantities as matrices with the usual (wedge) product rows by columns, therefore dropping all the indices.
We get

R = dv+ W
d(gwg™' —dgg™) + (gwg™ —dgg™") (gwg™" — dgg™")
= dgwg ' + gdwg™! — gwd (¢7) + dgd (g71)
+gwwg™ ! — gug~tdgg™" — dgwg ™ + dgg ' dgg~
= gRg_1 + algwg_1 — gwd (g_l) + dgd (g_l)
+gwd (gfl) — dgwg™! — dgd (gil)
= gRg™! (1.3.23)

1

1

where we used the fact that

g9 =1 = dgg ' +gd(97') =0 = d(g7") = —g 'dgg™".
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In the electromagnetic case expresses just the appearance of the derivative of the gauge parameter
under gauge transformations of A, which is not present in the transformation law of F,,.

Having at our disposal a covariant derivative, we may define a notion of parallel transport. Given any
curve vy(s) : [0,1] — M, and the value of ¢ at v(0), we want to determine what is the value of ¢ at each
point of the curve in order for its covariant derivative along the tangent of the curve 4/(s) to vanish. This is
expressed as

7*(s) Dy (7(s)) =0,
or, in an integral form,

50) =060~ [ 0 0)e.

A generic solution to this equation is given by

s 1 a
¢a(/—y(5)) = P |:67 fO Y “(t)w,u('Y(t))dti| . be(’Y(O)), (1324)
where P stands for path ordering of the matrices in the series expansion of the exponential, i.e.

{w(v(S))w(v(t)) s<t
W (Ow(r(s) s>t

Now, we may introduce an additional requirement on our connection. We want to admit only fields
that under parallel transport transform according to an element of G. Therefore it is clear from
that w, € g. In light of this result we compute the infinitesimal version of the gauge transformations of the
connection (1.3.22). Let g% (z) = 6%, + €% () where €% (z) € g is an infinitesimal element of the Lie algebra in
the same representation as w and is a 0-form. Then (1.3.22)) can be written at the first order in the matricial
notation as

dw = ([e,w] — de) = —De (1.3.25)

where w acts on € € g in the adjoint representation, i.e. via the Lie product. The differential in (1.3.25) does
not appear in the infinitesimal transformation of the curvature:

OR=1¢,R].

Returning to our example for a U(1) gauge symmetry,

H(1(s)) = 0 A= 50 0)

is simply the expression of the phase that a field acquires along a curve and the exponential is the so called
Wilson line. Here path ordering is not necessary, being A, a real number, as expected, since u(1) = R.

1.3.3 Gravity as a gauge theory in AdS

As we saw in , General Relativity seems to be based on the gauging of the Lorentz group, which acts
on the vector bundle T M, i.e. the tangent bundle and, more generally, on 2 %!(M), the set of all the smooth
tensor fields with k contravariant and [ covariant indices, and ¥(M), the set of all possible smooth spinorial
fields on M. However, the torsion constraint puts some restriction on the connection that is not
present in gauge theories such as electromagnetism. This relation is just the fiber form of the known relation
between Christoffel symbols and the metric. Indeed by substituting g, = €}j'e;nms into

1
FZI/ = igpa (augm/ + 81/90# - 8ag;w) (1.3.26)
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we can write I' as a function solely of the vielbein and therefore we can do the same for w by using .

So, even though e appears to be a matter field, it is actually the fundamental field of the theory. It is
this feature that makes General Relativity different from a conventional gauge theory. In this subsection, our
aim is to restore at least partially the similarity we hinted before. To do that, we will have to abandon some
of the characteristics of General Relativity.

First of all, we notice that the vielbein is a 1-form that carries fiber indices and has its own gauge variation
. We are thus led to identify it with some connection that in turn should belong to some Lie algebra.
Its vectorial nature makes it natural to associate e* with the translations generator P* of the Poincaré group.

Consider now a generalization of the Poincaré algebralz] in which we replace the commutator of the
momenta with

[P“,Pb] — AM, (1.3.27)

where A € R is some parameter and the right hand side is determined by the symmetry of the indices. The
Poincaré algebra is restored when A = 0. When A # 0, gives the SO(1,d) or SO(2,d — 1), the
symmetry group of a space-time with one more dimension 0" (either space-like or time-like). The signature
of the metric of this space depends on the sign of A. Using proper indices A,B,... =0",0,1,...,d — 1, we can
decompose MAB | the generators of the extended space symmetry group, into

Mab Ma()’ = 1 pe
Al
so that, by using the so commutation rules, we come to

[ MaO/, Mbo'} _ MbO’naO’ Y n® + Mbano’[)/ _ MO/ano’b _ Mabnofof

and therefore 90" = sign(A).
If we define a connection with values in this algebra

1
Q= §wabMab +e*P, (1.3.28)

the associated covariant derivative is Dg = d + ) and the corresponding curvature reads

Ro = dQ+QAQ
1 ab a 1 ab i 1 cd 7
= idw My, + de® P, + Qw Myp+e'P ) A iw Mg + €’ P;

1 1 1,
= 5dwabMab + de®P, + gw“b A w (M, Meg) + ¢ Nl [P Pyl

1. 1 ;
Zel A w® [Py, My] + Ewab A e [May, P

1
= 5 (dw“b + W Aw® — Ae? A eb) Moy + (dea +wh A eb> P,
1

= 5 (R“b — Ae® A eb) My, +T°P, (1.3.29)
where R® = dw® + w?, A w® is the curvature in the usual sense of General Relativity, i.e. when only the
Lorentz spin-connection is used. Notice, though, that for A # 0 there is an additional term proportional to
A that can be understood once we rewrite it with world indices:

_ pA
Ag,u[ygp}a = R/,Wpav

"Here we prefer the real version of the algebra given in (1.1.1)) that can be obtained by the substitutions P* — —iP* and
M® — —iM® that causes all the commutators to change sign.
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the Riemann tensor of the (A)dS space, namely the maximally symmetric solution of Einstein equations in
presence of a cosmological constant A. This is in accordance with the symmetry group associated to A.
We see that if we enforce

Ra =0
we get simultaneously
R™®=RY T*=0, (1.3.30)

that is, the equations that describe a maximally symmetric space and the torsion constraint. If instead we
impose only the latter, we will have Einstein gravity around the AdS background.
Gauge symmetry is realized at the infinitesimal level (see (1.3.25])) by

1
0Q = Dqe, €= §eabMab +€%P,, €= _¢be
or, in components,
0 = de+[Q,¢

1 1 ) 1 .
= ideabMab + de® P, + [2wabMab + e'P;, iﬁchCd + 6JP]':|

= §deabMab + de® P, + Zw“bECd Mgy, Mcq) + €€ [Py, Pj]

1. 1 ;
€ € [P Map] + Sw*€’ [May, P
1
= 3 (deab + w“ced’ + wbceac — Aeaeb) My + (dea + w“beb — ebeba> P,.
1
- 3 (De“b - 2Ae“eb> Moy + (Dea - ebeb“) P.. (1.3.31)

or, in components

From now on we will set our theory in the AdS space in 4 dimensions and employ both the connections
D and D. However, since we would like to restore a dynamical gravity, at least at the perturbative level, we
change a bit our notation. We call
b
M), @)

the vielbein and the spin-connection for AdS respectively, while we reserve the old symbols for their dynamical

perturbation:
ab

en(T),  wy ().
Our definition of the covariant derivatives becomes thus
D=d+ (@ +w™) Luy, Do =d+ (o +w®) Loy + (b + ) P, (1.3.32)
and we denote with Dg the background derivative
Do = d + @™ Ly,
The two relations in then can be written as
Doh® =0, Doyw® = R = Ah® A R°. (1.3.33)

More in general, we assume that every higher spin field is a small fluctuation around the gravitational
background of order O(h).

27



1.4. Unfolding and frame-like formalism of higher spin fields Chapter 1. Higher spins theories

1.4 Unfolding and frame-like formalism of higher spin fields

In this section we reformulate the Fronsdal equations in the frame-like formalism, namely by using 1-forms
and 0-forms analogous to those employed for the gravitation equations linearized around AdS presented in
the previous section. To do so, we will make also use of the so-called unfolding procedure. It consists in
introducing infinitely many auxiliary fields that parametrize the derivatives of the fundamental ones, so that
the equations of motion are always of first order. This will render manifest the gauge algebra of higher spin
fields, which will be infinite dimensional and require the presence of all integer spins to be closed, as hinted
by one of the yes-go examples.

In the first subsection we introduce unfolding by applying it to the gravitational field. Then, with the aid
of the spinor formalism to describe tensors with complicated symmetry properties, we employ it to higher
spins in subsection (1.4.3)). In the last subsection we will show that the resulting equations are just the
linearized version of a zero curvature condition of the higher spin connection.

1.4.1 Unfolding gravity

In this subsection we will analyze the spin 2 field ®,, and its equations of motion employing the techniques
that we will use to describe higher spin fields in the AdSy space. In our setting, where the torsion constraint
is an equation of motion, this field is encoded by the perturbation of the vielbein, eZ(:v), and the connection,
bt which we associated two gauge transformations under (infinitesimal) diffeomorphisms

Wy s
def = Dpe — hbe,* (1.4.1)
w = Dy — Ahlee’ (14.2)

that come from ([1.3.31)).

It is interesting to compare these results with the ones that we obtained in subsection (1.3.1)). There we
saw that if we wanted to represent the field g, with A, we would have had the problem that the second
is in principle just a 4 x 4 matrix, while the first has a symmetry property that reduces its independent
components (see ) Local Lorentz invariance, though, reduced the count of the degrees of freedom.
Here this role for ®,, is played by the second term in hZeb“. Indeed € is antisymmetric in @ and b,
so that, thanks to the vielbein that converts fiber indices into world ones, h/’ieb“ is antisymmetric in a and p.
This allows to gauge away any unwanted antisymmetric contributions to ej;.

Now let us write down the equations of motion associated to e®, namely the vanishing of the torsion.

From we getﬁ

0= D (e + h®) = Doe® 4+ w? A hP. (1.4.3)
We may now perform a consistency check on (1.4.3): applying Dy do both the members we get
0 = Dge®+ Dow, AR
—Ah® A ey A hY 4+ Dow®, A BP. (1.4.4)

In order to interpret this equation, let us write down the equation of motion for w?:

R® = 4 (w“b + wab> + (W + @) A (wa + wd’) — AR A e — Ae® Ahb — AR A RP
= dwab—i—dwab+wac/\wcb+w“c/\wcb+wac/\wcb
—AR* A e® — Ae® AR — AR® A RP
= Dow® — Ahl* A et (1.4.5)

8Here and in the rest of the section, we will work at the first order in perturbations
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We recognize then (1.4.4)) as the first Bianchi identity,
0=R"Ahy = da" Ada” NdaPR,,, ] he, (1.4.6)

which simply fixes the symmetry properties of the four world indices of the Riemann tensor. We could have
come to the same conclusion directly from . First of all, we need to write down the curvature form
appearing in @ as a rank 4 fiber tensor, by means of the vielbein, doing in a certain sense the opposite
of what we did in @ For this purpose we define

Ra,b\c,dhc A hd = Dowa’b _ Ah[a A €b]. (147)

Let us explain the notation used here. Every irreducible representation of SO(1,3) is related to a Young
tableau that describes the symmetry properties of the indices of tensors sitting there. We group these indices
by separating them with commas, so that each group corresponds to a row of the related Young diagram. If,
instead, we deal with tensor products, we juxtapose the additional indices by separating them with a vertical
bar. For instance

Ta,b\c — Ta,b ® T'C.

Using (L.4.7), (1.4.4) reads
R¥Mep A hg Ay = 0. (1.4.8)

Equation (T.4.8) gives some constraints on the symmetry properties of R4!€l?. We can always write
Ra,b\c\d = Ra,b,c,d +Rac,b,d + Rac,bd

and it is clear that in general only the last term is such that is always satisfied. In our case, the
energy-momentum tensor of the higher spin fields and the gravitational perturbation e itself, being (more
than) quadratic in the fields, is negligible at first order and therefore the Einstein equations imply that both
the Ricci tensor and scalar vanish, so that the Riemann tensor coincides with the Weyl tensor, i.e. its traceless
part. We call it C%cd = Rab.ed,

In the following we will employ the so-called unfolding procedure to solve the equations of motion of the
Weyl tensor. It consists in the definition of infinite auxiliary fields that represent the derivatives of C*c?.
These auxiliary fields obey equations that are derived by the one involving C*¢? by differentiating it with
Dg a proper number of times. The resulting infinite system of equations, when solved, determines all the
derivatives of C“? and hence the Weyl tensor itself. Even though this seems to complicate the description
of the theory, it will unveil in the general case a gauge symmetry involving all the spins together.

Let us start from . Applying Dg to both members we find

DR’ — Ah® A he Aw®® — AR A he Aw™ + AR* Awb, A S — ARP Aw A RS =
DoR*" = 0,

which we recognize as the (linearized) second Bianchi identity for the Riemann tensor

0 Y01 a b _
DR,R, " he A B =0,

We can solve in general this equation by defining an auxiliary field that represents DoR*®. Let us rewrite
this equation by using C*<4:
DoC@e2b102 A p A By = 0. (1.4.9)

Now, let us call
Ca1a2,b1b2\c — hcuDOCalag,ble
= 1

so that (1.4.9) reads

CGIGQ:b1b2|ChC A hg, A hy, = 0. (1.4.10)
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Again, since
Heo=HFHeoHF o H
we can rewrite C@1az2.b1b2lc oq

Ca1a2,b1b2\c = Ca1a27b1b2,0 + traces + C’ala?@blb? (1.4.11)

where traces denotes the traceful terms (i.e. proportional to n% or %), while C@1%2:b102:¢ apd C@192¢01b2 are
not. Only the last term in ([1.4.11]) has the right symmetry properties that make (|1.4.10) vanish identically.

We can thus rewrite (1.4.9) as
DyCieatits — Py [pcoetite] (1.4.12)

where Pg is some projector that imposes on the right hand side of the symmetry properties of
the Weyl tensor. Here we avoid to derive precise expressions for such projections, because they are quite
complicated if we use the 4-dimensional notation. Since, on the contrary, with the formalism that we develop
in the next subsection these results are written in a much simpler form, we prefer to focus on the general
structure of the equations of motion for the C' tensors.

Following our unfolding algorithm, we solve by applying to both its sides Dy to get

AP [(B A ha) €400 4 (W0 A g ) Cor22] = P [, DoCerocn®s (1.4.13)
If we write
Carazasbibald  — h,LLdDgcalaQag,ble’ (1.4.14)
equation (|1.4.13)) reads
Pa [hc A hd()almblbﬂd} — P [(Ah@1 A hg) C2%bib2 4 (Ahbl A hd) C“l%bﬂ . (1.4.15)
By a reasoning analogous to the previous one with Young diagrams, implies
DyCra2a3bibz — P [hdcalagagd,blbz n Ahdnalagcagd,blbg} . (1.4.16)

where both the C tensors appearing in the r.h.s are traceless, i.e. reside in an irreducible representation of
the Lorentz group. The first term in (|1.4.16)) makes the left member of (1.4.15) vanish, while the other one
gives the contributions proportional to the Weyl tensor found in the right hand side of 1.4.15@

If we now unfold equation (|1.4.16|) we get
D(Q)Ca1a2a3,b152 = Pg [thOCa1a2a3d7b1b2 + Ahdnalazpoca:sd,hbz}

= Pg [thOCalazagd,th + Ap™92hy A hCDOCag,dc,blbg}
— Pw [thOCalaza:sd,ble

which looks like (T.4.13)), but this time involves a tensor C'*192%394.01b2 with one more index of the a type. It
is now clear that by induction one finds that all the unfolded equations associated to the Weyl tensor are
constraints on traceless fields of type

Ca1.~-ak,b1b2 e k — 3‘ l

They read

Dow®™b1 = kA Ry (9102,b1b2
{ 0% ag /% bz (1.4.17)

Docal"'ak’b1b2 =P [hak Cll1~~akak+17blb2 +Ana1a2hdca3...akd,b1b2]
0 41

°Tt is the projector that makes it possible for both of them to appear.
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1.4.2 The spinorial notation

Unfolding the linearized Finstein equations required the definition of an infinite number of tensorial 0-forms
with arbitrary rank. These tensors should sit in irreducible representations of the Lorentz group, i.e. they
must be traceless and with a definite symmetry of the indices. In order to put them in such form, we
had to employ some projectors in equations . This task can be simplified if we work with another
representation of the Lorentz group: the spinorial one.

As it is well known, SL(2,C) is a double covering of SO$(1,3), the subgroup of SO(1,3) in which lie
the orthocronous proper Lorentz transformations. The homomorphism between the two is realized in the
following way. A vector v# € R is represented by the 2 x 2 Hermitean matrix

V =olo, = < vo U3 U1~ iUz > =yt (1.4.18)
Vg + 12 vy — U3

where the o, are the Pauli matrices

(10 /(01 (0 =i (1 0
0=V 1) T \10)%27 i 0o )0 o -1 )

We see from ([1.4.18)) that
det(V) =2,

so that Lorentz transformations are given by left and right multiplicationm with 2 X 2 matrices that preserve
the determinants, i.e. SL(2,C):
V V' =8VST, SeSL(?20). (1.4.19)

It is clear that this representation is 2 to 1, for S and —.S give the same Lorentz transformation. The spinorial
representation of the Lorentz group is associated with the fundamental representation of SL(2,C) acting on
vectors in C? that we call Weyl spinors. From now on, we use the first Greek letters «, 3, ... to denote spinor
indices that can be equal only to 1 or 2, while dotted indices &, B, ... = 1,2 are used for the the conjugated
spinors, i.e. the elements of the dual of C2. Then we have that v, transforms according to the fundamental
representation (denoted by 2)

v =S g
while for 14 we need to use the conjugate of S (in the so-called anti-fundamental representation, denoted by
2)
1/’:51 = (S*)dﬁ @%-
The two representations are inequivalent and, by tensorial products, produce every irreducible representation
of the Lorentz group. For instance, we see from (1.4.19)) that vectors sit in 2 ® 2.

It is also possible to introduce a “metric”, namely a way to contract spinorial indices in order to get a
scalar product of the vectors written in the spinorial form (1.4.18]). Indeed,

det(vag) = v11v22 — V12021
_ %eaﬁsd%adum, (1.4.20)
and we see that
el = < _01 (1) > Ee‘w, 50‘5575 =45 (1.4.21)

196 see that it is necessary to take two (and not one) SL(2,C) matrices and that they must be multiplied with V in the
order given by (T.4.19), it suffices to impose V'T = V'
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is the sought “metric”, which, contrarily to the usual one, is anti-symmetric. This implies that when we lower
or raise indices by means of ¢ in the following way (see |1.4.21])

wa = 5“’8% = _¢ﬁ56a, 7/}01 = 57045767#6 = ¢ﬂ€5a = _Eaﬁdjﬁ

we need to use the convention that indices are raised by left multiplication and lowered by right multiplication
with &, which is also coherent with

6
€aB = €7°6aksB-
From (|1.4.20) we also recover the spinorial version of 7, the four-dimensional metric:

a1 iy
P = coBedd, (1.4.22)

In the following we will need only a particular class of irreducible representations of the Lorentz group,
namely those represented by the following Young tableaux:

"
LT

Let us see what they look like in the spinor notation. First, we derive a useful identity. Any spin-tensor of
rank 2 can be written as

1 1
Top = 5Ttap) + 5 Tjag)

and
e Tos = %SQBT[QB] = %va
so that 1 ]
Top = §T(a,5) + ZEQﬁT’Y’Y‘ (1.4.23)

Given a tensor T%" which is antisymmetric in two indices, applying repeatedly (1.4.23)), its spinorial
version readd"]

2 1 . oas 1 .
Ta’bago‘afﬁ = b (205“0‘05)[%—1-46&'302‘705#)

1 . : 1 . 1 .. . 1 A e
= Teb (40((;1(0405)13) + ésaﬁaé“7053 + gsaﬁaé‘”afﬁ) + 1650‘550‘5027%50

— Ta,b (EocﬂTdB + gdBTaﬁ)

where we used the antisymmetry of T%® to rule out the first and the last term and defined the tensors
Ta,b . . Ta,b o
T = S ola)), T = S o)),
e\ K
Since T*? is real, T*% = (Ta5> . This procedure can be applied similarly to the case of a traceless tensor

T1--akt1:01-06which is represented by
Tal--~a2k+ld2k+l~~'d2k+l€dldk+l . €dkd2k + Td1-~~d2k+la2k+l"~a2k+l€alo‘k+l e gakamv’ (1424)
where both dotted and undotted indices of the T spin-tensors are symmetric, so that and the first is the

complex conjugated of the second. The reason why no mixed terms with both €* and €% appear is that
they do not vanish when contracted with 7,4 a¢, while T -ak+1:01--bk ghould be traceless.

"Dotted and undotted indices are symmetrized separately.

32



Chapter 1. Higher spins theories 1.4. Unfolding and frame-like formalism of higher spin fields

Completely symmetric traceless tensors 7% % have the following spinorial form:
Tal---akdl---dk — Tal...ako_a1d1 . O_Oékdk (1 4 25)
. 4.

ag )

that is symmetric in both the dotted and undotted indices and therefore traceless under contractions with

Nace,ace
We conclude by applying these results to some of the tensors encountered in the previous subsections.
The vielbein and the spin connection in the spinorial formalism read, using (|1.4.23)),

had, wad,BB = waﬁedﬁ + wdﬁeaﬁ

and therefore Dy acts on spin tensors as if there were two separate spin connections w®? and % for each
type of index. For example, if we consider a vector V¢,

DV = dved 4 gty
= VoS + PV Y (1.4.26)
The same happens for the curvature form, that acts on undotted and dotted indices respectively with
R = n*Y ABS, and R = 4 ARS. (1.4.27)
Analogously, the symmetry generators of AdSy M and P® are substituted by
Pos, MOGSE = NoBetB 4 prifees,
In the following we will also need two of their commutators:
[Pad, Pﬁ/ﬂ — A (Maﬂsdﬁ n M‘waaﬁ) (1.4.28)
[ Pos pBYEBY MB*/EM} —_ ( PBBay &Y _ pwgaﬂgaﬁ') ’
which implies
[P"“i, Mﬁ’q = —pPaga _ prégaf {Pa"", Mﬁﬂ = —poPcdy _ porigds (1.4.29)
1.4.3 Unfolding of an arbitrary spin field

Let us consider now a generic spin s field. Our goal is to reproduce for this case the analysis carried out
in section [1.4.1 Analogy suggests to promote ®#1-#s to a vielbein-like field e,'"* ™', that is completely
symmetric in the fiber indices, can be interpreted as a tensor-valued 1-form and is related to ® by

ha1(u1 e has,1H571621j..a871 = (I>,u1...,us- (1430)
The double tracelessness constraint (1.1.17)) is replaced by
ey a0y =0, (1.4.31)

which simply states that e is traceless, as well as symmetric, and therefore sits in an irreducible representation
of SO(1, 3), a more natural condition with respect to double tracelessness, which is in turn implied by (1.4.31)).
In a curved background, ® undergoes the gauge transformation

SDHL- s — D(()M1€N2~~Ms), (1.4.32)
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which ([1.4.30]) suggests that e®!%s—1 transforms in the following way:
det sl = Dyett-ds—1 (1.4.33)

where €*%-1 ig a completely symmetric 0-form. FEquation ((1.4.32) is the immediate generalization of

E320).

