UNIVERSITA DEGLI STUDI DI PADOVA

DEPARTMENT OF MATHEMATICS “Turrio LEvi-CrviTA”

MASTER DEGREE IN COMPUTER SCIENCE

PREDICTION OF FOOTBALL PLAYERS’ POSITION
USING DATA MINING AND MACHINE LEARNING

TECHNIQUES

MASTER DEGREE THESIS

SUPERVISOR GRADUATE STUDENT
Pror. ANNAMARIA GUOLO A1LBERTO GOBBO

UNIVERSITY OF PADUA

AcADEMIC YEAR 2022-23

Alberto Gobbo: Prediction of football players’ position using Data Mining and Machine Learning
technigues, Master Degree thesis in Computer Science, Academic Year 2022-23, © February 2023.

“COLORO CHE FANNO SFORZI CONTINUI SONO SEMPRE PIENI DI SPERANZA.
ABBRACCIATE I VOSTRI SOGNI E INSEGUITELL.
GLI EROI QUOTIDIANI SONO QUELLI CHE DANNO SEMPRE IL MASSIMO NELLA VITA.”

RoBERTO BAGGIO

iv

Abstract

This thesis focuses on the implementation of Data Mining and Machine Learning tech-
niques for predicting the best position of footballers in the pitch.

The dataset used to this aim has been created starting from the characteristics about profes-
sionals football players available from FIFA22 videogame data.

Since the position held by footballers in the pitch has different levels, classification instru-
ments have been used for data analysis and predictions. Data Mining techniques, including
Multinomial Logistic Regression, Discriminant Analysis, and regularization methods, such
as Ridge Regression and Lasso, have been adopted for the aim of discovering relationships
between the predictors. Machine Learning techniques used mainly for predictions purposes
include Decision Tree, Random Forest, k-Nearest Neighbour, Naive Bayes, and Support
Vector Machine. In addition to that, the reduction of the response variable classes is con-
sidered to check possible improvements on the best Data Mining and Machine Learning
techniques found. A comparison between the methods in terms of performance, accuracy
of the results and computational cost concludes the analysis.

vi

Contents

I INTRODUCTION 1
1.1 Theproblem 1

1.2 Relatedworks 2

1.3 Programming languagesandtools 4
1.3.1 Programminglanguages 4

132 Tools e 5

1.4 Personal motivations 6

1.5 ThesisStructure v v v v v e e e e e e e 6

2 THE FIFA DATASET 7
2.1 Thesource of data: SoFIFA.com 8

2.2 Listof FIFA players’ personaldata 10

2.3 List of FIFA players’ attributes 10
2.3.1 Outfield players’ attributes 0L 11

2.3.2 Goalkeeper’sattributes Lo oo 15

2.4 List of FIFA players’ special attributes 16

2.5 Listof FIFA players’ positions 17

2.6 Creatingthedataset L. L L 22
2.6.1 FirstPageWebScraping(url) method 23

2.6.2 NextPagesWebScraping(url, 60) method 24

2.6.3 ManipulateAndCleanData() method 25

2.6.4 GenerateCSVDataset(cleaned_dataset) method 25

2.6.5 Precautions forasafe webscraping L. 26

2.7 Attributes names in the cleaned dataset 26

3 PRELIMINARY DATA ANALYSIS OF FIFA DATASET 29
3.1 Pre-processingofdataset L. 29

3.2 Graphicalevaluation 0 0 0L 31
3.2.1 Response variable distribution 0000 31

3.2.2 Response variable against categorical covariates 32

3.2.3 Response variable against quantitative covariates 33

3.2.4 DPossible interactions between covariates 39

3.3 Correlationmatrix 43

4 Data MINING TECHNIQUES 47

vii

4.1 Premiseso e e e e

4.1.1 Multinomial distribution
4.2 Multinomial Logistic Regression
4.3 Automatic modelselection L o o
4.4 Linear Discriminant Analysis
4.5 Regularizationmethods o 0o 0oL
45.1 RidgeRegression Lo L Lo L
452 Lasso e e

DaTta MINING RESULTS

S.1 Premises e e e e
5.1.1 Datasetsplit L
5.1.2 Metrics e e
5.2 Multinomial Logistic Regression
5.2.1 Predictions
5.3 Automatic model selection
5.3.1 Predictions
5.4 Linear Discriminant Analysis L.
5.4.1 Predictions
5.5 Regularizationmethods o oo 0oL
5.5.1 RidgeRegression
5.52 Lasso e
55.3 Predictions
MAcHINE LEARNING TECHNIQUES
6.1 Premises: Bagging o o
6.2 DecisionTree e e
63 RandomPForest
6.4 K-Nearest Neighbour
65 NaiveBayes o o
6.6 SupportVector Machine
MACHINE LEARNING RESULTS
7.1 Premises e e e
7.1.1 Datasetadaptation L.
7.1.2 k-Fold Cross-Validation
713 Metrics e e
72 DecisionTree e
721 Pruning.
7.3 RandomForest
7.4 K-Nearest Neighbour

57
57
57
58
59
63
64
66
66
67
69
70
72
76

79
79
81
82
83
85
86

7.5 NaiveBayes o 104

7.6 Support Vector Machine 0 L. 105
8 RELEVEL RESPONSE VARIABLE CLASSES 109
8.1 Classesreductionprocess 109
8.2 Multinomial Logistic Regression 113
8.3 Lasso e e 116
8.4 Support Vector Machine 118
9 CONCLUSIONS 121
A R copk 127
A.1 Preliminary data analysis of FIFA dataset 127
A2 DataMiningResults 00 0o 0oL 129
B PyrHON CODE 139
B.1 TheFIFAdataset o o o i i 139
B.2 Machine LearningResults o 0000 143
GLOSSARY 155
ACRONYMS 159
BiBLIOGRAPHY 161
SITOGRAPHY 163
RINGRAZIAMENTI 169

ix

2.1
2.2

2.3

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12
3.13
3.14
3.15

5.1
5.2
5.3
5.4
5.5
5.6

5.7

List of Figures

How footballers appear in SOFIFA.com. Source: https://sofifa.com/ . . . 8
All the values range to determine the quality of an attribute. Source: https:

//www.fifplay.com/encyclopedia/player-attributes/ 9
All the positions in a FIFA football pitch. Source: https://www.fifplay.

com/encyclopedia/position/ L L 21
Distribution of the Best_Position response variable. 32
Mosaic plot of the response variable versus Defensive_Work_Rate. 33
Boxplot of the response variable versus Height_ecm. 34
Boxplot of the response variable versus Ball_Control. 35
Boxplot of the response variable versus Finishing. 36
Boxplot of the response variable versus Short_Passing. 38
Boxplot of the response variable versus Standing_Tackle. 39
Plot of Sprint_Speed versus Acceleration. L. 40
Plot of Ball_Control versus Dribbling. 41
Plot of Free_Kick_Accuracy versus Curve. 41
Plot of Sliding_Tackle versus Standing_Tackle. 42
Plot of Vision versus Long_Passing. 42
Plot of Agility versus Dribbling and Ball_Control. 43
Correlation matrix with associated p-values. 44
Updated correlation matrix after removal process. 46
Variables of the final Multinomial Logistic Regression model 61
Confusion matrix in prediction phase for Multinomial Logistic Regression. 63
Variables of the backward model. 65
LDAlpredictions. 68
LDA2 predictions. 68

Misclassification error varying A value during the 10-Fold cross validation
with Ridge Regression. The leftmost vertical dashed line is the A that corre-
sponds to the minimum misclassification error, and the rightmost vertical
dashed line is the A that corresponds to the minimum misclassification error
plus I'standarderror. L Lo 70
Coefhicients estimates for ST level varying A value with Ridge Regression.
Each variable, associated to a specific color, is reported on the right of the

X1

5.8

5.9

5.10

5.11

5.12
5.13
5.14

6.1

6.2

6.3

7.1
7.2
7.3

7.4
7.5
7.6
7.7
7.8

8.1
8.2

8.3

Explained deviance according to A value in Ridge Regression. The vertical
dashed line is the A that corresponds to the minimum misclassification error. 72
Misclassification error varying A value during the 10-Fold cross validation
with Lasso. The leftmost vertical dashed line is the A that corresponds to
the minimum misclassification error, and the rightmost vertical dashed line
is the A that corresponds to the minimum misclassification error plus 1 stan-

darderror. 73
Coefficients estimates for ST level varying A value with Lasso. Each variable,
associated to a specific color, is reported on the right of the plot. 74

Explained deviance according to A value in Lasso. The vertical dashed line
is the A that corresponds to the minimum misclassification error plus 1 stan-

darderror. 74
Absolute coefficients estimates for every variable of the ST level. 75
Absolute coefficients estimates for every variable of the CBlevel. 76
Confusion matrix in prediction phase for Lasso. 77

How Bagging technique works. Source: https://www.geeksforgeeks.or

g/ml-bagging-classifier/ 80
The basic structure of a decision tree. Source: https://blog.quantinsti.

com/decision-tree/o 81
The basics of the Support Vector Machine. Source: https://it.mathwor

ks.com/discovery/support-vector-machine.html 87
Variable importance of the standard decision tree. 94
Variable importance of the decision tree after 10-Fold Cross-Validation. . . 96
Total impurity of leaves, number of nodes, and tree depth in the pruned

decision treegivencvvalue. L oL Lo 97
Training Accuracy value vs Test Accuracy value, given avvalue. 98
Variable importance of the decision tree after pruning. 99
Variable importance of the random forest. 100
Variable importance of the random forest after 10-Fold Cross-Validation. . . 102
Confusion matrix in prediction phase for SVM with linear kernel. 106
Response variable distribution after relevelling. 113

Confusion matrix in prediction phase for Multinomial Logistic Regression
afterrelevelling. o o o o 115
Misclassification error varying A value during the 10-Fold cross validation
with Lasso after response variable relevelling. The leftmost vertical dashed
line is the A that corresponds to the minimum misclassification error, and
the rightmost vertical dashed line is the A that corresponds to the minimum
misclassification error plus 1 standarderror. 116

xii

8.4

8.5
8.6

Explained deviance according to A value in Lasso after response variable
relevelling. The vertical dashed line is the A that corresponds to the min-
imum misclassification error plus 1 standard error. 117
Confusion matrix in prediction phase for Lasso after relevelling. 118
Confusion matrix in prediction phase for SVM after relevelling 119

xiii

Xiv

2.1
2.2
2.3

5.1

8.1

9.1

9.2

9.3

9.4

List of Tables

Attributes divided in physical, mental and technical classes. 13
Attributes divided in DRI, DEF, PHY, PAC, PAS and SHO classes. 14
Name correspondence between original and cleaned dataset attributes. 27

Absolute sum of the coefficients estimates for every variable. AWR = Attack-
ing_Work_Rate, DWR = Defensive_Work_Rate, BTL = Body_TypeLean, BTN
=Body_TypeNormal, BTS = Body_TypeStocky, SP:BC = Short_Passing:Ball_Control,
SP:LP =Short_Passing:Long_Passing, A:SS = Acceleration:Sprint_Speed, C:FKA

= Curve:Free_Kick_Accuracy. o o oL 61

Variable importance for Multinomial Logistic Regression after relevelling re-
sponse variable levels. AWR = Attacking Work_Rate, DWR = Defensive_Work_Rate,
BTL =Body_TypeLean, BTN = Body_TypeNormal, BTS = Body_TypeStocky,
SP:BC = Short_Passing:Ball_Control, SP:LP = Short_Passing:Long_Passing,
A:SS = Acceleration:Sprint_Speed, C:FKA = Curve:Free_Kick_Accuracy. . . . 114

Metrics values results for every technique. Character /” means that the value
cannot be computed for the specified method. 0oL 121
Training times for every technique. Character %/” means that the time is not
computed because Cross-Validation has not been applied. Character * means
that the value refers to the time spent for fitting all the Decision Trees pruned. . 123
Metrics values results for the best techniques after relevelling of the response
variable. Character /” means that the value cannot be computed for the speci-
fiedmethod. 124
Training times for the best techniques after relevelling of the response variable.
Character /” means that the time is not computed because Cross-Validation
hasnotbeenapplied. Lo L Lo 125

XV

Xvi

Listings

A1 Pre-processingsteps 127
A2 Splitthedataset (80/20) 129
A.3 Multinomial Logistic Regressioncode 130
A.4 Backward selection with AIC metric and BIC metric 131
A.S Linear Discriminant Analysiscode 132
A.6 RidgeRegressioncode 0L, 133
A7 Lassocode e 135
B.1 FirstPageWebScraping(url) method 139
B.2 CatchFeaturesNames(players_table) method 140
B.3 CatchFeaturesValues(players_table) method 140
B.4 NextPagesWebScraping(url, 60)) method 140
B.5 ManipulateAndCleanData()method 141
B.6 GenerateCSVDataset(cleaned_dataset) method 143
B.7 Dataset adaptation for Machine Learning techniques 143
B.8 k-Fold Cross-Validation with GridSearchCV 147
B.9 Machine Learningmetrics o Lo oL 148
B.10 Decision Treecode 149
B.11 Pruning Decision Treecode 149
B.12 Random Forestcode, 150
B.13 K-Nearest Neighbourcode 150
B.14 NaiveBayescode 151
B.15 Support Vector Machinecode Lo Lo 152

Xvil

xviii

Introduction

This chapter explains the general problem that the thesis intends to address, and relates it
to the existing literature. Furthermore, all the programming languages and tools used to

conduct the thesis work and a brief summary of the thesis structure will be mentioned.

1.1 The problem

Football is one of the most watched sports in the world, where television broadcast share
reaches its highest peaks during the Champions League and the World Cup. The business
around football is ever increasing as well as the interest of the scientific world in Football
Analytics. More in detail, Football Analytics is a discipline which aims to collect and analyze
data about matches (see Foorball Analytics). This discipline has grown with the advent of
big data and it has given rise to more sophisticated systems for the reading of match statistics,
going into detail also in the performances of the players.

For what concerns the football game, two teams face oft in a grass pitch where each team is
composed by eleven players, one defending its goal (the goalkeeper) and ten outfield players
with different roles on the pitch. The target of each team is to score at least one more goal
than the opponent team, in order to win the match. Each team is headed by a coach (a.k.a.
manager), the main figure responsible for deciding which players to line up and their position
on the pitch. Apart from the goalkeeper, the decision of the position of a player is quite
tricky. Indeed, the coach tries to place a player according to what he has watched during

1

the training sessions, trusting on his eyes, or basing his decision on the positions the player
has held in his career. Sometimes, subjective feelings of the coach before a match can guide
the decision of the position. If the coach is not open-minded, his viewpoint can be biased,
ignoring other important characteristics of a player that the human eye may not perceive.
Nowadays, the modus operandi in the clubs of the best football leagues is changing. The
coach is supported in all his choices by the technical staff, which is also composed by match
analysts and scouts. The professionals involved in match analysis and scouting roles work
with a huge amount of data, to be properly interpreted. In particular, the match analyst
tries to understand the tactical situation during the training sessions and matches, creating
a summary for each player of the team. This type of analysis is conducted with proprietary
data which cannot be accessed by the external environment, unless paid.

Given the interest to support the new technologies available to coaches and their technical
staff, this thesis focuses on predicting the best position of a footballer in the pitch analyz-
ing technical, mental and physical indicators of each player. The data used in the thesis are
the data available for free from FIFA!“/22 videogame. The goalkeeper position will not be
considered, because prediction is focused on the outfield players that are involved in the dy-
namics of the football match. Moreover, a goalkeeper owns specific attributes and he cannot
be judged outside the penalty area, even though there could be very rare exceptions like the
Brazilian former-goalkeeper Rogério Ceni who scored 131 goals in his football career because
of specialist of free kicks and penalties (see Rogério Ceni). Anyway, it represents an exception.
The purpose of this thesis is not to replace the human eye, but rather to offer an objective
support to the decision-making process regarding the position of a footballer in a football

match in order to provide a data-driven perspective.

1.2 Related works

At time of writing, not much specific research has been done to predict the position of a
footballer. Nevertheless, there are some interesting studies conducted on this field.

The thesis takes inspiration from the study in Bosu Babu et al. (2022), which focuses on pre-
dicting one of the fourteen available football player’s position through Machine Learning
techniques as Decision Tree, Random Forest, K-Nearest Neighbour, Naive Bayes and Sup-
port Vector Machine. Every model has been trained on a dataset that includes all the F1F4 18
videogame footballers. Each footballer is associated to the standard 29 player’s attributes and,

to simplify the problem, the original response variable has been transformed into 14 differ-

2

ent binary attributes in order to obtain a single-class classification problem. Random Forest
model turns out to be the best algorithm in terms of accuracy; moreover, 0.9 of accuracy is
returned at the prediction stage.

Bazmara and Jafari (2013) use K-Nearest Neighbour classifier to investigate the quality of
the players in order to predict one of the ten available footballers’ positions, goalkeeper ex-
cluded. Data are taken from an experimental group of 150 footballers aged between 18 and
31, in which each footballer has physical, mental and technical attributes. Before training the
model, the choice of K parameter and the distance type has been studied and. On average, the
best model has a K value between 5 and 10 and distance type equal to cosine and correlation.
After training the model, the accuracy obtained in the prediction phase was 0.97.

Bazmara (2014) suggests the implementation of a football player position identification sys-
tem applying fuzzy logic approach, in which the knowledge is represented by if-then rules
with AND logical operator inside the 7/ conditions. There are ten possible players’ positions
to predict, goalkeeper excluded, and a number of attributes within the 24 available properties
is fixed for each player position. After giving in input all the values of the properties for 264
players, an accuracy score is returned for each position and the sum of these scores is equal
to 100. The fuzzy system returns a 91% accuracy value, suggesting that the performance is
satisfactory.

Razali et al. (2017) use Machine Learning techniques as Bayesian Networks, Decision Trees
and K-Nearest Neighbour to predict ten possible player’s positions, goalkeeper excluded.
Data are taken from the Football Player Information System at Bukit Jalil Sports School
(BJSS), in which 100 young players have been rated from 1 to 10 for each physical, mental
and technical attribute. The models have been trained and tested with WEKAC! (Waikato
Environment for Knowledge Analysis). The average accuracy is 0.98 and the framework
suggest to be promising.

Zixue and Pan (2021) suggest the use of a back-propagation neural network to predict the
best position of a player by distinguishing defender, midfielder and attacker. The data source
is Wyscout, a famous football analysis platform which contains video data and specific infor-
mation about the matches. Specific physical and technical characteristics have been selected
after having conducted an analysis of the variance. After that, cross-validation has been ap-
plied for finding the best hyperparameters of the model, and the model has been trained on
the complete dataset. The prediction phase returns good results for defenders and midfield-
ers, but low results for attackers due to unbalanced proportion of observation between the

different positions.

The above mentioned papers carried out analyses using only Machine Learning techniques.
The thesis intends to exploit previous applications of Machine Learning techniques to the
dataset constructed from the FIFA4 22 videogame, but also to extend the analysis including
Data Mining approaches, in order to investigate the relationship between players’ positions

and players’ features more deeply.

1.3 Programming languages and tools
The thesis work has been conducted with a laptop which holds the following specifications:

* OS'°! (Operating System): Microsoft Windows 10 Home 64-bit, 22H2 version (build
OS 19045.2364);

CPU: Intel(R) Core(TM) i7-1065G7 CPU @ 1.30GHz 1.50GHz;

RAM: 16.00 GB (15.80 GB usable);

* GPU (integrated): Intel(R) Iris(R) Plus Graphics;

GPU (dedicated): NVIDIA GeForce GTX 1050 with Max-Q Design.

Unfortunately, the dedicated GPU has never been employed because the programming lan-
guage packages used only allow to work with the supplied CPU.

1.3.1 Programming languages

R (R Core Team, 2022) and Python (Van Rossum and Drake, 2009) are the programming
languages used in this thesis. More in detail, R 4.2.1 version and Python 3.11 64-bit version

have been used. Below there are all the details about these two programming languages.

* Risasimple programming language for statistical computing, data manipulation and
analysis developed and maintained by the R Core Team and the R Foundation for Sta-
tistical Computing. R includes conditionals, loops and user-defined functions. More-
over, it allows to manage data through arrays and matrices and to easily handle and
store data. Then, it provides a large amount of packages for statistical techniques and
data visualization. Finally, C and C++ programming languages code can be linked to
the R code and executed for advanced tasks. In this thesis, R has been used for the
implementation of the Data Mining techniques. R code is available in Appendix A.

4

* Pythonisahigh-level and object-oriented programming language developed and main-
tained by Python Software Foundation. Python is an interpreted language, so it works
in whatever OS in which a Python interpreter is installed. Dynamic typing and dy-
namic binding are important properties that Python holds. It is suitable for the de-
velopment of short programs and all the constructs used in more developed program-
ming languages (as C++ or Java) are available and they can be used in a simpler and
faster way. Its syntax is quite easy and it does not require too much effort to be
learned. Finally, it provides a large amount of libraries, from the mathematical ones
to the most recent Artificial Intelligence libraries. In this thesis, Python has been used
for the dataset creation and the implementation of the Machine Learning techniques.
Python code is available in Appendix B.

1.3.2 Tools

RStudio and Visual Studio Code are the tools used in this thesis. More in detail, RStudio
2022.12.0 Build 353 version and Visual Studio Code 1.74.1 version have been used. Below

there are all the details about these two tools.

* RStudio is a free and open-source IDE!®! (Integrated Development Environment)
for R programming language. It includes a console and tools for plotting graphs, his-
tory, debugging and workspace management. Moreover, it allows to execute chunks
of code. The RStudio executable is distributed among the most spread OS as Win-
dows, Linux and macOS. RStudio has been used for the implementation of Data Min-
ing techniques.

* Visual Studio Code is a source code editor developed and maintained by Microsoft.
It includes debugging tools, syntax highlighting, automatic code completion, snip-
pets, code refactoring, and embedded Git. Visual Studio Code functionalities can be
extended through the installation of extensions, which allows to add advanced editor
tools and to provide additional support for programming languages. Visual Studio
Code can be used for a wide range of programming languages, Python included. It is
available for the most spread OS as Windows, Linux and macOS. Visual Studio Code
has been used for the implementation of machine Learning techniques.

1.4 Personal motivations

My study plan of Master’s degree has been focused on Artificial Intelligence, learning from
a theoretical point of view in-depth analysis of data and how data allow to create intelligent
systems. I was therefore eager to merge my studies with my greatest passion that I have since
I was a child, namely, football. At time of writing, football analytics is under-explored com-
pared to other sports such as basketball or ice hockey, but I sensed that interest in this field
is growing more and more every day. For this reason, I decided to give my little contribute
on predicting the best position that a footballer can take on a football pitch. My wish is that
my dissertation could help the creation of an automatic tool which supports the choices of

the coach and his staff in professional and non-professional clubs.

1.5 Thesis structure

¢ Chapter §1 is the current chapter.

* Chapter§2 describes the dataset, analyzing in depth every attribute. The way in which
the dataset has been created from scratch is explained at the end of the chapter.

* Chapter §3 focuses on analyzing the attributes of the dataset from a graphical point
of view. From this type of analysis, theoretical relationships between the response
variable and all the attributes of the dataset can be inferred.

* Chapter §4 describes the Data Mining techniques, that will be applied for discovering
the most significant relationships, from a theoretical point of view.

* Chapter §5 explains the final results obtained from each Data Mining technique.

¢ Chapter §6 describes the Machine Learning techniques, that will be applied for mak-
ing predictions, from a theoretical point of view.

¢ Chapter §7 explains the final results obtained from each Machine Learning technique.

¢ Chapter §8 shows the performances about the best algorithms found applying a re-
duction of the response variable classes.

¢ Chapter §9 gives a final summary about the comparison between the Data Mining
techniques and the Machine Learning techniques. Results are compared considering
the metrics values and the training execution times for each algorithm.

The FIFA dataset

In order to solve the task of predicting the most suitable position for a player in a football
pitch, it is necessary to look for a coherent dataset with the football domain. At the time
of writing, there are plenty of sources which are available on demand through the payment
of a specific fee, as the notorious OPTA and Wyscout. Nevertheless, this type of data is not
meaningful for our task because the focus is on the football matches and the statistics related
to them. So, it has been opted for gathering players’ information from the most famous

football video game named F/FA 22. The reasons are the following:

* dataare about the characteristics of every player, both from the technical point of view
and from the physical and mental ones;

¢ data can be obtained for free.

Surfing on the Web, there are some dataset available about the past version of FIFA videogame.
Anyway, it has been decided to obtain data with a Pytbon[G] program which “crapes” the last
version of the game at the end of August, in order to have the most up-to-date data possible.
Trivially, it is a matter of fact that skills decrease over the years due to physical deterioration.
Therefore, it would be useless to predict the actual best position for a player using old data,
as it would not be realistic. A good example can be made with one of the greatest footballer
of all time like Lionel Messi. Indeed, in the first stage of its career at Barcelona, he was forced

to play on the right wing because the other two forward positions of the 4-3-3 lineup were

7

busy, but it was good as positioning because his main feature was dribbling. When the new
coach Pep Guardiola came, Messi exploited as better as possible his talent with the new posi-
tion assigned that was False 9. In the past years on his career (both with Barcelona and Paris
Saint-Germain), he moved further back in the pitch, with less focus on assuming the Central
Forward role getting on the end of moves in the box, and more focus on progressive plays and
shooting from deeper positions. This position change depends from two factors: the differ-
ent tactical arrangement of his teammates and the increasing effort in attacking due to age
(see Messi Evolution). This is why it has been decided to create from scratch an up-to-date

dataset.

2.1 The source of data: SoFIFA.com

All the information about FIFA video game football players are freely available from SoF1FA.-

com (https://sofifa.com/), a discussion and stats platform for £4 Sports!®

video game
series in which all the information about players are gathered every year since 2007. At the
time of writing, all the players of FTF4 22 videogame have been considered, with release date

August 18, 2022.

@ oo 35 §earcelonasporting .. €31M €1K 1940
i CAM 2016 ~ 2023
F. de Jon 24 a7 92 Sy FC Barcelona €119.5M €210K 2234
. g E B @ €
$ = 2019 ~ 2026
" i -

@ K. Mbappé @ reris saint-Germain €194M €230K 2175
. BRST LY 2018 ~ 2025

Figure 2.1: How footballers appear in SoFIFA.com.
Source: https://sofifa.com/

Every web page contains sixty players (the first three player are viewed as in Figure 2.1), in
which every player is provided by personal data and a fixed set of attributes called “Player
Attributes”. More in detail, the latter are the data and information that determine the quality
and the feature of a player’s technical skills, behaviours and performance on the pitch (see
FIFPlay Player Attributes). Every attribute is an integer value which goes from 0 to 99. The
higher the value, the better the quality for a specific attribute.

https://sofifa.com/
https://sofifa.com/

40-49 | 50-59 70-79 80-89 90-99

Figure 2.2: All the values range to determine the quality of an attribute.
Source: https://www.fifplay.com/encyclopedia/player-attributes,/

FIFA has determined a fixed number of values range which allows to understand the type of
quality of a footballer for a specific attribute, as demonstrated in Figure 2.2. The quality of

a player is
* Very Poor if the values range goes from 0 to 39;
* Poor if the values range goes from 40 to 49;
* Fair if the values range goes from 50 to 69;
* Good if the values range goes from 70 to 79;

* Very Good if the values range goes from 80 to 89;

Excellent if the values range goes from 90 to 99.

At this point, everyone can wonder how the attributes values are assigned to every player.
Well, this work is made by an EA Sports team led by Mr. Michael Miiller-M&hring (nick-
named “Triple M”), the Head of Data Collection and Licensing at EA Sports. His task is
to ensure players are given their attributes in the game and appear as lifelike as possible (see
Michael Muller-Mobring). Mr. Michael Miller-Mohring works with a team of twenty-five
EA Sports Producers and four hundred outside data contributors, even accompanied by a
community of over six-thousands FIFA Data Reviewers (a.k.a. Talent Scouts). The latter
are volunteers who come from all over the world and in their life they are coaches, scouts or
trivially football fans. This community is so important because it is unfeasible for EA Sports’
staff to watch every single player in every single game, so the FIFA Data Reviewers help to
maintain and update the attributes, the ratings and the compositions of a team in game (see
FIFA player ratings). A relevant issue is the subjectivity in assigning value to a specific at-
tribute due to internal biases. How to face the reliability problem of the FIFA dataset? Its
reliability is guaranteed maintaining the attributes values fairly constant; indeed, attributes
values must reflect the current general ability of the player and should not go up and down
when the player has just one good or bad week (see Football Talent Scout). The more dras-

tically the values change, the more likely the values are assigned in a subjective way. So, the

9

https://www.fifplay.com/encyclopedia/player-attributes/

attributes values are reviewed with attention by the main EA Sports team and only after ver-

ification they decide if to slightly modify the values in the next FIFA update or not.

2.2 List of FIFA players’ personal data

It seems obvious, but before knowing what are the players’ attributes it is important to un-
derline what are the personal data which every player in FIFA owns. These ones are related
to personal data, in a similar way to the information written in an identity card.

The personal data are listed below.

* Name: The name of the player, which is indicated with the initial letter of the name,

followed by a dot plus a space and followed by the entire surname (i.e., Alberto Gobbo
becomes A. Gobbo).

¢ Age: The age of the player.
* Height: The height of the player measured in centimeters.
* Weight: The weight of the player measured in kilograms.

* Preferred Foot: The foot the player uses more frequently and it can assume two val-
ues, that are Left or Right.

* Best Position: The most suitable position the player would like to play in a football
pitch and it can assume a certain number of values that are indicated in the Section

§ 2.5.

The reported data are only the subset of the basic data available in SoFTFA.com (https://so
fifa.com/) chosen during the process of the dataset creation (Section § 2.6), because not all
personal data are significant to be known. Only Height, Weight and Best Position personal
data will be analyzed in Chapter § 3.

2.3 List of FIFA players’ attributes

Before starting to analyze how the dataset has been created, it is so important to know what

are the FIFA4 22 player attributes. Notice there are two different list of attributes:
* one for outfield players (Subsection § 2.3.1);

10

https://sofifa.com/
https://sofifa.com/

* one for the goalkeeper (Subsection § 2.3.2).

All the FIFA 22 attributes are responsible for determining a player’s quality (see FUT Player

Attributes) and they allow to understand strengths and weaknesses. They are in total thirty-

five.

2.3.1 Outfield players’ attributes

The outfield players’ attributes are exactly twenty-nine and they are personal data and infor-

mation which determine a player’s quality and feature on the field. These features concerns

the abilities, the skills and the performance of the player.

The outfield players’ attributes are listed below.

1.

Acceleration: The increment of a player’s running speed. It is related with Sprint
Speed attribute and the higher the Acceleration value the shorter the time needed to
reach Sprint Speed.

Aggression: The frequency and the aggression level of tackling an opposing player,
even determining the player’s willpower or diligence during a match. Itis related with

Jumping, Strength, Sliding Tackle and Standing Tackle attributes.

Agility: How rapid and refined a player is when manages the ball. It is related with
Dribbling attribute.

Balance: The ability to stay upright and stable during a physical challenge. It is related
with Dribbling, Acceleration and Sprint Speed attribute.

. Ball Control: The ability of a player to manage the ball both when he receives it and

when the ball is stuck to his feet. It is related to Dribbling attribute and the higher the
Ball Control value the less likely the player sweep the ball away while he is managing
it.

Composure: The state of a player when he starts to feel under pressure, so how lucid
is in frustrating scenarios.

Crossing: The accuracy of a player when crosses the ball into the opponent area both
stationary and in motion.

Curve: The ability of a player to give a curve effect to the ball both when passing and
when shooting.

Defensive Awareness: a.k.a. Marking, the ability to defend and watch over an op-
posing player in such a way as to stop opposing ball possession.

11

10.

11.

12.

13.

14.

1s.

16.

17.

18.

19.

20.

21.

22.

23.

24,

Dribbling: The ability of a player to take the ball and overcome an opponent while
he has the ball control. It is related to Ball Control attribute.

Finishing: The ability of a player to score using his feet inside the opponent area. It
has not related with Heading Accuracy and Long Shots attributes.

Free Kick Accuracy: The accuracy of a player to score free kicks. It is related with
Curve attribute.

Heading Accuracy: The accuracy of a player when hitting the ball with the head both
for passes and shots.

Interceptions: The ability of a player to intercept opponent passes.
Jumping: The ability of a player to jump off the ground by hitting the ball with
the head. It is related with Strength, Aggression, Heading Accuracy and Height at-

tributes.

Long Passing: The accuracy of a player to perform an aerial long pass to his teammate.
Moreover, the higher the Long Passing score, the faster the ball is.

Long Shots: The accuracy of a player to score using his feet outside the opponent
area.

Penalties: The accuracy of a player to score the penalty kicks.

Positioning: The ability of a player to catch the right position on the pitch during a
game.

Reactions: How rapidly a player reacts to what happens in the pitch. Itis not related
with Sprint Speed, on the other hand it is related with Dribbling and Sliding Tackle.

Short Passing: The accuracy of a player when performs a short non-aerial pass to his
teammate. Moreover, the higher the Short Passing value, the faster the ball is.

Shot Power: The power which a player impress when hitting the ball for a shot on

target. Moreover, the higher the Shot Power value, the faster and the more distant the
ball is.

Sliding Tackle: The ability of a player to tackle the opponent player using his legs,
taking away the ball to the opponent himself and trying to not commit fouls. It is
related with Standing Tackle attribute.

Sprint Speed: The top speed which a player achieves while runs.

12

25.

26.

27.

28.

29.

Stamina: The ability of a player to hold up physical and mental efforts during a game.
The higher the Stamina value, the less likely the player is to get injured easily. Moreover,
it determines how rapidly a player recovers for the next match. Finally, it is related
with Sprint Speed attribute; indeed, Stamina determines how long a player can sprint
before slowing down and get tired.

Standing Tackle: The ability of a player to tackle the opponent player while standing,
taking away the ball to the opponent himself and trying to not commit fouls. It is
related with Sliding Tackle attribute.

Strength: How strong a player is physically. The higher the Strength value, the more
likely a player win a physical challenge.

Vision: The awareness of a player about the position of his teammates and opponents
around him. It is related with Long Passing attribute; indeed, the higher the Vision
value, the more likely to execute a right long pass to the teammates.

Volleys: The accuracy and the strength of a player while executing a volley shot on
target. It is related with Balance attribute.

Interestingly, the attributes are classified in different ways in the recent version of FIFA video

game. The most common type of classification concerns the division into physical, mental
and technical. The attributes are divided as follows (Table 2.1):

Table 2.1: Attributes divided in physical, mental and technical classes.

Physical Mental Technical
Acceleration Aggression Ball Control
Agility Positioning Crossing
Balance Composure Curve
Jumping Interceptions Defensive Awareness
Reactions Vision Dribbling
Sprint Speed Free Kick Accuracy
Stamina Finishing
Strength Heading Accuracy
Long Passing
Long Shots
Penalties

13

Short Passing

Shot Power

Sliding Tackle

Standing Tackle

Volleys

Another recent type of classification concerns the division of the attributes in six classes

which is very common in FUT!! (FIFA Ultimate Team), an online game mode that lets a

video gamer to build his dream squad (see F7FA4 22 Ultimate Team). Each attribute indicates

the player skill level and these attributes are the following (see F1FA 22 Player Attributes):

* DRI, a.k.a. Dribbling, notes ball control, agility and balance;

DEF, a.k.a. Defence, notes tackling and marking;

PHY, a.k.a. Physical, notes strength and stamina;

PAC, a.k.a. Pace, notes the speed and the acceleration of the player;
PAS, a.k.a. Passing, notes ability to successfully pass the ball with vision;

SHO, a.k.a. Shooting, determines finishing skill and shot power.

Moreover, the latter attributes are classified as follows (see 77/:4 22 Player Attributes):

* the attributes DRI, DEF and PHY are useful to define how well a player controls the

ball;

* theattributes P4AC and PAS are useful to define how well a player moves up the pitch;

¢ the attribute SHO is useful to define how well a player scores.

So, the twenty-nine attributes are divided as follows (Table 2.2):

Table 2.2: Attributes divided in DRI, DEF, PHY, PAC, PAS and SHO classes.

DRI DEF PHY PAC PAS SHO
- Intercep-) Sprint o o
Agility) Jumping Vision Finishing

tions Speed

14

Heading . . . -
Balance Stamina Acceleration Crossing Positioning
Accuracy
Defensive Free Kick
Reactions Strength Shot Power
Awareness Accuracy
Standing _ Long
Composure Aggression) Long Shots
Tackle Passing
Sliding Short
Ball Control Penalties
Tackle Passing
Dribbling Curve Volleys

So, we can conclude the twenty-nine attributes are responsible on defining the values of these
six attributes. The values of the latter are also available from SoFIFA.com (https://sofifa.c
om/), so there is no need to calculate them.

A graphical analysis about the relationship between the attributes of a specific class, in order
to understand what relationship could be useful for predictive models, is available in the

chapter § 3.

2.3.2 Goalkeeper’s attributes

The goalkeeper’s attributes are exactly six available for every player, even though the player
itself plays another role outside. Indeed, if during a football match substitutions are over
and suddenly the goalkeeper gets injured or is sent off, an outfield player will have to fill the
vacant role. So, even if it is not his role, one outfield player will be chosen by the coach in
emergency cases being able to rely on his characteristics as a goalkeeper.

The goalkeeper’s attributes are listed below.

1. Diving: The ability of a goalkeeper to make a save while diving into the air. Itis related
with Height attribute.

2. Handling: How capable is the goalkeeper to catch the ball and keep it.

3. Kicking: How accurate and long is a goal kick of a goalkeeper, both with the ball on
the ground and in the air.

4. Positioning: The ability of a goalkeeper to hold the right position both when saving
whatever type of shot and when tries to intercept a cross.

15

https://sofifa.com/
https://sofifa.com/

5. Reflexes: How agile a goalkeeper is when he makes a save. The higher the value, the
faster the goalkeeper reacts to a shot.

6. Speed: The ability of a goalkeeper to close an opponent in one-on-one situations.

2.4 List of FIFA players’ special attributes

The source web page provides other attributes that need to be considered as special because
they could contribute on the players quality improvement. The special attributes are listed

below.

¢ Weak Foot: The shot power and ball control for the weaker foot of the player than
his preferred foot. It is rated from 1 to 5. The higher the rate, the higher shot power
and ball control have the player. For instance, a weak foot rated as 3 of 5 means it is
slightly above the average in terms of ball controlling and shot power (see Weak Foot).

