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Abstract

Inflation is a period during which the Universe expansion accelerated in the very early universe.
Originally introduced to solve the fine tuning problems of the cosmological Hot Big Bang model,
it has been a great success in explaining the origin of the small temperature anisotropies of the
Cosmic Microwave Background (CMB). Actually the most accepted models of inflation are the
so-called standard single-field models of slow-roll inflation. The quantum field theory (QFT) de-
scription of such models consists in the presence during inflation of one scalar field, the inflaton,
which slowly rolls down an almost flat potential and interacts with Einstein gravity. At the begin-
ning of inflation both the inflaton and the metric tensor have linear oscillations around their back-
ground. During inflation these primordial perturbations are stretched by the accelerated expansion
on very large (superhorizon) scales, where they get frozen. They form the seeds for the formation
of primordial perturbations in the scalar curvature of comoving hypersurfaces, which can expain
the temperature anisotropies of the CMB, and perturbations of the metric tensor corresponding
to primordial gravitational waves. The statistics of the primordial perturbations predicted by the
standard slow-roll models of inflation is almost Gaussian. If we try to develop a non-linear exten-
sion of the slow-roll theories we find that there is no possibility to observe the non-Gaussianities
predicted given the sensitivity of the actual measurements. In the last years the WMAP and Planck
satellite has constrained with increasing precision the level of primordial non-Gaussianity. The
best constraints at present are those from the Planck measurements of the temperature (and po-
larization) CMB anisotropies. Such constraints are compatible with a zero level of primordial
non-Gaussianity as predicted by the slow-roll models, but there is still a window of almost two
orders of magnitude unexplored. For this reason it is interesting to think about modifications of
slow-roll models of inflation in order to achieve signals of non-Gaussianity. Modified gravity the-
ories are an example of such a modification. Being-open minded about a modification of Einstein
gravity during inflation is a well motivated question. In fact the high energies of the early universe
are not accessible today in the colliders and we do not know if in these conditions gravity follows
exactly the Einstein description. In this Thesis we have focused on the analysis of Chern-Simons
gravity during inflation, which is parity breaking and polarizes the primordial gravitational waves
into circular polarizations. In this case a difference between the large-scale power spectrum of the
two different circular polarizations of the primordial gravitational waves arises. For the approxi-
mations made to develop the theory we argue that this difference is small but maybe observable
with future experiments. As an original contribution we have focused on primordial non-Gaussian
signatures. We have computed a non trivial parity breaking pattern into the non-Gaussianity of the
primordial perturbations (specifically for the 3-point function correlating primordial graviational
waves and the scalar curvature perturbation). In the slow-roll limit this signature can be large even
if there is a small parity breaking in the power spectra. For this reason making a more detailed
investigation about non-Gaussianities provided by the Chern-Simons gravity term during inflation
can be an interesting iusse for the future.
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Introduction

Inflation is a period during which the Universe expansion accelerated in the very early universe. Its
role is crucial for explaining the well known horizon, flatness and magnetic monopole problems of
the Hot Big Bang cosmological model, the most accepted paradigm of the universe history.
But inflation is considered mainly for another important feature: primoridial perturbations pro-
duction. Actually the slow-roll models of inflation are the most accepted models. They have a
quantum field theory description. In according to them the primordial universe is dominated by a
scalar field φ, the inflaton, which autointeracts with a potential V(φ) and interacts with standard
Einstein gravity. The potential is assumed to be approximately flat. During inflation we can de-
compose the inflaton into a background value, which is isotropic and homogeneous, and a small
fluctuation around the background. We can do the same for the components of the metric tensor g.
The background dynamics of the inflaton is responsible to create an accelerated expansion of the
primordial universe. Then the initial small fluctuations are streteched on superhorizon cosmolog-
ical scales by this accelerated expansion and so that their amplitude get "frozen" . This happens
because at a certain time the wavelength of a certain oscillatory mode λ exits the Hubble horizon
rH(t), which provides a measure of the dimensions of the cosmological regions causally connected
in the universe at a fixed time t. At the end of inflation, the inflaton decays into radiation through
a process called reheating of the universe. The calculations show that two are the relevant types
of dynamical perturbations during inflation: scalar perturbations associated to the perturbations of
the curvature of comoving hypersurfaces and primordial gravitational waves. The first one, after
the reheating, remains frozen until the corresponding wavelength reenters into the Hubble horizon,
creating perturbations in the energy density of the radiation fluid. Then through this mechanism
we explain essentialy how in the universe small perturbations that we observe in the Cosmic Mi-
crowave Background (CMB) formed. Such anisotropies represent a photography of the primoridal
universe at the hydrogen recombination epoch. The same mechanism explains the first seeds from
which, via gravitational instability, the Large Scale Structure of the Universe formed during the
matter dominated epoch. Up to now, we have not revealed the primordial gravitational waves yet
and we have some upper limits on their amplitude.
The slow-roll models of inflation predict an almost Gaussian and almost scale invariant primordial
perturbations. This is confirmed by observations of the CMB temperature anisotropies. In the
last years the Planck satellite has also put strong constraints on deviations from a pure Gaussian
distribution of the primordial perturbations [1]. Such constraints are compatible with a zero level
of primordial non-Gaussianity as predicted by the slow-roll models, but there is still a window
of almost two orders of magnitude unexplored. The future prospective is to reduce further these
errors in order to find out if some signal of non-Gaussianity may arise from the CMB.
In fact non-Gaussianities are important to discriminate between different models of inflation, such
as multi-field models that are models in which we add one or more fields besides the inflaton,
or modified gravity models in which models of inflation are studied with a modification of the
Einstein gravity. In this Thesis we have decided to search for effects provided by a modification of
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the Einstein gravity in the slow-roll models of inflation. Being open-minded about this fact is an
important question: in fact the high energy of the primordial universe is not accessible today in the
colliders, and we do not know if in the primordial cosmological fluid gravity followed precisely
the Einstein description or not.
In particular we have concentrated into the Chern-Simons gravity during inflation. In the la-
grangian formalism, the action of this type of gravity is composed of two terms: the first one
is the standard Hilbert-Einstein term which describes standard gravity, and the second one is the
Chern-Simons term which violates parity and arises from an effective field theory approach in
which we admit in the action all the possible covariant terms with at maximum four derivatives of
the metric tensor. For reasons of parity invariance this term does not modify the theoretical Gaus-
sian statistics of the primordial scalar perturbations, but it changes the Gaussian statistics of the
primordial gravitational waves. Our aim is to investigate if this term can produce or not signatures
of non-Gaussianities into the statistics of the primordial perturbations.

The Thesis is organized as follows.

In Chapter 1 we introduce inflation as a powerful mechanism to solve the classical problems of
the Hot Big Bang model of cosmology and we describe qualitatively the primordial perturbation
production.

In Chapter 2 we analyse quantitatively the standard slow-roll models of inflation, focusing on
predictions about the power spectra of the gauge invariant primordial perturbations.

In Chapter 3 we define statistical correlators that describe effects of primordial non-Gaussianity.
Then we define a theoretical formalism to search for non-Gaussianities of the primordial perturba-
tions in the slow-roll models of inflation. Finally, we introduce the role of Modified Gravity models
of inflation which can be relevant in producing some signatures of primordial non-Gaussianity.

In Chapter 4 we analyze the effects of the addition of a modified gravity term in the context of the
slow-roll models of inflation. This term is the Chern-Simons term, which breaks parity simmetry.
We describe the effects of such a modifed gravity term on the power spectra of the primordial
perturbations. We then investigate possible signatures of non-Gaussianity of the primordial per-
turbations. In particular, as original contribution, we have computed the parity contribution in the
3-point function correlating primordial graviational waves and the scalar curvature perturbation,
showing that we can have a large parity breaking even if there is a small parity breaking in the
power spectra.
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Chapter 1

Introduction to inflation

In this chapter we review the formalism necessary to give a description of the dynamics of the
universe. We start from recalling some basics of the standard Hot Big Bang model. We briefly
describe the flatness and the horizon problems of the model, together with the so called cosmic
relicts problem. We introduce inflation as a powerful paradigm to solve these problems. Finally,
we discuss how an inflationary epoch in the primordial universe can produce primordial density
perturbations, that can be the "seeds" from which all the actual large scale structures in the universe
originated. We follow the Refs. [2, 3, 4, 5] and we work with standard natural units c = } = 1.

1.1 The Robertson-Walker metric
The basis of modern cosmology is the assumption that the universe is homogeneous and isotropic
on large scales. Today the homogeneity is verified through the observation of the distribution of
galaxies and from the Cosmic Microwave Background (CMB), which represents a photography of
the primordial universe at the time of hydrogen recombination. It consist of cosmic photons at the
same average temperature equal to T ' 2.7K. These photons come from the last surface scattering
with electrons. Isotropy is checked observing in the CMB the low level of relative temperature
anisotropies ∆T

T ' 10−5. But we must specify the class of observers with respect to which this is
valid. They are the so-called comoving observers. A comoving observer can be thought of as an
observer that moves following the cosmic fluid. For this reason he is not sensible to the energy
flows and the universe for such observer can be considered static.

Homogeneity and isotropy fix, univocally, the Robertson-Walker (RW) metric for the universe [2].
In cartesian coordinates it is expressed as :

ds2 = −dt2 + a2(t)
[
dx2 + k

(x · dx)2

1 − kx2

]
, (1.1)

where (t, x) are a set of coordinates of a comoving observer.
In polar coordinates it is expressed as:

ds2 = −dt2 + a2(t)
[

dr2

1 − kr2 + r2(dθ2 + sin2 θdφ2)
]
. (1.2)

In such expressions a(t) represents the scale factor of the universe. If we foliate the spacetime
in spacelike hypersurfaces Σt

1, a(t) characterizes the time evolution of the physical dimensions of
1This procedure is called "slicing" .
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such surfaces. It is usually normalized as ao = 1, where the suffix o denotes that a is evaluated
today. In the standard Hot Big Bang cosmology a(t) turns out to be a monotonic function increasing
with time. The parameter k, called spatial curvature parameter, represents the curvature of the
spatial hypersurfaces. We have three different spatial geometries of the universe depending on the
value of k:

• k < 0, the hypersurfaces Σt have negative curvature, it follows an open universe;

• k = 0, the hypersurfaces Σt are euclidean, it follows a flat universe;

• k > 0, the hypersurfaces Σt have positive curvature, it follows a closed universe.

If we use the metric (1.2), we can define for a fixed time t the comoving distance between an object
in the universe and the origin of the coordinate system2 as:

χ(t) =

∫ r(t)

0

dr′
√

1 − kr′2
. (1.3)

Instead, the corresponding proper distance d(t) is obtained multiplicating (1.3) for the factor scale
a(t). We obtain:

d(t) = a(t)
∫ r(t)

0

dr′
√

1 − kr′2
. (1.4)

An important physical quantity for characterizing the universe is the Hubble parameter H, defined
as:

H(t) =
ȧ
a
. (1.5)

It gives information about the rate expansion of the universe at a certain cosmological time t.
Actually its experimental value is [6]:

Ho = (67.8 + / − 0.9) km Mpc−1s−1 . (1.6)

Another important quantity to describe the cosmological evolution of the universe is the cosmo-
logical redshift z of the cosmic fluid. This redshift is the result of the cosmological expansion of
the universe. It is defined as [2]:

z =
λobs − λemis

λobs
, (1.7)

where λemis is the wavelength emitted by an electromagnetic source at a certain time temis and λobs

is instead the wavelength observed today, which results stretched by the cosmological expansion.
We can link this observable with the scale factor a(t) as [2]:

1 + z(temis) =
ao

a(temis)
. (1.8)

Then, using Eq. (1.8), we can adopt the variable z(t) instead of a(t) to refer to a particular cos-
mological epoch in the universe history. Moreover a misure of z permits to go back to the time in
which the corresponding electromagnetic wave was emitted.

2We should remark that the origin of the coordinate system is totally arbitrary for invariance under traslations of
the universe.
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1.2 Friedmann equations
The equations that describe the dynamics of the universe are obtained by the solution of the Ein-
stein equation [5]:

Rµν −
1
2

gµνR = 8πGTµν , (1.9)

where in the case of a homogeneous and isotropic Universe, the Ricci tensor Rµν and the scalar
curvature R are obtained by the metric (1.1) and Tµν is the energy-momentum tensor associated to
the cosmological fluid. From now on we fix 8πG = 1 for semplicity of notation.

We suppose that the cosmological fluid is a perfect fluid and its energy momentum tensor has the
form:

T00 = ρ(t), Ti j = −gi j p(t), T0i = 0 , (1.10)

where p(t) is the isotropic pressure density of the fluid and ρ(t) is its energy density.

Then, substituting Eqns. (1.1) and (1.10) into Eq. (1.9), we find two indipendent equations, the
so-called Friedmann equations [3]:

H2 =
ρ

3
−

k
a2 , (1.11)

ä
a

= −
1
6

(ρ + 3p) . (1.12)

These equations link together the scale factor a(t) with the pressure density p(t) and energy density
ρ(t) of the cosmological fluid. Assuming to have an expanding universe, so with ȧ > 0, we can have
ä < 0 only if ρ+3p ≥ 0 (from Eq. (1.12)). This last condition 3 defines the ordinary matter, which is
defined as matter that interacts mainly with gravitational interactions. Here gravity predominates
over the electromagnetic force decelerating the expansion rate of the universe. Instead the case
ρ + 3p < 0 refers to non-ordinary matter, leading in particular to an accelerated expansion of the
universe with ä > 0.

We can define the critical energy density as:

ρc = 3H2 , (1.13)

and the density parameter:

Ω =
ρ

ρc
. (1.14)

Then, we can rewrite Eq. (1.12) as:

Ω − 1 =
k

a2H2 . (1.15)

From Eq. (1.15) it follows:

3This condition is also equivalent to the so called strong energy condition in a Friedmann-Robertson-Walker
universe.
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• if Ω < 1, then k < 0 and we have an open universe;

• if Ω = 1, then k = 0 and we have a flat universe;

• if Ω > 1, then k > 0 and we have a closed universe.

For this reason the critical density is the value which the universe would have if it was perfectly
flat.

1.3 Solutions of the Friedmann equations
In order to find solutions to the Friedmann equations, we combine Eqs. (1.11) and (1.12) to find
the continuity equation:

dρ
dt

+ 3H(ρ + p) = 0 . (1.16)

In order to solve Eq. (1.16), we suppose that the cosmological fluid is barotropic, in the sense that
the pressure depends only on the energy density through the linear relation:

p(t) = wρ(t) . (1.17)

If we take w to be a constant and substitute Eq. (1.17) into Eq. (1.16), we find the general solution:

ρ ∝ a−3(1+w) , (1.18)

where w is the equation of state of the fluid.
We distinguish three main kinds of fluid depending on the value of w [2]:

Matter fluid: it can consist of non relativistic matter and/or dark matter (DM). Baryonic matter
with an energy mass m greater than the thermal energy ET ∼ T of the universe (m > T ) is by
definition non-relativistic. The dark matter component represents matter that interacts only gravi-
tationally in the universe and does not have any electromagnetic interaction and for this reason we
cannot observe it directly. Moreover we know from observations that in order to be a dominant
component today in the matter fluid the DM component must be non-relativistic today. For such
fluids we can take p ' 0, w ' 0 and we have:

ρ ∝ a−3 , (1.19)

ρ ∝ (1 + z)3 . (1.20)

Radiation fluid: it consists of relativistic matter and radiation. The relativistic matter is barionic
matter with an energy mass much smaller then the thermal energy of the universe (m << T ).
Radiation is associated to photons. For such fluid w = −1

3 and then

ρ ∝ a−4 , (1.21)

ρ ∝ (1 + z)4 . (1.22)

Vacuum energy fluid: this kind of fluid is associated to regions of vacuum in the universe. For it
w = −1 and we have:

6



ρ = constant . (1.23)

In this last case the energy momentum tensor becomes of the kind Tµν = Λgµν, with Λ a constant.
Then in the literature this fluid is called cosmological constant, because it appears in the Einstein
equations (1.9) as the cosmological constant firstly introduced by Einstein to find a solution for a
static universe [5].
Our universe is composed by all of these three kinds of fluid at the same time. Then the dynamics
of the universe is driven by the fluid which is dominant in term of the energy density at a given
epoch. The total density parameter (1.14) is obtained by the sum over all the three species:

Ω = Ωm + Ωr + ΩΛ . (1.24)

The experimental values of the parameters Ωi was measured by the Planck satellite and tabulated
in Ref. [6]. They are exposed in the table 1.1 at the end of this chapter.
Observations confirm that today the predominant fluid is an energy vacuum like fluid with a relative
aboundance ΩΛ ' 0.69. This fluid is also called Dark Energy, because it consists of an unknown
energy that seems to contrast the attractive gravitational force. The observations indicate also that
the universe is fully consistent with a spatially flat universe. If we assume that k ' 0 during all the
universe history, then we can solve exactly equation (1.11), finding

a(t) ∼

t
2

3(1+w) , if w , −1,
eHt, if w = −1.

(1.25)

The Hot Big Bang model

The Hot Big Bang model is the most accepted paradigm of the history of the universe given the
multiple observational probes on which it is based on. According to it, the early universe had
very high temperatures and so it was dominated by radiations and ultrarelativistic particles. We
presume also that the universe has expanded for all its history (then ȧ > 0). In such a scenario from
Eqs. (1.15) and (1.25) we find that the spatial curvature parameter k tends to become smaller and
smaller in the past. In addition the scale factor a and the energy density ρ evolved4 as:

a ∝ t, ρ(t) ∝ t−4 . (1.26)

We observe that at the time t = 0 there is a singularity where the energy density goes to +∞, which
is called Big Bang.
This ultrarelativistic primordial fluid initially was in a thermodynamic equilibrium, in the sense
that the rate of interactions between the particles was much greater that the rate of expansion of
the universe, H( Consider, e. g., the electromagnetic interactions between photons γ and electrons
e−). The radiation fluid at equilibrium follows the Planck statistics. By a matching between the
energy density imposed by the statistics and the one imposed by the Friedmann equations, we find
for such a primoridal universe the time-temperature relation:

T (t) ∝ t−
1
2 . (1.27)

4We take the solutions of Eqns. (1.25) and (1.18) with w = 1
3 .
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This equation tells us that the universe becomes colder as time passes. For this reason at a cer-
tain time some baryonic (or dark) matter particles can become non-relativistic. At thermodynamic
equilibrium the numerical density n(t) of non-relativistic matter is suppressed by the Boltzmann
factor ∼ e−

m
T , where m is the mass of the particle under consideration. Then until the baryonic mat-

ter remained in equilibrium with radiation, the energy density of the matter fluid was suppressed.
This epoch is called radiation dominated era. This continued until the epoch of recombination
where hydrogen atoms formed, reducing the number of electrons. This determined the decoupling
of the photons from the baryons.
From now, matching Eqs. (1.19) and (1.21), it follows that the energy density of the radiation
fluid became soon smaller than the energy density of the matter fluid. When this happened in the
universe, it started a new epoch, the matter dominated era. During this epoch all the large scale
structures that we observe in the universe, such as galaxies and cluster of galaxies, started to form
through gravitational instability.
After this epoch, at very recent times, the vacuum energy fluid becomes dominant with respect to
both matter and radiation. This can be a conseguence of the growing of vacuum regions in the
universe.
This is a brief description of the Hot Biag Bang model. We remand to Ref. [2] for more details.

1.4 The Problem of the initial conditions
The standard Big Bang cosmology, briefly recalled above, presents in fact some issues. The uni-
verse we observe today is the result of very unlikely initial conditions. We could say that the
standard Big Bang model has a fine tuning problem. In order to understand this problem, we
define an important concept, the one of horizon, as it is usually used in cosmology.

• Particle horizon: In terms of the comoving distance χ(t), the particle horizon is defined
as follows. Given a point A of the universe and a time t, the particle horizon χp(t) is the
maximum distance from which a point B may have sent a light signal to A at a certain time
in the past t′. If χp(t) is finite, a point C that has reached A by the time t cannot have never
sent information to A in the past; at the same time C cannot have never received physical
signals from A. The two points have been physically disconnected until the time t. We can
define quantitatively χp(t) using the fact that the infinitesimal space-time interval ds of a
light ray is zero. From the RW metric (1.2) it follows that the infinitesimal radial distance
covered by the light in an infinitesimal time dt at fixed angles is:

dr =

√
1 − kr2

a(t)
dt . (1.28)

So, in order to find the quantitative expression of the particle horizon, it is enough to substi-
tute Eq. (1.28) into the general expression of comoving distance d(t) (1.3). We find:

χp(t) =

∫ t

0

dt′

a(t′)
. (1.29)

The corresponding proper particle horizon χp is given by:

dp = a
∫ t

0

dt′

a(t′)
. (1.30)
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Another horizon that can be defined in a cosmological context is the Hubble horizon.

• The Hubble horizon: the Hubble radius RH(t) is defined as the distance covered by the light
during the characteristic universe time τ = H−1. So in natural units:

RH(t) = H−1(t) . (1.31)

The corresponding comoving Hubble radius is:

rH(t) = (aH)−1 . (1.32)

The comoving Hubble radius represents an extimation of the distance under which two points
in the comoving universe are causally connected at a certain time t. For each generic point
P of the comoving universe we can define in the space a causally connected spherical region
which has radius rH(t) and is centered in P. This region contain all the points with which the
point P is causally connected at the time t. For this reason the comoving Hubble radius is
also called comoving Hubble horizon.

With a change of variable in (1.29) we can relate the comoving particle horizon to the co-
moving Hubble horizon as:

χp(t) =

∫ t

0

dt′

a(t′)
=

∫ a(t)

a(0)

da′

Ha′2
=

∫ a(t)

a(0)

d log(a′)
Ha′

=

∫ a(t)

a(0)
d log(a′)rH(t′) , (1.33)

where in the last passage we have used Eq. (1.32).

Now, we have all the elements to understand the so called horizon and flatness problems of the
standard Hot Big Bang model.

1.4.1 The Horizon problem
We can summarize the horizon problem in the following way. For w , 0 the comoving Hubble
horizon can be written, using Eq. (1.25), as:

rH(t) =
1

H(t)a
=

1
H(t0)

a(t)
(1+3w)

2 , t0 < t . (1.34)

where t0 is a certain initial time.
In our model the scale factor a is a monotonus function growing with time. The primordial universe
is supposed to be dominated by ordinary ultrarelativistic matter, then with w ≥ −1

3 . In this case
the comoving Hubble radius is a monotonus function growing with time too. The same happens
also in the matter dominated era in which w = 0. Then during almost the entire universe history,
the comoving Hubble horizon has grown up. Only recently the universe has begun a vacuum fluid
dominated era, in which the comoving Hubble horizon is decreasing.
This means that comoving scales, that were entering inside the comoving Hubble horizon during
the matter dominated era, at the time of the baryon-photon decoupling were larger than the comov-
ing Hubble horizon and so causally disconnected. In particular, passing to the comoving particle
horizon χp(t), it is possible to compute the ratio between the comoving particle horizon of the
CMB today and the one at the time of baryon-photon decoupling. We find [3]:
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χpo

χp(tdec)
∼

1028cm
1023cm

∼ 105 . (1.35)

Thus the observed CMB can be divided into 105 circular patches that were physically disconnected
until the time of recombination. It should be clear from the Eq. (1.35) that going in the past
the number of patches physically disconnected only increases. How could all these physically
disconnected patches have acquired the same temperature in the past? It does not explain the
extreme similarity between regions that may not have been in causal contact between them in the
past. In conclusion, the standard Big Bang theory is forced to assume, as initial conditions, an
extremely homogeneous and isotropic universe.

1.4.2 The flatness problem

In order to formulate the problem we take the Friedmann equation (1.15) and we write it in terms
of the comoving Hubble radius:

Ω − 1 =
k

a2H2 = kr2
H(t) . (1.36)

We see that if Ω = 1 at a given time t then k = 0 for all the times. But realistically speaking there is
zero probability that a similar scenario can happen. Observations confirm that |Ωo−1| < 0.005 [6].
From the fact that the Hubble radius increases with time, it follows that Ω tends to deviate from
the value 1. But this means that in the primordial universe the value of Ω was near to 1 much more
than it is today. We take as reference time for the primordial universe the Plank time tPl ∼ 10−44s
after the Big Bang. This is the time below which the modern quantum field theory description of
the nature’s laws is incomplete. By a direct estimation we find [3]:

|Ω(tPl) − 1|
|Ωo − 1|

' 10−60 , (1.37)

|Ω(tPl) − 1| ' 10−60|Ωo − 1| . 10−62 . (1.38)

We see that the standard Hot Big Bang theory requires a universe to be originated in a very partic-
ular state of small spatial curvature.

1.4.3 The problem of cosmological relics

According to several extensions of the Standard Model of particles (e.g. Grand Unification Theo-
ries GUT or string theories), if the primordial universe had very high energies, in the early universe
at very high energies various cosmological defects, such as magnetic monopoles, could have been
produced, which would still be present in the universe , with an abundance that would overclose
the universe by many orders of magnitudes. These are called cosmological relicts. The magnetic
monopoles are an example of these cosmological relics. Historically the problem of the magnetic
monopoles was the first theoretical evidence of the necessity to introduce inflation in the primordial
universe. We refer to Refs. [4, 7] for more details about other types of cosmological relicts.
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1.5 Inflation as a powerful solution

1.5.1 General definition of inflation
The solution to both problems is inflation. It is defined as a period of accelerated expansion tak-
ing place in the early universe, before the radiation dominated era. This allows the universe to
start from general initial conditions without the need to impose a very unlikely initial scenario.
Quantitatively, it is a period during which:

d2a(t)
d2t

> 0 . (1.39)

Starting from Eq. (1.39) we can define also other important features of such a period. First of all,
we can rewrite Eq. (1.12) as:

ä
a

= −
1
6

(ρ + 3p) . (1.40)

From this equation, and requiring the condition (1.39), it follows:

ρ + 3p < 0 . (1.41)

Since ρ is positive, it then follows that the cosmic fluid driving the inflation is characterized by
a negative pressure with p < −1

3ρ. This means that the cosmic fluid dominating the inflationary
epoch is not composed by ordinary matter. The negative pressure is necessary to win againts
gravity and to produce an accelerated expansion.

