
Universitá degli Studi di Padova

Department of Information Engineering

Master Thesis in ICT for Internet & Multimedia

Non-Line-of-Sight Imaging from iToF data

Student Supervisor

Matteo Caligiuri Prof. Pietro Zanuttigh

ID 2019283 Universitá degli Studi di Padova

Co-supervisor

Dr. Gianluca Agresti

Sony Europe B.V.

Co-supervisor

PhD Adriano Simonetto

Universitá degli Studi di Padova

Academic Year
2021/2022

Abstract

The project aims to perform a feasibility study on the field of Non-Line-of-Sight
imaging using indirect Time of Flight and Deep Learning. Throughout the
various chapter of this work, will be theoretically presented how Time of Flight
cameras works and will be performed an in-depth analysis of Mitsuba Renderer
2 (together with some of its forks). After that, a newly synthetic dataset will be
designed and rendered from the ground up. Subsequently to these preliminary
steps the Fermat flow approach to NLoS imaging will be presented and evaluated.
To conclude this work we will introduce an innovative way to reach the desired
goal exploiting a smart trick together with a Neural Network model.

Sommario

Lo scopo del progetto è quello di eseguire uno studio di fattibilità riguardo la
percezione di scene in Non-Line-of-Sight usando un modello di Deep Learn-
ing assieme ad un sensore indirect Time of Flight. Attraverso i vari capitoli
sarà inizialmente presentata una trattazione teorica su come le camere Time of
Flight funzionano, dopodiché verrà eseguita una dettagliata analisi di Mitsuba
Renderer 2 (assieme ad alcuni suoi forks). Una volta fatto ciò verrà introdotto
un nuovo dataset sintetico progettato apposta per questo specifico task. In se-
guito a questi passaggi preliminari verrà presentato e valutato il metodo del
Fermat flow per percezione in NLoS. Per concludere verrà, infine, introdotta
un’innovatia strategia capace di raggiungere lo scopo prefissato sfruttando un
escamotage combinato con una rete neurale.

Contents

List of Figures ix

List of Acronyms xv

1 Introduction 1

1.1 Aim of the project . 1
1.2 Motivation behind the project and field of use 4

2 Time of Flight cameras 7

2.1 Introduction . 7
2.2 Time of Flight sensors . 8

2.2.1 ToF cameras working principles 9
2.2.2 Indirect Time of Flight (Continuous Modulation approach) 9
2.2.3 Direct Time of Flight (Pulse Based approach) 12
2.2.4 Differences . 12
2.2.5 Common error types of a ToF sensor 15
2.2.6 Calibration . 18
2.2.7 Post-processing depth correction 20

2.3 Mapping between direct Time of Flight and indirect Time of Flight 21
2.3.1 dToF to iToF . 22
2.3.2 iToF to dToF . 23

2.4 Non Line of Sight perception using Time of Flight 26

3 Transient ray-tracing using Mitsuba Renderer 2 29

3.1 Introduction . 29
3.1.1 Mitsuba Renderer 2 . 30

3.2 Mitsuba2-transient and mitsuba2-transient-nlos 30
3.3 In depth tests on the various version of Mitsuba Renderer 2 32

vii

CONTENTS

3.3.1 Testing of mitsuba2-transient 32
3.3.2 Testing of mitsuba2-transient-nlos 40

4 Dataset 47

4.1 Introduction . 47
4.2 Structure of the dateset . 48

5 Fermat flow analysis and test 53

5.1 How the Fermat flow works . 53
5.1.1 Implementation details . 54
5.1.2 Performance evaluation . 58

5.2 Limitations of the Fermat flow algorithm 60
5.3 Fermat Flow with standard direct Time of Flight and indirect

Time of Flight sensor . 66

6 Implementation 69

6.1 "Mirror trick" approach . 69
6.2 How the ground truth is build . 70
6.3 Neural network model and implementations 72

6.3.1 Training phase . 73
6.3.2 Inference phase . 74

7 Results & comparisons 75

7.1 Test case a: fixed sensor and diffuse wall 77
7.2 Test case b: variable sensor and diffuse wall 80
7.3 Test case c: fixed sensor and rough wall 83
7.4 Test case d: fixed & variable sensor and rough wall 85

8 Conclusions and Future Works 89

A Additional test results 91

A.1 Test case a: fixed sensor and diffuse wall 91
A.2 Test case b: variable sensor and diffuse wall 94
A.3 Test case c: fixed sensor and variable wall 97
A.4 Test case d: fixed and variable sensor and variable wall 100

References 103

viii

List of Figures

1.1 Overview of the considered Non-Line-of-Sight (NLoS) scenarios . 3

2.1 Schematized representation of a Time of Flight (ToF) camera im-
plemented using the Continuous Modulation (CM) approach [7] . 9

2.2 Example of a transient vector, where the red element represents
the direct component while the green one represents the global
component [5] . 13

2.3 Overview of the considered NLoS scenarios 13
2.4 Raw output from an indirect Time of Flight (iToF) (based on the

scene of fig. 2.3) . 14
2.5 Raw output of a the central pixel, from a direct Time of Flight

(dToF) (based on the scene of fig. 2.3) 14
2.6 Representation of the deviation from the perfect sine function [6] 15
2.7 Phasor representation of the demodulated light. Representation

in the case of only two returns, the primary one�1 and a secondary
one �2. The resulting measurement corresponds to � [6] 17

2.8 Example of a backscattering vector for a corner scene [9] 22
2.9 High level structure of the training architecture 25
2.10 Example of transient vector reconstructed using the SD architec-

ture (compared to the ground truth) 26

3.1 Example of two test scenes for the distance decay validation . . . 33
3.2 Distance decay test results . 34
3.3 Quantization test results . 35
3.4 Representation of the cross-section over the Field of View (FoV)

of the sensor . 35
3.5 Cross section decay test results . 36

ix

LIST OF FIGURES

3.6 Comparison between the standard RGB render and the one ob-
tained by the transient of the white wall scene 37

3.7 Representation of the transient vector of the central pixel (white
wall) . 37

3.8 Comparison between the standard RGB render and the one ob-
tained by the transient of the Cornell box scene 38

3.9 Representation of the transient vector of the central pixel (Cornell
box) . 39

3.10 Comparison between the standard RGB render and the one ob-
tained by the transient of the Cornell box (single reflection) scene 40

3.11 Distance decay test results . 41
3.12 Quantization test results . 42
3.13 Cross section decay test results . 43
3.14 Representation of the transient vector of the central pixel 43
3.15 Comparison between the standard RGB render and the one ob-

tained by the transient of the white wall scene 44
3.16 Comparison between the standard RGB render and the one ob-

tained by the transient of the Cornell box scene 45

4.1 Sample dataset scene . 48
4.2 Overview of the considered hidden object’s shapes 50
4.3 Example of some scenes of the dataset 51

5.1 Representation of a standard light path 𝒔 → 𝒗 → 𝒙 → 𝒗 → 𝒅 . . 55
5.2 Representation of the theory of Fermat paths. Points (𝑥ℱ ,2, 𝑥ℱ ,3)

(surface) and 𝑥ℱ ,1 (boundary) are the only points 𝑥 ∈ 𝒳 in the
NLoS that generate path that satisfies Fermat’s principle. [3] . . . 56

5.3 Reconstruction pipeline [3] . 57
5.4 Comparison with the ground truth [3] 59
5.5 Some example of reconstructions produced by the Fermat flow

(two views for each object)[3] . 59
5.6 Sample reconstructions of the object used in [3] 60
5.7 Sample reconstructions of the object used in [3] 61
5.8 Transient comparison between one scene from [3] and one from

our dataset (red dots mark the first discontinuity, the other dots
the following ones) . 62

5.9 Example of an illumination grid of 32×24 pixels (time multiplexed) 62

x

LIST OF FIGURES

5.10 Fermat flow reconstruction of a scene of our dataset (hidden object
= cube) using an illumination grid of 32 × 24 = 768𝑝𝑥 63

5.11 Schematized representation of the illuminated area limitation of
the Fermat flow . 64

5.12 Representation of the two simplified scenes created to test the
Fermat flow . 64

5.13 Reconstructions produced by the Fermat flow of the scenes repre-
sented in fig. 5.12 . 65

5.14 Fermat flow reconstruction of a hidden cube after the pre-processing 66
5.15 Fermat flow reconstruction of a sphere after the pre-processing . . 66

6.1 Representation of the "Mirror trick" 70
6.2 Example of a ground truth element 71
6.3 Model representation of the used Convolutional Neural Network 72

7.1 Results evaluation (test case a) . 78
7.2 Reppresentation of the reconstructed point cloud and comparison

with the ground truth (test case a) 79
7.3 Results evaluation (test case b) . 81
7.4 Reppresentation of the reconstructed point cloud and comparison

with the ground truth (test case b) 82
7.5 Results evaluation (test case c) . 83
7.6 Reppresentation of the reconstructed point cloud and comparison

with the ground truth (test case c) 84
7.7 Results evaluation (test case d) . 86
7.8 Reppresentation of the reconstructed point cloud and comparison

with the ground truth (test case d) 87

A.1 sensor location: (𝑥 : 1.0, 𝑦 : −1.0, 𝑧 : 1.65), sensor rotation:
(𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦) || object shape: cube, object location:
(𝑥 : 1.1, 𝑦 : 0.5, 𝑧 : 1.25), object rotation: (𝑥 : −52◦, 𝑦 : 74◦, 𝑧 :
−8◦) . 91

A.2 sensor location: (𝑥 : 1.0, 𝑦 : −1.0, 𝑧 : 1.65), sensor rotation:
(𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦) || object shape: cylinder, object location:
(𝑥 : 1.0, 𝑦 : 0.8, 𝑧 : 1.35), object rotation: (𝑥 : 40◦, 𝑦 : −4◦, 𝑧 : 0◦) 92

xi

LIST OF FIGURES

A.3 sensor location: (𝑥 : 1.0, 𝑦 : −1.0, 𝑧 : 1.65), sensor rotation:
(𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦) || object shape: sphere, object location:
(𝑥 : 1.1, 𝑦 : 1.3, 𝑧 : 1.25), object rotation: (𝑥 : 0◦, 𝑦 : 0◦, 𝑧 : 0◦) 93

A.4 sensor location: (𝑥 : 1.0, 𝑦 : −1.3, 𝑧 : 1.5), sensor rotation:
(𝑥 : 94◦, 𝑦 : 4◦, 𝑧 : 75◦) || object shape: parallelepiped,
object location: (𝑥 : 0.9, 𝑦 : 0.6, 𝑧 : 1.45), object rotation:
(𝑥 : 27◦, 𝑦 : −34◦, 𝑧 : −76◦) . 94

A.5 sensor location: (𝑥 : 1.1, 𝑦 : −1.3, 𝑧 : 1.7), sensor rotation:
(𝑥 : 95◦, 𝑦 : 1◦, 𝑧 : 86◦) || object shape: parallelepiped,
object location: (𝑥 : 1.1, 𝑦 : 0.5, 𝑧 : 1.25), object rotation:
(𝑥 : −52◦, 𝑦 : 74◦, 𝑧 : −8◦) . 95

A.6 sensor location: (𝑥 : 1.2, 𝑦 : −1.1, 𝑧 : 1.5), sensor rotation:
(𝑥 : 85◦, 𝑦 : −1◦, 𝑧 : 75◦) || object shape: cone, object location:
(𝑥 : 1.2, 𝑦 : 0.7, 𝑧 : 1.95), object rotation: (𝑥 : 64◦, 𝑦 : −90◦, 𝑧 : 0◦) 96

A.7 sensor location: (𝑥 : 1.0, 𝑦 : −1.0, 𝑧 : 1.65), sensor rotation:
(𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦) || object shape: cone, object location:
(𝑥 : 1.1, 𝑦 : 0.8, 𝑧 : 1.95), object rotation: (𝑥 : −89◦, 𝑦 : 22◦, 𝑧 :
0◦) || wall roughness: 0.55 . 97

A.8 sensor location: (𝑥 : 1.0, 𝑦 : −1.0, 𝑧 : 1.65), sensor rotation:
(𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦) || object 1 shape: cube, object 1
location: (𝑥 : 1.0, 𝑦 : 1.0, 𝑧 : 1.45), object 1 rotation: (𝑥 : 46◦, 𝑦 :
−29◦, 𝑧 : 38◦) || object 2 shape: sphere, object 2 location: (𝑥 :
0.9, 𝑦 : 1.1, 𝑧 : 1.45), object 2 rotation: (𝑥 : 34◦, 𝑦 : −69◦, 𝑧 : 63◦)
|| wall roughness: 0.6 . 98

A.9 sensor location: (𝑥 : 1.0, 𝑦 : −1.0, 𝑧 : 1.65), sensor rotation:
(𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦) || object shape: sphere, object location:
(𝑥 : 1.1, 𝑦 : 0.6, 𝑧 : 1.65), object rotation: (𝑥 : 0◦, 𝑦 : 0◦, 𝑧 : 0◦)
|| wall roughness: 0.1 . 99

A.10 sensor location: (𝑥 : 1.0, 𝑦 : −1.0, 𝑧 : 1.65), sensor rotation:
(𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦) || object 1 shape: sphere, object 1
location: (𝑥 : 1.2, 𝑦 : 1.3, 𝑧 : 1.25), object 1 rotation: (𝑥 : 0◦, 𝑦 :
0◦, 𝑧 : 0◦) || object 2 shape: concave plane, object 2 location:
(𝑥 : 1.1, 𝑦 : 1.4, 𝑧 : 1.35), object 2 rotation: (𝑥 : 0◦, 𝑦 : 0◦, 𝑧 : 0◦)
|| wall roughness: 0.1 . 100

xii

LIST OF FIGURES

A.11 sensor location: (𝑥 : 1.1, 𝑦 : −1.0, 𝑧 : 1.5), sensor rotation:
(𝑥 : 95◦, 𝑦 : −3◦, 𝑧 : 89◦) || object shape: concave plane,
object location: (𝑥 : 1.2, 𝑦 : 0.9, 𝑧 : 1.55), object rotation:
(𝑥 : −41◦, 𝑦 : 111◦, 𝑧 : 47◦) || wall roughness: 0.65 101

A.12 sensor location: (𝑥 : 1.3, 𝑦 : −1.0, 𝑧 : 1.5), sensor rotation:
(𝑥 : 92◦, 𝑦 : −1◦, 𝑧 : 86◦)|| object shape: sphere, object location:
(𝑥 : 0.9, 𝑦 : 1.2, 𝑧 : 1.75), object rotation: (𝑥 : 0◦, 𝑦 : 0◦, 𝑧 : 0◦)
|| wall roughness: 0.75 . 102

xiii

List of Acronyms

CGI Computer-Generated Imagery

LoS Line-of-Sight

ToF Time of Flight

NLoS Non-Line-of-Sight

FoV Field of View

iToF indirect Time of Flight

NN Neural Network

dToF direct Time of Flight

LiDAR Light Detection And Ranging

BRDF Bidirectional Reflectance Distribution Function

CV Computer Vision

CM Continuous Modulation

CWIM Continuous Wave Intensity Modulation

PB Pulse Based

SLP Shuttered Light-Pulse

NIR Near-InfraRed

SNR Signal-to-Noise-Ratio

PMD Polarized Mode Dispersion

xv

LIST OF ACRONYMS

IR InfraRed

VGA Video Graphics Array

MPI Multi-Path Interference

MAE Mean Absolute Error

EMD Earth Mover’s Distance

RTT Round Trip Time

DL Deep Learning

HDR High Dynamic-Range

OS Operating System

QVGA Quarter Video Graphics Array

SPAD Single-Photon Avalanche Diode

CNN Convolutional Neural Network

MAE Mean Absolute Error

xvi

1
Introduction

1.1 Aim of the project

Nowadays a huge amount of research interest is shifting towards the 3D
imaging field. This behavior is mainly justified by the fact that this topic can find
endless usage in a wide variety of different applications e.g., scene reconstruc-
tion, autonomous driving, 3D modeling in Computer-Generated Imagery (CGI)
and/or video games. That said, it is important to give a proper explanation of
3D imaging. It is a process that, using a specific set of sensors, aims to capture
the most possible 3D information about a given scene in the real world. This es-
sentially means recovering all the depth information of the environment and in
some cases also texture and material information, that can be used to completely
and accurately rebuild the real-world scene inside a digital environment.

As said this topic is gathering a lot of attention, but the research is still not
fully mature, for this reason, at the current time there exists a lot of different ways
to perform 3D imaging. In general, the various possible acquisition techniques
can be subdivided into two main categories [1]:

• Passive system: uses the reflectance of the object and the illumination of
the scene to retrieve the shape information (e.g., Stereo vision);

• Active system: requires an active light source that projects an electromag-
netic signal onto the subject, then uses the reflection of this signal to retrieve
depth information (e.g., ToF).

Of course none of the two presented approaches is perfect, each one of them
has its strengths and weaknesses. In particular, the biggest limitation of passive

1

1.1. AIM OF THE PROJECT

systems is that they strongly require the scene under analysis to be well, and
more importantly, uniformly illuminated1. Otherwise, the final reconstruction
will probably end up having low quality. On the other end, the active system
relies on its source of illumination and so, they do not suffer from such a limi-
tation. This is a key aspect that makes technologies like ToF more powerful in a
lot of scenarios since it is generally more robust and consistent across different
environments. For this reason, the focus of the project is mainly concentrated
on active systems.

Regardless of the used technology, the basic setup used to acquire 3D in-
formation from a real-world scene is composed of a sensor, or a pair of them
(stereo system), pointed directly toward the subject to ensure that there is a clear
path between the two entities. These settings fall under the name of Line-of-
Sight (LoS) acquisition. This is the most common and diffuse approach in the
3D imaging field since it is the most straightforward way to implement it. As a
result, most of the efforts are, and have been, focused on the refinement of the
sensors and software implied to reconstruct such scenarios.