¢ Attacking Work Rate: The rate of a player’s behavior on the pitch in terms of attack-
ing work. It defines the effort of a player to participate in attacks even when he is out
of position (see Work Rate). It can assume the following values (see F1FA 22 Work
Rates):

— Low, which means a player will not play much further than from outside the
defensive penalty area up to the defensive midfield;

— Medinm, which means a player will play from the midfield to outside the penalty
area;

— High, which means a player will push deep into the attacking third, into the box
and into the corners of the wings.

* Defensive Work Rate: The rate of a player’s behavior on the pitch in terms of defen-
sive work. It defines the effort of a player to participate in defenses even when he is out
of position (see Work Rate). It can assume the following values (see F1FA 22 Work
Rates):

— Low, which means a player will not drop much further than outside the attack-
ing penalty area up to the attacking midfield;

— Medium, which means a player will play from the midfield to outside the defen-
sive penalty area;

16

— High, which means a player will drop deep into the defensive third, into the box,
into the corners of the wings.

* Body Type: Thebody composition of a player even combined with its height. Accord-
ing to the attributes available in SoFIFA.com (https:/ /sofifa.com/), the values avail-
able for this attribute are the following: Lean (170-185), Normal (170-185), Stocky
(170-185), Lean (185+), Normal (185+), Stocky (185+), Lean (170-), Normal (170-),
Stocky (170-) and Unigue.

2.5 List of FIFA players’ positions

This section is focused on the specific personal FIFA player attribute named Best Position
which can assume a fixed set of values. This attribute plays the role of response variable
which will be predicted by the previously listed information. As a preliminary step, details
about roles in a football pitch according to FIFA are reported.

During his career, a footballer player could assume more than one position in the football
pitch according to the coach choices, the composition of a team and the player’s skills which
can alter going over with age. Anyway, a player will have always a preference, and so a best
position on the field.

The position of players on the field determines their roles and assignments. In football game,
every team must play with 11 players at the start of the game, so the coach is responsible
to define the lineup and to assign a particular position on the pitch. More in detail, a team
is shaped up of one goalkeeper and ten outfield players who fill various defensive, midfield,
and attacking positions (see Posztion). The number of players in these positions depends on
the composition of a team. For example, the 3-5-2 lineup is composed by three defend-
ers, five midfielders and two attackers (see Formation). In FIFA 22 video game, there are
sixteen player positions which can be assigned to outfield players based on his abilities and
skills. Even considering the goalkeeper position, the total number of positions to be consid-
ered is seventeen. The football game is dynamic and consequentially player positions can be
dynamically changed, for example, when tactics or composition of a team are changed.

The positions of a football player are shown in Figure 2.3. The list of FIFA 22 positions is

reported below:

17

https://sofifa.com/

* GK, ak.a. Goalkeeper, is the player defending his own goal with the main aim to pre-
vent goals from the opposing team. He is the only player who can use his hands within
his penalty area. Moreover, he wears a different colored kit than his teammates and
gloves to protect himself from injury (see Goalkeeper);

* CB, a.k.a. Centre Back or central defender or centre-half, is a defender positioned in
front of the goal and near his area with the main aim to prevent opposing players from
scoring. He is led to tackle the opponents, intercepting shots and passes, to contest
headers and to mark attackers in order to apply pressing on them and prevent the ball
from being received (see Centre Back);

RB, a.k.a. Right-back or right full-back, is a defender who occupies the wide positions,
in particular the rightside of the defensive line. He is preferably right-footed (see Rzght
Back);

LB, a.k.a. Left-back or left full-back, is a defender who occupies the wide positions, in
particular the left side of the defensive line. He is preferably left-footed (see Left Back);

RWB, a.k.a. Right Wing Back, is a wing-back defender who occupies the right side
of the field. He is led to defend and attack with high stamina, together with a good
ability on crossing. He is preferably right-footed (see Right Wing Back);

LWB, a.k.a. Left Wing Back, is a wing-back defender who occupies the left side of the
field. He is led to defend and attack with high stamina, together with a good ability
on crossing. He is preferably left-footed (see Left Wing Back);

CDM, a.k.a. Central Defensive Midfielder, is a central midfielder with defensive roles
with the aim to help his defenders positioning in front of them or marking a spe-
cific opponent player. A good CDM has high values in Interceptions, Heading Accu-
racy, Defensive Awareness and tackling attributes (see Central Defensive Midfielder).
There are two types of central defensive midfielder, which are:

— Holding midfielder, who is positioned near to his defenders in many game situ-
ations. He is usually physically strong;

— Deep-lying Play-maker, who is a holding midfielder with higher abilities in pass-
ing the ball than tackling, even having a good vision and good capabilities in
maintaining the ball possession;

* CM, a.k.a. Central Midfielder, is a player positioned between defence and attack with
the aim to dominate the game in the centre of the pitch. Moreover, he s led to pass the
ball to his attacking midfielders and forwards supporting the attack phase and he can

18

try to score with long shots (see Central Midficlder). There are two types of central
midfielder, namely:

— Box-to-box midfielder, who has good skills and capabilities to perform well in
whatever game phase;

— Mezzala, who is a half-winger that covers one of the two central midfielders
position when the composition of a team provides two midfielders in the middle

of the field. He supports the other central midfielder and the central attacking
midfielder;

* RM, a.ka. Right Midfielder, is a midfielder who occupies the wide positions, in par-
ticular positioned on the right side and closer to the touchlines of the pitch. He has
the same aim of a midfielder, with the addition of the ability to cross the ball into the
opponent’s penalty area to create scoring chances for his teammates (see Right Mid-

frelder). He is usually right-footed;

* LM, a.k.a. Left Midfielder, is a midfielder who occupies the wide positions, in partic-
ular positioned on the left side and closer to the touchlines of the pitch. He has the
same aim of a midfielder, with the addition of the ability to cross the ball into the op-
ponent’s penalty area to create scoring chances for his teammates (see Left Midfielder).
He is usually left-footed;

* CAM, aka. Central Attacking Midfielder, is an advanced central midfielder, usu-
ally positioned between central midfielders and forwards. He is led for offensive tasks,
with the aim to help his forwards on scoring goals. A good CAM has high values
in Dribbling, Agility, Balance, Ball Control, Positioning, Acceleration, Shooting and
Finishing attributes (see Central Attacking Midfielder). There are three types of cen-
tral attacking midfielder, namely:

— Advanced play-maker, a technical player with capabilities in passing the ball and
Dribbling. Moreover, he has a good vision and he delivers passes to his strikers

putting the opposing defense in difficulty;

— False Attacking Midfielder, who is able to draw opposing players out of position
and to create space for his teammates in attacking phase. Moreover, he is usually
creative and tactically intelligent with good abilities in vision, passing the ball
and technique;

— False 10 or Central Winger, who tries to move out of his position and carry the
ball to help the wingers to get up in the side bands of the pitch. He is usually
good abilities in dribbling, ball control, shooting, vision and speed;

19

* CF, aka. Central Forward, is a forward positioned at the center of the attacking line
with the aim of attacking and scoring goals. He is able to move in a good manner and
usually receives passes to score goals or makes an assist to his teammates. He starts
behind the striker if the latter is present in the composition of a team. He can be of
one type named Target Man, a central forward with the aim to win aerial balls both
for scoring goal and creating goal chances for his teammates (see Centre Forward);

* RF, aka. Right Forward, is an inside forward positioned on the nearest right side to
the opposing team’s area whose his aim is to score goals for his team. A good RF has
high value in Ball Control (see Right Forward);

* LF, aka. Left Forward, is an inside forward positioned on the nearest left side to the
opposing team’s area whose his aim is to score goals for his team. A good LF has high
value in Ball Control (see Left Forward);

* RW, a.k.a. Right Winger, is an attacking player positioned in a wide position near the
touchlines at the right side of the pitch. He is typically right-footed or two-footed and
his aim is to overcome the opposing full-backs, to cross and to score goals. A good RW
has high values in Ball Control, Dribbling and Speed (see Right Winger);

* LW, aka. Left Winger, is an attacking player positioned in a wide position near the
touchlines at the left side of the pitch. He is typically left-footed or two-footed and

his aim is to overcome the opposing full-backs, to cross and to score goals. A good RW
has high values in Ball Control, Dribbling and Speed (see Left Winger);

* ST, aka. Striker, is a forward positioned in center of the attacking line with the aim
of attacking and scoring goals. He is similar to a CF player, with the difference a ST
player is able to distance from opposing defenders and to run into space for receiving
balls from his teammates and score. A good ST has high values in Speed, Ball Control
and Dribbling (see Striker).

These positions can be categorized into four different macro-roles which depend on the ge-

ographical position of the player in the composition of a team, namely:

* Goalkeeper, which includes only GK position;
* Defender, which includes CB, RB, LB, RWB and LWB positions;
* Midfielder, which includes CDM, CM, RM, LM and CAM positions;

* Forward, which includes CF, RF, LF, RW, LW and ST positions.

20

It is important to underline there are no players in SoFTFA.com who have RF and LF as for-
ward best position. Due to this lack, the number of player’s positions to consider from this

point will be fifzeen.

Figure 2.3: All the positions in a FIFA football pitch.
Source: https://www fifplay.com/encyclopedia/position/

21

https://www.fifplay.com/encyclopedia/position/

2.6 Creating the dataset

Now that all the attributes will be encountered are revealed, it is time to understand the pro-
cess which has been applied for creating the dataset. This step is necessary to have up-to-date
information about players and to have a full management of the attributes. Unfortunately,
SoFIFA.com (https://sofifa.com/) does not provide a complete dataset to be downloaded.
So, it is necessary to find a way to extrapolate data from the web site and saving them locally.
This technique takes the name of Web Scmpz'ng[G], which allows to collect data from the In-
ternet and parsing them into meaningful form (see Web Scraping). For this task, a program
has been created which scrapes data from the already mentioned web site. The program has
been written with Python (Van Rossum and Drake, 2009) programming language.

First, BeautifulSoup is the Python library used for extracting data from web out of A TMLIC!
and XML files (see Library BeautifulSoup). After that, four different functions have been

created and used in the following order:

1. FirstPageWebScraping(url) allows to extract the data from all the pages of the web
page (except the first one), focusing on saving the players data. Parameter 7/ is passed
to the function, and it identifies the URLI®! of the web page from where it is applied
the Web Scraping technique;

2. NextPagesWebScraping(url, 60) allows to extract the data from the first page of the
web page, focusing on saving the attributes names and the first sixty players data sixty
at a time. Parameters #7/ and 60 are passed to the function, where the first identifies
the URL of the web page from where it is applied the Web Scraping technique and
the second is the offset used to change web page and directly inserted in the URL as
last parameter;

3. ManipulateAndCleanData() allows to rectify and clean the data obtained after that
FirstPage WebScraping(url) and NextPages WebScraping(url, 60) functions have ended
their job of data extraction. Itreturns cleaned_dataset, a cleaned datasetin DataFrame
format which allows to obtain a two-dimensional tabular data structure (see Daza
structure DataFrame);

4. GenerateCSVDataset(cleaned_dataset) allows to take in input the dleaned_dataset
returned by ManipulateAndCleanData() function and transform it in CSV1°! for-
mat.

Note that the URL that has been used is quite complicated with respect to the one written

at the start of this chapter. Indeed, all the players’ attributes available from the attributes

22

https://sofifa.com/

selection option have been added. Due to the excessive length of the URL, below all the at-
tributes selected from COLUMNS SELECTED option are reported: Age, Height, Weight,
Preferred Foot, Best Position, Crossing, Finishing, Heading Accuracy, Short Passing, Volleys,
Dribbling, FK Accuracy, Long Passing, Ball Control, Acceleration, Sprint Speed, Agility,
Reactions, Balance, Shot Power, Jumping, Stamina, Strength, Long Shots, Aggression, In-
terceptions, Positioning, Vision, Penalties, Composure, Marking, Standing Tackle, Sliding
Tackle, GK Diving, GK Handling, GK Kicking, GK Positioning, GK Reflexes, Weak Foot,
Attacking Work Rate, Defensive Work Rate, Body Type, Pace/Diving, Shooting/Handling,
Passing/Kicking, Dribbling/Reflexes, Defending/Pace and Physical/Positioning.

All the implementation details will be explained below.

2.6.1 FirstPageWebScraping(url) method

The code concerning the current method is shown in Listing § B.1.

This method takes in input the URL (plus its final part “&offset=0") of the first web page. It
verifies if the response of the request made with this URL is 200, which means that the server
has replied with success to the client and giving the page to it (row 7 of Listing § B.1). If the
response is negative an error is printed (row 15 of Listing § B.1), otherwise some operations
are applied.

First, the entire HTML page source is caught and it is passed to Catch WebPageTable(page)
(rows 7-8 of Listing § B.1), which is responsible to create a BeantifulSoup navigable object
that allows to select the players’ table only and to return it. In this case, it is mandatory to
analyze the page source and to understand what are the HTML attributes which identifies
the players’ table.

Once the function returns players_table, it is passed to two different functions:

* CatchFeaturesNames(players_table), which is responsible to select all the players’ table
rows with HTML tag #/ and finally to extract the values from each cell of each row
and saving them in a specific list called features_names_list; in this case, the row in only
one because the attributes name are on the top of the table. The code concerning the
current method is shown in Listing § B.2;

e CatchFeaturesValues(players_table), which is responsible to select all the players’ table
rows with HTML tag ¢ and finally to extract the values from each HTML tag #d of
each row and saving them in a specific list called features_values_list, which is finally
converted in a DataFrame object called results_features_values; in this case, the row

23

should be sixty as the number of players showed in every web page. The code concern-
ing the current method is shown in Listing § B.3.

Finally, the time.sleep(500) function is called to suspend momentarily the execution of the

program for five-hundred milliseconds (row 13 of Listing § B.1).

2.6.2 NextPagesWebScraping(url, 60) method

The code concerning the current method is shown in Listing § B.4. This method takes in in-
put the URL (plus its final part “&offset=current_offset”of the next web pages. At the start,
current_offset value is equal to 60, the parameter passed into the function which represents
the initial offset (row 6 of Listing § B.4). It verifies if the response of the request made with
this URL is 200, which means that the server has replied with success to the client and giving
the page to it (row 8 of Listing § B.4). If the response is negative an error is printed (rows
17-20 of Listing § B.4), otherwise some operations are applied for a certain number of times

until the offset is minor or equal of 19980 (the number of players available in FIFA).

First, the entire HTML page source is caught and it is passed to Catch WebPageTable(page),
which is responsible to create a BeantifulSoup navigable object that allows to select the play-
ers’ table only and to return it (rows 9-10 of Listing § B.4). In this case, it is mandatory to
analyze the page source and to understand what are the HTML attributes which identifies

the players’ table.

Once the method returns players_table, it is passed to the CatchFeaturesValues(players_ta-
ble) method (Listing § B.3), which is responsible to select all the players’ table rows with
HTML tag ¢ and finally to extract the values from each HTML tag #d of each row and saving
them in a specific list called features_values list, which is finally converted in a DataFrame
object called results_features values; in this case, the row should be sixty as the number of
players showed in every web page. Notice that CazchFeaturesNames(players_table) method
is not called because attributes names have been caught when the first web page has been

scraped.

Finally, current_offset is updated summing 60 to its current value (row 14 of Listing § B.4)
and the time.sleep(500) function is called to suspend momentarily the execution of the pro-

gram for five-hundred milliseconds (row 15 of Listing § B.4).

24

2.6.3 ManipulateAndCleanData() method

The code concerning the current method is shown in Listing § B.5. This method is respon-
sible for manipulating data in order to give to them a meaningful form. Moreover, it is nec-
essary to check the character errors or null values, with the aim to return a dataset named

cleaned_dataset which is as clean as possible.

First, it is necessary to split each row to cells using sp/iz() method (row 6 in Listing § B.S5). In
this way, every row contains a certain number of values which originally were separated by

comimas.

After that, a good practice is to set the dataset columns names with the values contained in
features_names_list (row 4 in Listing § B.5). Additionally to it, some attributes need to be
renamed, both to be aligned with the real names (as written in the Section § 2.3) and to be
without space characters as if they were variables of a programming language (rows 15-46 in
Listing § B.5). Then, some character errors have been noticed in some attribute values. For
instance, Height and Weight values contained respectively the ‘ez ” and “kg” wording, but
for having a quantitative analysis it is better to have only numeric values without combined
without any other character. This problem has been solved using the method replace() and
applying specific regular expressions (rows 54-60 in Listing § B.5). Then, all the white-space
from the beginning and at the end of the attribute values have been removed using the sz7zp()

function (rows 63-64 in Listing § B.5).

Finally, all the rows containing at least one empty cells or with null values have been removed
(row 67-72in Listing § B.5). This operation is necessary because a dataset needs to be uncor-
rupted to be analyzed; indeed, having missing values in a row corresponds to have an incom-

plete observation.

2.6.4 GenerateCSVDataset(cleaned dataset) method

The code concerning the current method is shown in Listing § B.6. This method takes in

input cleaned_dataset returned by the method in the Section § 2.6.3.

Only one operation is applied and concerns the DataFrame dataset conversion in a CSV
format with encoding U’ TF-81°1 (row 2 of Listing § B.6).

25

2.6.5 Precautions for a safe web scraping

There are some aspects of a web service that needs to be considered for activities like Web
Scraping.

The first precaution is to examine the 705! (Terms of Service), which is a type of document
stating details about what a service provider is responsible for as well as user obligations that
must be adhered to for continuation of the service. Users that do not follow the rules spec-
ified in a ToS are subject to termination (see Zerms of Service). For the specific case of this
thesis, it is important to note any clauses surrounding accessing and republishing of data
(Lewis and Wardrip-Fruin, 2010). As declared in its ToS, SoFIFA.com “has a gero-tolerance
policy regarding spam, pornography, copyright infringement, and abuse” (SoFIFA Terms of
Service). The data that has been extracted from it do not violate the copyright because the
paternity of the data are always attributed to SoFIFA.com and there are only scientific pur-
poses. Moreover, there is no possibility to transmit illegal material for criminal acts because
it should be registered as member for the service provided by the website itself.

The last precaution is applied when downloading the HTML source page. Indeed, at re-
ported in the Section § 2.6.1 and Section § 2.6.2, “the time.sleep(500) function is called to
suspend momentarily the execution of the program for five-hundred milliseconds”. This opera-
tion is applied because, when downloading from a web service, it is considered customary for
a crawler to wait for a couple of seconds between requests. Anything more than this may be
flagged as an abuse and automatically banned by the web server (Lewis and Wardrip-Fruin,
2010). Anyway, it has been opted to reduce the time suspension of extracting data from the
web site from two seconds to five-hundred milliseconds, in order to decrease the program
execution time. Indeed, after some tests it was found the website does not ban even with a

shorter time suspension.

2.7 Attributes names in the cleaned dataset

Attributes names listed in the Section § 2.2 and in the Section § 2.3 are slightly different
from attributes names extracted from the SoFIFA.com source. Moreover, the latter have been
modified in order to be similar to a variable name of a programming language as described in
Section § 2.6.3. Table 2.3 includes the correspondence between the original attributes names

and the ones used after the dataset cleaning.

26

Table 2.3: Name correspondence between original and cleaned dataset attributes.

Original dataset attributes

Cleaned dataset attributes

Name Name

Age Age

Height Height_cm
Weight Weight_kg
Preferred Foot Preferred_Foot

Best Position

Best Position

Acceleration Acceleration
Aggression Aggression
Agility Agility
Balance Balance

Ball Control Ball_Control
Composure Composure
Crossing Crossing
Curve Curve

Defensive Awareness

Defensive_Awareness

Dribbling Dribbling
Finishing Finishing

Free Kick Accuracy Free_Kick_Accuracy
Heading Accuracy Heading_Accuracy
Interceptions Interceptions
Jumping Jumping

Long Passing Long_Passing
Long Shots Long_Shots
Penalties Penalties
Positioning Positioning
Reactions Reactions

Short Passing Short_Passing

Shot Power Shot_Power
Sliding Tackle Sliding_Tackle

27

Sprint Speed Sprint_Speed
Stamina Stamina

Standing Tackle Standing_Tackle
Strength Strength

Vision Vision

Volleys Volleys

Diving GK_Diving
Handling GK_Handling
Kicking GK_Kicking
Positioning GK_Positioning
Reflexes GK_Reflexes

Speed /

Weak Foot Weak Foot
Attacking Work Rate Attacking_Work_Rate
Defensive Work Rate Defensive_ Work Rate
Body Type Body_Type

DRI Dribbling_Reflexes
DEF Defending_Pace
PHY Physical_Positioning
PAC Pace_Diving

PAS Passing_Kicking
SHO Shooting_Handling

Character /” means that there is no correspondence because the attribute is not available
from the source web page. Notice that, starting at this point, the attributes names which

will be used are the ones of the cleaned dataset.

28

Preliminary data analysis of FIFA dataset

This chapter focuses on analyzing FIFA dataset with graphical tools provided by the R (R
Core Team, 2022) programming language. This step allows to identify patterns and trends
on data, as well as potential relationships between the attributes and the response variable.

Before visualization, a good practice is to pre-process data, in order to make them readable

correctly without misunderstandings.

3.1 Pre-processing of dataset

The original dataset contains 19948 rows and 50 columns. The code concerning the dataset
pre-processing is shown in Listing § A.1.

The first pre-processing step checks whether the dataset contains duplicates, in order to avoid
data redundancy (row 1 of Listing § A.1). More in detail, duplicates are rows which are
equals, with same values for every column. It has been found there are 318 duplicates on the
original dataset. So, it is necessary to maintain only one row for every duplicate and remove
the remaining ones. The dataset now contains 19130 rows and 50 columns.

The second step checks for the presence of missing values (row 2 of Listing § A.1). Many
Machine Learning algorithms can fail if the dataset contains missing data or they can lead to
alack of precision in the statistical analysis. Our dataset contains no missing values.
Another step is to define the data type for every column which represents a player’s attribute.

R provides different data types, where integer and factor are the ones that are necessary for

29

dataset attributes. At the dataset creation moment, the standard data type was character for
every attribute, so it is necessary a slight modification. First, all the attributes which assume
values in a range from 0 to 99 are transformed into integers (row 4 of Listing § A.1), so
quantitative covariates without the decimal part. Then, all the attributes with a limited set of
string values are transformed into factors (rows 5-7 of Listing § A.1), so qualitative covariates
with a fixed number of levels in alphabetical order. Notice that for factors Best_Position,
Attacking Work_Rate and Defensive_ Work_Rate the levels order has been changed; indeed,
for the first factor the order is changed to show players’ positions going from the defensive
roles to attacking ones, whereas for the remaining two factors the order is changed from low
values to high ones.

The last step is to reduce the dimension of the dataset, by removing variables that do not offer
useful information for the graphical analysis and the prediction activities (row 9 of Listing

§ A.1). Particularly, thirteen variables are not longer included:

* Name of the player;

* Age cannotinfluence directly the position of a player, because the latter depends on the
players’ attributes. Itisa matter of fact that the higher the age the higher the likelihood
that the physical condition has deteriorated, anyway, these type of data are already
contained in other attributes and 4ge would result as redundant;

* GK_Diving, GK_Handling, GK_Kicking, GK_Positioning and GK_ Reflexes refer to
goalkeeper position, so they are useless for predicting whatever outfield player posi-
tion;

* Dribbling Reflexes, Defending Pace, Physical_Positioning, Pace_Diving, Passing Kick-
ing and Shooting_Handling because their values strictly depend on the attributes de-
scribed on Table 2.2 and they would result as redundant.

In addition, all the dataset rows which contain the goalkeeper value in Best_Position have
been removed (row 10 of Listing § A.1) and the corresponding level has been removed from
the covariate because empty (row 11 of Listing § A.1). Note that the goalkeeper attributes
have been removed because the target of this thesis is to predict the best position for outfield
players, since is not realistic goalkeepers do not change their position during their football ca-
reer. Moreover, goalkeepers have specific attributes which have higher values with respect to
outfield players’ attributes, so it is very unlikely this position will be wrong in the prediction

phase.

30

Normalization is not necessary for all znteger type data because this technique is required only
when features have different ranges. This is not the case, because every integer attribute goes

from 0 to 99. At the end of this process, the dataset contains 17018 rows and 37 columns.

3.2 Graphical evaluation

At this point, it is possible to analyze the most important covariates which represent the
players’ attributes and the possible relationships between the ones in the dataset. The analysis

has been conducted with ggplor2 R package (Wickham, 2016).

3.2.1 Response variable distribution

The response variable is Best_Position, which consists of 14 levels after the deletion of the
goalkeeper level. It follows a multinomial distribution and a preliminary graphical inspec-
tion (Figure 3.1) suggests the levels are not homogeneous in terms of number of observations.
Indeed, the most dominant level is CB with the 20,5% of the players who occupies this po-
sition, followed by ST with 17,4% and CAM with 16,3%. For what concerns the three least
frequent levels, they all refer to forward positions and they are RW with 1,6%, LW with
1,0% and finally CF with 0,4%. Even grouping the levels according to the general outfield
position, the number of observation for every level is unbalanced; indeed, the midfielders
represent the majority of the players with 44,3%, followed by the defenders with 35,3% and
finally followed by forwards with 20,4%. More in detail, on 17018 observations there are:

* 3497 observations for CB position;

* 974 observations for RB position;

* 906 observations for LB position;

* 326 observations for RWB position;

* 319 observations for LWB position;

* 1241 observations for CDM position;
* 979 observations for CM position;

* 1694 observations for RM position;

* 835 observations for LM position;

31

2772 observations for CAM position;
* 60 observations for CF position;

* 277 observations for RW position;

* 171 observations for LW position;

* 2967 observations for ST position.

While the most frequent positions are easily detected, the least frequentlevels do not, because
there could be an adequate number of observations to guarantee a satisfactory accuracy value
in prediction phase. Even if the number of observations for the least frequent level CF should
be quite satisfactory in relation to the total number of observations, it is necessary to pay

attention to this phenomenon further on.

20.5%
20% -

17.4%
16.3% Best Position

s
15% - . RB
s
B rws
B e
B com
B cm
B rv
Bw
B cam
I cr
7 rw
o w
st

)0/
2% 10.0%

Percent

7.3%

5.7%

5.3%
II o -

5% -

1.6%

0.4%
LN |

cB oM cF RW L ST
Best_Posmon

Figure 3.1: Distribution of the Best_Position response variable.

3.2.2 Response variable against categorical covariates

The relationship between the response variable and each categorical covariate is investigated
using the ggmosaic R package. As shown in Figure 3.2, every rectangle area represents the

proportion of cases for any given combination of levels. To understand if there could be a

32

relationship, it is necessary to check if the conditional distributions of the two variables in-
volved look similar. It can be supposed that there could be an important association between
the response variable and the factors as Preferred_Foot, Weak_Foot, Attacking Work_Rate,
Defensive. Work_Rate and finally Body_Type. In each mosaic plot no conditional distribu-
tion is similar due to the different frequencies of the players” position with respect to the
already mentioned factors. Moreover, it is possible to understand some statistical features.
For instance, the comparison between the response variable and Defensive_ Work_Rate in
Figure 3.2 suggests that the rate decreases from players which occupy central defensive roles

to players which occupy more offensive roles, as expected.

Best Position vs Defensive Work Rate

Best_Puosition

Best_Position

. 8T

Medium High
Defensive_Work_Rate

r
o -
H

Figure 3.2: Mosaic plot of the response variable versus Defensive_Work_Rate.

3.2.3 Response variable against quantitative covariates

The relationship between the response variable and each quantitative covariate is investigated
using the boxplot R package. As shown in Figure 3.3, it is displayed the center and the spread
of a numeric variable in a format which allows to quickly understand the values range and
comparing it to other covariates (Lantz, 2015). Due to the large number of quantitative
covariates, only the most representative figures will be reported. For what concerns the rela-

tionship between the response variable and Height cm in Figure 3.3, all the median values

33

get around 180, except for CB and ST position in which they are slightly higher. Moreover,
the majority of the boxplots tend to be quite symmetric, with many outliers for those po-
sitions that result to be the most frequent. The same behaviour is verified with Weight kg
covariate, but with different median values. For this reason, it can be suggested a relation

between the response variable and the two latter quantitative variables.

o
=3 2
o 8 2
o =3 =3
o~ s o =}
= -~
] 2 1
| —_ =} i
! o 1 T o o g |
1 1 i 1
—_ o
=1 : g g —_ ! : ‘ o 8 !
@ ! —_ —_ | H i i —_ —_ —_ H
- 1 —_ 1 : | I | | 1 —_ 1 i
H i H H 1 1 1 i : i 1 i
i i i i H i i | i i - i H
1 1 1 1 | | | | 1 1 ' 1
1 1 1 1 1 I I I 1 1 1 1
H H H H 1 | I : h i 1
T 1 1 1 1 1 1 1 : 1
—_ I 1 1 1 1 I 1 1 1
e %_ ! | I | I |
S = | !
a— I T
= ! . — !
=) . . . ! : : !
— H |
2 2 | | i T | | . T ! |
IC] 8 1 1 1 1 1 I T I 1 1 D B 1
= 4 s | | | 1 1 | | | I | I T |
1 1 1 | | I i i | o | ' I
- 8 | | i I I I | | I I | H
1 1 i i | | I i | : H
o | | 1 I 1 i i H
o o i I | ' i H 1 H =
o 53 o o . | | 1 1 1 3
b3 b3 9) I . . 1 | 2
o @ 2 o 1 P 8 o i o
@ - o — =3 < — g
A o o
o < o
o 2
=]
e -
- o

CB RB LB RWB LWB CDM CM RM LM CAM CF RW LW ST

Best_Position

Figure 3.3: Boxplot of the response variable versus Height_cm.

For what concerns all the other quantitative covariates, plots suggest the presence of a relation

between the response variable and them. More in detail:

1. with Acceleration, the central players’ position provides lower values than the lateral
ones, and the more advanced the position on the field the higher the Acceleration
value. There arelots of outliers for the levels of the response variable which correspond
to the higher frequencies and the same phenomenon is verified for CDM and CM
positions. Moreover, ST position has the highest variance, resulting not symmetric
with the other boxplots;

2. with Aggression, the median values are higher for defensive roles and lower for attack-
ing ones. With the exception of CAM role, there are too few outliers;

34

Ball_Control

3.

80

80

40

20

with Agility, the lateral positions have higher values for medians. Moreover, it has
been noticed high variance for CB, CDM and ST positions, with lots of outliers for
the last cited position;

with Balance, the more advanced the position on the field the higher the Balance value,
except for CB, CDM and ST positions which have the lowest values. The variance is
different for every position, resulting in asymmetric boxplots;

. with Ball_Control in Figure 3.4, there are little groups of boxplots that are symmetric;

it happens for laterals positions where staying at the left or at the right on the field does
not matter. This value tends to be under 90, so only few players have great ball control
capacities and for this reason the variance tends to be different for every position;

——————————-|oo o

i

cB RB LB RWB LwB CDM CM RM LM CAM CF RW Lw ST

Best_Position

Figure 3.4: Boxplot of the response variable versus Ball_Control.

with Composure, the median values get around between 50 and 60, with CF players
excels particularly around a 70 median value. The variance is large for every position;

with Crossing, the higher mean values belong to lateral position, even though a CM
player which plays in the central part of the pitch has the maximum value. The vari-
ance is higher for central positions;

with Curve, the higher mean values belongs to lateral position, even though a CM

player which plays in the central part of the pitch has the maximum value. The vari-
ance is higher for central positions;

35

Finishing

10.

11.

80

60

40

20

12.

13.

14.

. g
O\
o °:_Q_EE
: . I S R S e
. 33 e I
E*Tiiiii | -
e
— LT =
N °

with Defensive_Awareness, the median value is higher for defensive roles than attack-
ing ones, as expected. Moreover, the variance is high for offensive midfielder positions
and ST position has a lot of outliers probably due to strikers who adopt pressing on
the ball carrier when the action starts from the back;

with Dribbling, the more advanced the position on the pitch the higher the median
value. Anyway, this value increasing is really slight. The only extreme values which
deviate from the average refer to CB and ST, respectively with a very low value and
with a higher value. Moreover, CB position has a large variance;

with Finishing in Figure 3.5, the higher median values belong to offensive midfielder
position and forward ones. Moreover, CB and ST positions have lots of outliers;

cB RB LB RWB LwB CDM CM RM LM CAM CF RW Lw ST

Best_Position

Figure 3.5: Boxplot of the response variable versus Finishing.

with Free_Kick Accuracy, looking at the median values there are no particular trends.
What it is important to report is the large variance for many positions and the large
amount of outliers for defensive positions;

with Heading Accuracy, the median value is quite constant for all the positions, except
for CB, CF and ST roles which have the highest values. In addition to it, even the
variance is quite constant between all the boxplots;

with Interceptions, it is clear the higher values, looking at the median values, belong
to defensive positions. Anyway, variance is too large for offensive midfielder positions
and ST position has a lot of outliers probably due to strikers who adopt pressing on
the ball carrier when the action starts from the back;

36

15.

16.

17.

18.

19.

20.

21.

22.

with Jumping, the median value is quite constant for many positions, except for CB,
CF and ST roles which have the highest value and except for RM, LM, CAM, RW
and LW roles which have the lowest value. The variance is quite large for many offen-
sive midfielder positions and CB and ST roles have a lot of outliers under the lower
whisker;

with Long_Passing, the highest median value belongs to CM, followed by the central
midfielder positions as CDM, CAM and the forward position CF. All the other me-
dian values are quite similar, except for ST which is the most advanced player on the
pitch and this capacity is secondary. Anyway, the variance is very large for defensive
roles, so it means there are a lot of players with great and poor capacities on making
long passing. There are many outliers for CAM position;

with Long Shots, the more advanced the position on the pitch the higher the median
value, except for CM and CF positions in which they have the highest values. Anyway,
there are very few players who own good capacities in long shots, it means with a value
higher than 80. The variance is quite constant for the majority of the boxplots and CB
position has lots of outliers above the upper whisker;

with Penalties, the more advanced the position on the pitch the higher the median
value, except for CF position which have the highest value. CDM and CAM have
large variance and, in addition to it, the defensive roles together with ST values have
lots of outliers above the upper whisker;

with Positioning, the median values are quite similar and with a slight increment of
the value for the more advanced positions on the field. This is true except for CB and
CF positions which respectively own the lowest and the highest median values. The
variance is quite constant for every boxplot;

with Reactions, the median values are quite similar, except for CF position which have
the highest median value. The variance is quite large for every boxplot and CAM and
ST positions have many outliers above the upper whisker;

with Short_Passing in Figure 3.6, the median values are quite constant between every
position, but there are some trends. For instance, defensive wings have higher median
values than the defensive central roles, whereas the central midfielder positions have
higher median values than lateral midfielder ones. Moreover, the variance is large for
the majority of the boxplots;

with Shot_Power, the more advanced the position on the pitch the higher the median
value, except for CF which have the highest value. The variance is higher for the de-
fensive and midfielder positions;

37

9

Short_Passin

80

60

40

20

23.

24,

25.

26.

27.

28.

8
o | —_
- oo LR . LT s 7
T T T T S 1 : LT
‘ ‘ | R S ; : ! ! : ,
: i ! | | 8 : A S B : |
| ! | L ! o ! i E | 4 '
! ! i E] o & o — 1
T RO ¢ ° |
‘ L 8 o
4 8
T T T T T T T T T T T T T T
CB RB LB RWB LWB CDM CM RM LM CAM CF RW LW ST

Best_Position

Figure 3.6: Boxplot of the response variable versus Short_Passing.

with Sliding Tackle, the more backward positions have a constant and higher median
value than the remaining positions. Moreover, the variance is quite low except for
RM, LM and CAM positions. Then, ST position has lots of outliers above the upper
whisker;

with Sprint_Speed, the median values are quite constant and around 70, except for CB,
CDM, CM, CAM and ST positions which have lower values that get around 60. For
the latter position it can be noticed the high number of outliers, in particular below
the lower whiskers of the boxplots;

with Stamina, all the median values get around 60 and 70, so a limited range of values
where the first and third quantiles are quite near to the median values. Anyway, there
are slight differences in variance and some outliers in CB and ST positions, so this
attribute could be considered as significant;

with Standing Tackle in Figure 3.7, the more backward positions have a constant and
higher median value than the remaining positions. Moreover, the variance is quite low
except for RM, LM and CAM positions. Then, ST position has lots of outliers above
the upper whisker;

with Strength, looking at the median values there are no particular trends, except for
CB and ST positions which have the highest median value;

with Vision, the more advanced the position on the pitch the higher the median value,
except for CM and CF positions which have the highest values. It is important to

38

80
|

®»o 0

Jo
Joo o o

Standing_Tackle

40

20
|

' ' | ' '
- - J—— - -

T T T T T T T T T T T T T T
cB RB LB RWB LwB CDM CM RM LM CAM CF RW Lw ST

Best_Position

Figure 3.7: Boxplot of the response variable versus Standing_Tackle.

notice CB, RM, CAM and ST positions have some outliers above the upper whiskers
of the boxplots;

29. with Volleys, the more advanced the position on the field the higher the Volleys value.
The only position which does not respect this statement is CF one, where the median
value get around on 70. The central defensive roles have lots of outliers above the
upper whisker probably due to acrobat defensive players with great capabilities when
hit the ball in the air.

3.2.4 Possible interactions between covariates

An additional graphical investigation considers interactions between quantitative variables
and the response variable. This type of graphical analysis has been conducted using ggplot,
which allows to create scatterplots for analyzing the relationship between three or more vari-
ables. The visualization method is the so-called “grouping”, where x and y axes refer to nu-
merical variables and every pointin the graph is coloured referring to the levels of a categorical
variable (Kabacoft, 2018). To simplify the visualization of data regarding the response vari-
able, it has been opted to group the players’ position and simplifying the number of levels
to three. The assumption is the levels refer to geographical position on the field, which are
Defenders, Midfielders and Forwards, as indicated in the Section § 2.5.

39

Figure 3.8 illustrates the association between Sprint Speed and Acceleration. It can be as-
sumed the relation is linear with a positive correlation, indeed the higher the Sprint_Speed
value the higher the Acceleration value. Going deeper, the response variable levels are not
well-separated, suggesting there could be an interaction between the two quantitative vari-

ables.

Best_Position
Defense
4 Midfield
Attack

Acceleration

60
Sprint_Speed

Figure 3.8: Plot of Sprint_Speed versus Acceleration.