In addition we can define the adimensional parameter:

ε = −
Ḣ
H2 . (1.42)

This parameter describes how much the Hubble parameter changes during the inflationary epoch.
Using the definition of the Hubble parameter, (1.5), we can write:

ä
a

= H2 + Ḣ = H2(1 − ε) . (1.43)

Then, requiring ä > 0, forces ε < 1. In particular there can be three possible ranges for the values
of ε:

• 0 < ε < 1: the Hubble parameter decreases slowly in time during inflation. In particular in
the extreme case ε << 1 we have a quasi-de Sitter inflation. Here approximately a ∼ eHt and
H ∼ constant;

• ε = 0: the Hubble parameter is perfectly constant and we have a de Sitter inflation;

• ε < 0: the Hubble parameter increases in time during inflation and in the limit ε << −1 we
can have a "super" expansion period , named super inflation.

We can also compute the time derivative of the comoving Hubble radius in order to understand
how it behaves during inflation:

drH(t)
dt

=
d
dt

(
1

H(t)a

)
= −

ä
ȧ2 . (1.44)
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If ä > 0, from Eq. (1.44) it follows that the comoving Hubble radius decreases in time during
inflationary epoch.

After analyzing the general properties of an inflationary epoch, let us explain how this period
solves the fine tuning problems on the initial conditions.

1.5.2 Solution to the Horizon problem
Let us briefly describe in a qualitative way how an inflationary period solves the horizon problem.
We have explained in Sect. 4.1 that a certain comoving length scale λ which today5 enters the
comoving Hubble horizon, was outside this horizon at the time of the matter-radiation decoupling.
Then two different points of the universe A and B, separated by a comoving distance λ, were never
been in contact until today. But the observations of the CMB proves that also these scales are
isotropic to a high degree (1 point to 105). To solve the problem we need a time in the past in which
the points A and B were causally connected because the comoving Hubble horizon was at least
as large as today. But in this case we need also an epoch in which the comoving Hubble horizon
was decreasing. We have seen, Eq. (1.44), that this is possible during an inflationary period. Then
we can solve the problem considering an inflationary epoch in the primordial universe, before the
matter-radiation decoupling (see, e. g., Figure 1.1).

Figure 1.1: This figure illustrates qualitatively the behaviour of the comoving Hubble radius, indicated with a red
circle, during inflation. At the beginning of inflation it is larger than the actual comoving particle horizon of the CMB
(the purple region); at the end of inflation it is smaller than the comoving particle horizon of the CMB and from that
moment it starts back to grow (Figure taken from Ref. [3]).

1.5.3 Solution to the flatness problem
The flatness problem has an immediate solution if one takes into account that during inflation the
comoving Hubble radius decreases. In fact, rewriting the Friedmann equation (1.36), we have:

5Here with "today" we refers to a time after the decoupling between matter and radiation.
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Ω − 1 = kr2
H(t) . (1.45)

We see that Ω tends to 1 even if at the beginning of inflation was very different from 1. Thus,
requiring an inflationary epoch in the primordial universe, avoids us to require an initial perfect
flat geometry for the universe.

1.5.4 Solution to the problem of cosmological relics

We here very briefly mention the inflationary solution to the problem of the cosmological relics.
The basic idea is very simple: the density of the cosmological relics can be strongly diluted by the
accelerated expansion taking place during inflation, to such low levels that justify the fact that they
are not observed. This is just the description of the qualitative solution to the problem. We refer
for more details to the Refs. [4, 7].

1.5.5 Duration of inflation

In fact an inflationary period, that does not last for an enough long interval of time, cannot solve
the above problems. The quantity we use to quantify the amount of inflation is the number of
e-foldings Ne− f olds(t):

Ne− f olds(t) = ln
(
a(t f )
a(t)

)
, (1.46)

where t f denotes the time at the end of inflation and t < t f . Then Ne− f olds(t) represents the quantity
of inflation which takes place from t until t f . In order to solve the horizon and the flatness problems
it is necessary an inflation with [3]:

Ne− f olds(ti) ≥ 50 − 60 , (1.47)

where ti is the time at the beginning of inflation.

1.6 Primordial density perturbation production
Since the proposal of the inflationary scenario, it has been clear that inflation could provide an-
other crucial feature: a mechanism to generate the first primordial fluctuations. These primordial
perturbations can be responsible for the small density perturbations we observe today in the CMB
(Figure 1.2), and can be the seeds for the formation, during matter dominated epoch, of the galaxies
and clusters of galaxies we observe today in the universe.
In particular inflation has a quantum field theory (QFT) description. The field responsible for such
an accelerated expansion is a scalar field φ, the inflaton, which autointeracts with an almost flat
potential V(φ). Flat means that it changes very slowly with φ. Under this condition the kinentic
energy of the field becomes very small and the energy momentum tensor of the field φ becomes of
the kind Tµν ∼ −Vgµν. In this case we can have a period of quasi-de Sitter expansion driven by the
vacuum potential V(φ). Such a period has all the features to describe an inflationary epoch. Now
we give a brief and qualitative description of how primordial perturbations can arise from a period
of inflation driven by the inflaton field φ. We remand in chapter 2 for a more detailed description.
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Figure 1.2: An image from the Planck Satellite of the small temperature fluctuations of the CMB. The CMB represents
a stretch image of the last scattering surface of electrons with radiation at the epoch of recombination of the hydrogen
atom. The blue parts represents points in which the temperature is lower than the average, the red parts represents
points in which the temperature is higher than the average. The relative temperature fluctuations are quantified to be
∆T
T ' 10−5. The average temperature is T ' 2.7K. (Figure taken from Ref. [8])

Usually, to study the production and the evolution of cosmological perturbations of a physical
quantity, we expand them in Fourier space and we analyze the history of each individual comoving
wavenumber k. λ = 2π

k defines a comoving length scale that characterizes a particular mode of
the perturbation. Such a procedure turns out to be useful dor small perturbations since, at linear
regime, each mode evolves indipendently. Then we split the inflaton field as

φ = φ0(t) + δφ(x, t) , (1.48)

where φ0 is the background value which drives the background evolution of inflation and δφ rep-
resents a small perturbation expanded in Fourier space as:

δφ(x, τ) =
1

(2π)3

∫
d3k δφ(k, τ) eik·x , (1.49)

where we have passed to the conformal time τ. The coordinate reparametrization which permits to
pass from cosmological time to conformal time is the following:

dt = adτ . (1.50)

Inserting Eq. (1.50) into the background metric, which is a spatially flat6 RW metric (1.1), it
becomes:

ds2 = a2(τ)[−dτ2 + dx2] . (1.51)

With this conformal time parametrization, the metric (1.51) differs from the flat Minkowski metric
only by a factor equal to the square of the scale factor of the universe. Then in the limit in which
we can neglect the cosmic expansion, this metric becomes equal to the Minkowski one. Now we
take a single oscillation mode with comoving length λ of the expansion (1.49). We assume that at
the beginning of inflation the comoving Hubble horizon rH(t) was much larger than this scale λ. In
this case the oscillation mode does not perceive the cosmic expansion because the microphysiscs

6During inflation we put the curvature parameter k = 0 because in section 5.3 we have seen that an inflationary
epoch puts rapidly the spatial curvature very near to zero.
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is at work. For this reason is taken as initial condition for the mode function the so called Bunch
Davies initial state, which corresponds to the solution for the mode function of an oscillation in
the Minkowski spacetime. It reads:

δφ(k, τ)initial ∝
1
√

2k3
e−ikτ . (1.52)

During the accelerated expansion of the universe caused by inflation, the comoving Hubble horizon
reduces, unlike the comoving length λ which remains constant. Thus the oscillation is stretched to
cosmological scales. At a certain time τ∗ the scale λ exits the horizon and thus the microphysics is
forzen. The result is that at this time the amplitude of the oscillation is frozen to the value δφ(τ∗)
(The time τ∗ of horizon exit is defined as the time in which the length λ becomes approximately
equal to the comoving Hubble radius rH = 1

aH , then from the condition λ ' 1
aH , or k ' aH). If we

quantize the oscillations δφ, the frozen amplitude A can be interpreted as a net number density of
the quanta of the field φ. Such perturbations remain frozen also after the end of inflation during the
re-heating phase in which inflatons decays into radiation. Then the radiation dominated era starts
in which such density perturbations remain frozen until the corresponding wavelength λ reenters
into the horizon. This is possible because now the comoving Hubble horizon starts to increase.
But if the length λ reenters into the comoving Hubble horizon after the this happens after the
baryon-photon decoupling, we expect to observe on this scale an imprint of the inflationary fluctu-
ations. This is what we find experimentally with the temperature anisotropies in the CMB spectra.
Not only. Such density perturbations will also be a seed for the formation through gravitational
instability of the large scale structures in the present universe.
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TT+lowP TT+lowP+lensing TT+lowP+lensing+ext TT,TE,EE+lowP TT,TE,EE+lowP+lensing TT,TE,EE+lowP+lensing+ext
Parameter 68 % limits 68 % limits 68 % limits 68 % limits 68 % limits 68 % limits

Ωbh2 . . . . . . . . . . 0.02222 ± 0.00023 0.02226 ± 0.00023 0.02227 ± 0.00020 0.02225 ± 0.00016 0.02226 ± 0.00016 0.02230 ± 0.00014

Ωch2 . . . . . . . . . . 0.1197 ± 0.0022 0.1186 ± 0.0020 0.1184 ± 0.0012 0.1198 ± 0.0015 0.1193 ± 0.0014 0.1188 ± 0.0010
100θMC . . . . . . . . 1.04085 ± 0.00047 1.04103 ± 0.00046 1.04106 ± 0.00041 1.04077 ± 0.00032 1.04087 ± 0.00032 1.04093 ± 0.00030
τ . . . . . . . . . . . . . 0.078 ± 0.019 0.066 ± 0.016 0.067 ± 0.013 0.079 ± 0.017 0.063 ± 0.014 0.066 ± 0.012
ln(1010As) . . . . . . . 3.089 ± 0.036 3.062 ± 0.029 3.064 ± 0.024 3.094 ± 0.034 3.059 ± 0.025 3.064 ± 0.023
ns . . . . . . . . . . . . 0.9655 ± 0.0062 0.9677 ± 0.0060 0.9681 ± 0.0044 0.9645 ± 0.0049 0.9653 ± 0.0048 0.9667 ± 0.0040

H0 . . . . . . . . . . . . 67.31 ± 0.96 67.81 ± 0.92 67.90 ± 0.55 67.27 ± 0.66 67.51 ± 0.64 67.74 ± 0.46
ΩΛ . . . . . . . . . . . 0.685 ± 0.013 0.692 ± 0.012 0.6935 ± 0.0072 0.6844 ± 0.0091 0.6879 ± 0.0087 0.6911 ± 0.0062
Ωm . . . . . . . . . . . 0.315 ± 0.013 0.308 ± 0.012 0.3065 ± 0.0072 0.3156 ± 0.0091 0.3121 ± 0.0087 0.3089 ± 0.0062

Ωmh2 . . . . . . . . . . 0.1426 ± 0.0020 0.1415 ± 0.0019 0.1413 ± 0.0011 0.1427 ± 0.0014 0.1422 ± 0.0013 0.14170 ± 0.00097

Ωmh3 . . . . . . . . . . 0.09597 ± 0.00045 0.09591 ± 0.00045 0.09593 ± 0.00045 0.09601 ± 0.00029 0.09596 ± 0.00030 0.09598 ± 0.00029
σ8 . . . . . . . . . . . . 0.829 ± 0.014 0.8149 ± 0.0093 0.8154 ± 0.0090 0.831 ± 0.013 0.8150 ± 0.0087 0.8159 ± 0.0086

σ8Ω0.5
m . . . . . . . . . 0.466 ± 0.013 0.4521 ± 0.0088 0.4514 ± 0.0066 0.4668 ± 0.0098 0.4553 ± 0.0068 0.4535 ± 0.0059

σ8Ω0.25
m . . . . . . . . 0.621 ± 0.013 0.6069 ± 0.0076 0.6066 ± 0.0070 0.623 ± 0.011 0.6091 ± 0.0067 0.6083 ± 0.0066

zre . . . . . . . . . . . . 9.9+1.8
−1.6 8.8+1.7

−1.4 8.9+1.3
−1.2 10.0+1.7

−1.5 8.5+1.4
−1.2 8.8+1.2

−1.1

109As . . . . . . . . . . 2.198+0.076
−0.085 2.139 ± 0.063 2.143 ± 0.051 2.207 ± 0.074 2.130 ± 0.053 2.142 ± 0.049

109Ase−2τ . . . . . . . 1.880 ± 0.014 1.874 ± 0.013 1.873 ± 0.011 1.882 ± 0.012 1.878 ± 0.011 1.876 ± 0.011
Age/Gyr . . . . . . . . 13.813 ± 0.038 13.799 ± 0.038 13.796 ± 0.029 13.813 ± 0.026 13.807 ± 0.026 13.799 ± 0.021
z∗ . . . . . . . . . . . . 1090.09 ± 0.42 1089.94 ± 0.42 1089.90 ± 0.30 1090.06 ± 0.30 1090.00 ± 0.29 1089.90 ± 0.23
r∗ . . . . . . . . . . . . 144.61 ± 0.49 144.89 ± 0.44 144.93 ± 0.30 144.57 ± 0.32 144.71 ± 0.31 144.81 ± 0.24
100θ∗ . . . . . . . . . . 1.04105 ± 0.00046 1.04122 ± 0.00045 1.04126 ± 0.00041 1.04096 ± 0.00032 1.04106 ± 0.00031 1.04112 ± 0.00029
zdrag . . . . . . . . . . . 1059.57 ± 0.46 1059.57 ± 0.47 1059.60 ± 0.44 1059.65 ± 0.31 1059.62 ± 0.31 1059.68 ± 0.29
rdrag . . . . . . . . . . . 147.33 ± 0.49 147.60 ± 0.43 147.63 ± 0.32 147.27 ± 0.31 147.41 ± 0.30 147.50 ± 0.24
kD . . . . . . . . . . . . 0.14050 ± 0.00052 0.14024 ± 0.00047 0.14022 ± 0.00042 0.14059 ± 0.00032 0.14044 ± 0.00032 0.14038 ± 0.00029
zeq . . . . . . . . . . . . 3393 ± 49 3365 ± 44 3361 ± 27 3395 ± 33 3382 ± 32 3371 ± 23
keq . . . . . . . . . . . . 0.01035 ± 0.00015 0.01027 ± 0.00014 0.010258 ± 0.000083 0.01036 ± 0.00010 0.010322 ± 0.000096 0.010288 ± 0.000071
100θs,eq . . . . . . . . 0.4502 ± 0.0047 0.4529 ± 0.0044 0.4533 ± 0.0026 0.4499 ± 0.0032 0.4512 ± 0.0031 0.4523 ± 0.0023

f 143
2000 . . . . . . . . . . 29.9 ± 2.9 30.4 ± 2.9 30.3 ± 2.8 29.5 ± 2.7 30.2 ± 2.7 30.0 ± 2.7

f 143×217
2000 . . . . . . . . 32.4 ± 2.1 32.8 ± 2.1 32.7 ± 2.0 32.2 ± 1.9 32.8 ± 1.9 32.6 ± 1.9

f 217
2000 . . . . . . . . . . 106.0 ± 2.0 106.3 ± 2.0 106.2 ± 2.0 105.8 ± 1.9 106.2 ± 1.9 106.1 ± 1.8

Table 1.1: In this table the experimental values of the principal cosmological parameters are summarized. They are
updated to the 2015 Planck results. The table is taken by the Ref. [6].
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Chapter 2

Standard slow-roll models of inflation:
gaussian profiles of the primordial
perturbations

In this chapter we deal with the standard slow-roll models of inflation. We describe in details the
primordial perturbations of the inflaton and of the metric tensor. We then introduce some gauge
invariant variables, we study their statistic defining some observables to compare the "standard"
inflationary predictions to the experimental observations. For the moment we work with linear
perturbations, making observational predictions about the gaussian statistics of such perturbations.
However we also define a formalism which we will permit us to make also a non-linear analysis in
the next chapter. In the calculations we follow Refs [9, 10, 11].

2.1 General introduction to the standard slow-roll models of
inflation

The standard model of inflation has a simple field theory description. The ingredients of the model
are essentialy two: Einstein gravity and one scalar field φ, named inflaton, which interacts with
gravity through covariant derivatives. The inflaton is characterized by self-interactions described
by an almost flat potential V(φ), which varies very slowly with φ. Using these prescriptions, we
are able to write the full action of the theory:

S =
1
2

∫
d4x
√

g
[
M2

plR − gµνDµφDνφ − 2V(φ)
]

. (2.1)

where g = −detgµν and Dµ is the covariant derivative.

In the square brackets we recognize two terms: the first one is the Einstein-Hilbert action with the
reduced Planck mass M−2

pl = 8πG; the second one is the canonical action of a classical scalar field
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with an autointeracting flat potential V(φ). The inflaton interacts with gravity through the covariant
derivative Dµ.

The inflaton and the components of metric are splitted into a background value and a small pertur-
bation:

φ(~x, t) = φ0(t) + δφ(~x, t) . (2.2)

gµν(~x, t) = g(0)
µν (t) + δgµν(~x, t) . (2.3)

Here the suffix 0 denotes the background values. These are supposed to be invariant under rotations
and traslations, and so they depend only by the time. There is a phenomenological reason for this
choice. In fact inflation is introduced to explain how we can have an isotropic and homogeneous
primordial universe also without particular initial conditions. So we need an homogeneous and
isotropic background. For this reason, the perturbations take all the spatial dependence.

Technically we can introduce in the full model also other fields, but this is the most simple model
that explains the observations [12].

Now, using the action (2.1), we study separately the dynamics of the background and of the per-
turbations.

2.2 The background dynamics
The background dynamics is important to describe the accelerated expansion taking place during
inflation. The background metric is choosen as FRW, (1.1), with zero spatial curvature:

d2s = −dt2 + a2(t)δi j dxidx j . (2.4)

We remember that a(t) is the scale factor of the universe and it is the only dynamical quantity in
the background metric.

We can write the equations of motion for the background by putting to zero the 0-th order func-
tional derivatives of the action (2.1) with respect to the inflaton field and the metric gµν. For the
inflaton we find the following background equation of motion:

φ̈0 + 3Hφ̇0 +
∂V(φ0)
∂φ

= 0 . (2.5)

As far as the metric is concerned, we find the Friedmann equations (1.11) and (1.12) with k = 0.
In order to find the background value of the energy and pressure densities (see, e. g., Ref [10]), we
need to evaluate the energy-momentum tensor of the inflaton. Its general expression is [10]:

Tµν = ∂µφ∂νφ + gµν

[
−

1
2
∂αφ∂βφ gαβ − V(φ)

]
. (2.6)

Then, using the spatially flat FRW metric, we find:
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T (0)
00 =

1
2
φ̇2

0 + V(φ) =ρ0(t) , (2.7)

T (0)
i j = −

[
1
2
φ̇2

0 − V(φ)
]

gi j = − p0(t)gi j . (2.8)

Thus, we read:

ρ0(t) =
1
2
φ̇2

0 + V(φ) , (2.9)

p0(t) =
1
2
φ̇2

0 − V(φ) . (2.10)

Now, since the inflaton slowly rolls under the potential V(φ), we can neglect the kinetic term 1
2 φ̇

2
0

with respect to the potential V(φ) in Eqs (2.9) and (2.10). Thus we have ρ0(t) ' −p0(t) = V(φ).
Then the background energy-momentum tensor takes the form [10]:

T (0)
µν ' V(φ)gµν . (2.11)

The energy-momentum tensor (2.11) is approximately the energy-momentum tensor of a de Sitter
space. Thus we have a quasi de-Sitter inflation.

Now, deriving a set of background equations of motion, we derive some adimensional parameters,
the so-called slow-roll parameters, that we will use to define the slow-roll hypothesis. Inserting
the Eqs (2.9) and (2.10) in the Friedmann equation (1.11) , we derive a first background equation
of motion1:

3M2
PlH

2 =
1
2
φ̇2

0 + V(φ0) , (2.12)

In addition inserting Eqs (2.9), (2.10) and (2.12) into the Friedmann equation (1.12) we derive a
second background equation of motion:

M2
PlḢ =

1
2
φ̇2

0 . (2.13)

The fact that we have used (2.12) to derive (2.13) imply that the two equations of motions are not
independent.
Now we put the background Eqs (2.5), (2.12) and (2.13) all together:

φ̈0 + 3Hφ̇0 +
∂V(φ0)
∂φ

= 0 , (2.14)

3M2
PlH

2 =
1
2

˙φ0
2 + V(φ0) , (2.15)

M2
PlḢ = −

1
2
φ̇2

0 . (2.16)

1Here we write explicitely the Planck mass.
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Since the inflaton slowly rolls under the flat potential V(φ), on the second member of Eq (2.15) we
can neglect the kinetic term 1

2
˙φ0

2 in respect to the potential V(φ). Instead on the first member of
the Eq (2.14) we can neglect the term φ̈0 in respect to the terms 3Hφ̇0 and ∂V(φ0)

∂φ
. Thus the previous

equations become:

3Hφ̇0 +
∂V(φ0)
∂φ

= 0 , (2.17)

3M2
PlH

2 = V(φ0) , (2.18)

M2
PlḢ = −

1
2
φ̇2

0 . (2.19)

Now we define the slow-roll parameters introduced above. They quantify the strenght of the ratio
between the first two derivatives of the slow-roll potential V(φ) with respect to the inflaton and the
potential itself. They read:

εV =
1
2

(
MplV ′

V

)2

'
1
2
φ̇2

0

H2 M−2
pl , (2.20)

ηV =M2
pl

V ′′

V
' −

φ̈0

Hφ̇0
+

1
2
φ̇2

0

H2 M−2
pl , (2.21)

where the ′ denotes derivative with respect to the inflaton.
Here the relations with the ' are found using Eqns. (2.18), (2.17) and (2.19). An almost flat
potential requires:

εV << 1 , ηV << 1 . (2.22)

Then the slow-roll hypothesis is equivalent to require (2.22).

In particular, using the background equation of motion (2.19), we can relate the time dependence
of the Hubble parameter H with the slow-roll parameter εV . This quantifies how we depart form a
de Sitter inflation. We have:

ε = −
Ḣ
H2 ' εV . (2.23)

Because under the sow-roll hypothesis εV << 1, this is another confirmation that we have all the
correct boundary conditions to produce an inflationary period.

Summarizing briefly: through the background dynamics we can understand the accelerated expan-
sion during inflation in the very early universe, which allows us to solve the classical problems of
the Hot Big Bang model, as we have seen in the previous chapter.

2.3 Cosmological perturbations

2.3.1 Perturbations of the inflaton field
In general the perturbations of the inflaton can be expanded as [10, 13, 14, 15, 16]:
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δφ(~x, t) =

∞∑
n=1

δφ(n)(~x, t)
n!

, (2.24)

where each n-th term of this expansion in series corresponds to an n-th perturbation order. In
general there is no limit on the orders n, but it is clear that if we consider small fluctuations around
the background, the linear part corresponding to n = 1 is the dominant one in the expansion series
(even if this statement depends on the observable one is interested in). Then we take (for the
moment) the linearized expression:

δφ(~x, t) = δφ(1) = ϕ . (2.25)

2.3.2 Perturbation of the metric tensor

In general the same expansion is valid also for the metric tensor:

δgµν(~x, t) =

∞∑
n=1

δg(n)
µν (~x, t)
n!

. (2.26)

As done for the inflaton, we take only the linear part of this expansion (for the moment):

δgµν(~x, t) = δg(1)
µν (~x, t) . (2.27)

Now, we write formally the full metric components adding the perturbations (2.27) to the metric
(2.4). We obtain the perturbed metric around the RW space-time:

d2s = −(1 + A)dt2 + Cidxidt + a2(t)
[
(1 + B)δi j + Gi j

]
dxidx j , (2.28)

where A, B, Ci and Gi j denotes formally the perturbations of the metric.

In cosmology such perturbations are splitted into the so-called scalars, transverse vectors and trans-
verse trace-free tensors [13, 14]. The reason why such splitting are introduced is that, at least in
linear theory, the different perturbations are decoupled from each other and evolve indipendently
in the perturbed dynamics equations. For this reason they can be studied separately. Thus in our
case we have the following splittings:

Ci =∂iDi + Ei , (2.29)
Gi j =Di jF + ∂iH j + ∂ jHi + γi j , (2.30)

where Di and Hi are transverse vectors, ∂iDi = ∂iHi = 0, Di j is a traceless derivative operator,
Di j = ∂i∂ j −

1
3δi j∇

2, and γi j is a transverse and traceless tensor, γi
i = 0, ∂iγi j = 0 (where the latin

indices are raised/lowered with δi j).
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2.3.3 3+1 decomposition of the metric
The perturbations just introduced in general are not all dynamical, but there are some redundant
degrees of freedom. In order to have an immediate visualization of which perturbations are dy-
namical and which are not, we rewrite the metric (2.28) using the Arnowitt-Deser-Misner (ADM)
formalism of General Relativity [17, 9]. This is an hamiltonian reformulation of the theory in
which we foliate the total 4-dimensional spacetime into 3-dimensional spacelike hypersufaces at
fixed time (see, e.g., Figure 2.1).

Figure 2.1: Foliation of the spacetime into spacelike slices. The figure is taken from [18].

each hypersurface the 3-metric hi j can be splitted in the same way as in Eq. (2.28). We make the
connections between different slices with the remaining indipendent components of the 4-metric,
the so-called lapse function N = (g00)−

1
2 and the shift vector Ni = g0i. Then, we can rewrite the

metric (2.28) as:

d2s = −(N2 − NiN i)dt2 + 2Nidxidt + a2(t)hi jdxidx j , (2.31)

where hi j = (1 + B)δi j + Gi j.

