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Sommario

Questo elaborato di tesi descrive lo studio parametrico preliminare di una schiera piana

di compressore supersonico, denominata ARL-SL19. I dati sperimentali ottenuti in varie

gallerie del vento supersoniche per la schiera studiata nel presente elaborato, utili alla

validazione di metodi computazionali e solutori numerici per le turbomacchine, sono stati

utilizzati per la validazione del modello numerico e lo studio di sensitività della griglia

di calcolo. Le simulazioni sono state condotte su un dominio periodico 2D attorno a un

singolo pro�lo, utilizzando il software commerciale ANSYS R© Fluent. I principali modelli

di turbolenza implementati nel software CFD sono stati impiegati per la validazione e

lo studio di sensitività: il modello Spalart-Allmaras, il modello k-ε, nelle sue tre diverse

formulazioni disponibili (STD, RNG e REALIZABLE) e il modello Shear Stress Transport

(SST) k-ω. Lo studio parametrico della schiera supersonica è stato condotto analizzando

l'in�uenza dei principali parametri �uidodinamici e geometrici, come il numero di Mach

in ingresso, il rapporto di pressione statica e la solidità, sull'e�cienza della schiera e

sulle principali grandezze del �usso in uscita. I risultati ottenuti dallo studio parametrico

possono essere utili al design di un compressore supersonico.
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Abstract

The thesis describes a parametric study of a supersonic compressor cascade, known as

ARL-SL19. The linear supersonic compressor cascade is the two-dimensional equivalent

of the annular cascade of a supersonic compressor rotor. A series of experimental data, use-

ful for validating computational methods and numerical solvers for turbomachines, were

produced in several wind tunnel facilities and these benchmark data were employed for a

preliminary validation and grid sensitivity analysis. A commercial CFD solver, ANSYS R©

Fluent, was employed for the numerical simulations. The most widely-used turbulence

models available in ANSYS R© Fluent were tested: the Spalart-Allmaras model, the k-ε

model (STD, RNG, and REALIZABLE k-ε model), and the Shear Stress Transport (SST)

k-ω model. A large number of two-dimensional simulations were carried out employing a

computational domain consisting of a periodic grid around a single airfoil. The paramet-

ric study of the ARL-SL19 supersonic compressor cascade was carried out investigating

the in�uence of the main �ow variables (inlet Mach number and static pressure ratio)

and geometric parameters (cascade solidity) on the overall performance and the exit �ow

quantities, in terms of mean exit �ow angle and exit Mach number. The numerical results

obtained from the parametric study can be useful for the design of supersonic compressor

rotors.
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Introduction

The development of modern aircraft fans and compressors aims to increase pressure

ratios and to reduce weights at once. The advantages resulting from this design approach,

which leads to a reduced number of stages and compactness, are a lower fuel consumption

and an increased overall performance. To design compressors with increased pressure

ratios and reduced number of stages, it is necessary to increase the �ow velocity relative

to the blades up to supersonic. In the modern civil and military aircraft engines, the

fan and the �rst stage of the compressor are transonic. The most common categories

of transonic axial compressors and fans are the single-stage fan in civil aero-engines, the

multistage fan or low-pressure compressor in military combat engines, and the �rst stages

of the multistage core engine compressors.

Main types of transonic/supersonic fans and compressors for aircraft engines [3]

5
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In these kinds of aeronautical compressors and fans, the inlet Mach number in the

axial direction is subsonic, while the inlet Mach number relative to the rotor-tip section,

because of the blade speed, can vary from 1.2 in multistage core compressors up to 1.7 in

military combat aircraft compressors, with a value of about 1.5 in single-stage civil fans.

At supersonic inlet conditions, compressor performance and e�ciency depend on the

shock waves in front of and inside the blade passage. In fact, in transonic and supersonic

compressors, the static pressure is increased primarily by the shock waves inside the

blade passage. However, the strength of the shock waves and their interaction with the

boundary layer on the surfaces of the blades deeply in�uence the overall performance

and the direction of the �ow into the following stages. Hence, the design of fans and

compressors, operating at supersonic inlet �ow conditions, requires accurate knowledge

of the �ow behaviour inside the blade passage peculiar to these operating conditions.