Now, let us compare the degrees of freedom of ® and e. There is no way to express the symmetry between
the world index ps and the fiber ones, so that e comes with some additional non-physical degrees of freedom
with respect to the Fronsdal field. This is depicted by Young tableaux as follows

e=Deo0=H—Herr 10 (1.4.34)

We already encountered a similar situation for the gravity vielbein in section There the issue was solved
by the gauge transformation (1.4.1)). Let us adopt that solution also in our case and generalize (1.4.33)) to

5621...%,1 _ Dgeal'“as*l _'_phubeal...a,s,l,b’ (1435)

where we introduced a dimensional quantity

p=v_h

and a new gauge parameter e*1+%-1 that has the symmetry of the first term in in the b and a indices
and, therefore, thanks to the background vielbein A, in the p and a indices. This new gauge invariance allows
us to subtract the unwanted degrees of freedom. From an analogy with gravity, we expect that the new gauge
parameter is associated to a 1-form field

et (1.4.36)

that plays the role of the spin-connection whose gauge transformation is a generalization of ((1.4.2)) and reads
5wa1...a571,b _ Doeal...as,l,b —p (hbeal“'%*l - h(aleaz.‘.a,&,ﬂb) (1437)

Before proceeding further, let us convert all the quantities into spin-tensors:
eal...asfl - 6041...045710[1...045,1’
Q1 @s—1 _y 6041..-013—10'41.--0'45—17 6a1...as—17b _>Eds—lﬁeal--.as—lﬁdl~--ds—1 +60.9—156041...as—10'é1..-ds—15

wal...asfl,b N eds,lﬁwal‘..asflﬁdl...d5,1 + Sas—lﬁwal'~~as—1d1~~~ds—1ﬁ

so that ([1.4.35)) and (|1.4.37)) become respectively

56&1,_%,1@1_@5,1 _ Doeal“'as’ldl"'d“l _ phgs—l6041-..045—15@1...(1572 _ phgsfl€a1---a572d1---d5715. (1.4.38)
and
5wa1...asa1...a3_2 _ Doeal...asa1...a3_2 . phgseaL..as_lal...as—zﬁ (1439)

Here we introduced a convention that we will employ throughout this subsection: spinor indices denoted by
the same Greek letter and of the same (un)dotted kind are implicitly symmetrized, with the rules explained
in the “Notation” appendix. Moreover, when we use the shorthand notation 7®(F)&() to mean T kb1
in the text.

Following the analogy with gravity, we need to eliminate the unphysical degrees of freedom of the spin
connection , which is a purely auxiliary field. To do so, we impose a torsion-like constraint:

Doeal"'as*ldl"'dsfl +pwa1...a571,3d1...d372 /\hgs—l _i_pwoq...asfgdl...dfs,lﬁ A hgs—l — 0 (1440)
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where the appearance of h®® instead of e®® is due to the fact that we are making a first order approximation,
where terms like e®@w®)%(5=2) are of second order. Relation is meant to allow us to determine
w()a(s=2) g w2 (s=2)a(s) a5 functions of e(s—als—1) just like happens for spin 2. We need to check, though,
if contains enough independent components to constrain completely w®®)(=2) and w*(s=2)a(s) By

using the spinorial version of (1.3.5)
hzahuad = quV7

a(s—2)

we can decompose w®(®) in the following way

1

a1..0s0...Gg—2 0.0 ...Os—2 VY .
W T T QW TR By
_ lw(m---asm---dsﬁ hl/’y)”'/h 4+ lwal---as—lﬁdl---d372 h”ﬁgvash )
- 47v HyY v B wyy
1 o . 1 L L
_ 1 (oqeeas(dreas—2 1 vy)Y) . L (e1easG s —3 B 7 V) L2y .
= Zuf 2 Vb + o et

1 . . VA 1 . . 5 .
Qg e %) Yo ay..as—18401...05_3B 1V _Yls—_3 YQs
s 18(an . ds—2 V) s 4 —w s Y e LTS
16 ¥ B Yy 39V 8B Yy
~ OO ... O ~ O] Qg1 . Og—1 ], O
%) 1 s+1¢1 s 1hu0¢s+1d5_1 +UJ 1 s—101 s 1hugs_1

~ Q] Qg1 . Olg—3 ], g — ~ Q] O —1 ] g —3 ], Qs Cg—
+CU 1 s+101 s dhuasil_i_w 1 s—1C1 s 3h’us s—2

and we see that the third term can not be determined by (|1.4.40)), since

a)al...asflﬁ'ydl‘..dsf;ghdS,Q A h2571 =0
’Y = U.

An analogous issue involves w®*=2)4(s) We may solve this problem by introducing a generalization of the

gauge transformation (|1.4.39)):

5wa1...asd1...d572 _ Doeal...asdl---ds—Q _ pth*QE(ll---OZSBdl-"dS*?’ _ phgseal”'asfldl"'d5726. (1441)

so that the new gauge parameter e*(*tD&(=3) is able to remove the unwanted fictitious degrees of freedom
encoded in @*(TDa(=3) - Moreover, we expect that this gauge transformation is associated to a new spin
connection-like field w®(s+1Da(s=3) that descends from w®®)*(5=2) and transforms according to

5wa1...a5+1d1...d5,3 _ Doéal"'a5+1d1"‘d573 o ph?yferlEal...asdl...dsfl‘y. (1442)

s—1)a(s—1) a(s—2) s—2)é(s)

we(sth)a(s=3) being auxiliary, should be expressed as a function of e , wo(s) and w( .
The equation that specifies this relation, should also be gauge invariant under ([1.4.42)), (1.4.41)) and (1.4.38]).
It is then clear that it should have a form that generalizes ([1.4.40]):

Dowal...asdl...(is,Q _i_pwozl...asﬁdl...ds,g A h2572 +pea1...a371d1...d5726 A hgs — 07 (1443)

where the fields involved have been identified according to the indices they carry. Again, just like ((1.4.40)),
(1.4.43) is invariant also under the following transformation

! a1...as+1d1...ds_3 _ ds_g a1...a3+1'yo’11...ds_4
0'w = —phJ=2e ,

which signals the fact that (T.4.43) is not able to constrain all the components of w®(sTDa(s=3)  Those that
are unaffected by (|1.4.43) can be anyway gauged away if we deform ([1.4.42)) into

> R e Y1 ... Gg— As+1 Y1 Gs—17 Ys— Y] .. Gg—
5wal Qs4+1071...005—3 :Doeal Qg410]...005—3 _ph/yg"r 6041 Qsy...0xg—17Y _phie SEOCI Qg4+17Q1...05 4.
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We can repeat this argument inductively and define step by step a wek+1)a(i-1) descending from wek)aD)
The same can be done with w®®=2&) and leads to the introduction of w®*=D&l+1) a5 the gauge field

associated to the gauge parameter e*(*~1Da(+1)  The spin s field is then represented by the following 1-forms

w Rl g4 =925 -2 k>0,
where we used w®—Da=1) in place of e(5= D=1 to simplify our notation, as we will often do in the
following. The Young tablea associated to the four dimensional form of w®*)4®) ig

:ZJ_rg::Dij (1.4.44)

The equations for the connections w*®4(!) that we have thus derived is

Dowal...as,prko'q..ds,l,k :phgs—l—k /\qu...as,1+kﬁo}1...d5,2,k +Phg$—1_k /\wa1~~-as—2+kd1~~~ds—1—k5 (1445)
and the related gauge transformations that leave them invariant are

5w041---Oés—1+k;0'41--ds—1—k; _ Doeoél---as—1+kd1---ds—1—k (1.4.46)

Gs—1—k Q1...Qg_11kPBAT .. g2tk QAs—1 _(]...00g_24 | O]...0g—1 kﬁ
_phﬁ € s + S +k _ ph € s + s + R

where 1 — s < k < s — 1 is some integer. It is clear that we could not write (T.4.45) for w®(s=2) or w*(2s=2),
since they can not have contributions from both the terms proportional to p. These two 1-forms represent a
tensor with the following symmetry

.s—1 .
.s—1 .

(1.4.47)

so that the 2-form .
Dot -02s—2 at...azs—30 A o252
ow + pw 4

and its conjugate, once one converts world indices to fiber ones, represent a tensor with a Young diagram of
the kind

S (1.4.48)

.S .

that we interpret as the higher spin curvature, since it reduces to the Weyl tensor in the gravitational case.
We may therefore write for w®(2s—2)

Dow®t 252 4 0102038 B = By, A g, O, (1.4.49)

This equation corresponds to (L.4.4) for spin 2. We will solve it as in section [L.4.1] by the unfolding
algorithm. Applying Dy to (1.4.49)), by using (1.4.27)) and (|1.4.45)) we find

0 =h, Ahjay,_, A DoC2, (1.4.50)
Equation (|1.4.50) is solved@ by
DoCO % = —phy, 4, CO02s 4101, (1.4.51)

2Tn this section all the Young tableaux are referred to the vector-tensor version of the fields.
13In order to see this, it is useful to go back to the vector-tensor formalism and write (1.4.50) as

Ray Ay, A DoCo 01 bs

that is solved by
_pha\+1 A Calmaerl,bL“buq _ Docal...as,bl.“bs.
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This equation is invariant under the higher spin gauge transformations.

Let us now apply Dg to (1.4.51)):

pho2T A hgaCO102e-18 = A DOt 0216, (1.4.52)
Equation (|1.4.52)) is solved by
Docal...a2_9+1d1 _ _Phag 2d20a1...a23+2o’z10’42 o phazso'a (o Q2s—1025+1 (1 4 53)
st . 4.

If we apply again Dy to (1.4.53), we get

pha25+1'7 A hﬂ70a1---a256d1 + phvdq A hwﬁ'Co‘l"'a%HB —
ha25+2a2 A DOCa1---Oczs+2d1d2 + pha25+1éé1 A hﬁdlCoq---0423—1042356417
and thus .
PRI N g CO 02510 = g, gy A DOt 0220162,
i.e. an equation of the same form as (1.4.52). We see then that the unfolding procedure goes on for infinitely

many steps, in each of which a tensor with one more couple of dotted and undotted indices appears:

.D()Calma2s+kd1mdk — —ph

s +k+1dk lcal-..a25+k+1d1...dk+1 _ phOLQSJrkdkCOtl.‘.a25+k,10‘41...dk,1 (1 4 54)
s + . E.

These correspond to the descendants of the Weyl tensor encountered in section and, by (1.4.24) are
represented by a Young tableau of the following kind:

SRS koo ] (1.4.55)

.S .

Our final result is then that to a Fronsdal field ® with spin s we can associate a vielbein-like field e with
s—1 dotted and undotted indices. e has some additional fictitious degrees of freedom, that can be eliminated
by some gauge transformations that involve e and spin connection-like 1-forms w*®)() such that

k+1=2(s —1). (1.4.56)

These obey equations that allow to determine systematically every auxiliary field by torsion-like constraints
and eventually to define a gauge-invariant Weyl-like tensor C*(2%) whose derivatives are parametrized by the
unfolding procedure as a series of tensors CRa(0) with

|k — 1| = 2s. (1.4.57)

The Fronsdal equations in AdS can be retrieved by solving the first two equations for the connections,
namely (1.4.40)) and ((1.4.43)), to get a differential equation of the second order, which, in the four dimensional
notation, reads

Qs — 2@t — DY Dy, @h2-#:)V 1 %Dg“lpg%/ﬂswﬂs) 20 g s = 0. (1.4.58)

m?=—-A((s—2)(d+s—3)—2) (1.4.59)

Equation is not simply obtained by replacing all the derivatives in ((1.1.19) with the covariant
ones. Indeed, the non-commutativity of the latter implies that one should add a factor % to the fourth term
in to get the same amount of terms after symmetrization. Moreover, gauge invariance under (|1.4.32))
requires a mass-like term m? given by that cancels all the unwanted contributions from commutations
of covariant derivatives. This does not imply that the fields are massless. Indeed, since in the AdS space
translations are not commutative anymore by , they cannot define a Casimir by P*P, = m?, so
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that mass is not connected with the irreducible representation of the symmetry group in which the fields we
are considering sit. The value of m? is fixed by the gauge and space-time symmetries satisfied by the field
equation.

The formulation of the Fronsdal theory we described here and in general of higher spin fields is called
frame-like, because it is a generalization of the Cartan description of gravitation by local inertial frames ej;.
The formalism involving ®,, .. ,,, which generalizes the metric field, is called metric-like formulation.

1.4.4 A hidden symmetry

Our analysis of a spin s field produces two sets of equations involving 0- and 1-forms, that take values in
the space of completely symmetric spin-tensors. Each set is characterized by equations that share the same
form, even though applied to tensors with different ranks. Moreover, there is no particular difference between
those involving two different spins. This hints that it is possible to pack them all into two equations involving
respectively the w and C fields for all spins.
Let us thus define
R .
w($7y7g) = Z mwal.uakal...al (x)yal e yakgdl U gé&l (1460)
k=20
=0
+o00 1 ) _
C(ﬂ?,y,g) = Z mcalu.akal...al (x)y(n e yoﬂcgdl U gdl (1461)
k=0
=0
400 1 ) _
€(ﬂf7y,§) = Z mealmakalmal (x)yoq o YarpYar 0 Yeys (1'4'62)
k=0
=0

where y, and g4 are two auxiliary spinors that have the purpose of incorporating every tensor we encountered
into a scalar function of y and ﬂ It is obvious that these functions are C* in y and y and form a vector
space, that we call .7 (y,y). We see then that if one considers all spins together, all the fields that describe
them belong to the same vector space .#(y,y), that may thus be assumed as the fiber space of the higher
spin theory. On the other hand, if f € % (y,¥), it can be written in its Taylor expansion around y =y = 0 as

+00
[y, 9) = Z SOty Yoy Yo Yy
k=0
1=0
for some suitable tensor coefficients f@1--@%1--4  They are symmetric in every (un)dotted index, since, if it
were not so, by means of ((1.4.23)) we could write for example

1 1 1
forezy o, = <2€a1a2f’7’y + 2f(a1a2)> You Yoy = 5f(ozwzQ)yoqya27

!4 These functions must be even under y, 3 — —y, —7, namely

because of (1.4.56) and (1.4.57) and thus belong to a subspace of .% (y, ). However, for simplicity, we will leave this implicit in
the following. It is interesting to notice that this restriction comes from the fact that the vielbeins ef are built from tensors ®
by . If they came from by spin-tensors, namely if we were considering also higher spin fermions, we would have had also
odd functions. The resulting theory would not be much different from the one we are going to develop.
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and only the symmetric part survives. These tensors span thus a basis for .# (y, y) and in the four-dimensional
formalism, have the symmetry properties of one- and two-row tableaux, as shown by (1.4.25) and (|1.4.24]).
In this settingF__g] equations ((1.4.45)), (1.4.49) can be reformulated in the following way

9*C(z,y,0)

a , 1.4.64
’Y 2 8 alaon ( )

9?C(z,0,7)
+ hll A hdzva-i

0
w—hEAYyy—w = h7 A hs
B Yo ydlagdg

ngpow—thgd —
8y6

0
0yg
where 5 9

Do = d— ofya2 — wiga0-
acts as the covariant derivative and & is a differential operator acting on p-forms that are functions of
z,y, and y. Indeed, (|1.4.64]) can be expanded in a power series of y and ¢ and imposes on each tensorial

coefficient the proper equation from ([1.4.45)).
Let us clarify this point by an example. Consider the contribution from

derivative acts directly on the yy term of w(z,y,y)

%walo@ Ya1Yas- Lhe covariant

1 1
Do (2 am%lyoﬂ) 3 (d‘”alaz + @ + wwﬂ“gl) Yoalaz,

while derivatives ai and multiplications by y select terms with respectively one more and and one less
undotted index, so that, in order to get tensors with exactly two undotted indices, we have to refer to the
term proportional to yy:

1 .
( a1a2yalya2) [ (h(fll /\wo&)ﬂ) Yo, Yers -

0
6

Finally, C(z,y,0) selects the C tensors with only undotted indices and therefore we recognize (|1.4.40) for
spin 2 particles in the component of (|1.4.64]) proportional to %yalyaz.
Similarly, the gauge transformations (1.4.46]) can be encoded into
5w:@€:Doe—hg/\gjd

—h% A Yag— (1.4.65)

0
83/6 oy yﬁ

Since w(x,y,y) is associated to a gauge invariance under a parameter that lives in % (y,y) too, it should
be related to a connection taking values there, so that (1.4.65) plays the role of (1.3.25). We may then
see w(z,y,y) as a perturbation of the background AdS connection 2 and write the complete connection

W(z,y,y) € F(y,y) as

W(z,y,9) = Qz, y,9) +w(@,y,9), (1.4.66)
where the first term is the zero order contribution to W (1.3.28)) and w is of first order. We recognize then
2 as the zero order action on Z(y,y) of Dy = d+ W = Dq, the covariant derivative associated to W, and

(1.4.60) as the linearization of
Ry =dW +W AW =dQ+QAQ+dw+ [Q,w] + Ow?) = dw + [Q,w] + O(w?) (1.4.67)

where we used the fact that Rg = 0. Ry is then the curvature form, represented by the r.h.s of ,
where it is thus natural for the Weyl tensor to appear. Moreover, the terms proportional to the background
vielbein in are those that come from the action of the h* P, part of Q on w.

Our aim, now, is to find a suitable product that renders #(y,y) a Lie algebra, that we call higher spin
algebra hs(l 3) This algebra must contain as a subalgebra s0(2,3), defined by M?, P* and the commutator

relations and (| m

5Here we put p = 1, for simplicity of notation.

39
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First of all we need to define a product x on this space that is not commutative. Given f(y,9),9(y,y) €
hs(1,3), the right choice is

fxg= fexp —Ee z exp Es E g (1.4.68)

Oy " Dys Oga Py ) -
where the arrows indicate on which factor the derivative acts. (1.4.68)) defines the Lie bracket on hs(1,3) as
[f9l,=f*g—g* T (1.4.69)

It is clear that this definition transforms elements of #(y, %) in other members of that space. is
bilinear, as derivatives and multiplication in are, while the alternating property follows from the fact
that [-, -]4 is built as a commutator. This also implies the Jacobi identity, because it can be shown that * is
associative. hs(1,3) is therefore a Lie algebra and, contrarily to the ones usually used in Physics, is infinite
dimensional.

We now show that this definition reproduces the known commutation relations for the so(2, 3) sub-algebra.
If we use the following representation for the SO(2, 3) generatorsFE]

1 1_ 1
Ma,@ = §yay/8> M@/j = _Eydyﬂ'a Pag = iyayﬁ'
[Po, Pﬁﬂ-]* reads
1 _ 1 _ _ 1 _ 1 _ B 1 1 o
qYe¥ax Yy — 1YsYs > Yala = YaYalYpYp — S YBYsYale + 1CapYals — S CaplYals
1 1 o 1 1
_155'@3/5%1 - Zgﬁaygyo} - 160458&3 + 16@65@
= €Q5Md5 + 8d5Ma5
while
1 _ 1 _
[Paco Mygsle = = ¥aba x gy + 19505 * YaTa
1

1 _
_iedgyay‘y - §5d"yyayg
—eaploy —eailyp

and similarly
[Pacs Mgyl = —€apPya — €ayPpa

They correspond to (1.4.28) and (1.4.29)) and therefore, also the [M, M] commutators are correctly reproduced
thanks to the Jacobi identity.
In order to use €2 as a connection we need the following bracket:

_ _ of of
Pos Yl = —Ya€aBn — T Yafypa-
[Pac, f(y,9)] Yatap g, T YaCas o1,

We then see that we can rewrite 2 adl’]

-@f:df+waﬁ [Maﬁaf]*+wdﬁ' [Mdﬁ'af:|*+had [Padyf]*:df—{_[gaﬂ*’

Y6Their form is determined by the indices they carry.
11t is important to remember that for general p-forms, the wedge products give additional signs to the star products and this
can transform some commutators in anti-commutators. For example, @w®”’ [Mas,w], = {w,w},.
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i.e. the first order approximation of the covariant derivative associated to hs(1,3) acting on p-forms with
values in hs(1,3).
Let us now write the equations associated to C' (|1.4.54)) in the new formalism:

0*C

9C = DyC + hwm

+ h%G4yaC = 0. (1.4.70)

We see that this time we had to define a different operator on hs(1,3) 2, that acts differently in the part
involving P,s. However, if we consider the anti-commutator between P and some f € hs(1,3),

(Pas. 1Y, = o] — gyt —
acs J S5 = Yala aBsp 8%32/5 ,

we find that .
9f = df + @ My, f], + = [Mdﬁ-, f] + ph®S {Pas, £, . (1.4.71)
*

The representation in which Q acts in (1.4.71)) is called twisted adjoint representation and can be realized as

Qs f — fx7(Q),

where 7 : hs(1,3) — hs(1,3) is an automorphism of the higher spin algebra defined by

m(f(y,9) = f(=y.,9). (1.4.72)

We can thus interpret (|1.4.70]) as the Bianchi identity of the curvature C.

In light of these results we understand now why it is necessary to have infinite spins in the theory, as
hinted by one of the yes-go examples in subsection [1.2.2} h(1,3) does not have any finite subalgebra besides
50(2,3).

1.5 Turning on interactions: the Vasiliev equations

As for now, we treated all higher spin fields as perturbations around an AdS background, so that the resulting
equations of motion are linear. Here we present their extension to a full non-linear theory, which was found
by Vasiliev in [37] for the four dimensional case and later extended to any dimension in [3§].

In general, the full non-linear equations of motion should be of the same form of and :

AW +W «W = Ry (1.5.1)
dRw + W % Ry — Ry x (W) = 0, (1.5.2)

where ((1.5.1]) encodes the higher spin curvature 2-form associated with the connection l—form[ﬂ An integra-
bility check, namely the verification that (1.5.1) is consistent with d? = 0 gives

AW « W — W xdW = dRy .

Inserting (|1.5.1)) in this expression, one gets, remembering that the representation of Ryy is the twisted adjoint
one,

dRw = Ry x7(W) =W« W« W — W « Ryy + W « W = W,
i.e. (1.5.2), the Bianchi identity for the curvature.

!%Here the * product incorporates also the A product.
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The curvature was implemented in the previous subsection as a O-form C that was promoted to a 2-
forms by the two vielbeins contracted with y derivatives in . This complicates the treatment in the
interacting case, because h is part of W.