The inverse metric components are:

g00 = −
1

N2 , g0i = −
N i

N2 , gi j = hi j −
N iN j

N2 , (2.32)

where hi j is the inverse of hi j and the latin indices are lowered and raised with the metric hi j and
its inverse (i.e. N i = hi jN j).
We can rewrite in an "ADM form" all the fundamental tensors of general relativity, in a way in
which all the contractions are done only with the 3-metric hi j. In Appendix A there are all the
formulae we need. Using these formulae, we can rewrite the action (2.1) in an equivalent ADM
form:

S =
1
2

∫
d4x
√

h
[
NR(3) + N(Ki jKi j − K2) +

(φ̇ − ∂iN i)2

N
− Nhi j∂iφ∂ jφ − 2NV

]
, (2.33)

where we have put the reduced mass Planck equal to one for semplicity of notation. It will be
easily restored by dimensional analysis. In addition h = −det(hi j) and Ki j is the extrinsic curvature
tensor defined as:
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Ki j =
1

2N
[D(3)

i N j + D(3)
j Ni − ḣi j] K2 = Ki

i (2.34)

and

K = Ki
i . (2.35)

D(3)
i is the covariant derivative computed with the 3-metric hi j instead of the full metric gµν. R(3) is

the scalar curvature computed with the 3-metric hi j. Physically it represents the intrinsic curvature
of the spacelike slices at fixed time.

But what are the advantages of this formalism? The metrics (2.28) and (2.31) are equivalent, but
the ADM form will permit us to perform more easily a non-linear analysis, in particular as far as
the count of the number of the propagating degrees of freedom. In fact, as we will see, the fields
N and Ni are not dynamical and can be expanded in power of series of the dynamical degrees of
freedom. The zero order value of this expansion is fixed by the background, namely N(0) = 1,
N i

(0) = 0. To find the other orders, we have to derive from the action (2.33) the Eulero-Lagrange
equations for N and Ni and then to solve them order by order.

An interesting fact to be pointed out is the following: if we are interested to an expansion of the
action (2.33) until cubic order in the dynamical fields, we need to know the expressions of N and
Ni only until the first order (we consider the cubic ordder because in the Chapters 3 and 4 we will
study potential non-Gaussian signatures from inflation).

The demostration of this fact is quite simple. We give an euristic argument: imagine to have in the
lagrangian of the theory a term that depends on N:

L = L(N) . (2.36)

We can expand this lagrangian around the first order value N = N(1):

L(N) = L(N(1)) +
∂L

∂N

∣∣∣∣∣
N(1)

·

 ∞∑
n=2

N(n)

 +
∂2L

∂2N

∣∣∣∣∣∣
N(1)

·

 ∞∑
n,n′=2

N(n)N(n′)

 + ... . (2.37)

But the second term in this expansion vanishes because it multiplicates ∂L
∂N |N(1) , that is zero if we

evaluate the Eulero-Lagrange equation for N at first order. Then only the first and the third terms
remain. The third term starts with a quartic order term because of the presence of

(∑∞
n,n′=2 N(n)N(n′)

)
.

Then if we are interested in the contributions until the cubic order, we can take only L(N(1)). An
analogous demonstration is valid also for Ni. A more rigorous demonstration is presented in the
Ref. [19].

2.3.4 Gauge dependence of the cosmological perturbations
Now we describe the concept of gauge invariance of the cosmological perturbations following the
Refs. [15, 13]. In our perturbation theory we assume the existence of a parametric family of
solutions of the fields equations of motion to which also the unperturbed physical space belongs
(which is the case of the cosmological perturbations). This is a one-parameter family of solutions
of the physical pertubed space Mλ (λ is a real parameter) with the condition that λ = 0 refers to
the unperturbed space M0. On each of these Mλ we can define the tensor quantities Tλ that are the
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physical objects we are interested in. In general we can expand all the tensor quantites in Taylor
series of this parameter λ as:

Mλ = M0 + ∆Mλ = M0 + M1λ + M2λ
2 + ... , (2.38)

Tλ = T0 + ∆Tλ = T0 + T1λ + T2λ
2 + ... , (2.39)

where ∆λM and ∆λT represent the physical perturbations and the parameter λ specifies the order
at which such perturbations are taken (i.e. λ = 1 refers to linear perturbations).
Thus we can define a one-to-one correspondence between the points of the unperturbed space M0

and the points of the physical perturbed space Mλ (such a definition is defined implicitly in Eq.
(2.38)). This correspondence is realized by a map ψλ. Then we define a gauge as a map which
realizes this one-to-one correspondence from the points of the unperturbed space to the points of
the physical perturbed space.
Now we take the gauge associated to the map ψλ. This maps a generic point P of the unperturbed
space to a point Q of the physical space. Then we write Q = ψλ(P). If we take another gauge ϕλ,
different by ψλ, it maps the point P in another point S of the physical space different by Q. Then
S = ϕλ(P). Once fixed the gauge ψλ, the point Q is the representative of the point P in the physical
perturbed space. Instead, in the gauge ϕλ, the point S is the representative in the physical perturbed
space of the point P in the unperturbed space. We can pass from the point Q to the point S through
the composition between maps:

S = ϕλ(ψ−1
λ (Q)) . (2.40)

This passage defines a gauge transformation, because we have passed from the representative of
the point P in the gauge ψλ to the representative of the point P in the gauge ϕλ. This way of seeing
a gauge transformation is called active approach. Notice that the fact that the two different points
in the perturbed physical space S and Q have the same representative P in the unperturbed space is
crucial for defining the gauge transformation. The gauge dependence of the perturbations follows
from the fact that we can use arbitrary both gauges ψλ and ϕλ to write the perturbations of the
tensor quantities ∆λT in the physical perturbed space. It follows that there is non-uniqueness in
defining the perturbations of the physical tensor quantities that we want to study.

A pratical way to consider a gauge transformation is defining it through a coordinate transforma-
tion. We explain better this fact. We take the points P, Q and S as defined aboved. We take also
the gauges ψλ and ϕλ defined above. Let us call respectively xµ(Q) and yµ(S ) the coordinates of Q
and S in the physical perturbed space. Then, using Eq. (2.40), in the coordinate space we can pass
from the point x(P) to the point y(S ) through the coordinate transformation:

yµ(S (x)) = yµ(ϕλ(ψ−1
λ (x−1x(Q)))) . (2.41)

The quantity yµ(ϕλ(ψ−1
λ (x−1x(Q)))) = θµ(x) defines the coordinate transformation associated to the

gauge transformation considered. We rewrite better this coordinate transformation as:

yµ(x) = θµ(x) . (2.42)

This coordinate reparametrization permits to pass from the coordinate system x to the coordinate
system y. Then from a practical point of view fixing a gauge is equivalent to fix a coordinate system
in the physical space and changing the gauge is equivalent to perform a changing of a coordinate
system.
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If we work with linear perturbations, then the coordinate transformation to be considered is linear
too. In this case we can write θµ(x) as:

θµ(x) = xµ + ξµ , (2.43)

where ξµ is a vector field which generates a linear infinitesimal gauge transformation.

If we consider a generic tensor quantity in the physical space T (x) , the transformed quantity T ′(y)
through the infinitesimal gauge transformation (2.43) can be written as:

T ′(y) = T (x) + LξT (x) , (2.44)

where Lξ is the Lie derivative with respect to the direction ξµ.

So we have learned that, at linear level, specifying the time and space components of ξµ = (ξ0, ξi)
led to specify a gauge transformation. In particular the spatial component ξi can be splitted as
done for the cosmological perturbations as ξi = ∂ik + li, with ∂ili = 0. This means that three
degrees of freedom are associated to a gauge transformation: two scalars and one transverse vector.
Then, if we completelly fix a gauge we remove automatically these three degrees of freedom.
So a complete gauge fixing permits to remove two scalars and one transverse tensor from the
cosmological perturbations seen above. Instead there is no action on tensor perturbations (which
at linear level turns out to be gauge invariant). In general we can not fixed completelly a gauge,
remaining with a residual gauge dependence. In this case pure gauge modes remain in the theory
which have no physical meaning. Now we define two useful complete gauge fixings which we use
when we are dealing with cosmological perturbations.

2.3.5 Gauge fixing

The two gauges we are going to define will turn to be useful to work with when we use the metric
in the form (2.31).

In the first gauge all the scalar perturbations of the 3-metric hi j, F and B, are removed leaving only
the scalar perturbation of the inflaton δφ, besides the ones in N and N i. This is called spatially flat
gauge. Then one is free to remove also the vector perturbation Hi, remaining with a 3-metric hi j of
the form [9]:

hi j = a2[δi j + γi j], γi
i = 0, ∂iγi j = 0 , (2.45)

together with the scalar inflaton perturbations ϕ.

In the second gauge the scalar perturbation of the inflaton δφ and F are removed. This is the ao-
called comoving gauge. One is free to remove perturbation Hi also in this case. Then we remain
with a 3-metric hi j of the form [9]:

hi j =a2[(1 + B)δi j + γi j], γi
i = 0, ∂iγi j = 0 ,

ϕ =0 .
(2.46)
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Both gauges (2.45) and (2.46) are completely fixed. But there is a problem which we have left
open. Infact the gauge dependence of the cosmological perturbations imply that the value of these
perturbations is different on each gauge. At this point we have two methods to avoid such an
ambiguity: the first possibility is to identify combinations of perturbations that are gauge-invariant,
and so indipendent of the gauge choice. The second option is to fix one gauge and perform all the
calculations in that gauge. In this second possibility pure gauge-modes could appear in the theory
if the gauge is not completelly fixed. These gauge-modes have not physical meaning and must
be eliminated from the full set of the perturbations. In the next section we will start with the
second option, working with the complete gauge fixing (2.45), and we will pass to gauge invariant
variables only at the end of the calculations.

For the scalar perturbations we will use the gauge invariant quantity ζ. For linear perturbations it
is defined as [14, 15, 13, 20]:

ζ =
B
2
−

H
φ̇
ϕ . (2.47)

A priori one can define a big number of gauge invariant quantities. The reason for which we decide
to use this gauge invariant quantity is that it represents the curvature perturbation on comoving
hypersurfaces and so it represents the curvature perturbation which fells a comoving observer in
the primordial universe.

On the other hand, for what we said above on gauge invariance, the linear tensor (transverse and
traceless) perturbations γi j have not gauge freedom and so are born gauge invariant. Thus we can
use γi j to study tensor perturbations without any ambiguity.

In addition, comparing the definition (2.47) with the gauge fixings (2.45) and (2.46), we have
B = 2ζ and ϕ = −

φ̇

H ζ. So in the gauge (2.46) the gauge invariant quantity ζ appears directly
in the metric components and this is the reason for which such gauge is called comoving gauge.
Instead in the gauge (2.45) we can connect the perturbation of the inflaton ϕ to ζ through the linear
relation:

ϕ = −
φ̇

H
ζ . (2.48)

Now we have all the elements to study the evolution of the gauge invariant perturbations ζ and γi j

at linear level.

2.4 Evolution of the perturbations at linear level

We rewrite down the action of the full theory (2.33):

S =
1
2

∫
d4x
√

h
[
NR(3) + N(Ki jKi j − K2) +

(φ̇ − ∂iN i)2

N
− Nhi j∂iφ∂ jφ − 2NV

]
, (2.49)
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where we have put the reduced Planck mass equal to one for semplicity of the following calcu-
lations. It will be easily restored by dimensional analysis. We choose to work with the spatially
flat gauge (2.45). The reasoning is that in this gauge the calculations are easier (e.g. we avoid
performing a lot of integration by parts). The reader is referred to Ref. [9] for more details of the
computations also in the gauge (2.46).

2.4.1 Equations of motion for the fields N and Ni

Following the classic field theory approach, we start deriving the equations of motion for the fields
N and Ni by doing the functional derivatives δS

δNi
and δS

δN and putting them equal to zero. We find
respectively:

2D(3)
j K j

i − 2D(3)
i K j

j − 2N−1∂iφ(φ̇ − N j∂ jφ) = 0 , (2.50)

R(3) − [Ki jKi j − K2] − N−2(φ̇ − N i∂iφ)2
− hi j∂iφ∂ jφ − 2V = 0 . (2.51)

In such equations we see that there is no time derivatives of the fields N and Ni and so they are
not propagating degrees of freedom. In order to remove them from the action we have to solve
algebrically their equations and substituting the solutions back to the action (2.49). For what said
above at the end of the Section 2.3.3, in finding such solutions we can stop to first order in the fields
ζ and γi j. This permits us to develop some arguments that reduce the difficulty of the calculation.
In fact at first order the only scalar and vector quantities that we can construct with γi j and its
derivatives are proportional to ∂i∂ jγ

i j or ∂iγ
i j, that are zero because γi j is a transverse tensor. So

we can put γi j equal to zero remaining only with ζ.
In addition we can split the field Ni into a scale and a transverse vector part as:

Ni = ∂iψ + χi , ∂iχi = 0 . (2.52)

The only vector we can construct with ζ and derivatives of ζ is something like ∂i(aζ + bζ̇ + ...).
In the parenthesis there is a combination of all the possibile time derivatives of ζ multiplied for
some coefficents that we do not know a priori. Formally we call this quantity C. Then, it must be
χi = ∂iC. But from the condition ∂iχi = 0, it follows ∂2C = 0. If we work with fields that goes to
zero to infinity, it follows2 that C = 0 in all the spacetime and then also χi = 0. So we can take
only:

Ni = ∂iψ . (2.53)

In the spatially flat gauge R(3) = 0, D(3)
i = ∂i and the extrinsic curvature Ki j reads like:

Ki j =
1

2N
[∂iN j + ∂ jNi − 2a2Hδi j] . (2.54)

At first order N = 1 + N(1) and then the equations (2.50) and (2.51) become:

2∂2C = 0 is the Laplace equation. If we take the boundary condition C(∞, t) = 0 for all times, we know that the
solution is C = 0 in all the space.
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2(2H∂iN(1) − φ̇0(∂iϕ)) = 0 , (2.55)

−12N(1) − 4Ha−2∂2ψ + 2φ̇2
0N(1) − 2φ̇0ϕ̇ + 2φ̈0ϕ + 6Hφ0ϕ = 0 . (2.56)

In deriving (2.55) and (2.56) we have used also the background equations of motion (2.15), (2.14)
to remove zero order terms. We find the solutions:

N(1) =
φ̇0

2HM2
Pl

ϕ , Ni =
1

M2
Pl

∂iψ, ψ = −a2
˙φ0

2

2H2∂
−2

[
d
dt

(
Hϕ
φ̇0

)]
, (2.57)

where we have restored the Planck mass by dimensional analysis.

Now we are ready to study the evolution of scalar perturbations.

2.4.2 Evolution of scalar perturbations
Because of the fact that tensor and scalar perturbations evolve indipendently at linear level (as said
in Section 2.3.2), for studying scalar perturbations we can put γi j = 0 in the gauge definition (2.45).
In addition we observe that the fields N and Ni (Eq. (2.57)) are subdominant with respect to ϕ in
the slow roll limit (Eq. (2.22)). In fact inserting Eq. (2.20) into Eqs. (2.57) we find at leading
order in slow-roll:

N(1) ∝
√
εVϕ , Ni ∝

√
εV

[
∂i∂
−2 d

dt
ϕ

]
. (2.58)

Then in the action (2.49) the quadratic terms that multiplicate at least one between N or Ni or their
derivatives are subdominant with respect to the terms that multiplicate two ϕ or its derivatives.
This is true only if we require the slow-roll condition (2.22).
For this reason, when we substitute the solutions (2.57) into the action (2.49), we find the following
expression of the action at leading order in slow-roll3:

S ϕϕ =
1
2

∫
d4x a3

[
ϕ̇2 −

1
a2 (∂iϕ)(∂iϕ)

]
, (2.59)

where the latin contraction is done with the δi j.
Now, using the linear relation between ζ and ϕ (Eq. (2.48)) and the definiton of the slow-roll
parameter εV in Eq. (2.20), we find the quadratic action for the guage invariant variable ζ at
leading order in slow-roll:

S ζζ =
(2M2

PlεV)
2

∫
d4x a3

[
ζ̇2 −

1
a2 (∂iζ)(∂iζ)

]
. (2.60)

We notice that this action is multiplied by the slow-roll parameter εV . For this reason the requirment
εV , 0 is necessary if we want to produce curvature perturbations on comoving hypersurfaces in
our model. Now we pass for convenience from the cosmological time t to the conformal time τ.
The conformal time is linked to the cosmological time through the following relations:

3In the action the zero-th order terms in the fields vanishes due to the zero-th order background equations of
motion (2.15) and (2.14). The first order terms are surface terms and they vanishes too.
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dt = adτ,
d
dt

=
1
a

d
dτ
, t =

∫ τ

0
a(τ′)dτ′ . (2.61)

The action (2.60) becomes:

S ζζ =
1
2

∫
d4xA2

s

[
ζ′2 − (∂iζ)(∂iζ)

]
, (2.62)

where now ′ denotes derivative with respect to the conformal time and

A2
s = (2M2

plεV)a2 . (2.63)

Let us expand ζ in Fourier space:

ζ(~x, τ) =

∫
d3k

(2π)3 ζ(~k, τ) ei~k·~x . (2.64)

Substituting Eq. (2.64) into the action (2.62), we arrive to:

S ζζ =
1
2

∫
dτ

d3k
(2π)3 A

2
s

[
ζ′2~k − k2ζ2

~k

]
. (2.65)

Now we make the field redefiniton

ζ =
Φ

As
=

Φ
√

2εMPla
, (2.66)

and we rewrite the action (2.65) for the field Φ, obtaining:

S ΦΦ =
1
2

∫
dτ

d3k
(2π)3

[
Φ′2~k
− k2Φ2

~k
+
A′′s

As
Φ2
~k

]
. (2.67)

We derive the equations of motion for the field Φk doing the functional derivative of S ΦΦ with
respect to Φ:

Φ′′~k
+

(
k2 −

A′′s

As

)
Φ~k = 0 . (2.68)

This is an equation of motion for an harmonic oscillator with an effective mass A
′′
s
As

. Now we make
some intermediate steps in order to derive the explicit expression of such potential at first order in
the slow-roll parameters:

da
dt

= aH −→
∫

Hdτ =

∫
da
a2 −→ Hτ(1 − ε) = −

1
a
. (2.69)

In the last step we have used (2.61), (2.23) and an integration by parts.

Thus:

aH = −
1

τ(1 − ε)
. (2.70)

We also compute:
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ε̇V

εV H
= 2M2

Pl

[
−
∂φφV

V
+

(∂φV)2

V2

]
= 4εV − 2ηV , (2.71)

Here, instead, we have used the definitions (2.20) and (2.21).

Now we start with the computation we are interested in:

A′s

As
=

a
2

(Ȧs)2

A2
s

= aH
(
1 +

ε̇V

2εV H

)
= −

1
τ

(
1 + 2εV − ηV

1 − εV

)
' −

1 + 3εV − ηV

τ
, (2.72)

where the ' means that the result is approximated at first order in the slow-roll parameters.
Finally we obtain:

A′′s

As
=

d
dτ

(
A′s

As

)
+

(
A′s

As

)2

'
2 + 9εV − 2ηV

τ2 . (2.73)

Also here the relation with the ' are approximated at first order in the slow-roll parameters. We
can define the parameter νs = 3

2 + 3ε − η and rewrite the effective mass as:

A′′s

As
=
ν2

s −
1
4

τ2 . (2.74)

Then the equation of motion (2.68) becomes:

Φ′′~k
+

k2 −
ν2

s −
1
4

τ2

 Φ~k = 0 . (2.75)

Now, we are can canonically quantize4 the field Φ as a scalar field in a Minkowski space-time. So
we can promote it to an operator Φ̂ and expand it into the creation and annihilation operators â and
â†. This procedure is possible because, after the field redefinition (2.66), the action for the field
Φ is becoming equal to an action for a massive scalar field in the Minkowski space-time with an
effective mass A

′′
s
As

. So we have:

Φ̂~k = u(~k, τ)â(~k) + u∗(−~k, τ)â†(−~k) . (2.76)

The annihilation operator is defined as the operator that annihilate the vacuum state of the theory
|0〉 according to the following relations and obeying the following commutation relations:

〈0|â† = 0, â|0〉 = 0 , (2.77)

[âk, â
†

k′] = (2π)3δ3(k − k′), [âk, âk′] = [â†k , â
†

k′] = 0 . (2.78)

Here the [·, ·] denotes the commutator operator. It follows that the function u(~k, τ) is a classical
scalar function obeying the normalization [10]:

u∗u′ − uu∗′ = −i . (2.79)

4If we quantize this field, we automatically quantize also the field ζ. In fact ζ is linked to the field Φ by the linear
relation ζ = Φ

√
2εMPla

(Eq. (2.66)).
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Substituting Eq. (2.76) into Eq. (2.75), we find that the function u(~k, τ) obeys the same equation
as the classical field Φ~k before the quantization:

u′′~k +

k2 −
ν2

s −
1
4

τ2

 u~k = 0 . (2.80)

Now, before showing the explicit solution of this equation, we study the limit of the solution for
τ→ −∞ (initial condition) and τ→ 0 (superhorizon5 scales).

Limit τ→ −∞:

In this limit the terms dominant in the parethesis of Eq. (2.80) is the first one and so the equa-
tion becomes:

u′′~k + k2u~k = 0 . (2.81)

But this is the equation of motion of a classical harmonic oscillator with frequencyω = k. Formally
this equation is equivalent to the one of a free scalar field in Minkowski spacetime. The solution is
like:

uτ→−∞~k
= c1e−ikτ + c2e+ikτ . (2.82)

where c1 and c2 are some time indipendent coefficents.

We select the correct initial condition with a physical reasoning. In fact at the beginning of inflation
the physical lengh λph = aλ of a given fluctuation is small and it feels the space around it as a
Minkowsky spacetime. Thus the correct solution is:

uτ→−∞~k
=

1
√

2k3
e−ikτ , (2.83)

which reproduces the correct behaviour in a flat space-time.
The solution (2.83) is known as the Bunch-Davies initial condition.

Limit τ→ 0:

In this limit the term dominant in the potential is the second one in the parenthesis of Eq. (2.80).
Then the equation becomes:

u′′~k −
ν2

s −
1
4

τ2

 u~k = 0 . (2.84)

The general solution is a linear combination of two functions (at leading order in slow-roll param-
eters):

u~k ∝ c′1

(
1

Hτ

)
+ c′2(H2τ2) ∝ c′1a + c′2a−2 . (2.85)

where c′1 and c′2 are some real coefficents. In the last step we have used Eq. (2.70) at leading order
in slow-roll.

5A fluctuation mode λ will exit the Hubble horizon at a certain conformal time τ∗ defined by −kτ∗ = 1. Then
taking the limit τ −→ 0, formally we take the limit on superhorizon scales.
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We know that during inflation the scale factor accelerates. So in the future limit the solution of
order a−2 in (2.85) tends to 0 and we remain with only:

u~k ∝ c′1a . (2.86)

We have said that the physical quantity we use to refers to scalar perturbations is ζ that is linked
with Φ~k (and so with u~k) by the linear relation Φ~k ∝ aζ~k (see Eq. (2.66)). What we understand then
is that ζ becomes constant on superhorizon scales. This means that after horizon exit the amplitude
of the oscillation is "frozen " at a certain value. This fact is well known (Refs. [15, 13, 14, 16] )
and , e.g., in [9] is deduced by using Hamiltonian considerations.

After understanding the asymptotic behaviours of Eq. (2.80), we can now give its exact solution.
In fact Eq. (2.80) is a Bessel equation whose general solution for real νs is (Refs. [10, 21, 4, 22,
23, 24]):

u(~k, τ) =
√
−τ

[
c1(k)H(1)

νs
(−kτ) + c2(k)H(2)

νs
(−kτ)

]
, (2.87)

where H(1)
ν and H(2)

ν are the Henkel functions of first and second kind. If we choose the Bunch-
Davies initial condition (2.83), then we find the exact solution:

u(~k, τ) =

√
−πτ

2
ei( π4 +

πνs
2 )H(1)

νs
(−kτ) . (2.88)

We observe that the solution depends only on the modulus of the wave vector ~k and not by its
direction, because the classical scalar field u evolves in an isotropic background.

Now, if we return back to the field ζ̂, from ζ̂ = Φ̂
As

and (2.76), we find for ζ̂ the exact solution:

ζ̂(~x, τ) =
1
As

∫
d3k

(2π)3

[
u~kâ(~k) + u∗

−~k
â†(−~k)

]
ei~k·~x . (2.89)

where u~k is as in Eq. (2.88).

2.4.3 Evolution of tensor perturbations
In order to study the tensor perturbations we can put to zero all the scalar perturbations, and so we
have ϕ = 0, N = 1 and Ni = 0 in the metric defined by Eqns. (2.31), (2.45). The reason is the same
of above. At linear level the tensor perturbations are decoupled from the scalar perturbations and
then they can be studied separately. Then the action (2.49) becomes at second order in the tensor
perturbations γi j:

S γγ =
M2

Pl

4

∫
d4x a3

[
γ̇i jγ̇

i j −
1
a2 (∂iγ jk)(∂iγ jk)

]
, (2.90)

where also in this case the contractions between latin indices are done with the δi j.
As done for scalar perturbations, we switch to conformal time τ, obtaining:

S γγ =
1
2

∫
d3xdτA2

T [γ′i jγ
′i j − (∂iγ jk)(∂iγ jk)] . (2.91)

where in this case:
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A2
T =

M2
Pla

2

2
. (2.92)

As usual we can expand γi j in Fourier space as:

γi j(~x, τ) =

∫
d3k

(2π)3 εi j(~k)γ(~k, τ)ei~k·~x , (2.93)

where γ(k, τ) is a scalar function and εi j(~k) is the transverse traceless polarization tensor of the
perturbation.