Only in recent years, the scientific community has begun to explore novel
ways of using 3D imaging technology, in particular the active ones. One of the
most interesting tasks that are possible to carry out is Non-Line-of-Sight (NLoS)
imaging. This essentially means using a traditional acquisition system to capture
a scene/object located outside of the direct FoV of the sensor. This category of
imaging goes one step further concerning its LoS counterpart, analyzing the
light scattered from multiple surfaces along indirect paths to reveal the 3D
shape of the object located in the NLoS [2]. This added step introduces several
new challenges to the reconstruction pipeline. In particular, under the NLoS
condition only a few of the many recorded photons carry information related
to the hidden object compared to the LoS case in which almost every photon
is carrying useful information. Other than that it is important to keep in mind
that the signal strength of multiply scattered light2 decreases several orders of
magnitude faster compared to the case of a single reflection. All of this makes
the process of getting a robust detection and reconstruction, in a NLoS setup,

1In order to allow the system to be able to extract consistent features every object must retain
the same color from all the points of view, for this reason, the illumination should be uniform

2The case of multiple scattering is extremely common in situations like the "look around
the corner" (fig. 1.1a) were to have information about the hidden object each light ray has to be
reflected at least three times to reach back to the sensor

2

CHAPTER 1. INTRODUCTION

(a) Looking around the cor-
ner

(b) Looking behind a dif-
fuser

(c) Looking thro-
ugh a wall

Figure 1.1: Overview of the considered NLoS scenarios

much more difficult compared to the LoS case.
The NLoS imaging term groups under itself a lot of different scenarios, all of
them linked by the fact that the target subject is outside of the line of sight of
the used sensor. But there could be many different ways for an object to be
hidden. For this reason, it is possible to distinguish three main categories of
NLoS perception scenarios:

• Looking around the corner [3] (fig. 1.1a);

• Looking behind a diffuser [3] (fig. 1.1b);

• Looking through a wall [4] (fig. 1.1c).

All of these different scenarios have their related challenges. So for each one of
them, it is required to use different technologies to succeed in the reconstruction
of the hidden scene. In this work, the focus will be on the first category.

The goal of this project, as the title suggested, is to use an iToF sensor to
perform NLoS 3D imaging in a "look around the corner" setup. More precisely
the aim is to build a pipeline that, given the raw iToF data in input, can retrieve
the point cloud of an object located behind a corner, so outside of the direct
FoV of the camera. To accomplish this task the idea is to develop a Neural
Network (NN) model that takes in input the iToF data and gives as output the
point cloud of the object in the NLoS scene. Other than that it is also necessary
to develop and build a proper synthetic dataset that will be used to train the
network as there are none suitable already available in the literature.

To ensure that the implemented approach can be fully employed in its field
of application, it is crucial to keep in mind that the produced system has to
work in real-time (or close to it) and also must be as small and as cheap as

3

1.2. MOTIVATION BEHIND THE PROJECT AND FIELD OF USE

possible. All of these constraints will sum up to an already challenging task full
of limitations. In this work, to deal with that, it has been decided to use an iToF
sensor instead of dToF or Light Detection And Ranging (LiDAR). The iToF has
been chosen mainly for three reasons: it is generally cheaper and smaller than
its counterparts still guaranteeing a greater lateral resolution3 [5]. This makes it
seems more suitable for being integrated inside other devices like cars, robots,
helmets, etc. Other than that to ensure the real-time requirements, as will be
described in chapter 6 the NN model in charge of the 3D reconstruction has been
designed to be as small and as light as possible. Another aspect to keep in mind
is the fact that we aim to use an off-the-shelves device, not one designed and
built ad-hoc for our experiments. This is due to the will of generating a solution
that can easily be integrated into a lot of existing devices. Of course, all of these
constraints will make the research and development phases harder.

1.2 Motivation behind the project and field of use

As it is possible to imagine, retrieving the point cloud of a subject located
outside from the camera’s direct line of sight is not straightforward. At the
same time however being able to see the unseen could be extremely useful in
many different scenarios like robotic vision, remote sensing, medical imaging,
autonomous driving, military, and many other domains [2]. In all of these
situations, the ability to see something that is hidden can greatly improve the
quality and the degree of the information gathered from the environment. Just to
give a simple example, it is possible to consider a car (provided with autonomous
driving) stopped at an intersection. NLoS imaging allows such a car to know
exactly what there is on each side of the intersection, also in areas that are
hidden from its point of view. In this way, the autonomous system of the
car can perfectly know the environment and potentially take the best decision
on how to handle that intersection. Doing so the car is now able to perform an
action knowing even more than what a human driver could have known, further
reducing the possibility of an accident. Such reasoning could be extended to
many more scenarios (e.g., an autonomous robot inside a factory). This gives an

3Lateral resolution = minimum distance that can be distinguished between two reflectors
located perpendicular to the direction of the light beam. This corresponds to the minimum
distance that can be perceived between two objects located adjacent to each other.

4

CHAPTER 1. INTRODUCTION

idea of how powerful NLoS imaging can become when it will be fully developed.
Of course, since the development of this kind of technology is just in its early
stages at this point, it is not possible to reach such performances, but we can still
envision the future potential of this instrument. For this reason, working on its
development is necessary to allow this promising tech to evolve toward its final
stage.

5

2
Time of Flight cameras

2.1 Introduction

To properly understand the work that will be done through the following
chapters and sections it is essential to have a fair good knowledge about Time
of Flight (ToF) sensors. More precisely this chapter will aim to present how ToF
works. After that will be covered how the two main variants of this technology
(iToF and dToF) work. In particular, to fully understand the choices that will be
made further in the project, the differences between the two implementations
will be carefully discussed.

Apart from discussing how this type of sensor work it is also important
to understand how it is possible to map the measurements produced by one
kind of implementation to the other. This mapping is a key aspect that allows,
to some extent, to interchange the two types of sensors increasing the overall
possibilities of application of this technology. And, more importantly, in this way
it is possible to put together the strengths of both approaches while minimizing
the weaknesses to achieve better final performances.

Finally, the chapter will close by explaining the theory that is behind the
NLoS perception based on ToF sensors. In other words will describe why, at
least in theory, using such a sensor it is possible to properly retrieve the point
cloud of an object located around a corner.

7

2.2. TIME OF FLIGHT SENSORS

2.2 Time of Flight sensors

Time of Flight cameras represent a really interesting and efficient way to
capture 3-dimensional information about a real-world environment in real-time.

A ToF sensor could be seen as a specialized digital camera sensor that, instead
of capturing an RGB image of the observed scene, aims to capture a depth map
of the same scene. If we look at ToF under this perspective we can easily
understand that also for it the Calibration step represents an essential part of
the pipeline that is used to obtain a usable output. Of course, a ToF camera is
built differently from a traditional one and also uses more complex on-board
technologies, which bring to the generation of completely different errors. For
these reasons, the calibration procedure, in this case, is quite different from the
standard one used in Computer Vision (CV) applications to extract RGB images.
It is also important to notice that ToF cameras other than performing a more
complex task use also a low-resolution sensor due to the more complex pixel
architecture wrt RGB cameras. This lead to a strong reduction in the quality of
the measurements and leads to a much more complex procedure that is required
to extract the final output [6].

Sadly, due to the core approach used to capture the scene, ToF sensor is
subject to a large number of measurement errors. In the latest years, it has been
performed a wide number of investigations about this topic and it has been
discovered that the ToF error sources could be of many different types. Some
examples could be:

• camera parameters and properties,

• environment configuration,

• dependence from the Bidirectional Reflectance Distribution Function
(BRDF) property of the measured scene1,

• sensor hardware.

Note that for how ToF works, at every measurement instant, it provides simul-
taneously two different information: the depth and the amplitude images. The
first one represents, of course, the measured depth map of the observed envi-
ronment, while the latter corresponds to the amount of returning active light

1Since ToF are active sensors, the reflectance property of the objects influences the reflected
light measured by the sensor affecting the Signal-to-Noise-Ratio (SNR)

8

CHAPTER 2. TIME OF FLIGHT CAMERAS

signal. The amplitude image is also used as an indicator of the quality of the
measurement.

2.2.1 ToF cameras working principles

It is important to keep in mind that exist different types of Time of Flight cam-
eras that are based on different working principles. The two main approaches
to building this type of camera are based on:

• Continuous Modulation (CM) approach also known as Continuous Wave
Intensity Modulation (CWIM) characterize the iToF,

• Pulse Based (PB) approach also known as Shuttered Light-Pulse (SLP)
characterize the dToF.

In the following, it will be explained how these two strategies work. Keep in
mind that since CM is the most diffused one (and it is also the architecture used
for the whole project), the coverage of the errors and possible corrections will
be primarily focused on this specific ToF implementation.

2.2.2 Indirect Time of Flight (Continuous Modulation ap-
proach)

This kind of ToF implementation is also known as indirect Time of Flight (iToF)
because the distance is not directly measured from the time of flight of the light
ray, but instead, it is calculated indirectly starting from the phase shift 𝜙.

Figure 2.1: Schematized representation of a ToF camera implemented using the
CM approach [7]

The Continuous Modulation approach (fig. 2.1) is based on the correlation
of the emitted signal 𝑜𝜏, shifted by an offset phase 𝜏 and the incident signal
𝑟 resulting from the reflection of the active Near-InfraRed (NIR) light by the

9

2.2. TIME OF FLIGHT SENSORS

observed environment. More precisely theoretically it is assumed that the cam-
era is composed of two separate elements: the emitter (or light source) and the
sensor. Ideally, these two devices are colocated, of course, in a real device, it is
not possible so it is necessary to perform some additional steps to compensate
for the distance between the two elements. As it is possible to see in fig. 2.1 the
source shoot an amplitude-modulated light signal toward the scene that will be
reflected back to the detector. The latter will convolve the received signal with a
square signal characterized by the same frequency 𝑓𝑀 as the emitted one. From
this convolution is possible to extract the phase shift Δ𝜙 between the two signals
and that is used to compute the distance value.

ToF devices based on this principle used CWIM together with a correlation
function 𝑐(𝑡) (directly implemented in the hardware using a shutter and a pixel
sensitivity modulation process) to estimate the distance between the source of
the light and the target.

𝑐𝜏(𝑡) = 𝑟(𝑡) ⊗ 𝑜𝜏(𝑡) = lim
𝑇→∞

∫ 𝑇/2

−𝑇/2
𝑟(𝑡) · 𝑜𝜏(𝑡)𝑑𝑡. (2.1)

Note that the correlation function usually is computed at specific phase offset
samples 𝜏 = 0, 𝜋

2 , 𝜋,
3𝜋
2 . The emitted and incident signals can both be expressed

as cosinusoidal signals as follow:

𝑜𝜏(𝑡) = cos((𝜔𝑚 + 𝑓𝑚) · 𝑡), 𝑟(𝑡) = 𝐼 + 𝐴 cos(𝜔𝑚𝑡 + 𝜙) (2.2)

where:

• 𝑓𝑚 represents the modulation frequency,

• 𝜔𝑚 = 2𝜋 𝑓𝑚 represents the angular frequency of 𝑓𝑚 ,

• 𝐼 represents the offset of the signal,

• 𝐴 represents the amplitude of the reflected signal,

• 𝜙 represents the phase shift, that is directly related to the distance of the
target object from the sensor.

Considering the cosinusoidal nature of the two signals it is possible to use some
trigonometrical relations to simplify (2.1) into:

𝑐𝜏 =
𝐴

2 cos(𝜏 + 𝜙) + 𝐼. (2.3)

10

CHAPTER 2. TIME OF FLIGHT CAMERAS

From (2.3) we can notice that we have three unknowns: 𝐴, 𝜙 and 𝐼. For this
reason performing a single estimation of amplitude, distance, and offset is re-
quired to perform at least three different measurements. Usually ToF cameras
acquire four consequent samples 𝑆𝑖 = 𝑐𝜏 of the correlation function 𝑐 at specific
discrete phase offsets: 𝜏 = 0, 𝜋

2 , 𝜋,
3𝜋
2 . Of course, in case of noise, to increase

the obtained SNR it is possible to increase the number of measurements2. From
the three consequent measurements it is possible to extract the parameters of
interest by exploiting the following equations:

𝜙 = arctan
(︃
𝑆3 − 𝑆1
𝑆0 − 𝑆2

)︃
, (2.4)

𝐼 =
1
4 ·

3∑︂
𝑖=0

𝑆𝑖 , (2.5)

𝐴 =
1
2 ·

√︁
(𝑆3 − 𝑆1)2 + (𝑆0 − 𝑆2)2. (2.6)

From that we can simply compute the target object distance 𝑑 using the phase
𝜙, the modulation frequency 𝑓𝑚 and the speed of light 𝑐 ≈ 3 · 108𝑚/𝑠:

𝑑 =
𝑐

4𝜋 𝑓𝑚
𝜙. (2.7)

In the above computation, it has been performed quite an important approxima-
tion, since it has been considered that the sensor and the illumination module
are placed in the same position, a physically impossible aspect.

This approach is quite simple but, when used, is important to keep in mind
that since it is based on phase shift calculation, it allows to reliably measure only
a range of distances within one unambiguous interval [0, 2𝜋]. Since the allowed
distances depend on 𝑓𝑚 we can compute the maximum measurable distance as:

𝑑𝑚𝑎𝑥 =
𝑐

2 𝑓𝑚
. 3 (2.8)

2It is not possible to increase the number of measurements indefinitely since increasing the
number of obtained samples also incorporates some additional errors, like motion blur

3The factor 2 is due to the fact that the light has to travel back and forth between the target
object and the camera

11

2.2. TIME OF FLIGHT SENSORS

2.2.3 Direct Time of Flight (Pulse Based approach)

The Pulse Based approach works by generating light of known dimension
coupled with a fast shutter observation. More precisely in this case the camera
will project a NIR light pulse of known duration and discretize the front of
the reflected illumination. The discretization is performed before the return of
the whole light pulse using a fast camera shutter. The resulting portion of the
reflected light signal is the element that describes the observed object. Using
this approach the depth of the observed scene is directly linked to the time delay
of the received signal.

This time the depth of interest is related to the duration of the light pulse and
the one of the shutters (𝑡𝑝𝑢𝑙𝑠𝑒 + 𝛿𝑠)4. So, theoretically, ignoring all the sources of
error it is possible to compute the depth directly from:

𝑑 =
𝑐

2 · (𝑡𝑝𝑢𝑙𝑠𝑒 + 𝛿𝑠)
(2.9)

The output produced by this kind of sensor is sensibly different from the
ones produced by an iToF. In fact it returns for each sensor’s pixel a transient
vector (also known as backscattering vector). Analyzing this type of output it is
possible to easily separate the direct component 𝑥𝑑 from the global component 𝑥𝑔
as we can see in fig. 2.2. The first peak represents the first returning reflection,
so the closest object to the sensor, while the global component represents all the
other incoming light rays.

This ToF implementation is also known as direct Time of Flight (dToF) since it
directly retrieves the distance map from the time that the light ray spent going
from the source to the object and back again to the sensor.

2.2.4 Differences

From sections 2.2.2 and 2.2.3 it is clear that both, iToF and dToF are based
on the same principle: measuring depth based on the time traveled by the light
from the source back to the sensor (𝑠𝑜𝑢𝑟𝑐𝑒 → 𝑜𝑏 𝑗𝑒𝑐𝑡 → 𝑠𝑒𝑛𝑠𝑜𝑟). Despite that,
the two implementations are fundamentally different. Indeed, they produced
two completely different outputs.

4𝑡𝑝𝑢𝑙𝑠𝑒 represents the duration of the time pulse while 𝛿𝑠 is the shutter time

12

CHAPTER 2. TIME OF FLIGHT CAMERAS

Figure 2.2: Example of a transient vector, where the red element represents the
direct component while the green one represents the global component [5]

iToF gives in output an amplitude value 𝐴 and a phase shifts 𝜙 for each pixel
of the used sensor. From these data, as described in section 2.2.2 it is possible
to compute the depth map of the scene by using eq. (2.7). On the other hand
dToF for each pixel returns a transient vector. This element essentially contains
information about how many photons reach back to the sensor in each time
interval5. From this information, it is immediate to compute the depth map of
the scene using eq. (2.9).

(a) Camera view of the scene (b) Side view of the scene

Figure 2.3: Overview of the considered NLoS scenarios

That said to better understand the differences between the two ToF ap-
proaches is better to analyze a practical example. So, considering the sample
scene of fig. 2.3, in fig. 2.4 it is possible to see the two outputs obtained by using
an iToF sensor with a frequency of 20𝑀𝐻𝑧. While in fig. 2.5 it is possible to see

5The number of time instants that the sensor can accurately distinguish determines the
accuracy of the sensor.

13

2.2. TIME OF FLIGHT SENSORS

the output produced by a dToF on the central pixel6 of the same scene.

(a) Measured amplitude (20𝑀𝐻𝑧) [𝐷𝑁]7 (b) Measured phi (20𝑀𝐻𝑧) [𝑟𝑎𝑑𝑖𝑎𝑛𝑠]

Figure 2.4: Raw output from an iToF (based on the scene of fig. 2.3)

Figure 2.5: Raw output of a the central pixel, from a dToF (based on the scene of
fig. 2.3)

From this comparison, it is clear that using an iToF sensor requires a lot
more post-processing compared to the one needed using a dToF. At a first
glance, this seems to be a huge advantage for the latter but it is also important
to factor in the fact that in order to obtain high-quality results from a dToF, it is
necessary to use a sensor with really high sensibility. Due to the complexity of the
manufacturing process, this kind of sensor is still quite big and very expensive.
Other than that it is important to point out that since iToF uses continuous phase
its overall resolution is generally higher compared to dToF where the time delay
is necessarily quantized. For these reasons, in many applications, the use of an
iToF sensor is more suitable.

6It is represented only the central pixel because the dToF sensors produce a transient vector
for each pixel and so representing the full image in just two dimensions was not possible

14

CHAPTER 2. TIME OF FLIGHT CAMERAS

2.2.5 Common error types of a ToF sensor

This section will cover the most common types of error that can perturb
a ToF measurement. Since for the rest of the project, it will be used just the
iToF technology, the considered errors are mainly related to this specific type of
implementation.

Before talking about errors let’s talk about how the user can actually, directly
influence the obtained measurements. The user has only two options to directly
influence the measurement. It can change the integration time, which directly
influences the Signal-to-Noise-Ratio (SNR) of the obtained signal and so the
variance of the estimated distance. Or it can set different values of 𝑓𝑚 in order
to define the best compromise between range and noise.

After this small excursus, it is time to cover the most relevant error sources
that affect an iToF sensors:

• Systematic distance error,

• Intensity-related distance error,

• Depth inhomogeneity,

• Motion artifacts,

• Multiple returns.