The so-called linear supersonic compressor cascade is a fundamental experimental tool

for gaining information about the wave pattern and the overall performance of a super-

sonic compressor. It consists of a two-dimensional array of a certain number of airfoils

equivalent to the compressor blade section and mounted in a wind tunnel. Even if cas-

cade models present clear physical limitations and signi�cant di�erences compared with

the corresponding rotor blade sections, they can provide excellent series of data sets for a

large number of operating conditions, with less time and expense than would be necessary

to test an entire compressor rotor. A large amount of detailed experimental results, ob-

tained from compressor cascade models tested in supersonic cascade wind tunnel facilities,

is available. These experimental data provide a thorough description of the cascade per-

formance and the shock wave pattern and can be used as benchmark results to validate

computational methods or for the assessment of numerical solvers for turbomachinery

applications. In fact, numerical simulations are a fundamental tool to analyze transonic

and supersonic �ows in turbomachines and to perform parametric studies during the �rst

steps of the design process.

The aim of the present work is to accurately simulate the supersonic �ow in a su-

personic compressor cascade and to carry out a parametric study for understanding the

in�uence of the main �ow variables and geometric parameters on the overall performance,

which is useful for a preliminary design. The cascade, designated as ARL-SL19, was de-

rived from a two-dimensional compressor rotor blade section and was tested in many wind

tunnel facilities.

The presentation of the study on the ARL-SL19 cascade carried out hereunder is

organized into six chapters. In the �rst two chapters, the fundamentals equations of

compressible aerodynamics and the relations for shock waves are derived and discussed,
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since they are the basis of the equations governing the �ow in a supersonic cascade. The

third chapter is concerned with a wide description of the operating condition peculiar of

supersonic cascades, known as "unique incidence". The fundamental equations governing

the �ow in a supersonic cascade and the characteristic shock wave patterns are presented

and widely discussed, along with a brief description of the most common airfoils shapes

used for supersonic compressor blade sections. The fourth chapter brie�y decribes the

turbulence models implemented in the CFD solver and employed in the validation study

and the grid sensitivity analysis. In the �fth chapter the validation of the numerical model

and the grid sensitivity analysis, fundamental to the choice of the turbulence model and

the grid size for the parametric study, are presented. The sixth chapter, which represents

the core of this work, is concerned with the parametric study of the cascade, carried out

analyzing the in�uence of the main �ow and geometric variables on the overall cascade

performance.
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Chapter 1

Fundamental Equations of

Compressible Aerodynamics

In this chapter, the fundamental equations of compressible aerodynamics are pre-

sented. The three fundamental equations (the continuity equation, the momentum equa-

tion, and the energy equation) are brie�y derived and discussed for the most general case of

a viscous compressible �uid, that is a �uid in which pressure variations produce signi�cant

and not negligible changes in �uid density. These equations are known as the complete

Navier-Stokes equations. The fundamental equations are then simpli�ed introducing the

assumption of incompressible �uid. This simpli�ed form of the fundamental equations

leads to a less complex system of equations, useful for the subsequent discussions.

For more details, refer to [1], [11], and [21].

1.1 Continuity equation

Consider a �uid moving in streamlines, whose properties, for example density ρ, pres-

sure p, and velocity V , are functions of both position r and time t

ρ = ρ(r, t) p = p(r, t) V = V (r, t)

For the sake of simplicity, neglect the explicit dependence of these quantities from r and

t. Consider a �xed in space and non-deformable control volume V surrounded by a closed

control surface S, with the �uid moving through it. Let n be the unit vector normal to

the surface. By convention, n is positive when it is oriented outward from the control

volume. Let dS and dV denote an in�nitesimal area element of the control surface S and

an in�nitesimal volume element of the control volume V , respectively.