A solution to this problem is to provide our space with additional spinorial coordinates z® and z%, to
which the 1-forms dz®,dz® are associated. These coordinates, along with y and 7, are called twistors. We
can use them to produce 2-forms

dz® Ndze, dzZ% A dzg. (1.5.3)

with which we can construct the curvature without the necessity of derivatives in y, since the 2-forms (|1.5.3))
carry no indices. We then define

Rw = R+ R = B(z,y, 2)dz* A dzo + B(z,y, 2)dz% A dz, (1.5.4)

by a 0-form B(z,y,z) on the extended space. Also the connection has to be coherently replaced with a new
one that depends also on z, z:

W (z,y) = W(z,y,2) = Whdz, + A%dzy + A%dZs. (1.5.5)

The differential d must similarly be extended to d = d, + d, + dz, where we denote the one acting on x as d,
and those on the coordinates z and z as d,, ds. Finally, we define

F(f(yvga Z, 2)) = f(_yvgv —Z Z)7 ﬁ-(f(yvga 2, 5)) = f(y’ —Y,z, _2)7 (156)

the generalization of the twisted automorphism (|1.4.72) and its complex conjugate.
In order for (1.5.1) and (1.5.2]) to make sense, it is necessary to give a definition for the Weyl product
that involves also z and z and that we denote by %. It turns out that z, z should be dual to y,y, namely

= 2698, {ZQ,ZB} = —2¢%8

*

el =Bl =0, [%F] =0 [

whereas (1.4.68)) gives

*

{yaaﬂﬁ} =0, [ya,yﬁ} = —2¢%8, {gé‘,gﬁ] — 248,

The correct extension of (|1.4.68)) is thus

A B AV S B AV N AV E B A\ U
I= TN Oy T 020 ) P\ Oys 925 0ga | 0z ) 9\ ay; 0z,) )7 -

where f = f(y,9,2,2) and g = 9(y,7, 2, 2)
By (.5.7) we can realize the automorphisms 7, 7 in (I.5.6) ag"|

m(f)=rkxfxr, 7(f)=R*xf*Rk
kxk=1=RK*R (1.5.8)

@ _ —Q s,
k=eY P, R=e¥ P,

19Tn order to prove these identities it is better to employ an alternative definition of %, equivalent to (1.5.7):
fxg= /d2ud2ﬂd2vd217f(y+u,gj+ﬂ,z+u,2+ﬂ)g(y+v,g+6,z — 0,z —D)e" VT e
where integration is performed along (1 + ¢) R for u,v and (1 — ¢) R for @, ¥ for convergence reasons.
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Then the proper equations for the interacting theory read

AV +W*W =R+ R
dR+ W+ R — Rxn(W) =0 (1.5.9)
dR+WxR—Rx7(W) =0

or, by defining R = R*k, R = Rx &, »~multiplying the last two equations in (1.5.9) by Iﬁ@ and using (1.5.8)

AV +WrW=Rxk+Rx*FEk
dR + W, R], =0 (1.5.10)
dR+ [W,R], =0

The connection W can be gauge transformed by
W =de+ [W,€|,, e=e(r,y,7,22)
and the related transformation of B reads
0B = Bx*m(e) —e* B.

Equations ({1.5.10) acquire a simpler form under the redefinition

A% =2 (8" +2%), A% = (8% +2%),

DN |
DN | =

that allows us to eliminate the derivatives on z, z coming from the differentials by

[f, 2%, = =200 f
and its complex conjugate. The result of this operation is

AWy + Wy x Wy =0 dyB4+W,*xB—Bxm(W,)=0
dp S + Wy, 8°], = 0 [SO‘, SB] — 4c%8 (1 + B x k) (1.5.11)
[S*, Bxk] =0
[S%,58%] =0
and their complex conjugates.

Until now we did not impose conditions (1.4.56) and (1.4.57)) that insured the fact that VW and B describe
bosons, namely

W(_y7 _ga —%, _2) :W<y7§7275)7 B(—% _gv _27_2) = B(y7§7275)7 (1512)
(see (1.4.63) in a note of the previous subsection). By ([1.5.8) we can write (1.4.63) in a simple way:

kxR*Wxkxk=W, kxRxBxk*k=DB. (1.5.13)

2ONotice that from
dz® ANdzP ANdz" =0, dek=0

follows
dR*k =d(R*K)

and the analogous statement for the conjugated quantities.
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Equation (1.5.13)) for S%, which is present in (|1.5.5)) multiplied to dz®, is equivalent to the following condition:

KxR*xS*xR*Kk=—S% (1.5.14)
We then get from the third of (|1.5.11])
0 = S*xBxkxk—B*xkxS%%k
0 = S**BxkExk+BxrxS%Kk*xk*xK
0 = {S* Bxx},, (1.5.15)

where we used in the second step and x-multiplied both sides for k x K x x in the third one. System
supplemented by counstraint constitute the Vasiliev equations, that describe non-linearly
interacting higher spin fields.

It is possible to generalize these equations, for example by substituting B in the first of with f(B)
for some analytic odd function f that can be expanded in a x-product series. It can be shown that the only
theories that are parity-invariant are, up to redefinitions, those with f = 1,4. They are called respectively A
and B type. However, in the following we will be interested in a model that is simpler than the one presented
so far, namely the restriction to even spins. The latter is achieved by defining the inversions ¢4

v (f(y,9,2,2)) = fliy, £iy, —iz, Fiz), ([ xg) = u(g) *(f)

and imposing

Li(W) =-W, «(B)=B. (1.5.16)

We can understand why it is so by examining the linearized case, where w, the first order contribution to W,
was restricted to contain in its expansion only terms of the kind

W' @', k+l=2s-2
for a spin s by (|1.4.56[). Under ¢ these terms transform as

W ) — {(y)k @) k+l=4j e

j . o
~ W) @) k+i=4j-2

and we see that we fall in the first case for odd spins s = 2j + 1 and in the second for s = 27, for which
then w — —w. Similarly, C', the linearized version of B, was allowed by (|1.4.57) to contain only terms with
|k — 1| = 2s and, under ¢_ they transform as

ko J@R @ k—1=4j .
W (yH{—@)’“(y)’ poi=gjo TSN

and we get C' — C for even spins.
Let us conclude with a comment on the twistorial extension of the space. Notice that the first equation

of is a zero curvature condition
AWy + Wy x Wy =0 (1.5.17)
and thus its solution can be put in the following form:
97 (.Y, ) x dug(z. Y, 7),

for some arbitrary function g. Indeed, from
dy (gil * g) =0
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we get

1 1

dgt=—g ' xdegxg”

and then (1.5.17)) follows directly. These solutions are called pure gauge, because there exists a gauge
transformation that makes them Vanish@, namely the one with parameter g: using (|1.3.22)) we get indeed

1 1

W, = gxWyxg  —dg*xg~
= gxg 'xdgxg t—dgxg?
— 0.

These transformations do not eliminate the dynamical degrees of freedom, that are just shifted in the twistorial
space. Its function is then to encode part of the physics in order to render the Vasiliev equations as simple
as possible.

21This is a general fact: no curvature means that the space is W,-flat and therefore describable by a vanishing connection.
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Chapter 2

AdS/CFT for higher spin theories

This chapter is dedicated to the Klebanov-Polyakov conjecture that relates the Vasiliev higher spin field
theory in AdS, with a conformal quantum field theory of scalars in a flat 3-dimensional space. In particular,
correlation functions of the latter can be found by computations that involve the fields of the former. This
correspondence between two field theories, one classical living in an AdS,41 space and the other quantized, set
in a d-dimensional flat space, is just an example of a more general class of conjectures that have been verified
in numerous examples but not yet proven. The aim of this thesis is to present a test of the Klebanov-Polyakov
conjecture.

In the first section, we give a short review of the first and best known of the so-called AdS/CFT con-
jectures, the Maldacena correspondence. We will focus on the most salient features and we will specify the
formalism that realizes the duality in the second section. Then, we will present in a field theory that
shows some remarkable properties that will lead us to the formulation of the Klebanov-Polyakov conjecture.
We dedicate the last part of the chapter to some checks of this duality.

2.1 The original Maldacena conjecture

The Maldacena conjecture is a duality between a classical supergravity (or, more generally, string) theory
set in AdS5 x S° space and a supersymmetric quantum theory of gauge fields living in 4 dimensions and
possessing conformal symmetry. For this reason, in the next two sections we will treat some basic aspects of
conformal theories, that will be later investigated in more detail in chapter 3] and the geometric properties
of the AdS space.

Since the duality stems from string theory, in subsection we give a very brief introduction to strings
that will be focused on the aspects that brought Maldacena to formulate his conjecture, which will be finally
stated in the last subsection.

2.1.1 Conformal symmetry

In the following, we will consider theories in flat space that share an enhanced symmetry: conformal invari-
ance. Conformal Field Theories are generally labeled C'F'T,, where d stands for the dimensions of the space
in which they are set.

Let us start with the simplest example of a CFT': a free theory of massless scalars in d dimensions:

1
Sepfree = /28M<pa“g0ddx. (2.1.1)
The field ¢ has the mass dimension A = %. Now, if we rescale all lengths according to
r — Az, (2.1.2)
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we expect that
p(z) = ¢'(2') = AP p(@) (2.1.3)

and therefore
l 1 F oINS, N gd
pfree T §au(p ('T )a P (.I‘ )d €T

= / %)\22;2(1_28M<p(x)8“<p(x)>\dddaz

= Sgofreea

namely the free theory is invariant under rescalings. More in general, if p(z) is a generic field sitting in some
arbitrary irreducible representation of the Poincaré group, the generic action that describes it is

Slel = [ £leta), dp(a))d (2.1.4)
After a rescaling (2.1.2)), takes the form
S'[y'] = / L' (Az), \Log' (Ax)) N0z,

Since we consider only local actions, namely those that are polynomial in the field and its derivatives, it is
clear that in order for to be invariant under rescalings, the A factors arising from derivatives and the
measure of integration must be compensated by the transformation law of ¢, which has to rescale according
to equation (2.1.3)). In this context, we call conformal dimension (or weight) of ¢ the parameter A appearing
in . For example, in an interaction term like

/ d'zgeP (x),
the power p is fixed by conformal invariance and the weight A as

o d
b= A
Scaling invariance is often associated to a broader symmetry, that involves transformations whose result
is to rescale the metric of a space by a factor that may depend on the point.

(2.1.5)

Ozt oz¥
g;w(x) - C(l‘)gw/(x), <~ Wguu(x)w = C(I>ga5(x) (2'1'6)
Transformations of this kind include rescalings z* — Az#, for which c¢(z) = A2 and Lorentz transformations,
for which ¢(z) = 1. A less trivial example is the inversion z# — 2—;‘ that acts on g, as

o - )

9as(7) = g 9w) 50

5 o
— <$3 — 2m“:va> Guv () <$§ — 2z :1:5>

1
= ——=0a3(x). 2.1.7
(.I2)2 aﬁ( ) ( )
These symmetries form the Conformal group Conf(1,d — 1), the in-depth analysis of which we postpone to
section Here we just anticipate that

Conf(l,d —1) ~ SO(2,d) (2.1.8)
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(see subsection [3.1.2)).

Fields are called primary if under the action z — 2/(x) of the conformal group they transform as follows:

71—

0
det ar

o P (2.1.9)

p(r) =

Equation (2.1.9) generalizes (2.1.3). The free scalar theory presented at the beginning is a typical example
in which scale invariance is extended to a full conformal invariance. Taking the determinant of (2.1.6]) we see
that

2
a
c(x) ot

and therefore the transformation of (2.1.1)) under (2.1.9) can be written as

1
L = [ 300

1 4 a ,,0x¢ Oz _d g
= /20 277“”8;5/#80‘(‘0@85@0 2d%z. (2.1.10)
1 _ _ _ _
/ 5 (26%900;6%8/“30 + (,026126%8/”6%) dda’ (2.1.11)
If we now consider the matrix
o 1 0z
A H = 1 ) '’
‘det% 4 0T

we see from (2.1.6), using g =7, that A is a Lorentz transformation by definition
AaunaBAﬂu = TNuv

and thus line (2.1.10) coincides with S, fyee in (2.1.1). For S(’pfme to be conformally invariant, then, line
(2.1.11)) should vanish. Let us perform an integration by parts of the first term to get

1 _ _
2.1.11) = /2 (—c%goz(?’“a;c%> diax’
and we see that (2.1.11)) is zero if

A
2

I*o,c2 = 0. (2.1.12)

We see that the so-called Weyl factor ¢ is constrained by (2.1.12)). We will find a condition equivalent to
(2.1.12) when we will analyze in full generality the conformal groupﬂ
These considerations allow us also to better understand (2.1.9]) in the case of tensors:

A
oz’ |4 9 Oxv*
(pltl--llk(x> —  |det Oz ERUTE mwm..uk (x)
_ a2 AVL AT () (2.1.13)
ox M1 Mlgpﬂlnﬂk (e

and we see that conformal transformations act as rescaling plus a Lorentz transformation due to the tensorial
nature of the object.

'Indeed equation (3.1.9) is just (2.1.12)) when one considers infinitesimal transformations 2'* = z* +¢* and c(z) = 1 — 20 ¢,
namely

%m@af:a

49



2.1. The original Maldacena conjecture Chapter 2. AdS/CFT for higher spin theories

2.1.2 The Anti-de Sitter space

In presence of a negative cosmological constant A, a maximally symmetric solution of the Einstein equations
ind+1 dimensionf] in vacuum )
RMN _ 2 MNp _ p\ MN
29 g
can be found by embedding the d+ 1 dimensional space-time into a d+ 2 flat space as a (pseudo)hyperboloid
that obeys

d
(X°) + (Xd+1>2 -3 (x)? =12 (2.1.14)
=1

where X9*! is an additional coordinate and L is the curvature radius related to A by

(d—1)d

A=—
212

This solutionlﬂ is called Anti de Sitter space AdSgy1. As we have shown in section the isometry group
of AdSg41 is SO(2,d). Note that the antipodal map, that acts by sending XM, X+ into — XM, — xd4+1
belongs to this group.

Our goal is to find a suitable set of coordinates to describe the AdS space that makes the metric form as
simple as possible. In general the AdS metric is given by the pull-back of the flat (d 4 2)-dimensional metric

d
2 .
ds? = (ax°)” + (ax )" = 3" (ax?)*, (2.1.15)
i=1
i.e. by expressing one of the coordinates as a function of the other by means of (2.1.14)) and substituting this
expression into (2.1.15). However all the coordinates in (2.1.14)) appear quadratically, so that each of them

is related to the others by a square root, which complicates all computations. Due to the time-like nature of
the new coordinate X%+1, it proves useful to employ “light-cone” coordinates

w= X4 X p= x4 x4 (2.1.16)
Indeed, (2.1.14)) becomes
d—1
uv—l—(XO)2— (XZ‘)Q:L2
i=1

and solving for v now involves no square root

B (00 YD ()
v = =1 : (2.1.17)

2From now on we will employ capital letters like M, N to denote indices of tensors in AdSqy1 and Greek letters as p,v, p
for indices that can go only from 0 to d — 1. Analogously, the (d + 1)-dimensional coordinates are denoted by X™, while the
d-dimensional ones are xz*. These conventions are listed in the “Notation” appendix.

3 Actually features time-like closed world-lines, which would allow to a particle to travel backwards in time. This is
not physically acceptable, because it spoils causality. The existence of these curves can be seen by considering a curve v(7) in
the (d+ 2)-dimensional space which obeys (70)2 + ('y’i+1)2 = L? and v™ = 0 for M # 0, namely travels on a circle. The tangent
vectors of + are time-like and, from it follows that () is in AdSg41. In general tells us that topologically
AdS4y1 is S* x R? and therefore has a non-trivial first group of homotopy, which corresponds to closed time-like loops. A solution
to this issue is to take the universal cover of this space, that is then considered to be the true physical solution to , since
locally it is indistinguishable from the pseudohyperboloid.
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Equation (2.1.17)) is not well defined for u = 0 and therefore we have to assume either v > 0 or u < 0.
Since AdS is naturally divided in two patches related by the antipodal map, we would like to identify them
according to the sign of u. This can be done by performing a rescaling on X*

X“E%:p“ 0<u<<d-1,

so that the antipodal map is realized by © — —u. From now on we restrict ourselves to v > 0 and use the
standard flat metric 7, to contract z#. Using

L2 zhx, 2u
dv = <_u2 -2 ) du — ﬁx“dacu

the pull-back of (2.1.15)) is then

o
ds? = dudv + (deﬂ + deu> (%d:cu + x—L"du)
L?  atx 2u u? xt zhz
= (u2 — L2N> du? — ﬁx“dxudu + ﬁdx“d:p# + 2ﬁudxudu + LZ“du2
L? u?
= —Eduz + Fzdatdz, (2.1.18)
It is also useful to define an alternative form of (2.1.18)) by the change of variable
L2
z=—, 2>0,
u
The resulting metric is
L2
ds® = —2(—sz + dztdz,,) (2.1.19)
z

We will refer to (z,z") as Poincaré patch coordinates.
Metric (2.1.19)) is said to be conformally flat because it can be turned into a flat metric by a local rescaling
and therefore by a conformal transformation. The spatial infinity, namely X? — oo (i = 1,...,d) or X9t — oo

by (2.1.14), is situated at v — £oo by (2.1.16)) or z — 0. In this limiting point, (2.1.19) assumes the form of

the usual d-dimensional flat metric and therefore the boundary at infinity of the AdS space is given by the
d-dimensional flat space. This is the geometrical ground for the AdS;1/CFT, correspondence.
2.1.3 Some basic facts about superstrings and branes

The Maldacena conjecture has its roots in Superstring theory. Strings are a generalization of point particles,
in that they are 1-dimensional physical objects that one can picture as short deformable lines. At fixed time,
they are described in some space-time with dimension D MP by the coordinates X™ of each of their points,
identified by some parameter o € [0,1]. During their motion, they span a 2-dimensional manifold in space,
called world-sheet, that generalizes the world line. Therefore we need an additional parameter that plays the
role of proper time for the string: 7. The world-sheet is thus determined by a function X :— [0, 1] xR — M?P:

X™(o,7T). (2.1.20)
There are two types of strings, the closed ones, for which
X™0,7)=X"(1,7)

and the open ones, for which the endpoints do not coincide. One may then impose two kinds of boundary
conditions on each endpoint coordinate X (0,7), X" (1,7) independently: Neumann, for which they are
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free to move but 9,X™ = 0, and Dirichlet, namely 0, X" = 0. In this latter case, the ending points are
constrained to belong to some (p+ 1)-dimensional hyperplanes of M | the so-called Dp-branes (the D stands
for Dirichlet, here).

The world-sheet can be also seen as a 2-dimensional space-time, where o is the spatial coordinate and
7 the temporal one, and the X™ coordinates as d scalar fields. By this identification, a suitable action for
strings can be written with a dimensional parameter o’ is thus introduced, a squared length, the so-called
the Regge slope. Upon quantization of this bosonic world-sheet field theory, it can be shown that the excited
states of the X™ fields represent in the physical space-time particles with masses proportional to o/ ~! growing
with the spin s and that belong to a discrete infinite set, the Regge trajectory. Closed strings give rise to
particles represented by tensor fields with even rank. Rank 2 tensors are the only massless ones{zﬂ one is
antisymmetric and is called Kalb-Ramond field, the other is associated with the graviton. Similarly, open
strings represent every integer spin and s = 1 is the only massless mode.

Strings can interact with each other and the coupling constant is universal and denoted by gs. It is then
possible to analyze the theory perturbatively in powers of g; and derive transition amplitudes in a way that
is analogous to the computation of amplitudes in Quantum Field Theory by Feynman diagrams.

As for now we have considered only the bosonic string, that gives rise only to bosons. Fermions can be
introduced too, by adding to the world-sheet D fermionic fields ¥ (aw = 1,2). Then the world-sheet action
is supersymmetric and so is the resulting space-time theory, called Superstring Theory. It is possible to show
that the world-sheet quantum theory is anomaly-free and hence consistent only if D = 10.

The Maldacena conjecture consists in a duality between two specific open and closed string theories. Let
us analyze them separately.

2.1.3.1 Closed strings and black 3-branes

Closed strings generate spin 2 massless modes that are therefore associated with a gravitational interaction
propagating in the whole MP. In the supersymmetric case, there are several consistent nonequivalent closed
string theories. Here we consider just the IIB type. In the limit o/ — 0, this theory is equivalent to the
type IIB supergravity theory, a classical theory that is one of the supersymmetric extensions of General
Relativity. Its field content consists in a graviton, its superpartner gravitino with spin %, the Kalb-Ramond
field mentioned previously, the Ramond-Ramond fields with even rank, namely gauge fields that are p-forms
with p even, a scalar dilaton and its superpartner dilatino. In this setting, a possible solution of the equations
of motion of the metric is the black p-brane, namely a higher dimensional analog of a black hole. Let us

consider a stack of N coincident 3-branes. The resulting metric reads

1 L\*
ds* = ——dztdx, — /1 + | =) di-dy, (2.1.21)
4 ]
1+ (é) /
Y

where z# are the 4-dimensional coordinates of the brane contracted with the usual metric 7,,, ¥ are the 6
directions perpendicular to the brane contracted with the euclidean metric, y = /-y and L is a length
given by
1

L= (4rNgsa)*. (2.1.22)
The isometries of (2.1.21)) are the rotations in the subspaces that are parallel or orthogonal to the brane,
namely elements of SO(1,3) and SO(6) respectively. Far away from the black 3-brane, at y — 400 the
metric (2.1.21) becomes constant, so that in such region the space is asymptotically flat.

Near the horizon, namely where y — 0, we get

ds? 128 y—zda:“dm - Ljd 2 L2d0? (2.1.23)
12 HT 2 Y 5 L

“There is also a massless scalar, the dilaton, that we will not be concerned with.
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where we used the 6-dimensional spherical coordinates and wrote dQ? to denote the line element of the 5-
sphere S°. We recognize in the first two terms of the AdS metric and therefore we see that
near the horizon of a D3-brane the space looks like AdSs x S°. Particles situated there are trapped in the
gravitational well, so that they decouple from those propagating at y — oc.

2.1.3.2 Open strings on D3-branes

Due to the fact that they can generate massless particles with spin 1, open strings are naturally associated
to gauge fields. For instance, for the bosonic string, the ending points attached to N coinciding Dp-branes
behave as U(N) gauge fields living in a (p + 1)-dimensional flat space-time, i.e. the subspace of M® given by
the brane. Actually, it is possible to write an action for the fields in the brane, the Dirac-Born-Infeld (DBI)
action, that in the limit of o/ — 0 reduces to Yang-Mills one.

In the supersymmetric case, on D3-branes and for a small o/, one can obtain the super Yang-Mills N' = 4
SU(N) theory, that is a conformal gauge theory invariant also under supersymmetric transformations with 4
fermionic supersymmetry generators. This implies an additional SU(4) global invariance, called R symmetry.
Since SU(4) ~ SO(6), this corresponds to the fact that rotations in the 6-dimensional sub-space orthogonal
to the 4-dimensional brane leave the latter invariant (SO(6) is also the isometry group of S°).

The spin 1 fields generated by open strings living on the brane, interact with closed strings that propagate
in the whole MP. In the limit o/, gs — 0, the DBI action prescribes a coupling with the (super)gravitational
background given by

Gio x goa'™,

the 10-dimensional Newton constant. This small coupling implies that, away from the branes, supergravity
behaves as a free theory, decoupled from the particles on the branes.

Let us now consider a further contact point between strings and quantum field theories. 't Hooft showed
in [40] that the Feynman diagrams of a gauge theory with symmetry group SU(N) and coupling constant g
admit a limit for NV — oo if the so-called 't Hooft coupling

A= ¢’N (2.1.24)

is kept fixed. In this limit, they can be put in correspondence with those representing scattering amplitudes
in a certain string theory with

gs = g°. (2.1.25)
2.1.4 The Maldacena argument

We have presented two theories, each involving N 3-branes. In the limit for o/ — 0 they share two symmetries:

1. A SO(2,4) invariance, realized as the conformal group (see (2.1.8))) for N' =4 SU(N) Super Yang-Mills
living on the 3-branes and as the isometry group of AdSs near the 3-branes.