(a) Measured modulation of the Po-
larized Mode Dispersion (PMD) light
source

(b) Mean depth deviation as a function of
the real distance

Figure 2.6: Representation of the deviation from the perfect sine function [6]

15

2.2. TIME OF FLIGHT SENSORS

Systematic distance error

In general systematic errors occur when the formulas used to model the
physical imager do not perfectly match reality. In particular, in the iToF cameras
there is a consistent difference between the actual modulation and correlation
concerning the idealized version used for the calculations. More precisely this
mismatch is caused by the presence of higher-order harmonics in the modulating
light source that makes the model deviates from a perfect sine function (see
fig. 2.6). So when computing the correlation in (2.1) we introduce a "wiggling"
error which makes the estimated depth oscillate around the real value.

Intensity-related distance error

The measured distance is also greatly affected by the intensity-related dis-
tance error. This makes the estimated distance dependent on the total amount
of light that reaches the sensor. For this reason, lower reflectivity objects appear
closer to the camera (up to 3𝑐𝑚 of error).

The causes of this problem are not known yet but may be located in some
nonlinearity in the photon-to-electron conversion or the semiconductor hard-
ware.

Depth inhomogeneity

The presence of a depth inhomogeneity leads to the so-called flying pixels
phenomena. In order to visualize this problem, we need to consider a depth
boundary with one foreground and one background object. This boundary
might be mapped to a single sensor pixel. In this situation, that pixel is hit by
a mixture of the background and the foreground light. Due to the nonlinearity
in the depth computation and the phase ambiguity, the estimated depth at that
point can assume any value of the camera’s depth range. This problem occurs
quite often due to the low resolution that the ToF sensors usually have.

Motion artifacts

As we have seen in section 2.2.2 the iToF cameras need to sample at least
three consequent measurements in order to compute the depth value of each
point. Ideally, these three measurements would be acquired simultaneously

16

CHAPTER 2. TIME OF FLIGHT CAMERAS

but, of course, this is not feasible. The non-simultaneity of the measurements
makes it so that in dynamic scenes depth is estimated erroneously.

Multiple returns

When it section 2.2.2 it has been described how CWIM model works it has
been made a big simplification. It has been assumed that the light returning to
every pixel of the sensor, after the reflection on the scene, is coming from a single
position in the environment. Unfortunately, this assumption holds only under
perfectly ideal conditions so, in almost every real-world scenario, it is violated.
This means that usually, multiple returns of light hit every single pixel of the
ToF sensor leading to erroneous depth estimation. The most common source of
multiple returns is known under the name of Multi-Path Interference (MPI). This
situation arises since light can travel multiple paths to intersect the target scene
and the imaging pixel.

Figure 2.7: Phasor representation of the demodulated light. Representation in
the case of only two returns, the primary one �1 and a secondary one �2. The
resulting measurement corresponds to � [6]

In a ToF system the returning light is described by the amplitude 𝐴 and
the phase shifts 𝜙. Usually, the demodulated light is commonly modeled as a
complex phasor [8]:

� = 𝐴𝑒 𝑗𝜙 . 8 (2.10)

The above equation describes the situation where it is present a single return,
when there are 𝑁 multiple ones the sensors can measure only the combination

8 𝑗 =
√
−1 is the imaginary part

17

2.2. TIME OF FLIGHT SENSORS

of them:

� =

𝑁∑︂
𝑛=1

�𝑛 =

𝑁∑︂
𝑛=1

𝐴𝑒 𝑗𝜙 . (2.11)

From all the returning phasor we can say that �1 corresponds to the primary
return, namely the one that corresponds to the ideal path of the light. This
phasor usually is the brightest one.

Note that in some cases MPI can also occur intra-camera due to reflection
and refraction of the light caused by the lens and the aperture.

Other types of errors

Overall ToF camera sensor is quite similar to the one used in traditional RGB
cameras, for this reason, they suffer from the same errors that affect standard
sensors. The most significant of them is related to the photon counting process
inside the sensor. Since photons are detected only by a certain probability,
during the conversion process is introduced some Poisson noise.

In ToF cameras this added noise has a much more severe influence on the
output depth. This is because this type of device does not capture all the
incoming illumination, but needs to isolate the active illumination from the
background one. So any added noise will immediately reduce the final SNR,
mainly if we consider that the non-linearity in the depth estimation will further
amplify the noise.

2.2.6 Calibration

As it was anticipated in section 2.2 all digital cameras in order to work
properly and, so, return a usable output, need to be calibrated before use. This
is done through a calibration step. Time of Flight cameras make no exception.
The following will briefly introduce how traditional camera calibration works
and then it will discuss the calibration procedure for depth cameras.

Geometrical camera calibration process

The calibration process consists on determines a set of parameters (usually
used in matrix form) required to retrieve the final output as close as possible to
the correct one. It is possible to divide the needed data into two separate sets of
parameters:

18

CHAPTER 2. TIME OF FLIGHT CAMERAS

• intrinsic parameters: represent the camera-specific ones and determine
the optical rays in camera-centered coordinates;

• extrinsic parameters: determine the 3D position and orientation of the
camera coordinate system in 3D world coordinates.

It is important to notice that it is extremely hard to extract the intrinsic pa-
rameters by simply inspecting the optical system. For this reason, it is necessary
to estimate the extrinsic and intrinsic parameters altogether.

In order to calibrate a camera, it is necessary to use a planar 2D object
that determines the world coordinates system (𝑥, 𝑦 coordinates span the plane
while 𝑧 coordinate spans the plane’s normal). Then it is required to take a set
of different calibration images while moving and tilting the calibration plane.
Each image needs to correspond to a different camera pose (= different extrinsic
parameters), but all the acquired pictures during the calibration procedure must
link to the same intrinsic parameters. This aspect helps to disambiguate highly
correlated data like the distance 𝑧 and the focal length 𝑓 . During the calibration,
it is important to also take into account the Field of View (FoV) of the used
camera since a narrow FoV brings a high correlation between extrinsic position
and orientation and so to less precise calibration data.

Depth camera calibration process

From the brief introduction to calibration given in section 2.2.6, it is clear that
calibrating a Time of Flight camera is a hard task. This is mainly due to three
aspects:

• ToF sensors are forced by construction to have a small FoV in order to allow
the emitted InfraRed (IR) light to reach the target with enough intensity;

• they are limited to really low image resolution smaller than half Video
Graphics Array (VGA)9;

• they do not capture the direct image, and so only the reflectance image can
be used for calibration purposes.

The only benefit while calibrating a ToF camera is that, since it measures
depth, it is possible to reliably disambiguate 𝑧 from 𝑓 and avoid the scale factor.

One of the best approaches to perform ToF camera calibration is to couple it
in a rigid rig together with a traditional RGB camera and calibrate both devices

9VGA maximum resolution is 640 × 480 [𝑝𝑥]

19

2.2. TIME OF FLIGHT SENSORS

at the same time [6]. This helps to utilize the strength of each architecture com-
pensating for their weaknesses. Keep in mind that since ToF sensors measure
the time of flight along the light path, error calibration is better to be performed
considering the radial distance.

2.2.7 Post-processing depth correction

Unfortunately not all the errors could be fixed during calibration, some of
them are scene dependent and require a post-processing step applied after the
depth measurement.
The following three errors fall into this category:

• flying pixels,

• motion artifacts,

• Multi-Path Interference.

In the following will be presented some state-of-the-art approaches to mitigate
these issues.

Depth inhomogeneity

In order to reduce the flying pixels problem, it is possible to follow two
different approaches, work directly on the 2D output of the ToF camera or work
on the reconstructed 3D scene.

A rough and straightforward way to fight flying pixels is to apply a median
filter to the 2D output and also a denoising pipeline [6]. But, in order to obtain a
better, more accurate, and refined result it is necessary to utilize a more complex
approach. The standard one is to identify the incriminated pixels (e.g., by
confidence measures) and discard them. After that, the depth value of the
removed pixels is estimated using information coming from the surrounding
ones.

To further improve the flying pixels removal process it is possible to consider
also the 3D geometrical data during the depth reconstruction of the missing
pixel.

20

CHAPTER 2. TIME OF FLIGHT CAMERAS

Motion compensation

Another issue affecting ToF cameras is represented by motion artifacts that
mainly happen when the sensor is acquiring dynamic scenes. As it has al-
ready been explained in section 2.2.5 this artifact is a consequence of the non-
simultaneity of the sequential measurements.

There are different ways to mitigate this type of issue. The simplest one
consists of reducing the number of frames sequentially captured in order to
produce a valid depth reconstruction. A more refined approach consists of,
firstly detecting where erroneous regions (due to motion) are located and, only
after that, they will be selectively corrected.

There is also an alternative approach to remove motion artifacts that directly
estimate scene motion between sub-frames using optical flow.

Multipath correction

As it was discussed in section 2.2.5 the Multi-Path Interference (MPI) rep-
resent one of the biggest problems of ToF sensors and so contrasting it is an
essential step. Fixing the MPI essentially consists of separating the measured
complex phasor (�) into its main components (usually the most interesting one
is the principal one, �1). This is an underdetermined problem since it is available
for only a single measurement but it is necessary to extract multiple elements.
So in order to complete the task, it is required to have some kind of additional
information, like some a priori one or the one coming from multiple measure-
ments.

2.3 Mapping between direct Time of Flight and indi-
rect Time of Flight

As described in section 2.2.5, one of the biggest problems that affect the qual-
ity and the precision of the iToF output is the MPI. Essentially the emitted light
will not perform a single reflection back to the sensor following a unique path. It
will produce multiple reflections (both inside and outside the camera) and will
reach the sensor at slightly different time instants, following multiple directions.
This, often lead to erroneous depth estimation. In the iToF implementation the
incoming light is represented as a phasor 2.10 and when multiple ones hit the

21

2.3. MAPPING BETWEEN DIRECT TIME OF FLIGHT AND INDIRECT TIME OF FLIGHT

sensor they will be combined in a single phasor that is different from the one of
the direct reflection 2.11.

On the other side a dToF, for how it is built, it does not merge in a single
phasor, the incoming light but, instead captures the intensity of light arriving at
the sensor at each time instant. In this way isolating the different contributions
due to the different times of arrival become quite easy. More precisely, using
this type of camera it is possible to record the transient vector (an example could
be seen in fig. 2.8) that allows avoiding any interference-related issues and at the
same time provides additional insights on the scene geometry.

Figure 2.8: Example of a backscattering vector for a corner scene [9]

Due to the high cost and the reduced spatial resolution, dToF often are not
the best choice. For this reason, could be useful a method able to convert an iToF
output to a dToF one with minimum error. In this way, it will be possible to use
a cheaper iToF to perform acquisition usually restrained only to dToF.

It is important to notice that the conversion from dToF to iToF is straight-
forward (use a lossless analytical model), while the opposite is much more
complicated. In this work, we will consider the novel approach proposed in [5].

2.3.1 dToF to iToF

Converting the output from a dToF to the correspondent one of an iToF is
quite a straightforward approach since it is possible to do it using a perfect
analytical conversion process.

To do so it is necessary to consider the iToF measurements 𝑐𝜏 in its phasor

22

CHAPTER 2. TIME OF FLIGHT CAMERAS

notation as presented in [8]

𝑐𝜏 = 𝐴𝑒 𝑗𝜙 = 𝐴𝑒 𝑗2𝜋 𝑓𝑚Δ𝑡 ∈ C10 , (2.12)

where Δ𝑡 is the Round Trip Time (RTT) of the light signal. This formulation
can also be used to mathematically describe the MPI phenomena. Under this
condition (common in real-world measurements), as described in section 2.2.5
the sensor will receive and integrate multiple signals coming from different
and commonly longer paths. After this consideration, it is possible to rewrite
eq. (2.12) as:

𝑐𝜏 =

∫ 𝑡𝑚𝑎𝑥

𝑡𝑚𝑖𝑛

𝑥(𝑡)𝑒 𝑗2𝜋 𝑓𝑚 𝑡𝑑𝑡, (2.13)

where 𝑡𝑚𝑖𝑛 and 𝑡𝑚𝑎𝑥 represent respectively the minimum and the maximum time
of flights considered, while 𝑥(𝑡) corresponds to the transient. Equation (2.13)
could also be rewritten in its discretized version:

𝑐𝜏 =

𝑡𝑚𝑎𝑥∑︂
𝑡=𝑡𝑚𝑖𝑛

𝑥(𝑡)𝑒 𝑗2𝜋 𝑓𝑚 𝑡 . (2.14)

If we consider that in a standard iToF measurement multiple acquisition fre-
quencies are used in order to obtain a reliable result it is possible to rewrite
eq. (2.14) as:

𝒄 = 𝚽𝒙 , (2.15)

where 𝒄 are the iToF measurements at multiple frequencies, 𝒙 is the transient
vector and 𝚽 is the measurement model of the iToF.

At this point, by a simple matrix multiplication, it is possible to map a dToF
measurement 𝒙 to the correspondent iToF one, 𝒄 following eq. (2.15).

2.3.2 iToF to dToF

The conversion from iToF to dToF can be done using a linear model but it
requires a complex acquisition process and, in any case, give poor results. The
biggest problem is linked to the matrix 𝚽 that unfortunately is rectangular and
non-invertible. This makes inverting eq. (2.15) impossible. So to perform this

10Note that to use this notation it is necessary to take aside the intensity component

23

2.3. MAPPING BETWEEN DIRECT TIME OF FLIGHT AND INDIRECT TIME OF FLIGHT

conversion seems to be to use a deep learning approach.
The authors of [5] have proposed a very compact architecture exploiting the

direct-global subdivision of transient information for the reconstruction of the
transient information itself11 starting from raw iToF data. More precisely they
develop a deep learning architecture able to reduce the MPI from iToF data and
also recover an approximation of the transient vector.

Implementation details

Before talking about the actual implementation strategy let’s recall that a
transient vector is composed of two distinct parts, the direct component 𝒙𝒅 and the
global component 𝒙𝒈 . So, given a set of iToF measurements at different frequencies
𝒗 we can decompose it using the scene impulse response 𝒙 and the measurement
model 𝚽 as follow:

𝒗 = 𝒙𝚽. (2.16)

We can now use the linearity of the model to further decompose (2.16) into:

𝒗 = 𝒙𝚽 = 𝚽(𝒙𝒅 + 𝒙𝒈) = 𝒗𝒅 + 𝒗𝒈 (2.17)

where 𝒗𝒅 corresponds to the ideal iToF measurements, while 𝒗𝒈 corresponds to
the measurements of all the other reflections.

As anticipated in section 2.3.2 the proposed approach is completely based
on the use of a deep learning model that takes into input the real and imaginary
part of the raw iToF measurements 𝒗 at different modulation frequencies. In
particular, the designed model, as shown in fig. 2.9, is composed of three parts:

1. Spatial Feature Extractor (S) that aims to deal with temporal noise sources
with zero mean (e.g., shot noise) and provide an encoded version of the
spatial information to the following steps;

2. Direct Phasor Estimator (D) which perform the MPI denoising estimating
𝒗𝒅, the direct component of the raw phasor;

3. Transient Reconstruction Module (T) that has to reconstruct the transient
representation (𝒙𝒅 and 𝒙𝒈), in order to do so it is composed by two sub-
modules:

11The transient information other than error removal can also be used for NLoS perception
or material recognition

24

CHAPTER 2. TIME OF FLIGHT CAMERAS

• Direct model that reconstructs only the direct component 𝒙𝒅 return-
ing its magnitude 𝐸𝑑 and its time position 𝑡𝑑;

• Global model which reconstructs only the global model 𝒙𝒈 approxi-
mating it using a Weibull distribution:

˜︁𝒙𝒈(𝑡) = 𝒂(𝑡 − 𝒃)𝒌−1𝑒𝑥𝑝

(︃
− 𝑡 − 𝒃

𝝀

)︃𝒌
(2.18)

where 𝑡 ranges from 0 to 𝑇 (maximum acceptable travel time), 𝒂 takes
care of the scale, 𝒃 of the shift, 𝒌 and 𝝀 of the shape.

Figure 2.9: High level structure of the training architecture

Note that from the above-mentioned model it is possible to extract two dif-
ferent architectures:

• SD which corresponds to the full model and also to the best performing
one, both on synthetic and real data;

• D which is an extremely lightweight architecture (only 3𝑘 parameters)
composed by only the modules D and T, but still able to reach good per-
formance nevertheless worse than the complete counterpart.

Regarding the loss function used to train the model, a Mean Absolute Er-
ror (MAE) has been used to guide the Direct Phasor Estimator while the Global
model has been guided by an Earth Mover’s Distance (EMD) one.

Performance of the model

Evaluating the performance of SD in the task of transient reconstruction
it is possible to say that, as we can see in fig. 2.10, it can define the direct
component quite good while it has some more problems in reconstructing the
global component but it is still able to give a good general idea of it. Other than

25

2.4. NON LINE OF SIGHT PERCEPTION USING TIME OF FLIGHT

that it is important to notice that this transient reconstruction is much better
than the one achieved by the only other approach, represented by iToF2dToF
[10].

Figure 2.10: Example of transient vector reconstructed using the SD architecture
(compared to the ground truth)

2.4 Non Line of Sight perception using Time of Flight

Regarding the task of Non-Line-of-Sight imaging using a ToF sensor, the
general idea is to consider the output of a dToF and from that extract the global
component 𝑥𝑔 ignoring the direct one. This approach is justified by the fact that,
if the goal is to extract information coming from an object located in NLoS for
sure that element will not be the closest one to the sensor. For that reason, it is
impossible that it ends up inside the direct component but it will be part of 𝑥𝑔 .

From this general introduction it is clear that NLoS using ToF is limited to
work only on two specific scenarios: look around the corner and look through a
diffuser. This constraint is dictated by the fact that in order to gather information
about the hidden object, the dToF requires that some reflection from that object
came back to it. This excludes the "look behind a wall" scenario since in this
situation no reflection from the hidden element may reach the sensor. For what
concerns this specific project the goal will be to implement a NLoS imaging
pipeline to retrieve information about an object located around a corner.