Figure 3.9 illustrates the association between Ball_Control and Dribbling. It can be assumed
the relation is more complex than linear with a positive correlation, indeed the higher the
Ball_Control value the higher the Dribbling value. Going deeper, the group of defenders are
quite well-separated and they are spread at below left part of the plot, whereas the midfielders
and forwards groups are randomly distributed in the plot at above right part of the plot with
higher values because more skilled. So, it can be supposed there could be an interaction

between the two quantitative variables.

Figure 3.10 illustrates the association between Free_Kick Accuracy and Curve. It can be as-
sumed the relation is linear with a positive correlation and a large variance, indeed the higher
the Free_Kick Accuracy value the higher the Curve value. Going deeper, there is no defined
separation of the response variable levels, even if the majority of midfielders and forwards
own the higher values. It suggests there could be an interaction between the two quantita-

tive variables.

40

100~

Dribbling

g

Best_Position
© Defense
A Midfield
= Attack

Ball_Control

Figure 3.9: Plot of Ball_Control versus Dribbling.

Best_Position
© Defense
A Midfield
= Attack

HeePBELEREEREERREEREERBRIREERRELEE

25 50 75
Free_Kick_Accuracy

Figure 3.10: Plot of Free_Kick_Accuracy versus Curve.

Figure 3.11 illustrates the association between Sliding Tackle and Standing Tackle. It is
very clear the relation is linear with a strong positive correlation, indeed the higher the S/zd-
ing_Tackle value the higher the Standing Tackle value. Going deeper, the highest values be-
longs to defenders and the response variable levels are quite well-separated, suggesting there
could not be an interaction between the two quantitative variables.
Figure 3.12 illustrates the association between Vision and Long Passing. It can be assumed

the relation is more complex than linear with a positive correlation and a large variance, in-

41

Best_Position
© Defense
A Midfield
= Attack

Standing_Tackle
8

25 50 75
Sliding_Tackle

Figure 3.11: Plot of Sliding_Tackle versus Standing_Tackle.

deed the higher the Vision value the higher the Long Passing value. The response variable
levels are quite well-separated, suggesting there could not be an interaction between the two

quantitative variables.

Best_Position
© Defense
A Midfield
= Attack

0
Vision

Figure 3.12: Plot of Vision versus Long_Passing.

Figure 3.13 illustrates the associations between Agility and the covariates Dribbling and
Ball_Control, where they have a quite similar behaviour. For both the scenarios, it can be
assumed the relation is linear with a positive correlation and a large variance, indeed the

higher the Dribbling and Ball_Control values the higher the Agzlity value. Defenders are

42

well-separated than the other two Best_Position levels which are mixed altogether, suggest-
ing there could not be an interaction between the two quantitative variables for both the

scenarios.

Dribbling
Ball_Control

Figure 3.13: Plot of Agility versus Dribbling and Ball_Control.

3.3 Correlation matrix

Finally, it is useful to analyze the correlation matrix, in which only quantitative variables
are involved. This type of graphical analysis has been conducted using ggcorrplor R pack-
age. This final step is necessary to guarantee the absence of multicollinearity, a phenomenon
according to which two or more highly linear correlated quantitative variables become not
significant for a predictive model. If two variables are highly correlated and they hide the real
effect of another significant variables, one of them needs to be deleted. The removal process
allows to reduce the number of quantitative covariates, removing the ones which are very

similar with the other maintained in the dataset.

Figure 3.14 shows the correlation matrix, where in every tile is displayed the correlation value
between the corresponding x-value and y-value. This value is represented both with a color
and with the exact coefficients of Pearson’s correlation. The redder the tiles the higher and
positive the correlation is, viceversa the more blue the tiles the higher and negative the cor-
relation is. In the latter both cases the relationship is stronger, whereas white tiles means
no correlation and so independence between variables. More in detail, there are some tiles
without the exact correlation value but only an empty white tile; it means the correlation co-
efficient of the involved variables is not significant due to a p-value higher than 0.05, which

is the default significance level.

43

Jumping
Defensive_Awareness
Interceptions
Sliding_Tackle
Standing_Tackle
Aggression
Strength
Heading_Accuracy
Weight_kg
Height_cm
Composure
Reactions
Long_Passing
Short_Passing
Ball_Control
Dribbling
Vision
Crossing
Free_Kick_Accuracy
Curve
Long_Shots
Finishing
Volleys
Positioning
Shot_Power
Penalties
Balance
Agility
Sprint_Speed
Acceleration .

I o= o0 om o7
055 042 0.52 -0:
. 052 054 N
. . 0.38 ..' 042 029 04 051 -0.1

022 022 0.38 029 0.3 032 0.41 035 042 0.39 045 0.34 0.25 0.24 0.12 019-

.uss nMﬂnA? 05 0.52!0.47“0_56.0.56 04 035 03 nan'—um.nm 0.27 -0.02 -0.17 -0.18 -0.13 -0.13 -0.04 0.29

039 021 027 041 03 034 03 035 021 042 029 047 036 02 0.12 0.19 024 -0.25-0.21-0.09 -0.09 -0.05 -0.17 -0.17 -0.16 -0.15 0.04 0.3

035

031 042

031 043

026 035

028 038

. 0.43 049

052 03 027 0.34 035 048 0.37

.05 025 023 029 03 055 032

05 .025 0.45 0.13 0.16 0.17 027 0.1
=

.0.49 0.24 016 0.14 0.16 0.17 025 0.03

0.04 0.12 042 0.33 043 02 0.16 025 0.28 022 047

0.1 -0.05 0.17 0.14 0.44 0.41 0.39 0.43 0.44 0.05 0.41
-0.08 03 021 044 031 027 0.34 035 0.1 046
-0.14 -0.05 0.25 0.13 028 0.04 009 0.1 005 042
-0.29 -02 0.04 -0.06 0.11 -0.12 -0.15 -0.09 -0.08 -0.08 0.34
-0.23 0.15 0.07 0.19 -0.02 -0.06 0.03 0.03 -0.06 0.37
0.5 0.56 -0.31-021 0.08 021 0.16 0.15 0.18 0.19 -0.07 0.39

Eouﬂruzbuu 0.04 0.02 0.15

053 .70.25 0.16 0.05 -0.03 0.15 -0.05 -0.08 -0.02

-0.04 0.03 0.03 -0.07 028
0.050.32
.49 0.52.70137007 0.15 0.06 0.07 -0.25 029 -0.19 02 -0.02 0.3

011 -.0.48 0.43 -0.07 0.19

-0.36 -0.39 -0.31 -0.3 -0.03 0.2

45 031 04 053 -0.17 0.08 0.12

05 037 046 .-013 -0.04 018 0.04

0.24 -0.13 0.11 0.05 -0.28 -0.31 -0.22 -0.24 -0.04 0.33
0.04/0.05 0.29 0.19 0.19 -0.17 -02 -0.12 -0.11 0.06 0.3
0.22 0.06 -0.05-0.38 -0.41 -0.34 0.33 0.15

4)35.7011 -0.12 -0.11 -0.11 -0.11 -0.09 0.14

053 023 0.27 0.45 0.33 0.37 0.34 0.41 027 0.48 0.34 053 0.38 021 0.14 0.18 0.23 -0.39 -0.33 021 -0.23 0.1 -0.19 -0.19 -0.18 -0.18 -0.02 0.28

\‘\ 2 S D22, A A QD@ @ QO S LW @ P O L2
Qe c;\\ \\\o Qo\\\oo & N (\\ o@ 2N «\ VES %%\o’ba{.'bo QOQQQ’%QQ &
6‘?“\ WO oo '\'Qoo‘b’bc’ DL FPAPAL S & X

Q’Q <<\ R IS 22 2SR TS s ¥ 9
SRS R e s
R S RS & (SO A\ CEe
)
Q@.‘Z’/ \Zg' ‘21}02;(\
Q

Figure 3.14: Correlation matrix with associated p-values.

As expected, there are plenty of quantitative variables which are highly correlated, the mostly

with a positive correlation coefficients. The more related variables are listed below.

e Standing Tackle and Sliding Tackle have a positive high correlation coefficient of
0.97. These two variables are highly correlated because they are two types of differ-

ent tackle with the same aim to take away the ball to the opponent.

e Interceptions and Defensive_Awareness have a positive high correlation coefficient of
0.94. These two variables are highly correlated because a player with high marking

ability has a higher probability to intercept balls.

* Standing Tackle and Interceptions have a positive high correlation coefficient of 0.94.
These two variables are highly correlated because interceptions can be made tackling

the opponent player while standing.

44

008 017 0.52 0.4 054 0.33 029 04 04 033 057

Corr

0.5

0.0

-0.5

-1.0

Standing Tackle and Defensive_Awareness have a positive high correlation coefficient
of 0.93. These two variables are highly correlated because a standing tackle is a defen-
sive ability.

Sliding Tackle and Defensive_Awareness have a positive high correlation coefficient
of 0.92. These two variables are highly correlated because a sliding tackle is a defensive
ability.

Sliding Tackle and Interceptions have a positive high correlation coefficient of 0.92.
These two variables are highly correlated because interceptions can be made tackling
the opponent player using legs.

Short_Passing and Long Passing have a positive high correlation coefficient of 0.87.
These two variables are highly correlated because they are two types of passing with
the same aim to give the ball to a teammate.

Acceleration and Sprint_Speed have a positive high correlation coefficient of 0.86. These
two variables are highly correlated because they are both related to the running speed.

Finishing and Long_Shots have a positive high correlation coefficient of 0.86. These
two variables are highly correlated because they are two types of shots, which depend
on the distance from which they are carried out, with the same aim to score a goal.

Dribbling and Ball_Control have a positive high correlation coeflicient of 0.85. These
two variables are highly correlated because they refer to the management of the ball.

Balance and Weight_kg have a negative high correlation coefhicient of -0.6. These two
variables are highly correlated because in most cases the heavier the player, the less

balanced the player.

Balance and Height_cm have a negative high correlation coefficient of -0.71. These
two variables are highly correlated because in most cases the higher the player, the less

balanced the player.

To avoid or mitigate multicollinearity phenomenon, some variables needs to be removed. For

this task, only the covariates pairs with a correlation coeflicient higher than 0.9 are considered.

The covariates involved in this deletion process are Standing Tackle, Sliding Tackle, Inter-

ceptions and Defensive_Awareness and they describe specific defensive roles. The pairs, writ-

ten inx-y notation, are: Standing Tackle-Sliding Tackle, Interceptions-Defensive_Awareness,
Standing Tackle-Interceptions, Standing Tackle-Defensive_Awareness, Sliding Tackle-Def-

ensive_Awareness and Sliding Tackle-Interceptions. It is clear that every single covariate is

highly related to each one listed above. So, we can maintain only one covariate and the choice

45

talls in Interceptions because it is involved in the lowest correlation coeflicient among all the
ones considered and it encloses the defensive roles of a player.

The updated correlation matrix is available in Figure 3.15. At the end of this process, three

variables have been removed and the dataset contains 17018 rows and 34 columns.

Aggression
Stamina
Jumping
Strength

Heading_Accuracy
Weight_kg
Height_cm

Composure

Reactions
Long_Passing
Short_Passing
Ball_Control
Dribbling

Vision

Crossing
Free_Kick_Accuracy
Curve

Long_Shots

Finishing

Volleys
Positioning
Shot_Power
Penalties
Balance
Agility
Sprint_Speed
Acceleration

e

035 043 031

o037 034
032 029

01 028 o016

003 024 016

043 025
04

.
[

-
- I
-l
- -

005 018

027 041 03

o [l

024 025 021 009 008

o 5=

01 018

Corr

1.0

05

0.0

-0.5

-1.0

QL &
\K\F\(‘e?e\%é\
BRI $&F
‘b§g/ VQ\Q\?}

Figure 3.15: Updated correlation matrix after removal process.

46

Data Mining Techniques

This chapter focuses on describing Data Mining techniques which belong to the classifica-
tion domain. The aim of Data Mining methods is to explore and evaluate the most signifi-
cant relationships between the categorical response variable Best_Position and the covariates.
The techniques involved in this chapter are Multinomial Logistic Regression, Linear Dis-
criminant Analysis, Quadratic Discriminant Analysis, Ridge Regression and Lasso. Further
on, the resulting models will be used for making prediction and a comparison between Data
Mining techniques and other Machine Learning techniques deepened in Chapter § 6 will be

investigated.

4.1 Premises

4.1.1 Multinomial distribution

The Multinomial distribution (Agresti, 2013, Chapter 1) is a specific distribution for cate-
gorical data in which the response variable has more than two possible outcomes. Suppose
there are /N independent and identical observations which can assume k = 1, ..., K pos-
sible discrete values. Let y;, = 1 if the observation ¢ = 1,..., N belongs to the class &
and y;z = 0 otherwise. Let y; = (i1, ..., Yix)" the vector of responses for observation 7
with Zszl Yir, = 1. The response y;x can be considered as redundant due to linear depen-

N .
dency on all other responses. Let ny = »_." | y;; represents the number of observations

47

falling into class £. At this point, (n1,...,n &)T is the vector of counts for each class. Let
7, = Pr(Yiy, = 1) represent the probability of falling into class £ for each observation.
Since Zszl n =nandng =n — (ng + ... + ng_1), the multinomial probability func-

tion is K-1-dimensional with expression:

n

Pr(ny,...,ng_1) = < >7T?1"~7T?{K.

ny,....,Ng

The mean, the variance and the covariance associated to the multinomial distribution are
E(ny) = nmy VAR(ng) = nmp(1 —) COV (ng,np) = —nm,m,

respectively. Finally, the marginal distribution of each count n;, is binomial.

4.2 Multinomial Logistic Regression

The Multinomial Logistic Regression (James et al., 2021, Chapter 4) is a supervised learning
technique for predicting a qualitative response variable. It is an extension of the Logistic
Regression technique, with the difference that Multinomial Logistic Regression allows the
response variable to contain more than two discrete classes. Before starting the modeling
process, itis necessary to fix a relevant base category K of the response variable called baseline,
which the interpretation of the model coefficients will be based on.

Multinomial Logistic Regression allows to estimate the probability for each class as:

eProtBry Tiy +-- A Bryp Tip,

m(x;) = Pr(Y =k X =1;) = T Zfi}l oBlo BTy Bl

for the k-th class of the response variable where £ = 1, ..., K’ — 1 and

1

7TK<CUz) = PT(Y = K|X = :EZ) = T Z{i}l ePo TP @iy + At By i

for the K — th baseline level of the response variable, where:

* X = (Xy,..., Xn)7 is the input vector composed by i = 1, ...V observations, in
which every X contains p = 1, ..., P covariates;

* [k, is the intercept of the k-th response variable level;

48

* Bkis -y B, are the slope coefficients of the k-th response variable level.

Generally, the most common relevant quantity used for describing a relation between a spe-
cific level of response variable given the model covariates and the baseline is the so-called Jog
odds, or simply logzt. It allows to relate a transformation of the response variable to the co-
variates using a linear model (Pace and Salvan, 1997, Chapter 6). A log odds is defined as a

function of covariates as follows:

n (72) = (P) =t b 6

which allows to interpret how a variation of one unit in each coefficient changes the log-odds
of going from level K tolevel k = 1, ..., K — 1. Similarly, relative risk ratio or simply odds is
a quantity obtained exponentiating both sides in formula (4.1), which allows to simplify the
interpretation of the coefficients as a variation of one unit change in each coefficient changes
the risk of falling in level k = 1, ..., K — 1 compared to the baseline K.

There are some assumptions which would be respected to obtain reliable multinomial logis-

tic regression models.

* The independence of irrelevant alternatives (IIA) assumption supposes that the rela-
tive likelihood on fallingina k = 1, ..., K — 1level compared to the baseline K is not
influenced by the addition of other levels into the response variable.

* The outcome must be categorical and the response variable has more than two cate-
gories.

* The log odds of the outcome have a linear relationship with any covariate.
* Errors are independent.

* Collinearity should be avoided, so the phenomenon in which there is high correlation
between one covariate to another one.

The parameter vector B = (Bkys Brys - ﬂkp)T is typically estimated using maximum like-
lihood (Agresti, 2013, Chapter 8). Let y; = (i1, ..., Yix) represents the multinomial trial
for subject 7, where y;;, = 1 identifies a response in the level j and yik = 0 vice versa. Then,

K . s
Yoy Yik = L Letx; = (241, ..., :L‘ip)T represents the covariates values for subject 7. Since

49

ny=1—(m+..+my_1)andy;;y =1 — (yi1 + ... + ¥iy_1), the subject 7 contributes
to the logarithm of the likelikood

Hﬂ—k(xi)yik — - Yik lnﬂ'k(l’i) + (1 — Z_yzk> In [1 — - Wk(xz)]

k=1 k=1 k=1 k=1
K-1 (i) K-1
= Yir In K—ll +1In|1-— T (2;)
k=1 1 =3 m(:) k=1

Now, assuming N independent observations, the log likelihood becomes:

K-

k=1] }
K- N

= Z [ﬁko <Z yzk) + Zﬁkp (Z 1pyzk>]

1_‘[_ Z Bk T

The log likelihood function is concave and the Netwon-Raphson algorithm provides the

N

I | [T :z{zyzk

i .

(4.2)

\\Mz il

maximum likelihood estimates.

4.3 Automatic model selection

Finding the best ever multinomial logistic regression model is an strenuous activity when
the number of covariates is large due to the huge number of possible models to compare.
Anyway, automatic stepwise selection techniques are available to look for and choose the

best model according to specific metrics. There are three types of stepwise selection.

¢ Forward selection starts with the only intercept 1 and at each step it adds one covari-
ate which improves more the previous model. This process goes one until reaching the
tull model, that contains all the covariates, or when there is no chance on improving
the current model.

* Backward selection starts with a model including all the covariates and at each step
it deletes one nonsignificant covariate at a time. This process goes on until there are
only significant covariates in the resulting model or the null model, that contains only
the intercept 1, is reached.

50

* Hybrid selection is a mixture between forward selection and backward selection. In-
deed, the initial model is composed by the only intercept 1 and at each step it adds
one covariate which improves more the previous model. If a variable included in the
model does not improve it, then the variable is removed. This process goes on until
there is no chance on improving the current model.

In the classification domain, variable selection can be performed using the following metrics:

* AIC!®! (Akaike Information Criterion) (Azzalini and Scarpa, 2012, Chapter 3)
AIC = Deviance + 2p, (4.3)

where Deviance is the log-likelihood of the fitted model multiplied by 2 and it is influ-
enced by the 2p penalization term in which p is the number of estimated parameters.
AIC gives a score based on the fitness of the model and its complexity, penalizing less
complex models. The smaller the AIC value, the better fit of the model and the lower
its test error.

« BICIE (Bayesian Information Criterion) (Hastie, Tibshirani, and Friedman, 2009,
Chapter 7)

BIC = Deviance + pln(n), (4.4)

where Deviance and p are defined as above and it is influenced by the pin(n) penal-
ization term in which 7 is the number of observations in the training set. BIC gives a
score based on the fitness of the model and its complexity. Differently from AIC, it
tends to penalize more complex models when [n(n) > 2. The smaller the BIC value,
the better fit of the model and the lower its test error.

The advantage of both the listed metrics is that they do not need models to be nested. In
addition to it, they are based on asymptotic arguments, above all when the number of obser-
vations is high. Automatic model selection algorithms are efficient only when the number
of observation is higher than the number of covariates. Moreover, they are useful for ob-
taining quickly information about the relationships between the response variable and the
significant covariates. On the other hand, these algorithms does not take into account the

variability associated to the model choice.

4.4 Linear Discriminant Analysis

The LDA'®! (Linear Discriminant Analysis) (James et al., 2021, Chapter 4) is a modeling
approach for estimating the posterior probability that an observation belongs to the k-th

51

class given the predictors values of the observation as follows:

pela) = P(Y = k|X = o) = <t li0)_ (43)

Zj:l 7;fi(x) 7
where 7, is the prior probability thata randomly chosen observation belongs to the £-th class,
and fi () is the density function of X = x foran observation that comes from the k-th class.
Assumed that the number of predictors p is greater than one, this technique is similar in form
to (multinomial) logistic regression. Itisassumed that X = (X, ..., X,,) follows a multivari-
ate normal distribution within each level of the response variable, with a class-specific mean
vector and a common covariance matrix where all the variances 07 = ... = 0% are equal
due to the homogeneity assumption. Moreover, it allows to discriminate a response variable
divided into more than two levels. Differently from (multinomial) logistic regression, LDA
does not compute directly these estimates. Indeed, first it models the distribution of X for
each response variable level, then Bayes’ theorem is used to obtain P(Y|.X'). The unknown

quantities which needs to be estimated in formula (4.5) are 7, and fi(x). In particular,

N
T — —
n

where ny, is the number of observations in the training set for k-th class and n is the total

number of observation in the training set; moreover,

1
O = e

3 (@—p) T[S (@)

where f,(z) is assumed as multivariate normal and j1;, and X are respectively the mean vector
with p elements and the px p covariance matrix of X that is common for each class. Substitut-
ing 7 and f () terms in formula (4.5) and applying log transformation to it, an observation

X = wis assigned to the class for which
Ts—1 |
Op(z) =" 57y, — SHk X7 + log my, (4.6)

is largest. Formula (4.6) defines the decision boundaries and is called discriminant function.
It is a linear combination of the covariates and it is built K-1 times for a response variable
with K levels.

52

4.5 Regularization methods

The management of data can be tricky when they are high-dimensional, in other words when
the number of the predictors p is equal or larger than the number of subjects 7. In this sce-
nario, a multinomial logistic regression model could not offer satisfactory metrics values,
feeding the problems of identifiability and efficiency of the model. More in detail, the esti-
mates obtained by the maximum likelihood function could be difficult to calculate, or even
impossible, or they could have large standard errors. Moreover, a complex model could incur
in overfitting, which means that a model captures all the (even noised) details by training data
and not the general trend with the consequence to obtain unsatisfactory results in prediction
with unseen data. Regularization methods have been designed to face these problems. The
basic idea of regularization methods is a shrinkage of the coefficients estimates towards zero
in order to reduce the variability of the estimates. Regularization is possible applying a penal-
izing function, named shrinkage penalty, to the likelihood function. Anyway, it is necessary
to pay attention to the trade-off between the likelihood function and the shrinkage penalty.
Indeed, higher penalty means more penalization in less realistic values of the parameters esti-
mates, but in the other hand it means less information. Another detail is that the intercepts
of a multinomial logistic regression model are not involved in the penalization process. Fi-
nally, the values of the variables need a standardization process in order to avoid problems
with scale effects on results. In the thesis we will focus on two famous regularization meth-

ods, namely, Ridge Regression and Lassol®), that are briefly described below.

4.5.1 Ridge Regression

Ridge Regression (James et al., 2021, Chapter 6) is a regularization method with the target
of shrinking the coefficients estimates close to zero, including all the predictors in the final
model. With this method, the coefficients are estimated by minimizing the log likelihood

plus the L2 regularization shrinkage penalty as follows:
P
Bridge = argﬁmin {l(ﬁle) +A Z BJQ})
j=1

where [((|0) is the log-likelihood found in formula (4.2), and A Zle 37 represents the
shrinkage penalty which in literature is called wezght decay. More in detail, A is the tuning pa-

53

rameter of the penalization term which assumes natural values and it is calculated separately.
In the case of A = 0, the shrinkage penalty has no effect, obtaining a model with the same
coeflicients estimates found with the multinomial logistic regression model. On the other
hand, when A > 0 the effects of the shrinkage penalty increase as A increases, reducing the
variance and the model complexity. It is necessary to pay attention which A value to assign.
Indeed, the larger the X value, the more the coefficients estimates are close to zero, with the
consequence that the association between the response variable and the predictors is dras-
tically reduced. Moreover, the larger the lambda value, the less flexible the model with the
consequence that the variance decreases but the bias increases. So, the choice of A plays an im-
portant role on the trade-oft management between the likelihood and the penalization term.
Indeed, the set of coefficients estimates changes every time A value changes. For this reason,
it is necessary to apply cross validation to find the best possible A value (Hastie, Tibshirani,
and Friedman, 2009, Chapter 3).

Finally, the Ridge Regression method can be viewed as an optimization problem due to a
size constraint s applied on the sum of squared coefficients estimates. The problem can be

formulated as follows:

Bridge = argﬂmm (1(816))?

P
s.t. ZBJQ <s.
j=1

4,5.2 Lasso

Lasso, acronym of Least Absolute Shrinkage and Selection Operator (James et al., 2021, Chap-
ter 6), is an alternative to Ridge Regression as a regularization method. The difference is that
Lasso performs both the shrinking of the coefficients estimates close to zero and variable se-
lection. With this method, the coefficients are estimated by minimizing the log likelihood

plus the L1 regularization shrinkage penalty as follows:

P
Blasso = argﬁmin {Kﬁm) + A Z |BJ‘})
j=1

where [((|0) is the log-likelihood found in formula (4.2), and A Zle 37 represents the

shrinkage penalty. The functioning of A value is the same as in Ridge Regression, with the

S4

difference that due to the L1 regularization shrinkage penalty some coeflicients estimates are
forced to be exactly zero when A is sufficiently large. This behaviour makes a Lasso model eas-
ier to interpret because only a subset of the covariates is involved. Like in Ridge Regression,
cross validation is necessary to find the best possible A value for obtaining a significant model.
Depending on the chosen A, the main difference is that Lasso can contain whatever number
of covariates while Ridge Regression includes always all the covariates (Hastie, Tibshirani,
and Friedman, 2009, Chapter 3).

Finally, the Ridge Regression method can be viewed as an optimization problem due to a
size constraint s applied on the sum of absolute coefhicients estimates. The problem can be

formulated as follows:

Blasso = arg min (1(5‘9))2
B

P
sty 1Bl < s.
j=1

55

56

Data Mining Results

This chapter focuses on the implementation and the discussion of the prediction results ob-
tained from the Data Mining techniques described in Chapter § 4. The details about the
implementation will be supported by R (R Core Team, 2022) code and graphical analysis.

5.1 Premises

5.1.1 Dataset split

Every technique exploits the dataset obtained after its preliminary analysis made in Chapter
§ 3. Before applying the implementation of each technique, the dataset needs to be split into
two parts, namely training set and test set. According to the literature, a sample 80/20 from
the datasetis adopted. In other words, the 80% of the dataset observations are reserved for the
training set and the remaining 20% for the test set. Following this procedure, the resulting
sets could be unbalanced, with high probability that a model could learn a pattern for the
most frequent classes. To avoid this problem, a sample 80/20 for every player’s position from
the dataset has been applied. In other words, the training set contains the 80% of the dataset
observations for each player’s position and the remaining 20% of the dataset observations
for each player’s position for the test set. Such a choice allows to create two balanced sets,
maintaining the same multinomial distribution seen in Section § 3.2.1. At the end, training

set contains 13608 observations with 34 covariates and test set contains 3410 observations

57

with 34 covariates. The code concerning the dataset split is shown in Listing § A.2.

5.1.2 Metrics

The metrics used to evaluate a model after the training phase are listed below.

* Training Accuracy, which is the ratio between the sum of the training set correct
predicted values for each response variable level and the total number of training set
observations. The correct predicted values can be accounted for by the confusion ma-
trix diagonal computed using the confusionMatrix function of the R caret package
(see Function confusionMatrix).

* AIC, already defined in formula 4.3. This metric is not available for LDA technique.

* BIC, already defined in formula 4.4. This metric is not available for LDA technique.

The metrics used for evaluating a model in prediction phase are listed below.

¢ Test Accuracy, which is the ratio between the sum of the test set correct predicted
values for each response variable level and the total number of test set observations.
The Test Accuracy computation is performed as in Training Accuracy metric.

« AUCIC], acronym for Area Under the ROC Curve (James et al., 2021, Chapter 4), is
the measure of the overall class-specific performance of a classifier. Let T'P be the
number of true positives, T'/N the number of true negatives, /' P the number of false
positives, and F'IN the number of false negatives. Then, AUC summarizes all the pos-
sible thresholds given by:

— Sensitivity, called also Recall or True Positive Rate in Machine Learning field,
which is formulated as TPTJF% for eachlevel k = 1, ..., K and it is the percent-
age of the correct predicted values identified considering both T'P and F'P;

— Specificity, called also True Negative Rate, which is formulated as —IN__ for

TN+FP
eachlevel £ = 1, ..., K and it is the percentage of the predicted values correctly

identified not classified as the reference level considering both 7'V and F'P.

Sensitivity and specificity are crucial for specifying the best trade-off for correctly clas-
siftying an observation. The AUC value ranges from 0 to 1 and it derives from the
ROC! (Receiver Operating Characteristics) curve. The larger the AUC, the better
the model in classifying correctly. In this thesis, the ROC curve cannot be displayed
because it is available only for binary classifiers. Moreover, the final AUC is called
multiclass AUC because it is the mean of all the AUC values computed for each re-
sponse variable level (Hand and Till, 2001). The computation of the AUC value is

58

made through the multiclass.roc function, available from the R pROC package (see
Function multiclass.roc).

Another possible metric to analyze could be Precision, called also Positive Predictive Value,

Y
TP+FP

correct predicted values identified considering both T'P and F'P. Anyway, Recall has been

which is formulated as for each level £ = 1, ..., K and it is the percentage of the
preferred to Precision in the thesis because the false negatives are more costly than the false

positives in this classification domain.

5.2 Multinomial Logistic Regression

Multinomial Logistic Regression is the first Data Mining technique we consider, applied us-
ing the multinom function, available from the R nnet package (see Function multinom). The

multinom function allows to fit multinomial log-linear models with training data through

a neural network with one hidden layer. The neural network is a classification network, in

which the number of outputs is equal to the number of response variable levels and the class

is selected through the softmax function. Due to the large number of variables in the model,

the default number of iterations is modified to 10000, in order to facilitate convergence. The

BFGS quasi-Netwon optimization method is used as optimization technique.

The modeling process starts adding all the covariates inside the model, recognizable as start-
ing model. At first sight, all the covariates of the starting model are significant, even though

lots of levels associated to the factors are not. For what concerns the metrics values, the Train-
ing Accuracy value is 0.826, the AIC value is 14448.55 and the BIC value is 19042.3. To

improve the starting model, some interactions have been added through a trial-and-error pro-
cess, in order to better explain the variability of the data. Let updated model be the starting

model with the addition of the interactions suggested in Section § 3.2.4, which are Accelera-
tion:Sprint_Speed, Ball_Control: Dribbling, Free Kick_Accuracy:Curve, Vision:Long Passing,
Agility:Dribbling and Agility:Ball_Control. The updated model can be compared with the

starting model as they are nested. The comparison can be carried out with anova function

provided by R stats package (see Function anova), in which its aim is to check the goodness

of a model compared to the other nested one. In case of Multinomial Logistic Regression

model, the comparison is carried out using the /ikelihood ratio test, which allows to compute

the analysis of the deviances of the two models, where the deviance is equal to double log-

likelihood. The difference of variances, called Residual Deviance, follows a x? distribution

59

(even written as “Chi-squared distribution”). The p-value, which is the z test statistic applied
to the Residual Deviance, helps to conclude whether there is an empirical evidence passing
from the simpler model to the more sophisticated model. Two bidirectional hypothesis have
to be compared, namely Hy and H;. H is the hypothesis where the coefficients estimates
are set to zero for those variables that not match between the simpler model variables and
the simpler sophisticated variables, whereas [is the opposite hypothesis of Hj hypothesis.
The first hypothesis H suggests that both the models fit the data equally well. On the other
hand, the second hypothesis /1, suggests that the model with less variables outperforms the
model with more variables in terms of data fit. H is rejected when p-value < 0.05, otherwise
Hy is not rejected. The anova function suggests to pass from the starting model to the up-
dated model, due to a p-value equal to 2.515e-12. For what concerns the metrics values of
starting model, the Training Accuracy value is 0.827, the AIC value is 14407.1 and the BIC
value is 19587.28. The result is that the interactions seen in the graphical evaluation of the

dataset are useful for the model.

The final step is to find other interactions, if possible, to improve on the updated model. To
this aim, all the pairs of quantitative variables with a correlation coefficients >= 0.5 have been
checked. After that, the choice of the interaction terms is fallen in important correlations in
the football domain which can improve the prediction of a player’s position. After some in-
vestigations, let fznal model be the updated model with the addition of Short_Passing:Ball_-
Control, Aggression:Interceptions, Short_Passing:Long Passing and Finishing:Long Shots in-
teractions. Every predictor is significant, included the majority of all the factor levels. More-
over, the standard errors associated to every predictor are very satisfactory due to very low
values. The choice of the final model with respect to the updated model is supported by
the results of function anova (p-value equal to 0.048). For what concerns the metrics values
of final model, the Training Accuracy value is 0.828 with a 95% confidence interval [0.822,
0.835], the AIC value is 14441.09 and the BIC value is 20012.24. AIC value and BIC value
of updated model are smaller than the final model, but the difference of the values is very
slight. No polynomials and natural splines have not been reported as significant for the im-

provement of the fznal model, which contains the variables listed in Figure S.1.

After obtaining the coefficients estimates, var/mp function by R carer package (see Function
varlmp) has been applied in order to examine what are the most important predictors. The
varImp function returns all the covariates with the associated variable importance value, in
which this value is the sum of the absolute values of the coefficients estimates for each level.

Moreover, factors are treated as they was M — 1 independent covariates, in which M is

60

34] "Short_Passing:Ball_Control”
37] "Finishing:Long_Shots™

40] "Curwve:Free_Kick_Accuracy”
43] "Ball_Control:Agility™

"Short_Passing:Long_Passing”
"Dribbling:Ball_Control"”
"DribbTling:Agility”

"Aggression:Interceptions”
"Acceleration:Sprint_Speed”
"Long_Passing:Vision"

[1] "Height_cm" "Weight_kg” "Preferred_Foot"
[4] "Crossing"” "Finishing” "Heading_Accuracy”
7] "Short_Passing” "Volleys" "DribbTling”
[10] "Curwve" "Free_Kick_Accuracy” "Long_Passing”
[13] "Ball_Control” "Acceleration” "Sprint_Speed”
[16] "Agility"” "Reactions™ "Balance”
[19] "Shot_Power™ " Jumping” "Stamina”
[22] "Strength” "Long_Shots" "Aggression”
[25] "Interceptions” "Positioning” "Vision™
[28] "Penalties” "Composure” "Weak_Foot"
[31] "attacking work_Rate” "Defensive_Work_Rate" "Body_Type"

Figure 5.1: Variables of the final Multinomial Logistic Regression model

the number of the factor levels. For instance, Preferred_Foot factor has two levels which are
Left, considered as the baseline, and Right; in the computation of the variable importance,
Preferred_FootRight will be considered and its coefficients estimates will give a measure of
the values difference between Right level and Left level. The variable importance values are

reported in Table 5.1.

Table 5.1: Absolute sum of the coefficients estimates for every variable. AWR = Attacking_Work_Rate, DWR =
Defensive_Work_Rate, BTL = Body_TypelLean, BTN = Body_TypeNormal, BTS = Body_TypeStocky, SP:BC =
Short_Passing:Ball_Control, SP:LP = Short_Passing:Long_Passing, A:SS = Acceleration:Sprint_Speed, C:FKA =
Curve:Free_Kick_Accuracy.

Height_cm Weight_kg Preferred_FootRight Crossing
1.016 0.323 32.381 3.309
Finishing Heading_Accuracy ~ Short_Passing Volleys
2.204 4.432 4.410 0.583
Dribbling Curve Free_Kick_Accuracy Long_Passing
1.925 0.497 0.560 2.413
Ball_Control Acceleration Sprint_Speed Agility
3.864 4.936 4.359 1.597
Reactions Balance Shot_Power Jumping
0.674 0.329 0.629 1.476
Stamina Strength Long_Shots Aggression
1.799 3.451 1.410 2.970
Interceptions Positioning Vision Penalties
7.998 2.055 2.181 0.416

61

Composure Weak Foot2 Weak Foot3 Weak Foot4

0.456 43.339 44.362 50.093

Weak_Foot5 AWRMedium AWRHigh DWRMedium

49.332 32.384 33.883 39.005

DWRHigh BTL (170-185) BTL (185+) BTN (170-)

45.319 5.450 5.813 39.425

BTN (170-185) BTN (185+) BTS (170-) BTS (170-185)

13.899 6.548 41.236 21.326

BTS (185+) Body_TypeUnique SP:BC Aggression:Interceptions
96.334 10.099 0.048 0.008

SP:LP Finishing:Long_Shots A:SS Dribbling:Ball_Control
0.033 0.016 0.055 0.039

Curve:FKA Long_Passing:Vision Dribbling:Agility Ball_Control:Agility
0.008 0.019 0.034 0.401

In general, the most important predictors are the following:

* Preferred_FootRight, with an overall value of 32.381;

* Weak Foot2, with an overall value of 43.339;

* Weak Foot3, with an overall value of 44.362;

* Weak_ Foot4, with an overall value of 50.092;

* Weak FootS, with an overall value of 49.332;

o Attacking Work_RateMedium, with an overall value of 32.384;
e Attacking Work_RateHigh, with an overall value of 33.883;

* Defensive. Work_RateMedium, with an overall value of 39.005;
* Defensive_ Work_RateHigh, with an overall value of 45.319;

* Body_TypeNormal (170-), with an overall value of 39.425;

* Body_TypeNormal (170-185), with an overall value of 13.899;

* Body_TypeNormal (185+), with an overall value of 6.548;

62

Body_TypeStocky (170-), with an overall value of 41.236;

Body_TypeStocky (170-185), with an overall value of 21.326;
* Body_TypeStocky (185+), with an overall value of 96.334;
* Body_TypeUnigue, with an overall value of 10.099.
A moderate contribute is given from all the remaining covariates. Moreover, all the interac-

tions have the lowest contributes in the fznal model.

The code concerning Multinomial Logistic Regression is shown in Listing § A.3.

5.2.1 Predictions

CE-- 7 6 0 0 17 2 2 0 1 0 0 0 0

RB1 10 162 8 M 0 5 4 4 0 0 0 0 0 0
LBy 7 3 145 0 M 1 0 0 4 0 0 0 0 0

RwWB1 0 16 0 22 1 0 0 1 0 0 0 0 0 0

_ comy 21 1 2 3 0 196 36 1 1 5 0 0 0 0 Freg

_“g’ I 600
S CW 1 0 0 2 2 27 119 5 0 30 0 0 0 0

2 400
g RM7 0 5 2 7 0 0 5] 272 13 30 0 19 8 K}

2 200

caMl 0 0 0 1 0 0 28 31 13 | 464 6 14 8 5

Lwy 0 0 0 0 0 0 0 1 1 3 0 0 3 0

sT1 0 1 0 0 0 0 0 5 4 5 4 8 3 -

cB RB LB RWB LWB CDM CM RM LM CAM CF RW Lw ST
True label

Figure 5.2: Confusion matrix in prediction phase for Multinomial Logistic Regression.