2. A SO(6) global symmetry, realized as the R symmetry and as the isometry group of the S® coordinates
of the space near the branes.

Moreover, in both cases we saw that the region far from the branes is governed by free supergravity around
a flat space, decoupled from the particles that propagate near the branes. To reach this conclusion for open
strings, we assumed that also

gs — 0. (2.1.26)

On the other hand, if we keep fixed L, o’ — 0 imposes

gsN > 1, (2.1.27)
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by (2.1.22). Limits (2.1.26) and (2.1.27) together imply N — oo and therefore, in the open string side we are
considering the ’t Hooft limit of the gauge theory in presence of a strong ’t Hooft coupling A = gsIV
(see (2.1.24) and (2.1.25))).

The fact that in both settings away from the branes physics is the same, while near them it is governed
by two theories with the same symmetries, led Maldacena in [41] to conjecture that those two theories should
be dual as prescribed by the famous AdSs;/CFTj correspondence:

A super Yang-Mills N' = 4 SU(N) theory in 4 dimensions with a strong coupling X in the
large N limit is dual to type IIB supergravity in a AdSs x S° background.

In particular this suggests that the 't Hooft limit relates this gauge theory with type IIB superstrings.
Moreover, one can think that this CEFT lives at the boundary of AdSs x S°, where supergravity is set. We
will refer to this space as bulk in the following.

One of the reasons for which this duality is so important is that it relates a perturbative and classical theory
in the gravitational side, with a strongly coupled quantum field theory that cannot be treated perturbatively.
This allows one to study properties of the field theory that would be otherwise much more difficult to find.

2.1.5 Holography basics and Witten diagrams

As for now, we just noticed the similarities between the theory at the boundary and the one living in the bulk
and stated that they should be dual. In this section we specify further this point and develop a formalism
that allows us to translate some statements of one side of the correspondence into the formalism of the other
side. We will do this by considering a more general case of a correspondence between a classical theory that
lives in a space that is asymptotically AdS441 and a conformal quantum field theory in d dimensions, without
any further specification. Our results are a realization of the holographic principle of which AdS;/CFTy is
an example. We will later apply them to a bulk theory of interacting higher spin fields to formulate the
Klebanov-Polyakov conjecture.

To simplify our computations, we will use a Wick rotation on the metric of the boundary theory. This im-
plies that 7,,, = —d,, and that the signature of the AdS metric varies accordingly: sign(garn) = diag(—..., —).

2.1.6 Bulk-to-Boundary propagators

The simplest theory that we can have in the bulk is the one that contains only some free scalar field ¢(X) with
mass m. As for now, we do not try to specify what is its dual on the boundary. ¢ obeys the Klein-Gordon
equation
1
V9

where gy is the AdSgy1 metric, while g is its determinant. If we employ the coordinates (z,x) and insert
the relative metric (2.1.19) into (2.1.28) we obtain

(0 70- )" ((5)" ) o= s

The solutions of this equation are determined by the boundary conditions. As we showed in subsection
, the boundary of AdSg, is R? at z = 0. This space can be compactified into S? by adding a point at
infinity that we denote by co. We identify such point in the AdS coordinates as z = +o00. In this way, we
compactified AdSg4; too.

Let us analyze the behavior of ¢ near the boundary. By Fourier transforming the x variables, we set
d(z,x) = ¢p(2)e?"®n in [@2.1.29). The first term in (2.1.29) is proportional to i—f and is negligible at z ~ 0,

/99N Onp 4+ m?p = 0. (2.1.28)
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so that we are left to solve

)" ((5) ) oo

The presence of powers of z in (2.1.30) suggests a solution of the kind ¢ = Cz2 for some C, A € R given by

@-1.30):
A(A—-d
—QCZA +m2Cz2 = 0.

12
This equation implies

A (A —d) =m?L? (2.1.31)
solved by
d++d? +4m? L2

; 2 2. (2.1.32)

A

Ag =

We see therefore that there are two possible asymptotic behaviors for ¢: one that diverges at z = 0 as z
and the other that is regular and asymptotic to z2+.

If we want to express the values of ¢ in the interior of AdS by means of the boundary conditions, it is
clear that we need to consider only solutions that approach Cz2~ as z — 0, so that their value at z ~ 0 is
not vanishing. However, we still have the problem that at z = 0 every such solution diverges. We can anyway
circumvent this difficulty by considering the behavior at, say, z = € for some arbitrarily small €, namely by
requiring that

Pz, 2) ~ ez, ) d(x), (2.1.33)

where ¢(z) is a function defined on the boundary and ¢(z, z) is some function with the only requirement that
c(z,x) ~zat z~0.

This function is related to the conformal symmetry of the boundary. Indeed, suppose we wanted to extend
the AdS metric to the region with z = 0. It is clear that we cannot do this by using gy from ([2.1.19)), which
is singular at the boundary. However

2
(—dz* + datdx,,) (2.1.34)

is not and, by restricting it to the x coordinates, can be our sought extension g,,(x). The simplest possible
choice for c(x, z) = z, for example, gives g, = 1, as follows from . The arbitrariness in choosing
¢(z,x) just reflects the conformal symmetry of the boundary.

We would then like to express the values of ¢ in every point of AdS4+; in terms of ¢ by means of (2:1.29).
Suppose indeed that we can define a “Green function” Ka (z,z) such that it solves

2 d+1 7\ 41
(%) i O (%) 9. <<Z> 8zKA> +m?Ka_ =0 (2.1.35)
and that
lim 2”2~ Ka_(z,2) = 6%(x), (2.1.36)
z—0
then
oevn) = [ Ka_(ern = )i’y (2.37)

solves (2.1.29) and obeys (2.1.33). We call Ka_ bulk-to-boundary propagator.
The simplest way to find Ka_ is by exploiting the compactification explained above as done by Witten

in [42]. The idea is to find Ka_ at some particular point P of the boundary. Then, we can perform on Ka _
a transformation that brings P to some other @) also in the boundary. If this transformation is a symmetry
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of the boundary, we get another valid form of the propagator. We take P to be the point at infinity oo.
Since in this case Ka_ should not depend on z, becomes equivalent to and we find again the
solutions z2%. As we show later, to get the correct behavior at z = 0 of Ka_ (2.1.36)), we have to assume
that the propagator at infinity is

Ka_(z,00) = Ca_28+. (2.1.38)

Now, consider the transformation
z zt

z,xt — (2.1.39)

22 _ 227 2 _ 42

that brings co to the point on the boundary z = 0,2* = 0. At z = 0, (2.1.39) acts as =/ — g—;‘ and is a
conformal transformation as we showed in (2.1.7) and therefore a symmetry of the boundary. It transforms

(2.1.38) into

z A+
Ka_(z,2) =Ca_ <Z2—$2> (2.1.40)
where Ca_ is yet to be determined.

Let us verify the fundamental property (2.1.36[). It is clear that (2.1.40) for z = 0 is zero everywhere
except where x = 0, since we are using a metric with a definite sign —d,,,. There, it diverges, as a Dirac delta
function. To prove this formally, we need to show that

Ay
S —limz 2" Ka (z,2) =8 — lim 272~ Ca_ < & ) = 5%(2),

z—0 z—0 22 _ 2

where &’ — lim denotes a limit in the space of distributions §’. Performing a limit in S’ on the distribution
Ka_ means computing an ordinary limit of its application to a test function :

Ay
lim/KO(z,x)z/)(a:)dd:c = lim [ 272 Ca_ <Z> Y(2)rdLdrdQy

z—0 z—0 22 + r2
. 1 A d-1
= ll_I)I(l]/CA_ (1—1—7"2> Y(za)r® HdrdQy (2.1.41)
= Ia_9(0) (2.1.42)

= IA/éd(x)w(x)dd:v

where in the first step we used spherical coordinates and the solid angle measure €24; in (2.1.41) we performed
a rescaling r — rz to make z appear only inside . This happens only if one chooses Ay in (2.1.38)). Finally

in (2.1.42) we defined the always-converging integral

1 \2+
In = Ca / <1+r2> rd L drdQqy (2.1.43)

and we used the dominated convergence theorem and the fact that v is bounded to perform the limit inside
the integral.
Equation (2.1.43]) can be solved and allows to determine Ca_ = I&i, which results in

__ TAy)
(s )

Ch (2.1.44)

In the following we will write just Ka,Ca and A in place of Ka_,Ca_ and Ay, if it is not ambiguous.
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As for now, we analyzed the simplest possible field: the scalar one. What happens with a generic tensorial
field ¢ns,.. 0,7 Like before, we consider only free fields and interactions perturbations. In general these fields

will solve a Klein-Gordon equation similar to ((2.1.29))
(DNDN + m2) (le._]\/[S =0 (2145)

either after a gauge fixing for massless ﬁeldﬂ or after removing all the auxiliary fields coming from the
Singh-Hagen Lagrangian in AdS (see subsection .

As before, we would like to analyze the behavior of this field at z ~ 0, where we set ¢.az,.. v, — 0. Using
one finds that the only non-vanishing components of the Christoffel symbol are

1 1 1

F;Zw = ;(SNV’ P,Zz = _;5Z7 Fzz = >

and therefore the expansion of (2.1.45])
52

(DNDN +m?) ¢ny..m, = Dy <—L25PN (0P¢M1...Ms - Fg(MlﬁbQMQ...MS))) +m2oar,.n,

z\ 4+l L\ (n PNT-Q 2

= - (f) on - <5 éry .M, — O PP(Mld)QMQ...]V[S)> +m oum, . M,
2

+L2 Pﬁ(Ml(SPN (3P¢RM2..,MS) — FgRéQMQ...MS) - FjQD(MZQSQRMg‘..MS)>

becomes for the components of ¢y, . a, tangential to the boundary

z\d+1 L\ sd 2sz s(s—1)
0=— <f> On <<z> 3N¢u1...us> + ﬁ@bm.--us — 75 0:Pu.ps <m2 - L?> Ppr.ps (2.1.46)

We can then find the behavior at z ~ 0 of the solutions of (2.1.46) as we did for (2.1.29), namely by a Fourier
transform and the ansatz ¢, . (2, 7) ~ 2°. We find the relation

(6+s—d)(6+s)—s=m>L? (2.1.47)
solved by

_d—2s+Vd® +4s+ 4m2L?
B 2
If we replace m? with its value for Fronsdal fields (I.4.59)), we get

d—2s+2(¢+s-2)

0t

0L = 5 (2.1.48)
We choose the asymptotic solution with d_ and thus set the boundary conditions
Bpir.ue () = Tim 272 ¢y, (2, ), (2.1.49)
z—0
The bulk-to-boundary propagator for higher spin fields will then be
Ké\:fl..‘Msﬂlmﬂs (Z, .’I}), ¢M1...]\/[5 (Z, $) — /KA{1-~-MSM1~-HS (27 T — y)é,ul..‘,us (y)ddy (2150)

Equations (2.1.49) and (2.1.50) impose that

hII(l) Z—6, Kéwl---Ms;ul...,Uzs (z,a:) _ 5d(x)5M1(M1 o 5MS“S).
2 -

In section we will derive the precise form of these propagators by means of the ambient formalism, that
simplifies greatly the computations.

"The transverse traceless gauge that we found for the flat space case (1.1.22) can be imposed also on Fronsdal fields in AdS
obeying ([1.4.58)), which contains also a mass-like term ([1.4.59)) due to the non-vanishing curvature.
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2.1.7 Witten diagrams

The content of a generic quantum field theory involving the fields ; that sit in some irreducible representation
of the Poincaré group is completely specified by its classical action

Siéi = [ Ller 2o
that determines all the correlators by

1) - - O (2,)e~ Dy,
(O1(21) - - Onln)) = il 1)f6_(3[@(@10i Ly (2.1.51)

where Oy, are some observables that are functions of ;. Equation (2.1.51) can also be rewritten as

_ ewad
6&’1($1) T 6@571(%”) . ’

Jk=0

(O1(21) - - - On(n))

where

W 6] = log / ¢S E4 | B @Ok @) a (2.1.52)

is the generating functional of connected diagrams and we defined some suitable auxiliary sources ¢y, that are
coupled to the various observables O,. Since we are dealing with a conformal theory, also Oy, and ¢, should
be primary fields. We label their weights with Ap and d — Ay respectively, so that is conformally
invariant. In the clagsical limit,

W[(Zg]] ﬁ;% —S[QOZ'] + Z/¢k($)0k(x)ddl‘
k

and therefore we recognize W as the quantum version of the classical functional S.

The AdS/CFT correspondence then states that the W functional of the theory at the boundary should
be equal to Sagqs of the theory in the bulk. However, we need to associate the sources ¢y (x) with fields in
the gravitational side of the correspondence. Let us first assume that Oy, and ¢, are scalars. Since our aim
is to express Sagqs as a functional of fields that live on the boundary, it is natural to associate to ¢y () the
source for a scalar field ¢y(z,x) in the bulk through . However, to make this identification, we need
to verify that ¢x(x) behaves as a primary field with weight d — Ay. Indeed, from we saw that ¢ (z)
is defined up to a factor c(z, 2)**~. Rescaling the function ¢(z, ) by X rescales the boundary metric
with a factor A2 and we can thus interpret it as conformal rescaling. At the same time ¢ (x) rescales too by
a coefficient equal to A=+, so that it behaves as a primary field with dimension A;_ = d — A. Therefore
the Weight of Ok is Ak =d— Ak, = AkJr.

If we consider tensorial fields, then both ¢} ** and O}*** will be tensors of the same rank and symmetry
type and we can still write by assuming that ¢}’ " and O have been implicitly completely
contracted one with each other. Then we can identify ¢,'**(z) with the boundary source of a tensor field
pM-Ms by ([2.1.50). Notice that if o™= is a gauge field in the bulk, then the coupling between @h*
and O} " should be invariant under the transformations induced by the bulk gauge symmetry. Its variation
would be, for instance in the case of a completely symmetric Fronsdal field,

5/¢m...usommus(w)ddx - /aus»/_\m'““s_lom...us(w)ddx

= —/A’“'““S18“‘2(9“1“,“3(30)61% (2.1.53)
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and therefore O should be a conserved current on the boundary, namely
0" Opy..ps = 0.

To find the weight of O, ., consider as before a rescaling of the ¢(z,x) function, corresponding to a
scale transformation on the boundary CFT'. In order for it to leave invariant the source term in the action,
the fields should transform as follows

/ ATt A0, () A d .

Using (2.1.13)) and remembering that contractions of tensors are invariant under Lorentz transformations, we
find

A+s=d—4_,
which, for higher spins obeying ([2.1.48]), implies
A=0y—s=d+s—2. (2.1.54)

With these identifications, the AdS/CFT correspondence is realized by conjecturing that

)+ Ol = g B

¢1,=0

Let us make an example. Consider a theory in the bulk with the simplest action of a free scalar:

1
Syranlé] = [ 30u6(0)g"™ (@) o(a) Vi ads. (21.5)
We now rewrite (2.1.55) as a function of ¢(z) integrating by parts and using the equations of motion (2.1.29)
_ 1 1
Sgrav[@] = / 50 (0g™NOnpy/g — m*¢?) d’adz — / §¢aM (Ond+/g) d?xdz (2.1.56)

. A+ 0 dd Ld_l
Ca / h_r}(l) P(z,2)0; / “ o) y2A+ zd-1 '

Az loy) 1|
AL a1 d®xd®y

S

= ACAL! / mddxddy (2.1.57)

and therefore B
o 5259rav[¢] o QACALdil

(O@)0(y)) = === =
do(x)09p(y) |z — y|2A
As we will see in (3.5.5)) this is the form of a correlator between two primary fields with the same weight A.

We can rewrite (2.1.58)) as

(2.1.58)

(O(x)O(y)) = lim AL KA (2, — ), (2.1.59)

namely the 2 point Green function at z,y of the field O is given by the bulk-to-boundary propagator of its
dual that connects the two points on the boundary x and y.
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Figure 2.1.1: A Witten diagram connecting two boundary points where O is inserted.

41

Figure 2.1.2: A Witten diagram for a 3 point correlator of the operator O inserted in the boundary points
y1,y2 and y3. The vertex is at the bulk point (z,x) that is integrated over the whole AdS space.

Let us then consider a perturbation to the bulk theory and supplement our original action with a cubic
vertex given by

A
Sz = gqb?’(z,x)\/g}dd:pdz. (2.1.60)
Using (2.1.40) we can rewrite S3 as
\ (-
S = 3 / (Y1) d(y2)d(ys) Kalz, 2 — y1) Kalz, & — y2) Ka(2, ¢ — y3)y/gd y1dyad®ysdizdz.

We can now compute the three point correlator

§2S5(9]
On)Ow2)Ows)) 5(5(91)5q3(3/2)5$(y3)
= )\/KA(z,x—yl)KA(z,x—yg)KA(z,x—yg)\/gddwdz (2.1.61)

As we see it amounts to an integral over the AdS space of three propagators from the integration variable
and the three external points y123. This happens for every vertex of the bulk theory.

These examples can be generalized to a standard procedure to compute boundary correlators by means
of bulk calculations. It can be depicted by Feyman-like diagrams, called Witten diagrams and introduced in
[42]. The rules to compute them are the following:

1. The boundary is represented by a circle that encloses the bulk.

2. The points z1, ..., , at the boundary, where operators Oy with weight A, are inserted, are attached
to the outer circle and connected to inner points by bulk-to-boundary propagators derived from proper
fields ¢, that at z ~ 0 are asymptotic to 242k,

3. According to the vertices in the bulk action, these propagators are attached to common points (z, z) in
the bulk.
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4. The sought correlator is given by the integration over all the bulk interaction points.

For instance the computation performed in (2.1.61) is represented graphically by figure , while the one
of the 2-point function is represented by .

These are the correlators which involve only O that we can compute if we consider only the classical limit
of the theory in the bulk defined by the action (2.1.60). If we go back and focus on the original Maldacena
conjecture, however, we must remember that it does not state simply a duality between the Super Yang-Mills
N =4 SU(N) gauge theory and type I1IB supergravity, but between two string theories that reduce to them
in certain limits. These limits, in the gravitational side, allowed us to consider quantum corrections as lower
order contributions to the action. If we want to make computations at the next-to-leading order, we have
to include such corrections. Witten diagrams will then also employ the so-called bulk-to-bulk propagators,
namely the Green functions of the bulk theory that one uses to compute Feynman diagrams in the bulk.
Their usage is the same as bulk-to-boundary propagators with the only difference that they are attached to
two points in the bulk. Since we will not be dealing with them in this thesis, we will not delve in further
details.

2.1.8 Expectation values of the dual operators

The computation of the 2 point correlator that we just performed allows us to give an interesting interpretation
to the class of solutions for the scalar field that we ignored, namely those that at z ~ 0 scale as z2+. Let the
complete solution of the equations of motion (2.1.29)) be

o(z,2) X' ()22 + E(x)z™+. (2.1.62)

Then, the free action is in general divergent, because of the pole given by ¢(z)z2~ at z = 0. However, we
can define

¢(z,7) = 25" x(z,2),
so that x is regular on the boundary. Action (2.1.55)) can be rewritten as

LN A A L=t
Sgrav[X] = —/25 oM (Z _X) on (Z ‘X) Zd—ld xdz

1
= 4! / 3 (—A2_2_2x2 — A_z7'2x0.x — (0.x) + 0#)(6“)() Z2A-—d+lgdp .

To regolarize this action, we can subtract the first two terms and assume

d—2
A_ > —5 (2.1.63)
so that we are left with the finite action
~ 1
Sgrav[x] = LT / 3 (— (0% + 3uxa“x) AT gz,
Now we can extract by an integration by parts a boundary term, analogous to (2.1.56)):
~ 220 —d+1d-1 .
Sgr(w[X] = ;g% Q/Xazxd €T
L2080 —d+1d-1 ~ _
= lim / (¢(x) + E(2)22+72) 0, (¢(2) + B(x)2>+ 27 ) d%z. (2.1.64)
z—0 2
If we assume qo1 p
— <A < 2.1.65
5 < <3 ( )

61



2.2. Higher spin AdS/CFT Chapter 2. AdS/CFT for higher spin theories

the only term that survives the limit in (2.1.64]) is
~ AL — A_ _
Syrav = %Ld” / o(x)E(x)d% (2.1.66)
and we can extract F(x) by a functional derivative:
20" 58y,
il w— == = (0(2)).
A+ A_ (5¢($)
We can therefore interpret E(x) as the expected value of the dual CFT operator. Another possible way to

obtain E(x) from (2.1.66]) is to assume

o(z) = 6%(z).
This equation tells us that an operator insertion on the boundary theory at x is equivalent to a point-like
source of the field ¢ located there. This relation holds also for a more general action: the E(z) field that
solves the equations of motion in presence of sources located at 1, ..., x, is
E(z) x (O(x)O(x1) - - O(zy)) - (2.1.67)
Moreover the limitation (2.1.65)) can be removed by suitable further regularizations of the action.

2.2 Higher spin AdS/CFT

After having developed a formalism of a generic AdS/CFT duality, we will now consider an example of
AdS/CFT holography which involves a higher spin generalization of gravity, the Vasiliev theory. We start by
describing a simple C'F'T" that we will relate to a minimal model of the higher spin field theory in the second
part of this section.

2.2.1 The O(N) model

Let us consider a theory in 3 dimensions with N real scalar fields ¢%(x) with a global O(N) symmetry. The
action for this field reads

ST = [ et @ ()% 2.2.1)

and the relative equation of motion is
Oe®(z) = 0. (2.2.2)
This theory is conformal, as we saw in 1’ if the conformal dimension of the scalar is A = 2.

We can use equation (2.2.2) to construct an infinite number of conserved currents that are O(N) singlets,
the simplest one being]

[\

JHH2 = PP GH2 H _ G 0 PH2 0

®The fact that this field is an O(N) vector does not influence the proof.
"There are only currents with even spin. Indeed, suppose, for example that we wanted to construct the spin 1 one. It should
read

TH = """, (2.2.3)
but
8;“7” = auwaau@a
that cannot be set to zero by any compensating terms, since (2.2.3) is already the most general form for J*. A similar problem
arises when considering general odd spin currents J#1~#2k+1 defined by a relation similar to (2.2.5)), in which the coefficient cj

of the term
RO .. Mk @8Mk+l . '6“2k+1tp

has to be set to zero because
Ckauaul . 8ukwauk+1 . _8H2kau¢

can not be compensated by any of the other terms in expansion (2.2.5) of J#1#2k+1 but, as we will see later, by (2.2.8) this
sets all the coefficients c; to 0.
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In general, we can construct an infinite number of symmetric conserved tensors JH1 2k
Opy JHH2k =0 (2.2.4)

with even rank s = 2k (k € Ng) whose most general form is

JhLbok = ;icj (a(m . 3#@@) (auj+1 . auzk)¢a) (2.2.5)

J=0

for some ¢;. If we contract J with an auxiliary vector u*, we get

jg(x, U) = uul e u,uqko,ul...,u,gk (l‘)
k—1
2k ) iy 1 /2%
= Y (e oy worie e (V)aw ot wote @20
7=0

and the conservation condition implies

0Ts(x,u)

Using (2.2.6) and (2.2.2) we can expand the left hand side of (2.2.7) as

k—1
9, 855252 u) _ ]Z; <2jk:) ¢ (- Y e (u- 9)2=i Bu"
E1 on ‘ ‘
+j O ( ; >cj (2k — ) (u- ) 8™ (u- 9)*F T~  grp?
+ <2kk> cxs (u- )1 91 (u - 9)* 0pp”
[ 2 y ;
R e (1) (- 0)7 9 (w07~ 0y
=

where in the second step we replaced j with 7/ = j — 1 in the first term and combined it with the third term
in the first step. (2.2.7) then imposes

(5) (s —3)

Cs — _ c; = —c;,
J+1 (jj_l) (,7 + 1) J J

(2.2.8)

i.e. all the coefficients ¢; are determined up to a normalization ¢y by
cj = (=1) ¢q.