It is clear that to get some information from a NLoS scene it is essential for
the direct/global separation of the ToF measurements. For this reason, in many
cases, the most common ToF sensor used for this kind of application is the dToF

26

CHAPTER 2. TIME OF FLIGHT CAMERAS

from which it is easy to separately analyze the two components. In any case,
also starting from 𝑥𝑔 directly doesn’t make the task easy. Indeed from the global
component is still extremely difficult to isolate the information coming from the
hidden object. Due to the extremely high complexity of this task, as stated in
[2], at the moment most of the state-of-the-art approaches relay the extraction
of useful data from 𝑥𝑔 to a NN or Deep Learning (DL) model.

For that reason also the approach that will be proposed in this work will
hand off the point cloud extraction process to a NN model.

27

3
Transient ray-tracing using Mitsuba

Renderer 2

3.1 Introduction

As anticipated in section 2.4 to perform NLoS imaging the plan is to use a NN
model. That directly implied the need for a related dataset on which it is possible
to train the network. Since the considered topic is extremely difficult the best
way to start approaching it is to first consider a simplified situation, and only in
a later stage add more and more up until a real-world situation is reached. This
work represents the beginning of the project, so it has been decided to start the
training of the NN model on an ideal synthetic dataset without any error, apart
from the MPI one. Unfortunately, in the literature, does not exist any pre-build
synthetic dataset suited for the intended task. This made the need to generate a
new dataset designed ad-hoc for this project.

The precise structure of the dataset will be described in detail in chapter 4.
In any case, to build a dataset that simulates dToF measurement of a 3D scene
representing a "look around the corner" scenario (same setup of fig. 1.1a) it is
required to first build the 3D scenes and then perform the "measurements" to
obtain the transient information. To accomplish such a task it is required the use
of a rendering system that both builds the scene and also acquires the transient
data. In order to do so it is necessary to use a rendering environment able to
fulfill four essential requirements:

29

3.2. MITSUBA2-TRANSIENT AND MITSUBA2-TRANSIENT-NLOS

• being able to render the 3D scene with different camera/object poses and
materials,

• render everything following the law of physics as close as possible,

• allows for some kind of automation in order to speed up the generation
process,

• being able to estimate realistic transient information from the considered
scene.

After some evaluations, it has been decided that the best solution for our needs
was Mituba Renderer 2 [11].

3.1.1 Mitsuba Renderer 2

Mitsuba 2 is an open-source research-oriented rendering system written in
C++. More precisely it consists of a set of libraries and plugins that implement a
wide range of different functionalities, ranging from material and light sources to
complete rendering algorithms. The goal of Mitsuba 2 is to provide researchers
in the advanced sensing and Computer Vision fields with relatively easy and
lightweight renderer environments deeply focused on realism. More precisely
the goal of the authors was to develop a complete solution that generates realistic
renderings using physical light transport simulations and at the same time keeps
the overall complexity and computational load at an acceptable level. In this
way, researchers can focus on their project without losing time on implementing
the rendering pipeline.

For our specific use, these premises was perfect, since our goal is to focus most
of our efforts on the NLoS detection instead that on the rendering of the dataset.
Other than that, this specific renderer fulfills three out of the four mandatory re-
quirements presented in section 3.1. Regarding the requirement of the transient
computation, the standard version of Mitsuba 2was not able to perform such a
task. Thankfully there exist two forks of the renderer, mitsuba2-transient [12]
and mitsuba2-transient-nlos [13] that add this exact functionality to the core
version of the software.

3.2 Mitsuba2-transient and mitsuba2-transient-nlos

Both these two forks of the core Mitsuba 2 aim to add the functionality of
transient vector estimation from a given 3D scene. Mitsuba2-transient-nlos

30

CHAPTER 3. TRANSIENT RAY-TRACING USING MITSUBA RENDERER 2

also add the possibility to perform some NLoS acquisitions. More precisely the
latter is based on the first one, it represents a follow-up of the original project
started by Jorge Garcia Pueyo. For that reason, both of them share the same
core modifications that allow the implementation of transient rendering but
mitsuba2-transient-nlos contains some additional features and many bug
fixes. The main contribution of [12] is the introduction of two novel plugins,
transientpath and streakhdrfilm that utilize the functionalities of the core
Mitsuba 2 to render also the transient data.

It is important to briefly explain how these Mitsuba 2 forks build the dToF
like reconstruction. In order to obtain the desired output, it is necessary to
first design the 3D scene, defining properties and position/orientation for each
object, camera, and light source of the scene. In our specific case, this step
was performed using Blender 2.83. Once the scene is fully defined using the
Mitsuba Blender Add-on [14] it is possible to directly export it in the format
required by the renderer (general information inside an .xml file and all the
meshes as .obj files). Since this plugin is not compatible with the modified
version of Mitsuba it is necessary to perform some easy modifications to the
.xml file in order to make it compatible with streakhdrfilm. Once all of these
steps are concluded simply running Mitsuba on the final file it is possible to
obtain the transient information related to the given scene.

The obtained output requires some post-processing since it is not formatted
in a standard and easy-to-use form. More precisely for each scene Mitsuba
return a list of .exr1 images. Each one of them stores the transient information
of each row of pixels of the considered sensor. Starting from This kind of output
it is necessary to load all the .exr in order to store them in a more easy-to-use
format, and more importantly, reshape them to fit inside a single file containing
the transient information pixel by pixel instead of row by row. In our specific
case, the data were converted from .exr to a numpy array.

1EXR is a raster image stored in the OpenEXR format, that is an High Dynamic-Range (HDR)
image format [15], essential to store all the information relative to the scene without losing any
data due to compression

31

3.3. IN DEPTH TESTS ON THE VARIOUS VERSION OF MITSUBA RENDERER 2

3.3 In depth tests on the various version of Mitsuba
Renderer 2

Since the considered forks of Mitsuba 2 presented in section 3.2 are not
officially supported by the Mitsuba team and represent personal projects or
thesis projects it was essential to verify their accuracy as the first step of the
project. This represented a fundamental step in the development of our work
since all the following will depends on the dataset generated using Mitsuba, so
any error of the renderer will be reflected in all the following stages and possibly
could become worst at every step.

Originally the idea was to use as render environment mitsuba2-transient
as it just adds to the core version only the transient reconstruction without
any additional features. In this way, the possibility of having errors caused by
additional features should be minimized. For that reason, the validation phase
was designed to test this specific version. The renderer was compiled and built
(following the official guide) on Ubuntu 20.04.4 LTS as it is the recommended
Operating System (OS) by the author of [12]. In order to validate all the key
aspects of the renderer, it was decided to perform the following four tests:

• check if the distance decay follows the expected law,

• understand if some temporal bin quantization is applied,

• check if the cross-section decay follows the expected law,

• compares the transient reconstruction with the RGB render.

Note that for all the following tests the resolution of the sensor was set to be
VGA, 640 × 480 𝑝𝑥.

3.3.1 Testing of mitsuba2-transient

Distance decay

If the transient computation is implemented correctly it must hold that,
illuminating a smooth and flat surface located perpendicularly to the sensor, the
radiance measured on the central pixel (the one directly in front of the sensor)
decays as:

1
𝑑2 · 𝑟𝑚𝑎𝑥 , (3.1)

32

CHAPTER 3. TRANSIENT RAY-TRACING USING MITSUBA RENDERER 2

where 𝑑 is the distance between the sensor and the surface, while 𝑟𝑚𝑎𝑥 is the
maximum measured radiance value.

(a) Setup with 𝑑 = 2𝑚 (b) Setup with 𝑑 = 4𝑚

Figure 3.1: Example of two test scenes for the distance decay validation

In order to validate this aspect, we designed a testing procedure consisting
of multiple consecutive acquisitions. First of all, it was necessary to design
the scenes used to get the measurements. The idea was to use a big white
surface2 located in a fixed position in front of the sensor and perform several
measurements each time moving the sensor far away from the surface. In fig. 3.1
it is possible to see two sample scenes.

The final evaluation was performed on a total of 23 different scenes split into
two groups: the first group considers 𝑑 ∈ [1, 6]𝑚 with a step of 1𝑚, while for
the second one, 𝑑 ∈ [5, 100]𝑚 with a step of 5𝑚. The test was not performed
in a single group with the same step size due to a bug of Mitsuba that has
bad memory management and consequently, there are some limitations on the
value of the number of temporal bins used related to their size. Since to reach
𝑑 = 100𝑚 it was necessary to increase the number of temporal bins used by the
sensor, in order to avoid the memory problem it was also necessary to increase
the bin size, forcing us to split the test into two groups. For the first group, the
bin size was set to 1𝑐𝑚 while for the second one to 20𝑐𝑚.

As it is possible to see in fig. 3.2 it is clear that mitsuba2-transient passes

2This surface should be completely diffuse, perfectly white and must cover the complete
FoV of the sensor in order to avoid any kind of alteration

33

3.3. IN DEPTH TESTS ON THE VARIOUS VERSION OF MITSUBA RENDERER 2

(a) Setup with 𝑑 ∈ [1, 6] (b) Setup with 𝑑 ∈ [5, 100]

Figure 3.2: Distance decay test results

all the tests regarding the decay of the radiance relative to the distance.

Temporal bin quantization

During the testing phase presented in the previous section, we noticed a
constant offset in the measured distances compared to the expected (real) value.
This issue could be a consequence of a quantization performed by the back-end
of Mitsuba that groups all the ray falling into the same bin and give them the
same value. In order to verify this hypothesis we considered the same scene
setup used before but this time 𝑑 varies in [1, 30]𝑚𝑚. Other than that in this
case the sensibility of the sensor is set to 1𝑐𝑚 3, in order to put the renderer in
the worst-case scenario.

As we can see in fig. 3.3 Mitsuba 2 actually perform quantization to the data,
and to be precise perform a ceil. This is not a big deal since, knowing the issue,
it is simply necessary to compute the constant offset (only dependent on the
bin size) and subtract it directly from the computed distance values (computed
following eq. (2.9) starting from the raw measurements).

Cross-section decay

In order to be sure that the renderer is accurate it is not enough to check that
the radiance decay as 1

𝑑2 . It is also essential, as can be evinced by the theory

3The sensibility of the sensor is determined by the bin size used

34

CHAPTER 3. TRANSIENT RAY-TRACING USING MITSUBA RENDERER 2

Figure 3.3: Quantization test results

presented in section 2.2.2, to verify that on the cross-section4 of the FoV of the
sensor the radiance decay as

𝑐𝑜𝑠3(�) · 𝑟𝑚𝑎𝑥 , (3.2)

where � represents the angle between the optical axes5 and the observed pixel.

Figure 3.4: Representation of the cross-section over the FoV of the sensor

To validate the accuracy of Mitsuba also on this aspect we used the same
setup presented in fig. 3.1, but this time 𝑑 was fixed to 4𝑚.

From fig. 3.5 it is possible to verify that, apart from few outliers, the renderer

4The cross-section corresponds to all the sensor pixels located on the principal row and
column

5The optical axes is an imaginary line passing through the sensor and perpendicular to it

35

3.3. IN DEPTH TESTS ON THE VARIOUS VERSION OF MITSUBA RENDERER 2

(a) Principal row decay (b) Principal column decay

Figure 3.5: Cross section decay test results

follows the law of eq. (3.2). So also this test was a success.

Comparison of the transient reconstruction

Another essential check that must be performed consists of verifying that the
standard RGB image of the scene is equal to the one obtained by summing the
transient data (pixel by pixel), over the time dimension and normalized by the
total number of bins, of the same image. If the two images don’t match it means
that there is some problem in the handling of the transient information. Since
the considered scene is the same the final result must be also the same.

To test this aspect we have designed a test performed on two different scenes
in order to be sure that the result is scene-independent. The first, and also
the simplest, setup was based on the one of fig. 3.1, so the sensor was looking
directly towards a white wall. For the second scene, we complicated a bit the
environment making the sensor look at a Cornell Box6.

As regards the white wall scene it is possible to see from fig. 3.6 that the
two different renders are essentially the same both visually and quantitatively
(fig. 3.6c). The only thing to point out is that on the blue channel there are some
outliers. This small inconsistency could be due to the rendering noise, and for
this reason, can be ignored. This scene is really simple since there is only one big
surface in front of the sensor there are no indirect reflections. The only reflection
reaching the sensor is the direct one coming from the wall. For this reason, the
transient vector of each pixel is characterized by a single peak (e.g., fig. 3.7), the

6The cornel box scene used is the cbox-point-light from [16]

36

CHAPTER 3. TRANSIENT RAY-TRACING USING MITSUBA RENDERER 2

(a) RGB image (b) Transient image

(c) Differnece between the two images

Figure 3.6: Comparison between the standard RGB render and the one obtained
by the transient of the white wall scene

Figure 3.7: Representation of the transient vector of the central pixel (white wall)

one from the wall.
To be sure that the just tested scenario wasn’t a success only because there

were no multiple reflections and so, no global component, the same test was

37

3.3. IN DEPTH TESTS ON THE VARIOUS VERSION OF MITSUBA RENDERER 2

(a) RGB image (b) Transient image

(c) Differnece between the two images

(d) Ratio between the two images

Figure 3.8: Comparison between the standard RGB render and the one obtained
by the transient of the Cornell box scene

performed also on a Cornell box where the light source was colocated with the
sensor (instead of putting it on the ceil of the box as standard). This time, as
we can see from fig. 3.8, the two produced pictures, visually look completely
different. Analyzing the differences, channel by channel (fig. 3.8c), it seems
that the two reconstructions differ only by a scaling factor. This behavior could

38

CHAPTER 3. TRANSIENT RAY-TRACING USING MITSUBA RENDERER 2

be justified if the renderer, while estimating the transient vector, performs a
normalization different from the standard one7. At that point, it would be
simply necessary to rescale the image produced using the transient information
using the correct scale factor. To check if this could be the case we look at the
implementation of mitsuba2-transient to find which kind of normalization
has been used. Unfortunately, it seems that the implementation of the transient
estimator uses the expected normalization. This means that there is some kind
of bug in the renderer that ruins the estimation. Indeed, looking at fig. 3.8d, it
is possible to notice that also the ratio between the two images is not constant,
so a scaling factor will not fix the issue.

Figure 3.9: Representation of the transient vector of the central pixel (Cornell
box)

The fact that this specific fork of Mitsuba has a problem in handling transient
information is even more clear observing fig. 3.9. Given the structure of the
scene, the expected transient vector shape should be characterized by huge
peaks in the beginning (due to the direct reflections) followed by smaller and
smaller peaks generated by undirect and multiple reflections that are for sure
weaker. Despite that, the produced transient is completely different from the
expectation since the tail, instead of decreasing is increasing over time.

To ensure that the described problem is generated by the indirect reflection
we re-rendered the same Cornel box scene forcing Mitsuba to consider only
direct reflection. As it is possible to see in fig. 3.10 in this case the problem is

7The standard normalization in this situation correspond to sum all the incoming beam of
light inside the same temporal bin and dividing it by the number of rays

39

3.3. IN DEPTH TESTS ON THE VARIOUS VERSION OF MITSUBA RENDERER 2

much less severe but on the edges of the object persist a lot of inconsistencies.

(a) RGB image (b) Transient image

(c) Differnece between the two images

(d) Ratio between the two images

Figure 3.10: Comparison between the standard RGB render and the one obtained
by the transient of the Cornell box (single reflection) scene

3.3.2 Testing of mitsuba2-transient-nlos

After the analysis performed in section 3.3.1 it was clear that mitsuba2-
-transient suffers from severe issues related to transient computation. For that

40

CHAPTER 3. TRANSIENT RAY-TRACING USING MITSUBA RENDERER 2

reason has been decided to switch to its parallel fork mitsuba2-transient-nlos
[13]. This alternative version is based on the previous one but aims to have fewer
bugs and some additional functionalities regarding NLoS imaging (none of these
additional features are useful for the scope of this project8).

Of course before definitively switching it is mandatory to perform again the
same tests performed in section 3.3.1 in order to ensure that all the errors of
mitsuba2-transient have been fixed.

Before starting the testing session it is important to point out that this version
of the renderer fixes the memory issue that limits the maximum number of tem-
poral bins given their size. But, unfortunately, introduce a new bug that limits
the sensor resolution to be at maximum Quarter Video Graphics Array (QVGA)9,
so 320 × 240 𝑝𝑥. If a greater resolution is used half of the produced transient
information results corrupted and completely unusable. For this reason, all the
renders that will be produced from now on in this paper are limited to QVGA,
in order to avoid corruption of the output.

Distance decay

As already stated in the previous section measuring the transient in a scene
like the one in fig. 3.1 the radiance values should follow eq. (3.1).

(a) Setup with 𝑑 ∈ [1, 6] (b) Setup with 𝑑 ∈ [5, 100]

Figure 3.11: Distance decay test results

Looking at fig. 3.11 it is clear that as for mitsuba2-transient also mitsuba-

8The additional features regarding NLoS imaging are not useful since the method is not
fully implemented and is based on a different approach from the one that we plan to use

9This limitation is only related to transient rendering, the standard RGB render (handled by
standard Mitsuba 2 function) works fine at every resolution

41

3.3. IN DEPTH TESTS ON THE VARIOUS VERSION OF MITSUBA RENDERER 2

2-transient-nlos perfectly follows this law.

Temporal bin quantization

Since the core implementation of the transient estimation procedure (tran-
sientpath and streakhdrfilm) are substantially the same as the one used in the
former version mitsuba2-transient-nlos it is expected that the quantization
process is exactly the same. Indeed as it is possible to see in fig. 3.12 also in this
case the output is preceded by a ceil function.

Figure 3.12: Quantization test results

Cross-section decay

Performing again the tests of the decay of the measured radiance over the
cross-section of the sensor is very important since it is one of the key aspects
ensuring that the simulated dToF properly reflects a real device.

Analyzing fig. 3.13 it is possible to see that also this renderer perfectly follows
the law described by eq. (3.2). In particular, if we compare these results with
the one presented in fig. 3.5 it is possible to see that with the new renderer the
result are even cleaner. There are just two outliers on the principal raw and two
on the principal column. These outliers are located at the extreme borders of
the sensor so, probably their existence is a consequence of some discontinuities
in that regions.

42

CHAPTER 3. TRANSIENT RAY-TRACING USING MITSUBA RENDERER 2

(a) Principal row decay (b) Principal column decay

Figure 3.13: Cross section decay test results

Comparison of the transient reconstruction

The last remaining test is probably the most important one. All the
previous validation was already a success also for mitsuba2-transient.
Mitsuba-transient-nlos seems to perform a little better on all of them but it
remains to be proven if it can succeed where its predecessor failed. For that
reason, the comparison test between the RGB renders and the one obtained by
the transient information represents a turning point that defines if Mitsuba 2
could be used or not for dToF simulation.