From the results obtained in training phase, we can suggest that the Multinomial Logistic

Regression model is quite satisfactory due to the significance of all the variables in the model

63

and the good results in training metrics values. For what concerns the metrics values in pre-
diction phase, the Test Accuracy value is 0.818 with a 95% confidence interval [0.805, 0.831]
and the AUC value is 0.963.

The Test Accuracy value is slightly lower than the Training Accuracy value, but it is coher-
ent with the behaviour held by the model after a training phase, in which the training error
underestimates the test error. Sensitivity values, obtained computing the confusion matrix
after the prediction phase, deserve attention. The sensitivity metric is computed for each re-
sponse variable level and it represents the percentage of the correct predicted values identified.
Sensitivity metric allows to identify what are the less accurate predicted player’s positions. It
follows that CB and ST are the best predicted classes, with a sensitivity value respectively of
0.943 and 0.983. On the other hand, the worst predicted positions are RWB, LWB, CF, RW
and LW, with a sensitivity value respectively of 0.333, 0.344, 0.167, 0.196 and 0.086. These
bad results are given mainly for the reason that the training set contains less observations for
these positions. It is even curios to observe that, excluded CF position, the worst predicted
positions involve the side area of a football pitch. The other positions not mentioned above
have a sensitivity value bigger than 0.6, so the prediction is not aleatory. Figure 5.2 shows
the confusion matrix obtained in prediction phase.

AUC value is extremely satisfactory due to its value really close to 1.

5.3 Automatic model selection

The number of variables found as significant in the fznal model is pretty high. For this rea-
son, automatic model selection has been applied for choosing the best relevant variables of
the model according to AIC metric and BIC metric. Backward selection strategy has been
chosen because it is preferable to start from the full model when the number of variables is
very high. Indeed, with a different selection strategy, i.e., forward selection, the risk of obtain-
ing too few variables in the final model is high, with the consequence that the final model can
explain an unsatisfactory amount of variability. The resulting model will be called backward
model.

Automatic model selection has been performed with step function given by the R stats pack-
age (see Function step). By default, the variables are chosen by AIC metric due to the k = 2
parameter which is applied to the penalization term. The backward selection strategy has
been applied two times with different metrics, one time with AIC metric and one time with

BIC metric. To apply BIC metric, k parameter has been changed in k = In (V) as required.

64

From a theoretical point of view, BIC metric tends to penalize complex models more than
AIC metric if In(NN') > 2, where N is the number of training set observations. This would
be the case, because In(13608) = 9.518 > 2. Nevertheless, the BIC penalization did not
happen in practice, because both backward strategy with AIC metric and backward strategy
with BIC metric return the same results in terms of coefficients estimates and metrics values.
For this reason, whatever model can be evaluated. Our choice falls in backward selection
with AIC metric.

First, the backward selection process has identified in Weight_kg, Balance, Weak_Foot, At-
tacking Work_Rate and Body_Type the variables to be removed from the final model. In ad-
dition to it, the backward selection process has identified in Short_Passing:Ball_Control, Ag-
gression:Interceptions, Short_Passing:Long Passing, Dribbling:Ball_Control and Agility:Drib-
bling the interactions to be removed from the fznal model. All the covariates included in the
backward model are significant and the standard errors are very satisfactory due to very low
values. For what concerns the metrics values of the backward model, the Training Accuracy
value is 0.824 with a 95% confidence interval [0.817, 0.830], the AIC value is 14265.7 and
the BIC value is 17686.58.

Figure 5.3 shows the variables included in the backward model.

[1] "Height_cm™ "Preferred_Foot™ "Crossing”
[4] "Finishing” "Heading_Accuracy” "Short_Passing”
[7]1 "volleys" "Dribbling” "Curve"
[10] "Free_Kick_Accuracy™ “"Long_Passing” "Ball_Control™
[13] "Acceleration” "Sprint_Speed” "Agility”
[16] "Reactions” "Shot_Power" "Jumping”
[19] "Stamina" "Strength” "Long_Shots"
[22] "Aggression™ "Interceptions” "Positioning”
[25] "vision™ "Penalties” "Composure”
[28] "Defensive_Work_Rate” "Fimishing:Long_Shots" "Acceleration:Sprint_Speed”
[31] "Curwve:Free_Kick_Accuracy” “Long_Passing:Vision" "Ball_Control:AgiTity”

Figure 5.3: Variables of the backward model.

The most important predictors, given by var/mp function, are the following:
* Preferred_FootRight, with an overall value of 31.914;
* Defensive_ Work_RateMedium, with an overall value of 35.233;

* Defensive_ Work_RateHigh, with an overall value of 41.746.

A moderate contribute is given from all the remaining covariates. Moreover, all the interac-
tions have the lowest contributes in the backward model.

The code concerning the automatic model selection is shown in Listing § A.4.

65

5.3.1 Predictions

From the results obtained in training phase, we can suggest that the backward model is quite
satisfactory due to the significance of all the variables in the model and the good results in
training metrics values. For what concerns the metrics values in prediction phase, the Test
Accuracy value is 0.817 with a 95% confidence interval [0.803, 0.830] and the AUC value
is 0.965. As expected, the Test Accuracy value is slightly lower than the Training Accuracy
value. For what concerns the sensitivity values, they are really close to the sensitive values
found in the Multinomial Logistic Regression model. Due to this fact, the problem in pre-
dicting positions involved in the side area of a football pitch still exists.

AUC value is slightly better than the one obtained with Multinomial Logistic Regression

and it is extremely satisfactory.

S.4 Linear Discriminant Analysis

LDA is a different technique from Multinomial Logistic Regression and it has been per-
formed with /da function given by the R MASS package (see Function lda). LDA algorithm
aims at finding the K — 1 discriminant functions used to build a decision rule for assigning
an observation to one class.

The application of the algorithm requires some assumptions to be satisfied. First, the re-
sponse variable should have more than two levels with similar size. This assumption is par-
tially respected due to the substantial difference in observations between some levels. A sec-
ond assumption is related to the normal distribution which the quantitative covariates of the
training set need to follow. To check the assumption, Shapiro-Wilk normality test could be
applied, but the R function requires an input sample with a maximum of 5000 observations.
To overcome this problem, Anderson-Darling normality test is suitable for larger sample size
and can be applied through the ad.zest function given by the R nortest package (see Function
adl.test). For every quantitative variable is returned the associated test p-value. If the p-value
is higher than 0.05, the distribution of the quantitative data is not significantly different
from normal distribution; in other words, the normality can be assumed. All the resulting
p-values are less than 0.05, so the quantitative variables do not follow a normal distribution.
Failure to meet the assumptions may suggest that LDA will perform worse than Multinomial
Logistic Regression. To confirm these suggestions, it is necessary to apply the /da function

giving in input the same predictors included in the fznal model. The lda function computes

66

the prior probability of each level, the group mean of each level and the set of linear discrim-
inant coefficients which allow to form the formulas for each linear discriminant function
LDi,withi =1, ..., K — 1. The canonical discrimination evaluation provides the amount
of variance explained from each linear discriminant. LD1 explains more than half the vari-
ance, exactly the 54%. This value decreases by increasing ¢ and the result is that LD1, LD2,
LD3, LD4 and L D5 explain together the 91% of the total variance of the sample. For what
concerns the metrics values obtained by LDA model, the Training Accuracy value is 0.742
with a 95% confidence interval [0.735, 0.750], while AIC metric and BIC metric cannot be
computed. It is a matter of fact that LDA Training Accuracy is lower than the Training Ac-
curacy obtained with Multinomial Logistic Regression and the automatic model selection

process.

The code concerning LDA is shown in Listing § A.S.

5.4.1 Predictions

From the results obtained in training phase, we can suggest that the LDA model is not satis-
factory due to the failure to meet the starting assumptions. In confirmation to this, the Test
Accuracy value is 0.72 with a 95% confidence interval [0.703, 0.733] and the AUC value is
0.880. Both the test metric values are lower than the Test Accuracy and AUC obtained with
Multinomial Logistic Regression and the automatic model selection process. Moreover, the
graphical tool ldabist allows to understand whether the model obtained is satisfactory in
discriminating each L Ds.

The predictions provided by LDA are illustrated in Figure 5.4 and Figure 5.5. Predictions are
plotted with histograms through the ggplor2 package. There are K — 1 different histograms,
one for each linear discriminant function. The plots are useful to understand whether each
discriminant function separates each level well. If the histograms partially overlap, it means
the groups are not well differentiated. Only the first two linear discriminant functions are
considered, due to an acceptable explained deviance of the model equal to 77%. On each plot
we can see that the separation of the levels is not so satisfactory. For example, for the LD A1
function RB, LB, RWB, LWB and CDM levels are grouped together and completely over-
lapped; even RM, LM and CAM are grouped together and finally the remaining forward
positions CF, RW, LW and ST. So, with the first linear discriminant function only CB posi-
tion is differentiated quite good, whereas the other positions are not singularly distinguish-

able. We can observe a similar behaviour for LD A2 and the main problem is that there are

67

too many response variable levels and it is hard to find a well-separation for each group.

)

Y

@

£l

wo

Wy

w

” FHW}

[
LDA1

Figure 5.4: LDA1 predictions.

04-
02-
00-

£

04-
02-
00-

04-
02-
00-

04-
02-
00~

04-
02-
00~

a1

04-
02-
00~

04-
02-
00-

wo

density

04-
02-
00-

04-
02-
00-

04-
02-
00-

04-
02-
00-

04-
02-
00-

04-

m

00~

04-
02-
00-

Figure 5.5: LDA2 predictions.

68

Even graphically, itis confirmed that LDA model performs worse than Multinomial Logistic
Regression model. Due to the high number of levels in the response variable, the suggestion
could be either relevel the response variable reducing the number of responses, or transform
the data so that the normality assumption for the quantitative variables is true and that the

levels of the response variable are more than two with similar size.

5.5 Regularization methods

With the exception of LDA, all the techniques analyzed until now are quite satisfactory. Any-
way, the drawback is the large number of covariates inside these models with the consequence
of being complex. Moreover, the majority of the quantitative covariates has high variance
and a certain amount of anomalous observations can influence the performance of the mod-
els. For these reasons, shrinkage techniques, namely Ridge Regression and Lasso, have been
applied in order to simplify the models reducing the variability of the estimators. Before
starting with the analysis of techniques’ results, it is necessary to create the data structure
for both the training set and the test set. Indeed, two matrix structures have to be created
starting from the fznal model formula, where each matrix contains the predictors (except the
intercepts) as columns and the observations values as rows. If a predictor is a factor with M
levels, M — 1 dummy variables will be created and each of them refer to the baseline. More
in detail, X_#7aining matrix is built referring to the training set observations and X_ fest ma-
trix is built referring to the test set observations. Finally, the responses associated to each
observation are created separately. In particular, Y training is the response factor which
refers to the Best_Position column of the training set, and Y zest is the response factor which
refers to the Best_Position column of the test set. Both Ridge Regression and Lasso have been
performed with g/mner function given by the R glmnet package (see Function glmnet). The
alpha parameter is set to 0 for Ridge Regression implementation and set to 1 for Lasso imple-
mentation. Moreover, the family parameter is set as multinomial in order to fit a log-scaled
logistic regression model for each response variable level. Then, the zype.measure parameter
is equal to c/ass for obtaining misclassification error. Finally, k-Fold Cross-Validation (see
Subsection § 7.1.2) has been used to tune the A hyperparameter, with k=10 and through the
cv.glmnet function given by the R glmnet package (see Function cv.glmnet). To make pre-
dictions, the glmnet.fit object from the cv.glmnet function is used, which is the fitted model

using the best A on the entire training set.

69

5.5.1 Ridge Regression

Ridge Regression is the first regularization method applied and it is responsible on shrinking
the coefficients estimates close to zero. The suggestion is that Ridge Regression should not
be too much better in terms of metrics values than Multinomial Logistic Regression, because
Ridge Regression does not make variable selection and the complexity of the model is not so
reduced.

The process starts by considering an automatic grid of A values. Each A value is associated
to the percentage of explained deviance and the coefficients estimates are returned for each
level. As expected, the number of covariates does not vary and the higher the In()) the
more the coefficients estimates are close to 0. Moreover, the higher the In(\) the smaller
the explained deviance value is, with the consequence of obtaining less accurate models. To
find the most accurate model, it is necessary to find the best A value. The 10-Fold Cross-
Validation technique has been applied to find the best A value, according to the minimum

misclassification error.

56 56 56 5H6 H5 96 56 56 56 56 5H6 56 56 56 56 5H6 56 56 L6 56

07

0.8

Misclassification Error
05

04

03

Log(%)

Figure 5.6: Misclassification error varying A value during the 10-Fold cross validation with Ridge Regression. The leftmost
vertical dashed line is the \ that corresponds to the minimum misclassification error, and the rightmost vertical dashed
line is the \ that corresponds to the minimum misclassification error plus 1 standard error.

Figure 5.6 shows that the higher the [n(\) the higher the misclassification error. Moreover,
misclassification error increases rapidly from In(A) = 0. Then, there are two different A val-

ues. Theleftmost vertical dashed line is the A that corresponds to the minimum misclassifica-

70

tion error, and the rightmost vertical dashed line is the A that corresponds to the minimum
misclassification error plus 1 standard error. The latter A has a slight bigger misclassification
error. In this scenario, variable selection has not been applied, so it is preferable to choice
the A that corresponds to the minimum misclassification error. In addition, the misclassifi-
cation error is 0.25 and the best A is 0.026. Figure 5.7 shows how the coefficients estimates
decreases for ST level with the [n(\) variation, with the vertical dashed line that corresponds
to the best \. We can observe that the coefhicients estimates, which corresponds to the best

A, are not quite shrunk.

Degrees of Freedom
SIG SIE 56

o
&
o
&

878185

‘ OIS 04

02

0.1

0‘0

Coefficients: Response ST

0.1

02

=
¥}
=}
[N}
=

Log Lambda

Figure 5.7: Coefficients estimates for ST level varying \ value with Ridge Regression. Each variable, associated to a
specific color, is reported on the right of the plot.

Moreover, Figure 5.8 shows that the maximum explained deviance obtained from the best A
is 0.632. For what concerns the metrics values of final model, the Training Accuracy value is
0.757 with a 95% confidence interval [0.750, 0.764], the AIC value is -38773.36 and the BIC
valueis-38352.8. AIC value and BIC value are very satisfactory and they represent the lowest
values of all the models seen until now. On the other hand, the Training Accuracy value is the
worst value between all the models analyzed until now. Ridge Regression turns out to have
worse performance even analyzing sensitivity values. While the majority of levels are quite
satisfactory in sensitivity values, the worst predicted levels with a sensitivity value less than
1% are RWB, LWB, CF, RW and LW. It is the demonstration that Ridge Regression, besides
not making variable selection, is the worst model according to the metrics values obtained in

the training phase.

71

0.6

Explained deyiance
‘ DIQ 0‘3 0‘4 DIS

01

00

.
]
.

log(%.)

Figure 5.8: Explained deviance according to A value in Ridge Regression. The vertical dashed line is the \ that corresponds
to the minimum misclassification error.

The code concerning Ridge Regression is shown in Listing § A.6.

5.5.2 Lasso

Lasso is the other regularization method applied and it is responsible on shrinking the coef-
ficients estimates close to zero and applying variable selection. The suggestion is that Lasso
should be better in terms of metrics values than Multinomial Logistic Regression, because
the number of variables will be reduced.

The process starts by considering an automatic grid of A values. Each A value is associated to
the percentage of explained deviance and the coefficients estimates are returned for each level.
As expected, the number of covariates varies. Indeed, the higher the [n()) value the more
variables are selected and the associated coefficients estimates set to 0. Moreover, the higher
the In(\) the smaller the explained deviance value is, with the consequence of obtaining less
accurate models. To find the most accurate model, it is necessary to find the best A value. The
10-Fold Cross-Validation technique has been applied to find the best A value, according to
the minimum misclassification error. Figure 5.9 shows that the higher the {n()) the higher
the misclassification error. Moreover, misclassification error increases rapidly from in(\) =
—4. Then, there are two different A values. The leftmost vertical dashed line is the A that
corresponds to the minimum misclassification error, and the rightmost vertical dashed line

is the A that corresponds to the minimum misclassification error plus 1 standard error. The

72

minimum misclassification error corresponds to 0.188 and the minimum misclassification
error plus 1 standard error is equal to 0.191. The difference between the two latter error
values is almost imperceptible, so the A that corresponds to the minimum misclassification
error plus 1 standard error has been preferred due to the highest variable selection, in which

the variables maintained in the model are 32. The best A has a value of 4.271e-04.

52 50 47 42 40 37 32 27 23 19 14 107 7 5 3 3 11 0 0 0 O

08
1

0.7

06
1

Misclassification Error
04 05

T T T T T
10 8 6 4 2

Log(#)

Figure 5.9: Misclassification error varying A value during the 10-Fold cross validation with Lasso. The leftmost vertical
dashed line is the A that corresponds to the minimum misclassification error, and the rightmost vertical dashed line is the
) that corresponds to the minimum misclassification error plus 1 standard error.

Figure 5.10 shows how the coefficients estimates decreases for ST level with the In(\) vari-
ation, with the vertical dashed line that corresponds to the best \. We can observe that the
coeflicients estimates, which corresponds to the best A, are quite shrunk and some variables
are no longer influential due to a coefficient estimate equal to 0. Moreover, Figure 5.11 shows
that the maximum explained deviance obtained from the best A is 0.7730992. For what con-
cerns the metrics values of final model, the Training Accuracy value is 0.821 with a 95% con-
fidence interval [0.814, 0.827], the AIC value is -47461.61 and the BIC value is -47041.05.
AIC value and BIC value are very satisfactory and they are better than the values returned
by Ridge Regression. Moreover, the Training Accuracy value is quite near to the best value
obtained with Multinomial Logistic Regression. For what concerns the sensitivity values,
the majority of levels are predicted very well, with a values range that goes from 0.7 to 0.95.
Nevertheless, some levels as RWB, LWB, CF, RW and LW have unsatisfactory sensitivity, in

particular the forward positions that have values less than 0.13. We can conclude saying that

73

Lasso performs similarly to Multinomial Logistic Regression in terms of metrics values, in
which Lasso has sharply obtained better results for AIC metric and BIC metric but Lasso
has the disadvantage of being inferior for what concerns the worst predicted sensitivity val-
ues. Finally, Lasso turns out to have satisfactory performance in the training phase thanks to

the application of variable selection.

Degrees of Freedom
13 33 2 8 2

Coefficients: Response ST
O‘O

T T T T T
-10 -8 8 -4 2

Log Lambda

Figure 5.10: Coefficients estimates for ST level varying \ value with Lasso. Each variable, associated to a specific color,
is reported on the right of the plot.

0.6 08

Explained deviance
0.4

T T T T T
10 8 & 4 2

log(2.)

Figure 5.11: Explained deviance according to A value in Lasso. The vertical dashed line is the \ that corresponds to the
minimum misclassification error plus 1 standard error.

The final step is to analyze the importance of predictors according to the coefficients esti-

74

mates obtained. Due to the high number of levels and the associated covariates, only the
coefficients estimates about ST and CB player’s positions will be reported. The absolute
shrunk coeflicients estimates differ for each response variable level as suggested from Figure
5.12 and Figure 5.13. All the zero values represent the predictors chosen in the variable se-
lection process which have no influence on the players’ positions predictions. The absolute
coeflicients estimates for ST level assume values in the range between 0 and 0.377, with the
result that the effect of the coefficients is not that punchy. Anyway, the most influential pre-
dictors are Defensive_ Work_RateHigh, Attacking Work_RateHigh, Body_TypeUnique and
Finishing. For what concerns the absolute coefficients estimates for CB level, their values are
included in a range between 0 and 1.75. In this case, Body_TypeNormal (170-) has a greatim-
pact on the resulting model than the other influential predictors as Body_TypeNormal (170-
185), Defensive_ Work_RateHigh, Heading Accuracy and Preferred_FootRight. Indeed, the
difference of the absolute coefficients estimates between the highest value and the second

highest value is around 1.3.

Weight_kg - 0
Weak_Foot5 - 0
Weak_Footd - I 025149
Weak_Foot3 - [
Weak_Foot2 - [001205
Volleys - 0.05528
Vision - 0.08
Strength - I 005752
Stamina - I 0.10943
Sprint_Speed -
Shot_Power -
Short_Passing:Long_Passing =
Short_Passing:Ball_Control -
Short_Passing - I 0.04031

..‘.
°
2
0

Reactions - 0
Preferred_FootRight - 0
Positioning - I 010422
Penalties - I 002357
Long_Shots - 0
Long_Passing:Vision - | 0.00034
Long_Passing - I 0.04568
Jumping - Il 0.00468
Interceptions - I 0.0902

Height_cm - W 000523
Heading_Accuracy - 1, 022068

Free_Kick_Accuracy - 0
Finishing:Long_Shots - | 0.00068
Finishing - I 025143
Dribbling:Ball_Control = [0.0013
Dribbling:Agility - 0

Dribbling - I 0.02013
Defensive_Work_RateMedium = I 0.06542
Defensive_Work_RateHigh - 1 03763
Curve:Free_Kick_Accuracy - | 0.00041
Curve - M 0.00714
Crossing - I, 02437\
Composure = | 0.00107
Body_TypeUnique - I, 030674
Body_TypeStocky (185+) - [
Body_TypeStocky (170-185) - 1 027934
Body_TypeStocky (170-) - 0
Body_TypeNormal (185+) - 0
Body_TypeNormal (170-185) - 0.00016
Body_TypeNormal (170-) -
Body_TypelLean (185+) -
Body_TypeLean (170-185) -
Ball_Control:Agility =
Ball_Control =
Balance -
Attacking_Work_RateMedium -
Attacking_Work_RateHigh - 1 032888

coooooo

Agility - 0
Aggression:Interceptions - 0
Aggression = Y
Acceleration:Sprint_Speed - 0.00022
Acceleration - | 0.00099
0.0 0.1 0.2 03

ST coefficients estimates

Figure 5.12: Absolute coefficients estimates for every variable of the ST level.

75

Weight_kg - 0

Weak_Foot5 - 0
Weak_Foot4 - I 0.06931
Weak_Foot3 - 0 001511
Weak_Foot2 - 0
Volleys - M 001435
Vision - [005502
Strength - I 021677
Stamina - I 0.13784
Sprint_Speed - I 006524
Shot_Power - 1 0.00899
Short_Passing:Long_Passing - [
Short_Passing:Ball_Control - 0.0012
Short_Passing - 0
Reactions - | 0.00352
Preferred_FootRight - I 029448
Positioning - I 0.09751
Penalties - 1 0.00985
Long_Shots - 0
Long_Passing:Vision - o
Long_Passing - | 0.00205
Jumping - I 0.0s291
Interceptions - 022907
Height_cm - I 0.05377
Heading_Accuracy - I 029167
Free_Kick_Accuracy - 0
Finishing:Long_Shots - 0.00042
Finishing - 1 0.00772
Dribbling:Ball_Control - 3e-04
Dribbling:Agility - [
Dribbling - I 007135
Defensive_Work_RateMedium - 0
Defensive_Work_RateHigh - I, ©.35769
Curve:Free_Kick_Accuracy = 0
Curve - 0.00091
Crossing - 0.2476
Composure - | 0.00407

Body_TypeUnique -
Body_TypeStocky (185+) -
Body_TypeStocky (170-185) -
Body_TypeStocky (170-) -
Body_TypeNormal (185+) -
Body_TypeNormal (170-185) -

|ooooo I
°
s
b
a
8
N

Body_TypeNormal (170-) - __RECZY
Body_TypelLean (185+)- 0
Body_TypeLean (170-185) - I 0.08542
Ball_Control:Agility - 0
Ball_Control - 1 0.00807
Balance - 1 001041
Attacking_Work_RateMedium - I 0.03619
Attacking_Work_RateHigh - I o.1736
Agility - I 0.02108
Aggression:Interceptions - | 0.00238
Aggression = 0
Acceleration:Sprint_Speed - 0
Acceleration - I 0.08379

0‘0 OI5 1.0
CB coefficients estimates

Figure 5.13: Absolute coefficients estimates for every variable of the CB level.

The code concerning Ridge Regression is shown in Listing § A.7.

5.5.3 Predictions

Given the Ridge Regression metrics values obtained in the training phase, we cannot expect
better results in prediction phase. For what concerns the metrics values in prediction phase,
the Test Accuracy value is 0.748 with a 95% confidence interval [0.733, 0.763] and the AUC
valueis 0.93. The Test Accuracy is slightly lower than the Training Accuracy, as expected. For
what concerns the sensitivity values, the situation does not change for RWB, LWB, CF, RW
and LW levels. CB and ST levels are the most accurate as verified in the previous methods.
The only positive side is that the AUC value is very satisfactory.

Contrary to what was seen with Ridge Regression, the satisfactory results obtained during
the training phase suggests that Lasso is expected to return satisfactory results even in the
prediction phase. For what concerns the metrics values, the Test Accuracy value is 0.811
with a 95% confidence interval [0.798, 0.824] and the AUC value is 0.962. The Test Accu-

racy is slightly lower than the Training Accuracy, as expected. Moreover, the metrics values

76

obtained in prediction phase are almost equivalent to that obtained with Multinomial Lo-

gistic Regression. For what concerns the sensitivity values, the situation does not change too

much for the worst predicted response variable levels. More in detail, RWB, LWB and RW

levels have an higher sensitivity values with respect to those obtained in the training phase.

Unfortunately, CF and LW levels have a sensitivity value less than 1% and they are predicted

as midfielders with greater propensity to attack. The AUC value is very satisfactory. Figure

5.14 shows the confusion matrix obtained in prediction phase for Lasso.

CBH - 8 7 0 1 22 2 1 0 1 0 0 0 0
RB1 10 162 8 34 0 3 4 5 0 0 0 0 0 0
LBl 7 1 147 0 36 2 0 0 6 1 0 0 0 0
RWB 0 14 0 15 1 0 0 0 0 0 0 0 0 0
LWB 0 0 11 0 20 1 0 0 5 0 0 0 0 0
CDMY 16 3 1 4 0 193 36 3 1 4 0 0 0 0 Freq
}.(; I 600
o CM1 1 0 0 1 1 26 114 7 0 28 1 0 0 0
2 400
g RIM A 0 5] 2 11 0 0 7 267 13 30 0 20 9 2
s 200
LM 0 0 5] 0 5 1 1 8 123 15 0 5 10 0 0
CAM 0 0 0 1 0 1 32 34 12 468 7 14 8 5
CF{ 0 0 0 0 0 0 0 2 0 0 0 0 1 0
RW| 0 0 0 0 0 0 0 3 2 2 1 8 4 3
Wi 0 0 0 0 0 0 0 1 0 0 0 0 0 0
sT1 0 1 ¢ o o0 o0 0 8 5 8 3 9 3 -
cB RB B RWB LWB COM CM RM M CAM CF RW LW ST
True label

Figure 5.14: Confusion matrix in prediction phase for Lasso.

In conclusion, Lasso is one of the best technique found and it has similar results to those ob-

tained with Multinomial Logistic Regression. On the other hand, Ridge Regression model

is not suitable to our case.

77

78

Machine Learning Techniques

This chapter describes Machine Learning techniques which belong to the classification do-
main. The aim of Machine Learning methods is to make predictions of the categorical re-
sponse variable Best_Position. The techniques involved in this chapter are Decision Tree,
Random Forest, K-Nearest Neighbour, Naive Bayes and Support Vector Machine. Further
on, a comparison between Machine Learning techniques and the other Data Mining tech-

niques deepened in Chapter § 4 will be investigated.

6.1 Premises: Bagging

Bagging, acronym of Boostrap Aggregating (James et al., 2021, Chapter 8), is an ensemble
technique in which ¢ simple classifiers, called weak learners, are trained independently and in
parallel. When the training phase comes to the end, a new instance can be classified through
the voting technique, in which each classifier predicts the class (a.k.a. vote) and, after com-
bining these predictions altogether, the most predicted class is returned. Figure 6.1 shows
graphically Bagging steps.

The main assumption in ensemble techniques is that every weak learner is independent of
each other. The Bootstrapping resampling method is the attempt to reach the independence,
allowing the creation of ¢ different samples for training each classifier. These samples have
the same training set size, with the difference that the instances are sampled with replacement.

From a theoretical point of view, building separate models with its own training set and

79

Sample dataset T 12 Tm

S Y

Base classifier C1 C2 Cm
R
Predictions ‘ co .
| S S
Final Prediction —
|

Figure 6.1: How Bagging technique works.
Source: https://www.geeksforgeeks.org/ml-bagging-classifier/

averaging the prediction results leads to reduce the variance and to maintain the same bias.
In practice, variance can be reduced but samples are not completely independent, with the
consequence that the bias tends however to increase. So, Bagging does not work well when

the samples are too much similar or when the algorithms used for classifiers are stable.

This technique is very useful for Decision Trees (see Section § 6.2), which suffers of high
variance. Combining them, the prediction values improves due to the reduction of the vari-
ance, and the result of this aggregation is the Random Forest technique (see Section § 6.3).
Even though the interpretation of Bagging technique is difficult, it is possible to obtain a
summary of variable importance taking the mean of the sum of all the Gini index entropy

measures obtained from each classifier.

80

https://www.geeksforgeeks.org/ml-bagging-classifier/

6.2 Decision Tree

Decision Tree (Mitchell, 1997, Chapter 3) is a supervised learning technique which allows to
learn if-then rules inferred by data predictors and representable through a tree structure, as
in Figure 6.2. Every decision tree is composed by nodes and branches, where each node repre-
sents an attribute and a branch represents one of the possible values of the attribute itself. A
decision tree starts with the starting node, called root, represented by a specific attribute and
from which m branches are created downwards, where m is the number of possible values

that the attribute can assume. From this point two alternatives are available:

¢ another decision tree can start from a branch, which is called subtree, and this pro-
cess continues until reaching a leaf node, which corresponds to a specific class of the
response variable;

¢ if there are no other attributes to explore, a leaf node is returned.

ROOT

s

INTERNAL INTERNAL
NODE NODE

l LEAF ‘ | LEAF INL%FS‘IIEAL INTERNAL
NODE
\ ! |

N

[LEAF } LEAF LEAF =4

Figure 6.2: The basic structure of a decision tree.
Source: https://blog.quantinsti.com/decision-tree/

\

=

ly

In this context, a decision tree is called classification tree and it can be represented as a disjunc-
tion of conjunction of constraints that defines all the possible paths from the root to the leaf

node for a specific response variable class.

https://blog.quantinsti.com/decision-tree/

ID3'! (Iterative Dichotomiser 3) algorithm allows to build decision trees with top-down re-
cursive approach in which the core of the algorithm is to select the optimal attribute to test
at each node of the tree. To this aim, the attribute which maximises the /nformation gain
is chosen, where information gain is a statistical property which measures the expected im-
purity reduction obtained by partitioning the training set instances with the attribute itself
(Mitchell, 1997, Chapter 3). Formula (6.1) defines the information gain as

[Sa=|
5]

G(S,a)=1(S)— Y

veV (a)

1(Sa=v); (6.1)

where S represents the training set instances, a is the attribute involved, V'(a) is the set of
values that the attribute a can assume and finally [is the impurity function. More in detail,
the impurity function I measures the quality of a split for a certain attribute. Let prop;, =
% be the proportion of training set instances labelled with class k, withk = 1, ..., K. Then,

two possible impurity functions are (see Decision Trees mathematical formulation)

* Entropy, which computes the Shannon entropy of the possible classes, formulated as
K
I(S) = — >, propy In(propy);

* Gini Index, formulated as I(S) = Zle propy(1 — propy).

The deeper the tree, the more complex the if-then rules, with the consequence that the model
fits better. Nevertheless, if limits on the decision tree depth are not set, the decision tree learns
perfectly the training data at the expense of not predicting well unseen data. In other words,
the risk of overfitting is very high. To support this, ID3 algorithm assumption is that shorter
decision trees are preferred over larger trees and the attributes with highest information gain
are close to the decision tree root. This assumption suggests to limit the depth of the decision
tree if the overfitting phenomenon occurs, or to apply pruning techniques as Reduced Error

Pruning or Rule Post-Pruning.

6.3 Random Forest

Random Forest (James etal., 2021, Chapter 8) is a supervised learning technique which takes
inspiration by Bagging method. With Random Forest ¢ different Decision Trees are built,
each of these trained by a different training set sample created with the Bootstrapping tech-

nique. The main difference from the Bagging method concerns the split operation when

82

the optimal attribute needs to be chosen for every node. While in Decision Tree technique
the entire set of attributes is considered, in Random Forest only m attributes are chosen ran-
domly, with m < p and p is the total number of available attributes. When the training
phase comes to the end, predictions from each Decision Tree are aggregated to return the
class through the voting technique.

The choice of taking randomly only a subset of attributes at each node is made for respect-
ing the independence assumption between all the Decision Trees involved. Indeed, if every
Decision Tree chooses a strong variable from the training set due to the highest information
gain, all the Decision Trees would be correlated and so very similar averaging them. It is clear
that this choice would be useless and it would broke the independence assumption. Indeed,
the Random Forest aim is to build different Decision Trees that are uncorrelated between
them and random subsets of features are considered at each node to reach the goal.
According to the literature (Hastie, Tibshirani, and Friedman, 2009, Chapter 15), Random
Forest technique should outperform Decision Tree technique in terms of metrics values. It
is important the choice of the m parameter, that is the cardinality of the variables subset. It
is suggested to use a small value if the variables are highly correlated. Moreover, the number
of Decision Trees (indicated with the ¢ parameter) is suggested to be as high as possible in

order to not incur in overfitting.

6.4 K-Nearest Neighbour

K-Nearest Neighbour, well-known with KNNIC! acronym (Mitchell, 1997, Chapter 8), is
asupervised learning and instance-based technique for approximating discrete-valued target
functions. The learning process simply saves every training data instance (x, f(x)) into the
memory, where x is the instance itself and f(x) is the target function. The classification of
a new instance Z,,, depends by the parameter K, a positive integer which allows to iden-
tify the closest training data instances to Zpe,,. The new instance ¢, is classified with the
most common class between all the K nearest training data instances. In this thesis, K is
the number of response variable levels, so to not confound the mathematical notation we
assume from now that the parameter K will be named 7'.

The main assumption is that each instance can be viewed as a point in an Euclidean p-dimen-
sional space, where p = 1, ..., P and p is the number of predictors, and the Euclidean dis-
tance determines the 7" nearest training data instances. Let a,(Zpe,) be the p-th feature of

the new instance Z,,,,. Then, the Euclidean distance between two different instances x; and

83

.I'j 1S

d(wi,z;) = | D {ap(zs) — ap(;)}

T nearest training data instances have been found and the new instance %, is classified as

follows:

f(Tnew) = arg maXZ H{k = f(x)},

keK 4

wherek = 1, ..., K denotes the number of response variable levels, and the identity function
I{k = f(x;)} is equal to 1 when the equality is verified (otherwise 0). The classification
algorithm can be refined adding a weight for each of the T" nearest neighbors, in order to
make neighbors closer to the new instance 2., more relevant. The weights (wy, ..., wr)
are determined by a kernel function of the Euclidean distance, which corresponds to the

inverse square of the distance between each neighbour and the new instance, as follows:
-2
Wy = K(d($t7 mn@w)) = d(xta wnew) 5

witht = 1, ..., T. Consequently, the new instance T, is classified as follows:

f(Zpew) = arg maXZwiI{k = f(z)}.

keK —1

If the points exactly matches with the consequence that d(zy, Tnew)? is equal to 0, then

f(Znew) = f(21).

The KNN algorithm is considered as robust to noisy data and it works well with a large
training set. Unfortunately, it is not possible to compute the variable importance. Choosing
the right T parameter is crucial in the KNN performance; indeed, a small T value leads to
obtain a flexible classifier with low bias and high variance, on the other hand a big T value
leads to obtain a less flexible classifier with high bias and low variance. By a computational
point of view, KNN is slower in prediction phase due to the entire set of instances to consider.
To speed up the memory indexing process, £d-tree method allows to store every instance at a

tree leaves. In this way, the closer the instances to each other, the closer to each other in the

84

tree leaves.

6.5 Naive Bayes

Naive Bayes (Mitchell, 1997, Chapter 6) is a supervised learning technique based on Bayes’
theorem. The training set is composed by tuples composed by an instance x and its corre-
sponding target value, where the instance z is represented as a conjunction of attribute values
Z1, ..., Tp and the target function can assume one of the possible K values. Each training set
instance is used in the training phase to compute the probability terms of the Bayes formula
and, when the training phase is end, all the attribute values are given in input to the Naive

Bayes classifier, returning at the end the most likely class. The Bayesian formulation is

P(xy, ..., xp|k)P(k)

P(Y = k|X =4, ...,x,) = argmax

keK P(fL‘l,...,l‘p>
= argmaxP(zy, ..., z,|k)P(k), (6.2)
keK

where

* P(k) is the prior probability of falling into class k;

* P(z1,...,xplk) is the posterior probability of observing the attribute values of in-
stance x given the target class £;

* P(z1,...,xp) is the prior probability of observing the attribute values of instance .

Formula (6.2) is simplified removing the denominator P(x1, ..., z,) because it does not
depend by £, so it becomes a constant and irrelevant for the classification. Anyway, the
term Naive is applied to this technique because the main assumption is that each attribute
value of the instance x is conditionally independent, given the target value of the instance
x. With the classic Bayes formula, K * N different combinations are necessary to compute
P(z1, ..., xp|k). Instead, if the main assumption is applied, then the number of different
combinations to compute P(x1, ..., 2, |k) is simply Hle P(z,|k). The final results is that
the assumption allows to transform an intractable problem to be computationally feasible,
allowing a drastic reducing of the training computational time. Even though the assumption

is not always respected, it has been demonstrated that Naive Bayes technique could perform

85

well. So, Naive Bayes assigns a class to a new instance according to probability

P(Y = k|zy,...,) = argmaxP(k) [[P(x, k).

keK el

So, before predicting the class of a new instance, P (k) and P(z,|k) are the estimated prob-
abilities computed starting from the training set instances. Moreover, P(z,|k) is equal to
tot’;—’znk, where 1y, is the number of training set instances of class k for which z,, attribute
value is encountered and total,,, is the total number of training set instances of class k. Any-

way, this computation can lead to obtain a result equal to 0 if there are no instances ny. As

ng+mp

totalnk +m?’ Where

workaround, m-estimate of probability is provided and it is equal to

* pvalue is the prior probability, usually fixed as 1/k if the attribute contains k values;

* m value, namely equivalent sample size, is a constant used to weight the prior proba-

bility.