9
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Figure 1.1: Example of control volume for �uid �ow analysis

Consider the following simpli�ed notation for the surface integral over the control surface

S and for the volume integral over the control volume V

‹
S

−→
ˆ
S

˚
V

−→
ˆ
V

Using the simpli�ed notation just introduced, the total mass of the �uid inside the control

volume V at any istant in time is

MV (t) =

ˆ
V

ρdV (1.1)

where ρdV represents the mass of the in�nitesimal volume element dV . The time rate of

change, that is the time derivative, of the mass inside the control volume V is

dMV (t)

dt
=

d

dt

ˆ
V

ρdV (1.2)

If the mass inside V increases, then the time derivative is positive; in turn, if the mass

inside V decreases, then the time derivative is the negative of the above. Let V · ndS be

the volume �ow rate and ρV · ndS the mass �ow rate through the in�nitesimal control

surface dS. De�ning the mass �ux through dS as the mass �ow rate per unit area

ρ(V · n)

and integrating over the entire control surface, we have the total mass �ux through the

control surface S ˆ
S

ρ(V · n)dS

Taking a closer look at the expression just written above, it can be noted that if the



1.1 CONTINUITY EQUATION 11

product V · n is positive, then the mass �ux is leaving the control volume, that is it is an

out�ow; in turn, if the product V ·n is negative, then the mass �ux is entering the control

volume, that is it is an in�ow, because n has been assumed positive when it points out

of the control volume. The continuity equation applied to a �xed and non-deformable

control volume is
d

dt

ˆ
V

ρdV = −
ˆ
S

ρ(V · n)dS (1.3)

or, collecting all terms on the left-hand side

d

dt

ˆ
V

ρdV +

ˆ
S

ρ(V · n)dS = 0 (1.4)

Equation (1.4), derived by applying the principle of conservation of mass to the control

volume, represents the continuity equation in integral form and states that the sum of the

time variation of the mass inside the control volume V and the total mass �ux throughout

the control surface S is zero. Consider now Equation (1.3). Since the control volume used

is �xed in space, the time derivative can be placed inside the volume integral, becoming

a partial derivative, because the integrand is a function of both position and time

ˆ
V

∂ρ

∂t
dV = −

ˆ
S

ρ(V · n)dS (1.5)

Applying the divergence theorem, which states that for any vector �eld C, the following

expression is valid ˆ
S

C · ndS =

ˆ
V

∇ · CdV (1.6)

the term on the right-hand side of Equation (1.5) can be written as

ˆ
S

ρ(V · n)dS =

ˆ
V

∇ · (ρV )dV (1.7)

Thus, substituting Equation (1.7) into Equation (1.5) and collecting all terms on the

left-hand side, we obtain

ˆ
V

∂ρ

∂t
dV +

ˆ
V

∇ · (ρV )dV = 0 (1.8)

Now, collecting all terms inside the same volume integral, we obtain

ˆ
V

[
∂ρ

∂t
+∇ · (ρV )

]
dV = 0 (1.9)
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Since the control volume is also arbitrarly choosen, the previous expression must be valid

for any arbitrary control volume V ; this statement corresponds to set the integrand equal

to zero. Thus, the continuity equation for a compressible �ow is

∂ρ

∂t
+∇ · (ρV ) = 0 (1.10)

Equation (1.10), in contrast to Equation (1.4), represents the continuity equation in dif-

ferential form. For a steady �ow, ∂/∂t = 0; hence Equation (1.10) reduces to

∇ · (ρV ) = 0 (1.11)

1.1.1 Continuity equation for an incompressible �ow

Expanding the divergence of the product, Equation (1.10) becomes

∂ρ

∂t
+ V · ∇ρ+ ρ∇ · V = 0 (1.12)

Considering the de�nition of substantial derivative in vector notation

D

Dt
=

∂

∂t
+ V · ∇ (1.13)

Equation (1.12) becomes
Dρ

Dt
+ ρ∇ · V = 0 (1.14)

or
Dρ

Dt
= −ρ∇ · V (1.15)

Rearranging the terms, the expression just derived can be written as

∇ · V = −1

ρ

Dρ

Dt
= −v

D1/v

Dt
=

1

v

Dv

Dt
(1.16)

where v is the speci�c volume, that is the volume of �uid per unit mass, de�ned as

v =
1

ρ

Thus, ∇ · V can be intended as the time rate of change of the volume of a moving �uid

portion, per unit volume.
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For an incompressible �uid, the density is constant

ρ(r, t) = ρ

so, if the �uid volume with a �xed mass has constant density, then the volume is constant.