(a) White wall scene (b) Cornell scene

Figure 3.14: Representation of the transient vector of the central pixel

In the following, it will be presented the results of the same tests done using
mitsuba2-transient, this time with the new version. From fig. 3.14 it is possible
to notice that this time the transient vector of both the white wall scene and of
the Cornell box one follows the expected behaviors. They both have a huge peak

43

3.3. IN DEPTH TESTS ON THE VARIOUS VERSION OF MITSUBA RENDERER 2

characterizing the direct reflection followed by a decreasing tail that contains all
the information related to the indirect reflections.

(a) RGB image (b) Transient image

(c) Differnece between the two images

Figure 3.15: Comparison between the standard RGB render and the one obtained
by the transient of the white wall scene

The success of the transient graphs test proves that in this fork of Mitsuba
2 the transient computation procedure has actually been updated in order to
be more consistent and realistic. This aspect is confirmed by the render com-
parison presented in fig. 3.15 where, again, the RGB render is identical to the
one obtained starting from the transient. This time the results are even better
compared to the one obtained by mitsuba2-transient since on the blue channel
there are no more artifacts.

Finally comparing the renders of the Cornell box scene (fig. 3.16) it is possible
to see that the two images are practically the same both visually and quantita-
tively. This time both the difference and the ratio, computed channel by channel,

44

CHAPTER 3. TRANSIENT RAY-TRACING USING MITSUBA RENDERER 2

(a) RGB image (b) Transient image

(c) Differnece between the two images

(d) Ratio between the two images

Figure 3.16: Comparison between the standard RGB render and the one obtained
by the transient of the Cornell box scene

follow the expected behaviors (with just some noise on the edges)10.
Given that mitsuba2-transient-nlos using a QVGA resolution succeeded

in all the tests, it will be used to generate the dataset.

10This type of error is probably a consequence of the antialiasing applied to the RGB render

45

4
Dataset

4.1 Introduction

As extensively described in chapter 1, since the idea is to design and imple-
ment a NN model, a fundamental step of the work is to use a proper dataset
to train and test the network. As already stated in section 3.1, in the literature
there is no ready-to-use solution that perfectly fits the needs of this project.

After some evaluation of the possible strategies to solve this issue, we decided
that the best way to proceed would have been to generate the dataset that we
need. In this way, we would be able to control every single parameter of the
data, and more importantly, there would be no compromises on the quality of
the data.

After these considerations, we concluded that in order to carry out the project
we need a set of scenes of the type "look around corner" characterized by:

• having the sensor located and oriented in different positions/directions,

• being ideal and so characterized by only MPI errors but no sensor or shot
noise,

• having only simple but variable geometries as a hidden object that can
assume different positions and rotations,

• having a front wall of different materials,

• having a middle wall of perfectly black and absorbing material (in his way
it doesn’t reflect any light emitted by the sensor),

• having no other elements in the scene, like floor, ceiling, etc.

47

4.2. STRUCTURE OF THE DATESET

Figure 4.1: Sample dataset scene

Figure 4.1 represent a good summary of a generic scene contained in our dataset.
Of course, all the scenes have been rendered using mitsuba2-transient-

-nlos as if they have been acquired by a dToF sensor. For this reason, all the
scenes are stored as transient vectors.

4.2 Structure of the dateset

To ensure that the dataset covers all the scenarios that we need and, at the
same time, has enough elements to properly train a NN, it has been decided to
generate a dataset composed of 1344 scenes, characterized by:

• image resolution: 320 × 240 (QVGA),

• number of samples for each render: 1 · 106,

• number of temporal bins: 2000,

• temporal bin size: 0.01𝑚,

• type of illumination: full field,

• sensor and projector horizontal fov: 60◦,
• front wall:

– location (of the center) → (𝑥 : 0𝑚, 𝑦 : 0𝑚, 𝑧 : 2𝑚),
– dimensions → 8𝑚 × 4𝑚,

48

CHAPTER 4. DATASET

• middle wall:

– location (of the center) → (𝑥 : 2, 35𝑚, 𝑦 : 0𝑚, 𝑧 : 2𝑚),
– dimensions → 3.30𝑚 × 4𝑚,

• gap between the two walls: 70𝑐𝑚,
• sensor basic location:

– position → (𝑥 : 1𝑚, 𝑦 : −1𝑚, 𝑧 : 1.65𝑚),
– rotation → (𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦)1,

• hidden object basic location:

– position → (𝑥 : 1𝑚, 𝑦 : 1𝑚, 𝑧 : 1.65𝑚),
– rotation → (𝑥 : 0◦, 𝑦 : 0◦, 𝑧 : 0◦),
– max size → (𝑥 : 0.5𝑚, 𝑦 : 0.5𝑚, 𝑧 : 0.5𝑚).

An essential aspect to keep in mind while designing a synthetic dataset is
that it has to guarantee a high enough level of variability. In other words, it
must represent the most possible number of different situations to capture as
much as possible the variability that characterizes the real counterpart. This
is fundamental since the data contained in the dataset has to contain enough
information to allow a NN model to learn the desired task.

In order to give some variability to our dataset we decided to consider differ-
ent locations and orientations for both the sensor and the hidden object, and also
to allow the front wall to assume different roughness values. In particular, the
possible object shape are presented in fig. 4.2. Other than the basic shape 1

7 of
the scene uses as hidden object a random combination of two casually sampled
basic objects2. As regards the camera position and rotation they are randomly
sampled from:

• possible position → (𝑥 ∈ [1, 1.3]𝑚, 𝑦 ∈ [−1.3, −1]𝑚, 𝑧 ∈ [1.5, 1.8]𝑚,

• possible rotation → (𝑥 ∈ [85, 95]◦, 𝑦 ∈ [−5, 5]◦, 𝑧 ∈ [50, 90]◦.

1The rotation of 50◦ on the 𝑧 axes correspod of rotating the sensor 40◦ towards the middle
wall

2This type of object is generated by sampling one of the basic shapes and after its position
has been determined, sample another shape translate it of a value 𝑡 ∈ [−0.12, 0.15]𝑚 and rotate
it of 𝑟 ∈ [−45, 45]◦

49

4.2. STRUCTURE OF THE DATESET

(a) Cube (b) Cylinder (c) Sphere

(d) Concave plene (e) Cone (f) Parallelepiped

Figure 4.2: Overview of the considered hidden object’s shapes

While for the hidden object:

• possible position → (𝑥 ∈ [1, 1.3]𝑚, 𝑦 ∈ [0.5, 1.3]𝑚, 𝑧 ∈ [1.25, 1.95]𝑚,

• possible rotation → (𝑥 ∈ [−90, 90]◦, 𝑦 ∈ [−90, 90]◦, 𝑧 ∈ [−90, 90]◦.

Finally the roughness value of the front wall can take values in 𝛼 ∈ [0.3, 1] (step
0.05). All the possible position/rotation values are randomly sampled to further
increase the variability.

Other than adding a lot of variabilities we also wanted to generate a flexible
dataset, to ensure that it would be possible to train the network only on a specific
part of the dataset where only one aspect is varying (e.g., only the hidden object
position/rotation). In this way, during the designing of the NN model, it would
be possible to understand which elements are the more problematic for the
architecture to learn. To fulfill this requirement, the dataset has been divided
into two main groups each one of them further split into two different sub-
categories:

• constant front wall: in all the scenes the front wall is the same, charac-
terized by a perfectly white and diffuse material:

– fixed camera: the camera position and rotation are the same in every
scene,

50

CHAPTER 4. DATASET

– variable camera: the camera position and rotation differ for each
scene.

• varaible front wall: the front wall is located always in the same position
but in each scene the roughness of the material is different:

– fixed camera: the camera position and rotation are the same in every
scene,

– variable camera: the camera position and rotation differ for each
scene.

(a) (b)

(c) (d)

Figure 4.3: Example of some scenes of the dataset

51

5
Fermat flow analysis and test

The method proposed in our work to perform Non-Line-of-Sight imaging is
based on the use of Time of Flight sensors combined with a Neural Network
model. Of course, this is not the only possible approach to accomplish this
task but exists many more alternatives solution (i.e., methods based on different
sensors and/or technologies).

In particular, we will focus our attention on the NLoS imaging pipeline
proposed in [3], the Fermat flow. We will present, test, and discuss this method
since it is based on a consistently different paradigm to solve our same issue
and so could represent a good candidate to perform performance comparison.
Other than that, we will also propose an extension of this method that aims at
overcoming some of its limitations.

In the following sections, we will present and then deeply test the Fermat
flow.

5.1 How the Fermat flow works

The work proposed in [3] tries to overcome two main issues that affect NLoS
imaging approach based on transient information produced by a direct Time of
Flight (dToF). This kind of method inverts the time-resolved radiometric image
formation process to perform the 3D reconstruction. Proceeding in this way has
two big problems:

• it relies on radiometric information and, given the nature of the actual Sin-
gle-Photon Avalanche Diode (SPAD) sensor, it is affected by photon noise

53

5.1. HOW THE FERMAT FLOW WORKS

and ambient light;

• to simplify the inverse problem it works only on objects characterized by
Lambertian reflectance1.

On the other hand, the solution proposed in [3], still exploits the light reflec-
tion to reconstruct the hidden object but, to do so, uses only geometric constraints
derived from the transient measurements of a NLoS object. The authors have
developed a method based on Fermat’s principle. More precisely, they have de-
fined the concept of Fermat path that corresponds to a specific path followed by
a photon between the LoS and NLoS scene and it is linked to discontinuities in
the transient measurements. Another important contribution of the considered
paper is represented by the Fermat flow algorithm that allows for an accurate
NLoS shape reconstruction.

It is important to notice that the proposed approach is made in such a way
that makes it agnostic to the specific transient imaging technology used but also
BRDF-invariant and robust to imperfections in intensity measurements.

5.1.1 Implementation details

In [3] to perform all the measurements and tests has been used a transient
imaging system composed of a light source and a detector located at position
𝒔 , 𝒅 ∈ R3 respectively. Other than that to properly understand the work done it
is necessary to define some other key elements:

• the visible scene 𝒱 ⊂ R3 is the union of surfaces contained within the
common line of sight of the source and detector;

• the Non-Line-of-Sight scene 𝒳 ⊂ R3 is the union of all the surfaces located
outside of the LoS of the sensor that can indirectly receive light from the
light source using single reflection or transmission through the visible
scene and can indirectly send light to the detector in a similar manner.

Under the above constraints it is possible to say that the transient 𝐼(𝑡; 𝒗) 2

measured by the detector corresponds to only photons that has followed paths
of the form 𝒔 → 𝒗 → 𝒙 → 𝒗 → 𝒅 3.

1Lambertian reflectance = property that defines an ideal “mate” or diffusely reflecting sur-
faces. The apparent brightness of a Lambertian surface to an observer is the same regardless
of the observer’s angle of view. More technically, the surface’s luminance is isotropic, and the
luminous intensity obeys Lambert cosine law.

2𝑡 represents the time-of-flight
3Photon paths characterized by more than one interaction in the NLoS scene have greatly

reduced Signal-to-Noise-Ratio (SNR) and so are negligible

54

CHAPTER 5. FERMAT FLOW ANALYSIS AND TEST

VISIBLE SC
ENE !

HIDDEN SCENE
"

SOURCE (#) AND
DETECTOR ($)

Figure 5.1: Representation of a standard light path 𝒔 → 𝒗 → 𝒙 → 𝒗 → 𝒅

Finally it is necessary to assume to have calibrated the distance from the
source to the visible point and the way back: 𝜏𝒱(𝒗) ≜ ∥ 𝒔 − 𝒗 ∥ + ∥ 𝒅− 𝒗 ∥. This
quantity is needed to compute the path length travelled in 𝒳 as 𝜏 ≜ 𝑐𝑡 − 𝜏𝒱(𝒗)
(𝑐 = speed of light). At this point, we can write the transient as:

𝐼(𝜏; 𝒗) =
∫
𝒳
𝑓 (𝒙; 𝒗)𝛿(𝜏 − 𝜏(𝒙; 𝒗)) 𝑑𝐴(𝑝, 𝑞), (5.1)

where 𝜏(𝒙; 𝒗) ≜ 2 · ∥ 𝒙 − 𝒗 ∥, (𝑝, 𝑞) ∈ [0, 1]2 is a parametrization of the NLoS
surface 𝒳, 𝐴(𝑝, 𝑞) is the corresponding area measure and the throughput 𝑓

summarize shading, reflectance and visibility.
In the following, we will consider the NLoS scene 𝒳 as it is formed by a

union of smooth surfaces. Other than that we introduce also the concept of the
boundary of 𝒳, 𝜕𝒳 ⊂ 𝒳, that is the set of points on the NLoS surface where
a surface normal is not defined. Then given any visible point 𝒗 we can define
three sets:

• the specular set 𝒮(𝒗) ⊂ 𝒳 that consists of all points 𝒙 ∈ 𝒳\𝜕𝒳 such that the
vector 𝒗 − 𝒙 is orthogonal to the tangent plane 𝑇𝒙𝒳 of 𝒳 at 𝒙;

• the boundary set ℬ(𝒗) ⊂ 𝜕𝒳 that consists of all points 𝒙 ∈ ∇𝒳 such that the
vector 𝒗 − 𝒙 is orthogonal to the tangent vector 𝒕(𝑥) of 𝜕𝒳 at 𝒙;

• the Fermat set ℱ (𝒗) ⊂ 𝒳 that consists of the union of the two previous sets,
ℱ (𝒗) ≜ 𝒮(𝒗) ∪ ℬ(𝒗).

Putting together all the above evaluations and the Fermat’s principle it is
possible to say that:

55

5.1. HOW THE FERMAT FLOW WORKS

Proposition 5.1.1. Assume that the BRDF of the 𝒳 surface is non-zero in the specular
direction. Then, for all 𝒙 ∈ ℱ (𝒗), the transient 𝐼(𝜏; 𝒗) will have a discontinuity at
pathlength 𝜏(𝒙; 𝒗). If 𝒙 ∈ 𝒮(𝒗), then 𝐼(𝜏; 𝒗) will additionally have a vertical asymptote
at 𝜏(𝒙; 𝒗) (see fig. 5.2).

(a) Example of Fermat paths

(b) representation of the transient
𝐼(𝜏; 𝒗)

(c) representation of the path-
length function 𝜏(𝒙; 𝒗)

Figure 5.2: Representation of the theory of Fermat paths. Points (𝑥ℱ ,2, 𝑥ℱ ,3)
(surface) and 𝑥ℱ ,1 (boundary) are the only points 𝑥 ∈ 𝒳 in the NLoS that
generate path that satisfies Fermat’s principle. [3]

Proposition 5.1.1 implies two interesting consequences:

• pathlengths where the transient 𝐼(𝜏; 𝒗) is discontinuous are determined
completely by the function 𝜏(𝒙; 𝒗) that depends only on the geometry of
𝒗 and 𝒳 (⇒ BRDF invariance);

• each of the Fermat pathlengths is a stationary point of the function 𝜏(𝒙; 𝒗).

Furthermore, if the BRDF of 𝒳 is not perfectly specular, it is possible to
identify also the type of stationarity from the shape of the transient at the

56

CHAPTER 5. FERMAT FLOW ANALYSIS AND TEST

neighborhood of the discontinuity4.
All of the above discussions have been performed on a confocal setup where

both the source and the detector are pointing at the same point, but it is possible
to straightforwardly generalize everything to the non-confocal case.

Once we have extracted all the Fermat paths from the NLoS scene it is
necessary to properly reconstruct the surface. More precisely it is possible to
say that each path length 𝜏ℱ constraint the corresponding point 𝒙ℱ ∈ ℱ (𝒗) to
lie on the tangent sphere 𝑆𝑝ℎ(𝜏ℱ /2; 𝒗) 5 and, if 𝒙ℱ ∈ 𝒮(𝒗), also constraints its
normal and curvature. So knowing that in order to reconstruct the surfaces it is
necessary to develop a procedure able to fully determine 𝒙ℱ and it’s normal. At
this point, it is possible to produce an oriented point cloud of the NLoS surface
𝒳. In [3] has been proposed an algorithm that perform this reconstruction called
Fermat flow that is summarized in fig. 5.3.

(a) Scanning (b) Discontinuity detec-
tion

(c) Gradient estimation by interpolation (d) Point cloud reconstruc-
tion

Figure 5.3: Reconstruction pipeline [3]

Starting from the Fermat pathlength function 𝜏ℱ (𝒗):

𝜏ℱ (𝒗) = {𝜏 : 𝐼(𝜏; 𝒗) 𝑖𝑠 𝑑𝑖𝑠𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠}, (5.2)

4For example, if 𝜏ℱ is a local maximum, the discontinuity in the transient 𝐼(𝜏; 𝒗) occurs at
the limit from the left, 𝜏 → 𝜏−ℱ , and the transient decreases to the right of 𝜏ℱ

5This represents a sphere of radius 𝜏ℱ /2 centered in 𝒗

57

5.1. HOW THE FERMAT FLOW WORKS

it is possible to define the point 𝒙ℱ in the NLoS as:

𝒙ℱ = 𝒗 −
(︃
𝜏ℱ (𝒗)

4

)︃
∇𝒗𝜏ℱ (𝒗) (5.3)

The operation described in eq. (5.3) can be performed by a simple geometric
operation, intersecting the sphere 𝑆𝑝ℎ(𝜏ℱ /2; 𝒗) with the line 𝒗 − �∇𝒗𝜏ℱ (𝒗)/2.
Then if 𝒙ℱ ∈ 𝒮(𝒗) it is also possible to reconstruct the normal at 𝒙ℱ as:

�̂�(𝒙ℱ) = −∇𝒗𝜏ℱ (𝒗)
2 (5.4)

All of this perfectly works, the only problem is that it is not possible to mea-
sure the gradient ∇𝒗𝜏ℱ (𝒗) directly, for that reason the only way to proceed is
to compute it by interpolation (note that the interpolation procedure must be
performed separately for each branch of the Fermat pathlength function 𝜏ℱ (𝒗)).