Parameters p and m allow to increase the size of the original sample with the addition of

virtual instances, in order to avoid zero probability.

6.6 Support Vector Machine

Support Vector Machine, well-known with SVA4 (G] acronym (James etal., 2021, Chapter 9),
is a supervised learning technique which classifies new instances defining nonlinear bound-
aries for separating each response variable class. Asshown in Figure 6.3, SVM can be thought
of as a generalization of the maximal margin classifier, which defines the hyperplane in the
p-dimensional space that divides the space in p-1 parts.

The p-dimensional space contains each training set instance and the goal of the separating
hyperplane is to be as far away as possible from the training set instances. Moreover, the
distance between the hyperplane and the nearest training set observations is called margin,
which gives rise to the maximal margin hyperplane. The nearest training set observations are
called support vectors and the assumption is that they are the only observations which affect
the change of the maximal margin hyperplane. Unfortunately, the maximal margin classi-
fer cannon exist due to the impossibility of separating the p-dimensional space with linear

boundaries, causing the non-existence of a separating hyperplane. For this reason, Support

86

+ Supporf P \.“

vector _~

Support L

vector @ «

-

Figure 6.3: The basics of the Support Vector Machine.
Source: https://it.mathworks.com/discovery/support-vector-machine.html

Vector Classifier comes to our aid. Instead of having tiny margins, which make the maxi-
mal margin hyperplane change drastically and incur in overfitting, Support Vector Classifier
relaxes the assumption in which all the training observations have to be classified correctly.
Indeed, the presence of some training observations in the wrong hyperplane side (these are
considered as misclassified) or in the wrong margin side is tolerated. The optimization prob-

lem for a linear classifier can be formulated as follows:

max M,
Bovﬁlv“wﬁpveoael7"'75717M

st. yi(Bo+ Briza + ... + Bpxip) > M(1 —¢;),

»
> Bh=1
p=1

61'20’

where

* M is the hyperplane margin width;

87

https://it.mathworks.com/discovery/support-vector-machine.html

¢ ('is a nonnegative tuning parameter responsible of how much the margin errors are
tolerated. If C' = 0 no violations are tolerated, otherwise no more than C misclassified
training set instances are accepted. The higher the C parameter the higher the bias and
the lower the variance, conversely the lower the C parameter the lower the bias and the
higher the variance;

* ¢; indicates the position of the i-th training set instance in the p-dimensional space. If
€; = 0, then the i-th observation is located in the right margin side, otherwise it is
located in the wrong margin side. Moreover, if ¢, > 1, then the i-th observation is
located in the wrong side of the hyperplane, and it is considered as misclassified.

SVM extends the Support Vector Classifier formula (6.3) using a kernel function K, a simi-
larity function which is applied to each feature in order to obtain nonlinear boundaries for
discriminating every class in the p-dimensional space. This type of approach is called ker-
nel trick. Moreover, the kernel function is computationally efficient because only (Z) inner
products among all the pairs of the training set instances are computed. The optimization

problem is reformulated as follows:

max M,

B05B15-+,Bp€05€1 5---5€n, M

P
st yi(Bo+ Y BpE (mi,x0)) > M(1—¢),
p=1
P
> B=1
p=1
€; Z 07
N
> <c
n=1

The kernel function K (x;, «}) takes in input two different training set observations, where

i # 4', and they can be of different types as follows:

* lincar kernel, which is K (z;,x7) = > _ | TipTirs

* polynomial kernel, whichis K (z;, z}) = (1+ 25:1 TipTirp)?, where d is the nonneg-
ative integer degree. The higher the degree the more flexible the decision boundaries;

1 P . .

* 7bf kernel, which is K (;, x}) = exp(—y > ,_; (¥ip — Tirp)?), where 7 is a positive
constantand it defines how much a single training set instance is influential. The larger
the v value, the closer other training set instances have to be in order to be influenced.

88

Finally, a one-vs-one classification approach is applied when the response variable classes are
K > 2. The one-vs-one classification approach builds (12() SVMs, in which every SVM com-
pares two different classes k and k', with k& # k’. Then, every SVM takes in input a test set
instance in order to return the predicted class. At the end, the final classification corresponds

to the most predicted class.

89

90

Machine Learning Results

This chapter focuses on the implementation and the discussion of the prediction results ob-
tained from the Machine Learning techniques described in Chapter § 6. The details about
the implementation will be supported by Python (Van Rossum and Drake, 2009) code.

7.1 Premises

7.1.1 Dataset adaptation

The same dataset used for Data Mining techniques has been exploited for Machine Learning
techniques. Nevertheless, some modifications are needed for making the dataset compatible
with Python data structures. The training set is composed by the 80% of the dataset observa-
tions and the test set is composed by the remaining 20% of dataset observations, as in Data
Mining techniques (see Subsection § 5.1.1). For both of two dataset splits, observations are
balanced such that the same multinomial distribution of the response variable is maintained.
From this point, a set of operations has been applied both for training set and for test set.

The first operation is to ensure that the non-numeric attributes are considered as categorical
variables, namely, Best_Position, Weak_Foot, Attacking Work_Rate and Defensive Work_-
Rate variables. Next, it is necessary to transform every categorical variable into an one-hot
encoding form, since algorithms like KNN can only work with numeric variables. One-hot

encoding is applied with Python sklearn.preprocessing.OneHotEncoder library (see Function

91

OneHotEncoder) and it allows to create a number of new columns equal to the total num-
ber of different discrete values of the categorical variable involved. After that, the significant
interactions found in Data Mining techniques are added. Each interaction is added as a col-
umn named Variablel:Variable2, in which every cellis the product between Variablel value
and Variable2 value. This step is necessary because, despite of R (R Core Team, 2022) meth-
ods, Python is not able to automatically add an interaction between two variables as column
in a dataset. Afterwards, the predictors and the response variable of both the training set
and the test set are split into two different data structures X and Y, compatible with the data
structures required from the Machine Learning Python methods.

The final step is to create a scaled version of the training set and the test set through the
so-called standardization, which is an attribute scaling technique that transform data so
that to ensure mean 0 and standard deviation 1. Standardization is applied with Python
sklearn.preprocessing.StandardScaler library (see Function StandardScaler) and its usage is
suggested when a standard normal distribution for the attributes values is supposed. If the
latter suggestion is not true, the alternative attribute scaling technique is normalization, which
scales attributes values in a fixed range, usually between 0 and 1. Anyway, even though the
attributes do not follow a normal distribution, standardized dataset has led to better results
than the normalized dataset. So, the two standardized dataset splits will be used in KNN and
SVM techniques, because they are not scale invariant.

The code concerning the dataset adaptation for Python is shown in Listing § B.7.

7.1.2 k-Fold Cross-Validation

All the Machine Learning techniques that we will see further on (except Naive Bayes) need to
find the best hyperparameters, in order to obtain a model as accurate as possible and which
does not suffer from the variability of the data and the overfitting phenomenon, when possi-
ble. Resampling methods comes to our aid, with samples from the training set drawn repeat-
edly and the model involved refitted on each sample. In this thesis, k-Fold Cross-Validation
is the chosen cross validation approach, in which the training set is divided into k folds of
equal size. One fold at a time, starting from the first to the last, is used for testing the model
fitted on the remaining k-1 folds. The fold delegated for testing the fitted model is called va/-
idation test. The procedure is repeated k times, so that all folds are used as validation test one
at a time. Finally, the average of the misclassification errors obtained at each step is returned
as the estimate of the k-Fold Cross Validation (James et al., 2021, Chapter 5).

92

In this thesis, GridSearchCV is the function used for applying k-Fold Cross-Validation method
within a set of hyperparameters, available from the Python sklearn.model_selection library
(see Function GridSearchCV’). There are three fundamental parameters to set in GridSearchCV

function:

* estimator, which is the Machine Learning model we want to apply;

* param_grid, which is a dictionary composed by a set of hyperparameters to try in the
estimator;

* cv, which determines the number of folds to generate from the training set. More
in detail, Stratified KFold function of the Python sklearn.model_selection library (see
Function Stratified KTold) has been applied, which allows to preserve the same multi-
nomial distribution of the response variable on each sample.

We decided to apply a 10-Fold Cross-Validation, so that k=10 folds are generated. Grzd-
SearchCV" function returns the estimator with the best found parameters refitted on the
whole dataset.

The code concerning the application of the k-Fold Cross-Validation is shown in Listing § B.8.

7.1.3 Metrics

The metric used to evaluate a model after the training phase is Training Accuracy, which
is the ratio between the sum of the training set correct predicted values for each response
variable level and the total number of training set observations. The correct predicted values
can be accounted for by the confusion matrix diagonal computed using the confusion_matrix
function of the Python sklearn.metrics library (see Function confusion_matrix).

The metrics used for evaluating a model in prediction phase are listed below.

* Test Accuracy, which is the ratio between the sum of the test set correct predicted
values for each response variable level and the total number of test set observations.
The Test Accuracy computation is performed as in Training Accuracy metric.

¢ AUC, the same AUC metric described in Subsection § 5.1.2. The only difference is in
the computation of the AUC value, obtained by the Python sklearn.metrics.roc_auc_sco-
re library (see Function roc_auc_score).

The code concerning the metrics computed is shown in Listing § B.9.

93

7.2 Decision Tree

Decision Tree is the first Machine Learning technique we consider, applied using the De-
cision TreeClassifier function, available from the Python sklearn.tree library (see Function
Decision TreeClassifier). Decision TreeClassifier function works only with numeric variables.
Moreover, it allows to generate a decision tree classifier with the aim to predict the right class
by learning decision rules deduced from the attributes of the training set. In a first trial, we
build the default decision tree classifier from the training set, in which Gini Index impurity
function is applied together with a maximum depth of the tree set to None. After the train-
ing phase, a perfect Training Accuracy equal to 1.0 is returned, as expected from the theory.
Next, we make predictions on the fitted model, giving in input the test set and obtaining
a Test Accuracy equal to 0.627. It is even possible to define a ranking of the variable im-
portance, which is defined as the total reduction of the impurity function led by a specific
feature. In other words, the most important variables are those with the higher information
gain, and so the first nodes at the top of the decision tree. Figure 7.1 shows that Positioning,
Heading Accuracy and Interceptions are the first three variables selected for the decision tree

building.

Positioning 0.120696

Heading_Accuracy s 0.112071
0.0592544
0.0531754
0.0399892
0.0348537
0.0309075
0.0261295

Long Passing
Aggression:nterceptions

9!

Preferred Fcot Right
Agility:Dribbling
Finishing:| Long Sh t

Height cm 02293,
Acceleration:gprint_Speed 00217511
print_Speed 00195221
Short_Passing:Long Passlnq 2!
Finishing
Free_Kick_Accuracy: cur—ve

\olle
Preferred Foot 3

i Balance
Dribbling:Ball_Control
shot_power

ilit

short_Passing Ball_c}::gmrz;’\
Penalties

camposure

Variables

rmblmg
Free_Kick_ Accuracy
Ball_Control

Shcrt Passmg

Defens\ve Work_Rate Me |um

Type_Lean 1175 185)
Bad ype Normal (170-185)
Attacking_Work_f Rate Medlum

Attacking_\ Workk Aate High

Body_Type_Normal (170-)
Body Tyrpe Lean (185+]
Body_1ypE Lean (170-)

Body_Type_| Ncrmamssﬂ
ak_Fool

Weak_Foot_4
Attacking_Work_Rate_Low 0.
Body Type_Stocky (170-185) 0.
Defensive. Work Rate High

ak_Foof

Defensive_Work_Rate_Low 0.000324811

Body._ Ty&e stcc‘ky (185+) {8.09796e-05

pe_Unique {8.09079€-05

Body_ Type Slc(ky (170-) {0 . i i ‘ . ‘

0.00 0.02 0.04 0.06 0.08 010 0.12
Variable Importance Scores

o

2

Figure 7.1: Variable importance of the standard decision tree.

94

Anyway, itis clear that the standard decision tree overfits. To limit the overfitting phenomenon,
10-Fold Cross-Validation has been applied in order to look for the best hyperparameters to

set, which are:

* criterion, the impurity function considering gznz and entropy values;

* max_depth, the maximum depth of the decision tree considering numeric values from
1 to 30.

After having applied 10-Fold Cross-Validation, the best model found has criterion hyperpa-
rameter set to entropy and max_depth hyperparameter set to 11. Limiting the maximum
depth of the decision tree, we suggest that the Training Accuracy is lower than the Training
Accuracy obtained with the standard decision tree. In addition to it, we expect that the Test
Accuracy increases in order to get closer to the Training Accuracy. Indeed, the Training Ac-
curacy is 0.846 and it is quite satisfactory. For what concerns the prediction phase, the Test
Accuracy is set to 0.655, so it is closer to the Training Accuracy but anyway not very satis-
factory. Finally, the returned AUC value is set to 0.816 and we can suggest that the overall
class-specific performance is quite good. For what concerns the sensitivity values, it follows
that the best predictions are obtained for CB and ST positions, with a sensitivity value of
0.88 and 0.87, respectively. The worst prediction is obtained for RWB, RW and LW posi-
tions, with a sensitivity value of 0.14, 0.11, and 0.03. respectively. These results confirm
the trend to better predict the positions that correspond to the most frequent instances and
central zones of the football pitch. As in the standard decision tree, Figure 7.2 shows that
Interceptions, Heading Accuracy and Positioning are the first three variables selected for the
decision tree building, but with different values of variable importance.

The code concerning the Decision Tree technique is shown in Listing § B.10.

7.2.1 Pruning

Even though 10-Fold Cross-Validation has been applied, the difference between Training Ac-
curacy value and Test Accuracy value is still large, supposing that the model overfits. To make
the decision tree to generalize better, the Decision TreeClassifier function offers a method
called cost_complexity_pruning_pathwhich computes the pruning path when Minimal Cost-
Complexity Pruning algorithm is applied. More in detail, Minimal Cost-Complexity Prun-

ing (see Minimal Cost-Complexity Pruning) is the pruning algorithm for decision trees in

95

Interceptions 0736535
Heading_Accuracy 0.102316
sitioning 0.0823468
Vision:Long_| Passmg 0.0699581
Crossin 0.0622278
Preferred Foot Lef 0.0521242
Passing 0.0362659
Preferred Fcot R\ght 0.0351838
strength 0.0341581
Acceleration: Sprlnt S| eed 0.0316914
Agility: Drlb I\ng 0.0309506
Finishing 0.0300097
Aggression:interceptions 0.02668
Finishing:Long_Shots 0.0238438
“Vision 0.0139879
Stamina 0.00963593
Short_Passing:Long_Passing 0.00849783
Short_Passing:Ball_Control 0.00737893
Free_Kick_Accuracy:Curve 0.00657401
Accelerafion 0.00656607
Volleys 0.00621217
Shol Power 0.00601781
0.00582431
Aq\llty BaH Cnmtml 0.00565756
Long_Shots 0.00565261
Pena\ues 0.00552212
Jum) 0.00531187
Shurtj’assmg 0.00489244
E Balance 0.00467898
2 Aggression 0.00411348
K] Curve {m10.00406151
= Dﬂbbllng:BaH Control 0.00402465
B Sight_cm {m0.00395651
Free_Kick_ Accuracy 0.00395378
Agility 0.00364374
Weight_kg 0.00363971
Composure 4#0.00353991
Reactions {#10.00350852
Dribbling {#0.0025782
Body_Type_Normal (170-185) 410.00149329
Il_control 410.00127403
Body_Type_Lean 1170 185) 4/0.00101167
Weak_Foot_5 40.000599015
Weak_Foot_3 40.000513594
Body_Type _| Nnrmaﬂ 185%F) 40.000433776
Attacking_Work Rate ngh +0.000279534
Oot_1 {0.000182926
Body:rypeistock 185F) {0.000170534
Weak_Foot 2 10.00012824
Body_Type_Stocky (170-165) 10.00011728
Defensive_Work_Rate_Low {7-42999e-05
Weak _Foot_4 {0
Defensive_Work Rate_Medium 40
Defensive_Work Rate_High 10
Attﬂ[kmﬁgo Work Rate_Low 0
ype_Urigue 0
Body Type Stocky (170-) {0
Body Type_Mormal (170-) 10
Bod’ ype| Lean (185+) 40
\ﬁpe Lean (170-) 0
Alta:klng wor Rate_Medium {0 . . . :
0.00 0.05 0.10 0.15 0.20

Variable Importance Scores

Figure 7.2: Variable importance of the decision tree after 10-Fold Cross-Validation.

which
Ro(T) = R(T) + a|T],

where R, (T') is the Cost-Complexity measure of the tree T to be minimized, R(7T') is the

impurity function value of the leaves of tree T, T is the cardinality of the leaves in tree T
and finally « is the non-negative complexity hyperparameter that determines the pruning of
nodes from the original tree T. A node of the decision tree is pruned when its effective o

is the smallest. The pruning process can continue until reaching the parameter c«cp_alpha,
fixed before instantiating the Decision TreeClassifier method. Now, the first step is to find
the o values and the impurity values for each node at every step of the pruning process. A
decision tree is trained for each « value. Figure 7.3 shows that the higher the effective « the
higher the total impurity of the leaves of the tree (or the information gain of the leaves of
the tree decreases). Moreover, the higher the o value the more the tree is pruned, with the

consequence of reducing the number of nodes and the depth of the decision tree.

96

2.5 4 T
g '
S
m
50
=
(=]
z
5 1.5 A
o
£
Il
é 1.0 4
0.5 A T T T T T
0.00 0.05 0.10 0.15 0.20
Effective alpha
2000 4
@ 1500 -
b=
(=]
c
k5]
w 1000 1
w
o
E
=2
< 500 A
0 & @ L
T T T T T
0.00 0.05 0.10 0.15 0.20
Alpha
10 4
v 84
5
=
[=] 6
=
=
o
[
o g
. ¢ |
T T T T T
0.00 0.05 0.10 0.15 0.20
Alpha

Figure 7.3: Total impurity of leaves, number of nodes, and tree depth in the pruned decision tree given « value.

Next, Figure 7.4 shows the evolution of Training Accuracy value and Test Accuracy value,
according to the o value. Itis clear that both the values decrease with the increase of « value,
due to the increase of decision tree pruning. Moreover, the higher accuracy values are be-
tween @ = 0 and o = 0.03. Finally, we can observe that the difference between the Train-
ing Accuracy value and Test Accuracy value is very small, so we can assume that the pruned
decision tree generalizes well and it does not overfit. To confirm this assumption, we need to

train a new decision tree fixing the ccp_alpha parameter to 1.277e-03, which corresponds to

97

the o value that corresponds to the highest Test Accuracy value.

—e— training set
test set

0.8 4

0.7 1

06
\-,'L
%
>
3
]
1 o=
g T,
< 05 b 2!
o
L]
0.4 —

0.3 4

0.2 4

0.0 0.1 0.2 03 0.4 0.5
Alpha

Figure 7.4: Training Accuracy value vs Test Accuracy value, given < value.

The Training Accuracy value is equal to 0.731 and it is a reasonable result, even though it is
less that the Training Accuracy found after 10-Fold Cross-Validation. For what concerns the
prediction phase, the Test Accuracy value is equal to 0.675 and it is the highest values found
until now for this technique. Moreover, the difference between the Training Accuracy value
and the Test Accuracy value is less than 0.05, confirming that the Minimal Cost-Complexity
Pruning algorithm allows the model to not overfit. Finally, the AUC value is equal to 0.907,
which is very satisfactory. For what concerns the sensitivity values, it follows that ST, CB, RB
and LB positions are the best predicted, with a sensitivity value of 0.93, 0.89, 0.73, and 0.68,
respectively. As seen with 10-Fold Cross-Validation, RWB, RW, LW and CF positions are
those predicted worst, with sensitivity values that are less than 0.05. These results confirm
the trend to better predict the positions that correspond to the most frequent instances and
central zones of the football pitch. A little improvement is obtained for what concerns the
central positions which flank CB player. As in the previous cases, Figure 7.5 shows that
Interceptions, Heading Accuracy and Positioning are the first three variables selected for the

decision tree building, with 26 leaf nodes pruned.

98

Interceptions | 0780454
Headmg Accuracy e A
Positioning 0.0962943
Vision:Long_Passin: 0.0789166
Preferred_Foot_Lef 0.0630475
Crosslng 4 0.0588746
Preferred_Foot_Right 0.0416791
Long_Passing 7 0.0414265
Strel (% b 0.0349821
Agility:| Dnbblmg 4 0.0329821
Finishin

0.112657

0.0303499
Acceleration:Sprint_Speed - 0.0298193
Aggression:interceptions -| 0.0237489
Finishing: Long Shats B 0.0223711
on - 0.0110666
Short_Passing:Lon Passlng -1110.00492665
Short_Passing:Bal FCnntro\ 0.00487234
Stamina 4110.00418006
rint_Speed -#0.00368593
Dr\bbllng Ba\l Contro\ 0.0026086
Short_Passing 10.00253061
M:éleratmn -10.00230687
Shots #10.00185718
Agility: BEH Contm\ 0.00172835
“Agility 410.00162851
Weight_kg 10.00151962
Free_Kick_ A(Cura(y Curve 10.00141482
Volleys 10.00136271
Shot_Power 10.00135621
“Curve 10.00125321
Aggression 0.00117514
Dribbling 40.000865257
Penalties 40.000737546

Variables

Weak_Foot_5 0.000726802
ee_Kick_Accuracy 10.000593815

Body_ Type ~Stocky (185+)
Defensive_Work Rate_Medium |
Defensive_Work Rate Low |
Defensive_Work_Rate_High |
Attacking Work Rafe Medium
Attacking Work_Rate_Low
Attacking Work Rate High
Body Type Umque b

SEbb565555665655666556665

leight
Body_Type Sto:ky (170 185]
k_Foot_3
Ball Control
REactions
Balance
Jumping
Composure
Weak Fmot 2
oot_4
Body_Type_ Stccky 1170)
Body_Type_Lean (170-) -
Bcdy Type Lean (170-185)
y Type_Lean (185+)
Bc y_Type_Normal (170-) 4
Body_ Type Normal (170-185)
Body_Type_Normal (185+)
Weak_Foot_1

0.

0.15 0.30 0.25
Variable Importance Scores

=
S
o
o
&
o
i
15

Figure 7.5: Variable importance of the decision tree after pruning.

At the end, we can conclude that Pruning technique allows to improve the model in terms
of generalization, even though the metrics values are not so high and so not very reliable for
predicting the position of a footballer, except for AUC value.

The code concerning the Decision Tree technique with the application of the pruning algo-

rithm is shown in Listing § B.11.

7.3 Random Forest

As seen in Section § 7.2, the final results of a standalone decision tree could not be very satis-
factory for prediction due to the high variability of the data, even pruning the decision tree
itself. Random Forest technique comes to our aid, as it is composed by a fixed number of
independent decision trees trained on a random subset of the original attributes. This tech-
nique allows to combine these decision tree to make a prediction and, on average, improving
the performance with respect to a standalone decision tree. Random forest tends to achieve
a low variance by the effect of the combination of the decision trees, at the cost of a slight

increase of the bias. For these reasons, random forest technique should outperform decision

99

tree technique.

Random Forest is applied using the RandomForestClassifier function, available from the
Python sklearn.ensemble library (see Function RandomForestClassifier). In a first trial, we
build the default random forest classifier from the training set, in which the number of es-
timators (a.k.a decision trees) is set to 100, the Gini Index criterion is applied as impurity
function, the maximum depth of the independent decision trees is set to None and finally
the maximum number of attributes on each subset is the square root of the number of at-
tributes in the original training set. After the training phase, a perfect Training Accuracy
equal to 1.0 is returned, as expected from the theory. Next, we make predictions on the fit-
ted model, giving in input the test set and obtaining a Test Accuracy equal to 0.749. As in
decision trees, it is possible to define a ranking of the variable importance in the random for-
est. Figure 7.6 shows that Interceptions, Heading Accuracy and Aggression:Interceptions are
the first three most important variables on average. We can notice that the variable impor-
tance scores are smaller than those obtained in decision tree classifier, but this behaviour is

coherent with the fact that only a subset of variables is selected and it randomly changes for

each decision tree.

Interceptlons 0562315
Heading_Accuracy 0.0498684
Aggress\un Interceptluns 0.0492431
Posi tonlng 0.0397613
Crossing 0.0394635
Finishing: Lnr;:? Shots 0.0377107
nishing 0.037075
Vision:Long_Passing 0.0354161
Agility: rlbbhnﬁ 0.034284
0.0324837
0.0300985

Passlng
Short_Passing:| Lcng Passing 0.0271814
Long 0.0271758

Shots

Vﬂl ﬁ 0.
preferred_Foot_Right 0.0238117

Acceleration:Sprint S‘ﬁeed 0.0229709
0.0226913

Jumping 0.0217867
Height_cm 0.0208764
Free_Kick_Accuracy:Curve 0.0205881
Dribblin: 0.019401
Preferred_Foot_Le! 0.0193503
~Penalties 0.0192559
Stamina 0.018812
sprint_Speed 0.0187803
celeration 0.0180956
A? gression D 0180743
Aglllty Ball_Contro|
Dribbling:Ball_Control 00172005
Curve 0.0161486
0.0160913
Iﬁlance 0.0160705
Weight_kg 0.0157956
Accuracy 0.0145802

e _Kic|
short, Passlng Ball_t Control 0.0145138

0.01.
Shcn_Passmg 0.0136599
Reactions 0.0120465
Composure 0.011882
Ball_Control 0.00994086
Attacking Work_Rate h 0.00255772
Body_Type_f NormaT(l?(Tl& 0.00229403
ody_Type. Lean (170-185) 0.00222858
N:lackmg Work_Rate_Medium 0.0022275
Wsa'k Foot_3 0.00212701
Defensive_Work Rafe High 0.00204984
Defensive_Work_Rate_Medium 0.00198983
~ Weak F(ml 2 0.0015818
0.00152563

Weak _F
Body_Type_| Narmamesﬂ 0.00146389
Defensive Work_Rate Low 0.00106789
Body_Type Normal (I70-) 4210.000833706
Boay Type_Lean (170-) 4170.000781114
Tgee Lean (185+ 0.000767655
Bady Type d\(; (170-185) 10.000504987
Atfacking_Wol Rate Low +10.000496654
Weak F(ml 5410.000411615
pe_Unique 0.000174483
Body Type Stccky (170 0.000125793
oot_149.41775e-05
Body_Type ¢ SlcckyTlESﬂ 18.09622¢€-05 . . i i i
0.00 0.01 0.02 0.03 0.04 0.05
Variable Importance Scores

Variables
7r w
5
S
8
=
o

Figure 7.6: Variable importance of the random forest.

100

From the results obtained from the standard random forest, it is clear that the model overfits.
To limit the overfitting phenomenon, 10-Fold Cross-Validation has been applied in order to

look for the best hyperparameters to set, which are:

* n_estimators, the number of decision trees in the random forest, considering numeric
values from 1 to 100;

* criterion, the impurity function considering gini and entropy values;

* max_depth, the maximum depth of each decision tree in the random forest consider-
ing numeric values from 1 to 30;

* max_features, the maximum number of attributes to consider from the training set
for choosing the best attribute. The two possible choice are sgrt and log2, which cor-
responds respectively to the square root or the base 2 logarithm of the number of at-
tributes of the original dataset.

After having applied 10-Fold Cross-Validation, the best model found has z_estimators hy-
perparameter set to 97, criterion hyperparameter set to entropy, max_depth hyperparameter
set to 28 and max_features hyperparameter set to sgr¢. Limiting the maximum depth of each
decision tree and reducing the number of attributes considered for the best split, we could
obtain that the Training Accuracy is lower than the Training Accuracy obtained with the
standard decision tree. In addition to it, we expect that the Test Accuracy increases in order
to get closer to the Training Accuracy. Nevertheless, these assumptions do not come true
drastically. Indeed, the Training Accuracy value remains unchanged to 1.0 as in the stan-
dard random forest. For what concerns the prediction phase, the Test Accuracy value is set
to 0.753, so it is slightly closer to the Training Accuracy. The Test Accuracy value obtained
is better than the Test Accuracy value of decision tree technique. Anyway, the difference be-
tween Training Accuracy value and Test Accuracy value is around 0.25, so the model tends
to overfit. Finally, the returned AUC value is set to 0.951 and we can suggest that the over-
all class-specific performance is almost perfect. For what concerns the sensitivity values, it
follows that ST, CB, LB, CAM, RB and CDM positions are the best predicted, with a sen-
sitivity value of 0.96, 0.94, 0.83, 0.81, 0.77, and 0.71, respectively. CF, LW and RW are the
worst predicted positions, with a sensitivity value less than 0.05. These results confirm that
the central positions are the best predicted, in particular all the central defensive roles, the less
and the more advanced central midfielder and the striker. As in the standard random forest,

Figure 7.7 shows that Interceptions, Aggression:Interceptions and Heading Accuracy are the

101

first three variables selected for the decision tree building, even though with slight different

values of variable importance.

Interceptions 0.0809p44
Aggression:Interceptions 0.0645738
Heading_Accuracy 0.048986
Finishin 0.0461733
Finishing:Lon Shots 0.0450258
% 0.0419087
Preferred_| Fm)t R\gh 0.0330099
ength 0.0324376
Vision:Long_| Passln 0.0320493
preferred Foot _Le 0.0318234
Positioning 0.0316247
Agility:Dribbling 0.0314347
Short_Passing:! Lcng Passing 0.0284394
g_Passing 0.0275617
Volleys 0.0269616
Long Shnts 0.0256101
N N sion 0.0245351
Acceleration:Sprint_Speed 0.0221742
qressmn 0.0198565
Acceleration 0.0190958
Penalties 0.0188303
Sprint_Speed 0.0181898
JUmping 0.0174113
Height_cm 0.0172982
Shot_Power 0.0160078
Free_Kick. Ac:uracy curve 0.0158587
nbbllng 0.0154778
Stamina 0.0145652
0 Short_Passin 0.0127382
b Aglllty Ball_Contro 0.0123481
© Dribbling:Ball_Control 0.0120319
= Short_Passing:Ball_Control 0.0119184
b ight_kg 0.0118808
Free_Kick_Accuracy 0.0118737
ility 0.0117318
urve 0.0116587
Balance 0.0112873
Reactions 0.00948307
Composure 0.00914293
Ball_Control 0.00809202
Attacking_Work Rate High 0.00218174
Budy Typre Normal (170- 185) 0.00188208
e_Lean (170-185) 0.00172081
Attackmg Dﬂ(Rata Medium 990.00170505
‘oot_3 49 0.00167097
Defensive_Work R te Medium +770.00154644
Defensive_Work Rate High 770.00133772
‘Weak_Foot_2 470.00108042
Weak_Foot_4 4110.000879707
Defenswe Work Rate_Low +70.000756514
Bmi e_Normal (185+) 170.000743977
& Normal (170-) 410.000486029
Bod’ ype_Lean (185+) 10.000459682
Ba y Ty e Lean (170-) $0.000355229
Atta \B e_Low 10.000234075
Body_ Type stc:kﬂnnlss) 0.000229653
Foot_5 40.000204663
y e Unigle 10.000120534
Body Type Stccky (1 n ; 6.512579—05
‘Weak_F 5.38496e-05
Budyjypeﬁsmcky'{lasﬂ 5.37978e-05 : . : .
0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Variable Importance Scores

Figure 7.7: Variable importance of the random forest after 10-Fold Cross-Validation.

A final consideration is that Random Forest technique has been already built for improving
the performance of decision trees selecting a random subset of variables for the best split.
Indeed, there is no necessity of pruning decision trees in random forest, because random
forest make the performance good with full depth due to the bootstrapping; moreover, the
pruning technique is available only for standalone decision trees. So, checking max_depth
and n_estimators parameters is enough.

The code concerning the Random Forest technique is shown in Listing § B.12.

7.4 K-Nearest Neighbour

KNN is a different technique in which the K nearest training set instances influence the pre-
diction of an observation, and it is applied using the KNeighborsClassifier function available
from the Python sklearn.neighbors library (see Function KNeighborsClassifier). The stan-

102

dardized version of training set and test set is used because KNN technique is not scale in-
variant. KNN is known to be robust to noisy data and to work well with large training data.
In a first trial, we build the default KNNs classifier from the standardized training set, in
which the number of neighbors to consider is set to 5 and the uniform weight function is ap-
plied. After the training phase, the Training Accuracy value is equal to 0.756, so the value is
quite good. Next, we make predictions on the fitted model, giving in input the standardized
test set and obtaining a Test Accuracy value equal to 0.637. The Test Accuracy value is not
very satisfying and, in addition to it, the model could overfit due to a difference between the
Training Accuracy value and the Test Accuracy value around 0.12. To improve the model,
10-Fold Cross-Validation has been applied in order to look for the best hyperparameters to

set, which are:

* n_neighbors, the number of K neighbours used for classifying a new instance. The
smaller the n_neighbors value the more flexible the classifier with low bias and high
variance, at the contrary the higher the 7_neighbors value the less flexible the classifier
with high bias and low variance. A number of neighbors between 1 and 100 is consid-
ered;

* weights, the different types of weights applied for computing the nearest neighbours.
In this case, uniform and distance values are considered, where uniform weights equally
function all the neighbours instances and distance is the inverse square of the distance
between each neighbour and the new instance. Note that p value, which determines
the power of the distance metric parameter, is equal to 2 and it means that the Eu-
clidean distance is computed.

After having applied 10-Fold Cross-Validation, the best model found has 7_neighbors hy-
perparameter set to 98 and weights hyperparameter set to distance. We expect that the Test
Accuracy value increases and that the model could generalize better. Surprisingly, the Train-
ing Accuracy value is equal to 1.0, with a perfect model fitting. Indeed, the Test Accuracy
value is equal to 0.664 and it is slightly higher than the Test accuracy value found in the stan-
dard KNN classifier, but anyway not so satisfactory. Finally, the returned AUC value is set
to 0.928 and we can suggest that the overall class-specific performance is very satisfactory.
For what concerns the sensitivity values, it follows that ST, CB, CAM and LB position are
the best predicted, with a sensitivity value of 0.90, 0.89, 0.83, and 0.7,5 respectively. Unfor-
tunately there are many positions as CF, LW, RW, LWB and RWB which have sensitivity
values lower than 0.05. These results confirm the trend to better predict the positions that

correspond to the most frequent instances and central zones of the football pitch.

103

Finally, the results obtained suggests that the model overfits, and all the lateral positions are
badly predicted.
The code concerning the KNN technique is shown in Listing § B.13.

7.5 Naive Bayes

Naive Bayes is a fast technique in which the main assumption is the independence between
each predictor of the training set, allowing to simplify the computation of P(x,|k) asseenin
Section § 6.5. Assume that the distribution of P(x,|k) is multinomial. Then, Naive Bayes is
applied using the Multinomial NB function, available from the Python sklearn.naive_bayes
library (see Function MultinomialNB). This function can be applied because each value in
the training set is typed as integer. No 10-Fold Cross Validation is required due to the ab-
sence of hyperparameters to tune. So, we simply build the standard multinomial naive bayes
classifier from the training set, in which the a/pha value (a.k.a. equivalent sample size) is set
to 1.0. After the training phase, the Training Accuracy is very low and equal to 0.476, mean-
ing that the classifier is not stable due to a random classification. Next, we make predictions
on the fitted model, giving in input the test set and obtaining a Test Accuracy equal to 0.458.
The model does not overfit due to a little difference between the Training Accuracy value
and the Test Accuracy value, but the values are very unsatisfactory. Finally, the returned
AUC value is set to 0.862 and we can suggest that the over-all class-specific performance is
quite satisfactory. For what concerns the sensitivity values, it follows that CB, ST, CM and
CDM positions are the best predicted, with a sensitivity value of 0.73, 0.64, 0.59 and 0.53.
All the other positions have sensitivity values lower than 0.5 and they are badly predicted.

In order to check possible improvements, Gaussian/NB function is tried, available from the
Python sklearn.naive_bayes library (see Function GaussianNB). Difterently from Multino-
mialNB function, the assumption is that the distribution of P(z,|k) is Gaussian. No 10-
Fold Cross Validation is required due to the absence of hyperparameters to tune. So, we sim-
ply build the standard Gaussian naive bayes classifier from the training set. After the training
phase, the Training Accuracy is equal to 0.522, meaning that the classifier is not stable due
to a random classification. Next, we make predictions on the fitted model, giving in input
the test set and obtaining a Test Accuracy equal to 0.499. As in the multinomial naive bayes
classifier, the model does not overfit. Nevertheless, the Training Accuracy value and the Test
Accuracy values are not satisfactory and the model is not reliable in prediction. Finally, the

returned AUC value is set to 0.882 and we can suggest that the over-all class-specific perfor-

104

mance is quite satisfactory. For what concerns the sensitivity values, it follows that CB, ST,
CF, RM and RWB positions are the best predicted, with a sensitivity value of 0.82, 0.72,
0.62, 0.6 and 0.55. All the other positions have sensitivity values between 0.3 and 0.5, with
the worst predicted RW with a sensitivity value equal to 0.12.

In conclusion, we can deduce that Naive Bayes technique is the worst Machine Learning
technique seen until now according to the metrics values. These bad results may be caused
by failure to meet the Naive Bayes assumption, because we have previously suggested that
predictors are somehow correlated and therefore their independence cannot be achieved.

The code concerning the Naive Bayes technique is shown in Listing § B.14.

7.6 Support Vector Machine

SVM s the last Machine Learning technique we analyzed, in which the target is to define non-
linear boundaries in a p-dimensional space for predicting the class of a new instance, given the
training set observations. SVM technique is applied using the SV'C function, available from
the Python sklearn.svm library (see Function SVC). The standardized version of training set
and test set is used because SVM technique is not scale invariant. We analyzed different ver-
sion of SVM classifiers by implementing the three different kernel functions seen in Section
§ 6.6, which are linear, polynomial and rbf. The kernel function is a similarity function
that transforms the standardized training set observations in order to define the boundaries.
Different hyperparameters have been tried for each type of kernel function through 10-Fold
Cross-Validation.