As a consequence, the �uid is said to be incompressible when it satis�es the following

condition

∇ · V = 0 (1.17)

Substituting Equation (1.17) into Equation (1.14), we obtain

Dρ

Dt
=
∂ρ

∂t
+ V · ∇ρ = 0 (1.18)

Equation (1.18) states that the density of the �uid is constant along the pathlines. If we

assume that the density is also uniform, that is

ρ(r, t) = ρ0(r) = ρ

then
∂ρ

∂t
= 0 ∇ρ = 0 (1.19)

and Equation (1.14) becomes

∇ · V = 0 (1.20)

which represents the continuity equation for an incompressible �ow.

1.2 Momentum equation

Consider the �xed in space, non-deformable, and inertial control volume V , previously

de�ned. The momentum of the �uid inside the control volume at any istant in time is

QV (t) =

ˆ
V

ρV dV (1.21)

where ρV dV is the momentum of the in�nitesimal volume element dV . The time deriva-

tive of the momentum of the �uid is then

dQV (t)

dt
=

d

dt

ˆ
V

ρV dV =

ˆ
V

∂

∂t
(ρV )dV (1.22)



14 CHAPTER 1. FUNDAMENTAL EQUATIONS OF COMPRESSIBLE AERODYNAMICS

Recalling the de�nition of mass �ux, the momentum �ux through dS is

ρV (V · n)

Integrating over the entire control surface, the momentum equation for an inertial and

non-deformable control volume is

d

dt

ˆ
V

ρV dV +

ˆ
S

ρV (V · n)dS = F V + F S (1.23)

Equation (1.23) states that the time variation of the momentum of the �uid inside the

control volume and the total momentum �ux through the control surface are equal to

the forces exerted on the �uid inside the control volume V . Equation (1.23) derives from

the application of the second law of motion to the inertial and non-deformable control

volume. The forces exerted on the �uid can be body forces, acting at a certain distance

on the �uid inside V , de�ned as

F V =

ˆ
V

ρgdV (1.24)

or surface forces, which act on the control surface S, such as pressure and shear stress,

de�ned as

F S =

ˆ
S

tdS (1.25)

g is the net body force per unit mass exerted on the �uid inside the control volume and

t is the stress vector. The stress vector is de�ned as

t = T · n (1.26)

where T is the stress tensor. Substituting Equations (1.24) and (1.25) into Equation

(1.23), we have

d

dt

ˆ
V

ρV dV +

ˆ
S

ρV (V · n)dS =

ˆ
V

ρgdV +

ˆ
S

T · ndS (1.27)

Equation (1.27) expresses the momentum equation in integral form. Now, following the

approach used in the previous section, that is placing the time derivative inside the volume

integral, applying the divergence theorem to the surface integrals, collecting all terms on

the left-hand side under the same volume integral, and setting the integrand equal to

zero, the momentum equation for a compressible �ow is

∂

∂t
(ρV ) +∇ · (ρV V ) = ρg +∇ · T (1.28)
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Equation (1.28) represents the momentum equation in di�erential form.

Now, the stress tensor can be expressed as the sum of two terms, the former due to the

pressure and the latter due to the shear stress

T = −pI + σ (1.29)

σ is the viscous stress tensor and I is the identity tensor. Thus, substituting Equation

(1.29) into Equation (1.28), we have

∂

∂t
(ρV ) +∇ · (ρV V ) = ρg +∇ · (−pI + σ) (1.30)