Since ¢ is a primary field with dimension A = %, as we will show in subsection (2.1.58]), in virtue of (3.5.5])
and the O(N) global symmetry, the correlator of ¢! has the following form

§id
z =y

(' (x)¢" (1))
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where we chose a suitable normalization for ¢. Therefore

(T@)T () = (&' @) W)ei(x)e;(y))
5 0ij
co
lz —yl |z —yl
Nc%
2

(z —y)

A similar dependence on N holds for the other currents. To make their 2 point function independent of N

we then choose )

i

Due to their definition (2.2.5)), the currents in d = 3 naturally have conformal dimension

Ccy =

As=(d+s—2)=s+1 (2.2.9)

where s is the number of derivatives and therefore the rank of JHt-Fs,

2.2.2 The Klebanov-Polyakov conjecture

In the previous chapter, in section we saw that it is possible to construct in AdSy4 a complete interacting
theory of massless particles with every integer spin. They are gauge bosons in a representation of a higher
spin symmetry algebra. One may wonder whether this system has a holographic dual on the AdS boundary
and what is the dual theory.

First of all, as we saw in section we expect that every higher spin field @y, .. MSFEI that is non-
vanishing on the boundary is a source for some observable in the CFT. Moreover, since ®ps, s, (2, ) is a
gauge field, it should be coupled to a completely symmetric conserved current J,, ..., (). So it is natural
to identify these currents with those of the O(N) model (2.2.5). This is also hinted by the fact that the
conformal dimensions of the dual of ® . a7, and of Jy, .. 4, and are the same.

However in the progress of identification of fields in the two sides we immediately encounter two issues.
First of all, the O(N) model has currents with only even spin, while in general Vasiliev theory involves also
the odd ones. This is solved by considering the minimal model with only even spins as explained in section
Here we consider the A type theory, see section The second difficulty is more subtle and is related
to the scalar field. In subsection we saw that the dual of ¢(z,z) should have dimension

N
by (2.1.32)), but in the O(N) theory the scalar current is ¢®¢%(x), whose weight is 1. Therefore our identifi-
cation between boundary and bulk fields can not work, even though only for spin 0.

We can now proceed in two different ways, as suggested by Klebanov and Polyakov in the paper where

they introduced the higher spin/O(N) model duality [43]. First of all notice that for the bulk scalar field

Al=1, A, =2

These relations suggest to change the identification rules (2.1.36) and (2.1.37) and consider the solution that
is asymptotic to z2+ instead of 22~ and define

o(z) = lim 272+ (2, z)

z—0

8Here the metric-like form of Fronsdal fields is more convenient.
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so that the dual operator has dimension A_ = A =1 and the correct bulk-to-boundary propagator is

A_
-~ z
KA(Z,SU)ECA+ <2;2—|-x2) .

This restores the duality rules. Indeed, it has been shown in [46] that, ifﬂ

d—2
Be> g
both choices of the conformal weight for the dual operator A = Ay lead to a consistent AdS/CFT duality
between two related theories. As a consequence of our identification of ¢ and E in as the source
and the expectation value of the dual operator, we see that choosing A = A_ amounts to exchanging the
roles of ¢ and E. Since J and ¢ can be seen as conjugated variables, we can expect that the CFT partition
function of the theory associated to A_ is the Legendre transform of the usual one where the scalar operator
has dimension Ay. Indeed it has been shown in [46] that this transformation leads to the correct bulk-to-
boundary propagator Ka_ .
If to 22+ we associated the free O(N) model, we should find by choosing z*~ another CFT with a scalar
operator with weight 2. Consider then the following deformation of our original action

08 [gpl] = /2;\\[ (gpigpi)zdg:r, (2.2.10)

namely an interaction vertex with a 't Hooft-like coupling ﬁ The resulting action Sy [gp’] is not conformally
invariant from the classical point of view, since the dimension of ¢ is % and therefore is not even scale
invariant (see ) However quantization can alter the symmetry properties of a theory. In this case the
renormalization group flow brings the interacting theory to an IR critical point where it is conformal. Currents
JH1-Hs are not conserved exactly, but only in the large N limit. Similarly, the (anomalous) dimension of
Jis2+0 (%), coinciding thus with A4 only for N — +o00. The weights of every other spin is the same
as in the free theory up to terms of order % These results are more general, as it has been proven in [44],
where the addition of a multitrace deformation to the original action on the boundary can lead an operator
to change its dimension from A_ to A4 , by a renormalization group flow.

We may then summarize the so-called Klebanov-Polyakov conjecture in the following way

The A-type minimal Vasiliev theory in AdSy is dual to a Conformal Field Theories of scalars
with global O(N) symmetry through the identification of the Fronsdal fields in the bulk with
sources of conserved currents on the boundary. If one takes as dimension of the dual scalar
operator Ay, the theory at the boundary is a free CFT, while if A_ is taken, it is the critical
point of the theory at large N with a (goicpi)z interaction.

This conjecture can be further generalized. Type B minimal Vasiliev theory has been conjectured by Sezgin
and Sundell to be dual to an O(N) model where the real scalar is replaced by a real fermion field. When
considering the A, dimension, the boundary theory is the free one, while in the other case it is the critical
point of the one with an interaction of the kind (1511/11)2 Non-minimal theories appear to be linked with
a CFT endowed with a global U(NN) symmetry that allows currents of all spins. For example, the spin 1
current is

T = 0" p — p0p*.

9This limitation comes from the fact that it is possible to regularize the action in such a way that it is finite for both the
possible asymptotic behaviors of ¢, see (2.1.63) in the previous subsection for the free case.
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2.3 Tests of the KP conjecture

The AdS/CFT correspondence is an equivalence that involves the actions of the theories on both sides. For
this reason, the way in which we formulated the interacting theory of higher spin field in subsection [I.5]is not
very suitable to test the Klebanov-Polyakov conjecture, in that it is based solely on the equations of motion.
Indeed the most direct test would be to compute correlators by Feynman diagrams on the boundary and by
Witten diagrams in the bulk and verify that they coincide. However, without a higher spin action this is
not possible. A possible solution to this issue would be to construct a part of the action by carrying out a
perturbative analysis of the Vasiliev equations and derive the interaction vertices order by order. This would
allow to compute Witten diagrams in the way described in subsection We will pursue this approach in
chapter [

In their paper [48], Giombi and Yin proposed an alternative approach, based on the equations of motion
and the results of subsection Namely, the idea is to compute the correlator]

(T @) T2 @2) 74 (@s)) (23.1)

by solving the equations of motion in presence of point-like sources located at xo and x3 and computing the
limit value E(z1), which represents by (2.1.67) the sought correlator (2.3.1). More precisely

B(e1) = Coptsgt, (70 ()70 (1) 7 (23))

where Cs, as, , as,, as, are some unknown normalization factors. Comparing the different results coming from
E(x2) and E(z3) and from <j(5j)(x)j(5f)(y)> one can determine also the unknown normalizations up to a
common factor, which is interpreted as the coupling constant associated to that particular cubic vertex. In
this way a verification of the conjecture for 3-point correlators has been carried out for the case s3 = 0 and
SS9 = 83 = 0.

As we saw in subsection the dynamics of interacting higher spin fields can be reduced to the twistorial
space parametrized by y, 7, z, and Z, since the space-time connection is flat and can be gauged away. Natu-
rally, it is always in principle possible to do the opposite, namely to use the equations of motion to reformulate
the theory in AdS and eliminate the dependence on the twistors. Through the unfolding formalism, Vasiliev
noticed in [49] that this means that a certain system can have the same description in twistorial space but
different realizations in space-time. In particular, one can link theories living in different dimensions, thus
giving rise to a holographic duality. In [49] it has been shown that in 3 dimensions conserved currents are
described by unfolded equations that are equivalent to the Vasiliev ones in 4 dimensions.

The goal of the thesis is to present the 3-point correlator test with a different formalism, that employs the
standard way to compute Witten diagrams by differentiating an action. To do so, we will need to find the
cubic interaction vertices between three higher spins in a particular gauge. To do so, we will introduce in the
next chapter the so-called ambient space, that will also allow us to find the functional form of correlators in
the CFT without computing them by Feynman diagrams and thus to make a comparison in a simpler way.

10Here we use a shorthand notation to denote currents with spin s;, s2 and ss.
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Chapter 3

Ambient space formalism

As we have seen in chapter [2] the symmetries of the theories in the bulk and the boundary are one of the
fundamental reasons to conjecture the AdS,;/CFT3 duality. We would like to employ them to simplify our
computations, but we encounter some difficulties in doing so. In the bulk, the SO(2,3) symmetry is realized
by isometries of the AdSs background space, which is a curved manifold. Therefore, we have to employ
covariant derivatives, which are non-commutative and hence difficult to handle. On the other hand, SO(2, 3)
appears in the theory at the boundary as the conformal group (see , that acts non-linearly on the
coordinates.

These two problems have actually a common solution: the so-called ambient space formalism. In this
chapter we will explain how to describe both theories in a greatly simplified way by embedding them in an
extended space-time that will be flat, and thus will allow us to get rid of covariant derivatives and employ
the usual ones, and whose symmetry group is SO(2,3) acting as the usual Lorentz group.

3.1 The conformal group

3.1.1 Definition of the group

A conformal transformation between two open sets U, V' C R" is a continuous and differentiable map C(x) :
U — V that preserves the angles between the tangent vectors of any two curves in their intersection. The
angle between two vectors v(z) and w(z) is computed from their scalar products in the following way (we
omit the arguments of v and w not to clutter the notation and we denote the standard metric as 7;; = 6;5)

LIy
cos(f) = A (3.1.1)
v (Wiving) (wiwin)
Therefore, imposing invariance of cos(f) under the transformation C(x), by (3.1.1)) we find
viwIn;; _ v“wbgg; %mj (3.1.2)
D 0In5;) (Wi, A o : o
\/( ni7) ( Mij) \/(,Uavb gga %mj) (w“wb gga g%m])
Now, if we take v L w, (3.1.2) becomes simply
aCt ac’
awb%@mj = (313)
and therefore, since (3.1.3]) holds for every v and w (perpendicular to each other),
act ac’
D bl = f(@)Nab (3.1.4)
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for some f(z), the so-called conformal factor, that in general may be different from point to point. This
expression resembles the defining relation of a rotation. Indeed, it would be such if f = 1. Here, though,
vectors appear not only to be rotated, but also rescaled, so that we deduce that a conformal transformation
is equivalent to a local rescaling and rotation of the metric.

In a more general setting, a conformal transformation C is a diffeomorphism between two differentiable
manifolds M; and My endowed with two metrics (or pseudo-metrics) g1 (z) and ga2(x) such that

f(@)g1(2) = g () (3.1.5)

where -* denotes the pull-back associated to C. Conformal transformations between a manifold M and itself
are then a sub-group Conf(M) of the diffeomorphisms that have the following properties:

e The identical map belongs trivially to Conf(M) with f =1
e Each conformal transformation has an inverse for which the conformal factor is 1/ f

e The composition of C1,Cy € Conf(M) with conformal factors f; and fy is a new conformal transfor-
mation with f = f1 - fo

Conf(M) is a Lie group.

Our aim is now to classify all possible conformal transformations associated with the Minkowski d-
dimensional space-time and its usual pseudo-metric 7,,. Since we are interested in the ones connected with
the identity, we can start from their infinitesimal version C¥(z) = 2 + et(x) (f(z) = 1 + ¢(z)). Equation

(3.1.4) becomes then

Ougv + Ovey = Ny (3.1.6)
Now, we can eliminate ¢ by taking the trace of (3.1.6)) to obtain

o %a.g (3.1.7)
and inserting this relation back into :
Ouey + Opey = % (0-¢€)Nuw- (3.1.8)
Take twice the divergence of (3.1.8):
Oe, = —2&, (0-¢) (3.1.9)

(1 _ Z) 0@-2) = o (3.1.10)

Notice that (3.1.10) is non-trivial only for d # 2. We will assume d > 2 for the rest of the discussion. From
(13.1.10) we can deduce that c is a function at most quadratic in « and thus we can parametrize it as

et(x) =a" + ¢"xy, +rPaya,.
where b#P = P, Then, from (3.1.8), choosing r = 0, we get

) = 1

5 q°

that is, we can express ¢ as a sum of its symmetric and antisymmetric parts
q},tl/ — AT’}U/ + w,u,l/’ w,ul/ — _wV/,L
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Applying a derivative on (3.1.8) and permuting indices we find that 7,,, is expressed in terms of its trace

7%ps Damely:
0pOucy + 0p0pey = %mwap (0-¢) | +
OuOvep + Oulpey = Fp0 (9 - €) |-
Oy Opep + Oy 0uep = F1ou0y (9 - €) |+
U
20,0pe, = % (NuNap = Mwplap + NppNaw) 0% (0 - €)
or

1
Tuvp = 4 (nwr"‘ap = NupTap + npuraau)

[0}

s We finally get the most general form of a conformal transformation:

so that, introducing the vector b, = r

2

1
(@) = '+ A Wy 4 5 (2100 = 2T+ ,a)

p
= a4+ Azt + Wz, — 2?0* + 2 (z - b) M.
We see that ¢ comprises
e Translations with parameter a” (z# — z# + a**) generated by P* = —ioH.
e Lorentz transformation with parameter w*” (2 — w,z") generated by M, =i (2,0, — 2,0,).
e Dilations with parameter A (z# — Az*), generated by D = —iz®0,.

e Special Conformal Transformations with parameter b* generated by K, = —i (Qme“&l — x26u).

The finite version of the latter transformation is

H 2 H 2
i e _ =z + bz 2 (3.1.11)

m
142 (bx) + 0222 (zv + bva?)?

that can be obtained as an inversion (i.e. z* — i—;), followed by a translation with parameter b*, followed

by another inversion:
zH z# aH + b2 o 4 b2
x“—>72—>72+b‘u: 3 — 2352
x x x (xH + bra?)

We would like now to determine the Lie algebra of Conf (Rlvd_l). It is obvious that SO(1,d — 1) <
Conf(RY4=1). Therefore, in addition to the known commutators of s0(1,d — 1) presented in (T.1.1]), we have

[D, Mug) =0
[Kom Mﬁ'y] - ina'yKB - inaﬁK’ya
determined by the Lorentz algebra of a scalar D and a vector K, and

(D, Po] = (0 (20,) — 2"0,,00) = Do = iP%

[Po, K| = =04 (2282705 — 27 2,08) + (2282705 — 27 2,03) Ou
= —210p27 0y — 22304 + 22,03 (3.1.12)
= —2inasD — 2iMag
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(D, K] = —2"0, (2x,270y — 27 2,04) + (20,270 — 27 2,04) "0,
224270y — 22027 0y + 207 2,0 + 2242"0), — 72,04
= 4220, — 2x4,27 0y

=1K,

(Ko, K5l = — (2242705 — 27 2,04) (2:1:5:E685 — x5:1:585> + (21’51’685 — 33‘535585) (2zax70y — 27 2,04)
= —81’al’@$66§ + 2xax28/3 + 2$2na5x585 + 23:21:58a —+ 2:U29:a8@
+ Sxaacga:585 — 2x5$28a — 2x2na5x585 — 2x2wa85 — 2x2x58a
=0.

3.1.2 Embedding the conformal group in the ambient space

The representation of the conformal group that led us to its definition is not linear. Therefore, we would like
to find a space where Conf (]Rl’d_l) acts linearly, namely an extension of the Minkowski space with extra
coordinates. We call this manifold Ag42, the ambient space, for which R14~! is just a sub-manifold. The
simplest extension possible is a vector space that contains R14~! as a sub-space. We can therefore endow
Ao with a diagonal metric ny, (m,n = 0,1, ..., N) and parametrize it with N coordinates X™ so that 9y
reduces to 7, in the Minkowski sub-space. To keep things as simple as possible, we may simply set X* = x#
and add a number of coordinates starting from X .

Conf (RLd_l) is defined by the property of acting on the R1¥~1 metric just as a rescaling, that is not
always constant, but depends on the coordinates when the transformation considered is non-linear. On the
other hand, we want to realize every element of the conformal group linearly on Agzio. Thus conformal
transformations may cause the ambient metric to rescale only by a constant coefficient. From

X"X,, =2 + Z (th)QTlfflﬁl
m>d—1

we see that this implies that also 2 acquires just a constant coefficient, that is in contrast to what we expect
to happen. If, on the other hand, we applied a local rescaling to X after the linear transformation, we would
solve our problem. This rescaling can be justified only if we say that a point x of the physical space is
represented by a class of vectors X that differ one from each other only by a scale factor that may depend
on z. In this class obviously a vector such that X* = x* has to be present.

This observation suggests to take as a sub-manifold representing R¥~1 one that is left invariant under
rescalings. The simplest non trivial one is the light-cone %5, 1 defined by

X"Xpm =22+ Y (X™) nam = 0. (3.1.13)
m>d—1

Since our z* are unconstrained, 2% can be both positive and negative and thus we have to add at least 2
coordinates to satisfy (3.1.13]), where at least one is time-like and the other is space-like. If we stick to this
lower limit and assume Agyo = R??, then we can put (3.1.13) in the useful form

XOX, =22 +2X X_

by switching to the light-cone coordinates

 Xg+ Xa

—Xg+ X
X, = X - —XdTAdp

Ve T T Ve
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so that the metric is represented by
M 00
n= 0 01
0 10

Equation (3.1.13]) is just one constraint: we have to find another one in order to have a manifold with
dimension d. Since it has to affect only the two additional coordinates, we may take

X,=1 (3.1.14)

not to spoil (3.1.13). The sub-manifold described by (3.1.13)) and (3.1.14)) is

Ly /R={X"X*=0,X, =1} (3.1.15)

the set of light rays or, with abuse of language, simply the light-cone. Here the Lorentz group SO(1,d — 1)
is implemented trivially by matrices acting only on the first d coordinates and leaves %1 /R invariant.

As it is known, SO(1,d — 1) < SO(2,d), the symmetry group of the ambient space. Let us then see what
is the effect of the remaining symmetry of Ag,2 on %1 /R. After a transformation of SO(2,d), in general
does not hold anymore. Since we are free to take rescalings of the light-cone points, we may perform
an additional dilation of factor A(X) = X' to return to .Z;1/R: X™ — X"™. The combination of these
two transformations results in the following change of the metric of £ /R:

2
dX™dX,, = ()\(X)de L xmOMX )an>
ox™"
2
= A(X)dX?+22X™ ag\;()i)ande + X? (‘92;? an)
= \(X)dXx? (3.1.16)

where we exploited that X2 = 0 and therefore X™dX,, = %d (XQ) = 0. Equation is just the
defining relation of the conformal group, once we restrict ourselves to the metric of the first d coordinates.
We may then deduce that SO(2,d) = Conf (RM471).

It is thus possible to reconstruct the conformal Lie algebra from so0(2,d). Its generators form an antisym-
metric tensor of rank 2 which respects the following commutation relation

{an’Mab} —; (Mannmb — MRy e Mbmnna) . (3.1.17)

Let us decompose it into relations involving the components j, +, —. First, consider M *# and M+
[M“,Mﬂ —0, [M—”,M—B} ~0 (3.1.18)
[M+”, M—ﬁ} = (-Mﬁwﬁ— . M+—77V5) . (3.1.19)

since n*F = 1 and ™ = 0. P* and K" introduced earlier generate a two Abelian sub-algebras of the
conformal algebra. Therefore we are led by (3.1.18) to recognize them as

1 1
Pt M M= __KHM
V2 V2

Here the coefficients are determined in order to get from (3.1.19) the same coefficients as in (3.1.12]). We
therefore see that

MTH =

D=M".
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The other commutation rules are compatible with .

In general it can be shown that there is an isomorphism between the conformal group of R"" and the
orthogonal group SO(m + 1,n + 1). This relation is not valid in 2 dimensions, where the conformal group is
much larger and its algebra is infinite dimensional.

Finally we write the most general expression for a point in %1 /R for future use:

1
X" e Zin/R <= X" = (m“,l,—2x2> (3.1.20)

3.2 Embedding AdS in the ambient space

As it is well known, the (d 4 1)-dimensional Anti de Sitter space, as every maximally symmetric solution
to the Einstein equations, can be described as a (pseudo)hyperboloid embedded into a (d + 2)-dimensional
space that we call Agy9 (since it coincides with the one defined in (3.1.2))) as

2
XM XNpyn + (Xd“) — 12 (3.2.1)

where XM are the usual coordinates in d + 1 dimensions, while X%*! is an additional time-like one and L is
the curvature radius. If we combine these coordinates in the form A™ = (XM, Xd+1), wherem =0, ...,d+1,

equation (3.2.1) can be rewritten as
XX o = L (3.2.2)

where Ny = diag (1, —1, ..., —1, 1) and coincides with 7y for the first d+1 entries. We call the sub-manifold
of Ay described by Z4+1. Now the symmetries of AdS, namely translational and Lorentz invariance,
are both explicitly unified in a general SO(2,d) symmetry that preserves (3.2.2)).

We may employ the light-cone coordinates in place of the last two (we keep usingm =0,1,...,d — 1,4+, —)

_ Aot Ao X _ — Ao+ Xy
V2o V2 '

Then any point in %441 can be expressed by using the Poincaré coordinates z, x* (see (2.1.19))) as

Ay

L 1
XM E Sy = A" = - (:1:“, 1, -3 (z'zy — 22)> ) (3.2.3)

The boundary of the AdS manifold .#;, is given by the points for which X™ — oo, that can be obtained
by z — 0 in (3.2.3)). In this limit equation (3.2.3) may be written (asymptotically) as

1

XM <x“,1,—x“mu>
z—0 2

that we can recognize as a point of the light-cone .}, 1 as described by ([3.1.20)). The fact that the boundary

of AdS411 is a Minkowski space-time with a dimension d is then expressed in the ambient space by saying

that .11 is asymptotic to £ 1 at infinity.

3.3 Tensors in the Ambient space

In the previous two sections we showed how AdSz.; and its boundary RM~! can be embedded as sub-
manifolds of Agys. The aim of this section is to extend the formalism we developed for the coordinates of
these two spaces to every other physical quantity. Namely, we want to convert each tensor field defined in
one of the two sub-manifolds into a tensor field of the embedding A4, o.
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Let us generalize our task by considering a submanifold A of R>? = Ag,5, whose dimensions is n,
embedded in R>? by an injective differentiable map ¢ : A — R>%. It induces a map, the so called pull-back
o ZRU) — ZF(N), between tensor fields of rank k defined on some subset U C R%? containing N,
Z#(U), and those defined on N, 2% (N):

Tirin(p) = Ty (0) = A, () - - A% (e(9) Ti (1(p) (3.3.1)

where p € N and du(p) : Tp(N) — R¥*?2 is the differential map induced by ¢ between the tangent space of
N in p (T,(N)) and R%?. This allows to express a tensor field in the embedding manifold as a field in the
embedded one.