First, consider /inear kernel function. In a first trial, we build the default SVM classifier
from the standardized training set, in which the linear kernel function is applied together
with the regularization parameter set to 1.0. After the training phase, the Training Accuracy
is quite satisfactory and it is equal to 0.839. Next, we make predictions on the fitted model,
giving in input the standardized test set and obtaining a Test Accuracy equal to 0.813. We
can deduce that the default model does not overfit and that the Training Accuracy value and
the Test Accuracy value are quite satisfactory. Nevertheless, we want to see if improvements
can be done. So, 10-Fold Cross-Validation has been applied in order to look for the best
hyperparameters to set. In this case, C is the only hyperparameter to check and it is the regu-
larization tuning parameter that indicates how much to tolerate the margin errors. 0.1, 0.5
and 1.0 values are considered as C values. After having applied 10-Fold Cross-Validation, the
best model found has C hyperparameter equal to 0.5, a lower value than the standard SVM

105

and so causing to reduce the bias and to increase the variance. The Training Accuracy is
0.836 and it is quite satisfactory. For what concerns the prediction phase, the Test Accuracy
is set to 0.814, so slightly bigger than the Test Accuracy found with the default model. These
results suggest that the model does not overfit and, in addition to it, the difference between
the Training Accuracy and Test Accuracy is lower than the difference in the default model.
So, the results obtained are generally good. Finally, the returned AUC value is set to 0.975,
the best found until now, and we can suggest that the overall class-specific performance is
almost perfect. For what concerns the sensitivity values, it follows that ST, CB, CAM, RB,
LB, RM, CDM, LM and CM positions are the best predicted, with a sensitivity values of
0.97, 0.96, 0.86, 0.86, 0.82, 0.80, 0.77, 0.72, and 0.6, respectively. All the other positions
are badly predicted, with sensitivity values lower than 0.26. Figure 7.8 shows the confusion
matrix obtained in prediction phase. We can conclude that all the central defensive roles, all

the midfielder positions and the striker position can be reliably predicted by the model.

CAM 0 1 7 28 1 13 1 0 0o 3% 20 2 8
] 1 18 0 2 8 0 0 0 8 1 0 0 1 600
com{ 4 15 192 o0 36 3 2 0 0 2 3 0 4 0
cF{ o 0 0 0 0 0 0 0 0 0 1 0 0 0 500
am{ 28 0 26 0o 118 2 0 0 3 1 5 0 2 0
B{ o 5 5 0 0 150 11 o 37 2 0 0 0 0 200
e
{15 1 1 0 1 5 120 10 9 0 8 4 0 2
o
o
g
T w1 0 0 0 0 0 0 0 0 0 1 0 0 1
g - 300
a.
ws{ o© 0 2 0 0 3 2 o 14 0 0 0 0 0
RB{ 0 9 3 0 4 9 0 0 o 167 5 0o 36 0
F200
aM{ 26 0 0 0 7 1 14 8 0 4 [270 19 5 3
RW{ O 0 0 0 0 0 0 4 0 0 2 6 0 3
+ 100
RWB{ © 0 0 0 0 0 0 0 1 11 1 0 17 0
st{ s 0 1 5 0 0 5 2 0 0 6 7 (I 576

T T T T T T T T T T T —0
CAM CB CDM CF CcM LB (1] ow LwB RB RM RW RWB ST
True label

Figure 7.8: Confusion matrix in prediction phase for SVM with linear kernel.

106

Then, consider polynomial kernel function. In a first trial, we build the default SVM classi-
fier from the standardized training set, in which the polynomial kernel function is applied,
the regularization parameter is set to 1.0, the kernel coeflicient gamma is set to 1.0, the in-
dependent term of kernel function coef0 is set to 1 and finally the degree of the polynomial
kernel function is set to 3. After the training phase, a perfect Training Accuracy equal to 1.0
is returned, so the model fits perfectly the standardized training set observations. Next, we
make predictions on the fitted model, giving in input the standardized test set and obtaining
a Test Accuracy equal to 0.729. Even though the Test Accuracy value is quite satisfactory,
the model could overfit due to the high difference between the Training Accuracy value and
the test Accuracy value. So, 10-Fold Cross-Validation has been applied in order to look for

the best hyperparameters to set, which are:

¢ C, the regularization tuning parameter that indicates how much to tolerate the margin
errors, considering 0.1, 0.5 and 1.0 values;

* degree, the non-negative integer degree of the polynomial kernel function, considering
1, 2 and 3 values.

After having applied 10-Fold Cross-Validation, the best model found has C hyperparame-
ter equal to 0.5 and degree hyperparameter set to 1. From the best hyperparameters found,
we can assume that the bias should reduce and the variance should increase due to a lower
C value than the one in the standard model; moreover, the degree is lower than the one in
the standard model, so the decision boundaries should be less flexible. Not too surprisingly,
all the metrics values as Training Accuracy, Test Accuracy, AUC and Sensitivity are equal
to those obtained with the application of the 10-Fold Cross-Validation in the /inear kernel
function. These results are equal because the degree is equal to 1, making the /inear and
polynomial kernel functions almost equal.

Finally, consider 76f kernel function. In a first trial, we build the default SVM classifier from
the standardized training set, in which the rbf kernel function is applied, the regularization
parameter is set to 1.0 and the kernel coeflicient gamma is set to 1/(total number of attributes
of the standardized training set * the standardized training set variance). After the training
phase, the Training Accuracy is quite satisfactory and it is equal to 0.835. Next, we make
predictions on the fitted model, giving in input the standardized test set and obtaining a Test
Accuracy equal to 0.773. We can deduce that the default model does not overfit and that the

Training Accuracy value and the Test Accuracy value are quite satisfactory. Nevertheless, we

107

want to see if improvements can be done. So, 10-Fold Cross-Validation has been applied in

order to look for the best hyperparameters to set, which are:

* C, theregularization tuning parameter that indicates how much to tolerate the margin
errors, considering 0.1, 0.5 and 1.0 values;

* gamma, the positive kernel coefficient that indicates the influence of a standardized
training set observation, considering 0.1, 0.01 and 0.001 values.

After having applied 10-Fold Cross-Validation, the best model found has C hyperparameter
equal to 1 and gamma hyperparameter equal to 0.01. The Training Accuracy is 0.819 and it
is quite satisfactory, even though its value is lower than the Training Accuracy found in the
default model. For what concerns the prediction phase, the Test Accuracy is set to 0.782, so
slightly bigger than the Test Accuracy found with the default model. These results suggest
that the model does not overfit and, in addition to it, the difference between the Training
Accuracy and Test Accuracy is lower than the difference in the default model. Finally, the
returned AUC value is 0.97, and we can suggest that the overall class-specific performance is
almost perfect. For what concerns the sensitivity values, it follows that ST, CB, CAM, RB,
LB, CDM, RM, LM and CM positions are the best predicted, with a sensitivity values of
0.95, 0.94, 0.87, 0.86, 0.85, 0.75, 0.70, 0.66, and 0.54, respectively. All the other positions
are badly predicted, with sensitivity values lower than 0.05. We can conclude that all the
central defensive roles and the striker position can be reliably predicted by the model, while
worse performances have been encountered in predicting all the midfielder positions with
respect to the previous SVM classifiers.

In conclusion, SVM is the best Machine Learning technique seen from the metrics values
point of view. The implementation of the three different kernel functions demonstrates
how much the performances are similar in terms of results, with slightly better results for
linear and polynomial kernel.

The code concerning the SVM technique is shown in Listing § B.15.

108

Relevel response variable classes

Data Mining and Machine Learning techniques have been applied in the previous chapters,
demonstrating that some techniques such as Multinomial Logistic Regression, Lasso, and
SVM, outperform alternatives in terms of metrics results. Nonetheless, one serious problem
plagues even the best algorithms, namely, the lateral positions and low-frequency positions
are badly predicted. This chapter faces this problem by relevelling the classes of the response
variable, in particular reducing the number of levels with the unification of some classes. The
reduction of the response variable classes is a data-driven process, in which the confusion
matrices of the best techniques obtained after the prediction phase are considered. At the
end, this modification is applied in each of the best techniques found and the metrics results

will be analyzed.

8.1 Classes reduction process

The original number of classes for the response variable Best_Position is fourteen, specifying
all the possible spatial position of a footballer in a pitch. Anyway, the number of levels is too
high to guarantee satisfactory predictions for each player position. This fact is confirmed by
the sensitivity values for lateral positions and low-frequency positions, discussed in Chap-
ter § S and Chapter § 7. More in detail, this phenomenon occurs for positions with few
observations, as they are often confused with more frequent classes with which they share

some characteristics. According to the response variable distribution (see Figure 3.1), the

109

dataset is highly unbalanced. The consequence is that, as observed in the prediction phase
of Data Mining and Machine Learning techniques, the simplest players’ positions to detect
are those corresponding to the most frequent observations, with bad prediction results for
the least frequent players’ positions.

Let Figure 5.2, Figure 5.14, and Figure 7.8 be the confusion matrices of Multinomial Lo-
gistic Regression, Lasso, and SVM with linear kernel, respectively. These methods return
great results in Training Accuracy, Test Accuracy, and AUC metrics, with very similar val-
ues within each technique. However, all these metrics only take into account the overall av-
erage, effectively masking the negative effects of poorly predicted classes. Sensitivity metric
comes to our aid in understanding the negative effects in prediction. Consider each column
of the confusion matrices, which corresponds to a specific player position, and focus on false

negatives. The most under-predicted classes for each position are reported below.

* CB is mostly predicted as CDM, followed by RB and LB. Anyway, the misclassifica-
tion number is negligible if compared with the total number of true positives plus false
negatives.

* RB is mostly predicted as RWB, followed by CB and RM. Anyway, the misclassifi-
cation number is negligible if compared with the total number of true positives plus
false negatives.

* LBis mostly predicted as LWB, followed by CB and LB. Anyway, the misclassification
number is negligible if compared with the total number of true positives plus false
negatives.

* RWBis mostly predicted as RB, followed by RM. Unfortunately, the misclassification
number is significant if compared with the total number of true positives plus false
negatives, and the sensitivity value is completely unsatisfactory.

* LWB is mostly predicted as LB, followed by LM. Unfortunately, the misclassification
number is significant if compared with the total number of true positives plus false
negatives, and the sensitivity value is completely unsatisfactory.

¢ CDM is mostly predicted as CM, followed by CB. Anyway, the misclassification num-
ber is negligible if compared with the total number of true positives plus false nega-
tives.

¢ CM is mostly predicted as CDM, followed by CAM and RM. Even though the mis-
classification number is less than 50% if compared with the total number of true pos-
itives plus false negatives, we suggest that the sensitivity value can be improved.

110

* RMismostly predicted as CAM, followed by LM. Anyway, the misclassification num-
ber is quite negligible if compared with the total number of true positives plus false
negatives.

* LM is mostly predicted as RM, followed by CAM and LB. Anyway, the misclassifi-
cation number is quite negligible if compared with the total number of true positives
plus false negatives.

¢ CAM is mostly predicted as CM, followed by RM and LM. Anyway, the misclassifi-
cation number is negligible if compared with the total number of true positives plus
false negatives.

¢ CF is mostly predicted as CAM, followed by ST. Unfortunately, the misclassification
number is significant if compared with the total number of true positives plus false
negatives, and the sensitivity value is completely unsatisfactory.

* RW is mostly predicted as RM, followed by CAM and ST. Unfortunately, the mis-
classification number is significant if compared with the total number of true positives
plus false negatives, and the sensitivity value is completely unsatisfactory.

* LW is mostly predicted as LM, followed by RM and CAM. Unfortunately, the mis-
classification number is significant if compared with the total number of true positives
plus false negatives, and the sensitivity value is completely unsatisfactory.

* ST is mostly predicted as CAM. Unfortunately, the misclassification number is sig-
nificant if compared with the total number of true positives plus false negatives, and
the sensitivity value is completely unsatisfactory.

Predicting classes as RWB, LWB, CF, RW, and LW implies to obtain poor prediction results
due to few observations on the dataset for those players’ positions. So, the metrics values
could be improved unifying some classes which share common features according to the data
obtained in prediction phase from confusion matrices. This process allows to augment the
observations for a specific new class, ideally improving the single-class prediction results and
the overall performance of models. Furthermore, nowadays football is a dynamic game in
which a versatile player is capable to play multiple roles during the match, so the unification
process is not unrealistic. The new levels of response variable Best_Position are listed below,

followed by a justification for those unified classes.

* CB, as in the original dataset.

111

RB-RWB, that unifies RB and RWB defensive positions, placed at the right side of
the pitch and close geographically. The unification is applied because, when the pre-

diction is wrong, RB is predicted as RWB in most cases and vice versa.

LB-LWB, that unifies LB and LWB defensive positions, placed at the left side of the
pitch and close geographically. The unification is applied because, when the predic-
tion is wrong, LB is predicted as LWB in most cases and vice versa.

CDM-CM, that unifies CDM and CM midfielder positions, placed at the middle of
the pitch and close geographically. The unification is applied for improving CM pre-
diction performances, which is predicted as CDM when the prediction is wrong and
vice versa.

RM-RW, that unifies RM midfielder position and RW forward position, placed at the
right side of the pitch and each one with different tasks. The unification is applied to
improve the poor prediction performance of RW, due to a high presence of ST forward
role. Moreover, when the prediction is wrong, RW is predicted as RM in most cases.

LM-LW, that unifies LM midfielder position and LW forward position, placed at the
left side of the pitch and each one with different tasks. The unification is applied to
improve the poor prediction performance of LW, due to a high presence of ST forward
role. Moreover, when the prediction is wrong, LW is predicted as LM in most cases.

CAM-CF, that unifies CAM midfielder position and CF forward position, placed at
the middle of the pitch and close geographically. The unification is applied to improve
the poor prediction performance of CF, due to a high presence of ST forward role.
Moreover, when the prediction is wrong, CF is predicted as CAM in most cases.

ST, as in the original dataset.

The number of classes switches from fourteen to eight. Unified positions, marked with “-”,

can be read as the capacity of a football player to employ difterent roles. Figure 8.1 shows the

new distribution of the response variable Best_Position. We can see that there are levels as CB,
ST and CAM-CF which prevail over the other levels. The least frequentlevel is LM-LW and
it represents almost the 6% of the total observations, so a relevant number. Moreover, the

number of observations for RB-RWB and LW-LWB levels is very similar. From the reduc-

tion of the response variable levels, we can suggest that each class can be predicted satisfacto-

rily due to an acceptable number of observations for each position, with alittle improvement

on metrics values.

112

Percent

20.5%
20% -
17.4%
16.6%
5% 1 Best Position
13.0% O
11.6% [ro-rue
B 5w
10% - Bl covcu
B rirw
T8% g B
. [camcr
59% .
st
5%_ I I
0%-

CB RE-RWB LB-LWB CDM-CM RM-RW LM-LW CAM-CF ST
Best_Position

Figure 8.1: Response variable distribution after relevelling.

The code concerning the relevelling of the response variable levels is the same shown in List-
ing § A.1, except for row 51 which is substituted with the code below.

levels (new_data$Best_Position) <- ¢(”CB”, "RB-RWB”, ”LB-LWB”, "RB-RWB”, "LB-
LWB” ; ”CDM-CM” , "CDM-CM” , "RM-RW”, "LM-IW” | "CAM-CF” , "CAM-CF” , "RM-RW” |
”]’.M—LW” , 77ST’7)

8.2 Multinomial Logistic Regression

Multinomial Logistic Regression is the first technique applied to the new relevelling of the
response variable. As seen in Section § 5.2, the best model found includes all the variables
plus ten interactions, which are all significant. Hence, no modifications have been applied
before training the model. After the training phase, it has been confirmed that each vari-
able and interaction is significant. Moreover, the Training Accuracy value is 0.878 with a
95% confidence interval [0.8724, 0.8835], the AIC value is 9935.718 and the BIC value is
12935.65. From this results, we can deduce the model fits better than the original model
due to the lowering of AIC and BIC values. Another point to analyze is the variable impor-
tance, given by the sum of the absolute values of the coefficients estimates for each level. The

variable importance values are reported in Table 8.1.

113

Table 8.1: Variable importance for Multinomial Logistic Regression after relevelling response variable levels. AWR =
Attacking_Work_Rate, DWR = Defensive_Work_Rate, BTL = Body_TypelLean, BTN = Body_TypeNormal, BTS =
Body_TypeStocky, SP:BC = Short_Passing:Ball_Control, SP:LP = Short_Passing:Long_Passing, A:SS =

Acceleration:Sprint_Speed, C:FKA = Curve:Free_Kick_Accuracy.

Height_cm Weight_kg Preferred_FootRight Crossing

0.599 0.139 14.573 1.592

Finishing Heading_Accuracy ~ Short_Passing Volleys

0.865 2.068 1.663 0.297

Dribbling Curve Free_Kick_Accuracy Long_Passing

0.643 0.206 0.174 2.048

Ball_Control Acceleration Sprint_Speed Agility

1.174 2.349 2.276 0.928

Reactions Balance Shot_Power Jumping

0.197 0.112 0.366 0.740

Stamina Strength Long_Shots Aggression

0.971 1.542 0.520 1.565

Interceptions Positioning Vision Penalties

3.846 0.818 1.411 0.201

Composure Weak Foot2 Weak Foot3 Weak Foot4

0.215 11.567 11.779 14.402

Weak Foot5 AWRMedium AWRHigh DWRMedium
15.152 4.787 5.844 1.637

DWRHigh BTL (170-185) BTL (185+) BTN (170-)

22.566 3.331 3.727 23.368

BTN (170-185) BTN (185+) BTS (170-) BTS (170-185)
10.153 5.135 8.753 3.574

BTS (185+) Body_TypeUnique SP:BC Aggression:Interceptions
45.756 7.395 0.018 0.011

SP:LP Finishing:Long_Shots A:SS Dribbling:Ball_Control
0.018 0.009 0.027 0.006

Curve:FKA Long_Passing:Vision Dribbling:Agility ~ Ball_Control:Agility
0.001 0.014 0.017 0.019

The variable importance obtained is lower than the original variable importance for each vari-

114

able, except for some interactions which have higher estimates. In general, the most impor-
tant predictors are Body_ TypeStocky (185+), Body_TypeNormal (170-), Defensive_ Work_Ra-
teHigh, Defensive_ Work_RateMedinm, Weak_FootS, Preferred_FootRight, Weak_Foot4,
Weak_Foot3, Weak_Foot2, and Body_TypeNormal (170-185).

For what concerns the prediction phase, the Test Accuracy value is equal to 0.868 with a 95%
confidence interval [0.856, 0.879], a very satisfactory value close to the Training Accuracy
value which confirms the model generalizes well. Moreover, the AUC value is 0.918 and al-
most close to 1, which means perfect classification. As expected, sensitivity values have been
visibly improved than the ones obtained in the original model. Indeed, the “worst”predicted
position is LM-LW, with a sensitivity value of 0.643. ST is the best predicted position to-
gether with CB, with sensitivity values equal to 0.9622 and 0.9443, respectively. For what
concerns RB-RWB, LB-LWB, CDM-CM, CAM-CF, and RM-RW positions, the sensitiv-
ity values are equal to 0.904, 0.878, 0.849, 0.8078, and 0.78, respectively. Figure 8.2 shows

the confusion matrix obtained in prediction phase.

CBA - 5 5 18 1 0 0 0
RB-RWE 9 235 11 9 11 1 1 0
LB-LWB 10 2 215 4 0 6 0 0
Freq
©
Scomcn{ 20 7 4 377 12 3 46 0 I eoe
B 400
o
B RN-RW 0 10 0 6 308 a3 a7 9 200
[/
0
LM-Lw 0 0 10 0 14 130 18 2
CAM-CF 0 1 0 29 37 26 458 11
ST 0 0 0 1 12 3 7 -
CB RB-RWE LB-LWBE CDM-C RM-RW LM-LW CAM-CF ST
True label

Figure 8.2: Confusion matrix in prediction phase for Multinomial Logistic Regression after relevelling.

115

8.3 Lasso

Lasso is the best regularization method in which coefficients estimates are shrunk towards
zero and variable selection is applied. As seen in Subsection § 5.5.2, the model includes the
same covariates of the best Multinomial Logistic Regression model. The training phase pro-
cedure is the same. First, it has been checked the Lasso behaviour in which the higher the
In(X) the more variables are set to 0. Then, 10-Fold Cross-Validation technique has been

applied to find the best A value, according to the minimum misclassification error.

52 50 48 43 41 38 34 29 26 23 17 14 12 10 8 6 5 3 2 0 0 O

08
|

07
|

Misclassification Error
04

03
|

02
|

Figure 8.3: Misclassification error varying A value during the 10-Fold cross validation with Lasso after response variable
relevelling. The leftmost vertical dashed line is the \ that corresponds to the minimum misclassification error, and the
rightmost vertical dashed line is the \ that corresponds to the minimum misclassification error plus 1 standard error.

Figure 8.3 shows that the higher the [n(\) the higher the misclassification error. Moreover,
misclassification error increases rapidly from In(\) = —4. Then, there are two different
X values. The leftmost vertical dashed line is the A that corresponds to the minimum mis-
classification error, and the rightmost vertical dashed line is the A that corresponds to the
minimum misclassification error plus 1 standard error. The minimum misclassification er-
ror corresponds to 0.134 and the minimum misclassification error plus 1 standard error is
equal to 0.136. The difference between the two latter error values is almost negligible, so the
A that corresponds to the minimum misclassification error plus 1 standard error has been pre-

ferred due to the highest variable selection, in which the variables maintained in the model

116

are 29. The best A has a value of 7.484¢-04. Moreover, Figure 8.4 shows that the maximum
explained deviance obtained from the best A is 0.818, and so higher than the maximum ex-

plained deviance obtained by the original model.

Explained deviance
04 08 08
| |

02

0.0

I I : I I I
-10 3 6 4 2

log(7.)

Figure 8.4: Explained deviance according to A value in Lasso after response variable relevelling. The vertical dashed line
is the)\ that corresponds to the minimum misclassification error plus 1 standard error.

For what concerns the metrics values of the training phase, the Training Accuracy value
is 0.869 with a 95% confidence interval [0.863, 0.875], the AIC value is -44330.7 and the
BIC value is -43917.63. The results are very satisfactory, but slightly worse than the original
model. Finally, the variable importance computed for each response variable level demon-
strates that the coefficients estimates are slightly lower.

For what concerns the metrics values of the prediction phase, the Test Accuracy value is very
close to the Training Accuracy value and it is equal to 0.866 with a 95% confidence interval
[0.855, 0.878], guaranteeing the model generalizes well. Moreover, the AUC value is 0.981
and almost close to 1, which means perfect classification. As expected, sensitivity values have
been visibly improved than the ones obtained in the original model. Asseen in Section § 8.2,
ST and CB are the best predicted positions, with sensitivity values of 0.963 and 0.947, re-
spectively. Moreover, LM-LW remains the most misclassified position, even though its sen-
sitivity value is above the 50% and equal to 0.619. For what concerns RB-RWB, LB-LWB,
CDM-CM, CAM-CF, and RM-RW positions, the sensitivity values are equal to 0.9, 0.894,
0.863, 0.801, and 0.765, respectively. Figure 8.5 shows the confusion matrix obtained in

117

prediction phase.

cB - 6 3 18 0 0 0 0
RE-RWE] 10 234 11 8 11 2 1 0
LB-LWB 8 2 219 6 0 11 1 0
Freq
)
< con-ci 19 7 5 383 17 3 44 0 I 800
E 400
o
E R-RW A 0 10 1 4 302 32 40 8 200
0
LWL 0 0 6 0 15 125 18 2
CAN-CF 1 0 1 0 25 39 25 454 12
ST+ 0 0 0 0 11 4 9 -
CcB RB-RWB LB-LWB CDM-CM RM-RW LM-LW CAM-CF ST
True label

Figure 8.5: Confusion matrix in prediction phase for Lasso after relevelling.

The code concerning Lasso applied after the relevelling of the response variable is the same
shown in Listing § A.7, except for rows 29, 32 and 36, in which the generic function ¢ is
substituted with the code below.

c(”’CB”, "RB-RWB”, ”LB-LWB”, "CDM-CM”, "RM-RW”, "LM-LW”, "CAM-CF”, 7”ST”)

8.4 Support Vector Machine

SVM is the last technique in which the relevelling of the response variable has been tested. As
seen in Section § 7.6, the model includes the same covariates of the best Multinomial Logistic
Regression model. In addition to it, the dataset is standardized in order to avoid negative
scale effects. The training phase procedure is the same, using the /inear kernel function, the
best one found. First, a default SVM has been built from the standardized training set, in
which the linear kernel function is applied together with the regularization parameter set to
1.0. After the training phase, the Training Accuracy is very satisfactory and it is equal to

0.885. Next, we make predictions on the fitted model, giving in input the standardized test

118

set and obtaining a Test Accuracy equal to 0.866. We can deduce that the default model
does not overfit and that the Training Accuracy value and the Test Accuracy value are very
satisfactory. Anyway, 10-Fold Cross-Validation has been applied in order to look for the best
regularization hyperparameter C within the values 0.1, 0.5 and 1.0. After having applied 10-
Fold Cross-Validation, the best model found has exactly the same C hyperparameter applied
for the default model, that is equal to 1.0. Finally, the returned AUC value is set to 0.984,

suggesting that the overall class-specific performance is almost perfect.

CAM-CF 0 27 1 a6 12
600
CB 1 6 0 6 0 1
500
CDM-CM - 4 1 7 11 0
_ 400
2 Bwsed{ o 7 4 218 11 3 0 0
o
=
]
M
h=] -
g wmwqy 17 0 2 9 127 0 13 2 300
RB-RWB{ O 7 7 8 1 229 10 0 00
RM-RW 4 37 0 6 0 32 13 301 7
- 100
sT{ 9 0 0 0 3 1 14 572
T T T T T T T — 0
CAM-CF CB CDM-CM LB-LWB LM-LW RB-RWB RM-RW ST
True label

Figure 8.6: Confusion matrix in prediction phase for SVM after relevelling

As expected, sensitivity values have been visibly improved than the ones obtained in the orig-
inal model. As seen in Section § 8.2 and Section § 8.3, ST and CB are the best predicted
positions, with sensitivity values of 0.96 and 0.95, respectively. Moreover, LM-LW remains
the most misclassified position, even though its sensitivity value is above the 50% and equal
to 0.63. For what concerns LB-LWB, RB-RWB, CDM-CM, CAM-CF, and RM-RW, the

119

sensitivity values are equal to 0.89, 0.88, 0.85, 0.81, and 0.76, respectively. Figure 8.6 shows
the confusion matrix obtained in prediction phase.

The code concerning SVM applied after the relevelling of the response variable is the same
shown in Listing § B.15 (consider only SVM with /inear kernel, rows 6-16). Anyway, it is

necessary to substitute rows 6 and 12 of Listing § B.7 with

training_set ["Best_Position”] = training_ set [”Best_Position”].cat.set__
categories (['CB’, 'RB-RWB’, 'LB-LWB’, 'CDMECM’, RMERW’, 'LMLLW’, CAM-
CF’, 'ST’], ordered=True)

test_set ["Best_Position”] = test_set[”Best_Position”].cat.set_categories ([’

CB’, 'RB-RWB’, ’LB-LWB’, 'CDMCM’, 'RM-RW’, LM-LW’, 'CAM:CF’, 'ST’],

ordered=True)

to reproduce the same results.

120

Conclusions

This chapter concludes the thesis with the aim of summarizing all the results of the applied
Data Mining techniques and Machine Learning techniques. The final summary focuses on
comparing each model according to the metrics used in both the training phase and the pre-
diction phase. Moreover, the execution time in the training phase is considered. In particular,
the time spent for both cross-validation and model fitting with the best hyperparameters (if
any) has been computed.

Table 9.1: Metrics values results for every technique. Character “/” means that the value cannot be computed for the
specified method.

Training Test
AIC BIC AUC
Accuracy Accuracy
Multinomial
Logistic 0.828 14441.09 20012.24 0.818 0.963
Regression
Backward
model 0.824 14265.7 17686.58 0.817 0.965
selection
LDA 0.742 / / 0.718 0.88

121

Ridge
) 0.757 -38773.36 | -38352.8 0.748 0.93
Regression
Lasso 0.821 -47461.61 | -47041.05 0.811 0.962
Decision
0.846 / / 0.655 0.816
Tree
(Pruned)
Decision 0.731 / / 0.675 0.907
Tree
Random
1.0 / / 0.753 0.951
Forest
KNN 1.0 / / 0.664 0.928
(Gaussian)
0.522 / / 0.498 0.882
Naive Bayes
(Linear)
0.836 / / 0.814 0.975
SVM

Table 9.1 reports the summary of the Data Mining and Machine Learning techniques results
in terms of metrics values. For what concerns Data Mining techniques, the Multinomial Lo-
gistic Regression (together with the model obtained after backward variable selection) and
Lasso are the preferable solutions. Both the models generalize well and the accuracy values,
together with the AUC value, are very satisfactory. Difterently from the Multinomial Logis-
tic Regression, Lasso performs variable selection and it has the lowest AIC and BIC values,
suggesting that the model fits better than the others. Although they do not overfit, LDA and
Ridge Regression have less satisfactory results because LDA does not respect the assumptions
and Ridge Regression excessively shrinks the coefficients without doing variable selection.
For what concerns Machine Learning techniques, the SVM with linear kernel function (or
polynomial, the results are equal) is the best model in terms of results. Moreover, the accu-
racy and AUC values are very similar to those obtained by Multinomial Logistic Regression
and Lasso. The pruned Decision Tree is the second best model because it improves in gen-
eralization with respect to the Decision Tree without pruning, but the accuracy values are
not so high. Moreover, Random Forest and KNN perfectly fit the training set instances,
but their Test Accuracy values are too far from the Training Accuracy values and the models

overfit. Finally, Naive Bayes is the worst model because it predicts the right players’ position

122

the 50% of times, in other words, randomly.

Table 9.2: Training times for every technique. Character “/” means that the time is not computed because
Cross-Validation has not been applied. Character * means that the value refers to the time spent for fitting all the

Decision Trees pruned.

Cross-Validation time Training time (in
(in seconds) seconds)
Multinomial Logistic
Regression / 10172

Backward model selection / 18557.5
LDA / 0.67
Ridge Regression 53.97 5.37
Lasso 184.38 20.31
Decision Tree 215.48 0.45
(Pruned) Decision Tree 517.68* 0.51
Random Forest 197575.94 5.34
KNN 1481.99 0.02
(Gaussian) Naive Bayes / 0.04
(Linear) SVM 488.71 13.22

Table 9.2 reports the summary of the Data Mining and Machine Learning techniques results
in terms of training execution time. For statistical reasons, Cross-Validation time has been
computed for those methods which required to find the best hyperparameters, and this time
can vary according to the possible combinations of hyperparameters to try. So, the training
time is the one used to choose among the methods. For what concerns Data Mining tech-
niques, LDA is the fastest method due to instant computation of prior probabilities and den-
sity functions, followed by Ridge Regression and Lasso. Multinomial Logistic Regression is
fitted between one and two minutes, so the convergence time is very satisfactory. Backward
model selection takes some hours due to the large number of predictors and the process of
removing each time the worst variable basing on AIC metric, thus becoming unappealing
with respect to alternatives. For what concerns Machine Learning techniques, all the meth-
ods require few seconds to be applied. More in detail, the fastest algorithms are KNN and

Naive Bayes, followed by Decision Tree, Decision Tree pruned, Random Forest and finally
SVM.

123

Only few algorithms have demonstrated to perform well in the context of prediction of the
football players’ positions, both in terms of results and execution time. Multinomial Logis-
tic Regression, Lasso and SVM are the best algorithms, with a Test Accuracy between 0.81
and 0.82 and AUC values between 0.96 and 0.97. Moreover, the algorithms are not com-
putationally expensive. The backward model selection has excellent results, similar to those
obtained by the algorithm mentioned before, but at the price of substantial computational
time. Finally, the smallest execution times are KNN, Naive Bayes and LDA. However, it has
been demonstrated that results from these approaches are not satisfactory for predicting the
position of a new player instance. While the players’ central positions are well predicted be-
cause they have a high number of observations, no satisfactory predictions are obtained at the
players’ lateral positions. For this reason, Multinomial Logistic Regression, Lasso and SVM
have been considered as reference instrument for classification in the additional analysis with

a reduced number of classes of the response variable.

Table 9.3: Metrics values results for the best techniques after relevelling of the response variable. Character “/” means
that the value cannot be computed for the specified method.

Training Test
AIC BIC AUC
Accuracy Accuracy
Multinomial
Logistic 0.878 9935.78 12935.65 0.868 0.982
Regression
Lasso 0.869 -44330.7 | -43917.63 0.866 0.981
(Linear)
0.885 / / 0.866 0.984
SVM

Table 9.3 reports the summary of the results of best techniques found after reducing the
response variable classes, in terms of metrics values. There are improvements for each tech-
nique, due to a better prediction for every player’s position. Moreover, each model general-
izes well due to a tiny difference between the Training Accuracy value and the Test Accuracy
value, suggesting that no one model overfits. Each result is very similar, even though SVM
results to slightly be the best model in terms of Training Accuracy value and AUC if we

wanted to find a winning model.

124

Table 9.4: Training times for the best techniques after relevelling of the response variable. Character “/” means that the
time is not computed because Cross-Validation has not been applied.

Cross-Validation time Training time (in
(in seconds) seconds)
Multinomial Logistic
. / 35.32
Regression
Lasso 103.74 12.24
(Linear) SVM 391.49 12.87

Table 9.4 reports the summary of the results of best techniques found after reducing the
response variable classes, in terms of training execution time. Let the training time be the
most reliable and useful information about the execution time, as in the previous summary.
The training time has drastically dropped for Multinomial Logistic Regression. Both the
Cross-Validation time and training time is almost halved in Lasso, which results to be the
fastest algorithm. The execution time of SVM with linear kernel is almost unchanged, and
it remains very small.

In conclusion, we can assume that there could be some limits in predicting the best player’s
position when the number of classes is quite high. Indeed, the overall metrics suggest the
best models fit the data and predict new instances satisfactorily, but these results hide the
negative effects of those positions that are wrongly predicted in more than 50% of cases. So,
the analysis conducted in reducing the number of response variable classes shows how the
class-specific prediction is improved through the unification process; consequently, even the
overall metrics are improved. At the end, it is confirmed that ST and CB are the best pre-
dicted positions in both the scenarios and the only ones which have not been involved in the
unification process.

The work of this thesis can be extended in several ways. One example is the use of unsuper-
vised learning algorithms, which aim at discovering specific patterns from the observations
given in input. Unsupervised learning algorithms do not provide target values associated
to each observation during the training process. Clustering, feature extraction and dimen-
sionality reduction algorithms are possible solutions. Furthermore, synthetic data can be
explored as alternative implementation for improving prediction. Unlike the reduction pro-
cess of the response variable classes, the suggested solution allows to artificially create data ac-
cording to specific conditions related to the statistical properties of the original dataset. This

process allows to obtain larger balanced dataset for the training process, so that the multi-

125

nomial distribution can be applied to response classes of equal dimension. Synthetic data
are useful when there are too few real-world observations for a specific class and therefore

additional observations for that class can be useful to improve model performance.

126

R code

This chapter includes the R (R Core Team, 2022) code produced during the writing of this

thesis, in order to ensure the replicability of the obtained results.