The just described procedure produces an oriented point cloud, of density
comparable to one of the measurements in 𝒱. To conclude our work and obtain
the final output it is possible to use an algorithm that takes advantage of normal
information to fit a surface representation to the point cloud (e.g., triangular
mesh).

5.1.2 Performance evaluation

In order to test the proposed approach, the authors of [3] have performed
different real-world tests in NLoS scenarios using different types of surfaces
(concave and convex) characterized by different BRDF. They also used two
different types of transient imaging sensors.

As we can see in fig. 5.4 the Fermat flow approach has been able to produce
surfaces that closely reproduce the shape of the original objects, in particular, it
matches the ground truth within 2𝑚𝑚.

Figure 5.5 shows some other examples of reconstructed surfaces using the
Fermat flow algorithm. Also in this case it is possible to notice that the proposed
approach produces surfaces that closely match the shape of the given object,
including accurate normals. If we use a more precise sensor than the one used
for the reconstruction of fig. 5.5 we can recover even finer details from the object
in the NLoS as we can see in fig. 1.1.

Of course as with all the other approaches, also the one proposed in [3] has

58

CHAPTER 5. FERMAT FLOW ANALYSIS AND TEST

(a) Photograph and 3D reconstruction of a paraboloid object

(b) Photograph and 3D reconstruction of a sigmoid object

Figure 5.4: Comparison with the ground truth [3]

(a) Plastic jar (b) Glass vase

(c) Plastic bowl (d) Metal sphere

Figure 5.5: Some example of reconstructions produced by the Fermat flow (two
views for each object)[3]

its drawbacks. In particular, it is important to keep in mind that the produced
reconstruction can be sensitive to inaccurate discontinuity detection. The final
quality of the reconstruction may also suffer if it is not available sufficiently
dense measurements for estimating the Fermat pathlength gradient through
interpolation. Finally, in order to ensure the BRDF invariance, the model makes

59

5.2. LIMITATIONS OF THE FERMAT FLOW ALGORITHM

no use of information about the measured intensity in the NLoS scene.

5.2 Limitations of the Fermat flow algorithm

Looking at the results proposed by the author of [3] (fig. 5.5) it is clear that the
proposed approach works well and reliably in the reconstruction of the NLoS
scene. These results are not enough to guarantee that this method works well
in conditions not covered by the original paper. For this reason, was essential to
deeply test the Fermat flow algorithm in our scenario, in order to properly stress
the method and found all its limitations.

The testing procedure was performed as follows:

1. test the algorithm on the same scene proposed by the author of [3],

2. test the algorithm on some of our scenes,

3. compares the obtained results in order to extract the limitation of the
method.

(a) Plane ground
truth

(b) Concave sph-
ere ground truth

(c) Convex sphere
ground truth

(d) Diffuse vase
ground truth

Figure 5.6: Sample reconstructions of the object used in [3]

As it is possible to see comparing fig. 5.6 with fig. 5.7 it is clear that the Fermat
flow algorithm works really well on the sample object provided by the authors.
Indeed the reconstructed point cloud perfectly reflects the general shape of the
ground truth object.

In any case, it is important to point out that in more complex scenes where the
surface is not perfectly flat the reconstruction is not complete and presents big
holes. Other than that, it is important to analyze the reconstruction of fig. 5.7c.
In this specific case in fact, in order to reconstruct both the inner part and the
outer part of the sphere, it is required that the Fermat flow algorithm analyzes
more than just the first discontinuity. Following the explanation of how Fermat
paths work (section 5.1) it is clear that each discontinuity of the transient vector

60

CHAPTER 5. FERMAT FLOW ANALYSIS AND TEST

(a) Plane (b) Concave sphere

(c) Convex sphere (d) Diffuse vase

Figure 5.7: Sample reconstructions of the object used in [3]

allows identifying a different set of points in the NLoS scene. Consequently, in
order to fully reconstruct a complex object, it is necessary to recover information
coming not only from the first discontinuity. This problem does not occur
for simple shapes due to the fact that the information recovered from the first
discontinuity of the transient essentially characterizes all the hidden points that
are the closest to the front wall. In other world the ones for which the path
𝒔 → 𝒗 → 𝒙 → 𝒗 → 𝒅 is the shortest. Indeed looking at fig. 5.7a where each
point has the same distance from the front wall the first discontinuity is enough
to recover the full shape of the target object. This aspect represents a major
limitation to the real-world usability of the method since reliably recovering the
discontinuities following the first one is extremely difficult.

In fig. 5.8 a sample transient vector coming from the convex sphere of [3]
and one coming from a scene of our dataset (hidden object = cube parallel to
the front wall) are compared. It is clearly visible that from our transient it is
extremely difficult to reliably identify more than the first discontinuity. This
seems to identify that the samples used by the authors of [3] are perfectly ideal.
The result could become even worse if the provided input transient comes from
a real sensor, and is so affected by all its related sensor noises.

61

5.2. LIMITATIONS OF THE FERMAT FLOW ALGORITHM

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) Sample transient vector of the convex
sphere

0 2 4 6 8 10 12 14 16 18
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b) Sample transient vector of one of our
scenes (cube)

Figure 5.8: Transient comparison between one scene from [3] and one from our
dataset (red dots mark the first discontinuity, the other dots the following ones)

Another big limitation that we have encountered in the Fermat flow is the
fact that, as stated in section 5.1.1, to work it requires that the scene to acquire
is not illuminated full field but pixel by pixel. This means that if the sensor
is, for example, QVGA it is necessary to perform 320 × 240 = 76800 different
acquisitions. Of course, during the whole duration of the process, neither the
sensor nor the hidden object can be moved otherwise the entire acquisition is
useless.

Figure 5.9: Example of an illumination grid of 32 × 24 pixels (time multiplexed)

This aspect made the retrieval procedure extremely complex and long. It is
possible to use a spot illuminator and illuminate not the full FoV of the sensor
but just a subsample grid of the total pixels in order to reduce the acquisition
time (e.g., fig. 5.9). All the selected dots still required to be illuminated and
acquired one by one. This workaround simplifies the process but at the same

62

CHAPTER 5. FERMAT FLOW ANALYSIS AND TEST

time also reduce the quality of the obtained result since the fewer pixel are
illuminated the fewer NLoS point will be recovered.

After this first consideration, we tested the Fermat flow on some of our scenes.
From all of our testing, we did not recover any useful reconstruction. Indepen-
dently from the considered scene, the results were always really similar to the
one of fig. 5.10, which should represent the reconstruction of a cube parallel to
the front wall (similar setup to the one shown in fig. 4.1).

(a) Ground truth (b) Front view (c) Side view

Figure 5.10: Fermat flow reconstruction of a scene of our dataset (hidden object
= cube) using an illumination grid of 32 × 24 = 768𝑝𝑥

These kinds of results are definitely not representing the desired object and are
extremely worse than the ones obtained on the provided test scenes. For this
reason, we tried to understand which elements of our scenes could cause such
a difference. In particular, we have identified two main possibilities:

1. in [3] the hidden object and the sensor are located at a maximum distance
of 80𝑐𝑚 from the front wall and 2𝑐𝑚 from the middle one while in our
case the relative distances are on the order of 1𝑚,

2. the FoV of the sensor used in the original paper illuminates a portion of
the front wall that is always smaller or equal to the projection of the hidden
object on the same wall (fig. 5.11)6.

To understand which of these two elements is the problem we performed two
different tests.

For the first problem, we tried to generate a scene based on our dataset but
with much reduced relative distances between the camera, the hidden object,
and the wall. After running the Fermat flow algorithm on the test scene just

6In the scenes of our dataset, due to the geometry of the environment, the FoV of the sensor
is always bigger than the surfaces obtained by projecting the hidden object on the wall

63

5.2. LIMITATIONS OF THE FERMAT FLOW ALGORITHM

described we obtained the same result of fig. 5.10. We can conclude that this is
not the issue.

(a) Optimal setup, the illuminated area
(yellow) is smaller than the surface ob-
tained by projecting the hidden object
(blue cube) on the front wall

(b) Suboptimal setup, the illuminated
area (yellow) is bigger than the surface
obtained by projecting the hidden object
(blue cube) on the front wall

Figure 5.11: Schematized representation of the illuminated area limitation of
the Fermat flow

Regarding the second test, we designed two different ideal test scenes that
force the FoV of the sensor to be smaller than the area obtained by projecting the
hidden object on the front wall. As it is possible to see in fig. 5.12 we removed the
middle wall, pointed the camera directly at the front wall, and put the hidden
object directly behind the camera. Of course, a setup like that is absolutely not
realistic but represents a good testing environment.

(a) Cube parallel to the front wall (b) Cube rotated of 45◦ on the 𝑧 axes

Figure 5.12: Representation of the two simplified scenes created to test the Fermat
flow

Looking at fig. 5.13 it is clear that, under ideal conditions, the Fermat flow
works. And as it is possible to see in figs. 5.13c and 5.13d using only one

64

CHAPTER 5. FERMAT FLOW ANALYSIS AND TEST

discontinuity this method is able to recover only the edge of the cube (the
closest section to the white wall). This test proves that in order to make Fermat
flow works it is essential that the illuminated section of the front wall is smaller
than the area obtained by projecting the hidden object on the same wall. Other
than that it also demonstrates that using only one discontinuity, in many cases
is not enough.

(a) Cube parallel
to the front wall
(point cloud)

(b) Cube parallel
to the front wall
(mesh)

(c) Cube rotated of
45◦ over the 𝑧 axes
(pc)

(d) Cube rotated of
45◦ over the 𝑧 axes
(mesh)

Figure 5.13: Reconstructions produced by the Fermat flow of the scenes repre-
sented in fig. 5.12

After these considerations, we still have to find a way to properly apply
the Fermat theory to our dataset scenes. To accomplish that the only way that
we have found is to pre-process the transient data that we give in input to the
Fermat flow in order to analytically remove the biggest possible number of points
that will end up being outside of the allowed area on the white wall. Due to the
setup of our scene, all of the transients to be removed are characterized by a really
small global component 𝑥𝑔 , since if a ray never hit the object there will be no
reflected information by the object but only rendering noise. To clean the input
data we applied an energy-based thresholding mechanism. More precisely for
each transient vector, it is required to compute the maximum value of the global
component and compare it with the sum of 𝑥𝑔 . If the sum value is smaller than
65% of the maximum value the considered transient will be discarded.

Applying such a cleaning we manage to obtain the reconstruction of fig. 5.14
starting from the one of fig. 5.10. From this new reconstruction, it is possible
to see that most of the information present in the previous one was generated
by noise and the points actually related to the hidden object represent a small
section in the lower-right part of fig. 5.10c. To verify if this type of cleaning
properly works, we tested it also on a slightly different scene. We considered

65

5.3. FERMAT FLOW WITH STANDARD DIRECT TIME OF FLIGHT AND INDIRECT TIME
OF FLIGHT SENSOR

(a) Point cloud of the reconstruction (b) Mesh of the reconstruction

Figure 5.14: Fermat flow reconstruction of a hidden cube after the pre-processing

the same scene presented in fig. 4.1 swapping the cube with a sphere.
Looking at fig. 5.15 it is clear that our cleaning process is not good enough

to perfectly remove all the outliers7. Indeed in fig. 5.15b it is possible to see
that the surface of the sphere was correctly retrieved, but unfortunately, it is still
surrounded by a lot of noise.

(a) Point cloud of the reconstruction (b) Mesh of the reconstruction

Figure 5.15: Fermat flow reconstruction of a sphere after the pre-processing

5.3 Fermat Flow with standard direct Time of
Flight and indirect Time of Flight sensor

From the discussions of section 5.2 it is evident that outside of the strict
constraints presented, the Fermat flow algorithm does not work well enough to
be actually used for Non-Line-of-Sight imaging. Apart from that this method

7Also increasing the threshold value is not enough to obtain a perfect result, the cleaning is
either too strong or too weak

66

CHAPTER 5. FERMAT FLOW ANALYSIS AND TEST

still has its own strengths, such as the fact that its reconstructions depend only
on the geometry of the scene and it is completely BRDF-independent.

Since the strengths of the approach proposed in [3] are not enough to over-
come its limitations, we propose an extension of this method that will alleviate
some of them. More precisely we propose to build a Neural Network model
that takes in input the transient information of a scene illuminated full field
and finds the position of the first discontinuity as if the pixel is illuminated
alone. Once the discontinuity locations are defined, the following steps of the
Fermat flow algorithm can be applied. In this way the acquisition process will be
much faster and, at the same time, it would be possible to illuminate the wall
with a lot more points in order to retrieve a hidden object reconstruction with
a higher resolution. Possibly such a network could also be extended to retrieve
also discontinuities after the first one in order to allow the Fermat flow algorithm
to reconstruct also more complex hidden surfaces.

This method could only work with direct Time of Flight sensors since it
requires the transient vector. But in theory, it could also work with the use
indirect Time of Flight devices if we use the model described in section 2.3.1 to
convert the iToF output into a dToF one. Of course in this specific case will be
almost impossible to recover more than the first discontinuity.

67

6
Implementation

After the discussion about the theoretical background, the generation of
the dataset, and the evaluation of Fermat flow, is now time to talk about the
implementation details of our proposed method. In particular, as anticipated
before, the main burden of the Non-Line-of-Sight imaging will be handed by a
Neural Network model. For this reason, it is essential to introduce the trick that
we have introduced in order to allow the network to learn, together with the
actual structure of the architecture. Other than that the following sections will
also present the pipeline used to generate the related ground truth.

6.1 "Mirror trick" approach

Due to the complexity of the task, it has been decided to utilize a supervised
approach to solve it. This, for sure helps the model to learn faster and more
accurately, but on the other hand, requires to have a precisely labeled ground
truth used to compute the loss of the network.

That represents one of our bigger constraints since having a good and reliable
ground truth in a NLoS environment is not easy. Other than that depending
on how we design it also the network structure and output will change conse-
quently. In other words, the problem is to identify what the network should
actually give in output. The best scenario would be to have a NN that, given
in input raw indirect Time of Flight data, will directly produce as output the
depth map of the hidden object as if the point of view is located on the front wall

69

6.2. HOW THE GROUND TRUTH IS BUILD

looking in the direction of the object. Of course, this approach is demanding
too much from the network. This makes clear that to have such a clean result
it is required to introduce some intermediate steps able to reduce the overall
complexity of the task and so help the network to learn.

To alleviate the load of the model we introduce the "Mirror trick". If we con-
sider one of the standard scenes (fig. 6.1a) of the dataset described in section 4.2
and we swap the front wall with a perfect mirror (fig. 6.1b), it is now extremely
easier to identify the hidden object. Indeed in this particular scenario, the NLoS
condition essentially is no more valid, it is almost like going back to a Line-of-
Sight scenario. Furthermore, if the used mirror is ideal, given how a ToF camera
works, the depth map produced by the sensor in a setup like the one of fig. 6.1b,
is the same as the one produced from the setup of fig. 6.1c. Essentially if the
front wall is an ideal mirror it is possible to say that the NLoS object appears to
the sensor as if it is flipped over the plane 𝑧 = 0.

(a) Basic scene without
any changes

(b) Basic scene with a per-
fect mirror instead of the
front wall

(c) Basic scene after the ap-
plication of the proposed
trick

Figure 6.1: Representation of the "Mirror trick"

It is, so, possible to both generate the ground truth easily and reduce the
complexity of the task that the network needs to solve. At this point, the network
will learn a way to convert the given front wall of the scene into a mirror and
then extract the depth map of the hidden object.

6.2 How the ground truth is build

Building the ground truth was quite a straightforward process since all the
scenes were based on the ones in the dataset and the modification to perform
were not many. In particular, to generate the "mirror ground truth" it was suffi-

70

CHAPTER 6. IMPLEMENTATION

cient to implement the following pipeline:

1. in Blender, load the scenes of our dataset then:

(a) remove the middle wall since it is now unnecessary1,
(b) mirrors each hidden object with respect to the front wall,
(c) remove the front wall,

2. export all the obtained mesh in .obj format,

3. generates all the .xml files for Mitsuba 2,

4. uses the .obj and .xml files to render all the scenes using mitsuba2-tran-
sient-nlos.

0 50 100 150 200 250 300

Pixel index

0

50

100

150

200

Pi
xe

l i
n
d
ex

0.0

0.5

1.0

1.5

2.0

2.5

(a) Depth map

0 50 100 150 200 250 300

Pixel index

0

50

100

150

200

Pi
xe

l i
n
d
ex

0.0

0.2

0.4

0.6

0.8

1.0

(b) Mask

Figure 6.2: Example of a ground truth element

After that, we obtain the transient information of each scene. At this point,
it is necessary to compute the depth maps with the related mask. The depth
map can be extracted directly from the rendered data using eq. (2.7). From this
processing, it is possible to obtain something like fig. 6.2a. Since in the scene
setup we use, in the hidden area there is just an object and then nothing else, it
is useless to estimate the depth information on all the points that do not belong
to the object. For this reason, it could be really useful to have a mask that exactly
identifies all the pixels that correspond to the object. In this way, it is possible
to use such information to estimate the depth just on the useful points (both
during training and inference). To generate the mask it is enough to consider
the just generated depth map and set to one all the points where the measured

1Thanks to the "mirror trick" the NLoS condition decay and so is no more useful to hide the
object from the camera

71

6.3. NEURAL NETWORK MODEL AND IMPLEMENTATIONS

depth is different from zero. This is doable since for how the data is processed
all the points where there is no information (all the background points) are set
to have a depth equal to 0𝑚. To better understand how our masks appear it is
possible to see an example of a ground truth mask in fig. 6.2b

6.3 Neural network model and implementations

At this point all the elements required to train our model have been de-
veloped, it remains just to properly define how the Convolutional Neural Net-
work (CNN) is structured.

Conv 3x36

Conv
3x3

Conv 3x3
Conv 3x3

DEPTH MAP1X1

2

!!!

!!!
!!!

9

7

5
3

1

!!!
Conv 3x3

!!!"!!

MASK1X1

Figure 6.3: Model representation of the used Convolutional Neural Network

As it is possible to see in fig. 6.3 we have designed a CNN characterized by five
2D Convolutional layers with a filter size of 32. The network is designed to re-
ceive in input raw iToF data acquired using three different frequencies: 20𝑀𝐻𝑧,
50𝑀𝐻𝑧 and 60𝑀𝐻𝑧 2. Since the input data are in the order of the megahertz
(106) they are not compliant with a NN. For this reason, before feeding the data
to the network we have performed normalization to map the data in the range
[0, 1]. The normalization is performed by dividing elementwise the input by
the measured amplitude at 20𝑀𝐻𝑧. Regarding the output, as anticipated in
section 6.2, the network produces two different elements: a depth map and a
mask estimation.