The tensor γi j has a priori 9 components, but 3 of these can be removed because of the simmetry
in the exchange i ←→ j. Then the traceless and transverse conditions remove other 4 degrees of
freedom, remaining with only 2 linear indipendent components. Then we can split γi j into 2 linear
indipendent polarizations, named + and ×:

γi j(~x, τ) =

∫
d3k

(2π)3

[
γ+

i j(~k, τ) + γ×i j(~k, τ)
]

ei~k·~x =
∑

s=+,×

∫
d3k

(2π)3 ε
s
i j(~k)γs(k, τ)ei~k·~x . (2.94)

The two indipendent tensor modes γ+
i j(~k, τ) and γ×i j(~k, τ) just introduced are known as primordial

gravitational waves. The corresponding polarization tensors ε+
i j(~k) and ε×i j(~k) are orthogonal be-

tween them. In particular, if the normalized wave vector n̂ =
~k
k is written in polar coordinates as

n̂ = (sin θ cosϕ, sin θ sinϕ, cos θ), then we have [25]:

ε+
i j =(u1)i(u1) j + (u2)i(u2) j, (2.95)

ε×i j =(u1)i(u2) j + (u1)i(u2) j, (2.96)

where:

u1 =(sinϕ,− cosϕ, 0) , (2.97)

u2 =

(cos θ cosϕ, cos θ sinϕ,− sin θ), if θ < π
2

(− cos θ cosϕ,− cos θ sinϕ, sin θ), if θ > π
2

. (2.98)

From these definitions, it follows that ε s
i j(~k) = ε s

i j(−~k) and the relation:

ε s
i j(~k)ε i j

s′ (~k) = 2δs
s′ . (2.99)

Then, inserting Eq. (2.94) into the action (2.91) and using Eq. (2.99), the action (2.91) becomes:

S γγ =
1
2

∑
s=+,×

∫
d3k

(2π)3 dτA2
T

[
γ′2s − k2γ2

s

]
. (2.100)

From this equation we understand that the dynamical degrees of freedom that describe the evolu-
tion of gravitational waves are the mode functions γs. We notice in particular the similarity of the
action of tensor modes (2.100) with the action (2.65) of the scalar modes. This permits us to use
similar techniques to quantize the fields γs and solve the corresponding equations of motion.
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Before quantizing the fields γ±, as done for the scalar perturbations, it is convenient to use the
rescaled variable µs defined as:

µs = ATγs. (2.101)

Thus, for the variable µs the action (2.100) becomes:

S γγ =
1
2

∑
s=+,×

∫
d3k

(2π)3 dτ
[
µ′2s − k2µ2

s +
A′′T

AT

]
. (2.102)

The equations of motion for such fields are:

µ′′s +

(
k2 −

A′′T

AT

)
µs = 0. (2.103)

We derive also in this case the explicit expression of the effective potential AT
′′

AT
at leading order in

the slow-roll parameters:

A′T

AT
=

a
2
Ȧ2

T

A2
T

' −
1
τ

(1 + ε). (2.104)

A′′T

AT
=

d
dτ

(
A′

A

)
+

(
A′

A

)2

'
1
τ2 (1 + εV) +

1
τ2 (1 + 2εV) =

2 + 3εV

τ2 . (2.105)

Then, we define in this case the parameter νT = 3
2 + ε and we rewrite Eq. (2.103) as:

µ′′s +

k2 −
ν2

T −
1
4

τ2

 µs = 0. (2.106)

Now we can canonically quantize6 the fields µs as done for the case of scalar perturbations:

µ̂s
~k

= zs(~k, τ)âs(~k) + z∗s(−~k, τ)âs
†(−~k), (2.107)

where the creation and annihilation operators â†s and âs obeys the same relations of the scalar
perturbations (2.77), (2.78).
The equation of motion for the scalar function zs is the same of the classical µs:

z′′s +

k2 −
ν2

T −
1
4

τ2

 zs = 0. (2.108)

This equation is exactely the same as Eq. (2.80). Also the discussion about the asymptotic be-
haviours of the solution is the same. We conclude that also the tensor perturbations γs

i j(~k, τ) are
constant on superhorizon scales as ζ(k, τ). Now we write the exact solution of (2.108) which is the
same as Eq. (2.88) with the exchange νT ←→ νs:

zs =

√
−πτ

2
ei( π4 +

πνT
2 )H(1)

νT
(−kτ). (2.109)

Also in this case the solution does not depend on the direction of the wavevector ~k. Then, returning
back to the fields γ̂+ and γ̂× using the relation (2.101), we have the final solution:

6Also in this case the quantization of the fiels µs automatically implies the quantization of the fields γs which is
linked to the fields µs by the linear relation (2.101).
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γ̂i j(~x, τ) =
∑

s=+,×

∫
d3k

(2π)3 ε
s
i j(~k)γ̂s(k, τ)ei~k·~x, (2.110)

γ̂s(~k, τ) =
1
AT

[
zsâs(~k) + z∗sâs

†(−~k)
]

. (2.111)

where zs is the same as in Eq. (2.109).

2.5 Gaussian statistics of the perturbations
The gaussian statistics of a generic perturbation δ(~x, t) is completely determined by the two point
function:

〈0|δ2(~x, t)δ2(~x + ~r, t)|0〉 , (2.112)

where the mean is taken over the statistical ensemble.

The perturbation δ can be expanded in Fourier space as:

δ(x, t) =
1

(2π)3

∫
d3k ei~k·~xδ(~k, t) , (2.113)

If we substitute the expansion (2.113) in Eq. (2.112), we find for the variance:

〈δ2(~x, t)〉 =
1

(2π)6

∫
d3k

∫
d3k′

[
ei(~k+~k′)·~x〈|δ(~k, t)δ(~k′, t)|0〉

]
. (2.114)

If we recall that the background space is homogeneous and isotropic, then we have:

〈δ(~k, t)δ(~k′, t)〉 = (2π)3Pδ(k)δ3(~k + ~k′) , (2.115)

where Pδ(k) is defined as the power spectrum of the perturbation δ. The Dirac delta δ3(~k + ~k′)
is due to invariance under traslations; invariance under rotations implies that the power spectrum
depends only on the wavenumber k and not on the direction of the wavevector ~k.

If we insert Eq. (2.115) into Eq. (2.114), we find:

〈δ2(~x, t)〉 =
1

(2π)3

∫
d3k Pδ(k, t) =

1
2π2

∫ ∞

0
dk k2Pδ(k, t) =

∫ ∞

0
d log k ∆δ(k, t) , (2.116)

where we have also introduced the dimensionless power spectrum:

∆δ(k, t) =
k3

2π2Pδ(k, t) . (2.117)

Now we contextualize these general definitions to the quantistical ensamble considering a quan-
tistical scalar perturbation δ̂(~x, t). In this ensamble the mean is taken in the vacuum state of the
quantistical theory. In general the quantized scalar field δ̂(~x, t) can be expanded as:

δ̂(x, t) =
1

(2π)3

∫
d3k ei~k·~xδ̂(~k, t) , (2.118)

35



where:

δ̂(~k, t) = â(~k)v(~k, t) + â†(−~k)v∗(−~k, t) . (2.119)

Here v(~k, t) is a scalar mode function and a, a† are annihilation and creation operators that obey
the usual relations:

〈0|â† = 0, â|0〉 = 0 , (2.120)

[âk, â
†

k′] = (2π)3δ3(k − k′), [âk, âk′] = [â†k , â
†

k′] = 0 . (2.121)

In this case the two points function in Fourier space reads:

〈0|δ̂(~k, t)δ̂(~k′, t)|0〉 . (2.122)

Inserting the expansion (2.119) into Eq. (2.122), Eq. (2.122) becomes:

〈0|δ̂(~k, t)δ̂(~k′, t)|0〉 =〈0|
(
â(~k)v(~k, t) + â†(−~k)v∗(−~k, t)

) (
â(~k′)v(~k′, t) + â†(−~k′)v∗(−~k′, t)δ̂(~k′, t)

)
|0〉 =

=v(~k, t)v∗(−~k′, t)〈0|â(~k)a†(−~k′)|0〉 =

=v(~k, t)v∗(−~k′, t)〈0|[â(~k), a†(−~k′)]|0〉 =

=(2π)3δ3(~k + ~k′)|v(~k, t)|2 ,
(2.123)

where we have used the relations (2.120) and (2.121).
If we match the result of Eq. (2.123) with the definition (2.115) we find that the power spectrum
of the perturbations δ̂ is:

Pδ(k, t) = |v(~k, t)|2 . (2.124)

So it is the modulus square of the mode function v(~k, t) which appears in Eq. (2.119).
Now we have all the ingredients to apply this general analysis to the computation of the power
spectrum of inflationary scalar and tensor perturbations which we have quantized in the previous
section.

2.5.1 Power spectrum of scalar perturbations from inflation

The variable in exam is ζ̂. In order to compare with the observables, we need to compute the power
spectrum of ζ̂ on superhorizon scales. In fact, after horizon exit, the amplitude of the perturbation
remains frozen in time and also its statistic. Then this is the statistical pattern which we have to
compare with the CMB spectra.

For this reason we are interested in the expression of (2.88) in the large scale limit. The time τ∗
of horizon crossing occours when k = a(τ∗)H∗. At leading order in slow-roll parameters a ' − 1

Hτ .
Then it follows that horizon crossing arrives at the conformal time −kτ∗ ' 1. Thus the superhorizon
limit correspond to the limit −kτ << 1. In this limit, u(k, τ) has the asymptotic form (see e.g.
Ref.[10]):
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u(k, τ)−kτ<<1 =

√
−τ

2(−kτ)3 ei(− π4 + π
2 νs) Γ(νs)

Γ(3/2)

(
−kτ

2

)3−2νs

. (2.125)

For what we have said, the large scale power spectrum of scalar perturbations reads

Ps =
|u(k, τ)−kτ<<1|

2

A2
s

=
k−2νs

2M2
PlεVa2τ2

(
Γ(νs)

Γ(3/2)

) (
−τ

2

)3−2νs

. (2.126)

At leading order in the slow-roll parameters we find:

Ps '
k−2νs

2εV

H2
∗

M2
Pl

(
−τ

2

)3−2νs

. (2.127)

Here H∗ refers to the Hubble parameter at the time of the horizon crossing of the mode k. Using
Eq. (2.117) the corresponding dimensionless power spectrum is:

∆s '
1

4π2ε

H2
∗

M2
Pl

(
−kτ

2

)3−2νs

. (2.128)

2.5.2 Power Spectrum of tensor perturbations from inflation

Here the variable in exam is γi j. We proceed as in the case of scalar perturbations. The asyptotic
mode function in the super-horizon regime has the same expression:

z(k, τ)−kτ<<1 =

√
−τ

2(−kτ)3 ei(− π4 + π
2 νT ) Γ(νT )

Γ(3/2)

(
−kτ

2

)3−2νT

. (2.129)

The tensor power spetrum7 of each polarization s reads:

Ps
T = 2

|us(k, τ)−kτ<<1|
2

A2
T

= 4
k−2νT

M2
Pla

2τ2

(
Γ(νT )
Γ(3/2)

) (
−τ

2

)3−2νT

. (2.130)

The total power spectrum of tensor perturbations is the sum over the two polarizations + and ×.
Then we multiplicate the previous result for a factor 2.

PT = 8
k−2νT

M2
Pla

2τ2

(
Γ(νT )
Γ(3/2)

) (
−kτ

2

)3−2νT

. (2.131)

At leading order in the slow-roll parameters this expression gives:

PT ' 8k−2νT
H2
∗

M2
Pl

(
−τ

2

)3−2νs

. (2.132)

Using Eq. (2.117) the corresponding dimensionless power spectrum is:

∆T '
4
π2

H2
∗

M2
Pl

(
−kτ

2

)3−2νT

. (2.133)

7The additional factor 2 comes from the contraction between two polarization tensors ε s
i jε

i j
s = 2, see Eq. (2.99).
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2.5.3 Tensor-to-scalar perturbation ratio
The tensor-to-scalar perturbation ratio r is an important observable that allows to constrian the
amplitude of the gravity modes. It is defined as the ratio between the power spectrum of tensor and
scalar perturbations. Thus using Eqns. (2.127) and (2.132) we find

r =
∆T

∆s
= 16εV . (2.134)

In particular we can relate r directly to the potential V as:

V
1
4 = r

1
4 (4 × 1016Gev) . (2.135)

In addition, using the background equation of motion (2.18), it follows:

V
1
4 ∝ H

1
2 , (2.136)

where H measures the characteristic energy scale of inflation.
So a measure of r can give also a measure of the energy at which inflation occurs. Unfortunately the
primordial gravitational waves have not been detected yet in the CMB and so we cannot determine
r exactly. But the observations from the Planck satellite have constrianed this quantity as [12, 26]:

r < 0.12 (95 % C.L.) . (2.137)

2.5.4 Spectral index of the perturbations
Another important observable is the spectral index n of the perturbations. It gives information
about the scale dependence of the power spectrum ∆, Eq. (2.117). If ∆ is scale invariant, then
each mode k in the integral (2.116) gives the same contribution to the variance. This type of
configuration is called the Harrison-Zel’dovich spectrum (for the scalar perturbations it correspond
to ns = 1 exactly). Instead, some dependence of the power spectrum ∆ on k means different
contributions of different cosmological scales to the variance. In particular, if ∆ increases with k
we call this type of configuration blue spectrum; viceversa, we have a red spectrum.

The scalar spectral index is defined as:

ns − 1 =
d
(
log ∆s

)
d log k

. (2.138)

Using Eq. (2.128) we obtain immediately

ns − 1 = 3 − 2νs = −6εV + 2ηV . (2.139)

Instead, the tensor spectral index is defined as:

nT =
d
(
log ∆T

)
d log k

. (2.140)

Using Eq. (2.133) we find:

nT = 3 − 2νT = −2εV . (2.141)
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From the observations of the CMB spectra the Planck satellite has determined [12]:

ns = 0.968 ± 0.006 (95 % C.L.) . (2.142)

The Harrison-Zel’dovich spectrum would correspond to the value ns = 1. This means that scalar
perturbations of the CMB are consistent with an approximately scale invariant spectrum and tend
to assume the form of a red spectrum.

2.5.5 Consistency relation
If we put together Eqns. (2.134) and (2.141), we find the so-called consistency relation:

r = −8nT . (2.143)

This relation might be a powerful check of the standard slow-roll inflation scenario because it links
together two observables in a model indipendent way (i.e. it holds for every model of slow-roll
parameters of inflation). Its verification is an important issue of future experiments (see, e.g., Ref.
[27, 28]).

2.5.6 Space of parameters
The observables just introduced allows to infer about the form of the slow-roll potential V(φ),
which for the moment has been left completelly general. In fact a priori a large zoology of models
exists depending on the explicit expression of V(φ). In general we can have two main kind of
models: large field models and small field models. Now we see some features of such models
following the Refs. [29, 3, 12].

• Large field models of inflation: a typically toy model potential for a large field model is of
the form:

V(φ) = V0
φ

µ

p

, p > 0 , µ << MPl . (2.144)

In particular the potential (2.144) is associated to the so-called chaotic models of inflation.
In Figure 2.2 there is a visual example of such potential. We can compute the slow-roll
parameters εV and ηV for the potential (2.144). We find:

ε
large
V =

1
2

(
MplV ′

V

)2

=
1
2

pM2
Pl
φ2p−2

φ2p =
p
2

(
Mpl

φ

)2

, (2.145)

ηlarge =M2
pl

V ′′

V
= p(p − 1)M2

pl
φp−2

φp = p(p − 1)
(

Mpl

φ

)2

. (2.146)

Thus in the slow-roll limit ε large
V , η

large
V << 1, it follows from Eqns. (2.145) and (2.146):

φ >> MPl . (2.147)
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This is the reason for which these kind of models are called large fields models, because the
background value of the inflaton is forced to be much larger than the Planck mass during
chaotic inflation.

We can also compute the field excursion during inflation between the time in which the
primordial CMB fluctuations have exited the horizon and the time of the end of inflation.
This field excursion is the minimum field excursion which must have had inflation to produce
the anisotropies of the CMB. Quantitatively it is defined as:

∆φ =

∫ φend

φCMB

δφ . (2.148)

With a change of variable we can rewrite (2.148) as:

∆φ =

∫ tend

tCMB

dt
φ̇

H
H '

√
εMPl

∫ tend

tCMB

Hdt , (2.149)

where in the last step we have used the definition of the slow-roll parameter εV , Eq. (2.20).
By using the definition of the number of e-foldings, (1.46), and performing an another
change of variable we have:

∫ tend

tCMB

Hdt =

∫ aend

aCMB

da
a

= ln
(

a(tend)
a(tCMB)

)
= NCMB

e− f olds , (2.150)

where NCMB
e− f olds are the minimum number of e-foldings that permits to the primordial CMB

fluctuations to exit the horizon. Tipically we have NCMB
e− f olds ' 60.

Thus the field excursion (2.149) becomes:

∆φ ' 60
√
εV MPl . (2.151)

And substituting the slow roll parameter ε large
V into Eq. (2.148) we find:

∆φ ∝ φ . (2.152)

Because of the fact that φ >> MPl, it follows that a large field model implies also a large
field excursion during inflation.

• Small-field models of inflation: the toy model potential for a small field model is:

V(φ) ∼ V0

[
1 −

(
φ

µ

)p]
, φ < µ << MPl , p > 2 . (2.153)

This kind of potential is visualized in the Fig. 2.3. Also in this case we can compute the
slow-roll parameters associated to the potential (2.153). We find:
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Figure 2.2: This figure illustrates an example of the potential of large field models of inflation. (Figure taken from
Ref. [29]).

ε small
V =

1
2

p2 MPl

φ2

φ2p

µ2p

[
1 −

(
φ

µ

)p]−1

, (2.154)

ηsmall = − p(p − 1)
Mpl

φ2

φp

µp

[
1 −

(
φ

µ

)p]−1

. (2.155)

In this case for p sufficiently larger than 2 the slow-roll limit ε small
V , ηsmall << 1 requires

φ << µ. In this case the background value of the inflaton can acquire also very small values.
This is the reason for which these kind of models are called small field models. We notice
from Eq. (2.155) that, differently from the large field models of inflation, in the small field
models the slow-parameter ηV acquires a negative sign.

In the same way of the large field models, we can give also in this case an extimation of the
excursion of the inflaton field. Substituting the slow-roll parameter ε small

V into Eq. (2.151),
we find:

∆φ ∝ φ

(
φ

µ

)
. (2.156)

Thus, if the background value of the inflaton is small, also the excursion of the inflaton can
be small during inflation.

In reality more examples of toy model potentials for large and small field models of inflation exists.
There is also a third category of slow-roll inflationary models: the so-called hybrid models. These
models are a middle way between large field models and small field models of inflation. We do
not analyze all these models in details because it is not the pourpose of this work. For more details
of other examples we remand to the Refs. [29, 3, 12]. But we remark that the slow roll parameters
(2.20) and (2.21) can give informations about which inflationary potential is better in accordance
with the experimental data. In particular using Eqns. (2.139) and (2.134), we can extrapolate the
value of εV and ηV through the measure of the tensor-to-scalar ratio r and the scalar spectral index
ns. The experimental bounds on the slow-roll parameters given by the Planck satellite are [12]:
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Figure 2.3: This figure illustrates an example of the potential of small field models of inflation. (Figure taken from
Ref. [29]).

εV < 0.012 (95%C.L.) , (2.157)

ηV = −0.0080+0.0088
−0.0146 (68%C.L.) . (2.158)

These constriants tend to favour a small field model w.r.t. a large field one. In fact, as noticed
above, a small field model is characterized by ηV < 0, while for a large field model ηV > 0.
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Chapter 3

Non linear effects: non-Gaussianity as a
probe of inflationary models beyond
standard slow-roll scenario

In this chapter we perform a non-linear extension of the standard slow-roll models of inflation in
order to search for non-Gaussianities of the primordial perturbations. We define the n-th order
correlation functions and the bispectrum of a generic perturbation and then we focus to the case of
primordial perturbations. We introduce the in-in formalism which allows to compute the n-th order
correlation functions from inflation and we perform a computation of the bispectrum of primordial
scalar perturbations. We link this computation to experimental results in order to show that non-
Gaussianities might arise from scenarios beyond the stantard slow-roll theories. In particular at
the end we mention some examples of models in which non-Gaussianities can arise by introducing
modified gravity terms in the action of slow-roll theories of inflation.

3.1 Why searching for non-Gaussianities?
In the last years there has been an intense investigation about primordial non-Gaussianity signals
(performed both by the WMAP and the Planck satellite, see e.g. Refs. [1, 30]). These signatures
give contribution to the statistical correlators of higher orders than the two point function consid-
ered in the previous chapter. Now we define better these correlators. Given a generic perturbation
δ, we define its n-th order correlation function as:

Cn(~xi, t) = 〈δ(~x1, t)...δ(~xi, t)...δ(~xn, t)〉 , (3.1)

where the mean is taken over the statistical ensemble.

The first correlator which manifests non-Gaussianity is the 3-point function:

〈δ(~x1, t)δ(~x2, t)δ(~x3, t)〉 . (3.2)

For our purposes we are interested in the Fourier space of the 3-point function, which reads like:

〈δ(~k1, t)δ(~k2, t)δ(~k3, t)〉 . (3.3)

For isotropy and homogenity of the background space we can parametrize this correlator as:
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〈δ(~k1, t)δ(~k2, t)δ(~k3, t)〉 = (2π)3δ3(~k1 + ~k2 + ~k3)B(k1, k2, k3, t) . (3.4)

The momentum conservation provided by the δ3 is a conseguence of homogenity. Instead for
isotropy B(k1, k2, k3, t) depends only on the wavenumbers ki and not by the direction of the wavevec-
tors ~ki. B(ki, t) is called bispectrum of the perturbation δ. In this Thesis we have focused on this
correlator because already from its analysis one can learn a lot about inflationary models. The
leading contribution of primordial perturbations to the CMB angular bispectrum comes from the
scalar three point function [1]:

〈ζ(~k1)ζ(~k2)ζ(~k3)〉 = (2π)3δ3(~k1 + ~k2 + ~k3)Bζζζ(k1, k2, k3) , (3.5)

where ζ is the comoving gauge invariant curvature perturbation discussed in the previous chapter.
In the formula (3.5) is not explicitly exposed the time at which we evaluate the correlator. It is
implicitly assumed that we evaluate it in the large scale limit, which correspond to the time after
the end of inflation.

In general we can parametrize the bispectrum Bζζζ(k1, k2, k3) as [31, 19]:

Bζζζ(k1, k2, k3) = S (k1, k2, k3)
∆2
ζ(k∗)

k2
1k2

2k2
3

, (3.6)

where ∆ζ(k∗) is the dimensionless power spectrum of the perturbation ζ (see Eq. (2.128)) evaluated
at a fixed momentum scale k∗. The function S is dimensionless and, in the case of scale-invariant
bispectra, is invariant under the rescaling of all the three momenta ki. S permits to define the mo-
mentum dependence of the bispectrum. In fact there are two types of the momentum dependence,
the shape of the bispectrum and the running of the bispectrum:

• The shape of the bispectrum is the dependence of the function S by the ratios of the momenta
k2
k1

and k3
k1

, while we fix the overall momentum K = k1+k2+k3
3 ;

• The running of the bispectrum is the dependence of S by the overall momentum K, while
we take constant the ratios between the momenta.

In addition we can define the amplitude of non-Gaussianity provided by the bispectrum (3.6),
named fNL, as the bispectrum in the equilateral configuration (k1 = k2 = k3 = k) normalized for the
square of the power spectrum of the perturbation ζ (see Eq. (2.127)) evaluated at the momentum
k. In formula it reads

fNL =
5

18
B(k, k, k)
P2
ζ(k)

. (3.7)

The multiplicative factor 5
18 is an historical convention. We will see below the reason for this

particular normalization. This dimensionless amplitude essentialy tells us if a particular shape of
non-Gaussaianity is detectable or not by the experiment. From this definition we see that it can
depend also on the overall momenta K. Moreover, if we substitute Eq. (3.6) into Eq. (3.7), we find
the alternative definition:

fNL =
5

18
S (k, k, k) . (3.8)
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So fNL corresponds to the shape function in the equilateral limit less then a factor 5
18 . If the

bispectrum is scale invariant in general we can extract the amplitude fNL from the shape function
S and parametrize the bispectrum of ζ as:

Bζζζ(k1, k2, k3) =
18
5

fNLS (k1, k2, k3)
∆2
ζ(k∗)

k2
1k2

2k2
3

, (3.9)

where the shape function S (k1, k2, k3) is normalized as S (k, k, k) = 1. Now we briefly describe some
different examples of shapes of non-Gaussianities coming from the CMB angular bispectrum. We
follow the Refs. [1, 31, 19]:

• Local shape of non-Gaussianity: a local non-Gaussian shape arises from a non linear cor-
rection to the perturbation ζg, where the suffix g denotes that this perturbation coincides with
the linear perturbation ζ analyzed in the previous chapter. We can rewrite the new non-linear
ζ as:

ζ(~x) = ζg(~x) +
3
5

f loc
NL

[
ζ2

g (~x) − 〈ζ2
g (~x)〉

]
. (3.10)

The reason for the presence of the factor 3
5 is that, historically, non-Gaussianity was defined

firstly for the Bardeen Newtonian potential Φg (see Ref. [14]), which at linear level and
during the matter era is linked to ζg by the linear relation:

Φg =
3
5
ζ . (3.11)

This type of non-Gaussianity is called local because the non-linear relation (3.10) is locally
defined. In the Eq. (3.10) already appears the amplitude of non-Gaussianity produced. The
bispectrum of local non-Gaussianity is:

Bloc.
ζζζ (k1, k2, k3) =

6
5

f local
NL ×

[
Pζ(k1)Pζ(k2) + Pζ(k1)Pζ(k3) + Pζ(k2)Pζ(k3)

]
, (3.12)

where Pζ(k) is the power spectrum of the comoving curvature perturbation ζ. If we compute
the amplitude of non-Gaussianity by substituting Eq. (3.12) into the definition (3.7) we find
perfectly correspondence of our general definition. This is a confirmation that the multi-
plicative factor in Eq. (3.7) is correct. If we take the expression of Pζ(k) (Eq. (2.127)) in
the limit in which we neglect the scale dependence (assumption that is justified by slow-roll
hypothesis), then Eq. (3.12) becomes:

Bloc.
ζζζ (k1, k2, k3) =

6
5

f loc
NL ×

∆2
ζ(k∗)

k2
1k2

2k2
3

(
k2

1

k2k3
+

k2
2

k1k3

k2
3

k1k2

)
, (3.13)

where ∆ζ is the dimensionless power spectrum of the perturbation ζ in the limit in which we
neglect the scale dependence.

Thus, the template for the local shape reads like:

S local(k1, k2, k3) =
1
3

(
k2

1

k2k3
+ 2 perms.

)
. (3.14)
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• Equilateral shape of non-Gaussianity: This is a shape which peaks in the equilateral con-
figuration k1 = k2 = k3 = K. The corresponding shape function has the form:

S equil.(k1, k2, k3) =

(
k1

k3
+ 5 perms.