For a newtonian �uid, the viscous stress tensor σ is de�ned as

σ = µ(∇V +∇V T
) + λ∇ · V I = 2µE + λ∇ · V I (1.31)

where

E =

(
∇V +∇V T

2

)
(1.32)

is the strain rate tensor, de�ned as the symmetric part of the velocity gradient ∇V .
µ is the dynamic viscosity coe�cient and λ is the second viscosity coe�cient. For a

newtonian �uid, the so-called Stokes' hypothesis is valid

λ = −2

3
µ (1.33)

Now, Equation (1.30) becomes

∂

∂t
(ρV ) +∇ · (ρV V ) = ρg +∇ · [−pI + µ(∇V +∇V T

) + λ∇ · V I] (1.34)

Expanding the divergence of the terms on the right-hand side and using some vector

identities, the momentum equation for a viscous compressible �ow becomes

∂

∂t
(ρV ) +∇ · (ρV V ) = ρg −∇p+ µ∇2V + (λ+ µ)∇(∇ · V ) (1.35)
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1.2.1 Simpli�ed forms of the momentum equation

By expanding the terms on the left-hand side of the previous equation and using the

notation for substantial derivative, the momentum equation can be written as follows

ρ
DV

Dt
= ρg −∇p+ µ∇2V + (λ+ µ)∇(∇ · V ) (1.36)

For a viscous incompressible �ow, since ∇ · V = 0, the momentum equation becomes

∂

∂t
(ρV ) +∇(ρV V ) = ρg −∇p+ µ∇2V (1.37)

or
DV

Dt
= g − 1

ρ
∇p+ ν∇2V (1.38)

where ν is the kinematic viscosity. If we consider an inviscid �uid, in which the viscosity

is equal to zero, then the momentum equation is

∂

∂t
(ρV ) +∇(ρV V ) = ρg −∇p (1.39)

or
DV

Dt
= g − 1

ρ
∇p (1.40)

1.3 Energy equation

Consider again the �xed in space and non-deformable control volume previously de-

�ned. The total energy of the �uid inside the control volume at any instant in time

is

ET (t) =

ˆ
V

ρeTdV =

ˆ
V

ρ

(
e+

V 2

2

)
dV (1.41)

where e is the internal energy per unit mass and V 2/2 is the kinetic energy per unit mass.

The time rate of change of total energy of the �uid inside the control volume is thus

dET (t)

dt
=

d

dt

ˆ
V

ρ

(
e+

V 2

2

)
dV (1.42)

In a similar fashion as previously done, de�ning the total energy �ux through dS as

ρ

(
e+

V 2

2

)
(V · n)
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the energy equation is

d

dt

ˆ
V

ρ

(
e+

V 2

2

)
dV +

ˆ
S

ρ

(
e+

V 2

2

)
(V · n)dS = q̇ + L̇ (1.43)

Equation (1.43) states that the time rate of change of total energy of the �uid inside the

control volume and the total energy �ux through the control surface are equal to the rate

of heat added to the �uid plus the rate of work done on the �uid. It derives from applying

the �rst law of thermodynamics to the control volume.

The heat added to the �uid derives from two contributions: the former is the volumetric

heating (thermal radiation), and the latter is the heat transfer through the surface (ther-

mal conduction). For simplicity, neglect the contibution of volumetric heating to the heat

added to the �uid, that is consider that heat is transferred to the �uid just via conduction.

Thus, the rate of heat addition is

q̇ = −
ˆ
S

q · ndS =

ˆ
S

(k∇T · n)dS (1.44)

q is the heat �ux, given by the Fourier's law

q = −k∇T (1.45)

where k is the thermal conductivity.

In a similar fashion, the rate of work done on the �uid can be expressed as the sum of

two terms: the former representing the rate of work done by body forces and the latter

standing for the rate of work done by surface forces, that is

L̇V =

ˆ
V

ρg · V dV (1.46)

and

L̇S =

ˆ
S

t · V dS =

ˆ
S

(T · n) · V dS (1.47)

Thus

L̇ = L̇V + L̇S =

ˆ
V

ρg · V dV +

ˆ
S

(T · n) · V dS (1.48)

Substituting Equation (1.44) and Equation (1.48) into Equation (1.43) and following the

approach established in Sections 1.1 and 1.2, the energy equation in di�erential form is