2This justifies the fact that the input in fig. 6.3 has six layers, one cosine and one sine for each
used frequency

72

CHAPTER 6. IMPLEMENTATION

6.3.1 Training phase

During the training phase the network work on batches of 8192 patches of
11 × 11 pixels each. Since the network is designed to learn from patches and
not from the full image it is required to extract from the original dataset patches
of the image. This task is extremely delicate since the data provided to the
network must be balanced. By balanced we mean that the network should see
the same number of pixels coming from an object and the background. In this
way, it is possible to maximize the possibility of the network properly learning
both classes (background and object). This is mainly important for the mask
computation that, after all, is essentially a binary classification.

The patches extraction procedure works by sampling from the full image 400
background pixels and 400 object’s pixel. From this initial sampling is possible
to build 800 different patches for each dataset’s scene. We stick to 800 maximum
patches for each image in order to ensure that in each case we will be able to
sample the same number of background and object elements.

In order to generate the final input data, the original dataset presented in
chapter 4 (or only some of its groups) is loaded, split in train (60%), validation
(20%) and test (20%) set3. Then just from the first two sections, the patches (for
the test set is not useful) are extracted. Finally, each sample (both patches or
images) is linked to the correspondent element of the "mirror ground truth". Only
at this point, it is possible to train the model

Given an input of 11 × 11 processed through five TensorFlow 2.3.0 [17]
Conv2D layers the output will be a 1 × 1 matrix. More precisely the output will
be of size 1× 1× 2 since there is one layer representing the estimated depth and
one the estimated mask. On this output is then computed the loss. We have
decided to use as a loss function the MAE. It is important to point out that for
the mask the loss is always computed while for the depth map prediction it is
computed only if the ground truth mask in that pixel is set to 1. In this way, the
loss of the depth map is computed only where it is significant.

The training is performed over 100000 epochs using the Adam optimizer [18]
with a learning rate of 1 · 10−3.

3The split between the different subset is performed randomly

73

6.3. NEURAL NETWORK MODEL AND IMPLEMENTATIONS

6.3.2 Inference phase

The inference phase is much simpler than the training one since it is not
required to split the data into 11 × 11 patches but it is sufficient to directly
provide the 320× 240 full iToF measurement. The network will directly provide
the full depth map and mask. Of course, since the data are based on the "mirror
trick" to have the proper result it is required to flip the 𝑧 coordinates of the
estimated depth map.

It is important to notice that all the results that will be discussed in chapter 7
have been produced doing inference on the test set.

74

7
Results & comparisons

After the definition of the dataset, the designing of the ground truth, and the
description of the network model, it is now time to evaluate the results obtained
by using the NN model proposed in chapter 6.

In this chapter, it will be presented some sample results obtained using the
novel approach to Non-Line-of-Sight imaging proposed in the previous sections.

In order to give the most comprehensive review of the work, the result
analysis will be split into four different sections. This is justified by the need of
evaluating the network performance in all the different scenarios contained in the
dataset, and at the same time understand which elements are more challenging
for the network. This setup for the test is facilitated by the fact that from the
beginning the dataset was generated in a modular way. Indeed in order to
perform the intended tests, it is enough to perform inference on just one, or a
couple, of the different modules of the dataset1. In particular, it has been decided
to perform the tests on the following four modules:

1. test case a: fixed sensor location and rotation looking at a perfectly white
and diffuse wall,

2. test case b: variable sensor position and location looking at a perfectly
white and diffuse wall,

3. test case c: fixed sensor location and rotation looking at a wall with
different roughness values,

1See the last part of section 4.2 to have more details on the different groups

75

4. test case d: fixed and variable sensor location and rotation looking at a
wall with different roughness values.

Of course in all four test scenarios the hidden object is always free to move inside
the hidden scene.

Due to the type of results that our model generates, in order to properly
understand the performance of the network, it was essential to find a way of
visualizing the results that were at the same time clear and exhaustive. It was
fundamental to use some kind of visualization that allows both quantitatively
and qualitatively evaluation and comparison of the produced output with re-
spect to the ground truth data. Keeping all of that in mind we decided to use
for each tested sample two representations: the first one is characterized by a
set of plots that quantitatively compare the obtained results with the baseline
while the second one is represented by a set of images of the reconstructed point
clouds that helps to qualitatively evaluate the results. Other than that in the
plots there is also the computation of the MAE between the prediction and the
ground truth that could be used as a metric to evaluate the overall performances.

The first kind of representation (figs. 7.1, 7.3, 7.5 and 7.7) is structured as
a matrix of plots evaluating all the outputs of the network. Starting from the
left, the first column represents the ground truth, the second one the prediction,
and the last one is the difference between the previous two. While starting from
the top, the first row is related to the predicted depth map, masked using the
ground truth mask, the second one presents the predicted depth map masked
by the predicted mask and the last one represents the predicted mask alone.

On the other hand, the second type of results’ representation (figs. 7.2, 7.4,
7.6 and 7.8) is presented as a set of four images. The one in the top left corner
represents the ground truth point cloud, the one on its right shows the point
cloud obtained by using the predicted depth map and the ground truth mask,
while the one on the bottom left corresponds to the point cloud actually predicted
by the model (without any ground truth). Finally, the image on the bottom right
shows the difference between the two point clouds of the first row, in blu the
ground truth and in yellow the prediction.

For all the presented test cases it will be used both types of representation in
order to properly discuss the obtained results and perform a complete evaluation
of the performance of the model.

In the following sections, there will be an in-depth analysis of the perfor-
mance of the proposed NN model in each of the considered test scenarios. All

76

CHAPTER 7. RESULTS & COMPARISONS

the scenes are based on the one in fig. 4.3. Other than that in appendix A are
contained some other scene examples to prove that what will be discussed in
sections 7.1 to 7.4 represents not only a lucky example but a full description of
the architecture performances.

7.1 Test case a: fixed sensor and diffuse wall

Here, we have tested the network on a limited portion of the dataset that
contains only samples characterized by the sensor fixed in the base location (no
translation nor rotation), and a front white wall perfectly diffuse.

In order to discuss the results, it will be used a sample scene extracted from
the related test set. More precisely, in this case, the setup is characterized by:

• sensor: fixed
• object:

– shape → concave plane,
– position → (𝑥 : 0.9, 𝑦 : 0.5, 𝑧 : 1.25)𝑚,
– rotation → (𝑥 : −75◦, 𝑦 : −6◦, 𝑧 : 5◦).

This scenario represents the simplest one of all the considered ones since it
has fewer variable elements. Indeed essentially only the hidden object represent
a variable. For this reason, it is expected to register the best performance of the
model.

As it is possible to see from the bottom row of fig. 7.1 the network is able to
identify the general location of the hidden object in the space, but it is definitely
not able to recover its specific structure. Indeed the obtained reconstruction is
somehow of a non-defined shape that roughly surrounds the object area. This
behavior is consistent throughout all the reconstructions performed on the test
set and so it represents a clear pattern in the mask estimation task. It is still
important to notice that even if the reconstruction is not perfect the measured
MAE between the ground truth mask and the predicted one is quite low, with
a value of 0.04. Since the MAE is used also as the loss function during the
training and validation of the network, the fact that is low also on the test set
ensures that the network was actually able to learn the task considering the used
metrics. Either way, the obtained reconstruction is far from the desired quality
this probably indicates that the used loss function is not enough to properly

77

7.1. TEST CASE A: FIXED SENSOR AND DIFFUSE WALL

Figure 7.1: Results evaluation (test case a)

punish the network. This limits the model’s capability of understanding the
aim of the job to just recover the general location of the hidden object instead of
the full shape.

Moving to analyze the middle row of fig. 7.1, where it is considered the full
prediction of the network (mask and depth map together), it is possible to notice
that the biggest source of errors in the overall reconstruction is represented by
the estimated mask. This is particularly clear if such results are compared with
the one on the top row. Considering both the MAE value and the color bars
linked to the plots it is evident that inside the ground truth hidden object’s area
the depth estimation works reaching values close to the real one. On the other
hand, the estimation of the depth corresponding to the pixels located outside of
the ground truth mask is not so good. This behavior on the mislabeled pixels
is expected since, as described in chapter 6, the loss function of the depth map
prediction is updated only on target points, so only on the one belonging to
the object. Supporting this consideration there is the MAE computed between
the ground truth reconstruction and the predicted one masked by the ground
truth mask. In this case, it assumes a value of 0.042𝑚 confirming that the

78

CHAPTER 7. RESULTS & COMPARISONS

depth estimation (ignoring the mask) is quite good. This level of performance is
constant throughout the whole test set, where the value of the MAE, using the
ground truth mask is always low despite the different hidden object types and
locations.

(a) Ground truth point cloud (b) Depth map reconstruction us-
ing the ground truth mask

(c) Predicted depth map using the
predicted mask

(d) Comparison between fig. 7.2a
(blu) and fig. 7.2b (yellow)

Figure 7.2: Reppresentation of the reconstructed point cloud and comparison
with the ground truth (test case a)

From the plots of fig. 7.1 it is possible to exhaustively evaluate the mask
estimation but not the depth one since it is quite cumbersome to visualize the
actual reconstruction and understand if the shape of the object over the 𝑥 axes
is properly recovered or not. In order to better analyze this aspect, it is required
some sort of 3D representation of the obtained point cloud. This is addressed by

79

7.2. TEST CASE B: VARIABLE SENSOR AND DIFFUSE WALL

fig. 7.2. Unfortunately, as it is possible to see in fig. 7.2d, the predicted depth map
(yellow) is not able to recover the shape of the object but it is just able to extract
the average distance between the wall and the target. This behavior is similar
to the one of the mask estimation. So, it seems that in general the proposed
architecture is able to correctly and accurately recover only general and average
information about the hidden object. On the other hand, it is completely unable
to recover the fine details represented by the specific shape of the target.

Other than that comparing between each other figs. 7.2a to 7.2c it is possible
to confirm what said before while analyzing the plots of fig. 7.1, the complete
prediction completely lack information about the specific object apart from the
general location and distance from the wall. For this reason, the reconstructed
point cloud assumes a non-defined shape that has no resemblance to the orig-
inal hidden object. Comparing figs. 7.2b and 7.2c it is evident that the main
weaknesses of the proposed NN is represented by the estimation of the mask.

To wrap up the analysis on the test set a it is possible to say that considering
a scenario in which the only variable is represented by the hidden object the
considered model can reliably identify the overall location of it inside of the
hidden area (other all the three axes), but it is not able to recover finer information
about the specific object shape.

7.2 Test case b: variable sensor and diffuse wall

This time has been introduced a second variable concerning test case a, in-
deed in this setup also the sensor can assume different locations and orientations.
The wall has still the same property as before. This test has been performed to
see if the network is able to generalize over a more difficult setup in which the
point of view changes scene by scene. Doing that also the relative area of the
Field of View occupied by the hidden object changes much more than in the
previous test. So this setup could be a good candidate to verify if the network
can locate the object also if it falls into a completely different spot with respect
to the standard one.

For the analysis, it has been considered a scene of the test set where:

• sensor:

– position → (𝑥 : 1.2, 𝑦 : −1.3, 𝑧 : 1.7)𝑚,
– rotation → (𝑥 : 88◦, 𝑦 : 2◦, 𝑧 : 81◦),

80

CHAPTER 7. RESULTS & COMPARISONS

• object:

– shape → concave plane,
– position → (𝑥 : 1.2, 𝑦 : 0.7, 𝑧 : 1.75)𝑚,
– rotation → (𝑥 : 72◦, 𝑦 : −69◦, 𝑧 : −34◦).

Figure 7.3: Results evaluation (test case b)

In this scenario, looking at the bottom row of fig. 7.3, it is possible to notice
that the results are definitely rougher. Comparing this result with the one
obtained in section 7.1 it is clear how the predicted mask identifies a much bigger
and unprecise area. The network seems to still be able to correctly identify the
location of the hidden object, but this time, with a much bigger uncertainty. To
confirm that, also the computed MAE is bigger with a value of 0.0762. On the
other hand considering the first row of fig. 7.3 it is possible to notice that the
performance of the network on the depth estimation task is quite similar to the
one obtained in the simpler case of test case a. While if we consider the middle
row of the same figure it is possible to see that the performance in this scenario

2For the Mean Absolute Error (MAE), the bigger it is the worst it is

81

7.2. TEST CASE B: VARIABLE SENSOR AND DIFFUSE WALL

is even more affected by the suboptimal estimation of the mask. In fact, since the
area of misleading points is bigger also the area with wrongly estimated depth
is now bigger

(a) Ground truth point cloud (b) Depth map reconstruction using the
ground truth mask

(c) Predicted depth map using the pre-
dicted mask

(d) Comparison between fig. 7.4a (blu)
and fig. 7.4b (yellow)

Figure 7.4: Reppresentation of the reconstructed point cloud and comparison
with the ground truth (test case b)

Considering fig. 7.4, in particular, fig. 7.4d is clearly visible that regardless of
the worst performance over the mask estimation the network was still perfectly
able to retrieve the average distance between the hidden object and the front wall.
While from fig. 7.4c it is even more obvious that the poor performance over the
mask estimation greatly decreases the overall performance of the network.

To sum up, the results obtained in the test set b it is possible to say that the
proposed NN model was not fully able to generalize over a freely located sensor.
It is still able to find the object but with greatly reduced accuracy.

82

CHAPTER 7. RESULTS & COMPARISONS

7.3 Test case c: fixed sensor and rough wall

This time around it has been considered a situation similar to the one of test
case a but this time the new variable is represented by the material of the front
wall that is still white, but no more perfectly diffuse. This time it is characterized
by a material that can have a random roughness value (in the range [0.3, 1]).
This test setup has been introduced to verify if the network is able to generalize
over different types of surfaces.

For the analysis, it has been considered a scene of the test set where:

• sensor: fixed,
• object:

– shape → concave plane,
– position → (𝑥 : 0.9, 𝑦 : 0.6, 𝑧 : 1.35)𝑚,
– rotation → (𝑥 : −13◦, 𝑦 : 33◦, 𝑧 : 65◦),

• wall roughness: 0.45.

Figure 7.5: Results evaluation (test case c)

83

7.3. TEST CASE C: FIXED SENSOR AND ROUGH WALL

This test setup is much similar to the one discussed in section 7.1 since the
only difference is represented by the varying roughness of the wall. For this
reason, if the model is able to generalize it is reasonable to expect results similar
to the one of test case a.

(a) Ground truth point cloud (b) Depth map reconstruction using
the ground truth mask

(c) Predicted depth map using the
predicted mask

(d) Comparison between fig. 7.6a
(blu) and fig. 7.6b (yellow)

Figure 7.6: Reppresentation of the reconstructed point cloud and comparison
with the ground truth (test case c)

Thankfully considering the bottom row of fig. 7.5 it is possible to see that also
in this case the network can recover the area where the hidden object is located.
This area is quite close to the overall area of the target guaranteeing a MAE

84

CHAPTER 7. RESULTS & COMPARISONS

of 0.034. From these latest considerations, it is possible to say that concerning
the mask estimation the network is able to generalize to a random front wall
material without too many problems reaching performance really close to the
one of section 7.1. The only downside generated by the different materials seems
to be the fact that the edges of the predicted mask area are a bit more rough and
imprecise.

Considering fig. 7.6 it is possible to confirm the same behavior noticed over
the comparison plots since the reconstructed point cloud has a quality similar to
the one obtained under the simpler condition of test set a. Also in this case the
estimated depth only captures the average depth of the object but not its shape.
Looking at fig. 7.6c it is possible to confirm that still the biggest limitation of the
network is represented by the mask estimation.

To conclude the results obtained under the specific conditions of test set
c confirm that the proposed NN model is able to generalize quite well over a
variable front wall material.

7.4 Test case d: fixed & variable sensor and rough
wall

This final scenario represents the hardest one among the considered ones. In
this case, the sensor can be either fixed to the basic position or assume a random
location and orientation, and at the same time, the front wall is not fixed to be
perfectly diffuse but can assume a random roughness value as in test case c.

For the analysis, it has been considered a scene of the test set where:

• sensor:

– position → (𝑥 : 1.0, 𝑦 : −1.0, 𝑧 : 1.65)𝑚,
– rotation → (𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦),

• object:

– shape → concave plane,
– position → (𝑥 : 0.9, 𝑦 : 1.0, 𝑧 : 1.75)𝑚,
– rotation → (𝑥 : −89◦, 𝑦 : −22◦, 𝑧 : 0◦),

• wall roughness: 0.55.

85

7.4. TEST CASE D: FIXED & VARIABLE SENSOR AND ROUGH WALL

Figure 7.7: Results evaluation (test case d)

Since this scenario represents the most difficult one of the considered ones,
it is expected that the performance will be affected in a negative way. Unexpect-
edly, looking at the bottom row of fig. 7.7, it is possible to see that regardless of
the increased variability of the setup the network was able to generalize quite
well regarding the mask prediction. The predicted mask is comparable to the
one presented in section 7.1 obtaining a MAE just a little bit worst, with a value
of 0.054. The generalization ability of the proposed architecture seems to extend
also over the depth estimation task. Also under this scenario, the network was
able to reach a MAE between the ground truth prediction and the depth map
prediction masked by the ground truth mask of 0.039𝑚 (top row of fig. 7.7),
comparable with the previous results.

From what has just been said, it seems that under the conditions of test set
d the network can generalize over both tasks (mask and depth map prediction).
To verify that it is possible to look at fig. 7.8 where it is possible to see that
apart from a bit of noise on the left side of fig. 7.8b the overall quality of the
reconstruction is similar to the one presented in section 7.1. Other than that
the performance regarding the depth map computation is coherent with all the

86

CHAPTER 7. RESULTS & COMPARISONS

(a) Ground truth point cloud (b) Depth map reconstruction using the
ground truth mask

(c) Predicted depth map using the pre-
dicted mask

(d) Comparison between fig. 7.8a (blu)
and fig. 7.8b (yellow)

Figure 7.8: Reppresentation of the reconstructed point cloud and comparison
with the ground truth (test case d)

other cases. In fig. 7.8d it is clearly visible that also here the network is able to
recover the average depth of the considered hidden object.