)
−

(
k2

1

k2k3
+ 2 perms.

)
− 2 . (3.15)

This kind of shape arise from considering higher derivative corrections in the action of sev-
eral inflationary models of inflation.

• Orthogonal shape of non-Gaussianity: this is another shape of non-Gaussianity which
arise, as the equilateral shape, from considering higher derivative corrections in inflationary
models of inflation. The template associated to this shape is like:

S ortho.(k1, k2, k3) = −3.84
(

k2
1

k2k3
+ 2 perms.

)
+ 3.94

(
k1

k3
+ 5 perms.

)
− 11.10 . (3.16)

For more details about these shapes and the mechanisms that can create such non-Gaussianities
we remand to the Ref. [1]. In the same Ref. the last results of the Planck satellite (updated to
year 2015) on primordial non-Gaussianities are exposed. We found the following experimental
constriants for the three amplitudes of primordial non-Gaussianities relative to the measures of the
CMB temperature anisotropies:

f local
NL =2.5 ± 5.7 (68%C.L.) , (3.17)

f equil.
NL = − 16 ± 70 (68%C.L.) , (3.18)

f ortho.
NL = − 34 ± 33 (68%C.L.) . (3.19)

As we can see, these values have high errors, giving compatibility with a zero level of non-
Gaussianity. So why is actually so important trying to reduce the errors for better constraining
such non-Gaussianities? As we will see in detail in the next section, it is possible to compute at
leading order in slow-roll parameters the bispectrum of the gauge invariant perturbation ζ with
a non linear extension of the slow-roll models of inflation. We anticipate that the amplitude of
such bispectrum is suppressed in the slow-roll limit. Then any signals of non-Gaussianities may
come only from an extension or a modification of the slow-roll theories of inflation which, for
the moment, are the most accepted paradigms for describing inflation. In particular, such non-
Gaussianities can be signatures of possible modifications of the physics at GUT energies (which
are the ones of inflation) that are no still achievable in the actual colliders. The reason is that
contributions on non-Gaussianities from inflation of the gauge invariant variable ζ arise essentialy
by autointeraction terms of ζ and by interaction terms between ζ and the primordial gravitational
waves γs

i j. These interactions in the standard slow-roll models of inflation are suppressed. So sig-
nals of non-Gaussianity can be signatures of interaction terms between ζ and new fields associated
to new degrees of freedom that could appear at high energies in a new physics scenario. But also
they can be the signatures of new interactions terms between the primordial perturbations (both ζ
and γs

i j) which arise from a modification of the Einstein theory of gravity at high energies. We will
return better to this fact in the last section of this chapter.
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3.2 Non linear extension of slow-roll theories of inflation
The first step in our investigation is to understand if observational signals of primordial non-
Gaussianities arise naturally by a non linear extension of the standard slow-roll theories of inflation.
In the previous chapter we have studied the action only until the second order in the primordial
cosmological perturbations, which is the first term that arise from an expansion in series of such
perturbations. Now the purpose is to consider the effects of higer order terms and see how they act
on the statistics of the primordial perturbations.
In particular, if we are interested in computing the bispectrum of the comoving curvature pertur-
bation ζ, we can stop the expansion of the action until cubic order terms in ζ. For the discussion
about the constraints performed in the chapter 2, we can use the expressions of the lapse and the
shift functions N and Ni only until the first order in the perturbation ζ, see Eq. (2.57). On the
contrary we have to perform a non-linear generalization of the spatial metric hi j. The most natu-
ral non-linear extensions of the spatial metric hi j in the gauges (2.45) and (2.46) are respectively
[9, 32]

hi j = a2 [
exp γ

]
i j , γi

i = 0, ∂iγi j = 0 ,

[exp γ]i j = δi j + γi j +
1
2!
γikγ

k
j + ... ,

(3.20)

and

hi j = a2e2ζ [exp γ̃
]
i j , γ̃i

i = 0, ∂iγ̃i j = 0 ,

[exp γ̃]i j = δi j + γ̃i j +
1
2!
γ̃ikγ̃

k
j + ... ,

e2ζ = 1 + 2ζ +
1
2!

(4ζ2) + ... .

(3.21)

As we see, a priori the two transverse traceless gravitational waves are now different in the two
gauges. In fact, at the non-linear level, a gauge trasformation acts also on transverse traceless
tensor quantites. Also the relation between ζ and ϕ is no more linear. If we do the trasformation
which allows to pass from the gauge (3.20) to the gauge (3.21) and we impose the equivalence
between the two gauges, we find the relations [9]:

ζ = ζ1 +
1
2
φ̈

φ̇H
ζ2

1 +
1
4
φ̇2

H2 ζ
2
1+

+
1
H
ζ̇1ζ1 −

1
4

a−2

H2 ∂
−2∂i∂ j(∂iζ1∂ jζ1) +

1
2H

∂iψ∂iζ1

−
1

2H
∂−2∂i∂ j(∂iψ∂ jζ1) −

1
4H

˙̃γi j∂i∂ jζ1 .

(3.22)

γi j = γ̃i j+

+
1
H

˙̃γi jζ1 −
a−2

H2 ∂iζ1∂ jζ1 +
1
H

(∂iψ∂ jζ1 + ∂ jψ∂iζ1) ,
(3.23)

where ζ1 is the first order value of ζ (from Eq. (2.48) ζ1 = −H
φ̇
ϕ), and ψ is as in Eq. (2.57).
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Now, we have to convince ourself that such new variables ζ and γi j (γ̃i j) are still constant on su-
perhorizon scales and so are the correct non-linear generalizations of the gauge invariant variables
studied in Chapter 2. We can follow the demonstration provided in Ref. [9] (for some first works
related to this point see, e.g, Ref [32]). We need to expand the action (2.33) to all orders in the
fields, but only up the first order in the derivatives of the fields. In fact we want to demonstrate
that, at all orders in the fields, in each term of the action there are at least two derivatives of the
fields. So we want to demonstrate that up to first order in the derivatives of the fields there are no
contributions to the action.
We can expand N as N = 1 + δN, when δN is a term which starts with a first order term in the
derivatives of ζ and γi j. On the contrary DiN j starts already with a first order term in the derivatives.
Then, the equation of motion for N (2.51) up to first order in the derivatives becomes:

2VδN = 2H(3ζ̇ − DiN i) . (3.24)

Now we choose the gauge (3.21) and we evaluate the action (2.49) up to first order in the derivatives
of the fields ζ and γi j. We find:

S =

∫
d3xdt

√
h(−2V − 2VδN) =

∫
d3xdt a3e3ζ(−6H2 + φ̇2 − 6Hζ̇) = −2

∫
d3xdt ∂t(a3He3ζ) ,

(3.25)
where we have used Eq. (3.24) and background equations of motion (2.15) and (2.14) to do
some simplifications. Now the last term in the paranthesis of (3.25) is a surface term and can be
neglected. The result is that in the full action there are no terms up to first order in the derivatives.
If we consider the time region outside the horizon, the spatial derivatives terms are negligible1.
Then it follows that the action at all orders in the fields starts with terms of second order in time
derivatives. For this reason the solutions of the equations of motion at all orders in ζ and γi j are
constant outside the horizon.
Thus outside the horizon only the first lines in Eqns. (3.22) and (3.23) are relevant. Notice also
that for this reason we can not distinguish between γi j and γ̃i j.

3.3 Non Gaussianities from slow-roll models of inflation

3.3.1 In-in formalism
Now our aim is to perform an explicit computation of the bispectrum Bζζζ , following essentialy
Refs. [9, 10, 19].
In order to do such a calculation we choose here to adopt the in-in formalism (it is summarized in
Refs. [9, 10] and described in details in Refs. [19, 33]). Since it will turn out to be useful in the
following we are going to describe briefly the method. For another calculation of the primordial
non-Gaussianity in the standard single field models of slow-roll inflation, see Ref. [34], where a
computation at second order in the perturbations is performed. For the moment we take a generic
perturbation δ̂(t, ~x), that must be quantized (suppose it correspond to a scalar field). In general we
are dealing with correlators of the type:

1In fact a spatial derivative term is like ∂iAi ∼ 1
a∂iAi. If we pass to Fourier space it becomes of order ∼ ki

a Ai.
Proceeding in the same way we can show that a term with a number n of spatial derivatives contains a factor of the
order

(
kI
a

)n
, where kI is a momentum of a single mode of the perturbations. Then, on large scales, which corresponds

to the limit k
aH << 1, the term is suppressed.
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〈Ω|δ̂(~x1, t)...δ̂(~xi, t)...δ̂(~xn, t)|Ω〉 . (3.26)

From Eq. (3.26), it is clear that we work in the Heisenberg picture, where only the operators evolve
and states do not. In this case we call |Ω〉 the vacuum of the full theory for a reason which it will
be clear in the following. In order to explain the method we work in hamiltonian formalism. We
know in fact that the predictions of lagrangian and hamiltonian formalisms are equal. In general
the hamilonian of the theory can be decomposed into a quadratic part H0 and some interaction
terms Hint as:

Htot = H0 + Hint . (3.27)

The quadratic part describes essentialy the free evolution of the field δ̂. The trick of the method
consists in switching to the interaction picture. The operator in the interaction picture δ̂I(t) is
linked to the corresponding one in the Heisenberg picture at the time t, δ̂(t), by the relation [33]:

δ̂I(t) = F(t, t0)δ̂(t)F−1(t, t0) , (3.28)

where:

F(t, t0) = T exp
[
−i

∫ t

t0
HI

int(t
′)dt′

]
. (3.29)

where T represents the time-ordered operator. HI
int is the interaction hamiltonian in the interaction

picture which coincides with the one in the Heisenberg picture. The time t0 is the time in which
we switch on the interactions Hint(t).

If we insert Eq. (3.28) into Eq. (3.26), Eq. (3.26) becomes:

〈Ω|

[
Texp

(
i
∫ t

t0
HI

int(t
′)dt′

)]
δ̂I(~x1, t)..δ̂I(~xi, t)..δ̂I(~xn, t)

[
Texp

(
−i

∫ t

t0
HI

int(t
′)dt′

)]
|Ω〉 , (3.30)

where T is now the anti-time-ordered operator.

In addition the relation between the hamiltonian and the lagrangian in the interaction picture is:

HI
int = −Lint . (3.31)

In fact the Legendre transform which links hamiltonian formalism to lagrangian formalism reads
like HI ∼ (δ̇ πδ − L), where πδ is the conjugate momentum of the field δ. But the term (δ̇ πδ) is a
quadratic term and, if we consider only the interaction terms, the equality (3.31) follows. We can
extend this consideration also for the case where there is more than one field in the theory. Then,
if we compute the interaction terms in the lagrangian of the theory, we can compute perturbatively
the correlator (3.30) by expanding the time(anti)-ordered exponentials. If we drop the expansion
of the exponentials up to first order and we use Eq. (3.31), the formula (3.30) becomes simply:

i
∫ t

t0
dt′〈Ω|[δ̂I(~x1, t)..δ̂I(~xi, t)..δ̂I(~xn, t), Lint(t′)]|Ω〉 , (3.32)

where [·, ·] is the commutator operator.

49



The last equation is the "master"equation which we use to compute at first order the expectation
values. We can easily go to Fourier space by doing on both members the integrals

∏
i

[∫
d3xiei~ki ~xi

]
.

We obtain

i
∫ t

t0
dt′〈Ω|[δ̂I(~k1, t)...δ̂I(~ki, t)...δ̂I(~kn, t), Lint(t′)]|Ω〉 . (3.33)

As a final consideration we should remark that the vacuum |Ω〉 is the vacuum of the full theory,
including also interaction terms in the theory. If we call |0〉 the vacuum of the theory whose action
is dropped at quadratic order in the fields (which is the free vacuum of the theory), we would like
to write |Ω〉 in function of |0〉. The reason is that |0〉 is the vacuum that we have introduced in
Chapter 2 to quantize the primordial cosmological perturbations, and so we know how the creation
and annihilation operators act on it.
In studying scattering processes in QFT in general the two vacuum states do not coincide due to
vacuum fluctuations caused by the interactions. But in our case we are evaluating expectation
values. These processes do not generate any non-trivial vacuum fluctuations through interactions.
This is a direct consequence of the identity:

F−1F = 1 , (3.34)

where F is defined in Eq. (3.29).

For this reason we can replace |Ω〉 with |0〉 in (3.33), [33]. This fact is crucial for doing the
computations. In fact the fields in the interaction picture evolve as in the free quadratic case. Thus,
if we know the free solutions in terms of annihilation and creation operators a and a† (which are
the ones we have introduced in Chapter 2), we can do easily the contractions with the free vacuum
state |0〉.

3.3.2 Computation of the bispectrum Bζζζ

Using the in-in formalism, now we want to evaluate the 3-point function (3.5). We perform a tree
level computation, so using the formula (3.33) we have:

〈ζ̂(~k1, 0)ζ̂(~k2, 0)ζ̂(~k3, 0)〉 = i
∫ 0

−∞

dτ′a〈0|[ζ̂ I(~k1, 0)ζ̂ I(~k2, 0)ζ̂ I(~k3, 0), Lint(τ′)]|0〉 , (3.35)

where we have switched from the cosmological time t to the conformal time τ. In fact all our
free solutions are expressed in terms of the conformal time. Here the time at which we evaluate
the correlator is at τ = 0 corresponding to the end of inflation and to super-horizon limit. On
the contrary, the interactions are switched on when the fluctuation modes are on very sub-horizon
scales corresponding to the limit τ −→ −∞.
In Eq. (3.35) the bra-ket contractions with the vacuum states are non zero only if the interaction
lagrangian has the same functional form of the operator in the left side of the commutator operator.
For this reason we need to compute the Lagrangian cubic in the field ζ. To simplify the computa-
tions, we express the interaction lagrangian in terms of ζ1, which is the first order expression of ζ.
We will pass to the field ζ at the end through the relation (3.22). For this reason we compute for
the moment only the expectation value:
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〈ζ̂1(~k1, 0)ζ̂1(~k2, 0)ζ̂1(~k3, 0)〉 = i
∫ 0

−∞

dτ′a〈0|[ζ̂ I
1(~k1, 0)ζ̂ I

1(~k2, 0)ζ̂ I
1(~k3, 0), Lint(τ′)]|0〉 . (3.36)

From now we will not write explicitely the suffix I for the fields, anymore impling the fact that
they are evaluated in the interaction picture. We start with evaluating the interaction Lagrangian
cubic in ζ1. In order to do so, we work in spatially flat gauge (3.20) that allows to avoid different
integrations by parts. In such a gauge the cubic terms dominant in the slow-roll parameters come
from the third and fouth terms in the square bracket of action (2.33). So, at leading order in the
slow parameters, the cubic interaction lagrangian looks like [9]:

Lint(t) =

∫
d3x a3 1

M2
Pl

[
−
φ̇

4H
ϕϕ̇2 − a−2 φ̇

4H
ϕ (∂iϕ)

(
∂iϕ

)
− a−2ϕ̇∂iψ∂

iϕ

]
, (3.37)

where ψ is defined as in (2.57). The contractions between latin indices are done here with the δi j.

Now we use the linear relation between ϕ and ζ1 ( Eq. (2.48)) and Eq. (2.57) to rewrite lagrangian
(3.37) as:

Lint(t) =

∫
d3x a3 1

M2
Pl

[
φ̇4

4H4 ζ1ζ̇
2
1 + a−2 φ̇4

4H4 ζ1 (∂iζ1)
(
∂iζ1

)
−

φ̇4

2H4 ζ̇1(∂i∂
−2ζ̇1)(∂iζ1)

]
. (3.38)

We make explicit the slow roll dependence inserting the definition (2.20) into (3.38). We find:

Lint(t) = ε2M2
Pl

∫
d3x

[
a3 ζ1ζ̇

2
1 + a ζ1 (∂iζ1)

(
∂iζ1

)
− 2a3 ζ̇1(∂i∂

−2ζ̇1)(∂iζ1)
]
. (3.39)

As a final step, we express the interaction lagrangian as a function of the conformal time τ.

Lint(τ) = ε2
V M2

Pl

∫
d3x

[
a ζ1ζ

′
1

2
+ a ζ1 (∂iζ1)

(
∂iζ1

)
− 2a ζ′1(∂i∂

−2ζ′1)(∂iζ1)
]
. (3.40)

If we insert the Fourier decomposition (2.64) of the field ζ1 into Eq. (3.40), we find

Lint(τ) =

∫
d3k d3 p d3q

1
(2π)6 δ

3(~k + ~p + ~q)ε2
V M2

Pl [ a ζ1(~k)ζ′1(~p)ζ′1(~q) − a
(
~p · ~q

)
ζ1(~k)ζ1(~p)ζ1(~q)+

− 2a
(
~p · ~q

)
p2 ζ′1(~k)ζ′1(~p)ζ1(~q) ] .

(3.41)

Here the Dirac delta δ3 comes from an integration
∫

d3x ei(k+p+q)·x, where the integral is the one in
(3.40) and the exponential comes from the Fourier expansions of the fields ζ1(~x, τ) in (3.40). In
Eq. (3.41) the conformal time dependence of the fields is implicitely understood for semplicity of
notation.

Now, inserting Eq. (3.41) into Eq. (3.36), we find an expression of the kind:

〈ζ̂1(~k1)ζ̂1(~k2)ζ̂1(~k3)〉 =
i

(2π)6 ε
2M2

Pl

∫
d3Kδ3(~k + ~p + ~q)

∫ 0

−∞

dτ′a
[
A1(τ′) +A2(τ′) +A3(τ′)

]
,

(3.42)
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where
∫

d3K =
∫

d3k d3 p d3q and theAn’s stands for the contractions:

A1 =a〈0| [ζ̂1(~k1, 0)ζ̂1(~k2, 0)ζ̂1(~k3, 0), ζ̂1(~k, τ′)ζ̂′1(~p, τ′)ζ̂′1(~q, τ′)] |0〉, (3.43)

A2 = − a
(
~p · ~q

)
〈0| [ζ̂1(~k1, 0)ζ̂1(~k2, 0)ζ̂1(~k3, 0), ζ̂1(~k, τ′)ζ̂1(~p, τ′)ζ̂1(~q, τ′)] |0〉, (3.44)

A3 = − 2a
(
~p · ~q

)
p2 〈0| [ζ̂1(~k1, 0)ζ̂1(~k2, 0)ζ̂1(~k3, 0), ζ̂′1(~k, τ′)ζ̂′1(~p, τ′)ζ̂1(~q, τ′)] |0〉. (3.45)

We can compute these contractions using the Wick theorem [19, 33]. For each An we have to
sum over all the terms that we obtain in the following way: each term is obtained by doing all the
possible bra-ket contractions with the vacuum states between couples of fields evaluated at different
times. The terms in which at least one field remains uncontracted are vanishing. We remember that
contractions between fields of different type are zero. From the form of our interaction lagrangian
we need to compute the following two contractions:

〈0|ζ̂1(~k, τ)ζ̂1(~k′, τ′)|0〉, (3.46)

〈0|ζ̂1(~k, τ)ζ̂′1(~k′, τ′)|0〉. (3.47)

The field ζ1 is the first order value of ζ and in the interaction picture its evolution is described by
the quadratic action (2.62). Then the solution is the same found in Chapter 2 (see Eq. (2.89)).
Inserting such solution into Eqns. (3.46) and (3.47) we find:

〈0|ζ̂(~k, τ)ζ̂(~k′, τ′)|0〉 = 〈0| [u(k, τ)â(~k) + u∗(k, τ)â†(−~k)][u(k′, τ′)â(~k′) + u∗(k′, τ′)â†(−~k′)] |0〉

= u(k, τ)u∗(k′, τ′)〈0|a(~k)a†(−~k′)|0〉

= u(k, τ)u∗(k′, τ′)〈0| [a(~k), a†(−~k′)] |0〉

= (2π)3δ3(~k + ~k′)u(k, τ)u∗(k′, τ′) .
(3.48)

In evaluating Eq. (3.48) we have used Eqns. (2.77) and (2.78); u(k, τ) is the same as in Eq. (2.88).
For semplicity of notation, in the computation we have not included the normalization factor 1

As

which we see in the solution (2.89). It will be restored later when we will consider the explicit
expression of the mode function u. Proceeding in the same way we find also:

〈0|ζ̂(~k, τ)ζ̂′(~k′, τ′)|0〉 = 〈0| [u(k, τ)â(~k) + u∗(k, τ)â†(−~k)][u(k′, τ′)â(~k′) + u∗(k′, t′)â†(−~k′)] |0〉

= (2π)3δ3(~k + ~k′)u(k, τ)
d
dτ

u∗(k, τ′) .

(3.49)

Now we can compute the contractionsAn using the Wick theorem, (3.48) and (3.49). We find:

A1 =(2π)9a
[
u(k1, 0)u(k2, 0)u(k3, 0)

(
d
dτ

u∗(k1, τ
′)
) (

d
dτ

u∗(k2, τ
′)
)

u∗(k3, τ
′) − c.c.

]
+

+ perm(ki) .
(3.50)
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A2 = − (2π)9a (~k1 · ~k2)
[
u(k1, 0)u(k2, 0)u(k3, 0)u∗(k1, τ

′)u∗(k2, τ
′)u∗(k3, τ

′) − c.c.
]
+

+ perm(ki) .
(3.51)

A3 =(2π)9(−2a)
(~k1 · ~k2)

k2
1

[
u(k1, 0)u(k2, 0)u(k3, 0)

(
d
dτ

u∗(k1, τ
′)
)

u∗(k2, τ
′)

(
d
dτ

u∗(k3, τ
′)
)
− c.c.

]
+

+ perm(ki) .
(3.52)

The permutations over the ki’s come from all the different ways of contracting the fields. Instead,
the minus complex coniugate (−c.c.) comes from the commutator operator between fields in the
expressions for theAn’s. If we insert Eqns. (3.50), (3.51) and (3.52) into Eq. (3.42), we find

〈ζ̂1(k1)ζ̂1(k2)ζ̂1(k3)〉 =i(2π)3δ3(k1 + k2 + k3)ε2
V M2

Pl×

× Im

I1 − (~k1 · ~k2)I2 − 2
(~k1 · ~k2)

k2
1

I3 − c.c.

 +

+ perm(ki) ,

(3.53)

where the In’s are the integrals

I1 = u(k1, 0)u(k2, 0)u(k3, 0)
∫ 0

−∞

dτ′a2
[(

d
dτ

u∗(k1, τ
′)
) (

d
dτ

u∗(k2, τ
′)
)

u∗(k3, τ
′)
]
, (3.54)

I2 = u(k1, 0)u(k2, 0)u(k3, 0)
∫ 0

−∞

dτ′a2 [
u∗(k1, τ

′)u∗(k2, τ
′)u∗(k3, τ

′)
]
, (3.55)

I3 = u(k1, 0)u(k2, 0)u(k3, 0)
∫ 0

−∞

dτ′a2
[(

d
dτ

u∗(k1, τ
′)
)

u∗(k2, τ
′)

(
d
dτ

u∗(k3, τ
′)
)]
. (3.56)

In order to perform these integrals we need an analytic expression for the mode function u(k, τ).
Its exact value is (2.88), but the Hankel functions in general cannot be integrated analytically.
Fortunately, if we are interested of a computation at leading order in the slow-roll parameters, we
can take the value of u with νs = 3

2 . This corresponds to put to zero the slow roll parameters εV and
ηV in the explicit expression of u. In fact we have already a factor ε2

V into the Eq. (3.53), and so
any other factor of εV coming from the integrals In give automatically a subdominant contribution
in the slow-roll parameters. In this case Eq. (2.88) corresponds to the solution for a free massless
scalar field in a de Sitter space. Thus, the mode function u(k, τ) becomes (see, e.g., [9, 10, 19])

u(k, τ) =
iH

MPl

√
2εVk3

(1 + ikτ)e−ikτ , (3.57)

where we have also restored the correct normalization factor for the variable ζ. We notice that this
function can be integrated in the time domain (−∞, 0]. Its time derivative w.r.t. conformal time is

d
dτ

u(k, τ) =
iH

MPl

√
2εVk3

k2τe−ikτ . (3.58)
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Following the same reasoning, we can expand also all the other functions in the integrals In in series
of slow-roll parameters and take the expression obtained by putting these slow-roll parameters to
zero. Then if we put εV = 0 in the Eq. (2.70), we find:

a(τ) = −
1

Hτ
. (3.59)

In addition we can expand in series near a fixed time t∗ the Hubble parameter H:

H(t) = H(t∗) + Ḣ(t − t∗) + ... = H(t∗) + εV H2(t − t∗) . (3.60)

Another time we can put εV = 0 in this last equation because it gives a subdominant contribution in
slow-roll parameters when we evaluate the integrals In. Then we can take the value of H evaluated
at a fixed time t∗ which we will define below.

Now, using these prescriptions, we are going to compute the integrals In. We start with I1, which
becomes:

I1 = −H4
∗k

2
1k2

2

 3∏
i=1

1
M2

Pl2εVk3
i

 ∫ 0

−∞

dτ′(1 − ik3τ
′)eiKτ′ , (3.61)

where K = k1 + k2 + k3. Here the suffix ∗ indicates that the corresponding quantity is evaluated at
horizon crossing time. This seems to create an ambiguity because we have three different modes
that exit from the horizon at different conformal times. In order to solve this ambiguity we choose
the time of horizon crossing of the momentum K = k1 +k2 +k3, that corresponds to a time in which
we are sure that all the three momenta have already left the horizon.
In order to perform the integral in Eq. (3.61) we have to correct the oscillatory behaviour at −∞ of
the exponential eiKτ′ . We achieve this by performing a Wick rotation of the real axis [19, 9]. We
then promote the real integration variable to a complex variable and we do the change of variable
τ′′ = iτ′. This corresponds to a Wick rotation of the time integration contour. Eq. (3.61) becomes
now

I1 = iH4
∗k

2
1k2

2

 3∏
i=1

1
M2

Pl2εVk3
i

 ∫ 0

−∞

dτ′′(1 − k3τ
′′)eKτ′′ . (3.62)

Now in Eq. (3.62) integrals of the type

I(n,K) =

∫ 0

−∞

dx xneKx (3.63)

appear. We can solve them by integrating by parts, finding:

I(n,K) = (−1)n Γ(n + 1)
(iK)n+1 = (−)n n!