A.1 Preliminary data analysis of FIFA dataset

This code allows to pre-process the datasetlocated in the desired path before starting its graph-

ical evaluation.

data <- read.csv(”path/FIFA22 Dataset.csv”, sep=";”, encoding="UTF-8")

data <- data[!duplicated (data),]

sum(is .na(data))

data$Age <- as.integer (data$Age)

data$Height_cm <- as.integer (data$Height_cm)
data$Weight kg <- as.integer (data$Weight_kg)

data$Crossing <- as.integer(data$Crossing)

data$Finishing <- as.integer (data$Finishing)

data$Heading Accuracy <- as.integer (data$Heading Accuracy)
data$Short_Passing <- as.integer (data$Short_Passing)
data$Volleys <- as.integer(data$3Volleys)

data$Dribbling <- as.integer (data$Dribbling)

data$Curve <- as.integer (data$Curve)

data$Free_Kick_ Accuracy <- as.integer (data$Free_Kick_ Accuracy)

127

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

51

52

53

54

SS

56

data$Long Passing <- as.integer (data$Long Passing)

data$Ball Control <- as.integer(data$Ball Control)
data$Acceleration <- as.integer(data$Acceleration)
data$Sprint_Speed <- as.integer (data$3Sprint_Speed)
data$Agility <- as.integer(data$Agility)

data$Reactions <- as.integer (data$Reactions)

data$Balance <- as.integer(data$Balance)

data$Shot Power <- as.integer (data$Shot Power)

data$Jumping <- as.integer (data$3Jumping)

data$Stamina <- as.integer (data$Stamina)

data$Strength <- as.integer(data$Strength)

data$Long Shots <- as.integer (data$Long Shots)
data$Aggression <- as.integer (data$Aggression)
data$Interceptions <- as.integer(data$Interceptions)
data$Positioning <- as.integer (data$Positioning)

data$Vision <- as.integer (data$Vision)

data$Penalties <- as.integer (data$Penalties)

data$Composure <- as.integer (data$Composure)

data$Defensive Awareness <- as.integer (data$Defensive Awareness)
data$Standing Tackle <- as.integer(data$Standing Tackle)
data$Sliding Tackle <- as.integer(data$Sliding Tackle)
data$GK Diving <- as.integer (data$3GK Diving)

data$GK Handling <- as.integer (data$3GK Handling)

data$GK Kicking <- as.integer (data$GK Kicking)

data$GK Positioning <- as.integer (data$GK Positioning)
data$GK Reflexes <- as.integer (data3GK Reflexes)
data$Pace_Diving <- as.integer (data$Pace_Diving)
data$Shooting Handling <- as.integer (data$Shooting Handling)
data$Passing Kicking <- as.integer(data$Passing Kicking)
data$Dribbling Reflexes <- as.integer (data$Dribbling Reflexes)
data$Defending Pace <- as.integer (data$Defending Pace)
data$Physical Positioning <- as.integer (data$Physical Positioning)

data$Preferred_Foot <- as.factor(data$Preferred_Foot)

data$Best Position <- factor(data$Best Position, levels = ¢(”’CB”, "RB”, "LB”
, "RWB’, "LWB", "(DM’, "M, "RM’, "IM”, "CAM’, CE”, "RW’, "TW’, "ST”,
GK"))

as.ordered (data$Best Position)

data$Weak Foot <- as.factor(data$Weak Foot)

data$Attacking Work Rate <- factor (data$Attacking Work Rate, levels = c¢(”Low
7 "Medium”, ”"High”))

as.ordered (data$Attacking Work Rate)

data$Defensive_Work Rate <- factor(data$Defensive Work Rate, levels = c¢(”Low
7, ?Medium”, "High”))

128

S7

59

60

61

62

as.ordered (data$Defensive_Work Rate)
data$Body_Type <- as.factor (data$Body Type)

new_data <- subset(data, select = -c(Name, Age, GK Diving, GK Handling, GK
Kicking , GK Positioning , GK Reflexes, Pace Diving, Shooting Handling,
Passing Kicking, Dribbling Reflexes, Defending Pace, Physical
Positioning))

new_data <- new_data[!(new_data$Best_Position="GK") ,]

new_data$Best_Position <- droplevels(new_data$Best_Position)

Listing A.1: Pre-processing steps

A.2 Data Mining Results

This code allows to split the original dataset into training set and test set. Remember to set
set.seed(100) to reproduce the same two sets in order to obtain the same results. Finally, both
the training set and the test set are saved in a. R Data file, in order to recover them for future

purposes. This file is saved in a specific path.

set .seed (100)

training set <- data[FALSE,]
test set <- data[FALSE,]

for (i in 1:nlevels(data$Best Position)){
temp data <- data[(data$Best Position=—names(table (data$Best Position)[i])
)]

sample <- sample(nrow(temp data), 0.8*nrow(temp data), replace=FALSE)

temp training set <- temp data[sample,]
temp_test_set <- temp_ data[-sample, |

training set <- rbind(training set, temp training set)
test_set <- rbind(test_set, temp_ test_set)
rm(temp_data)
rm(sample)
rm(temp_training set)
rm (

temp_test_set)

129

22

20

21

22

save(training set, test_set, file = ”path/dataset_split.RData”)

Listing A.2: Split the dataset (80/20)

This code concerns the fit of the Multinomial Logistic Regression models from the training
set through the multinom tunction. The maxit parameter is set to 10000 in order to increase
the maximum number of iterations. The goodness of the models has been checked through
the anova tunction. Then, varlmp function is applied to print the overall contribute of
every variable inside the model. Finally, it is provided the code for computing the metrics for

evaluating the final model.

library (caret)
library (pROC)
library (nnet)

starting_model <- multinom (Best_Position ~ ., data=training_ set, model=IRUE,
maxit=10000)
updated_model <- multinom (Best_Position ~ . + Acceleration:Sprint_Speed +

Ball Control: Dribbling + Free_Kick Accuracy:Curve + Vision:Long Passing
+ Agility : Dribbling + Agility:Ball Control, data=training set, model=
TRUE, maxit=10000)

final _model <- multinom (Best_Position ~ . + Short_Passing:Ball _Control +
Aggression:Interceptions + Short Passing:Long Passing + Finishing:Long
Shots + Acceleration:Sprint_Speed + Dribbling: Ball Control + Free Kick
Accuracy : Curve + Vision:Long Passing + Agility:Dribbling + Agility:Ball
Control, data=training set, model=TRUE, maxit=10000)

anova (starting model, updated model, test="Chisq”)

anova (updated_model, final model, test="Chisq”)

varlmp (final_model, scale=FALSE)

train_bp predicted <- predict(final model, newdata=training set, 7class”)

train_cf <- confusionMatrix(train_bp_ predicted, training_ set$Best_Position,
mode="everything”)

test_bp predicted <- predict(final_model, newdata=test_set, 7class”)

test_cf <- confusionMatrix(test_bp_predicted, test_set$Best Position, mode=”

everything”)

roc <- multiclass.roc(test_set$Best Position, predict(final model, newdata=

test_set, 7"prob”))

130

24

25

26

27

28

29

30

20

21

22

23

24

Metrics values for training phase
train_cf$overall [1] # Training Accuracy
AIC(model) # AIC

BIC(model) # BIC

Metrics values for prediction phase
test_cfSoverall [1] # Test Accuracy

roc$auc # AUC

Listing A.3: Multinomial Logistic Regression code

This code allows to apply automatic model selection with the backward strategy. Both the
AIC metric and the BIC metric are considered. The code for computing the metrics useful

to evaluate the selected model with backward is provided.

library (caret)
library (pROC)

backward_model AIC <- step(model best, direction="backward”)
backward model BIC <- step(model best, direction="backward”, k=log (dim(
training_set)[1]))

Print the importance of the variables

varlmp (backward model AIC, scale=FALSE)

train_bp predicted <- predict(backward model AIC, newdata=training set,
class”)
train_cf <- confusionMatrix(train_bp predicted, training set$Best_ Position

mode="everything”)

test_bp predicted <- predict(backward model AIC, newdata=test_set, “class”)

test_cf <- confusionMatrix (test_bp predicted , test_set$Best_Position, mode=

everything”)

roc <- multiclass.roc(test_set$Best_Position, predict(backward model AIC,

newdata=test_set, ”prob”))

Metrics values for training phase
train_cf$overall [1] # Training Accuracy
AIC(model) # AIC

BIC(model) # BIC

Metrics values for prediction phase

test_cfSoverall [1] # Test Accuracy

131

25

22

23

24

25

26

27

roc$auc # AUC

Listing A.4: Backward selection with AIC metric and BIC metric

This code allows to check the normality of the quantitative variables, to apply Linear Dis-
criminant Analysis, to evaluate the amount of variance explained by each discriminant func-
tion and to plot the predictions with histograms. The code useful to compute the metrics
for evaluating the LDA model is provided.

library (caret)

library (pROC)

library (MASS)

library (nortest)

library (ggplot2)

X numeric <- dplyr::select_if(data, is.numeric)

Anderson-Darling normality test
for (i in 1:dim(X numeric)[2]){
cat (colnames (X numeric)[i], 7 --> 7, ad.test (X numeric[, i])$p.value, 7\n”
)

}

model_lda <- lda(Best_Position ~ . + Short_Passing:Ball_Control + Aggression
:Interceptions + Short_ Passing:Long Passing + Finishing:Long Shots +
Acceleration: Sprint_Speed + Dribbling: Ball_Control + Free_ Kick Accuracy:
Curve + Vision:Long Passing + Agility:Dribbling + Agility:Ball Control,
data=training_set)

model lda

Canonic discrimination evaluation

model_lda$svd™2/sum(model_lda$svd™2) * 100

Predicting the values for training dataset

train_bp_ predicted <- predict(model lda, newdata=training_ set, type="
response”)

train_cf <- confusionMatrix(training set$Best Position, train_bp predicted$

class , mode="everything”)

Predicting the class for test dataset

test_bp predicted <- predict(model lda, newdata=test_set, type="class”)

test_cf <- confusionMatrix (test_set$Best_ Position, test_bp predicted$class,
mode="everything”)

132

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

7

roc <- multiclass.roc(test_set$Best_ Position, as.numeric(test_bp predicted$

class))
Metrics values for training phase
train_cf$overall [1] # Training Accuracy

Metrics values for prediction phase
test_cfSoverall [1] # Test Accuracy

roc$auc # AUC

Plot predictions
for (i in 1:dim(test_bp_ predicted$x)[2]){
ggplot () +

geom_histogram (aes (x=test_bp_predicted$x[, i],
y=stat (density)),
bins=20,
data=data.frame(test_bp predicted)[1],
color="black”,
fill=c(7green”)) +
facet_grid(class ~ .) +
labs (x=paste ("LDA”, i, sep=""))

Listing A.5: Linear Discriminant Analysis code

This code allows to apply Ridge Regression. Consider to set sez.seed(200) to reproduce the
results obtained in the thesis with Cross-Validation.

library (caret)
library (pROC)
library (glmnet)

New data structure for training set

X training <- model. matrix(Best_Position ~ . + Short_Passing:Ball _Control +
Aggression: Interceptions + Short_Passing:Long Passing 4+ Finishing:Long
Shots + Acceleration:Sprint_Speed + Dribbling: Ball Control + Free Kick
Accuracy : Curve + Vision:Long Passing + Agility:Dribbling + Agility:Ball
Control, data=training set)[,-1]

Y training <- training set$Best_Position

New data structure for test set

X test <- model. matrix(Best_Position ~ . + Short_Passing:Ball_Control +
Aggression:Interceptions + Short Passing:Long Passing + Finishing:Long
Shots + Acceleration: Sprint_Speed 4+ Dribbling: Ball _Control + Free_ Kick
Accuracy:Curve + Vision:Long Passing + Agility:Dribbling + Agility:Ball__
Control, data=test_set)[,-1]

Y test <- test_set$Best_Position

133

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

model_ridge <- glmnet(X training , Y training, alpha=0, family="multinomial”
type.measure="class”, keep=IRUE, parallel=TRUE)

model ridge

set.seed (200)

cv_model_ridge <- cv.glmnet (X training, Y training, alpha=0, family="
multinomial”, type.measure="class”, keep=ITRUE, parallel=IRUE)

min (cv_model _ridge$cvm) # Minimum mean cross -validated error

best_lambda_ ridge <- cv_model ridge$lambda.min

Maximum explained deviance obtained from lambda.min
max(cv_model ridge$glmnet. fit$dev.ratio)
Coefficients for every variable for every level

coef(cv_model ridge, cv_model ridge$lambda.min)

train_bp predicted <- predict(cv_model ridge, newx=X_ training, s="lambda.min
7, type="class”)

train_cf <- confusionMatrix(factor(train_bp predicted, levels = ¢(”’CB”, "RB”
., "LB”, "RWB”, "LWB”, "CDM”, "CM”, "RM”, "IM”, "CAM”, "CF”, "RW’, "LW”,
7ST”)), Y training , mode="everything”)

test_bp predicted <- predict(cv_model ridge, newx=X test, s="lambda.min”,
type="class”)

test_cf <- confusionMatrix (factor (test_bp predicted, levels = ¢(”’CB”, "RB”,
"LB”, "RWB”, "LWB”, "CDM”, "CM”, "RM”, "IM”, "CAM”, "CEF”, "RW’, LW, ”
ST”)), Y _test, mode="everything”)

class_probs_matrix_ridge <- predict(cv_model ridge, newx=X_ test, s="lambda.
min”, type="response”)

dim(class probs matrix ridge) <- c(dim(class_probs matrix ridge)[1], dim(
class_probs_matrix_ridge) [2])

colnames (class_probs_matrix_ridge) <- ¢(”CB”, "RB”, ”"LB”, "RWB’, "LWB”,6 "CDM
M, URMP, UIMP, "CAMP, “CE”, "RW’, LW, "ST”)

roc <- multiclass.roc(Y test, class probs matrix ridge)

tLL <- cv_model ridge$glmnet. fit$nulldev - cv_model ridge$glmnet. fit$nulldev
*(1 - cv_model ridge$glmnet. fit$dev.ratio) [which(cv_model ridge$lambda
=— cv_model_ridge [[”lambda.min”]])]

k <- cv_model ridge$glmnet. fit$df[which(cv_model ridge$lambda = cv_model
ridge [[”lambda.min”]])]

n <- cv_model ridge3glmnet. fit $nobs

Metrics values for training phase

134

42

43

45

46

47

48

49

train_cf$overall [1] # Training Accuracy
AIC <- - tLL + 2%k + 2%k*(k + 1)/(n - k - 1) # AIC

AIC

BIC <- log(n)*k - tLL # BIC

BIC

Metrics values for prediction phase
test_cfSoverall [1] # Test Accuracy

roc$auc # AUC

Listing A.6: Ridge Regression code

This code allows to apply Lasso. Consider to set set.seed(200) to reproduce the results ob-

tained in the thesis with Cross-Validation.

library (caret)
library (pROC)
library (glmnet)

New data structure for training set

X training <- model. matrix(Best_Position ~ . + Short_Passing: Ball_Control +
Aggression:Interceptions + Short Passing:Long Passing + Finishing:Long
Shots + Acceleration: Sprint_Speed 4+ Dribbling: Ball _Control + Free_Kick
Accuracy: Curve + Vision:Long Passing 4+ Agility:Dribbling 4+ Agility:Ball _
Control, data=training set)[,-1]

Y training <- training set$Best_Position

New data structure for test set

X test <- model.matrix(Best_Position ~ . + Short_Passing:Ball _Control +
Aggression: Interceptions + Short_Passing:Long Passing 4+ Finishing:Long
Shots + Acceleration:Sprint_Speed + Dribbling: Ball Control + Free Kick
Accuracy : Curve 4+ Vision:Long Passing + Agility:Dribbling + Agility:Ball
Control, data=test_set)[,-1]

Y test <- test_ set$Best Position

model lasso <- glmnet(X training , Y training, alpha=1, family="multinomial”
type.measure="class”, keep=IRUE, parallel=TRUE)

model lasso

set.seed (200)

cv_model lasso <- cv.glmnet (X training, Y training, alpha=1, family="
multinomial”, type.measure="class”, keep=IRUE, parallel=IRUE)

cv_model lasso$cvm[cv_model lasso$index [2]] # Mean cross-validated error
from lambda.lse

best lambda lasso <- cv_model lasso$lambda.lse

Maximum explained deviance obtained from lambda.l se

135

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

45

46

47

48

49

50

cv_model lasso$glmnet. fit$dev.ratio[which(cv_model lasso$lambda = cv_model
lasso$lambda.1lse)]

Coefficients for every variable for every level

coef(cv_model lasso, cv_model lasso$lambda.lse)

Number of nonzero coefficients with lambda.l se

cv_model lasso$nzero[which(cv_model lasso$lambda = cv_model lasso$lambda.l

se)]

train_bp predicted <- predict(cv_model lasso, newx=X training , s="lambda.lse
7 type="class”)

train_cf <- confusionMatrix(factor (train_bp predicted, levels = ¢(”CB”, "RB”
, "LB”, "RWB”, LWB”, "CDM”, "CM”, "RM”, "LM”, "CAM”, ”"CF”, "RW’, "IW”,
"ST”)), Y training , mode="everything”)

test_bp predicted <- predict(cv_model lasso, newx=X test, s="lambda.lse”,
type="class”)

test_cf <- confusionMatrix(factor (test_bp predicted, levels = ¢(”CB”, "RB”,
"LB”, "RWB’, "LWB”, "CDM”, "M, "RM”, "IM”, "CAM”, "CE”, "RW’, TW’, 7
ST”)), Y _test, mode="everything”)

class_probs_matrix_ridge <- predict (cv_model lasso, newx=X_ test, s="lambda.l
se”, type="response”)

dim(class probs matrix ridge) <- c(dim(class probs matrix ridge)[1], dim(
class_probs_matrix_ridge) [2])

colnames (class_probs_matrix_ridge) <- ¢(7CB”, "RB”, ”"LB”, "RWB’, "LWB”, "CDM
7T, RM7, LM?, PCAM”, PCE”, RW”, "LW”, 7ST7)

roc <- multiclass.roc(Y_ test, class_probs_matrix_ridge)

tLL <- cv_model lasso$glmnet. fit$nulldev - cv_model lasso$glmnet. fit$nulldev
*(1 - cv_model lasso$glmnet. fit$dev.ratio)[which(cv_model lasso$lambda
= cv_model_lasso [["lambda.lse”]])]

k <- cv_model _lasso$glmnet. fit $df [which (cv_model lasso$lambda = cv_model
lasso [[”lambda.1lse”]])]

n <- cv_model lasso$glmnet. fit$nobs

Metrics values for training phase
train_cf$overall [1] # Training Accuracy
AIC <- - tLL + 2*k + 2*k*(k + 1)/(n - k - 1) # AIC

AIC

BIC <- log(n)*k - tLL # BIC

BIC

Metrics values for prediction phase

test_cf$overall [1] # Test Accuracy

136

s1 roc$auc

Listing A.7: Lasso code

137

138

Python code

This chapter includes the Python (Van Rossum and Drake, 2009) code produced during the

writing of this thesis, in order to ensure the replicability of the obtained results.

B.1 The FIFA dataset

This code allows to apply web scraping technique on the first web page from https://sofi
fa.com/.

from bs4 import BeautifulSoup
import requests

import time

def FirstPageWebScraping(url):
if requests.get(f”’{url}&offset=0").status_code = 200:
page = requests.get(f’{url}&offset=0").text
players_table = CatchWebPageTable(page)

CatchFeaturesNames (players_table)
CatchFeaturesValues(players_ table)

time.sleep (0.5)
else:
print (f”Error {requests.get('{url}&offset=0").status code}”)

Listing B.1: FirstPageWebScraping(url) method

139

https://sofifa.com/
https://sofifa.com/

This code allows to retrieve only the names of the attributes from the web page scraped.

from bs4 import BeautifulSoup
import requests

import re

def CatchFeaturesNames(table):

features_names = table.find__all(7th”)

for row in features names
cell = str(row)

features_names_list.append(re.sub(re.compile(’<.*7>7), 77 cell))

Listing B.2: CatchFeaturesNames(players_table) method

This code allows to retrieve all the players’ values for each attribute from the web page scraped.

from bs4 import BeautifulSoup
import re

import pandas as pd

def CatchFeaturesValues(table):
global results_features_values

features__values = table.find_all(7tr”)

for row in features values
cells = re.sub(re.compile(’Jun(.+7)|<div class=\"tip\”>(.+7)
</div></div>"), 7, str(row.find_all(7td”)))

features values_list.append(re.sub(re.compile(’<.*?>"), 77, cells))

results_features_values = pd.DataFrame(features_values_ list)

Listing B.3: CatchFeaturesValues(players_table) method

This code allows to apply web scraping technique on all the web pages following the first
from https://sofifa.com/.

from bs4 import BeautifulSoup
import requests

import time

def NextPagesWebScraping(url, offset):

current offset = offset

while requests.get(f7’{url}&offset={current offset}”).status code = 200
and current_ offset <= 19980:

140

https://sofifa.com/

20

21

22

23

24

25

26

page = requests.get (f7{url}&offset={current offset}”).text
players_table = CatchWebPageTable(page)

CatchFeaturesValues(players_table)

current offset = current offset + 60
time.sleep (0.5)

if requests.get(f”{url}&offset={current_offset}”).status_code != 200:
print (f”Error {requests.get(’{url}&offset={current_offset}’).
status_code}”)
else:

print (”All players have been downloaded.”)

Listing B.4: NextPagesWebScraping(url, 60)) method

This code allows to manipulate and clean the dataset.

from bs4 import BeautifulSoup

import re

def ManipulateAndCleanData () :
Split each row to cells

)

cleaned__dataset = results_features_values[0].str.split(’,’, expand=True)

]

If the script donwloads the last column full of ”"None” values, drop it
if cleaned__dataset.shape[l] > 53:

delete_last_n_ columns = cleaned__dataset.shape[1] - 53
for i in range(delete_last_n_ columns):
cleaned dataset.drop(cleaned dataset.columns[-1], inplace=True,
axis=1)
Set column names using table headers
cleaned__dataset.columns = features_names_list[0 : len(
features_names_ list)]
cleaned dataset.rename (columns={"Height’: ’Height cm’,
"Weight’: "Weight_kg’,
"foot’: ’Preferred__Foot’,

'BP’: ’Best_ Position’,
"Heading Accuracy’: ’Heading Accuracy’,

"Short Passing’: ’Short Passing’,
'FK Accuracy’: ’Free_Kick_Accuracy’,
"Long Passing’: ’Long_Passing’,
’Ball Control’: ’Ball_Control’,
’Sprint Speed’: ’Sprint_ Speed’,
’Shot Power’: ’Shot_Power’,

141

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

48

49

50

S1

52

S3

54

SS

56

S7

S8

59

60

61

"Long Shots’: ’Long Shots’,

’Marking’: ’'Defensive_ Awareness’,
"Standing Tackle’: ’Standing Tackle’,
’Sliding Tackle’: ’Sliding_ Tackle’,

'GK Diving’: ’GK_ Diving’,
'GK Handling ’: 'GK_Handling’,
'GK Kicking’: *GK_Kicking’,

'GK Positioning’: 'GK_ Positioning’,

'GK Reflexes’: *GK_ Reflexes’,

'W/F’: "Weak_ Foot

'SM’: ’Skill__ Moves

"A/W’ . 7 Attacking. Work_Rate

'D/W’: ’Defensive_ Work_ Rate

'PAC’: ’'Pace_Diving’,

’SHO’: ’"Shooting Handling’,

"PAS’: ’Passing_Kicking’,

"DRI’: ’'Dribbling Reflexes’,

'DEF’: ’Defending_ Pace’,

'PHY’: ’Physical_Position’},
inplace=True)

Drop the first , "Team & Contract” and ”Skill_Moves” columns because
unmeaningful

cleaned__dataset.drop(cleaned__dataset.columns[0], inplace=True, axis=1)

cleaned__dataset.drop(columns = [’ ’Team & Contract’], inplace=True,
axis=1)

cleaned dataset.drop(columns = [’Skill Moves’], inplace=True, axis=1)

Fix typos or character errors

cleaned__dataset ["Name”]| = cleaned__dataset[”"Name”]. str.replace(r”(\n|LW|

ST [RW|LF | CF | RF | CAM| LM |CM|RM|CDM|LWB| LB | CB| RB|RWB|GK) 7, 77,
True)

cleaned__dataset ["Name”| = cleaned__dataset [”Name”]. str.replace(r”[0-9\n]”

9

, , regex=True)

cleaned dataset ["Height cm”] = cleaned_dataset[”Height cm”].str.replace(

r”(\n|em)”, 7”7, regex=True)
cleaned dataset [”Weight kg”] = cleaned dataset[”Weight kg”].str.replace(
"kg”, 77, regex=False)
cleaned__dataset ["Physical Position”] = cleaned__dataset[”
Physical Position”].str.replace(”]”, 7”7, regex=False)
for i in range(0, cleaned dataset.shape[l]):
cleaned__dataset.iloc[:, i] = cleaned__dataset.iloc[:, i].str.replace(
"N/A”, 77 regex=False)

142

62

63

64

65

66

67

68

69

70

71

72

73

74

Remove spaces

for i in range(0, len(cleaned dataset.columns)):

cleaned__dataset.iloc[:, i] = cleaned__dataset.iloc[:, i].str.strip()
Remove every row which contains only Nan values or empty cells
index_of NaN_rows = []

for i in range(0, cleaned dataset.shape[0]):
if cleaned_dataset.iloc[i, :].isnull().values.any() |
cleaned dataset.iloc[i, :].eq(””).sum() > 0:
index_of NaN_rows.append (i)
for i in range(0, len (index of NaN_rows)):
cleaned__dataset.drop(labels=index_of NaN_rows[i], inplace=True, axis
=0)

return cleaned dataset

Listing B.5: ManipulateAndCleanData() method

This code allows to generate the dataset in CSV format in the desired pazh.

def GenerateCSVDataset (dataset):
dataset.to_csv(”path/FIFA22 Dataset.csv”, index=False, encoding="UTF-87,

na_rep='NA’, mode="a”)

Listing B.6: GenerateCSVDataset(cleaned_dataset) method

B.2 Machine Learning Results

This code allows to adapt the dataset for the Machine Learning techniques. Upload the
.RData file in which both the training set and test set have been saved in a specific path.

from sklearn.preprocessing import OneHotEncoder, StandardScaler

import pandas as pd

def setCategoricalVariables(training set, test set):
Set categorical variables - TRAINING SET
training_set[”Best_Position”] = training_set[”Best__Position”]. cat.
set__categories (['CB’, 'RB’, 'LB’, 'RWB’, 'LWB’, 'CDM’, 'CM’, 'RM’, LM
», CAM’, "CF’, RW’, TW’, ’ST’], ordered=True)

training set[”"Weak Foot”] = training set[”Weak Foot”].cat.set categories (][
1, 27, 37, 47, ’57], ordered=True)

training__set [”Attacking_ Work_Rate”] = training_set[”Attacking_Work_Rate”].
cat.set__categories (['Low’, ’Medium’, ’'High’], ordered=True)

training set[”Defensive Work Rate”] = training set[”Defensive Work Rate”].
cat.set__categories (['Low’, 'Medium’, ’'High’], ordered=True)

143

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Set categorical variables - TEST SET

test__set [”"Best_Position”] = test_set[”Best_Position”].cat.set__categories (]
'CB’, 'RB’, 'LB’, 'RWB’, ’LWB’, 'CDM’, 'CM’, 'RM’, 'IM’, ’CAM’, ’CF’,
RW’, 'LW’, ’ST’], ordered=True)

test_set ["Weak Foot”] = test_set[”Weak Foot”].cat.set categories([’1’, ’2’
, ’37, 47, ’57], ordered=True)

test__set [7Attacking Work Rate”] = test_set[”Attacking Work Rate”]. cat.
set__categories (['Low’, 'Medium’, ’'High’], ordered=True)

test__set ["Defensive. Work Rate”] = test_set[”Defensive_ Work Rate”]. cat.
set__categories (['Low’, 'Medium’, ’'High’], ordered=True)

return training_set, test_set

def applyOneHotEncoding(training set, test_set):

encoder = OneHotEncoder (dtype=’int32’, handle_unknown=’"ignore)

One Hot Encoding - TRAINING SET

predictor__encoded = pd.DataFrame(encoder.fit_transform (training_set [[’
Preferred Foot’]]) .toarray())

predictor encoded.columns = [’Preferred Foot Left’, ’'Preferred Foot Right’
]

training_set = training_set.join (predictor_encoded)

training_ set.drop(’Preferred Foot’, axis=1, inplace=True)

predictor__encoded = pd.DataFrame(encoder.fit_transform (training_set[[’
Weak Foot’]]) .toarray())

predictor__encoded.columns = [Weak Foot_1’, "Weak Foot_2’, *Weak Foot_ 3,
"Weak_Foot_4’, "Weak_Foot_5"]

training set = training set.join(predictor_encoded)

training_set.drop(’'Weak Foot’, axis=1, inplace=True)

predictor encoded = pd.DataFrame(encoder.fit transform (training set [[’
Body_Type’]]) .toarray())
predictor__encoded.columns = [’Body_Type_Lean (170-)’, ’Body_Type_Lean
(170-185) 7, ’'Body_Type_ Lean (185+)7,
"Body_ Type Normal (170-)’, ’Body_Type_ Normal
(170-185) 7, 'Body Type Normal (185+)7,
"Body_ Type_ Stocky (170-)’, ’Body_Type_Stocky
(170-185) ", ’'Body_Type_Stocky (185+),
"Body__ Type_ Unique’ |
training_set = training_set.join (predictor_encoded)
training_set.drop(’Body_ Type’, axis=1, inplace=True)
predictor__encoded = pd.DataFrame(encoder.fit_transform (training_set [[’
Attacking_ Work_Rate’]]) .toarray())

144

39

40

41

42

43

45

46

47

48

49

50

S1

52

53

S4

SS

56

57

S8

59

60

61

62

63

64

65

66

67

68

predictor_encoded.columns = [’Attacking Work Rate High’, ’
Attacking Work Rate Low’, ’Attacking Work Rate Medium’]

training_set = training_set.join (predictor_encoded)

training_set.drop(’Attacking Work Rate’, axis=1, inplace=True)

predictor__encoded = pd.DataFrame(encoder.fit_transform (training_set[[’
Defensive . Work Rate’]]) .toarray())

predictor encoded.columns = [’Defensive Work Rate High’,
Defensive_ Work_Rate_Low’, ’Defensive_ Work_Rate_ Medium’ |

training set = training_set.join (predictor_encoded)

)

training_set.drop(’Defensive. Work Rate’, axis=1, inplace=True)

del predictor__encoded

One Hot Encoding - TEST SET

predictor__encoded = pd.DataFrame(encoder.fit_transform (test_set [[’
Preferred Foot’]]) .toarray())

predictor_encoded.columns = [’Preferred Foot_ Left’, ’'Preferred Foot Right’
]

test__set = test_set.join(predictor_encoded)

test__set.drop(’Preferred Foot’, axis=1, inplace=True)

predictor__encoded = pd.DataFrame(encoder.fit_transform (test_set []
Weak Foot’]]) .toarray())

predictor__encoded.columns = [Weak Foot_1’, "Weak Foot_2’, >Weak Foot_ 3,
"Weak_Foot_4’, "Weak_Foot_5"]
test__set = test_set.join (predictor_encoded)

test_set.drop(’Weak Foot’, axis=1, inplace=True)
predictor_encoded = pd.DataFrame(encoder.fit_ transform (test_ set [[’
Body_Type’]]) .toarray())
predictor__encoded.columns = [’Body_Type_Lean (170-)’, ’Body_Type_Lean
(170-185) 7, ’'Body_Type_ Lean (185+)7,
"Body_ Type_Normal (170-)’, ’Body_Type_Normal
(170-185) 7, 'Body Type Normal (185+),
"Body_ Type_ Stocky (170-)’, ’Body_Type_Stocky
(170-185) ", ’'Body_Type_Stocky (185+),
"Body__ Type_ Unique’ |

test__set = test_set.join (predictor_encoded)

test__set.drop(’Body_Type’, axis=1, inplace=True)

predictor__encoded = pd.DataFrame(encoder.fit_transform (test_set [[’
Attacking_ Work_Rate’]]) . toarray())

predictor__encoded.columns = [’ Attacking Work_ Rate High’, ’
Attacking Work Rate Low’, ’Attacking Work Rate Medium’]

test_set = test set.join(predictor encoded)

test__set.drop(’Attacking Work Rate’, axis=1, inplace=True)
predictor__encoded = pd.DataFrame(encoder.fit_transform (test_set [[’
Defensive_ Work_Rate’]]) . toarray())

145

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

predictor_encoded.columns = [’Defensive Work Rate High’,

)

Defensive_ Work Rate Low’, ’Defensive Work Rate Medium’]

test__set = test_set.join(predictor__encoded)

test__set.drop(’Defensive_ Work Rate’, axis=1, inplace=True)

del predictor__encoded

return training_set, test_set

def insertInteraction (training set, test_set):

training_set[’Short Passing:Ball Control’] = training_set[’Short Passing’]

* training set[’Ball Control’]

test__set [’Short_Passing:Ball Control’] = test_set[’Short_Passing’] *

test_set[’Ball Control’]

training_set [’ Aggression:Interceptions’]

training set[’Interceptions’]

test_set [Aggression:Interceptions’] =

Interceptions’]

test_set [Aggression’] * test_set|

= training_set [Aggression’] *

El

training_set[’Short_Passing:Long Passing’] = training_set[’Short_Passing’]

* training__set [Long_Passing’]

test_set[’Short Passing:Long Passing’]

test_set [’ Long Passing’]

training_set [’ Long_Shots’]
test set [’ Finishing:Long Shots’] =
Long_ Shots]

,]:

training_set [’ Finishing:Long_ Shots’

test__set [Finishing’] * test_set[’

training_set [’ Finishing |

test_set [Short Passing’]

*

*

training set[’Acceleration:Sprint Speed’] = training set[’Acceleration’] *
training set[’Sprint_ Speed’]

test_set [Acceleration:Sprint_Speed’] = test_set[Acceleration’] *
test_set [’ Sprint_ Speed’]

training set[’Dribbling:Ball Control’] = training set[’Dribbling’] *
training set[’Ball Control’]

test_set [’ Dribbling:Ball Control’] = test set[’Dribbling’] * test_set[’
Ball__Control ’]

training_set [Free Kick Accuracy:Curve’] = training_set[’
Free Kick Accuracy’]| * training set[’ Curve’]

test_set [Free Kick Accuracy:Curve’] = test_set [Free Kick Accuracy’] *
test_set [’ Curve’]

training__set[’Vision:Long_ Passing’] = training_set[’Vision’] *
training_set [’ Long_ Passing’]

test_set [’ Vision:Long Passing’| = test_set[’ Vision’] * test_ set[’
Long Passing’]

training_set [’ Agility: Dribbling’] = training_set[’ Agility ’] * training_set

['Dribbling]

146

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

113

114

115

116

117

test _set [’ Agility:Dribbling’] = test_set [Agility’] * test_set[’Dribbling’

]

training set[’Agility:Ball Control’] = training set[’Agility] *
training_set[’Ball_Control’]

test_set [Agility:Ball_Control’] = test_set[Agility’] * test_set[’

Ball Control’]
return training_set, test_set

Recover RData file
r_file = pyreadr.read_r(’path/dataset split.RData’)
training_set = r_ file[”training_ set”]

test_set = r_file[”test_set”]

training set, test_set = setCategoricalVariables(training_ set, test_set)

training_set, test_set = applyOneHotEncoding(training_set, test_set)

training_set, test_set = insertInteraction(training_ set, test_set)
Split dataset

X__training = training_set.drop(’Best_ Position’, axis=1)

Y training = training set [’ Best Position’]

X_test = test_set.drop(’Best_Position’, axis=1)
Y _test = test_set[Best_Position’]

scaler = StandardScaler (). fit (X__training)
X _training standardized = pd.DataFrame(scaler.transform (X _training))
X__test_standardized = pd.DataFrame(scaler.transform (X_test))

Listing B.7: Dataset adaptation for Machine Learning techniques

This code allows to apply k-Fold Cross-Validation with the GridSearchCV tunction. Con-

sider to set zandom.state=42 to reproduce the results obtained in the thesis with Cross-Validation.

from sklearn.model selection import GridSearchCV, StratifiedKFold

def applyGridSearchCV (estimator , param_grid, X_ training, Y_ training, X_ test,
Y _test):
gscv = GridSearchCV (estimator , param_grid, cv=StratifiedKFold (n_splits=10,
shuffle=True, random_ state=42), verbose=5, return_ train_score=True)
gscv. fit (X_training, Y_ training)

print (’Best model after hyper-parameter tuning: ', gscv.best_estimator_)
print (’Parameters for the best model: ’, gscv.best_params_)

)

print (’"Mean score for the best model: , gscv.best_score_)

147

20

21

22

23

24

25

26

27

28

print (”GridSearchCV Training accuracy:”, gscv.score(X_ training, Y_ training

))

print (”GridSearchCV Test accuracy:”, gscv.score (X test, Y test))

return gscv

Listing B.8: k-Fold Cross-Validation with GridSearchCV

This code allows to print the metrics used for Machine Learning techniques, namely, Train-
ing Accuracy, Test Accuracy and AUC. The confusion matrix for both the training phase
and the prediction phase is computed. The sensitivity values for each player’s position are

shown.

from sklearn.metrics import classification_report , confusion_matrix,

accuracy__score, roc__auc__score

def printMetrics (fitted _model, X_training, Y_ training, X_test, Y_ test):
train_bp_ predicted = fitted_model. predict (X__training)
test_bp_predicted = fitted _model.predict (X_ test)
test__bp_ predicted__probs = fitted__model.predict_proba(X_test) # Probability

values instead of labels

train__cf = confusion_matrix(Y_training, train_bp_ predicted)

train_report = classification_report(Y_training, train_bp_ predicted)
training_accuracy = accuracy_score(Y_training, train_bp_ predicted)
print ("TRAINING PHASE - RESULTS”)

print (”Confusion matrix:”)

print (train_ cf)

print (train_report)

(
(
print (7 Classification metrics:”)
(
print (

”Accuracy: 7, training accurac "\n\n”
y 7 7

test__cf = confusion_matrix(Y_test, test_bp_predicted)
test_report = classification_report(Y_test, test_bp_predicted)
test__accuracy = accuracy_score(Y_test, test_bp_predicted)
print ("TEST PHASE - RESULTS”)

print (”Confusion matrix:”)
print (test_ cf)

(
(
print (7 Classification metrics:”)
print (test__report)

(

print (”7Accuracy: 7, test_accuracy, ”\n\n")

auc = roc_auc_score(Y_test, test_bp_predicted probs, multi_class="ovr’)
print (’AUC: 7, auc)

Listing B.9: Machine Learning metrics

148

This code allows to apply the Decision Tree technique. Consider to set random.state=42 to

reproduce the results obtained in the thesis.

from sklearn.model selection import GridSearchCV, StratifiedKFold

from sklearn.tree import DecisionTreeClassifier

def applyDecisionTree (X__training, Y_ training, X_test, Y_ test):
dtc = DecisionTreeClassifier (random state=42)
dtc = dtc. fit (X__training, Y_ training)
y_pred = dtc.predict (X_test)
print (" Training accuracy:”, dtc.score(X__training, Y_ training))

print ("Test Accuracy:”, accuracy_score(Y_test, y_pred))

estimator = DecisionTreeClassifier (random_state=42)
param_grid = {’criterion’: [’gini’, ’entropy’],

"max_depth’: np.arange(1,31)}

dtc_gscv = applyGridSearchCV (estimator , param_grid, X_ training, Y_ training

, X_test, Y_ test)

printMetrics (dtc_gscv, X_ training, Y_ training, X_test, Y_ test)

applyDecisionTree (X__training, Y_training, X_ test, Y_ test)

Listing B.10: Decision Tree code

This code allows to apply the Decision Tree technique with Minimal Cost-Complexity Prun-
ing algorithm. Consider to set random.state=42 to reproduce the results obtained in the

thesis.

import numpy as np

from sklearn.tree import DecisionTreeClassifier

def applyPruningDecisionTree(X__training, Y_ training, X_test, Y_ test):

dtc = DecisionTreeClassifier (criterion="entropy’, max_depth=11,
random__state=42)
path = dtc.cost__complexity__pruning_path(X_training, Y_ training)

ccp_alphas, impurities = path.ccp_alphas, path.impurities

dtcs_pruned = |[]
for ccp_alpha in ccp_alphas:

dtc__pruned = DecisionTreeClassifier (criterion="entropy’, max_depth=11,

random__state=42, ccp_alpha=ccp_alpha)
dtc_pruned. fit (X__training, Y_ training)
dtcs__pruned.append (dtc_pruned)

149

20

21

22

23

20

21

train_scores = [dtc.score(X_training, Y_training) for dtc in dtcs_pruned]

test__scores = [dtc.score(X_test, Y_test) for dtc in dtcs_pruned]
best__ccp_alpha = ccp_alphas[np.argmax(test__scores)]
dtc_pruned_best = DecisionTreeClassifier (criterion="entropy’, max_depth

=11, random_ state=42, ccp_alpha=best_ccp_alpha)
dtc_pruned_best. fit (X__training, Y_ training)
printMetrics (dtc_pruned_best, X_training, Y_ training, X_test, Y_ test)

applyPruningDecisionTree (X_training, Y_training, X_test, Y_ test)

Listing B.11: Pruning Decision Tree code

This code allows to apply the Random Forest technique. Consider to set zandom.state=42
to reproduce the results obtained in the thesis.