To conclude, also in test case d, regardless of the added complexity the
proposed architecture was able to recover the overall location and depth of the
hidden object.

87

8
Conclusions and Future Works

In order to give a final evaluation of the project, it is important to keep in
mind that it represents a feasibility study and so the beginning of a much longer
process that will bring this technology to its final state.

That said, in this work has been performed a lot of preliminary work that
will represent the foundations for all future works. In particular, all the test-
ing performed over the various version of Mitsuba 2 (chapter 3) represents an
extremely valuable element that guarantees the reliability of this open-source
renderer for other research studies. Other than that another essential contri-
bution of this project is the generation of a novel dataset for Non-Line-of-Sight
imaging in a "look around the corner" scenario (chapter 4), The introduction of this
dataset represents quite a big contribution since from our knowledge there is
no other alternative in the literature that can be used for such task. Also, the
evaluating, testing, and extension of the Fermat flow algorithm could represent
another big contribution to the development of NLoS imaging. In chapter 5 were
pointed out all the limitations of this approach together with some proposals
for improvements that aim to overcome the biggest drawbacks of this method in
order to take full advantage of its biggest strength, the fact that it is completely
BRDF-invariant and relays only on the geometric properties of the scene.

All the things just discussed represent for sure a useful contribution but the
core of the project is, still, the Neural Network implementation proposed in
chapter 6. It has been introduced a novel approach for NLoS imaging based on
the "mirror trick", together with a related NN model. Our implementation proves
that using an indirect Time of Flight is possible to recover objects located outside

89

of the Line-of-Sight of the sensor. The results presented in chapter 7 highlight
that the task is for sure possible but to obtain accurate results it is necessary
to further investigate this topic by designing a more robust NN architecture.
Doing that most probably it will be possible to reliably and precisely recover
useful information from the hidden scene using a simple and cheap sensor as
the iToF.

From the above considerations, it is clear that this topic requires much more
studies in order to reach a usable state. At the same time from the work proposed
in this feasibility study, it is clear that with some tweaks it is, for sure, possible
to at least recover a simple shape located behind a corner.

To bring forward this project the first step will be for sure to use a more
complex network architecture able to extract finer information from the raw
iToF data. A good way to do so could be to use a much bigger patch during the
training to allow the network to learn much more spatially correlated features.
Other than that it is also necessary to use a more complex network architecture
for both the mask and depth estimation. In our opinion, a good option could be to
use a U-Net [19]. Other important improvements that could greatly improve the
ability of the model of recovering details are to change the used loss function, in
fact, the Mean Absolute Error was able to force the network to learn just average
information about the hidden object ignoring all its finer details.

Other than improving the model that has been introduced in chapter 6 could
be really interesting to evaluate the proposed Neural Network extension of
the Fermat flow proposed in section 5.3. Given the interesting property of the
approach proposed in [3], such as the BRDF invariance, if the network model
will be able to overcome all the limitations discussed in section 5.2 the obtained
hybrid solution could represent a really valuable solution to the NLoS imaging
task for "look around the corner" scenario. If properly implemented this method
could then also be compared to the enhanced "mirror trick" solution.

Overall it is possible to say that this feasibility study gained results able to
prove that the aimed task is doable, it just requires some more investigation.
Performing some additional work in this fieldì, starting from the contributions
introduced here it will be finally possible to use this technology for all the
promising applications described in section 1.2.

90

A
Additional test results

A.1 Test case a: fixed sensor and diffuse wall

Figure A.1: sensor location: (𝑥 : 1.0, 𝑦 : −1.0, 𝑧 : 1.65), sensor rotation:
(𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦) || object shape: cube, object location: (𝑥 : 1.1, 𝑦 :
0.5, 𝑧 : 1.25), object rotation: (𝑥 : −52◦, 𝑦 : 74◦, 𝑧 : −8◦)

91

A.1. TEST CASE A: FIXED SENSOR AND DIFFUSE WALL

Figure A.2: sensor location: (𝑥 : 1.0, 𝑦 : −1.0, 𝑧 : 1.65), sensor rotation:
(𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦) || object shape: cylinder, object location: (𝑥 : 1.0, 𝑦 :
0.8, 𝑧 : 1.35), object rotation: (𝑥 : 40◦, 𝑦 : −4◦, 𝑧 : 0◦)

92

APPENDIX A. ADDITIONAL TEST RESULTS

Figure A.3: sensor location: (𝑥 : 1.0, 𝑦 : −1.0, 𝑧 : 1.65), sensor rotation:
(𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦) || object shape: sphere, object location: (𝑥 : 1.1, 𝑦 :
1.3, 𝑧 : 1.25), object rotation: (𝑥 : 0◦, 𝑦 : 0◦, 𝑧 : 0◦)

93

A.2. TEST CASE B: VARIABLE SENSOR AND DIFFUSE WALL

A.2 Test case b: variable sensor and diffuse wall

Figure A.4: sensor location: (𝑥 : 1.0, 𝑦 : −1.3, 𝑧 : 1.5), sensor rotation:
(𝑥 : 94◦, 𝑦 : 4◦, 𝑧 : 75◦) || object shape: parallelepiped, object location:
(𝑥 : 0.9, 𝑦 : 0.6, 𝑧 : 1.45), object rotation: (𝑥 : 27◦, 𝑦 : −34◦, 𝑧 : −76◦)

94

APPENDIX A. ADDITIONAL TEST RESULTS

Figure A.5: sensor location: (𝑥 : 1.1, 𝑦 : −1.3, 𝑧 : 1.7), sensor rotation:
(𝑥 : 95◦, 𝑦 : 1◦, 𝑧 : 86◦) || object shape: parallelepiped, object location:
(𝑥 : 1.1, 𝑦 : 0.5, 𝑧 : 1.25), object rotation: (𝑥 : −52◦, 𝑦 : 74◦, 𝑧 : −8◦)

95

A.2. TEST CASE B: VARIABLE SENSOR AND DIFFUSE WALL

Figure A.6: sensor location: (𝑥 : 1.2, 𝑦 : −1.1, 𝑧 : 1.5), sensor rotation:
(𝑥 : 85◦, 𝑦 : −1◦, 𝑧 : 75◦) || object shape: cone, object location: (𝑥 : 1.2, 𝑦 :
0.7, 𝑧 : 1.95), object rotation: (𝑥 : 64◦, 𝑦 : −90◦, 𝑧 : 0◦)

96

APPENDIX A. ADDITIONAL TEST RESULTS

A.3 Test case c: fixed sensor and variable wall

Figure A.7: sensor location: (𝑥 : 1.0, 𝑦 : −1.0, 𝑧 : 1.65), sensor rotation:
(𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦) || object shape: cone, object location: (𝑥 : 1.1, 𝑦 :
0.8, 𝑧 : 1.95), object rotation: (𝑥 : −89◦, 𝑦 : 22◦, 𝑧 : 0◦) || wall roughness:
0.55

97

A.3. TEST CASE C: FIXED SENSOR AND VARIABLE WALL

Figure A.8: sensor location: (𝑥 : 1.0, 𝑦 : −1.0, 𝑧 : 1.65), sensor rotation:
(𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦) || object 1 shape: cube, object 1 location: (𝑥 :
1.0, 𝑦 : 1.0, 𝑧 : 1.45), object 1 rotation: (𝑥 : 46◦, 𝑦 : −29◦, 𝑧 : 38◦) || object
2 shape: sphere, object 2 location: (𝑥 : 0.9, 𝑦 : 1.1, 𝑧 : 1.45), object 2 rotation:
(𝑥 : 34◦, 𝑦 : −69◦, 𝑧 : 63◦) || wall roughness: 0.6

98

APPENDIX A. ADDITIONAL TEST RESULTS

Figure A.9: sensor location: (𝑥 : 1.0, 𝑦 : −1.0, 𝑧 : 1.65), sensor rotation:
(𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦) || object shape: sphere, object location: (𝑥 : 1.1, 𝑦 :
0.6, 𝑧 : 1.65), object rotation: (𝑥 : 0◦, 𝑦 : 0◦, 𝑧 : 0◦) || wall roughness: 0.1

99

A.4. TEST CASE D: FIXED AND VARIABLE SENSOR AND VARIABLE WALL

A.4 Test case d: fixed and variable sensor and vari-
able wall

Figure A.10: sensor location: (𝑥 : 1.0, 𝑦 : −1.0, 𝑧 : 1.65), sensor rotation:
(𝑥 : 90◦, 𝑦 : 0◦, 𝑧 : 50◦) || object 1 shape: sphere, object 1 location: (𝑥 :
1.2, 𝑦 : 1.3, 𝑧 : 1.25), object 1 rotation: (𝑥 : 0◦, 𝑦 : 0◦, 𝑧 : 0◦) || object 2 shape:
concave plane, object 2 location: (𝑥 : 1.1, 𝑦 : 1.4, 𝑧 : 1.35), object 2 rotation:
(𝑥 : 0◦, 𝑦 : 0◦, 𝑧 : 0◦) || wall roughness: 0.1

100

APPENDIX A. ADDITIONAL TEST RESULTS

Figure A.11: sensor location: (𝑥 : 1.1, 𝑦 : −1.0, 𝑧 : 1.5), sensor rotation:
(𝑥 : 95◦, 𝑦 : −3◦, 𝑧 : 89◦) || object shape: concave plane, object location:
(𝑥 : 1.2, 𝑦 : 0.9, 𝑧 : 1.55), object rotation: (𝑥 : −41◦, 𝑦 : 111◦, 𝑧 : 47◦) || wall
roughness: 0.65

101

A.4. TEST CASE D: FIXED AND VARIABLE SENSOR AND VARIABLE WALL

Figure A.12: sensor location: (𝑥 : 1.3, 𝑦 : −1.0, 𝑧 : 1.5), sensor rotation:
(𝑥 : 92◦, 𝑦 : −1◦, 𝑧 : 86◦) || object shape: sphere, object location: (𝑥 : 0.9, 𝑦 :
1.2, 𝑧 : 1.75), object rotation: (𝑥 : 0◦, 𝑦 : 0◦, 𝑧 : 0◦) || wall roughness: 0.75

102

References

[1] Giovanna Sansoni, Marco Trebeschi, and Franco Docchio. “State-of-The-
Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage,
Medicine, and Criminal Investigation”. In: Sensors 9.1 (2009), pp. 568–601.
issn: 1424-8220. doi: 10.3390/s90100568. url: https://www.mdpi.com/
1424-8220/9/1/568.

[2] Daniele Faccio, Andreas Velten, and Gordon Wetzstein. “Non-line-of-sight
imaging”. In: Nature Reviews Physics 2.6 (2020), pp. 318–327.

[3] Shumian Xin, Sotiris Nousias, Kiriakos N Kutulakos, Aswin C Sankara-
narayanan, Srinivasa G Narasimhan, and Ioannis Gkioulekas. “A theory
of Fermat paths for non-line-of-sight shape reconstruction”. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
2019, pp. 6800–6809.

[4] Gautam Verma and Dolly Sharma. “Seeing Through the Walls with Wire-
less Technology: A Review”. In: International Journal of Sensors Wireless
Communications and Control 12.4 (2022), pp. 255–271.

[5] Adriano Simonetto, Gianluca Agresti, Pietro Zanuttigh, and Henrik
Schäfer. “Lightweight Deep Learning Architecture for MPI Correction
and Transient Reconstruction”. In: IEEE Transactions on Computational
Imaging 8 (2022), pp. 721–732. doi: 10.1109/TCI.2022.3197928.

[6] Damien Lefloch, Rahul Nair, Frank Lenzen, Henrik Schäfer, Lee Streeter,
Michael J Cree, Reinhard Koch, and Andreas Kolb. “Technical foundation
and calibration methods for time-of-flight cameras”. In: Time-of-Flight and
Depth Imaging. Sensors, Algorithms, and Applications. Springer, 2013, pp. 3–
24.

[7] Santiago Royo and Maria Ballesta-Garcia. “An overview of lidar imaging
systems for autonomous vehicles”. In: Applied sciences 9.19 (2019), p. 4093.

103

https://doi.org/10.3390/s90100568
https://www.mdpi.com/1424-8220/9/1/568
https://www.mdpi.com/1424-8220/9/1/568
https://doi.org/10.1109/TCI.2022.3197928

REFERENCES

[8] Mohit Gupta, Shree K. Nayar, Matthias B. Hullin, and Jaime Martin.
“Phasor Imaging: A Generalization of Correlation-Based Time-of-Flight
Imaging”. In: ACM Trans. Graph. 34.5 (Nov. 2015). issn: 0730-0301. doi:
10.1145/2735702. url: https://doi.org/10.1145/2735702.

[9] Enrico Buratto, Adriano Simonetto, Gianluca Agresti, Henrik Schäfer, and
Pietro Zanuttigh. “Deep learning for transient image reconstruction from
ToF data”. In: Sensors 21.6 (2021), p. 1962.

[10] Felipe Gutierrez-Barragan, Huaĳin Chen, Mohit Gupta, Andreas Velten,
and Jinwei Gu. “itof2dtof: A robust and flexible representation for data-
driven time-of-flight imaging”. In: IEEE Transactions on Computational
Imaging 7 (2021), pp. 1205–1214.

[11] Merlin Nimier-David, Delio Vicini, Tizian Zeltner, and Wenzel Jakob.
“Mitsuba 2: A Retargetable Forward and Inverse Renderer”. In: Trans-
actions on Graphics (Proceedings of SIGGRAPH Asia) 38.6 (Dec. 2019). doi:
10.1145/3355089.3356498.

[12] Jorge Garcia Pueyo. Mitsuba 2 Renderer - transient. Version b9332ae07a
bd803dd3a60188d5d6f8f5f4ae6f81. 2021. url: https : / / github . com /
jgarciapueyo/mitsuba2-transient.

[13] Diego Royo, Jorge García, Adolfo Muñoz, and Adrian Jarabo. “Non-line-of-
sight transient rendering”. In: Computers & Graphics (2022). issn: 0097-8493.
doi: https://doi.org/10.1016/j.cag.2022.07.003. url: https://www.
sciencedirect.com/science/article/pii/S0097849322001200.

[14] Dorian Ros, Baptiste Nicolet, Delio Vicini, Michael Vasilkovsky, and
Avatar Merlin Nimier-David. Mitsuba Blender Add-on. Version c6fbc8c3
dbf8be1ecf3e755b84e9a0cf16cedace. 2020. url: https://github.com/
mitsuba-renderer/mitsuba-blender.

[15] Florian Kainz, Rod Bogart, Piotr Stanczyk, and Peter Hillman. “Technical
introduction to OpenEXR”. In: Industrial light and magic 21 (2009).

[16] Jorge Garcia Pueyo. mitsuba2-transient-scenes. Version ab67c4caa9228
aa9d4115aeb90c3d3bab0aaf7b5. 2021. url: https : / / github . com /
jgarciapueyo/mitsuba2-transient-scenes.

104

https://doi.org/10.1145/2735702
https://doi.org/10.1145/2735702
https://doi.org/10.1145/3355089.3356498
https://github.com/jgarciapueyo/mitsuba2-transient
https://github.com/jgarciapueyo/mitsuba2-transient
https://doi.org/https://doi.org/10.1016/j.cag.2022.07.003
https://www.sciencedirect.com/science/article/pii/S0097849322001200
https://www.sciencedirect.com/science/article/pii/S0097849322001200
https://github.com/mitsuba-renderer/mitsuba-blender
https://github.com/mitsuba-renderer/mitsuba-blender
https://github.com/jgarciapueyo/mitsuba2-transient-scenes
https://github.com/jgarciapueyo/mitsuba2-transient-scenes

REFERENCES

[17] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng
Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu
Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving,
Michael Isard, Rafal Jozefowicz, Yangqing Jia, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Mike Schuster, Rajat Monga, Sherry
Moore, Derek Murray, Chris Olah, Jonathon Shlens, Benoit Steiner, Ilya
Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vĳay Vasude-
van, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow, Large-scale ma-
chine learning on heterogeneous systems. Nov. 2015. doi: 10.5281/zenodo.
4724125.

[18] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic opti-
mization”. In: arXiv preprint arXiv:1412.6980 (2014).

[19] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Convo-
lutional networks for biomedical image segmentation”. In: International
Conference on Medical image computing and computer-assisted intervention.
Springer. 2015, pp. 234–241.

105

https://doi.org/10.5281/zenodo.4724125
https://doi.org/10.5281/zenodo.4724125

	List of Figures
	List of Acronyms
	Introduction
	Aim of the project
	Motivation behind the project and field of use

	Time of Flight cameras
	Introduction
	Time of Flight sensors
	ToF cameras working principles
	Indirect Time of Flight (Continuous Modulation approach)
	Direct Time of Flight (Pulse Based approach)
	Differences
	Common error types of a ToF sensor
	Calibration
	Post-processing depth correction

	Mapping between direct Time of Flight and indirect Time of Flight
	dToF to iToF
	iToF to dToF

	Non Line of Sight perception using Time of Flight

	Transient ray-tracing using Mitsuba Renderer 2
	Introduction
	Mitsuba Renderer 2

	Mitsuba2-transient and mitsuba2-transient-nlos
	In depth tests on the various version of Mitsuba Renderer 2
	Testing of mitsuba2-transient
	Testing of mitsuba2-transient-nlos

	Dataset
	Introduction
	Structure of the dateset

	Fermat flow analysis and test
	How the Fermat flow works
	Implementation details
	Performance evaluation

	Limitations of the Fermat flow algorithm
	Fermat Flow with standard direct Time of Flight and indirect Time of Flight sensor

	Implementation
	"Mirror trick" approach
	How the ground truth is build
	Neural network model and implementations
	Training phase
	Inference phase

	Results & comparisons
	Test case a: fixed sensor and diffuse wall
	Test case b: variable sensor and diffuse wall
	Test case c: fixed sensor and rough wall
	Test case d: fixed & variable sensor and rough wall

	Conclusions and Future Works
	Additional test results
	Test case a: fixed sensor and diffuse wall
	Test case b: variable sensor and diffuse wall
	Test case c: fixed sensor and variable wall
	Test case d: fixed and variable sensor and variable wall

	References