Kn+1 , (3.64)

where Γ(n) is the Euler gamma. Appling this formula we find:∫ 0

−∞

dτ′′(1 − k3τ
′′)eKτ′′ =

(
1
K

+
k3

K2

)
. (3.65)

Thus eq. (3.62) becomes:
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I1 = iH4
∗

 3∏
i=1

1
M2

Pl2εVk3
i

 (k2
1k2

2

K
+

k2
1k2

2k3

K2

)
. (3.66)

More in general, usually in this kind of computations we are dealing with integrals of the type

Ĩ(n,K) =

∫ 0

−∞

dx xneiKx . (3.67)

Proceeding as done for the integral in (3.61), we can deduce the general formula

Ĩ(n,K) = (−1)n Γ(n + 1)
(iK)n+1 = (−1)n n!

(iK)n+1 . (3.68)

Now we pass to evaluate I2:

I2 = −H4
∗

 3∏
i=1

1
M2

Pl2εVk3
i

 ∫ 0

−∞

dτ′

τ′2
(1 − ik1τ

′)(1 − ik2τ
′)(1 − ik3τ

′)eiKτ′ . (3.69)

In computing some integrals in (3.69) we use again the formula (3.68), but this time also another
type of integral appears, which reads

Ĩ =

∫ 0

−∞

dx
x2 (1 − iKx) eiKx =

∫ 0

−∞

dx
x2 eiKx − iK

∫ 0

−∞

dx
x

eiKx =

= −
eKx

x

∣∣∣∣∣∣0
−∞

+ iK
∫ 0

−i∞

dx
x

eiKx − iK
∫ 0

−i∞

dx
x

eiKx =

= lim
x−→0
−

1
x

eiKx ,

(3.70)

We have used the name variable x instead of τ′ for semplicity of notation.

In doing the limit in (3.70) we expand the exponential using the Euler formula. The final result is:

Ĩ = lim
x−→0

[
−

cos(Kx)
x

]
+ lim

x−→0

[
−i

sin(Kx)
x

]
. (3.71)

Only the second limit in Eq. (3.71) is finite and its value is pure imaginary:

lim
x−→0

[
−i

sin(Kx)
x

]
= −iK . (3.72)

Instead, the first limit in Eq. (3.71) give a real divergent contribution to the integral (3.71). For-
tunately it doesn’t create any problem. Infact, as we see in Eq. (3.53), at the end we have to take
only the imaginary part of the integrals that we compute.

Therefore, using the formulae (3.68) and (3.71) in evaluating the integral in Eq. (3.69), we find:

I2 = iH4
∗

 3∏
i=1

1
M2

Pl2εVk3
i

 (K − k1k2 + k2k3 + k1k3

K
−

k1k2k3

K2

)
. (3.73)
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Finally we pass to compute I3:

I3 = −H4
∗ (k

2
1k2

3)

 3∏
i=1

1
M2

Pl2εVk3
i

 ∫ 0

−∞

dτ′(1 − ik2τ
′) eiKτ′ . (3.74)

The integrals in (3.74) are of the form (3.68). We find:

I3 = iH4
∗ (k

2
1k2

3)

 3∏
i=1

1
M2

Pl2εk
3
i

 ( 1
K

+
k2

K2

)
. (3.75)

From the results obtained so far, it follows that, if we put the expressions of the In’s into the
correlator (3.53), we have at leading order in slow-roll parameters:

〈ζ̂1(~k1)ζ̂1(~k2)ζ̂1(~k3)〉 =(2π)3δ3(~k1 + ~k2 + ~k3)4
H4
∗

M4
Pl

1
εV

 3∏
i=1

1
2k3

i

 [k2
1k2

2 + k2
2k2

3 + k2
1k2

3

K
+

+
k2

1k2
2k3 + k2

1k2
3k2 + k2

2k2
3k1

K2

]
.

(3.76)

In this result the contribution of I2 and I3 sums up to zero when we take into consideration the
permutation over the ki’s.

Now, we are ready to pass to the 3-points function of ζ, which is the non linear generalization of
ζ1. Infact, as said above, on superhorizon scales the non linear comoving curvature perturbation is
link to the linear part ζ1 by the relation (see Eq. (3.22))

ζ = ζ1 + αζ2
1 , (3.77)

where:

α =
1
2
φ̈

φ̇H
+

1
4
φ̇2

H2 ζ
2
1 ' −

1
2
ηV . (3.78)

Here ' means that α is evaluated at first order in the slow-roll parameters.

So, when we pass from the variable ζ1 to the variable ζ through the field redefinition (3.77), then the
3-points function of the variable ζ has an additional contribution to the bispectrum which comes
from this field redefinition. Thus, following the Refs. [9, 19], the bispectrum of ζ becomes equal
to:

〈ζ̂(~k1)ζ̂(~k2)ζ̂(~k3)〉 = 〈ζ̂1(~k1)ζ̂1(~k2)ζ̂1(~k3)〉 + 2α(2π)3δ3(~k1 + ~k2 + ~k3)×

×
(
Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k1)Pζ(k3)

)
,

(3.79)

where Pζ(k) =
H2
∗

M2
Pl

1
2εV k3 denotes the scalar superhorizon power spectrum of the mode k.

Then at the end, substituting Eq. (3.78) into Eq. (3.79), we get the final result:
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〈ζ̂(~k1)ζ̂(~k2)ζ̂(~k3)〉 =(2π)3δ3(~k1 + ~k2 + ~k3)

∑
i> j

Pζ(ki)Pζ(k j)

×
×

−η + 2εV

(
k2

1k2
2k3 + k2

1k2
3k2 + k2

2k2
3k1

K2 ∑
i k3

i

)
+ 2εV

∑
i> j k2

i k2
j

K
∑

i k3
i

 .
(3.80)

From the computation just performed, we can derive the scalar bispectrum at leading order in
the slow-roll parameters predicted by the standard single field models od slow-roll inflation. It is
necessary to match the expressions (3.5) and (3.80) to find out [9]:

Bslow−roll
ζζζ (k1, k2, k3) =

∑
i> j

Pζ(ki)Pζ(k j)

 ×
−ηV + 2εV

(
k2

1k2
2k3 + k2

1k2
3k2 + k2

2k2
3k1

K2 ∑
i k3

i

)
+ 2εV

∑
i> j k2

i k2
j

K
∑

i k3
i

 .
(3.81)

The fractions that depend on the ki’s in the square paranthesis are approximately of order O(1) due
to momentum conservation [9]. Then we can take as a good approximation:

Bslow−roll
ζζζ (k1, k2, k3) '

∑
i> j

Pζ(ki)Pζ(k j)

 × [
4εV − ηV

]
. (3.82)

Now we want to match this result with the non-Gaussianities constrained by the Planck satellite
in the CMB anisotropies. We notice that the expression (3.82) corresponds to the bispectrum of
the local shape of Non-Gaussianity (see Eq. (3.12)). So matching Eq. (3.12) with Eq. (3.82) we
predict2:

( f local
NL )slow−roll '

10
3
εV −

5
6
ηV . (3.83)

From the experimental constraints on the slow roll parameters (see Eqns.(2.157) and (2.158)), it
follows:

( f local
NL )slow−roll . 10−2 . (3.84)

This value is very small and definitely compatible with the best constraint on local non-Gaussianity
up to date provided by the Planck satellite, which we have exposed above in Eq. (3.17).

For the moment we have considered non-Gaussianities provided only by scalar perturbations. But
we know that primordial gravitational waves γs

i j are unavoidably generated during inflation. Then,
we expect contributions to non-Gaussianities also by them. So a priori it is not trivial to analyze
also the correlators between graviton and scalar fluctuations and pure graviton correlators. We
define these correlators as [9, 36]:

〈0|γ̂s1(~k1)ζ̂(~k2)ζ̂(~k3)|0〉 = (2π)3δ3(~k1 + ~k2 + ~k3)Bγζζ(k1, k2, k3), (3.85)

2In reality this fact is not rigorous, because the shape of non-Gaussianity predicted by slow-roll models in
general has a dependence on the momenta ki’s different from the local shape. It turns out that S (k1, k2, k3) =

(6ε −2η)S local(k1, k2, k3) + 5
3 εS

equil(k1, k2, k3) ( see, e.g, Ref. [35]). However the estimates given have aim to stress that
fNL is of the order of the slow-roll parameters.
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〈0|γ̂s1(~k1)γ̂s2(~k2)ζ̂(~k3)|0〉 = (2π)3δ3(~k1 + ~k2 + ~k3)Bγγζ(k1, k2, k3), (3.86)

〈0|γ̂s1(~k1)γ̂s2(~k2)ζ̂(~k3)|0〉 = (2π)3δ3(~k1 + ~k2 + ~k3)Bγγγ(k1, k2, k3), (3.87)

where γ̂s = γ̂i j(ε s
i j)
∗ corresponds to graviton polarization s [36].

The computation of such correlators in the slow-roll models is similar to the explicit computation
for the 3-scalar correlator. So we give directly the order of the final result referring to Ref. [9] for
more details:

〈0|γ̂s1(~k1)ζ̂(~k2)ζ̂(~k3)|0〉 = (2π)3δ3(~k1 + ~k2 + ~k3)
H∗
M4

Pl

1
ε

∑
i> j

1
k3

i k3
j

 M1(ki), (3.88)

〈0|γ̂s1(~k1)γ̂s2(~k2)ζ̂(~k3)|0〉 = (2π)3δ3(~k1 + ~k2 + ~k3)
H4
∗

M4
Pl

∑
i> j

1
k3

i k3
j

 M2(ki), (3.89)

〈0|γ̂s1(~k1)γ̂s2(~k2)γ̂s3(~k3)|0〉 = (2π)3δ3(~k1 + ~k2 + ~k3)
H4
∗

M4
Pl

∑
i> j

1
k3

i k3
j

 M3(ki), (3.90)

where the Mn(ki)’s are dimensionless functions of the momenta ki of order O(1). We refer to the
original Ref. [9] for explicit expressions of the functions Mn(ki).

We see that the correlator (3.88) is of the same order in the slow-roll parameters of the 3-scalar
correlator (3.80). Instead, the other two correlators (3.89), (3.90) are subdominant in the slow-roll
parameters w.r.t. it. Actually we cannot measure directly the graviton non-Gaussianities because
we have not revealed primordial gravitational waves yet. But we think that scalar-graviton cor-
relators may give contributions to the CMB bispectrum. The development of the techniques for
measuring these correlators from the CMB is an important aim of future analysis.

3.4 Motivation for searching for Modified gravity signatures
during inflation

To summarize, in the previous section we have seen that the theoretical bispectrum predicted by
slow-roll models of inflation is of the order of the slow-roll parameters. This is fully consistent
with what has been measured by the Planck satellite. However we notice that there is still a win-
dow of almost two orders of magnitude unexplored, given the present susceptibility to primordial
non-Gaussianities. For this reason, it is not trivial to modificate the theory in order to search for
signatures of non-Gaussianities. For example we can assume that at the high energies, that are the
ones of the primordial universe, the general relativity has no more the exact Einsten description,
which instead has many proofs of correctness at low energies. In particular, following an effec-
tive field theory approach [37, 38], a starting point for achieving modified gravity terms in the
lagrangian of the theory is admitting all the covariant terms built with the contractions of tensors
up to two derivatives of the fields of the theory, that are the inflaton φ and the metric tensor gµν.
This lagrangian reads:
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L =
√

g
[
1
2

M2
Pl f1(φ)2R −

1
2

f2(φ)gµν∂µφ∂µφ − V(φ)

+ f3(φ)
(
gµν∂µφ∂νφ

)2
+ f4(φ)gρσ∂ρφ∂σφ�φ

+ f5(φ)
(
�φ

)2
+ f7(φ)Rµν∂µφ∂νφ

+ f8(φ)R gµν∂µφ∂νφ + f9(φ)R�φ + f10(φ)R2

+ f11(φ)RµνRµν + f12(φ)CµνρσCµνρσ

]
+ f13(ψ)εµνρσCµν

κλCρσκλ , (3.91)

where � = gµν∂µ∂ν denotes the covariant laplacian and Cµνρσ is the Weyl tensor, which is the
traceless part of the Riemann tensor. In formula:

Cµνρσ = Rµνρσ −
1
2

(gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ) +
R
6

(gµρgνσ − gνρgµσ) . (3.92)

In the first line of the lagrangian (3.91) we recognize the standard lagrangian of the slow-roll
theories of inflation (2.1) apart from the presence of the functions f1(φ) and f2(φ). In reality, in the
slow-roll limit, we expect that these functions can be treated as constants up to slow-roll corrections
which we can neglect. All other terms are corrective terms which come from an expansion in
series of the derivative of the fields φ and gµν. Infact in the first line we have terms with only two
derivatives of the fields. Instead all the other terms have four derivative of the fields. A priori we
can consider other terms with six derivatives of the fields and so on, but we stop the expansion up
to terms with four derivatives in the fields.
In the fouth line of this lagrangian a term particular interesting for producing non-Gaussianities is
f10(φ)R2, which is part of the so-called f (R) theories of modified gravity. In this theories the part of
the lagrangian which describes gravity is built by considering an expansion in series of the scalar
curvature R. The first correction term in this expansion corresponds to the theory f (R) = R + αR2.
Inflation with R+αR2 gravity is studied for example in the Refs. [39, 37]. In particular in Ref. [37]
is showed that the so-called R + αR2 theory is equivalent to add an additional scalar field during
inflation which, interacting with the inflaton, produces a quasi-local shape of non-Gaussianity
with amplitude fNL ' (−1 to − 30). We will see more explicitly this fact in Chapter 4, because it
is an interesting toy model for producing non-Gaussianities in the primordial perturbations during
inflation. Another term quite interesting in the lagrangian (3.91) is the last one, that is the so-
called Chern-Simons term. This term is parity breaking because of the presence of the Levi-Civita
pseudotensor which contracts two Weyl tensors. For this reason it can be the source of parity
breaking effects in the statistics of the primordial perturbations. We will see in detail the effect of
this term in the primordial perturbations in Chapter 4. We anticipate that without the presence of
the function f13(φ) this term is vanishing because it is a total time derivative. So, if the inflaton field
was completelly static, then this term wuold give a zero contribution in the action. In Chapter 4 we
will perform a computation of non-Gaussianities provided by this term, in order to search if it is
possible to achieve a non-zero parity violating contribution in non-Gaussianities of the primordial
perturbations. Examples of other searchings of parity violating effects on non-Gaussianities are
provided by Refs. [36, 40, 41], where possible parity violation in graviton non-Gaussianities is
studied arising by the Weyl cubic tensor contracted with the Levi-Civita pseudotensor. However
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in this case non-Gaussianities predicted are well below the sensitivity of future measurements and
need the deveolopment of new techniques of investigation.
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Chapter 4

Searching for modified gravity signatures:
the Chern-Simons gravity and parity
breaking on the primordial perturbations

In this chapter we modify the standard action of the slow-roll models (2.1) accounting for some
terms that introduce a modification in the gravity sector w.r.t. Einstein gravity. These terms es-
sentialy come from an expansion in the derivatives of the metric tensor [38]. In particular we
start analyzing some f (R) models of inflation following Ref. [37], which is an example of how a
modification of gravity during inflation can be probed via primordial non-Gaussianity. After this,
we concentrate on the Chern-Simons term which violates the parity simmetry. We study if we are
able to see a parity violation in the power spectrum of the gauge invariant primordial perturbations
following Refs. [11, 25]. Then, using the in-in formalism, we make a computation of the two
gravitons and one scalar correlator 〈γγϕ〉 produced by the Chern-Simons term. We investigate
about the possibility to have a signature of parity violating effects into the bispectrum of the gauge
invariant primordial perturbations.

4.1 Modifing gravity with higher derivative terms

When we consider a modification of the Einstein theory during inflation, we have to insert in the
action terms that become negligible in the low-energy limit where we know the Einstein description
perfectly works. On the contrary, at the beginning of inflation and during inflation the relevant
energies can be the temperatures were very high and so we expect that terms that in the present
universe are negligible, during the inflationary epoch are not. But in which way we can construct
such terms?
The Einstein-Hilbert action is built by admitting covariant terms with a maximum number of two
derivatives w.r.t. the metric tensor. In this way the only term admitted is the scalar curvature R. We
can relax this condition and consider a more general theory of gravity in which the action is built
with an expansion in series of covariant terms that contain an increasing number of derivatives
w.r.t. the metric. In order to recover Einstein description in the low-energy limit, it is necessary to
require that to each derivative of the new terms corresponds a factor equal to the inverse of some
large mass scale [38]. In the primordial universe this mass is the Planck mass MPl.
In this work we analyze the first correction to the lagrangian which comes from such an expansion
in derivatives of the metric tensor. Then, we have to consider the most general covariant terms with
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four1 derivatives of the metric tensor. We build these terms doing tensorial contractions between
two tensors with two derivatives of the metric2. So we have to do all the possible contractions be-
tween two of the foundamental curvature tensors of General Relativity, that are the Riemann tensor
Rµνρσ, the Ricci tensor Rµν and the scalar curvature R. In fact they are the only three indipendent
tensors that contain two derivatives of the metric. In addition we can multiply these terms for a
scalar function which depends by the inflaton field φ, which is the field that drives inflation. Thus
the most general expression for the additional lagrangian we want to focus on is:

∆L =
√

g[ f1(φ)R2 + f2(φ)RµνRµν + f3(φ)RµνρσRµνρσ] + f4(φ)εµνρσRµν
κλRρσκλ . (4.1)

where the fn(φ) are some dimensionless coefficents depending on the inflaton only, εµνρσ is the
Levi-Civita antisymmetric pseudo-tensor with ε0123 = 1 and

√
g stands for

√
−det(gµν), which is

part of the covariant integration measure in the action.
We can write lagrangian (4.1) in terms of the Weyl tensor which we have defined at the end of
Chapter 3. We rewrite the definition of the Weyl tensor, which is the traceless part of the Riemann
tensor:

Cµνρσ = Rµνρσ −
1
2

(gµρRνσ − gµσRνρ − gνρRµσ + gνσRµρ) +
R
6

(gµρgνσ − gνρgµσ) , (4.2)

It is possible to demonstrare the relation (see Ref. [42]):

εµνρσRµν
κλRρσκλ = εµνρσCµν

κλCρσκλ . (4.3)

In addition by doing the contraction between two Weyl tensors using the definition (4.2), we find
an expression of the kind:

CµνρσCµνρσ = RµνρσRµνρσ + αRµνRµν + βR2 , (4.4)

where α and β are numerical coefficent that we find out with a direct computation.

For what said, if we define

g1(φ) = f1(φ) − f3(φ)β , (4.5)
g2(φ) = f2(φ) − f3(φ)α , (4.6)
g3(φ) = f3(φ) , (4.7)

then lagrangian (4.1) becomes:

∆L =
√

g[g1(φ)R2 + g2(φ)RµνRµν + g3(φ)CµνρσCµνρσ] + g4(φ)εµνρσCµν
κλCρσκλ . (4.8)

By renaming the functions gn(φ) as fn(φ), we find the expression:

∆L =
√

g[ f1(φ)R2 + f2(φ)RµνRµν + f3(φ)CµνρσCµνρσ] + f4(φ)εµνρσCµν
κλCρσκλ . (4.9)

1We are not able to construct a term with three derivatives with rispect to the metric and covariant under diffeo-
morfisms of the metric.

2In fact if we consider a tensorial contraction between a tensor with one derivative and another one with three
derivatives, this contraction is automatically zero for the covariance principle.
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At the end, in the lagrangian density (4.9) we recognize four different modified gravity corrective
terms. As anticipated in Chapter 3, the first term belongs to the so-called f (R) theories, which are
very studied in the literature (see, e.g., Refs. [43, 44, 45]). These are modified gravity theories in
which we insert in the lagrangian an expansion in series of the scalar curvature R with the condition
that the first term in this expansion is the Einstein-Hilbert action of standard gravity. Thus for these
kinds of theories the density lagrangian of slow-roll models of inflation modifies as:

L =
√

g
[

f (R) −
1
2

gµνDµφDνφ − V(φ)
]

. (4.10)

As said, in Ref. [37] this kind of slow-roll model of inflation is analyzed in details, in particular
concerning the case f (R) = R + αR2 . In the next section we will recall briefly the main results
following the original reference because it is a first useful example to see how a modified gravity
term can produce primordial non-Gaussianity.

4.2 f (R) theories: quasi-local non gaussianity from R + αR2

modified gravity during inflation
We rewrite down the lagrangian of the f (R) theories during slow-roll inflation (4.10):

L =
√

g
[

f (R) −
1
2

gµνDµφDνφ − V(φ)
]

, (4.11)

We demonstrate now that the term f (R) corresponds in the theory to one additional scalar degree
of freedom. It is enough to expand in Taylor f (R) near a value R = χ and stop the expansion at
first order. This expansion reads:

f (R) = f (χ) + f ′(χ)(R − χ) , (4.12)

where the ′ denotes the derivative with respect to the argument.

Thus inserting the expansion (4.12) into the lagrangian (4.11), yields:

L =
√

g
[

f (χ) + f ′(χ)(R − χ) −
1
2

gµνDµφDνφ − V(φ)
]

. (4.13)

Now we define the auxiliary field ψ:

ψ =
2 f ′(χ)

M2
Pl

. (4.14)

Inserting the definition (4.14) into the lagrangian (4.13), the lagrangian becomes:

L =
√

g
[
1
2

M2
PlψR + Λ(ψ) −

1
2

gµνDµφDνφ − V(φ)
]

, (4.15)

where Λ(ψ) = f (χ(ψ)) − M2
Plψ

χ

2 .

Now, in order to isolate an Einstein-Hilbert term into the lagrangian (4.15), we perform a conformal
Weyl transformation of the metric tensor g′µν = ψgµν. After doing this rescaling the lagrangian
(4.15) now becomes of the type:
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L =
√

g
[
1
2

M2
PlR −

1
2

gµνγabDµφ
aDνφ

b − V(φ1, φ2)
]

, (4.16)

where φ1 and φ2 are two scalar fields defined as:

φ1 =
√

6MPlω, φ2 = φ , (4.17)

V(φ1, φ2) is a two-field potential of the form

V(φ1, φ2) = e
−4φ1√
6MPl V(φ2) + U(φ1) , (4.18)

where U(φ1) = −e
−4φ1√
6MPl Λ(ψ(ω(φ1))), and finally γab is the field metric:

γab =

1 0

0 e
−2φ1√
6MPl

 . (4.19)

This shows that an f (R) + scalar theory (where the scalar in our context is the inflaton field) is
equivalent to a two scalar field model of inflation with a specific field metric and a two field-
potential V(φ1, φ2). Then we can imagine that some interaction terms between the two scalar
fields can produce some observable effects, possibly leading to the production of primordial local
non-Gaussianity signatures which we have seen in Chapter 3. In particular both the scalar fields
partecipate to the backgorund dynamics and so a priori we have to impose a slow-roll condition
over both the fields. But if we impose that one of the two is subdominant during inflation, then
we can relax the slow-roll condition at least for only one of the two scalar fields, leaving the other
scalar field a free background dynamics.

In Ref. [37] the case of the theory f (R) = 1
2 M2

PlR + 1
12M2 R2 is analyzed in details. In this case the

two fields potential (4.18) reduces to:

V(φ1, φ2)R2 =
3
4

M2M4
Ple

−4φ1√
6MPl V(φ2) + U(φ2) . (4.20)

After choosing which of the two fields is associated to the inflaton (φI) and which one is associated
to the "extra" field derived from the modifications of the Einstein gravity (φG), we can compute
the interaction vertices between the perturbations of the two fields, neglecting, for semplicity, the
interactions with the perturbations of the metric tensor. This is obtained splitting the two fields as

φI =φ(0)
I + δφI , (4.21)

φG =φ(0)
G + δφG , (4.22)

where the the suffix 0 denotes the background values and the δ denotes the perturbations.

Substituiting these decompositions into the lagrangian (4.15), we find at second order a leading
vertex of the kind [37]:

δL2 =
2

√
6MPl

e
−2φG√
6MPl φ̇(0)

I δφGδ̇φI . (4.23)

Instead, at third order, we find the leading vertex:
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δL3 = −
1
6

U′′′(φ(0)
I ) δφ3

G . (4.24)

Taking only the multiplicative coefficents of each of these two vertices, it is possible to give an
estimate of a quasi-local3 coefficent of primordial non-Gaussianity:

f quasi−local
NL ' δL2 δL3P

−1/2
ζ , (4.25)

where the overline denotes the coefficents of the corresponding vertices.

The results obtained in [37] reveal that the αR2 theory can produce a nearly scale-invariant shape
of quasi-local non-Gaussianity, with a level of non-Gaussianity of the order fNL ≈ −(1 to 30). Thus
this analysis is an example of how modification of gravity during inflation can be probed through
the potential non-Gaussian signatures they produce.

4.3 Chern-Simons modified gravity during inflation

Now let us analyze another very interesting term which is present in the lagrangian (4.9). This
term is the Chern-Simons term:

∆L = f (φ)εµνρσCµν
κλCρσκλ . (4.26)

Before computing in details the modifications provided in the slow-roll models of inflation by this
term, we analyze some general features. From arguments of differential geometry [38], if we take
a metric conformally flat4, then the corresponding Weyl tensor is zero. If we take the flat FRW
metric (2.3) and we do a time reparametrization passing from cosmological time t to the conformal
time τ we find:

ds2 = a2[−dτ2 + hi jdxidx j] . (4.27)

From (4.27) we see that with a conformal transformation g′µν = a−2gµν, the metric becomes flat in
every point of the spacetime. We have demonstrated that the FRW metric is conformally flat. Be-
cause of the fact that the FRW metric is the background metric of the universe, then the Weyl tensor
is vanishing on the background. Thus, the term εµνρσCµν

κλCρσκλ does not act on the background
dynamics. In addition this term is parity violating due to the presence of the pseudo Levi-civita
tensor εµνρσ.
Thus the analysis of the Chern-Simons term could reveal a source of signatures that do not modify
the slow-roll background dynamics while leading to parity violating effects at the level of primor-
dial perturbations.
For semplicity of notation we will use the following abbrevation to refer to the Chern-Simons term:

f (φ) εµνρσCµν
κλCρσκλ = fCC̃ . (4.28)

3Quasi-local means that the characteristic shape of this kind of primordial non-Gaussianity is intermediate between
the local shape and the equilateral shape seen in Chapter 3.