In our case, however, we want to do the opposite, namely to extend a tensor field defined on N' =
Far1 and L1 /R to R%. To do so, we need to characterize a subspace of 27%(U) for which there can be
an isomorphism with 2%(N\). First of all we notice that the tangent space of R>¢, namely a copy of R*¢
itself, can be decomposed as

R*! = T,(N) ® T, (N),
where T;-(N) is the space of the vectors orthogonal to N. Therefore we take the ambient tensors that do
not have components in T;-(N), namely

T € 275(U) such that T(p) € TF = élTp(/v). (3.3.2)

We call this condition ambient transversality']

Their domain of definition U should be such that the value of the ambient tensor T at every point g € U
is uniquely determined by the value of its counterpart 7" on AN at some p € A/. In this way ambient tensors
do not encode more information than those living in the sub-manifold.

In our case, both Z;11/R and .#;;1 are defined by a condition of the kind

¥=a (3.3.3)
for some a > 0, which makes every vector X™ belong to T (A). We then choose
Uy = {Xx2 >0}, Ug={Xx*=0}

as domains of definition. Since the Us are invariant under rescalings, a natural way to determine the values
of tensors in Uy and Uy outside N is to set

T(AX) = f(NT (%)

so that the values on A determine those all over U. We choose f(A\) = A~ for some A € R, that we call
degree:

T(AX) = A"AT(X). (3.3.4)

Moreover (3.3.3)) implies that the vectors in T+ (N) are those parallel to X™ in Uy and Ug. To them, in
the case of N = %;,1/R, we should add the linear combinations with ™% which comes from the condition
X T =1in (3.1.15). Therefore condition (3.3.2)) can be expressed by saying that 2*(N) is isomorphic to

T*(Uy) = {T € X (Uy) | Xy, TH15(X) = OVi = 1, ..., k, X € U,y} (3.3.5)

v = (%) "x

!Not to be confused with transversality in the sense of (T.1.4)

where
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and
Tk (Uy) = {T € XK (Ug) Kun, T™ 5 (X) = 0 = 5, T (X)¥i = 1,.... k, X € Uy} (3.3.6)

for N'= 711 and N = %11 /R respectivelyf]
In our calculation, we can realize the spaces (3.3.5) and (3.3.6]) in the case of %411 by

A

2

. X2 - oXx ™M OX ™Mk
JoL-. "(X) — <LQ> el . 5 s TMI...Mk- (X(X)) (3.3.7)

where one should differentiate (3.2.3) and for %1 /R by

_AO0X™ OX ™Mk
oxHt  Qxhk

T () = (x7)

Tr-ik (X (X)) (3.3.8)

where

Let us check that is consistent with our requirements. We do this just for (3.3.7)) and with vectors,
for simplicity, the proof for the general case being the same. First of all, composed with should
be the identity:

_oam T oxm oxm
T oxM '™ T gxM Mg xN
Here we used applied to the metric tensor:

Ty TN = gunTY = Ty.

ox™mox™ ox™ ox™

Nap = a?wnmm 9gAB = WaXiBﬁmn- (3.3.9)

Transversality, on the other hand, follows from

oxm™

WTM(X) = fi)TM(X) =0.

XnTH(X) = X

Similar considerations are valid for tensors in .%;,1/R. In this case, though, the transversality constraint
must be formulated in a stronger way. Indeed, suppose that it was possible to write an ambient tensor as

When considering contractions with the first index, (3.3.6) is trivially satisfied in virtue of the light-cone
defining relation X? = 0. Let us inspect the %, tensor associated to (3.3.10):

oxm™ 0X Mk
Thnenls) = S o e o (X(2)
oxm™ 0X ™Mk
- axl’l‘l tee 8]}“16 Xm]_Smg...mk
0. &)
= o e
_— (3.3.11)

Therefore ambient transversality for the light-cone acquires the further condition that a tensor must never
be of the form (3.3.10). We call this requirement strong ambient transversality. Anyway, most of the time,
we will just refer to (3.3.6]), which is easier to use.

2 Actually the first condition in (3.3.6)) is not enough, as we explain later.
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Notice that also the 1,3 and gap have ambient counterparts, but they do not coincide with 7,5, because
Nmn 18 N0t transversal and equations (3.3.9) are not invertible. For example, the ambient version of gap is

ax™ gx" xmxn
mn AB mn
_ N LA 3.3.12
that is also a projector onto ambient transversal tensors. Indeed, given any 7™ ™ ¢ 2°F(Uy)
MMy — 73111111 . pIIII;17'n1---nk
is a transversal tensor, since
Xy P = PRA™ = (). (3.3.13)

Equation (3.3.9) allows us to formulate a rule to automatically convert any expression in %1 and
Zy+1/R into an ambient one. Let us focus on AdS. Given any scalar expression f(X), from (3.3.7) and
(3.3.8) we know that its ambient version F(X') is such that

namely scalars do not transform (except for their homogeneity property away from .#;.1). This should
also happen with any scalar expression that is obtained by contractions of AdS tensors. We expect that its
ambient version is also such a contraction. Indeed

ox™ ox"

VW = o hn g w

vMWN = vMyy, (3.3.14)

by (3.3.9). So whenever we need to convert an expression from AdS we just need to replace every tensor with
its ambient version and perform the same contractions. This rule is also compatible with the metric (3.3.12)

VIR W = YW = VWY = VM gy n o, (3.3.15)
where we used in the first step the transversality of V that reduces P to just n, while in the second one we
employed (3.3.14)).

3.4 Index-free formalism

In this section, we develop a formalism similar to the one used in subsection to deal with tensors with
an arbitrary rank without cluttering our notation with many indices and complicating our computations.

Let U™ be an auxiliary vector that in general depends on the coordinates of AdS XM or the ones of the
Minkowski d-dimensional space x#. We choose it so that

U™ Uy, = 0 (3.4.1)

U™ Xy =0, U"Xpy=0. (3.4.2)

Conditions (3.4.2) admits at least one solution. Indeed, if we parametrize U™ as U™ = (u#,UT,U7), it
follows from (3.2.3) and (3.1.20) that

L 1
UmX, = Z<Muu+U__2U+($qu_22)>
1
"X, = x“u”+U_—§U+a:“:UM.
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We obtain ([3.4.2)) if
Ut=0, U =-a"u, (3.4.3)

and compatibility with (3.4.1)) gives then
2UTU~ +utu, =0 = ufu, = 0.

Notice that, since U is transversal, it is the ambient version of some world vector and indeed by (3.1.20)) and

(3.2.3) we can write
). . I, & 2.
U™ =u* Oh s UM =u W (344)

where

u :%(u“,O), uMup = 0.

Then, consider a tensor in ambient space that in principle fulfills only the homogeneity condition (3.3.4).
Now, contract it with U to obtain a scalar

T (X,U) uniquelyf’| represents a tensor that is
1. Symmetric, because the symmetry of U™ ... U™k removes any antisymmetric contribution to T, .. m, (X)

2. Traceless by virtue of (3.4.1)) that removes any traceful part of T, .. m, (X)

3. Transverse in the ambient sense of (3.3.5)) and (3.3.6]). Indeed the longitudinal part of T, .. m, for Zuy1
is given by (if both previous two constraints hold)

1
ﬁX(ml (XmemQ,_.mk)) + traces

where traces means terms proportional to ny, that is not necessary to specify further. It is easy to
see that when (3.4.1) and (3.4.2)) are satisfied, this contribution disappears from ([3.4.5)). As for tensors
from Zyy1, by (3.4.4), if we consider for the sake of simplicity £ = 1 (but this holds for any k)

. oX™
U Tm (X) = U'u axu

= ulTy(x)

T (X)

so that T(X,U) = T(x,u), where T'(z,u) is the polynomial associated to a tensor in the Minkowski
space when contracted with a vector u that obeys the same zero norm condition as U. Since
T, (x) is the world version of Ty, the latter must then obey the transversality constraint . Besides,
it is obvious that rules out also the tensors that do not obey the strong transversality condition

(see (3.3.10) and the related discussion)

One may also say that a tensor Tm, . m, (X) is represented by the class of equivalence of polynomials in X and
U that differ from each other by terms proportional to U2 or (X - U). In order to extract the tensor from
the corresponding polynomial, one could in principle differentiate with respect to UE] However Jy is not
compatible with the constraint , since

9 2 m
U = 20" 0
3 As we said, U is the ambient version of some world vector u and therefore world tensors that can be schematically written
as T = uS would be represented by 7 = US and thus by vanishing polynomials. To prevent this, we assume that u is complex
and therefore no world or ambient tensors may be proportional to u or U. For further details about this see section 3.1 of [50].
“Derivatives % and % here and in the following are meant to act formally only on the explicit dependence on U and X and
therefore, even though U is a function of X, derivatives in U and X have no effect on X and U respectively.
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even when U? = 0. For this reason polynomials in the same equivalence class would correspond to different
tensors. This problem can be solved by using

d 0 0 1 0?
I = <21+U'aU> aum 30" guman, (3.4.6)

instead of Oy. Indeed 2,U? = 0.
One can show (see [50]) that

1
K(§+k—1)

Trnl...mk (X) = -@ml T _@ka(X, U)>

vl

where we used the Pochhammer symbol defined in the “Notation” appendix. By means of %, the usual
tensor operations can be performed in the index-free formalism. The scalar product

— ym
umg...mk == V Tmmg...mk

is represented by
1

T )

V22, T (X, U) (3.4.7)

The tensor product is trivially obtained by the usual product between scalars: given T, .. m; (X), Smy...m; (X)
and their associated polynomials 7(X,U) and S(X,U),

A
Z/{ml...m;H_l (X> = ( l ) ﬁmlmk(x)smk+1mk+l)(x)

is represented by

UxU) = Tmi...my, (X)SmkamkH (X)U™ - U6 ™h4 L e
= TEXU)SKU). (3.4.8)

Using
o 1 o 02
7" I = =3V 55 suean,

we find that the contraction 7%

hms...my, (X) 18 associated to

T,(Xa U) = Tlilmgmk ums ... gmk
1 o 02

= - U e T(X, U 3.4.9
2k(k—1)(¢+k—-1)($+k-2) aUaUaaUa( ) (3:4.9)

Ambient transversality and ([3.3.6) can be translated in this formalism by (3.4.7)) as

1
—X"92,TX,U)=0,
k(§+k—1) *.0)
equivalent to
0
X" X,U)=0. 3.4.10
S TU) (3.4.10)
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3.5 Application to the boundary

By means of the ambient formulation of the theory at the boundary of the AdS space we are able to describe
the duals of the higher spins that live in the bulk, i.e. some composite fields that share the same properties
of higher spins for what concern their tensorial nature. Our goal, now, is to employ our new language to
enforce the conformal symmetry on correlators of these fields, thus constraining their possible form. In our
formalism, this will amount to just imposing manifest SO(2, d) invariance, along with the ambient constraints
on tensors (3.3.6) and (3.3.4). This kind of task is familiar in theoretical physics and is easily solved. We will
find that 2-point functions are completely determined by these requirements, while for 3-point correlators
this happens only for s < 1 and for higher spins there are anyway strong restrictions.

In this section, first we consider only primary scalar fields, defined by , and we employ some
standard CFT techniques to derive powerful restrictions on 2-point and 3-point correlators. Then, our aim
will be to extend these results to primary tensorial fields using the ambient space formalism that will contrast
with the lower dimensional derivation for its simplicity.

3.5.1 2-point functions of scalars

As our first example of a CF'T correlator we examine the 2-point function between ¢1, ¢2 two primary scalar
fields with dimensions Ay, Ay. We require that the correlator

f(z,y) = (p1(z)2(y))
is invariant under each class of conformal transformations:
1. Translations: if we perform z# — x* — y* we get
f(@,y) = (¢1(z — y)$2(0))
so that f depends actually only on = — y.

2. Lorentz transformations: f must be a scalar and therefore, since the only scalar that one can build
with (z — y)" is its norm, we have that

fla,y) = f(lz—yl)
3. Special conformal transformations. This check is a bit more complicated. First of all we have that in

21.9)
1 d
- <1+2b-x+b2:p2>

for (3.1.11)) with parameter b. Now, let us employ some short-hand notation:

Be =14 2b-x + b*a? (3.5.1)

(2# + b2?)” = 228(x) (3.5.2)

To perform the transformation of f we avail ourselves of translational invariance to eliminate y and we

find

|

71(@,0) = 5 (61(2)92(0)) = f(z,0)
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but, at the same time, from (3.5.4) and (3.5.2)) we get

Cho
roonN
f@y) = it b INEY NS
Cr2
= A (353)
xﬂg—g
A{+Ag
_ CrBy 2
- |$|A1+A2
that produces the last constraint A1J2FA2 = Aj or
A1 = As.
4. Rescalings: under a rescaling we must get
!
P/, \y) = X382 (91 (M) da (Ny)) = f(x,y)
Since the only length that scales with A that we have at our disposal is |x — y/, it follows that
Cr2
f@,y) = ——R 74, 3.5.4
)= i (3.5.4)
where (12 is some proportionality constant.
The final form of a correlator of scalar primary fields is then
C120A,A
(D1(2)d2(y)) = W- (3.5.5)

3.5.2 3-point functions of scalars

Let us now analyze the following 3-point correlator

f(2,y,2) = (o1(2)P2(y)¢3(2)) , (3.5.6)

where the fields have conformal dimension of A1, Ay and Aj respectively. Analogously as before, translational
invariance implies that

f(x,y,z)Ef((x—y),(y—z),(z—x)),

and by Lorentz invariance, one can use only scalar products of these quantities, i.e.
lz—yl, ly—z, |z—a (3.5.7)
By=(x—-y)-(y—2), B:=@y—-2)-(z-2), Be=(x—y) (2-2).
We now notice that, for example
By+B. = (y—2)-((z—y)+(z-2))
= - ‘y - Z’2 )

so that none of the terms in (3.5.8) is independent of (3.5.7). We can thus write

flay.z)= Y O™z —y|™ |y — 2" [z — 2|* (3.5.9)

ai,az,as3
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for some constants C75,>**. Scale invariance, on the other hand imposes

A1+ Ag + Ag = — (a1 + a2 + CL3) . (3510)

Let us now also require the invariance under special conformal transformations with parameter b, again
putting one of the arguments to zero by means of a translation to simplify our computation. Referring to
(13.5.1)), we get from ([3.5.6))

1 1
f(a',y',0) = YNV <¢1 (w')¢2(y')¢3(0)>
z Py
while from (3.5.9) (see (3.5.2) and the computation in (3.5.3)))

ot 4 brr? oyt 4 by
Ba By

ai a as
F@y0) = D cpgee bl - Iz

ag ag
a1,a2,a3 1By12 1Bz

ay
= Z (/91,02,a3 ﬁ _9 (x# + buxQ) (yu + bﬂyQ) yiz ’ [yl |z|®
123 Bz B;tﬁy By |ﬁy|a72 |ﬁw|a73

ay
= e (J?Qﬁy —2(z-y+ (bz) y* + (by) 2% + b*a?y?) —y25y> oyl x|

ai,a2,as3

123 az a3

BaBy 1Byl = 182]
- Z (/91,02,03 ‘x - y‘al ‘y’az ’x‘ag
- 123 a az a3
araaas BBy 2 1Byl 2 |Ba] 2

from which we get

{?+%=&
$Hg =0

that, along with (3.5.10f), completely determines ay, as, as:
a1 =—(A1+A82—Az), ax=—(-A1+As2+A43), a1=—(A1—-Ar+Ay).
We come finally to the following expression for the conformally invariant 3-point correlator of scalar fields:

Ci23

(¢1(x)¢2(y)¢3(z)> = |l‘ _ y|A1+A2—A3 ‘y _ Z|—A1+A2+A3 ‘Z _ I‘|_A1+A2+A3 )

(3.5.11)

3.5.3 2-point functions of higher spins and the 0-0-s correlator

In the ambient approach, imposing conformal invariance amounts to requiring invariance under the SO(2, d)
linear transformation of the ambient coordinates. At the same time, though, we must remember that our
fields obey the homogeneity condition (3.3.4)) and the ambient transversality condition (3.3.6)).

Let us delve a bit more on the first. From it is obvious that there is a connection between
homogeneity and the defining property of primary fields (2.1.3). To explore it, we write the effect of a
dilatation z# — z/* = Az* on a point X (z) € Zy41/R by (B-1.20):

1 1 1 1
X" (2t 1, —=2? ) = (M1, —= 2222 ) ~ [2#, =, —2a2? ) = X™. (3.5.12)
2 2 A2
Now notice that this is a Lorentz transformation in Agyo
1
XM= (XM X X7) = X = <x“, th /\x—> (3.5.13)

80



Chapter 3. Ambient space formalism 3.5. Application to the boundary

since it obviously preserves scalar products, where the 4+ component is always multiplied by the — one and
A is canceled by % This conclusion is obvious in light of our construction in where we showed how
any element of the conformal group is equivalent to an SO(2,d) transformation followed by a rescaling in the
light-cone.

From we see that the scale factor does not depend on the coordinates, even though in general it
happens. This implies that, from (3.3.1) and (3.5.12),

oxX"™  9x'™

T, ..-uk(xl) = ox e ox Tm1---mk(>‘X/(x))7
B ok

_AOX™ 9xI

Oy i

T (&) = X Tony .y, (X (7))

i.e. the homogeneity condition on 7 with degree A coincides with the conformal dimension A of T

A remark is in order here: homogeneity is an algebraic condition on the values of ambient tensors away
from the domain of definition of their low dimensional counterparts, not a transformation law, because
dilations are not symmetries of Agio. The fact that the degree agrees with the conformal dimension is just a
consistency requirement. Therefore, when we check the homogeneity of correlators, we need to do it separately
for each coordinate, for we are not verifying dilation invariance.

We are now ready to explain how to find the simplest two correlators: the 2-point function of two higher
spins and the 3-point function between two scalars and one higher spin.

So, first we compute the correlator between two fields ®, " " (X ) and <I>12nl"'mk2 (X)) with degree A, Ay
respectively:
(o1 (X)) (X)) (3.5.14)

Our first goal is to replicate the index structure of by tensor multiplication of some fundamental
building blocks that are (strongly) ambient transversal with respect to X1 and X5 in the m and n indices,
respectively.

In order to construct these building blocks, we have only X1, X9 and n at our disposal. Then, it is clear
that

m n
1> X2

XiX3
mn _ __ ., mn 51
P <X1 X, ] > (3.5.15)

are the simplest terms that satisfy the transversality criterion. Actually we are forced to rule out the first
two because they violate the strong ambient transversality requirement (see (3.3.10))). Let us show that there
are no more general ones.

Proposition 3.5.1. Every (strongly) ambient transversal tensor that can be built out of X" and X35 is a
weighted sum of tensor products of P™" defined by (3.5.15) and therefore possesses an equal number of m
and n indices.

Proof. Suppose that it is not so. Then there exists at least a tensor

gm1 c Mgy 01 Dy

that obeys our transversality request. Then
X2m1X1nlgm1...mk1,nl...nkQ — ng...mkl 2. Ny (3516)
for some ‘H with the same algebraic properties of G. From (3.5.16) it follows that

G- Mk N1y BUINL G My My 02Dy | T Mgy 01D (3.5.17)
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where 7 is a tensor that in addition to the algebraic properties of G obeys
XQmIIml...mkl,n1...nk2 — lelzml...mkl,nl...nk2 — 0, (3518)

or the same relation with contractions in the n indices. As we will show later, (3.5.18]) is equivalent to

Iml...mkl ,n1...nk2 — O

On the other hand the only rank 2 tensor that one can build out of X; and X9 and 7 that is (strongly)

transversal is P™", so that

g P
X1 X9

and therefore G is just the product of H and P. We could repeat the same argument to reduce all possible
building blocks to P or tensors with only m or n indices.
Take then for example G™ ™1 It has to be the sum of terms of the schematic form

(X1 X)X X

for some power [ € R. It is easy to see that if we contract one of these with X7, it must never happen with
an index coming from a metric, because there can be no compensating term containing X7* to cancel it. If
no metric appears in G, then it shares the same algebraic properties of Z (the distinction among m
and n is meaningless, since it has to be transverse for both X; and X5.) On the other hand, with only X5
at our disposal, it is obvious that we cannot build any transversal tensor with respect to X7'. Therefore
g™k and similarly G™Mk2 and 270 -Bke yanish and we conclude our proof. O

We have thus proven that ®; and ®, must have the same rank k. From now on we write
S"(X 1, X9) = XTX5 — (X1 - X9)n™™. (3.5.19)
and the only tensor that reproduces the algebraic properties of (3.5.14)) is the tensor product of k (3.5.15)):

Slminy . gmg)ng
(X1 X2)"

)

where the symmetrization acts only on m.

We still have to fix the scaling degree, separately for each tensorﬂ as explained before. Under rescalings
of factor A1 for X1 and Ao for X9 (3.5.14) acquires the coefficient

—A1y—A2
)‘1 /\2 ’

while would give none. In general, we need some scalar to compensate this difference in powers of
A1,2. The only non-vanishing one is X1 - X» that, however, contributes with A1 A2, i.e with equal powers of
A1 and Ag. This implies that

Ap = Ay

so that we come to
S(mi|ny | . gmy)ng

(@1 X (X)) = Cradnian =

: (3.5.20)

Notice that here we are not imposing scaling invariance, that has been already set when we required that our field should
be an SO(2,d) tensor. This is an algebraic property that the ambient tensor have to obey and therefore has to be required
separately for each of them.
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Chapter 3. Ambient space formalism 3.5. Application to the boundary

where C12 € R is some constant. It is clarifying to convert (3.5.20)) into the physical space-time form.

i _— Sluilvr o grr)ve
(01" (w1)dg" T (2)) = Ci2dan, T - T PTNEY
Sluale oL Guk)ve

= C125A1A2 2A1 12k ?
|21 — 22

where we defined Cjp = 2217%C15. This form resembles closely and is clearly its proper tensorial
generalization. The ambient approach used here, even though was more straight-forward than the one used
in subsection for imposing the symmetry, required a detailed and lengthy analysis for what concerns
the tensorial structure of the correlator.

The index-free formalism simplifies this task. Ambient transversality will be automatic and there will be
no distinction between and its strong form. We show this feature for a slightly more complex task:
the derivation of the three point function for two scalars and one higher spin field.

The correlator in question is written in the index-free form as

<<I>1(X1)<I)2(X2)<I>§(X3, U3)> (3.5.21)

where we wrote Us to refer to U computed in relation to a4 (see (3.4.3))), k refers to the rank of ®3 and the
conformal dimensions of the three fields are A1, As and As. must be a polynomial in Uz of degree k.

Analogously as before, we want to build (3.5.21)) as a polynomial function of some suitable basic polyno-
mials B;(X1, X9, X3,Us). They must obey (3.4.10)), i.e.

w0
s oum

B; =0 (3.5.22)

and are thus the scalars built from X, X9, X3
X1-Xo, Xo-X3, Xi-Xj,
and the ones in which Uz is used, (X1 -Us) and (X3 - Us). Let f(a, ) : R? — R be any function of these.