∂

∂t

[
ρ

(
e+

V 2

2

)]
+∇ ·

[
ρ

(
e+

V 2

2

)
V

]
= k∇2T + ρg · V +∇ · (T · V ) (1.49)
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Considering the stress tensor as de�ned by Equation (1.29), we have

∂

∂t

[
ρ

(
e+

V 2

2

)]
+∇ ·

[
ρ

(
e+

V 2

2

)
V

]
= k∇2T + ρg · V −∇ · (pV ) +∇ · (σ · V ) (1.50)

As done previously, the energy equation given in the form of Equation (1.49) can be

expressed in terms of the substantial derivative as follows

ρ
D

Dt

(
e+

V 2

2

)
= k∇2T + ρg · V +∇ · (T · V ) (1.51)

1.4 Navier-Stokes equations

The continuity equation given in the form of Equation (1.10), the momentum equation

given in the form of Equation (1.35), and the energy equation given in the form of Equation

(1.50) are the so-called complete Navier-Stokes equations

∂ρ

∂t
+∇ · (ρV ) = 0 (1.52a)

∂

∂t
(ρV ) +∇ · (ρV V ) = ρg −∇p+ µ∇2V + (λ+ µ)∇(∇ · V ) (1.52b)

∂

∂t

[
ρ

(
e+

V 2

2

)]
+∇ ·

[
ρ

(
e+

V 2

2

)
V

]
= k∇2T + ρg · V −∇ · (pV ) +∇ · (σ · V ) (1.52c)

The continuity equation, the momentum equation, and the energy equation give a system

of �ve equations with �ve unknowns, which are the velocity components, density and

pressure. This system of equations, with the proper set of boundary conditions, represents

the complete mathematical model which describes the motion of a viscous compressible

�ow.

In the case of a viscous incompressible �ow, the system of equation written above

becomes simpler

∇ · V = 0 (1.53a)

DV

Dt
= g − 1

ρ
∇p+ ν∇2V (1.53b)

where the continuity equation is in the form given by Equation (1.20) and the momentum

equation is in the form expressed by Equation (1.38). For the study of the motion of a

viscous incompressible �uid, the continuity equation and the momentum equation give a

system of four equations with four unknowns and are su�cient to describe the problem.

This simpli�ed system of equations will be employed later in the next chapters.



Chapter 2

Shock-expansion waves phenomenology

In this chapter a brief discussion of the shock-wave theory is presented. By using the

fundamental equations for compressible �ows derived in the previous chapter, the relations

for the determination of the �ow properties across a wave (normal shock-wave, oblique

shock-wave, and expansion wave) are derived. By using the results from the oblique shock-

wave theory, valid for any kind of discontinuity, the key equation for an expansion wave,

that is the Prandtl-Meyer relation, is derived. This equation represents the fundamental

equation at the basis of the operating condition of supersonic cascades.

For more details, which are beyond the scope of this work, refer to [1].

2.1 Speed of sound and Mach number

To begin with, it is useful to brie�y de�ne two important quantities for the study of

compressible �ows: the speed of sound and the Mach number.

The speed of sound is de�ned as

a =
√
γRT (2.1)

which, for an ideal gas, is a function of its temperature T and composition.

The Mach number is a dimensionless quantity de�ned as the ratio of the �ow velocity to

the local speed of sound

M =
V

a
(2.2)

The de�nition of Mach number allows us to distinguish several regimes of �ow:

• subsonic �ows, when the �uid velocity is lower than the speed of sound (M < 1).

Typically a �ow is considered as subsonic if Mach number is in the range of 0-0.8;

• supersonic �ows, when the �uid velocity is greater than the speed of sound (M > 1).

19
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Supersonic �ows are frequently characterized by the presence of propagating dis-

turbances, called shock waves, across which the �ow properties, such as velocity,

pressure, density, and temperature, change abruptly. These discontinuities are due

to the presence in the �ow of a body, such as an airfoil or a blade;

• transonic �ows, when Mach number is in the range 0.8 < M < 1.2. Transonic �ows

around airfoils are characterized by mixed subsonic-supersonic regions;

• hypersonic �ows, when Mach number is M � 1, typically M > 5.