4A conformally flat metric is such that it can be transformed in a flat Minkowski metric by a local conformal
transformation for all the points of the spacetime.
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We want to develop a general theory and so we will leave the function f (φ) undefined. We start with
a quadratic analysis of the term (4.28), making predicition on how it changes the power spectrum of
the primordial gauge invariant perturbations. But the main issue is to perform also an investigation
about possible non-Gaussian signatures in the primordial gauge invariant perturbations.

4.4 Quadratic analysis of the Chern-Simons term
The Chern-Simons term does not produce any change in scalar perturbations (in the sense that the
contribution to the Chern-Simons term from scalar perturbations vanishes). In fact, if we take a
scalar field such as the inflaton, the background FRW metric and the scalar perturbation of the
metric, and we try to build parity breaking terms we fail from the beginning. In fact both the
background metric and the inflaton are parity invariant and we cannot construct parity breaking
terms with only parity invariant ones. On the contrary the gravitational waves γi j are sensitive
to parity transformations and for this reason in general the term (4.28) is not zero for tensorial
modes. In order to find if we have contributions we have to compute the term ( fCC̃)|(2)

T , where the
suffix 2 denotes that the quantity is at second order in the perturbations, and T denotes that it is the
contribution of tensor perturbations only. In studying the tensor perturbations we can put N = 1,
Ni = 0 because at first order they depend only by the inflaton. Moreover, because of the fact that,
as said above, the Weyl tensor is vanishing on the background, thus the only contribution to the
term which we want to compute will result of the form f (0)C(1)|TC̃(1)|T . So we need to compute the
Weyl tensor only at first order in the tensor perturbations.
Now we start to compute the components of the Weyl tensor at first order in the tensor perturba-
tions. We adopt the background metric written in terms of the conformal time τ (4.27) for the
semplicity of the computations. We can use the 3-metric hi j defined by both Eqns. (3.20) and
(3.21) without affecting the final results because, as said, tensor perturbations on large scales are
gauge invariant. Thus, using the ADM relations in the Appendix A and Eq. (4.2), we find:

C(1)
0i0 j|T = −

a2

4
[γ′′i j + ∂2γi j] , (4.29)

C(1)
0i jk|T = −

a2

2
[∂ jγ

′
ik + ∂kγ

′
i j] , (4.30)

C(1)
i jkl|T =

a2

2
[−∂i∂kγ jl + ∂i∂lγ jk + ∂ j∂kγil − ∂ j∂lγik] +

1
4

[δik�γ jl − δil�γ jk − δ jk�γil + δ jl�γik] , (4.31)

where in this case � ≡ [− d2

dτ2 + ∂2] and ′ denotes derivative in respect to the conformal time. As
above, the suffix in the round bracket denotes the order in the perturbations and the suffix at the
base denotes the type of perturbations considerated in the computation of the term. We will use
this notation also below.

If we substitute these expressions in the term fCC̃, we find at quadratic level:

∆L|T = f (φ0)ε i jk ∂

∂τ

[
(γil)′

(
∂ jγk

l
)′
− (∂rγil)

(
∂ j∂

rγk
l
)]
. (4.32)

So, at quadratic level, the Chern-Simons term provides the following modification to the action of
the tensor modes:
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∆S |T =

∫
d4x f (φ0)ε i jk ∂

∂τ

[
(γil)′

(
∂ jγk

l
)′
− (∂rγil)

(
∂ j∂

rγk
l
)]
, (4.33)

where the latin contractions are made with the δi j. From this last expression we see a fact that we
have anticipated also in Chapter 3. If the function f (φ) was time indipendent, the Chern-Simons
term would be a total time derivative in the action and so it would be vanishing. So the background
slow-roll dynamics of the inflaton field is crucial to have a non-vanishing contribution.
The action (4.33) becomes, after integrating by parts the conformal time derivative:

∆S |T = −

∫
d4x ε i jk f ′(φ0)[(γil)′(∂ jγ

l
k)
′ − (∂rγil)(∂ j∂

rγl
k)] . (4.34)

Now we go to Fourier space through the expansion:

γi j(~x, τ) =
1

(2π)3

∫
d3k dτ

∑
s=s1,s2

ε s
i j(~k)γs(τ, k) ei~k·~x . (4.35)

In order to investigate parity violating effects it is convenient to work with the left and right cir-
cular polarizations of the gravitational waves. Their respective polarization tensors are a complex
superposition of the linear polaritations introduced in (2.95). We define them as:

εR
i j =

1
√

2
(ε+

i j + iε×i j) , (4.36)

εL
i j =

1
√

2
(ε+

i j − iε×i j) . (4.37)

From these definitions it follows εR
i j = (εL

i j)∗. Then the two polarizations are complex conjugates.
In addition, using the explicit expressions of the linear polarization tensors (2.95), we can show
the relations [25]:

εL
i j(~k)ε i j

L (~k) = εL
i j(~k)ε i j

L (~k) = 0 , (4.38)

εL
i j(~k)ε i j

R (~k) = 2, (4.39)

εL
i j(−~k) = εR

i j(~k) (4.40)

kl

k
εml

j ε s
i j(~k) = i αs ε s

im(~k) , (4.41)

where kl is the l-th component of the momentum ~k. Here we have not to make confusion between
the Levi-Civita pseudotensor εi jk which has three indicies and the polarization tensors εi j that have
only two indices. In addition we have αR = +1 and αL = −1.
Now, we substitute the Fourier decomposition (4.35) in (4.34) to find

∆S |T = −
∑

s1,s2=L,R

∫
dτ

d3k
(2π)3 εi jl f ′(φ)(−ik j)

[
(γs1

in(~k))′(γs2
l
n(~k))′ + k2γs1

in(~k)γs2
l
n(~k)

]
. (4.42)

However using Eqns. (4.38) (4.39) and (4.41), we can rewrite this last equation in the more con-
venient form:
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∆S |T = −
∑
s=L,R

2
∫

dτ
d3k

(2π)3 f ′(φ)αsk
[
|γ′s(τ, k)|2 − k2|γs(τ, k)|2

]
. (4.43)

If we express also the action of the standard theory (2.100) in function of left and right polarizations
we find:

S |T =
∑
s=L,R

M2
Pl

4

∫
dτ

d3k
(2π)3 a2

[
|γ′s(τ, k)|2 − k2|γs(τ, k)|2

]
. (4.44)

Then, if we put Eqns. (4.43) and (4.44) together, we find the new quadratic action for the tensor
perturbations, which reads:

S |tot
T =

∑
s=L,R

M2
pl

4

∫
dτ

d3k
(2π)3 A2

T,s

[
|γ′s(τ, k)|2 − k2|γs(τ, k)|2

]
, (4.45)

where now

A2
T,s = a2

1 − 8αs k
a

ḟ (φ)
M2

pl

 . (4.46)

For right modes αR = +1 and then there are some values of the physical wave number kphys = k
a in

which A2
T,s becomes negative. In particular, from (4.46), this happens for kphys >

M2
pl

8 ḟ (φ) . We define

then the Chern-Simons mass scale MC−S =
M2

pl

8 ḟ (φ) . The right modes with physical wave numbers
larger than the MC−S acquire a negative kinetic energy and become automatically ghost fields. In a
classical field theory this could be not a problem, but when we quantize the fields, the ghost fields
states have negative norm and so they create inconsistencies in defining the Hilbert space of the
theory. In order to avoid this problem, we have to require to work with modes that are far from the
formation of ghosts.
So, we set in the theory an UV cut-off at an energy Λ < MC−S . This cut-off automatically regular-
izes the theory.

After introducing the cut-off, we rewrite A2
T,s in a more compact way as:

A2
T,s = a2

(
1 − αs k

a Λ
Ω ḟ (φ)

)
, (4.47)

where

Ω =
Λ

MC−S
. (4.48)

From its definition |Ω| < 1.

We expect that MC−S may be almost high but finite. In addition it can be considered also constant.
Infact from definition:

ḟ (φ0) =

[
∂

∂φ
f (φ0)

]
φ̇0 , (4.49)

and its time derivative is
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f̈ (φ0) =

[
δ2

δ2φ
f (φ0)

]
φ̇2

0 +

[
δ

δφ
f (φ0)

]
φ̈0 . (4.50)

Because of the fact that MC−S depends by the time only through the function f (φ), it follows from
Eqns. (4.49) and (4.50):

M̈C−S

HṀC−S
=

f̈
H ḟ

= εV − ηV +
√

2εV MPl

∂2

∂2φ
f (φ)

∂
∂φ

f (φ)
, (4.51)

where we have used the definition of the slow-roll parameters (Eqns. (2.20) and (2.21)).

Essentialy the dimensionless quantity M̈C−S
HṀC−S

in Eq. (4.51) tells us how much the Chern-Simons
mass changes during the characteristic time of inflation. In the slow-roll models of inflation the
slow-roll parameters are much smaller then 1. Thus, if we impose the condition

M2
Pl
∂2

∂2φ
f (φ) < MPl

√
2εV

∂

∂φ
f (φ) , (4.52)

it follows:

M̈C−S

HṀC−S
< 1 . (4.53)

So we can neglect in first approximation the time dependence of the Chern-Simons mass, consid-
ering it as a constant during inflation.

Now, we derive the equations of motion for the fields γs. As done in Chapter 2, before doing the
functional derivatives, it is convenient to make the field redefinition

µs = AT,sγs . (4.54)

Then the action for the new fields µs becomes:

S γγ
TOT =

M2
pl

4

∫
dτ d3k

[
|µ′s(τ, k)|2 − k2|µs(τ, k)|2 +

A′′T,s
AT,s
|µs(τ, k)|2

]
. (4.55)

Again we find an equation of motion similar to that of scalar fields with an effective mass
A′′T,s
AT,s

which is different by the one found in the standard slow-roll case. We derive the equations of
motion finding

µ′′s +

(
k2 −

A′′T,s
AT,s

)
µs = 0 . (4.56)

We see that the equations of motion are different for the two polarizations L and R, because the
effective mass depends by the polarization (see Eq. (4.47)). We expect then a different dynamical
evolution of the two polarization modes, which signals parity violation.
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The differential equations (4.56) in general are not solvable for the explicit value of A′′T
AT

, but we can
simplify a bit the effective mass using some facts of our theory.
We start the computation using the slow-roll hypothesis and assuming Ω constant. Infact from Eq.
(4.48), Ω depends by the time only by MC−S , which we assume almost constant during inflation.
So at first order in slow-roll parameters we have:

A′T,s
AT,s

=
a
2

˙(
A2

T,s

)
A2

T,s

= aH + αs
kΩ

2MC
H ' −

1 + ε

τ
+ αs

k
2

ΩH
Λ

. (4.57)

Now, we notice that the dimensionless quantity Ω
Λ

H is smaller than 1. In fact Ω < 1 by definition
and H

Λ
< 1; H represents also the charateristic energy of the universe and once we impose a cut off

at some energy in the full theory, H cannot overtake it for the autoconsistency of the theory. So in
the following calculations we can perform an expansion in ΩH

Λ
up to first order.

A′′T,s
AT,s

=
d
dτ

(A′T,s
AT,s

)
+

(A′T,s
AT,s

)2

'
2 + 3ε
τ2 −

1
τ
αs

k
2

ΩH
Λ

+ O(ε2,Ω2, ε ·Ω) . (4.58)

Then, calling ξ = 3
2 + ε, and inserting Eq. (4.58) into Eq. (4.56), we have up to first order in the

slow roll parameters and ΩH
Λ

µ′′s +

k2 −
ξ2 − 1

4

τ2 + αs
k
τ

ΩH
Λ

 µs = 0 . (4.59)

We notice that this equation differs from the one in Chapter 2 (see Eq. (2.106)) by the additional
term αs

k
τ

H
Λ

which is the correction to the equation of motion for the tensor modes provided by the
Chern-Simons term.

Now, as done in Chapter 2, we canonically quantize the fields µL,R as:

µ̂s(k, τ) = z̃r(k, τ)âr(~k) + z̃∗r(k, τ)â†r (−~k) , (4.60)

where the creation and annihilation operators obey the usual relations:

〈0|âs
† = 0, âs|0〉 = 0, (4.61)

[âs(k), â†s′(k
′)] = (2π)3δ3(k − k′)δss′ , [âk, âk′] = [â†k , â

†

k′] = 0 . (4.62)

Because of the fact that the field µs is linked to the field γs by the linear relation (4.54), thus
quantizing µs is equivalent to quantize also γs. From the point of view of the quantum gravity
the right-handed field γ̂R(~k) is associated to a graviton with helicity +2. On the contrary the left-
handed field γ̂L(~k) is associated to a graviton with helicity −2. The helicity is the component
of the spin of a particle in the direction of its momentum. At this point we should emphasize
that a parity trasformation changes the sign of the momentum of a particle and so the left-handed
gravitons trasform into right-handed gravitons and viceversa. Then, if we insert in the theory a
parity violating term such as the Chern-Simons one, a difference between the dynamical evolution
of the two different helicity states is expected. This is a confirmation of our computation.
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After this small digression, we write the equation of motion for the mode functions z̃s(k, τ) which
is equal to the one of the classical µs:

z̃′′s +

k2 −
ξ2 − 1

4

τ2 + αs
k
τ

ΩH
Λ

 z̃s = 0 . (4.63)

This is the Whittaker equation [46]. The exact solution of this equation is given in terms of the
Whittaker functions W1 and W2. If we choose the Bunch-Davies initial condition

z̃s(k, τ)τ−→−∞ ∝
1
√

2k
e−ikτ , (4.64)

then the explicit solution of (4.63) is [11]:

z̃s(k, τ) =
√
−τ(−2kτ)e−i( π4−π

ξ
2 ) e−ikτ U

(
1
2

+ ξ − αs
i
2

ΩH
Λ
, 1 + 2ξ, 2ikτ

)
eαs

π
4

ΩH
Λ , (4.65)

where U is the confluent hypergeometric function [46].

We observe from (4.65) that the two different circular polarizations have different solutions for the
mode function z̃s as we should expect. Now we will quantify how large the differencies in the
power spectrum are.

4.4.1 Power spectrum of circular polarizations
On superhorizon scales the solution (4.65) simplifies, becoming [11]:

z̃s(k, τ)−kτ<<1 =

√
−τ

2(−kτ)3 ei(− π4 + π
2 νT ) Γ(ξ)

Γ(3/2)

(
−kτ

2

)3−2ξ

eαs
π
4

ΩH
Λ . (4.66)

Thus we can compute the dimensionless power spectrum of each polarization mode, defined as:

∆L
T = 〈0|γ̂L

i j(k)γ̂i j
L (k′)|0〉 =

k3

(2π)2 2
|z̃L(k, τ)−kτ<<1|

2

A2
T,L

, (4.67)

∆R
T = 〈0|γ̂R

i j(k)γ̂i j
R (k′)|0〉 =

k3

(2π)2 2
|z̃R(k, τ)−kτ<<1|

2

A2
T,R

. (4.68)

At leading order in the slow-roll parameters we find

∆L
T =

∆T

2
e−

π
4

ΩH
Λ , (4.69)

∆R
T =

∆T

2
e
π
4

ΩH
Λ , (4.70)

where

∆T =
4
π2

H2
∗

M2
Pl

(
−kτ

2

)3−2νT

. (4.71)
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∆T is the total dimensionless power spectrum of tensorial perturbations in the standard slow-roll
model without the Chern-Simons correction (see also Eq. (2.133)).
The dimensionless coefficent HΩ

Λ
is almost time indipendent and smaller than 1. For this reason we

can expand in series the exponentials. Dropping the expansion at third order it we find

∆L
T =

∆T

2

(
1 −

π

4
ΩH
Λ

+
π2

16
Ω2H2

Λ2

)
, (4.72)

∆R
T =

∆T

2

(
1 +

π

4
ΩH
Λ

+
π2

16
Ω2H2

Λ2

)
. (4.73)

Now we can define the relative difference between the power spectrum of right (R) and left (L)
helicity modes as

ΘR−L =
∆R

T − ∆L
T

∆R
T + ∆L

T

=
π

2
ΩH
Λ

=
π

2
H

MC−S
. (4.74)

This observable quantifies the differencies between the power spectrum of the helicity polarizations
L and R of the gravitational waves. We expect that its value is small for the consistency of the
approximations made. We expect to constrain this value with future experiments involving the
direct detection of polarized primordial gravitational waves (see, e.g., Refs [47, 48]). We can
constrain the value ΘR−L also indirectly through the CMB. In particular in Ref. [49] it is shown
that ΘR−L can be measured down to:

|ΘR−L| & 0.35
( r
0.05

)−0.6
. (4.75)

If we take the maximum value of r from the constraint (2.137), then it follows:

|ΘR−L|r=0.12 & 0.21 , (4.76)

which is an estimate of the minimum value of ΘR−L that is detectable from the CMB given the
sensitivity of the actual experimental instruments.

We can use (4.72) and (4.73) also to compute the modifications to the tensor-to-scalar-ratio. Infact
the new total dimensionless power spectrum of tensor perturbations reads

∆C−S
T = ∆R

T + ∆L
T = ∆T

(
1 +

π2

16
Ω2H2

Λ2

)
= ∆T

(
1 + Θ2

R−L

)
. (4.77)

Instead, the dimensionless scalar power spectrum does not receive any contribution due to parity
simmetry of the scalar perturbations. Thus we find

rC−S =
∆C−S

T

∆S
=

∆T

∆S

(
1 + Θ2

R−L

)
= r

(
1 + Θ2

R−L

)
, (4.78)

where r is the tensor-to-scalar-ratio of the slow-roll model without the Chern-Simons term.
In addition, because of the fact that the parameter ΘR−L does not depend on the comoving wavenum-
ber of the perturbation in exam, then the spectral index of tensorial perturbations nT remains the
same of the standard slow-roll model. For this reason we have a modification to the consistency
relation of the kind:
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rC−S = −8nT

(
1 + Θ2

R−L

)
, (4.79)

where we have used Eqns. (2.143) and (4.78).

We remind that r is not sensitive to the polarizations of the gravitational waves, because it refers
to the total power spectra. Thus a priori, using (4.79), we can measure the effects of the Chern-
Simons term also searching for unpolarized primordial gravitational waves. But in this case the
corrections are of order Θ2

R−L and probably this effect generated is more difficult to measure.

4.5 Computation of non-Gaussianities generated by the Chern-
Simons term

Now we perform an investigation about the effects of the Chern-Simons term on the bispectrum of
the primordial perturbations. We use the same in-in formalism described in Chapter 3. Our aim
is to investigate the possibility to observe parity violating effects also in the non-Gaussian part of
the statistics of the primordial perturbations. For the moment we work in the spatially flat gauge
in which the scalar perturbations are labelled by the inflaton perturbation ϕ (3.20). This choice is
made for semplicity of the computations. We will switch to the gauge invariant quantity ζ only in
a second step through the transformation (3.22).

Because of parity conservation in the case of scalar perturbations, there are no changes in the pure
scalar bispectrum, which is the one discuss in details in Chapter 3. Then we have to investigate
the contributions from the correlators between the inflaton and the left and right circular polarized
gravitons. A cubic simple vertex to analyze is the cubic interaction ϕγγ. In fact, starting from the
lagrangian (4.26), when we evaluate the corresponding action the contributions to this vertex are:

∆S ϕγγ =

∫
d4x εµνρσ

[(
∂

∂φ
f (φ)

)
ϕ C(1)

µν

κλ
|TC(1)

ρσκλ|T + f (φ)C(1)
µν

κλ
|S C(2)

ρσκλ|T + C(2)
µν

κλ
|TC(1)

ρσκλ|S

]
.

(4.80)
Here the first contribution comes form the expansion in series of the function f (φ) around the
background value of the inflaton multiplied by the contraction of two Weyl tensors at first order in
tensor perturbations; the other terms instead come from the contraction between the Weyl tensor
at second order in tensor perturbations and the Weyl tensor at first order in the constraints N
and Ni. These constraints do not change w.r.t. the ones of the standard slow-roll case (2.57),
because at quadratic level the Chern-Simons term gives contribution only to tensor perturbations.
We remember that N and Ni are subdominant in the slow-roll hypothesis in comparison with the
inflaton perturbation ϕ. For this reason in the slow-roll limit the term dominant in Eq. (4.80) is the
first one. In this case the tensor contractions that we have to do are the same of the quadratic case
and we obtain the cubic action in Fourier space:

∆S ϕγγ(τ) =
∑
s=L,R

αs

∫
dτd3k d3 p d3q

δ3(~k + ~p + ~q)
(2π)6

(
∂

∂φ
f (φ)

)
ϕ(~k)

∂

∂τ

[
p γ′si j(~p)γ′i j

s (~q)+

+p
(
~p · ~q

)
γs

i j(~p)γi j
s (~q)

]
.

(4.81)

where we remember that the contractions of latin indicies are done with the δi j .
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Thus, if we integrate by parts the action (4.81) with respect to the conformal time, we find the
following interaction lagrangian for the vertex ϕγγ:

Lϕγγint (τ) = −
∑
s=L,R

αs

∫
d3k d3 p d3q

δ3(~k + ~p + ~q)
(2π)6

[(
∂

∂φ
f (φ)

)
pϕ′(~k)γ′si j(~p)γ′si j(~q)+

+

(
∂

∂φ
f (φ)

)
p
(
~p · ~q

)
ϕ′γs

i j(~p)γs
i j(~q) + a

(
∂

∂φ
ḟ (φ)

)
pϕ(~k)γ′si j(~p)γ′si j(~q)+

+a
(
∂

∂φ
ḟ (φ)

)
p
(
~p · ~q

)
ϕγs

i j(~p)γs
i j(~q)

]
,

(4.82)

where we have express
(
∂
∂φ

f ′(φ)
)

= a
(
∂
∂φ

ḟ (φ)
)
, using the relation dt = adτ which links cosmolog-

ical time to conformal time.

Now, following Ref. [9], we compute the quantum correlator:

〈0|γ̂s1(~k1, 0)γ̂s2(~k2, 0)ϕ̂(~k3, 0)|0〉 , (4.83)

where γ̂s1 and γ̂s2 label the circular polarization modes of the primordial gravitational waves.
In the next steps we will omit the time argument τ = 0 for semplicity of notation. By the form
of the interaction lagrangian (4.82), it follows that the only non-vanishing correlators of the type
(4.83) are:

〈0|γ̂R(~k1)γ̂R(~k2)ϕ̂(~k3)|0〉, 〈0|γ̂L(~k1)γ̂L(~k2)ϕ̂(~k3)|0〉 . (4.84)

Instead we have:

〈0|γ̂R(~k1)γ̂L(~k2)ϕ̂(~k3)|0〉 = 〈0|γ̂L(~k1)γ̂R(~k2)ϕ̂(~k3)|0〉 = 0 . (4.85)

This fact is explained also by a simmetry argument. In fact the mixed interaction vertex γLγRϕ is
invariant under parity transformation. The reason is that a parity transformation leaves ϕ invariant
and maps γR in γL and viceversa.

We start now a computation of the correlator 〈0|γ̂R(~k1)γ̂R(~k2)ϕ̂(~k3)|0〉. The computations for the
other correlator will be analogous. Going to the interaction picture, we can use the master formula
(3.33), obtaining:

〈γ̂R(~k1)γ̂R(~k2)ϕ̂(~k3)〉 = −
i

(2π)6

∫
d3K δ3(~k + ~p + ~q)

∫ 0

−∞

dτ′
[(
∂

∂φ
f (φ)

)
(B1(τ′) + B2(τ′))+

+a
(
∂

∂φ
ḟ (φ)

)
(B3(τ′) + (B4(τ′))

]
,

(4.86)

where
∫

d3K =
∫

d3kd3 pd3q and
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B1 =p〈0| [ϕ̂(~k1, 0)γ̂R(~k2, 0)γ̂R(~k3, 0), ϕ̂′(~k, τ′)γ̂′Ri j(~p, τ
′)γ̂′i j

R (~q, τ′)] |0〉, (4.87)

B2 =p
(
~p · ~q

)
〈0| [ϕ̂(~k1, 0)γ̂R(~k2, 0)γ̂R(~k3, 0), ϕ̂′(~k, τ′)γ̂R

i j(~p, τ
′)γ̂i j

R (~q, τ′)] |0〉, (4.88)

B3 =p〈0| [ϕ̂(~k1, 0)γ̂R(~k2, 0)γ̂R(~k3, 0), ϕ̂(~k, τ′)γ̂′Ri j(~p, τ
′)γ̂′i j

R (~q, τ′)] |0〉, (4.89)

B4 =p
(
~p · ~q

)
〈0| [ϕ̂(~k1, 0)γ̂R(~k2, 0)γ̂R(~k3, 0), ϕ̂(~k, τ′)γ̂R

i j(~p, τ
′)γ̂i j

R (~q, τ′)] |0〉. (4.90)

Here the [·, ·] denotes the commutator operator.
As done in Chapter 3, we can compute these expressions by using the Wick theorem. We need to
compute preliminarly the following contractions between fields:

〈0|ϕ̂(~k, τ)ϕ̂(~k′, τ′)|0〉 = (2π)3δ3(~k + ~k′)u(k, τ)u∗(k, τ′), (4.91)

〈0|ϕ̂(~k, τ)ϕ̂′(~k′, τ′)|0〉 = (2π)3δ3(~k + ~k′)u(k, τ)
d
dτ

u∗(k, τ′), (4.92)

〈0|γ̂R
i j(~k, τ)γ̂R(~k′, τ′)|0〉 = (2π)3δ3(~k + ~k′)z̃R(k, τ)z̃∗R(k, τ′)εR

i j(~k), (4.93)

〈0|γ̂R(~k, τ)γ̂R
i j(~k

′, τ′)|0〉 = (2π)3δ3(~k + ~k′)z̃R(k, τ)z̃∗R(k, τ′)εR
i j
∗(~k), (4.94)

〈0|γ̂R
i j(~k, τ)γ̂′R(~k′, τ′)|0〉 = (2π)3δ3(~k + ~k′)z̃R(k, τ)

(
d
dτ

z̃∗R(k, τ′)
)
εR

i j(~k), (4.95)

〈0|γ̂′R(~k, τ)γ̂R
i j(~k

′, τ′)|0〉 = (2π)3δ3(~k + ~k′)
(

d
dτ

z̃R(k, τ)
)

z̃∗R(k, τ′)εR
i j
∗(~k), (4.96)

where u(k, τ) is as in Eq. (2.88) and z̃s(k, τ) is as in Eq. (4.65).