import numpy as np
from sklearn.model_selection import GridSearchCV, StratifiedKFold

from sklearn.ensemble import RandomForestClassifier

def applyRandomForest (X__training, Y_training, X_test, Y_test):
rfc = RandomForestClassifier (n_estimators=100, random_ state=42)
rfc. fit (X__training, Y_ training)
y_pred = rfc.predict (X_test)

print (" Training accuracy:”, rfc.score(X__training, Y_ training))
print ("Test Accuracy:”, accuracy_score(Y_test, y_pred))
estimator = RandomForestClassifier (random_state=42)
param_grid = {’'n_estimators’: np.arange(1l, 101),

‘criterion’: [’gini’, ’entropy’],

"max_depth’: np.arange(1,31),
"max_ features’: [’sqrt’, ’log2’]}
rfc_gscv = applyGridSearchCV (estimator , param_ grid, X_ training, Y_ training
, X_test, Y_test)

printMetrics (rfc_gscv, X_training, Y_training, X_test, Y_ test)

applyRandomForest (X__training, Y_ training, X_test, Y_ test)

Listing B.12: Random Forest code

This code allows to apply the KNN technique.

import numpy as np
from sklearn.model_ selection import GridSearchCV, StratifiedKFold
from sklearn.neighbors import KNeighborsClassifier

150

def applyKNearestNeighbour (X_training scaled, Y_ training, X_ test_scaled,
Y__test):
knn = KNeighborsClassifier ()
knn. fit (X__training_scaled, Y_ training)
y_pred = knn. predict (X__test_scaled)
print (" Training accuracy:”, knn.score(X_training scaled, Y_ training))

print ("Test Accuracy:”, accuracy_score(Y_test, y_pred))

estimator = KNeighborsClassifier ()
param_ grid = {’'n_neighbors’: np.arange(1,101),
"weights’: [’uniform’, ’distance’]}
knn_gscv = applyGridSearchCV (estimator , param_grid, X_ training_scaled,
Y _training, X_test_scaled, Y_ test)

printMetrics (knn_gscv, X_ training scaled, Y_training, X_ test_scaled,
Y_ test)

applyKNearestNeighbour (X__training_standardized , Y_ training,
X__test_standardized, Y_ test)

Listing B.13: K-Nearest Neighbour code

This code allows to apply the Naive Bayes technique with Multinomial NB function and
GaussianINB function.

from sklearn.naive_bayes import GaussianNB, CategoricalNB

def applyMultinomialNaiveBayes(X__training, Y_ training, X_test, Y_ test):
nb = MultinomialNB ()
nb. fit (X_training, Y_training)
y_pred = nb.predict (X__test)
print ("Training accuracy:”, nb.score(X_training, Y_ training))

print ("Test Accuracy:”, accuracy_score(Y_test, y_pred))
printMetrics (nb, X_training, Y_ training, X_test, Y_ test)

def applyGaussianNaiveBayes(X__training, Y_ training, X_test, Y_test):
nb = GaussianNB ()
nb. fit (X__training, Y_ training)
y_pred = nb.predict (X__test)
print ("Training accuracy:”, nb.score(X_training, Y_ training))
print ("Test Accuracy:”, accuracy_score(Y_test, y_pred))

printMetrics (nb, X_training, Y_training, X_test, Y_ test)

applyMultinomialNaiveBayes (X__training, Y_training, X_test, Y_ test)

151

22

21

22

23

24

25

26

27

28

29

30

31

applyGaussianNaiveBayes (X __training, Y_ training, X_test, Y_ test)

Listing B.14: Naive Bayes code

This code allows to apply the SVM technique. Consider to set random.state=42 to repro-
duce the results obtained in the thesis.

from sklearn.model_selection import GridSearchCV, StratifiedKFold

from sklearn.svm import SVC

def applySupportVectorMachine (X_training_scaled, Y_ training, X_ test_scaled,
Y__test):
print ("SVM with linear kernel -> 7)

svce_linear = SVC(kernel="linear’, random_state=42, probability=True)

svce_linear. fit (X__training scaled, Y_ training)

y_pred_linear = svc_linear.predict (X__test_scaled)

print ("Training accuracy:”, svc_linear.score(X_training_scaled, Y_training
))

print ("Test Accuracy:”, accuracy_score(Y_test, y_pred_linear))

estimator_linear = SVC(kernel="linear’, random_ state=42, probability=True)

param_ grid_linear = {’C’: [0.1, 0.5, 1]}

svc__gscv__linear = applyGridSearchCV (estimator__linear , param_ grid_linear,

X_training_ scaled, Y_ training, X_ test_scaled, Y_ test)

printMetrics (sve__gscv_linear, X_ training_scaled, Y_training, X_ test_scaled
, Y_test)

print (”"\nSVM with poly kernel -> 7)

svc__poly = SVC(kernel="poly’, gamma=1, coef0=1, random_ state=42,
probability=True)

svc_poly. fit (X__training_scaled, Y_ training)

y_pred_poly = svc_poly.predict (X_test_scaled)

print ("Training accuracy:”, svc_poly.score(X__training scaled, Y_ training))

print ("Test Accuracy:”, accuracy_score(Y_test, y_pred_poly))

estimator__poly = SVC(kernel="poly’, gamma=1, coef0=1, random_ state=42,
probability=True)
param_ grid_poly = {’C’: [0.1, 0.5, 1],
"degree’: [1, 2, 3]}
sve__gscv__poly = applyGridSearchCV (estimator__poly , param_ grid_poly,
X__training_scaled, Y_ training, X_ test_scaled, Y_ test)

printMetrics (sve_gscv_poly, X_training_scaled, Y_ training, X_ test_scaled,
Y_ test)

152

32

33

34

35

36

37

38

39

40

41

42

43

45

46

47

'S
2

print ("\nSVM with rbf kernel -> 7)

sve_rbf = SVC(kernel="rbf’, random_state=42, probability=True)

sve_rbf. fit (X__training_scaled, Y_ training)

y_pred_rbf = svc_rbf.predict (X__test_scaled)

print ("Training accuracy:”, svc_rbf.score(X__training_scaled, Y_ training))

print ("Test Accuracy:”, accuracy_score(Y_test, y_pred_rbf))

estimator_rbf = SVC(kernel="rbf’, random_state=42, probability=True)
param_grid_rbf = {’C’: [0.1, 0.5, 1],
‘gamma’: [0.1, 0.01, 0.001]}
sve_gscv_rbf = applyGridSearchCV (estimator_rbf, param_ grid_rbf,
X __training_scaled, Y_ training, X_ test_scaled, Y_ test)

printMetrics (sve_gscv_rbf, X_training_scaled, Y_ training, X_ test_scaled,
Y_ test)

applySupportVectorMachine (X__training standardized, Y_ training,
X __test_standardized, Y_ test)

Listing B.15: Support Vector Machine code

153

154

Glossary

AIC: acronym of Akaike Information Criterion, it is an estimator of prediction error used

in data mining techniques available in Section § 4.3. 51, 159

AUC: acronym of Area Under the ROC Curve, it is a metric for computing the prediction
goodness used both in data mining techniques and machine learning techniques avail-
able in Section § 5.1.2. 58, 159

BIC: acronym of Bayesian Information Criterion, itis an estimator of prediction error used

in data mining techniques available in Section § 4.3. 51, 159

CSV: acronym of Comma Separated Values, itis a text-based data format that separates fields
with a comma and ends with a line break , resulting in a table structured format. 22,
159

EA Sports: acronym of Electronic Arts Sports, itis a division of Electronic Arts that develops
and publishes sports video games. Formerly a marketing gimmick of Electronic Arts,
in which they tried to imitate real-life sports networks by calling themselves the ’EA
Sports Network” (EASN), it soon grew up to become a sub-label on its own, releasing
game series such as FIFA, NHL, NBA Live, FI and Madden NFL. 8, 159

FIFA: acronym of Fédération Internationale de Football Association, it is an international
governing body of association football, beach football and futsal. Headquartered in
Zirich, Switzerland, its membership now comprises 211 national associations. These
national associations must each also be members of one of the six regional confedera-
tions into which the world is divided: Africa, Asia, Europe, North & Central America
and the Caribbean, Oceania and South America. FIFA name appears also in the most
famous football video game, as FIFA 22 cited plenty of times in this thesis, and the
game is developed by EA Sports. 2, 159

FUT: acronym of FIFA Ultimate Team, it is a game mode that lets you build your dream
squad in FIFA 22 video game. 14, 159

155

HTML: acronym of HyperText Markup Language, it is the standard markup language for

ID3:

IDE:

documents designed to be displayed in a web browser. It can be assisted by technolo-
gies such as CSS (Cascading Style Sheets) and scripting languages such as JavaScript.
22,159

acronym of [terative Dichotomiser 3, it is the algorithm invented by Ross Quinlan for
choosing the best attribute of a node while building a decision tree, a machine learning
algorithm available in Section § 6.2. ID3 uses a top-down approach and the acronym
suggests that the algorithm repeatedly splits attributes into two or more groups at each

step, until reaching the end of the decision tree. 82, 159

acronym of Integrated Development Environment, it is a software application for de-
veloping code through a graphical user interface. The standard tools provided are a
source code editor, build automation tools, a debugger, a compiler and an integrated

version control system. 5, 159

KNN: acronym of K-Nearest Neighbour, it is a machine learning technique available in Sec-

tion § 6.4. 83, 159

Lasso: acronym of Least Absolute Shrinkage and Selection Operator, itis aregularization data

mining technique available in Section § 4.5.2. 53, 159

LDA: acronym of Linear Discriminant Analysis, it is a data mining technique available in

Section § 4.4. 51, 159

OS: acronym of Operating System, it is a system software that, after being initially loaded

into the computer by aboot program, manages computer hardware, software resources,

and provides common services for computer programs. 4, 159

Python: it is a high-level, general-purpose programming language, which is dynamically-

typed and garbage-collected. It supports multiple programming paradigms, including
structured (particularly procedural), object-oriented and functional programming. It
is often described as a ”batteries included” language due to its comprehensive standard

library. 7

156

ROC: acronym of Receiver Operating Characteristics, it is a graphical tool useful to under-
stand the trade-off between sensitivity and 1-specificity. AUC metric is strictly corre-
lated to ROC. 58, 159

SVM: acronym of Support Vector Machine, it is a machine learning technique available in
Section § 6.6. 86, 159

ToS: acronym of Terms of Service, is a type of document stating details about what a ser-
vice provider is responsible for as well as user obligations that must be adhered to for
continuation of the service. Users that don’t follow the rules specified in a ToS are
subject to termination. Many websites and applications publish their terms of service.
Terms of service should include user rights and responsibilities. The ToS should also
be transparent about all activities of the service that have significance for users, such
as details of what the service does with user data as well as how the service maintains

user privacy and security. 26, 159

URL: acronym of Uniform Resource Locator, is a sequence of characters that uniquely iden-

tifies the address of a web resource. 22, 160

UTE-8: acronym of Universal Transformation Format-8, is a variable-width character en-
coding used for electronic communication. Defined by the Unicode Standard, it is
capable of encoding all 1,112,064 valid character code points in Unicode using one to
four one-byte (8-bit) code units. 25, 160

Web Scraping: itis a technique used to collect information from web sites. Generally, this
is done with software that simulates human Web surfing to collect specified bits of
information from different web sites. It is used as a component of applications used

for web indexing, web mining and data mining. 22

WEKA: acronym of Waikato Environment for Knowledge Analysis, it is a free software for
machine learning which contains data analysis and predictive modeling tools. WEKA

is developed and maintained by the University of Waikato, in New Zealand. 3, 160

XML: acronym of eXtensible Markup Language, it is a markup language and file format

for storing, transmitting, and reconstructing arbitrary data. It defines a set of rules for

157

encoding documents in a format that is both human-readable and machine-readable.
22,160

158

Acronyms

AIC: Akaike Information Criterion. 155

AUC: Area Under the ROC Curve. 155
BIC: Bayesian Information Criterion. 155
CSV: Comma Separated Values. 155

EA Sports: Electronic Arts Sports. 155

FIFA: Fédération Internationale de Football Association. 155

FUT: FIFA Ultimate Team. 155
HTML: HyperText Markup Language. 156

ID3:; Iterative Dichotomiser 3. 156

IDE: Integrated Development Environment. 156
KNN: K-Nearest Neighbour. 156

Lasso: Least Absolute Shrinkage and Selection Operator. 156

LDA: Linear Discriminant Analysis. 156

OS: Operating System. 156

ROC: Receiver Operating Characteristics. 157
SVM: Support Vector Machine. 157

ToS: Terms of Service. 157

159

URL: Uniform Resource Locator. 157

UTF-8: Universal Transformation Format-8. 157
WEKA: Waikato Environment for Knowledge Analysis. 157

XML: eXtensible Markup Language. 157

160

Bibliography

Agresti, Alan (2013). Categorical data analysis. Third Edition. Wiley.

Azzalini, Adelchi and Bruno Scarpa (2012). Data Analysis and Data Mining: An

introduction. Second Edition. Oxford University Press.

Bazmara, Mohammad (Sept. 2014). A Novel Fuzzy Approach for Determining Best
Position of Soccer Players. Vol. 09. International Journal of Intelligent Systems and
Applications, pp. 62—67. URL:
https://www.researchgate.net /publication/264549745 A Novel Fuzzy

Approach_for Determining Best Position of Soccer Players.

Bazmara, Mohammad and Shahram Jafari (Apr. 2013). K Nearest Neighbor Algorithm for
Finding Soccer Talent. Vol. 3. Journal of Basic and Applied Scientific Research,
pp- 981-986. URL: https://www.researchgate.net/publication/237080861 K
Nearest_ Neighbor Algorithm_ for Finding Soccer Talent.

Bosu Babu, S et al. (May 2022). Predicting football player’s position. Vol. 4. International
Research Journal of Modernization in Engineering Technology and Science. URL:
https://www.irjmets.com/uploadedfiles/paper/issue_ 5 may 2022/23815/
final /fin_irjmets1653665116.pdf.

Hand, David J. and Robert J. Till (2001). A Simple Generalisation of the Area Under the
ROC Curve for Multiple Class Classification Problems. Vol. 45. Machine Learning,
pp- 171-186. URL: https://link.springer.com/article/10.1023 /A:1010920819831.

Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The elements of statistical

learning: data mining, inference and prediction. Second Edition. Springer.

James, Gareth et al. (2021). An Introduction to Statistical Learning: with Applications in R.
Third Edition. Springer.

Kabacoft, Rob (2018). Data Visualization with R. Quantitative Analysis Center (QAC),
Wesleyan University.

161

https://www.researchgate.net/publication/264549745_A_Novel_Fuzzy_Approach_for_Determining_Best_Position_of_Soccer_Players
https://www.researchgate.net/publication/264549745_A_Novel_Fuzzy_Approach_for_Determining_Best_Position_of_Soccer_Players
https://www.researchgate.net/publication/237080861_K_Nearest_Neighbor_Algorithm_for_Finding_Soccer_Talent
https://www.researchgate.net/publication/237080861_K_Nearest_Neighbor_Algorithm_for_Finding_Soccer_Talent
https://www.irjmets.com/uploadedfiles/paper/issue_5_may_2022/23815/final/fin_irjmets1653665116.pdf
https://www.irjmets.com/uploadedfiles/paper/issue_5_may_2022/23815/final/fin_irjmets1653665116.pdf
https://link.springer.com/article/10.1023/A:1010920819831

Lantz, Brett (2015). Machine Learning with R. Second Edition. Packt Publishing.

Lewis, Chris and Noah Wardrip-Fruin (June 2010). Mining Game Statistics from Web
Services: A World of Warcraft Armory case study. University of California, Santa Cruz.
URL: https://dl.acm.org/doi/pdf/10.1145/1822348.18223627casa__token=
UaOhftMGXnMAAAAA:
p417v5pKY6 i40nWHCF C{J{CjKuT7ffinagGOVX9Nwomou
1jtuJ1kIhINC4GIC2AQmVpNFAQcgxs.

Mitchell, Tom M (1997). Machine Learning. McGraw-Hill New York.

Pace, Luigi and Alessandra Salvan (1997). Principles of Statistical Inference from a
Neo-Fisherian Perspective. Vol. 4. World Scientific Publishing Company. Advanced
Series On Statistical Science And Applied Probability.

R Core Team (2022). R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing. Vienna, Austria. URL:
https://www.R-project.org/.

Razali, Nazim et al. (2017). Predicting Player Position for Talent Identification in
Association Football. Vol. 226. IOP Conf. Series: Materials Science and Engineering.
URL: https://iopscience.iop.org/article/10.1088/1757-899X/226/1/012087 /pdf.

Van Rossum, Guido and Fred L. Drake (2009). Python 3 Reference Manual. CreateSpace.

Wickham, Hadley (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag
New York. 1sBN: 978-3-319-24277-4. UrL: https:/ /ggplot2.tidyverse.org.

Zixue, Zeng and Bingyu Pan (2021). A Machine Learning Model to Predict Player’s
Positions based on Performance. Vol. 1. In Proceedings of the 9th International
Conference on Sport Sciences Research and Technology Support, pp. 36—42. URL:
https://www.scitepress.org/Papers/2021/106533/106533.pdf.

162

https://dl.acm.org/doi/pdf/10.1145/1822348.1822362?casa_token=UaOhftMGXnMAAAAA:p417v5pKY6_i40nWHCFCfJfCjKuT7ffnagGOVX9Nwomou_1jtuJ1kIh1NC4GlC2AQmVpNFAQcqxs
https://dl.acm.org/doi/pdf/10.1145/1822348.1822362?casa_token=UaOhftMGXnMAAAAA:p417v5pKY6_i40nWHCFCfJfCjKuT7ffnagGOVX9Nwomou_1jtuJ1kIh1NC4GlC2AQmVpNFAQcqxs
https://dl.acm.org/doi/pdf/10.1145/1822348.1822362?casa_token=UaOhftMGXnMAAAAA:p417v5pKY6_i40nWHCFCfJfCjKuT7ffnagGOVX9Nwomou_1jtuJ1kIh1NC4GlC2AQmVpNFAQcqxs
https://dl.acm.org/doi/pdf/10.1145/1822348.1822362?casa_token=UaOhftMGXnMAAAAA:p417v5pKY6_i40nWHCFCfJfCjKuT7ffnagGOVX9Nwomou_1jtuJ1kIh1NC4GlC2AQmVpNFAQcqxs
https://www.R-project.org/
https://iopscience.iop.org/article/10.1088/1757-899X/226/1/012087/pdf
https://ggplot2.tidyverse.org
https://www.scitepress.org/Papers/2021/106533/106533.pdf

Sitography

Central Attacking Midfielder. URL:
https://www.fifplay.com/encyclopedia/central-attacking-midfielder/.

Central Defensive Midfielder. URL:
https://www.fifplay.com/encyclopedia/central-defensive-midfielder /.

Central Midfielder. URL:
https://www.fifplay.com/encyclopedia/central-midfielder/.

Centre Back. UrL: https://www.fifplay.com/encyclopedia/centre-back/.
Centre Forward. urL: https:/ /www fifplay.com/encyclopedia/centre-forward/.

Data structure DataFrame. Python data structure for creating two-dimensional tabular
data. URL:
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html.

Decision Trees mathematical formulation. URL: https:/ /scikit-

learn.org/stable/modules/tree.html#tree-mathematical-formulation.
FIFA 22 Player Attributes. URL: https:/ /www.fifplay.com/fifa-22-player-attributes/.

FIFA 22 Ultimate Team. Guide to play FIFA 22 Ultimate Team (FUT). By Electronic Arts
Inc. URL: https://help.ea.com /nz/help/fifa/fifa-ultimate-team-fut /#:~:
text=FIFA%5C%20Ultimate%5C%20Team%5C%20(FUT) %5C%20is,your%
5C%20mark%5C%200n%5C%20the%5C%20pitch..

FIFA 22 Work Rates. Work Rates for FIFA 22 Ultimate Team. By FIFAUTeam. URL:
https://fifauteam.com /work-rates-fifa-22/.

FIFA player ratings. FIFA player ratings explained: How are the card number stats
decided? By Ronan Murphy, Goal. URL:
https://www.goal.com/en-sa/news/fifa-player-ratings-explained-how-are-the-

card-number-stats /1hszd2fgr7wgfIn2b2yjdpgynu.

163

https://www.fifplay.com/encyclopedia/central-attacking-midfielder/
https://www.fifplay.com/encyclopedia/central-defensive-midfielder/
https://www.fifplay.com/encyclopedia/central-midfielder/
https://www.fifplay.com/encyclopedia/centre-back/
https://www.fifplay.com/encyclopedia/centre-forward/
https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.html
https://scikit-learn.org/stable/modules/tree.html#tree-mathematical-formulation
https://scikit-learn.org/stable/modules/tree.html#tree-mathematical-formulation
https://www.fifplay.com/fifa-22-player-attributes/
https://help.ea.com/nz/help/fifa/fifa-ultimate-team-fut/#:~:text=FIFA%5C%20Ultimate%5C%20Team%5C%20(FUT)%5C%20is,your%5C%20mark%5C%20on%5C%20the%5C%20pitch.
https://help.ea.com/nz/help/fifa/fifa-ultimate-team-fut/#:~:text=FIFA%5C%20Ultimate%5C%20Team%5C%20(FUT)%5C%20is,your%5C%20mark%5C%20on%5C%20the%5C%20pitch.
https://help.ea.com/nz/help/fifa/fifa-ultimate-team-fut/#:~:text=FIFA%5C%20Ultimate%5C%20Team%5C%20(FUT)%5C%20is,your%5C%20mark%5C%20on%5C%20the%5C%20pitch.
https://fifauteam.com/work-rates-fifa-22/
https://www.goal.com/en-sa/news/fifa-player-ratings-explained-how-are-the-card-number-stats/1hszd2fgr7wgf1n2b2yjdpgynu
https://www.goal.com/en-sa/news/fifa-player-ratings-explained-how-are-the-card-number-stats/1hszd2fgr7wgf1n2b2yjdpgynu

FIFPlay Player Attributes. URL:
https://www.fifplay.com/encyclopedia/player-attributes/.

Football Analytics. The Growing Importance of Football Analytics. URL:

https://soccerment.com/the-importance-of-football-analytics/.

Football Talent Scout. URL:
https://fifa-talentscout.ea.com/TalentScout/WelcomeTS.aspx.

Formation. URL: https://www fifplay.com/encyclopedia/formation/.

Function ad.test. R fucntion for computing Anderson-Darling normality test. URL: https:

//www.rdocumentation.org/packages/nortest /versions/1.0-4 /topics/ad.test.

Function anova. R function for computing analysis of variance for fitted models. URL:
https:

//www.rdocumentation.org/packages/stats/versions/3.6.2 /topics/anova.

Function confusion_matrix. Python function for creating a confusion matrix. URL:
https://scikit-

learn.org/stable/modules/generated /sklearn.metrics.confusion_ matrix.html.

Function confusionMatrix. R function for creating a confusion matrix. URL:

https://rdrr.io/cran/caret /man/confusionMatrix.html.

Function cv.glmnet. R function for applying Cross-Validation for generalized linear models.
URL: https://www.rdocumentation.org/packages/glmnet/versions/4.1-

4 /topics/cv.glmnet.

Function Decision TreeClassifier. Python function for implementing a Decision Tree
estimator. URL: https://scikit-

learn.org/stable/modules/generated /sklearn.tree.Decision TreeClassifier.html.

Function GaussianNB. Python function for implementing a Gaussian Naive Bayes
estimator. URL: https://scikit-learn.org/stable/modules/generated /sklearn.

naive bayes.GaussianNB.html#sklearn.naive bayes.GaussianNB.

Function glmnet. R function for fitting a generalized linear model with regularization
techniques. URL: https:

//www.rdocumentation.org/packages/glmnet /versions/4.1-4 /topics/glmnet.

164

https://www.fifplay.com/encyclopedia/player-attributes/
https://soccerment.com/the-importance-of-football-analytics/
https://fifa-talentscout.ea.com/TalentScout/WelcomeTS.aspx
https://www.fifplay.com/encyclopedia/formation/
https://www.rdocumentation.org/packages/nortest/versions/1.0-4/topics/ad.test
https://www.rdocumentation.org/packages/nortest/versions/1.0-4/topics/ad.test
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/anova
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/anova
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.confusion_matrix.html
https://rdrr.io/cran/caret/man/confusionMatrix.html
https://www.rdocumentation.org/packages/glmnet/versions/4.1-4/topics/cv.glmnet
https://www.rdocumentation.org/packages/glmnet/versions/4.1-4/topics/cv.glmnet
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.GaussianNB.html#sklearn.naive_bayes.GaussianNB
https://www.rdocumentation.org/packages/glmnet/versions/4.1-4/topics/glmnet
https://www.rdocumentation.org/packages/glmnet/versions/4.1-4/topics/glmnet

Function GridSearchCV. Python function for applying Cross-Validation for estimators.
URL: https://scikit-learn.org/stable/modules/generated /sklearn.model
selection.GridSearchCV.html.

Function KNeighborsClassifier. Python function for implementing a KNN estimator. URL:
https://scikit-learn.org/stable/modules/generated /sklearn.neighbors.
KNeighborsClassifier.html.

Function lda. R function for fitting a Linear Discriminant Analysis model. URL: https:
/ /www.rdocumentation.org/packages/MASS /versions/7.3-58.1 /topics/lda.

Function multiclass.roc. R function for computing multi-class AUC. URL: https://www.

rdocumentation.org/packages/pROC /versions/1.18.0 /topics/multiclass.roc.

Function multinom. R function for fitting a single-hidden-layer neural network. URL:
https://www.rdocumentation.org/packages/nnet /versions/7.3-

18/topics/multinom.

Function MultinomialNB. Python function for implementing a Multinomial Naive Bayes
estimator. URL: https://scikit-learn.org/stable/modules/generated /sklearn.

naive_bayes.MultinomialNB.html#sklearn.naive bayes.MultinomialNB.

Function OneHotEncoder. Python function for encoding categorical features as one-hot
numeric arrays. URL: https://scikit-learn.org/stable/modules/generated /sklearn.

preprocessing.OneHotEncoder.html.

Function RandomForestClassifier. Python function for implementing a Random Forest
estimator. URL: https://scikit-learn.org/stable/modules/generated /sklearn.

ensemble.RandomForestClassifier.html.

Function roc_auc_score. Python function for computing AUC score. URL: https://scikit-
learn.org/stable/modules/generated /sklearn.metrics.roc_auc__score.html.

Function StandardScaler. Python function for standardizing features. URL:
https://scikit-learn.org/stable/modules/generated /sklearn.preprocessing.
StandardScaler.html.

Function step. R function for choosing a model by AIC in a stepwise algorithm. URL:

https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/step.

165

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html
https://www.rdocumentation.org/packages/MASS/versions/7.3-58.1/topics/lda
https://www.rdocumentation.org/packages/MASS/versions/7.3-58.1/topics/lda
https://www.rdocumentation.org/packages/pROC/versions/1.18.0/topics/multiclass.roc
https://www.rdocumentation.org/packages/pROC/versions/1.18.0/topics/multiclass.roc
https://www.rdocumentation.org/packages/nnet/versions/7.3-18/topics/multinom
https://www.rdocumentation.org/packages/nnet/versions/7.3-18/topics/multinom
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.MultinomialNB
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.MultinomialNB
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.StandardScaler.html
https://www.rdocumentation.org/packages/stats/versions/3.6.2/topics/step

Function Stratified KFold. Python function for providing stratified k-folds during
Cross-Validation. URL:
https://scikit-learn.org/stable/modules/generated /sklearn.model _selection.
Stratified KFold.html#sklearn.model selection.Stratified KFold.

Function SVC. Python function for implementing a SVM estimator. URL:
https://scikit-learn.org/stable/modules/generated /sklearn.svm.SVC.html#
sklearn.svim.SVC.

Function varImp. R function for computing the variable importance for regression and
classification models. URL: https:

//www.rdocumentation.org/packages/caret /versions/6.0-92 /topics /varlmp.

FUT Player Attributes. FIFA 22 players’ attributes in FUT modality. By FIFAUTeam. URL:
https://fifauteam.com/fifa-22-attributes-guide/.

Goalkeeper. URL: https:/ /www.fifplay.com/encyclopedia/goalkeeper/.

Left Back. URL: https://www fifplay.com/encyclopedia/left-back/.

Left Forward. urL: https: / /www.fifplay.com/encyclopedia/left-forward/.

Left Midfielder. urL: https: / /www.fifplay.com/encyclopedia/left-midfielder/.
Left Wing Back. URL: https:/ /www fifplay.com/encyclopedia/left-wing-back/.
Left Winger. URL: https://www fifplay.com/encyclopedia/left-winger/.

Library BeantifulSoup. Python library for extracting data from HTML and XML files.
URL: https://www.crummy.com/software/BeautifulSoup/bs4/doc/.

Messi Evolution. The Evolution of Lionel Messi’s Position and Role. URL:

https://www.messivsronaldo.app/articles/messi-position-role-evolution/.

Michael Muller-Mobring. How “Triple M” Michael Muller-Mohring decides the
controversial FIFA 22 player ratings that leaves stars fuming. By Jon Boon, The Sun.
URL: https://www.thesun.co.uk/sport /football /7332606 /fifa-22-player-ratings-

michael-muller-mohring /.

Minimal Cost-Complexity Pruning. URL: https://scikit-
learn.org/stable/modules/tree.html#minimal-cost-complexity-pruning.

166

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html#sklearn.model_selection.StratifiedKFold
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html#sklearn.model_selection.StratifiedKFold
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://www.rdocumentation.org/packages/caret/versions/6.0-92/topics/varImp
https://www.rdocumentation.org/packages/caret/versions/6.0-92/topics/varImp
https://fifauteam.com/fifa-22-attributes-guide/
https://www.fifplay.com/encyclopedia/goalkeeper/
https://www.fifplay.com/encyclopedia/left-back/
https://www.fifplay.com/encyclopedia/left-forward/
https://www.fifplay.com/encyclopedia/left-midfielder/
https://www.fifplay.com/encyclopedia/left-wing-back/
https://www.fifplay.com/encyclopedia/left-winger/
https://www.crummy.com/software/BeautifulSoup/bs4/doc/
https://www.messivsronaldo.app/articles/messi-position-role-evolution/
https://www.thesun.co.uk/sport/football/7332606/fifa-22-player-ratings-michael-muller-mohring/
https://www.thesun.co.uk/sport/football/7332606/fifa-22-player-ratings-michael-muller-mohring/
https://scikit-learn.org/stable/modules/tree.html#minimal-cost-complexity-pruning
https://scikit-learn.org/stable/modules/tree.html#minimal-cost-complexity-pruning

Position. URL: https:/ /www fifplay.com/encyclopedia/position/.

Right Back. urL: https: //www fifplay.com/encyclopedia/right-back//.

Right Forward. urL: https://www fifplay.com/encyclopedia/right-forward/.
Right Midfielder. urL: https: //www fifplay.com/encyclopedia/right-midfielder/.
Right Wing Back. URL: https:/ /www. fifplay.com/encyclopedia/right-wing-back/.
Right Winger. URL: https://www fifplay.com/encyclopedia/right-winger/.

Rogério Ceni. Stats of the goalkeeper Rogério Ceni. By Wikipedia. URL:
https://en.wikipedia.org/wiki/Rog%5C%C3%5C%A9rio_ Ceni.

SoFIFA Terms of Service. URL: https:/ /sofifa.com /help /tos.
Striker. URL: https:/ /www.fifplay.com/encyclopedia/striker//.

Terms of Service. What is terms of service (ToS). By Ivy Wigmore, TechTarget. URL:

https://www.techtarget.com/whatis/definition/terms-of-service-ToS.
Weak Foot. URL: https:/ /www fifplay.com/encyclopedia/weak-foot/.

Web Scraping. Step by Step: Web Scraping Using Python BeautifulSoup. By Yalin Yener,
Medium. UrL: https://medium.com/analytics-vidhya/step-by-step-web-
scraping-using-python-36echb502{8e.

Work Rate. UrL: https:/ /www fifplay.com/encyclopedia/work-rate/.

167

https://www.fifplay.com/encyclopedia/position/
https://www.fifplay.com/encyclopedia/right-back/
https://www.fifplay.com/encyclopedia/right-forward/
https://www.fifplay.com/encyclopedia/right-midfielder/
https://www.fifplay.com/encyclopedia/right-wing-back/
https://www.fifplay.com/encyclopedia/right-winger/
https://en.wikipedia.org/wiki/Rog%5C%C3%5C%A9rio_Ceni
https://sofifa.com/help/tos
https://www.fifplay.com/encyclopedia/striker/
https://www.techtarget.com/whatis/definition/terms-of-service-ToS
https://www.fifplay.com/encyclopedia/weak-foot/
https://medium.com/analytics-vidhya/step-by-step-web-scraping-using-python-36ecb502f8e
https://medium.com/analytics-vidhya/step-by-step-web-scraping-using-python-36ecb502f8e
https://www.fifplay.com/encyclopedia/work-rate/

168

Ringraziamenti

Innanzitutto, voglio esprimere la mia profonda riconoscenza nei confronti della prof.ssa
Annamaria Guolo, che grazie ai concetti appresi durante il suo corso di Data Mining e ai
suoi costanti suggerimenti mi ha permesso di poter sviluppare questa tesi. Ho apprezzato
sin da subito la sua professionalita, ma ancor di piu la gentilezza e la disponibilita che la
contraddistinguono.

Un speciale ringraziamento va a papa, mamma e Alessia, i miei punti di riferimento dal
giorno zero, che mi hanno insegnato a mantenere la retta via e a perseverare quando il gioco
si fa duro. Senza il loro sostegno, questo percorso non sarebbe mai stato possibile. L’ho
promessa e ’ho conquistata: questa laurea non ¢ solo il mio obiettivo, ma ¢ anche il loro
sogno. Grazie per aver sempre creduto in me. Inoltre, desidero menzionare tutti i miei
nonni, zii e cugini, nessuno escluso. So di certo che saranno orgogliosi del raggiungimento
di questo obiettivo e del mio percorso, che ¢ pitt importante di qualsiasi valutazione finale.
Un immenso grazie va ad Elena, la mia spalla destra e la mia certezza, che ha sempre creduto
in me e che da poco ha concluso meravigliosamente il suo percorso universitario. Grazie per
portare gioia nella mia vita, di riporre fiducia in me e per avermi compreso e sostenuto nei
momenti di buio e smarrimento. Per entrambi si apre ora un nuovo capitolo della vita che
prevede un percorso in salita e ricco di imprevisti. In ogni modo, sono consapevole che
questo percorso sara molto pill piacevole avendo accanto una persona speciale come lei.
Ringrazio inoltre i suoi genitori, Luigino e Marinella, che mi hanno sempre ben accolto e
sostenuto.

Desidero ringraziare tutti i miei amici pit1 cari con i quali ho condiviso momenti di
riflessione e vissuto momenti di goliardia pura. So di non essere stato molto presente in
quest’ultimo periodo, ma loro sanno quanto sia stato focalizzato nel raggiungere questo
obiettivo. Sono sicuro che da qui in avanti ci saranno molte opportunita per vivere insieme
altre giornate e serate memorabili. Inoltre, voglio menzionare gli amici del calcetto, con i
quali da anni si organizzano i sentitissimi calcetti settimanali, la nostra valvola di sfogo
preferita per condividere la nostra grande passione per il calcio.

Ringrazio tutti gli amici che ho conosciuto all'universita e con i quali ho mantenuto un

ottimo rapporto a suon di sushi. In particolare, desidero menzionare Federico, Massimo e

169

Simone per aver condiviso gioie e dolori durante il nostro percorso universitario. Saro
sempre grato a loro per 'amicizia instaurata e il supporto sia morale che tecnico. Auguro il
meglio per la loro carriera professionale, e chissa se un giorno a lavoro condivideremo la
stessa scrivania.

Con questa tesi si conclude un capitolo della mia vita molto importante, un percorso
durato la bellezza di 1971 giorni. Ringrazio I'Universita di Padova per avermi dato
lopportunita di apprendere conoscenze teoriche e pratiche che mi serviranno per entrare
nel mondo del lavoro. Infine, voglio ringraziare me stesso. Nonostante le iniziali defaillance
e le difficolta legate al periodo pandemico, ho combattuto per ritrovare le giuste motivazioni
nel proseguire con gli studi. Auspico di affrontare con la stessa ferocia e determinazione le

prossime sfide che il futurd riservera, sia in ambito personale che professionale.

Padova, Febbraio 2023 Alberto Gobbo

170

	Abstract
	Contents
	List of Figures
	List of Tables
	Listings
	Introduction
	The problem
	Related works
	Programming languages and tools
	Programming languages
	Tools

	Personal motivations
	Thesis structure

	The FIFA dataset
	The source of data: SoFIFA.com
	List of FIFA players' personal data
	List of FIFA players' attributes
	Outfield players' attributes
	Goalkeeper's attributes

	List of FIFA players' special attributes
	List of FIFA players' positions
	Creating the dataset
	FirstPageWebScraping(url) method
	NextPagesWebScraping(url, 60) method
	ManipulateAndCleanData() method
	GenerateCSVDataset(cleaned_dataset) method
	Precautions for a safe web scraping

	Attributes names in the cleaned dataset

	Preliminary data analysis of FIFA dataset
	Pre-processing of dataset
	Graphical evaluation
	Response variable distribution
	Response variable against categorical covariates
	Response variable against quantitative covariates
	Possible interactions between covariates

	Correlation matrix

	Data Mining Techniques
	Premises
	Multinomial distribution

	Multinomial Logistic Regression
	Automatic model selection
	Linear Discriminant Analysis
	Regularization methods
	Ridge Regression
	Lasso

	Data Mining Results
	Premises
	Dataset split
	Metrics

	Multinomial Logistic Regression
	Predictions

	Automatic model selection
	Predictions

	Linear Discriminant Analysis
	Predictions

	Regularization methods
	Ridge Regression
	Lasso
	Predictions

	Machine Learning Techniques
	Premises: Bagging
	Decision Tree
	Random Forest
	K-Nearest Neighbour
	Naive Bayes
	Support Vector Machine

	Machine Learning Results
	Premises
	Dataset adaptation
	k-Fold Cross-Validation
	Metrics

	Decision Tree
	Pruning

	Random Forest
	K-Nearest Neighbour
	Naive Bayes
	Support Vector Machine

	Relevel response variable classes
	Classes reduction process
	Multinomial Logistic Regression
	Lasso
	Support Vector Machine

	Conclusions
	R code
	Preliminary data analysis of FIFA dataset
	Data Mining Results

	Python code
	The FIFA dataset
	Machine Learning Results

	Glossary
	Acronyms
	Bibliography
	Sitography
	Ringraziamenti