Di�erent analytical theories valid for an inviscid compressible �ow are used to describe

the behaviour of an airfoil in each regime. Transonic �ows lack of an analytical theory

because of their complex mixed nature of subsonic and supersonic �ows; so the behaviour

of an airfoil in that regime can be described just qualitatively and, for that reason, they

are more di�cult to solve numerically. In fact, while the solution of one-dimensional

transonic �ows does not create particular di�culties, the solution of two-dimensional and

three-dimensional �ows in turbomachinery or around wings and single airfoils is quite

problematic, since these �ows request solution methods completely di�erent, because of

their mixed nature. Transonic �ows and supersonic �ows around airfoils in turbomachin-

ery will be discussed in detail later. Anyway, a more in-depth mathematical analysis of

the theory concerning compressible �ows is beyond the scope of this work; therefore, no

further details will be given here.

2.2 Total conditions

For the analysis of compressible �ows, it is useful to de�ne the so-called total quantities.

Total enthalpy and total temperature are de�ned as the enthalpy and the temperature that

the �ow would have if we slowed it to zero velocity adiabatically.

The total enthalpy h0 is de�ned as

h0 = h+
V 2

2
(2.3)

For an ideal gas, h = cpT ; thus

cpT0 = cpT +
V 2

2
(2.4)

Hence, the total temperature T0 can be de�ned as

T0 = T +
V 2

2cp
(2.5)
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Similarly, total pressure p0 and total density ρ0 are de�ned as the pressure and the density

that the �ow would have if we slowed it to zero velocity isentropically.

The ratio of total properties to static properties can be expressed as a function of Mach

number by the following equations

T0

T
= 1 +

γ − 1

2
M2 (2.6a)

p0

p
=

(
1 +

γ − 1

2
M2

) γ
γ−1

(2.6b)

ρ0

ρ
=

(
1 +

γ − 1

2
M2

) 1
γ−1

(2.6c)

2.2.1 Energy equation in terms of total enthalpy

For the subsequent discussion, it is useful to write the energy equation in terms of

total enthalpy, in three equivalent forms. These simpli�ed versions of the energy equation

are valid under some speci�c assumptions, which will be properly de�ned.

Consider the energy equation in the form

ρ
D

Dt

(
e+

V 2

2

)
= k∇2T + ρg · V +∇ · (σ · V )−∇ · (pV ) (2.7)

By using the following vector identity to expand the last term on the right-hand side of

the previous equation

∇ · (pV ) = p∇ · V + V · ∇p (2.8)

and considering the continuity equation in the form

∇ · V = −1

ρ

Dρ

Dt
(2.9)

we obtain

∇ · (pV ) = −p
ρ

Dρ

Dt
+ V · ∇p (2.10)

Consider now the following vector identity

∇ · (pV ) = ρ
D(p/ρ)

Dt
− ∂p

∂t
(2.11)
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Substituting the previous equation into Equation (2.7), we have

ρ
D

Dt

(
e+

V 2

2

)
= −ρ

D(p/ρ)

Dt
+
∂p

∂t
+ k∇2T + ρg · V +∇ · (σ · V ) (2.12)

Thus

ρ
D

Dt

(
e+

V 2

2
+
p

ρ

)
=
∂p

∂t
+ k∇2T + ρg · V +∇ · (σ · V ) (2.13)

Considering the de�nition of enthalpy

h = e+
p

ρ
(2.14)

the equation of energy written in the so-called enthalpic form is

ρ
D

Dt

(
h+

V 2

2

)
=
∂p

∂t
+ k∇2T + ρg · V +∇ · (σ · V ) (2.15)

Consider now the assumptions of steady, adiabatic, and inviscid �ow. Thus, the previous

equation can be written in a simpli�ed form as follows

ρ
D

Dt

(
h+

V 2

2

)
= 0 (2.16)