Thus, performing all the contractions, (4.86) becomes:

〈γ̂R(~k1)γ̂R(~k2)ϕ̂(~k3)〉 = − i(2π)3δ3(k1 + k2 + k3) Im{[k1(Ĩ1 + Ĩ2) + k1(~k1 · ~k2)(Ĩ3 + Ĩ4)]×

× εR
i j
∗(~k1)εR

i j
∗(~k2) − c.c.} + (~k1 ←→ ~k2) ,

(4.97)

where the Ĩn are the integrals:

Ĩ1 = u(k1, 0)zR(k1, 0)zR(k2, 0)
∫ 0

−∞

dτ′
(
∂

∂φ
f (φ)

) [
d
dτ

u∗(k1, τ
′)

d
dτ

z∗R(k1, τ
′)

d
dτ

z∗R(k2, τ
′)
]
, (4.98)

Ĩ2 = u(k1, 0)zR(k2, 0)zR(k3, 0)
∫ 0

−∞

dτ′a
(
∂

∂φ
ḟ (φ)

) [
u∗(k1, τ

′)
d
dτ

z∗R(k2, τ
′)

d
dτ

z∗R(k3, τ
′)
]
, (4.99)

Ĩ3 = u(k1, 0)zR(k2, 0)zR(k3, 0)
∫ 0

−∞

dτ′
(
∂

∂φ
f (φ)

) [
d
dτ

u∗(k1, τ
′)z∗R(k2, τ

′)z∗R(k3, τ
′)
]
, (4.100)

Ĩ4 = u(k1, 0)zR(k2, 0)zR(k3, 0)
∫ 0

−∞

dτ′a
(
∂

∂φ
ḟ (φ)

) [
u∗(k1, τ

′)z∗R(k2, τ
′)z∗R(k3, τ

′)
]
. (4.101)
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We can try to compute analytically these integrals with some approximations that are similar to
the ones adopted to compute the bispectrum Bζζζ in Chapter 3. The first one is to evaluate the
Hubble parameter H and the function f (φ) and its derivatives at the time of horizon crossing of
the momentum K =

∑
i ki and bring them out of the integrals. This approximation is justified by

the slow-roll hypothesis in the background dynamics of the inflaton. The second approximation
is about the cosmological evolution of the scale factor a. At leading order in slow-roll infact
a ' − 1

Hτ . Also this approximation is justified by the slow-roll hypothesis. The last approximation
is to expand in series the functions u and z̃s around zero values of the slow-roll parameters εV

and ηV and of the parameter ΩH
Λ
' ΘR−L . This approximation is justified by the fact that all these

parameters are small. Thus, instead of using the functions u and zR, we use again the mode function
of a scalar field in a De Sitter space (3.57):

z̃s(k, τ)εV =ηV =ΘR−L=0 =
iH∗

MPl

√
k3

(1 + ikτ)e−ikτ , (4.102)

u(k, τ)εV =ηV =0 =
iH∗
√

2k3
(1 + ikτ)e−ikτ . (4.103)

These expressions seem different form (3.57), because they are now normalized respectively for
the variables γ and ϕ.

With the prescriptions just explained we start now the explicit computation of the first integral Ĩ1.
It reads:

Ĩ1 = −4M2
Pl

 ∏
i=1,2,3

H2
∗

M2
Pl2k3

 ( ∂∂φ f (φ)
)∗

k2
1k2

2k2
3

∫ 0

−∞

dτ′τ′3e−iKτ′ , (4.104)

where K = k1 + k2 + k3.

This integral can be performed using the general formula (3.68), obtaining

Ĩ1 = −4M2
Pl

 ∏
i=1,2,3

H2
∗

M2
Pl2k3

 ( ∂∂φ f (φ)
)∗

k2
1k2

2k2
3

(
−

3!
K4

)
. (4.105)

We see that the final result is real and so its imaginary part is zero. Then it does not give any
contributions to the correlator (4.97). For the same reason also the integrals Ĩ2 and Ĩ3 do not give
contributions. The only integral which is not trivial is Ĩ4. Let us see its computation in details:

Ĩ4 = 4
M2

Pl

H∗

 ∏
i=1,2,3

H2
∗

M2
Pl2k3

 ( ∂∂φ ḟ (φ)
)∗ ∫ 0

−∞

dτ′

τ′
(1 + ik1τ

′)(1 + ik2τ
′)(1 + ik3τ

′)e−iKτ′ , (4.106)

We rewrite the integral which appears in (4.106) as:∫ 0

−∞

dτ′

τ′
(1 + ik1τ

′)(1 + ik2τ
′)(1 + ik3τ

′)e−iKτ′ . (4.107)

It can be decomposed into the sum of four integrals:
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∫ 0

−∞

dτ′

τ′
e−iKτ′ + iK

∫ 0

−∞

dτ′e−iKτ′ −
∏
i, j

kik j

∫ 0

−∞

dτ′τ′e−iKτ′ − ik1k2k3

∫ 0

−∞

dτ′τ′2e−iKτ′ . (4.108)

All the integrals apart the first one can be computed using the formula (3.68) and give a real
contribution. For this reason they do not give any contribution to the correlator (4.97). Instead, the
first integral can be traced back to the exponential integral Ei(z) by promoving the real variable τ′

to a complex variable and permorfing a Wick rotation of the integration contour with the change
of variable τ′ = −iτ′′. It becomes:

lim
τ−→0−

∫ iτ

−i∞

dτ′′

τ′′
e−Kτ′′ . (4.109)

The complex exponential integral is defined as [46]:

Ei(z) =

∫ z

∞

dz′

z′
e−z′ |Arg(z)| < π . (4.110)

It is well defined for all complex numbers z that are off the real negative axis. A good charachter-
istic of this integral is that it is indipendent by the integration contour but it depends only by z. In
particular it can be expressed in terms of the following series representation [46]:

Ei(z) = −γ − ln z −
∞∑

k=1

(−z)k

kk!
, (4.111)

where γ is the Euler-Mascheroni constant and ln z is the principal complex logarithm of the com-
plex number z. This series converges for all z that are not in the real axis.

Applying the formula (4.111) to compute the integral (4.109), it becomes:

lim
Kτ−→0−

−γ − ln (iKτ) −
∞∑

k=1

(−iKτ)k

kk!

 = −γ +

(
lim

Kτ−→0
ln |Kτ|

)
+ i

π

2
, (4.112)

where the ln|Kτ| in this case represents a real logarithm. The divergence provided by the logarithm
in (4.112) is not important because at the end we take only the imaginary part of the integral. Thus,
we have:

Im(Ĩ4) = 4
M2

Pl

H∗

 ∏
i=1,2,3

H2
∗

M2
Pl2k3

 ( ∂∂φ ḟ (φ)
)∗
×

(
i
π

2

)
. (4.113)

If we substitute this result into Eq. (4.97) and we consider also the contributions of the permuta-
tions, we find the final result:

〈γ̂R(~k1)γ̂R(~k2)ϕ̂(~k3)〉 =(2π)3δ3(~k1 + ~k2 + ~k3)4
M2

Pl

H∗

 ∏
i=1,2,3

H2
∗

M2
Pl2k3

i

 ( ∂∂φ ḟ (φ)
)∗
×

× (k1 + k2)(~k1 · ~k2)εR
i j(~k1)εR

i j(~k2) .

(4.114)

Following the same steps, we are able to compute also the correlator 〈γ̂L(~k1)γ̂L(~k2)ϕ̂(~k3)〉. It is
sufficent to substitute in the previous passages R with L and take a relative factor −1 due to the
αL = −αR in the interaction lagrangian (4.82). Thus, we have:
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〈γ̂L(~k1)γ̂L(~k2)ϕ̂(~k3)〉 = − (2π)3δ3(~k1 + ~k2 + ~k3)4
M2

Pl

H∗

 ∏
i=1,2,3

H2
∗

M2
Pl2k3

i

 ( ∂∂φ ḟ (φ)
)∗
×

× (k1 + k2)(~k1 · ~k2)εL
i j(~k1)εL

i j(~k2) .

(4.115)

We can try to express the final result in a way in which we write explicitly the dependence over
the wavenumbers ki. Because of momentum conservation

(
~ki + ~k2 + ~k3

)
= 0, the three momenta

form a triangle. For invariance under traslations we can put this triangle in the (x, y)-plane without
losing any generality. It follows that a triangle can be constructed by:

~k1 = k1(1, 0, 0) , ~k2 = k2(cos θ, sin θ, 0), ~k3 = k3(cos Φ, sin Φ, 0) , (4.116)

where 0 ≤ θ ≤ π, π ≤ Φ ≤ 2π are the angles in polar coordinates.

With this choices of the momenta, we can write the polarization tensors for L and R using the basis
definitions (4.36). We have [41]:

ε s
i j(~k1) =

1
√

2


0 0 0

0 1 iαs

0 iαs −1

 , (4.117)

ε s
i j(~k2) =

1
√

2


sin2 θ − sin θ cos θ −iαs sin θ

− sin θ cos θ cos2 θ iαs cos θ

−iαs sin θ iαs cos θ −1

 . (4.118)

Thus through an explicit calculation we find:

~k1 · ~k2 = k1k2 cos θ, ε s
i j(~k1)ε s

i j(~k2) =
1
2

(1 − cos θ)2 , (4.119)

where θ is essentialy the angle between the two momenta ~k1 and ~k2 of the gravitational modes. By
the cosine theorem we can express this angle in function of the three wavenumbers ki as:

cos θ =
k2

3 − k2
2 − k2

1

2k1k2
. (4.120)

We can also write: (
∂

∂φ
ḟ (φ)

)∗
=

(
∂2

∂2φ
f (φ)

)∗
φ̇∗ . (4.121)

In the end the correlators (4.114) and (4.115) become

〈γ̂R(~k1)γ̂R(~k2)ϕ̂(~k3)〉 =(2π)3δ3(~k1 + ~k2 + ~k3)4
φ̇∗
H∗

 ∏
i=1,2,3

H2
∗

M2
Pl2k3

i

 (M2
Pl
∂2

∂2φ
f (φ)

)∗
×

× (k1 + k2)k1k2
cos θ(1 − cos θ)2

2
,

(4.122)
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with cos θ =
k2

3−k2
2−k2

1
2k1k2

and

〈γ̂L(~k1)γ̂L(~k2)ϕ̂(~k3)〉 = −〈γ̂R(~k1)γ̂R(~k2)ϕ̂(~k3)〉 . (4.123)

From the angular dependence of (4.122), we see that the correlator (4.122) is maximum when
cos θ = −1. This corresponds essentialy to the "squeezed" limit, which is the limit in which the
momenta of the gravitational waves k1, k2 are much larger than the momentum k3 of the inflaton
perturbation. In fact in this configuration the triangle of the momenta ki’s appears very squeezed.

Now we pass to gauge invariant variables in order to make predictions about the strength of these
correlators in comparison with the one predicted by the standard slow-roll model (3.89). On su-
perhorizon scales and in the slow-roll limit the local relation between the inflaton ϕ and the gauge
invariant curvature perturbation ζ is (see Eqns. (3.77) and (3.78)):

ζ = ζ1 −
ηV

2
ζ2

1 , (4.124)

where η is the slow-roll parameter (2.21) and ζ1 = −H
φ̇
ϕ is the first order value of ζ.

Then in the coordinate space we have:

〈γ̂R(~x1)γ̂R(~x2)ζ̂(~x3)〉C−S ' −
H∗

φ̇∗
〈γ̂R(~x1)γ̂R(~x2)ϕ̂(~x3)〉 , (4.125)

where we have not considered the contribution of field redefinition coming from the non-linear part
of the relation between ζ and ζ1, Eq. (4.124). In fact this contribution represents a disconnected
term. The ' means that we are evaluating the correlator at first order in the slow-roll parameters.

Thus passing in Fourier space ancd substituting Eq. (4.122) into Eq. (4.125) we have:

〈γ̂R(~k1)γ̂R(~k2)ζ̂(~k3)〉C−S ' −
H∗

φ̇∗
〈γ̂R(~k1)γ̂R(~k2)ϕ̂(~k3)〉 =

= −(2π)3δ3(~k1 + ~k2 + ~k3)

 ∏
i=1,2,3

H2
∗

M2
Pl2k3

i

 (M2
Pl
∂2

∂2φ
f (φ)

)∗
×

× 2(k1 + k2)k1k2 cos θ(1 − cos θ)2 .

(4.126)

Proceeding with the same reasoning for computing the vertex 〈γ̂L(~k1)γ̂L(~k2)ζ̂(~k3)〉C−S , we find:

〈γ̂L(~k1)γ̂L(~k2)ζ̂(~k3)〉C−S = −〈γ̂R(~k1)γ̂R(~k2)ζ̂(~k3)〉C−S (4.127)

A physical quantity in which the parity violating effects in the vertex 〈γγζ〉 are encoded can be
the normalized relative difference between the correlators (4.126) and (4.127). In evaluating this
difference we have to take into account the contribution of the standard slow-roll model computed
by Maldacena in [9], which we have seen in Eq. (3.89) is given by:

〈γ̂s(~k1)γ̂s(~k2)ζ̂(~k3)〉 =
H4
∗

M4
Pl

∑
i> j

1
k3

i k3
j

 F(ki) , (4.128)
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where the F(ki) is a particular function of the momenta ki which it is tipically of order O(1) due to
momentum conservation. In the expression (4.128) we have not explicited the (2π)3δ3(~k1 +~k2 +~k3)
for semplicity of notation. We see that (4.128) is equal for both L and R polarizations.
Similary we see that the correlators just computed in Eq. (4.126) and (4.127) are given by:

〈γ̂R(~k1)γ̂R(~k2)ζ̂(~k3)〉C−S = −〈γ̂L(~k1)γ̂L(~k2)ζ̂(~k3)〉C−S ' −
H6
∗

M6
Pl

(
M2

Pl
∂2

∂2φ
f (φ)

)∗ ∑
i> j

1
k3

i k3
j

 F′(ki) ,

(4.129)
where also in this case we have not explicited the (2π)3δ3(~k1 + ~k2 + ~k3) for semplicity of notaiton.
F′(ki) is a function of the momenta ki of order O(1) due to momentum conservation. Its explicit
expression is:

F′(ki) =
1
8

(k1 + k2)(k2
3 − k2

2 − k2
1)

(
1 − k2

3−k2
2−k2

1
2k1k2

)2

(∑
i k3

i

) . (4.130)

Thus the relative difference between the correlators is given by:

Bγγζ
R−L =

〈γ̂R(~k1)γ̂R(~k2)ζ̂(~k3)〉TOT − 〈γ̂
L(~k1)γ̂L(~k2)ζ̂(~k3)〉TOT

〈γ̂R(~k1)γ̂R(~k2)ζ̂(~k3)〉TOT + 〈γ̂L(~k1)γ̂L(~k2)ζ̂(~k3)〉TOT

∼ −2
H2
∗

M2
Pl

(
M2

Pl
∂2

∂2φ
f (φ)

)∗
, (4.131)

where the suffix TOT denotes the total contribution summing Eqns. (4.129) and (4.128).

In this result we are not considering the shape dependence of the bispectrum. We see that this
quantity depends essentialy from the strength of the second derivative of the function f (φ) with
respect to the inflaton. We notice that we have not specified in the computations the form of f (φ)
because we want to keep the theory as general as possible. In any case we have some constriants
on the value of the derivatives of f (φ) that come from the approximations made to develop the
computations themselves. We see now in detail these constraints.

First of all we write the first derivative of f with respect to the inflaton as a function of the other
parameters of the theory:

MPl
∂

∂φ
f (φ) = MPl

ḟ
φ̇
' M3

Pl
Ω

Λφ̇
'

ΘR−L
√
εV

M2
Pl

H2 . (4.132)

Then, in our theory we have imposed that the Chern-Simons mass MC−S does not change much in
time during inflation. We have said that this is equivalent to require the condition (4.52), which we
rewrite:

M2
Pl
∂2

∂2φ
f (φ) <

MPl
√
εV

∂

∂φ
f (φ) . (4.133)

Thus, inserting Eqns. (4.132) and (4.133) into Eq. (4.131), it results the constraint:

∣∣∣Bγγζ
R−L

∣∣∣ < O (
ΘR−L

εV

)
. (4.134)
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The presence of the slow-roll parameter εV in the denominator in this last equation tells us that we
can have a priori a large parity breaking in the vertex 〈γγζ〉 also with a small parity breaking in
the power spectrum of the tensor perturbations. This fact is quite interesting, because it guides us
to search for signals of the Chern-Simons modified gravity through the analysis of parity violating
effects in the CMB bispectrum.
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Conclusions

In the Thesis we have investigated through various aspects of inflation. First of all we have intro-
duced the inflationary scenario as a solution of the classical problems of the hot Big Bang model:
the horizon, the flatness and the magnetic monopole "problems" .
Then we have introduced the slow-roll models of inflation to study the production and evolution of
the primordial perturbations during inflation. These models predict the presence of both scalar and
tensor perturbations in the primordial universe. The primordial scalar perturbations can be linked
to the temperature anisotropies of the CMB through the gauge invariant quantity ζ, which is the
curvature perturbation of comoving hypersurfaces; instead the tensor perturbations are associated
to primordial gravitational waves γi j that are not observed directly yet. We have recalled how to
link the large-scale power spectrum of the primordial perturbations to observational constraints
from the CMB in order to constrain parameter space of the theory. These parameters are the slow-
roll parameters εV and ηV that depends on the slow-roll potential V(φ) and its derivatives. Different
potentials V(φ) bring to a large zoology of slow-roll models. We have seen a toy model example
of the so-called large and small field models.
Then, always remaining in the context of the slow-roll models, we have made a computation of
primordial non-Gaussianities provided by the scalar bispectrum of the primordial perturbations.
In order to do the computations we have defined and used the so-called in-in formalism. The
scalar bispectrum is suppressed when the slow-roll parameters are small and therefore the non-
Gaussianities predicted by the slow-roll models of inflation are very small and presently not de-
tectable given the sensitivity of the actual experimental instruments. This is fully consistent with
the observational constriants on non-Gaussianity provided by the Planck satellite. But the errors of
these measurements do not exclude a priori the possibility to find out profiles of non-Gaussianity
in the next future, being two orders of magnitude larger than the prediction of the standard single
field slow-roll models of inflation.
This has motivated us to introduce in the action of the slow-roll theories a modified gravity term
which comes naturally by an expansion in the derivatives of the metric tensor. This term is the
Chern-Simons term, in formula f (φ)εµνρσCµν

κλCρσκλ, where f (φ) is a general function of the in-
flaton only, εµνρσ is the Levi-Civita pseudotensor and Cµνρσ is the Weyl tensor. The term is parity
breaking and does not produce any change in scalar perturbations (in the sense that the contribution
to the Chern-Simons term from scalar perturbations vanishes). So we have studied the quadratic
modification of the action for the tensor perturbations only. We have seen that at a certain energy
scale equal to the so-called Chern-Simons mass MC−S a ghost degree of freedom appears. In order
to regularize the theory and avoid the presence of the ghost, we have inserted an UV cut off Λ

smaller than the Chern-Simons mass MC−S . Then, assuming MC−S almost constant during infla-
tion, we have derived explicitly the equations of motion for the inflationary gravitational waves.
These equations appear different for left(L) and right(R) circular polarizations of the gravitational
waves. Therefore there is the possibility to measure a different large-scale power spectra for the
two polarizations states. The observable in which this difference can be encoded is:
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ΘR−L =
∆R

T − ∆L
T

∆R
T + ∆L

T

'
H

MC−S
,

where both the Hubble parameter H and MC−S are assumed constant parameters. We expect this
quantity to be small for the consistency of the approximations made in the various computations.
Given the actual constriant of the tensor-to-scalar ratio r, we hope to constrain the value of ΘR−L

from the CMB only if it is larger than approximately 0.21 [49].

A modification on the usual consistency relation of slow-roll models of inflation arises:

rC−S = −8nT

(
1 + Θ2

R−L

)
.

The fact that the correction term is of order Θ2
R−L probably makes this correction difficult to observe

with future experiments.

As an original contribution, we have computed at leading order in slow-roll parameters the con-
tribution of the Chern-Simons term to the cubic interaction vertex between two gravitons and one
inflaton (γγϕ). This interaction vertex gives quantum contributions to the correlator 〈γγϕ〉. We
have found the following results:

〈γR(~k1)γR(~k2)ϕ(~k3)〉 =(2π)3δ3(~k1 + ~k2 + ~k3)4
φ̇∗
H∗

 ∏
i=1,2,3

H2
∗

M2
Pl2k3

i

 (M2
Pl
∂2

∂2φ
f (φ)

)∗
×

× (k1 + k2)k1k2
cos θ(1 − cos θ)2

2
,

where cos θ =
k2

3−k2
2−k2

1
2k1k2

, and

〈γL(~k1)γL(~k2)ϕ(~k3)〉 = −〈γR(~k1)γR(~k2)ϕ(~k3)〉 ,

〈γL(~k1)γR(~k2)ϕ(~k3)〉 =〈γR(~k1)γL(~k2)ϕ(~k3)〉 = 0 .

There the ∗ indicates the epoch of horizon crossing for the mode K = k1 + k2 + k3.

Only the "non-L-R-mixed" correlators are non trivial and depend by the second derivative of the
function f (φ) with respect to the inflaton field.

Considering the gauge invariant scalar perturbation ζ, we have computed the order of the relative
difference of the correlators 〈γRγRζ〉 and 〈γLγLζ〉. In fact this adimensional quantity measures
the level of parity breaking in the correlator considered. We have found a result proportional to(
M2

Pl
∂2

∂2φ
f (φ)

)∗
. In addition accounting for the approximations made to develop the theory, we have

found the theoretical constraint:

∣∣∣Bγγζ
R−L

∣∣∣ =
〈γR(~k1)γR(~k2)ζ(~k3)〉TOT − 〈γ

L(~k1)γL(~k2)ζ(~k3)〉TOT

〈γR(~k1)γR(~k2)ζ(~k3)〉TOT + 〈γL(~k1)γL(~k2)ζ(~k3)〉TOT

< O

(
ΘR−L

εV

)
.
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The presence of the slow-roll parameter εV at the denominator might allow Bγγζ
R−L to be large also

in the case of small parity breaking in the power spectrum of the gravitational waves. This result
forces us to remain open-minded about the possibilities of measuring the effects of the Chern-
Simons modified gravity term through a dedicated analysis of the CMB bispectrum.
In any case our theoretical computation is been just explorative. We are not able actually to link
directly our result with the non-Gaussianities of the CMB. It is necessary to develop a template
to search for this parity breaking signature in the CMB bispectrum. In addition our computation
of the correlator 〈γγϕ〉 can be usefull also in other theories of inflation different by the slow-roll
theories. The possible future extension of our work is the computation of the contributions of the
Chern-Simons term to the correlators 〈γζζ〉 and 〈γγγ〉, in order to search if we obtain also in this
case a non trivial parity breaking signature.
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Appendix A

ADM expressions of the curvature tensors

The 3+1 decomposition of the metric and inverse metric reads like:

g00 = −(N2 − NiN i), g0i = Ni, gi j = hi j . (A.1)

g00 = −
1

N2 , g0i = −
N i

N2 , gi j = hi j −
N iN j

N2 , (A.2)

where N is called laps function and Ni is called shift function. They represent the linkings between
different slices in which we foliate the spacetime. The 3-metric on each slice at fixed time is hi j. If
we move on a slice, we can define an intrinsic Riemann curvature R(3)

i jkl and an intrinsic covariant
derivative D(3)

i . Their expressions are obtained replacing in their general definitions the 4-metric
gµν with the 3-metric hi j. In the same way, contracting the 3-Riemann tensor with the metric hi j

we can define the intrinsic Ricci tensor R(3)
µν and the intrinsic scalar curvature R(3). The contributon

to the total curvature of the spacetime arising from the time component is labelled by the extrinsic
curvature tensor:

Ki j =
1

2N
[D(3)

i N j + D(3)
j Ni − ḣi j] . (A.3)

This tensor together with the functions N and Ni and the 3-tensors permits us to rewrite the founda-
mental curvature tensors of the general relativity in a form in which all the contractions can be done
only by the spatial 3-metric hi j. By doing some algebra we find the following compact relations:

Riemann tensor components:

Ri jkl = R(3)
i jkl + KikK jl − KilK jk , (A.4)

R0i jk = N[D(3)
j Kik − D(3)

k Ki j] + N l[R(3)
li jk + Kl jKik − KlkKi j] , (A.5)

R0i0 j = N[K̇i j + D(3)
i D(3)

j N + NKk
i Kk j − (D(3)

j Kik)Nk − (D(3)
i Nk)Kk j − (D(3)

i Kk j)Nk+

+ (D(3)
k Ki j)Nk] + N lNk[−R(3)

l jik − KilK jk + KlkKi j] .
(A.6)

Ricci tensor components:
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Ri j =R(3)
i j + KlkKi jhlk − 2KikK jlhlk −

1
N

[K̇i j + D(3)
i D(3)

j N − N l∂lKi j − Kil∂ jN l − K jl∂iN l] , (A.7)

R0i = −
N j

N
K̇i j −

N j

N
(D(3)

i D(3)
j N) − N jKk

i Kk j +
N j

N
[(D(3)

j Kik)Nk + (D(3)
i Nk)Kk j

+ (D(3)
i Kk j)Nk − (D(3)

k Ki j)Nk] + N lh jkR(3)
l jik + N lh jkKilK jk − N lh jkKlkKi j ,

(A.8)

R00 =R0i0 j

(
hi j −

N iN j

N2

)
. (A.9)

Scalar curvature:

R = R(3) + Ki jKi j + (Ki
i)

2 −
2
N

(K̇i
i) +

2N j

N
(D(3)

j Ki
i) −

2
N
4(3)N , (A.10)

where 4(3) is the covariant laplacian built with the 3-metric hi j.

From this last equation in particular we see:

R = R(3) + Ki jKi j + (Ki
i)

2 + (surface terms ) . (A.11)
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