(13.5.22)) requires that

0 0
——f(X1-U3, X2-Us) =X X3i+X2 X3== S L

3 6U3 da a8

or
fla, B) = g (X2 X3) 0 — (X1 - X3) B)
for some g : R — R, so that we may use as the building block the following expression
X X9
= — . 5.2
B3 <X1-X3 X2-X3> Us, (3.5.23)

that generates any polynomial g. We can then write (3.5.21)) as weighted sum of terms of the following form

Zk: (i) (X1 X2)" (Xo- X3)" (X1 - X3)° <X1 ;2>k_ <—§j§é) (3.5.24)

e=1

where we have already imposed the degree k with respect to Us. If we require that ((3.5.24)) has the correct
behavior under rescalings of X123 , we come to the following system of equations:

a+c:—A1
a+b:—A2
b—}—C—k:—Ag
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from which we find
A+ Ay —Az+k b__—A1+A2+A3—k .
2 T 2 T 2
Inserting these exponents back into (3.5.24]) we finally get,

a =

Clas ())((1;%3 _ ?2&{3)
1- X3 2-X3
<(I)1(X1)<I>2(X2)(I>I§(X3, U3)> = A +A;—Az+k A1 +AyFA3—k A —AotA3—k °
(X1-X2)"  z (X9 X3~ = (X{-X3) =

(3.5.25)
for some constant Cjo3.

3.5.4 3-point functions for general higher spins

Here we want to generalize further the result of the previous subsection and consider three higher spin fields
of rank ki, ko and ks and degree A1, Ay and Ags:

<‘I’]fl(leUI)Q)SQ(X2,U2)‘I>§3(X3,U3)>- (3.5.26)

Let us list all the basic polynomials. First of all, we use X; and U; (4, j = 1,2, 3) to find all possible scalars:

X;-X;, X U, U-U;j i#j. (3.5.27)
Now impose 3.4.10|ﬂ:
0
X;- 6—iji Uj=X;-X; (3.5.28)
0 0

We see from (3.5.28) and (3.5.29)) that only the first scalar in (3.5.27) can be a basic building block. The
other two have to be put into a transverse combination suggested by (3.5.28)) and (3.5.29),

Bij = (X X;) (Ui Uj) = (Xi - Uj) (X5 -Us), i<

and the generalization of (3.5.23))

XU, X;-Ug L
B = S — k.
k Xsz Xj‘Xk7 7'<]7 Zv]#

The 6 building blocks B;;, By, exhaust all the possible choices for the polynomials containing the U;. This can
be proven in the same way as we proved that B3 was the unique building block containing Us in the previous
subsection: one defines a function of 9 argumentsﬂ f(Xi-U;,U; - Uj) and enforces the 3 constraints
to find that actually f must depend on 6 transversal polynomials built with these scalar products. Since we
already have found 6 suitable combinations, it is not necessary to repeat that procedure.

Following our scheme, we impose the proper degree in each U; and X; to the most general term that can
be obtained from our building blocks

Bi3Bi3 85381 By By (X1 - X2) (X2 X3)™ (X1 X5)®

SIndices i, j... etc. that label different fields are not meant to obey the Einstein convention on summations
"Since X; - U; = 0, there are just 3 -2 = 6 non vanishing scalar products between the X;s and the Ujs, while U; - U; = 0
allows only 3 non-zero products of the kind U; - U;.
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Notice that both a; and b; must be positive, because the U; can appear only in positive powers. We come
thus to 6 conditions for the 9 unknowns a;, b;, ¢;:

a1 +ay—by+c1+ec3=—-4
a1 +az3—by+cp+cg=—Ay
a2 +a3—bs+ca+c3=—A3
ar +az+ b1 =k

a1 +as+ by =k

a2 + a3+ b3 =k3

a; >0

b; >0

(3.5.30)

We decide to leave unconstrained the b; and to determine a; and ¢; as their functions. System (3.5.30) then
can be put in the following form (we omit the domains for a; and b; for brevity)

c1+c3=—A1— ki +2b;
1+ o= —Ag — ko + 2by
Cco +c3 = —NA3— k3 + 2b3

(3.5.31)
a1 +az = k1 — by
a; + a3z = kg — by
as + az = ks — bs
and easily solved to get
1 = —002=0% 4 (b 4 by — by)
Cg = —=0UE02t0s 4 (_py 4+ by + by)
c3 = —761_522”3 + (by — by + b3)
a1 = hitha—ka _ bbby ,
ay — k1—1422+k3 _ bl—l>22+b3
a3 = Toathaths _ “bitbats
where we defined
0; = Ay + k. (3.5.32)
We then get the most general form for (3.5.26):
Cbibabs
<(I)lfl (Xla Ul)@l§2 (X27 U2) X37 Us > Z Cb1bzb3 51+09—03 751+52+5, 51 —09+03 °
bieB (X1-X9)" 2 (X2 X3) (X1 X3)
(3.5.33)

Here Cp,p,p, are some constants and

kFitko—ks bit+bo—b3 kj—kotkz byj—bo+bs kj—kotks bj—botbg
2 2

b1babs — b1 b2 b
C 10203 = 812 813 2 2 823 2 2 D11D22D33
is the tensorial part that gives a scale factor of )\fi for each X;, in which we used

X Xg) (X - — (X Xg) (X5 - S
D= Ko X0 (X0 U = (X X)) (X 00)
X -X;
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while & is the set where the b; can vary and is given by the following Constraintsﬂ

( k1+/€22—k3 > b1+b22—b3 (a1 >0
ki—ko+ks ~ bi—batbs (CL2 >0
ol oy - 0<b1 <k
1tkotks ~ —bi+ba+bs (a3 > O)
) >20 - 2 T = 0<by<ky . (3.5.34)
te 0 < by < ks
by >0
b3 >0

If we let one of the fields, say the first, to be a scalar, this picture simplifies considerably. Indeed, this
assumption is equivalent to imposing
a1:a2:b1:k1:0
so that becomes
c1tez3=—-A1—Fk
c1+cog=—Ng — ko + 2by
Cco +c3 = —A3 — k3 + 2b3

a3 — k‘g — bg
a3 = ks — b3
whose solution is
(¢ = — 240205 4 (ky — )
Cy = —=0E02H0s 4 () — kg + 2b3)
c3 = _% + (k3 — ko) ) (3.5.35)
as — k3 — bg

The related Green function is then

. L BkS*b&DkQ*kB‘FbB'DbS
<(I)1(X1)(I)22(X27 Uz)®3* (X3, U3)> = Z Chy A1 +69-03 2 2 —A1+§2+633 Al —b5+03
ber  (X1-Xo)7 2T (Xo-X3) 2 (X1-X3) 2
(3.5.36)

Again the numerator scales as /\f’ Let us analyze the allowed values for bs, i.e. the set #3. From ([3.5.35)),
positivity of as, ba, b3 provides the following system:

bs < k3
by > k3 — ko — maX(O, ks — kg) < b3 < ks. (3537)
bs >0

In particular, when the spins ke and ks are equal, (3.5.36) is completely determined by bs = ks.
As we showed in subsection [2.1.7] the fields, whose correlators we will need to compute in the boundary
CFT, are conserved currents, that obey (see (2.2.4]))

By, P = 0, (3.5.38)

8Notice that is redundant in 3 dimensions, because X1,2,3 and Ui2,3 can not be linearly independent, since the
ambient space has only 5 dimensions and therefore the structures B2, 513 and Bas and Di 2,3 are not independent. Indeed, one
can show that
(D1B23 + D2B13 + DsBia — D1D2D3)2 o< Ba23Bi13Bi2.

This relation can be translated into a constraint for the set 4.
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Using (3.4.7) this condition is equivalent in Ambient space to
8- 9% = 0. (3.5.39)

Equation [3.5.39] allows to further restrict the set #s. In the case of the correlator with two scalars and a
spin s particle with weight As, instead, it just imposes

A3:d+8—2.

We conclude this subsection with a final remark. Both and show the same structure at
the denominator (and the same can be said for (3.5.25)) after some algebraic manipulation) that resembles the
one we got for scalars but with a difference: the replacement of A; with ¢;. This change is fictitious
though, because the numerator scales in such a way that it completely cancels this difference.

3.6 Application to the bulk

In section we presented the full interacting non-linear theory of higher spins by means of its equations of
motion. However, in order to realize the AdS/CFT correspondence described in namely the Klebanov-
Polyakov conjecture, we need to compute Witten diagrams, whose rules are determined by the action of the
bulk theory, which is not presently known. Therefore, a possible approach is to consider the perturbation
theory of the Vasiliev equations and write a part of its complete action by starting from the free Lagrangian,
that gives rise to the standard Fronsdal equations, and adding order by order every vertex of interaction.
This can be done by expanding the Vasiliev equations around the AdS background and seeking the proper
Lagrangian that produces all the perturbative terms. For the simplest case, though, namely the cubic vertices,
imposing invariance under the AdS symmetry group and gauge transformations is sufficient to completely
determine the vertices (up to constant factors).

This task is more easily carried out in the ambient space. For this reason, the goal of this section will be
to develop the rules to compute Witten diagrams for the Fronsdal fields in this formalism. To do so we will
simplify the problem by setting a traceless transverse gauge similar to in AdS. We start by finding
the proper ambient covariant derivative in subsection and employ it in subsection to write the
general propagators for higher spin fields, solving (2.1.50)). After this, we find the most general expression
for cubic vertices of higher spins in AdS.

3.6.1 Covariant derivatives in the ambient space

Covariant derivatives assume a specially simple form in the ambient space and this is one of the main
advantages of its usage. Indeed they correspond to taking the transverse part of an ambient derivative of the
tensor in question:

!3.3.5 mm m _
DBTA1...Ak 23] Pb Pall cet ,Pakkngml...mk = ’Dbﬁlu,ak- (361)

This is actually the first definition of Djs proposed by Levi-Civita in [52] for manifolds embedded in a flat
space. In the following we will use the following short-hand notation:

k
val = Pmi ... YWk
=1

for products of an arbitrary number of tensors V.
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Let us apply definition (3.6.1) to the computation of the Laplacian operator g™~ DDy acting on a
symmetric tensor in the ambient formalism, where it becomes P*°DyD, by (3.3.15):

k
PPDyDcTayay = P Dy (Pgnﬂpgiamm_mk)

i=1

k
1 , PR
= Pbcpgps _ﬁndeXmH,P;llameL..mk - 5 2 nda]Xm Hpm m m1 .my
=1 j=1 i#£]

k
+P [ [ P amadTml,.,mk>
i=1
d+1 m - ko N
= 72 X HP o) Tml mk—ﬁ’PajH’PaizX JameL..mk
=1 i#]

k

i=1
1 k
= P <8mam - 13 (Xn0™) (X,0™ + d) + L2> Tan...an (3.6.2)

where we denoted by a generic P all the transversal projections in the last step. Notice that, due to homo-
geneity , the operator X;,,0™, which merely counts the powers of X', can be replaced by —A.

We can use ambient transversality to simplify considerably expression for totally symmetric fields.
Indeed, consider the following term in the expansion of that one obtains after substituting P with the

expression given in (3.3.12)):

1 . 1 ,
ﬁP{;XaiXm’@nTml_,mk = —ﬁngaianXmlelmmk
1
where we used the Leibnitz rule and ambient transversality. We can use ) to prove that in HZ 1 Par

Xa
only the terms with at most one of the Lf factors coming from the prOJectors survive, the others being

ruled out by ambient transversality. On the other hand, using homogeneity (3.3.4)),

A
,Ptl,lan’];;l...ak = ab7;1...ak 72 Xb7;u ag-.
Our conclusion is then that we can rewrite (3.6.1)) as
A 1
DbElu-ak = ab’];u-ak + ﬁ‘){bﬁlmak - ﬁ‘){(m%z...ak)b' (3-6-4)

The transverse traceless gauge in the ambient space is expressed as
Dy, @™ =0, ™Moy m, =0, (3.6.5)
but, by contracting with P, transversality can be rewritten as
Om, MM = 0.

In this gauge, the equations of motion for a Fronsdal field are of the Klein Gordon type (2.1.45)). If we choose

—A = 5—2 the second and the third term in (3.6.2) are exactly —7r > with m given by (1.4.59) and therefore
in the ambient space the equation of motion is

HP O = (), (3.6.6)
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3.6.2 The propagators

Now that we have at our disposal the expression of the AdS Laplacian Dj; D™ in the ambient space (3.6.2)
we are able to solve equations (2.1.46) for the higher spin bulk-to-boundary propagators.

3.6.2.1 Scalars

The bulk-to-boundary propagator for scalar fields (2.1.40) from a boundary point z5 to a bulk point (z1,x1)

Ka(z1,21,22) = 0A< & ; )A (3.6.7)

zQ—(wl—xgz

can be rewritten in the ambient formalism as

1

Ka(X, Xo) = CAL®———
A(X, X2) = Ca 2 X o)

(3.6.8)

by using (3.2.3) and (3.1.20) to express (z1,21) and x2 as A} and X2. Notice that the ambient scalar (3.6.8])
is homogeneous of degree A by (3.3.4). Verifying that (3.6.7) actually obeys the Klein-Gordon equation

(2.1.29)) is simpler in the ambient formalismﬂ Indeed, by (3.6.2)), it amounts to

%22 + %A + m?
(2X™m X 5)

1 —
(a{“am — — (XPOm) (AP +d) + m2> Ka(X), X3) = CAL® =0 (3.6.9)

L2

The numerator of (3.6.9)) is zero exactly when A = Ay given by (2.1.31). To get the right behavior at the
boundary we must take A = A,
Another form for (3.6.8) that we will need later is obtained by the Schwinger parameter method:

oo dt m
Ka(X, Xs) = Ng/ 7%6—2(’% Xom )t (3.6.10)
0
where A
CaL
NR = :
27 T(4)

3.6.2.2 Vectors

The bulk-to-boundary propagator of a vector field is a function KZ'm(Xl, X ) that, as every ambient tensor,
must be transversal
X K™ (X, Xg) = 0 = Xon KA™ (X, X 2) (3.6.11)

and obeys the Klein-Gordon-like equation (2.1.45)) for vectors

1

1 nim
P <a;nalm — — (X 01) (APD1p + d) +m? + ) K™y, X)) =0 (3.6.12)

72
by (3.6.2).
First of all, due to the similarity between (3.6.12)) we decompose KE'H as

K™ (X, X5) = §° (X, X0) Ka. (3.6.13)

m

9Here we used O for derivatives in X;
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Then we write the most general form for S"™

SUm (X X5) = an™ + bAPXY + cAPXY 4 e XXM + fXPXY

where a, b, ¢, e, f are some undetermined coefficients and we impose (3.6.11)) to (3.6.13)), finding the conditions

a+ (X - Xo)e+ Xe=0
L2+ (X1 X2)f =0
(X1-X2)c+a=0

(Xl . X2)€ =0
solved by
a Xlz
c=——"—, =———b e=0.
X1 X ! (X1 - Xo)

so that, up to (&} - X9) factors that can be absorbed by K5, we can write

AT XY
X Xo

X7
A7 -

Shm (X X)) = o <nmn - ) +8 (anxg Xan>

However, due to strong transversality of the light-cone tensors (see (3.3.10))), we must set § = 0. We get thus

XpXD
A, X)) = o (gt — SLE2 )
ST, Xa) O‘(" Xl.Xg)
and we can now impose (3.6.12)) to obtain
q 1 n 1 njm 1 1 njm
P 8181q L2 (Xl aln) (X 8lp‘f'd) +m + = 12 K = _ﬁ <—A) (-A‘i‘d) L2 +m KA

up to terms that are not transversal in the strong sense and therefore project to zero by (3.3.11). This
equation is solved by

A(A—d)—1—-mL*=0. (3.6.14)

We recognize in (3.6.14]) equation (2.1.47)) upon the redefinition A = § + 1 and we remind that one has to

take § = 04 to have the correct asymptotics at the boundary. The vector propagator is therefore

Xy - Xo) ™t — AT XY
(220 X g )2

K™ (X1, Xo) = NiNA( , (3.6.15)

for some normalization coefficient Ni.
Equation (3.6.13)) can also be rewritten by applying a differential operator to the scalar propagator

K™ (X1, X5) = NADA" KA (X1, X5) (3.6.16)
where
pilm —pn Loy o (3.6.17)
A AT 20X,
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3.6.2.3 Higher spins
Analogously to the vector case, one can show that the spin s propagator is

Gmifmi . gns)lms

Knl.“ns|m1...ms X ,X - N3 NA ) 3.6.18
X (3, X2) = NANa = 2 (3.6.18)
It is possible to rewrite also (3.6.18)) in an integral form by the Schwinger parameter method
oo dt
/ A gnrmy . gno)lme A ,—2(X-Xa)t (3.6.19)
t
0

and express (3.6.19) by a differential operator similar to (3.6.17]) applied to the scalar propagator (3.6.7)):
KRt () X o) = NADR™ ™™ K (X1, X o). (3.6.20)

Indeed, consider the following integral

n; vm; d* AFE-1 n; ym;
/+ dttA —2(X-X o)t H XXy /+Oodt g (t ) o~ 2(X1-X2) tH Xy X
o t - X 0 (A+k—=1)a,

+oo _ 1\ A+k—1 gk n; ym;
:/ dt(( )"t i(e—2(X1-Xz) )H ' Xy (3.6.21)
0

A+k—1),_, dtF X X
ﬁ +o00 ok A+k—1 (Xt H
= Xm"/ dt e 21Xz X7
ey > Jo (A+k—1)a i !

“+oo dt tAe—Q(X1-X2)t

m; 9
= (1) .HX2 };[ DX, /0 T (3.6.22)

where we used repeatedly integration by parts in (3.6.21)) and the Pochhammer symbol n,, defined in the
notation appendix. Applying relation (3.6.22) to (3.6.19)), one can derive the operator defined in ([3.6.20)).
The resulting expression is quite convoluted and can be simplified by using the index-free formalism. For this
purpose we define the index-free bulk-to-boundary propagator as

KX (X, X2, Up, V) = K\" Malm s X VWi - Vi, Usny - - - Usn.. (3.6.23)

Here we used a vector V in place of U; to avoid dependence on Xj. This does not guarantee transversality
but only total symmetry. The index-free version of (3.6.20)) then reads

KA(X1, X2,Uz, V) = NADA (X2, V,U2) Ka (X1, X2),

where

DA(X 2, V,U2) = Vin, « - - Vin,Uany - - - U, DRI () Xy), (3.6.24)

Using (3.6.22)) and

i . > V- Xo) Z(Uz X))
U n<Snl|m1Vm. — <S> s—1 U V (
g on; ; ; ; (=1)""( )’ XX,

n (3.6.19), we finally get

DSA(X27V7 U2) = (Z)
’L:O (A+8_Z_ 1)A71

(Ug - V) (V- Xo)* " (UQ . 8;9(2)8_1. (3.6.25)
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3.6. Application to the bulk Chapter 3. Ambient space formalism

3.6.3 Cubic vertices

Our aim now is to complete the set of tools that allow us to compute Witten diagrams of the Klebanov-
Polyakov correspondence with the ambient formalism by finding the 3-point vertices of the higher spin inter-
acting theory. We do this following [54].

First of all, we need to define an ambient version of the interacting part of the action. The most natural
candidate is an integral over the ambient space, but we need to evaluate it only on the %311 sub-manifold.
We can do this by inserting a Dirac delta function:

/ddz2xé<\/?_1> _/\/gddex/OJrOO(S(R—l)dR—/\/gddexa

where we used R = %\/ —X2 and

oX

d™X = L |det | -~

0X
Then, the vertex is a scalar quantity obtained by the contractions between 3 higher spin fields and a certain
number of covariant derivatives (as explained in subsection one needs to consider higher derivative

vertices). We want to write it by means of the index-free formalism as an operator acting on a polynomial
®(X,U) that represents the field{']

A" XdR = L+/det(g) = L\/g.

+oo
(I)(Xa U) = Zq)ml...mi(X)Uml T Umi'
=0

A simple way to write it will be then

| X=X =X3=X >
Uy=U;=U3=0
(3.6.26)
Wher Oim = % and V is a function that can be expanded in a power series of its arguments with X

A (VX2
Sg:/ 7 6( 7 1> V (X, 01, 02,05,0y,, Ou,, Ouy) (X1, Ur)®(Xo, Us) P (X5, Us)

being always before the derivatives, so that they do not interfere with each otheIFf]. V specifies every kind of
vertex that one can build with the fields contained in ®(X,U). For example,

V =01 - 0y, 02 - Oy,

identified™|
™Y, &, P,

Notice that we did not employ covariant derivatives inside (3.6.26)), contrarily to what one would expect. We
made this choice because, as showed by (3.6.4), D is equivalent to 9 plus terms proportional to X', but these
can be absorbed into the definition of V.

'This is analogous to what we did in section for the w and C tensors with (1.4.60) and (1.4.61).

1Tn this subsection we employ 4, j, k,1 = 1,2, 3 to denote the three fields ®. We do not use Einstein’s convention on repeated
indices in this case.

12 A5 in subsection here derivatives 0; are not meant to act on U;, even if, by , it depends on the coordinates A;.
This is just a convention that allows us to have compact expressions as . Since at the end no U; is present in the result,
this ambiguity disappears.

13As we saw in the last part of section to extract the tensor from its corresponding polynomial we should employ 2
instead of Jy. In the example this does not matter, since we deal only with vectors and at the end we put U; = 0, so that Z is
proportional to dy. However in the general case it is not so. However, & is a function of dy and so it fits into the definition of
V. Moreover, in the following we will need to contract 2 with X and again this is equivalent to using dy. For these reasons we
will always employ Oy instead of Z.

92



Chapter 3. Ambient space formalism 3.6. Application to the bulk

Our goal is then to constrain the form of V as much as possible. The first property is that it should
be compatible with our redundant description of the vertex by 3 different polynomials ®, namely that it is
invariant under

ot =00, o = 6;}17 (3.6.27)

Secondly we require invariance under isometries, that here appear as the elements of the SO(2, d) symmetry
algebra of the ambient space. This amounts to requiring that V is a scalar. Since it is a function of vectors,
this is equivalent to saying that it must be a function of all the possible contractions of its elements. Let us
analyze them one by one:

1. X% = L? can be absorbed by the definition of V.
2. X - 0; counts the power of X; and therefore is always equivalent to a number and we ignore it.

3. X - Oy, acts generically on a higher spin field that has been differentiated a certain amount of times.

By using (3.4.10)) we get
X -0y, 0;"® = 0" (X - Oy, @) — O, @ = =0, @

and similar relations in case of higher derivatives of ®. Since this term is equivalent to those where 0y,
appears, we do not consider it.

4. 0; - 95, if © = j is proportional to the equation of motion (3.6.6) if we choose the proper AE and
therefore vanishes. If instead 7 # j, for each term in which 0; - 9; appears, there are always two others
where it is replaced by 9;- ), and 9; -y, for the exchange symmetry (3.6.27). We have then the following
schematic equivalence:

O @I DD + 0y PDO"D + PO PO"D = 0y PO™ (D)
~ —DDI D

up to total derivative terms (which we will deal later with), so that we fall in the previous case and
reach the same conclusion: 9; - 9; can not appear in V.

5. Oy, - 0j can be transformed by integration by parts into
Ouv, " Ok, Ou, -0, L#kF#7,
up to total derivative terms. However, if we use the combinations
D1 =0y, - (02 — 03), cyclic permutations of 1,2,3

we see that integration by parts transforms Dy into —Dy. These combinations exhaust all the possible
cases because of the exchange invariance of V (3.6.27)).

6. Jy, - Jy, is equivalent to 0 if i = j for tracelessness (3.6.5) expressed by (3.4.9). For i # j it establishes
a contraction by the double application of (3.4.7). We then define

Ci=Y_leijrl du, - Ou,
Gk

MIf we made some other choice we would however had an equation of the kind 9*® = a®" for some « in place of (3.6.6),
and therefore this term amounts to a number.
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3.6. Application to the bulk Chapter 3. Ambient space formalism

Let us analyze the case of total derivatives that we left behind. When we write the total derivative of the
integrand given by V and the ®s, we can use the definition of the derivative of a distribution with the Dirac

delta appearing in (3.6.26)): schematically

dd+2x /—x2 o dd+2x /—x2\ d§ [ /—X2 m
/ 7 5( 7 —1>am(vq><1><1>) = —/ 7 am< g | T 1) (veed)
d2X 1.ds [ vV—X2 -
_ _/ - Ldt( - —1> X (VODD) (3.6.28)

We see thus that a total derivative acts as a differentiation on the ¢ times one of the first 3 terms we listed
before, namely the contractions with X', that we already absorbed inside the definition of V. For this reason

we rewrite (3.6.26)) as
d+2~y 100 -]
/ : XZ(S(H)< LX

— 1) V(") (C1,Ca, C3,D1, Do, D3) ®(X1, Ur) B (Xo, Us) (X3, Us)

L & Xi=Xp=X3=X
n=0 U=Uy=U3=0
(3.6.29)

where 6 () = %(5@) and V(™ are functions that share the same properties of V and together express its

dependence on total derivatives:

VX = () (VR (n)
6<L_1VN§65 T R

Now that we narrowed down the possible terms appearing in (3.6.29), it is time to impose higher spin
gauge invariance. By the rule explained at the end of section we can write the gauge transformation in

AdS (1.4.32) as
5(1)1111---1115 = D(mlemg...ms)' (3630)

In the index-free formalism we group the gauge parameters into
+00
(X, U) =) ™™l - U, (3.6.31)
k=1

When dealing with gauge transformations, our choice to use U such that U - X = 0 (see (3.4.2])) may hide
some important terms proportional to X coming from the covariant derivatives (3.6.30[). For this reason, let
us ignore this property for a moment and show how to circumvent this difficulty. We express (3.6.4)) as

X-0+U-0y

§O(X,U) = De(X,U) = (U 0—(U-X) 2

) (X, U), (3.6.32)

where we defined the index-free covariant derivative operator D by means of (3.4.8). The operators X -9 and
U - Oy just count the number of U and X in each term appearing in (3.6.31)), namely k and the homogeneity
degree —Ay. Therefore, if we choose for every e™1-Mk

A, =k,

we have

(X -0+ U - 0y)e(X,U) = (k- k)e(X,U) =0
and transformation (3.6.32) simplifies to

De(X,U) = U - 9e(X, U),
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Chapter 3. Ambient space formalism 3.6. Application to the bulk

so that it is correct to replace U - D with U - 9 in our computations as (3.4.2)) suggests.
With this choice and using (3.6.27)) we can compute the variation of (3.6.29) as

dd+2x +o00 /77)(2
_ (n) _ (M7, .
385 = / > 5 ( 1)y aleqxp( Xios = X

L
Ui23=0

= /dd+2x Zén) ( ) [V(”)’Ul.al} e<I><I>‘ Xygg— X

Ui23=0

n=0

since U is set to zero at the end and therefore the terms proportional to Uy - 9,V vanish. Thus, gauge

invariance is achieved if .
AR (Vl/—»1> [U;'ahmﬂ”ﬂ —0 (3.6.33)
n=0

up to terms that vanish on shell. As shown in [54], equation (3.6.33)) is equivalent to the following condition

on V™
0 0 0 0 0 0? 0?
Di—— —D (n) D D ——2 - (n—=1)
( 18C2 28C1> [ L <3 < 18D1 28D2> 0D3 Cs <8D16C1 8D26C2>> v

1 d a9\ 02
_ (n—2) _
735 (Cl -G 1) 2V =0 (3.6.34)

For n = 0, condition (3.6.34) is a homogeneous differential equation solved by any function of the form
VO (e, D)=V “ZC D;) (3.6.35)

This solution suggests an ansatz for V:

1%

V(E’iv G)a

where
Ei=Ci+0a;0 -0y, G=)» (Cj+B;0-y,)D;
J
take into account also total derivatives, represented by 0 = ), 0;, and «, B; are constant factors. Equation
fixes all the coefficients oy, 3; except two, that we call « and 8. Expanding in a power series the
resulting V one gets

oo min(sy,s2,s3)

1 si—n a—1 s
= 35 2 }: g%wwg/Qdeﬁaw-(a%-%aanl [ah-<al—(l+1a>] (3.6.36)

51,582,583

[3U3 : <31 - ;tié@)]sg_n [(0U2 - Ouy) (Ou, ~ (923 + B0)) — 2(dus - Ouy) <8U2 : ( +f >>
a—p

H@m&w@%(&ﬁ@_p»]M&ﬂﬂuﬂm%ﬁ%ﬂ%:&:%:X
Uy =Us=Us =0

where

d+2 i)
/ dX—/d X(5 X —1].
AdS L L
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3.6. Application to the bulk Chapter 3. Ambient space formalism

Notice that the coupling constants g®'%2%3™ are not determined, since they do not appear in the resulting
Vagiliev equations. Moreover, to shorten notation, we left some spurious contributions in (3.6.36 coming
from terms like

8U1 ~8N5U1-(82+(93),
since Jy, - 01 ~ 0 due to the gauge constraints (3.6.5)).
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Chapter 4

The comparison of correlators

In this final chapter we employ the tools that we have developed so far to compute correlation functions by
Witten diagrams in the bulk and compare them with those in the boundary. We will focus on the simplest
cases, namely the 2-point function and the 3-point correlator between a higher spin field and two scalars with
a weight A depending on the boundary conditions of the bulk scalar fields (see section (2.2.2)).

4.1 The two point correlator

The easiest CFT correlator that we can compare with the one in the bulk given by the AdS/CFT corre-
spondence is the 2-point function between the currents J#1# and J"'¥s. From the CFT point of view,

equation ([3.5.20)) tells us that r = s and
S(mifni | gmg)ny
(Xl . X2)S+1

(T (X)) T (X)) = Ci2 (4.1.1)

where we used the proper weight given by (2.2.9). On the other hand, as we learned in subsection
the 2 point function of the operator dual to ®™1™s ig given by the boundary limit of the bulk-to-boundary
propagator (3.6.18) (see (2.1.59)):

<jm1...ms (Xl)jnl...ns (X2)> — (S + 1) Ld*l Xlli_{&l K:j».].-.ns‘ml...ms (Xl, XQ)

lim S(ilmi ... gns)ims
X1—X1

= (s+ 1)L "Ny 1 N}
( ) s+14Vg41 (2X1 . X2)5+1

which coincides with (4.1.1)) after the identification

(s + )L INY  Noyr

Ci2 = YIS
since ‘
SIHI]
12 T e —
X1—X1 Xl . X2

4.2 The scalar-scalar-higher spin diagram
In this section our goal is to compute the correlator between two scalars and a higher spin field:
cg(;g;---ms (Xl, Xo, Xg) = <jA(X1)jA(X2)jm1”'ms (X3)> . (421)
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4.2. The scalar-scalar-higher spin diagram Chapter 4. The comparison of correlators

Here we are assuming the N — oo limit that makes the scalar currents to have weight A = 1,2, depending on
the boundary condition chosen, and the higher spin current to have dimension s + 1, as explained in section
[2.2.2] Before proceeding with the computation, we show how to compute the class of integrals that we will
be dealing with and prove some basic facts about the operators defined by .

4.2.1 The bulk cubic vertex integral

In our computation of the three point function we will employ the Schwinger parametrization of the bulk-to-
boundary propagator (3.6.20) and so we will deal with integrals that can be put in the following form:

X“l /H /Ads 72X (t1X1+t2X2+t3X3) (422)

Our aim is to find a simpler form of (4.2.2] - Let T be defined as
T = (t1X1 + 9 X9 —|—t3X3) .

T does not belong to the light—coneE] and therefore we can perform an SO(2,3) transformation in the ambient

space so that
1

without changing the measure in (4.2.2). Then, using parametrization (3.2.3)), equation (4.2.2]) becomes

4
/H dti / _ /H dt; /+°° < > / Ppe-2XT
Ads palet
3 4
H @tll e dz £ d?’xelTl%(_1+z“x“_22)
2t " Jo z
5
3/Hdt11/+00 dz ( >2€—|T|§(1+Z2)
T2
ot [T1e [ e (1)
H e
where we performed a gaussian integra in the third step and rescaled z — L1 |T ]_1 z. Let us also rescale
ti into ti%Z
+°O 1 g %Z 2
V(X3 b)) = LY lina /H / <z> _Ze_m

3
4-S 1, 3 1 5 dt I _ it XX
- et (3= 3) [ (I ) e merems o

Now, consider the following change of variables

N\u

3
1
mi = E B |Eijk|tit]’, = t;, =
i,j=1

Mi411M4-2
m;

'Unless X1, X, and X3 are proportional to each other, which means that the three points where the correlator is evaluated
coincide and this never happens.
*Remember that 7),, = —d,, because we are using the Euclidean signature, and therefore z*z, < 0.
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and define

Equation (4.2.3)) then becomes
S dt;
X 1) — H S thti XX
V( z,h)-/(ltlt) ket VP
- /IldmZ 0i = Xk ek [mi X5 X

L'(4;)

4.2.4)
5 (
i (Zj,k l€ijl X5 - Xk)

4.2.2 Light-cone projectors and bulk-to-boundary propagators

Let us now give a closer look at the differential operator D 2m Jofined by . We originally used it to
render the bulk-to-boundary propagator ambient transversal both in the AdS and light-cone sense. In a more
general setting, it acts as a projector onto ambient tensors in the light-cone and is analogous to P defined
n (3.3.12). Indeed, consider a generic tensor 7 #(X) with homogeneity degree A and its projection

DA™ Tazak Then, in view of (3.3.4)

mas.ap _ ymgas.ag . L xm 0 _
Xy YT = XOTR2eth o R X XKy e T = 0.
On the other hand, if X™7352* = ( and therefore 7 is transversal,
A—-1 1 9 A

Dzﬂm,ﬁiz...ak _ A TALAk XmTrﬁ2”'ak _ A— 1Ta1...ak‘

A0X,,
So the proper definition for the projector is

njm A njim

However, contrary to P, ambient transversality for every index of 7 can not be achieved by concatenations
of PZ'm, because it is a differential operator and it does not commute with itself. Therefore one needs a

projector for each rank, given by DA D fma (

T see (3.6.16])), where H? is some normalization constant,
which, for the spin 1 case, reads H1 = A L by - This projector can be extracted from equation (|3.6.25)

in the index-free formalism. Indeed, Di can be converted into a differential operator acting on polynomials

in V by replacing®| V with 9y in 3.6.25:

: 1 | | s—i
PAXVA0) = ) s v (0 %) e

so that
Up, - - - Up, DX (X)) = HAPA(X,V,U)T(X, V).

3Notice that, due to the fact that the n-th 9y derivative of V™ gives a factor n!, we needed to add a constant factor %
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4.2. The scalar-scalar-higher spin diagram Chapter 4. The comparison of correlators

Let us show that indeed P} (X, V,U) projects onto transversal tensors. Using (13.4.10) we get

S 1 S—1
1 (=1l i i 6)
X - 0yDA (X2, V,U)T(X,V)=—X -9 U-0y) (X -0 U-— X,V
DA VT (XV) = g X 0 3 (g =gy = (U 00 (X ) ( 2 T
:izs: (371)'1(171)' (Ua )7;71 (Xa )S*H*l Ui S_IT(X V)
Hy &= (Ats—i—1)a v v 0X ’
1 — D
s—i—1)!3! i —q
U-0v) (X -0y)* "
+HZ§(A+3—@'—1)A1( V) (X - 9v)
s—i—1
-(—A—s—H’—i—l)(U-(,fX) T(X,V)

=0
where in the last step we used a redefinition of the index in the second sum:
i =i+ 1.

There is a straight-forward way to compute H}. Let us illustrate it first with the spin 1 case. We compute
PJ on a particular transversal tensor with weight A given b

TR(X)=U™(T*X,) 2. (4.2.7)
for some ambient vector T'. Indeed,

10U
DMy (ThX )R = Ur (TP X ) TA + XL (x )TA 4.9.
A U ( ) U ( ) + A 8Xa( ) ( 8)

since all the terms proportional to X™U,, = 0 vanish because of the transversality of U (3.4.2) and, if we
differentiate that constraint, we obtain

0
Xy U™ = U,
X,
so that (4.2.8)) reads
ajm A-1
D" Trm(X) = == TR(X).

Therefore, if we apply PX to the polynomial given by 7T7(X,V) = T (X)Vm and we forget for a moment
that U? = 0, we can extract the normalization constant from the coefficient in front of the resulting 77(X, U).
This procedure readily generalizes to higher rank case by the definition of

S?...ms (X) =M ... [J™ms (TaXa)_A

*As showed by (3:4.4), U™ is the ambient representative of some vector u™ in the AdS space. We choose its weight to be 0
for simplicity.
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that we use to computd]

Palor(X,V) = f;g ; (A+s i(l>_ . U o) (X - ov) (U : a_‘;)” (U- V) (T°X.) ™2

“ ; @+ (—)—1>A w00y (x-a (w0 v xS

— ;Zizs; A1 _ji s <Um 88;: Xn> s (U2) (1°X,)~2

s Cqys—ios!

- I;Z (; (A —i-(sl_)z‘—Zl!)A_l) (U (1°Xa)2

so that
s _qys—iosl
A= iz; (A +(5 1—)2 _le)A—l.

4.2.3 Computation of the correlator

From (3.6.36]) we see that there are two kinds of vertices involved in the computation of (4.2.1)): if we choose
a =0, we get

s

! = =

Vioe = gighoe™ o[ (9-79) @ (4.2.9)
’ i=1 i
! S =

Vg()s = % (9850 + 9805) ¢m1...m5¢ (2 0 + 3)111 ¢ (4210)

i=1

However, by partial integrations, we can rewrite the (4.2.10) in the same form as up to total derivatives
that, as we showed in (3.6.28)), are equivalent to differentiating in (3.6.36) the Dirac ¢ function implicitly
contained in [ 445 @X and contracting the rest of the integrand with X'. In our case, since the only indices
come from the higher spin field ¢™!™s  these contributions vanish by ambient transversality . For
this reason we can define a unique coupling constant for cubic vertices that involve two scalars:

_ s 0
900s = 7 | 9s00 +

3!

900 + 9005 >
S

The computation that we have to perform is thus the following: by using first ([@.2-3)f] and then (#.2.4)
we get

5As in the spin 1 example, U - % must act only on U - V, otherwise terms proportional to X - U appear.
SNotice that we are using the same formula for terms that actually have different powers of ¢; and t2. In our case this is
allowed by the fact that }°,[; = 2s +2A + 1 and, by (4.2.3), no relative coefficients appear.
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Co0s(X1, X2, X3,Us)=N;, 1900sH; 1 Piy

/Ads dX (KA(Xl,X) [V. (5 - 3)}SKA(X2,X)) Kyi1(X3,X)+(122)

dty dts dts dty o110
t ty ts

/ dX (t (X1 V) —tg (Xo - V)P e 2V XattaXottaXs) | (1 = 9)
AdS

:(NA)2N5+1N3+19008 s+1PS+1 tAQS

3
= (N1)2 Ns+lNS+1QOOSH§+1L472A78W§P (s—2)2°

L [ dty dty dts
s+1 L

t to ts
3
=(N1)® Niy 1 Nopagoos H (L7227 m2T (s — 2) (—1)°

(60 V) g~ (K2 ) )

BTN (1 (X1 - V) — b (X o - V))* e Znzg Wi Xan (1 = 2)

dtl dt2 dtgtgtAtA Zz;ﬁ]t t; XU +(1 = 2)

0X13 0X o3 ty to t3
(V0 N2 Nepagoos T T (s — 2) (- 1)°
T 9A+] 1 s+1Vs+1900s 11511
s 0 0 SF2 1 T A_l
H ((Xl‘v) X, X2V 3X23) (f) ;( A_2i>+(1<:’2), (4.2.11)
X223X123X12 :

where (1 = 2) just indicates the similar terms with X; and X9 exchanged and we defined
Xz’j = Xz : Xj.

We can now compute the projection in (4.2.11)) by the following observation:

0 0 5 1
<(X1.V)3X13 _(XQ'V)3X23> -1~
X223X123X12 :
1 ( 9 o \*! XL XV
=3 (le) _(XQ'V) ) 113 1 231 =
2 0X 0X 5 v vA—3
13 23 XXX, 2
2 2 2
X,V X2V X,V X2V
) o =2 (1| X — X ; -\ <X
- <(X1'V)6X - (X Vigy > 4(X1w T X:)l + <X131> T (5231) (4.2.12)
13 2 X3 X 73Xy 2 XXX, 2

but the second term in (4.2.12)) is not transversal and does not contain any transversal part, as one can verify
directlyﬂ We can therefore drop it. By induction, we finally arrive at

X1-Us _ Xo-Us s
X3 Xo3
1 1 —

1 1 A—1
2 2 2
X3 X 73X 5

00s(X1, X2, X3,Us) = Aos ( : (4.2.13)

where
L4—2A—s

2 5 1

"The simplest way to do this without computations (that otherwise would require the explicit form of D3) is by observing that
the second term (4.2.12) is antisymmetric under the exchange 1 = 2, and therefore so is its projection, by linearity. However,
the only transversal polynomial that one can construct with these ingredients is obviously given by the first term of (4.2.12) (we
proved it in subsection [3.5.3), which is symmetric under the aforementioned swap.
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Notice that only for even spins (4.2.13)) is different from zero, since it does not change sign under the
exchange of X1 and X»o. Equation (4.2.13]) has the same functional form as the 3-point correlator (3.5.25),
in compliance with the Klebanov-Polyakov conjecture.
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Conclusions and outlook

In this thesis we presented the interacting higher spin field theory in both the frame-like and the metric-like
formalism. The first has the advantage to show through unfolding the underlying higher spin symmetry
algebra and indeed the Vasiliev equations rest on this formulation. On the other hand, the presence of
infinitely many auxiliary fields and of the additional twistorial coordinates tends to hide the physical meaning
of the fields. Moreover, the corresponding AdS/CFT duality cannot be expressed in the standard terms,
since no explicit form of partition function is available in this formulation. Indeed, the check of the duality
performed in [48] is quite involved. The correspondence in this formalism may be anyway formulated as the
twistorial holography introduced in [49], which in turn could explain the origin of the duality.

The metric-like formalism offers a more direct physical interpretation of the fields. We used it together with
the ambient formalism. In this way we found the bulk-to-boundary propagators easily. Also the cubic vertices
can be recovered by imposing gauge invariance to the first order in the fields as showed in [54] and explained
in section This formalism has proven to be useful also to treat the 4-points function case, in particular
to find the bulk-to-bulk propagator [56, [55]. The ambient space provides a natural environment also for the
boundary C'F'T, since it realizes the conformal symmetry in a linear way. This simplifies considerably the task
of finding the 3-point correlators by imposing conformal invariance without making explicit computations,
thus avoiding the issues caused by the fact that different boundary conditions for the scalar field lead to
different dual theories. This way, we determined the most general form of such correlation functions ,
which can be further constrained because the fields involved are conserved currents.

In this framework we could compare such correlators with those computed with Witten diagrams in a
simple case, the one involving two scalars and higher spin field, which was completely determined up to a
normalization factor in on the CF'T side. This test, which has already been done in [48], amounts to
a computation that is conceptually much simpler in this formalism. We found accordance between the two
results.

However, while computing the 3-point correlator we did not perform the projection onto (strongly)
transversal ambient tensors represented by Pj,; by using its explicit form , since the result was
simple enough to do it “by hand”. This procedure, though, cannot be employed in a more general case, where
more than one projector appears and the tensor to be projected is more complicated.

Consider for example the immediate generalization of the computation performed in the last chapter, the
3-point correlator between two fields with spin r and s and a scalar. Using the same techniques that allowed
us to arrive at (4.2.11]), one can write

0 o \"
Gors(X1, X2, U, X3,Us) o< Y Py 1(2)P5,(3) <Ah (X1-V2) X1 + By (X3-V2) 8X23>
h
0 o \° 1
13 23 X232 X123X122

where P (i) = PA(U;, V;,X;) and the sum in h and the coeflicients Ay, By, Dy, Ej, take into account the

different vertices that one can extract from (3.6.36)). The dependence of (4.2.14)) on X;; is in accordance with
our boundary computation (3.5.36)) and the presence of the projectors implies a tensor structure like the one
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given by . However the determination of the coefficients Cj, is much more complicated due to the
high number of differential operators present in . Even in the simplest case with only one higher spin
field examined so far, the explicit computation by means of is quite convoluted.

A way to circumvent these difficulties would be to perform the whole calculation by means of a computer
program. This should not present particular issues, since the only operations involved are differentiations,
easily handled by symbolic processors such as Mathematica. However an analytical way to solve the question
would be preferable and is surely a road to explore in future developments.

A more ambitious problem for further study will be the computation of 4-point functions correlation
functions of higher spin fields and their comparison with the corresponding C'F'T correlators. By now, only
a 4-point correlator of scalars on the boundary has been computed [55].
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Notation

This appendix is devoted to resume some of the conventions that occur throughout the thesis and help the
reader to find quickly the meaning of the notation used.
For definitions we use the symbol =, while, when we impose some equality yet to be verified, we write L
The Minkowski metric in generic dimensions is taken to be

n = diag {1, —1...}

unless otherwise specified.
The symmetrization and anti-symmetrization of indices are denoted respectively by

Tipuops) = Z Thytio  Turps) = Z Sgn(U)Tuau)---MU(s)?
0€ESs 0ESs
where S, is the symmetric group of the permutations of n objects and sgn(c) is the sign of the permutation.
Notice that when a certain symmetrization is applied to tensor products, we assume that the least number
of addends is used.
Derivatives with respect to vectorial quantities different from the coordinates are denoted by

0
ljl e —
oy = ETilh
Index contractions may also be denoted with the dot product as in
oMv,=0-V
or with exponents as in
V,VE=V2
While describing a theory by means of the AdS;41/CFTy duality, the coordinates of AdS (the bulk) are
denoted with X and their indices will be M, N, P, S, ... = 0,1, ..., d, while we will employ « for the coordinates
of the boundary and we use the indices u,v,p,0,... =0,1,...,d — 1.

In the ambient space formalism we embed AdS in the ambient space Ag40 with d + 2 dimensions, whose
points are denoted by X™ or X™ depending whether they are in the light-cone £, or in the AdS hyperboloid
Fg+1, and the indices m, n, r,s,... =0,1,...,d+1orm,n,r,s,... =0, 1, ...,d—1, 4+, — if the light-cone coordinates

X =X+ Xa pe X+ X
:l: \/é b :t ﬂ
are in use.
The Pochhammer symbol is defined as follows
T'(n
Ny, = F((m))’ n,m € N,

where I' is the Euler gamma function.
Proper subgroups are denoted by the sign <: for example

SO(2) < SO(3).
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