Recalling now the de�nition of total enthalpy, that is Equation (2.3), we have

ρ
Dh0

Dt
= 0 (2.17)

Hence

h0 = cost (2.18)

that is, total enthalpy is constant in the entire �ow. This statement is valid for a uniform,

steady, inviscid, and adiabatic �ow. For an ideal gas h = cpT ; hence, the energy equation

can be written in three equivalent forms

h+
u2

2
= const (2.19a)

h0 = const (2.19b)

T0 = const (2.19c)

These equations, valid under the assumptions listed above, can be used in place of the

more complex Equation (1.49) and will be employed for the subsequent analysis.
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2.3 Normal shocks

Shock waves perpendicular to the �ow direction are called normal shock waves. Con-

sider the normal shock wave sketched in Figure 2.1, adapted from [1]. The uniform �ow

upstream of the shock wave is identi�ed as region 1 (on the left), and all the corresponding

variables (pressure, density, temperature, Mach number, velocity, total pressure, total en-

thalpy, and total temperature) are denoted by subscript 1. The uniform �ow downstream

of the shock is indicated as region 2 (on the right), and all the corresponding variables

are denoted by subscript 2. Consider the control volume bordered by the dashed lines.

Figure 2.1: Normal shock-wave and control surface

Consider the following simplifying assumptions:

• the �ow is steady

• the �ow is adiabatic

• viscous e�ects and body forces are negligible

Consider the continuity equation in the form of Equation (1.10)

∂ρ

∂t
+∇ · (ρV ) = 0 (2.20)

For the assumptions listed above, the previous equation simpli�es as follows

∇ · (ρV ) = 0 (2.21)
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Integrating over the entire control volume, we have

ˆ
V

∇ · (ρV )dV = 0 (2.22)

Applying now the divergence theorem, that is Equation (1.6), we obtain

ˆ
s1

ρV · ndS +

ˆ
s2

ρV · ndS +

ˆ
sd

ρV · ndS (2.23)

where ˆ
sd

ρV · ndS = 0 (2.24)

is null for geometrical construction. Evaluating the integrals, we have

−ρ1u1s1 + ρ2u2s2 = 0 (2.25)

Since s1 = s2, we obtain

ρ2u2 = ρ1u1 (2.26)

Consider the momentum equation in the form of Equation (1.30)

∂

∂t
(ρV ) +∇ · (ρV V ) = ρg +∇ · (−pI + σ) (2.27)

For the assumptions listed above, the previous equation simpli�es as follows

∇ · (ρV V ) = ∇ · (−pI) (2.28)

Integrating over the entire control volume, we have

ˆ
V

∇ · (ρV V )dV =

ˆ
V

∇ · (−pI)dV (2.29)

Applying the divergence theorem, we obtain

ˆ
s1

ρV (V · n)dS +

ˆ
s2

ρV (V · n)dS +

ˆ
sd

ρV (V · n)dS =

−
ˆ
s1

pndS −
ˆ
s2

pndS −
ˆ
sd

pndS (2.30)

Evaluating the surface integrals in the horizontal direction, we have

−ρ1u
2
1s1 + ρ2u

2
2s2 = p1s1 − p2s2 (2.31)
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Since s1 = s2, we obtain

ρ2u
2
2 + p2 = ρ1u

2
1 + p1 (2.32)

Lastly, consider the energy equation in one of the three equivalent forms previously de-

rived, valid under the assumptions above

h1 +
u2

1

2
= h2 +

u2
2

2
(2.33a)

h01 = h02 (2.33b)

T01 = T02 (2.33c)

and the equation of state p = ρRT . Thus, the �ow properties downstream of the shock

wave can be calculated from the properties upstream of the shock wave by using the

following equations

ρ2u2 = ρ1u1 (2.34a)

ρ2u
2
2 + p2 = ρ1u

2
1 + p1 (2.34b)

h2 +
u2

2

2
= h1 +

u2
1

2
(2.34c)

h2 = cpT2 (2.34d)

ρ2 =
p2

RT2

(2.34e)

These equations are called the Rankine-Hugoniot relations and describe the relationship

between the properties across a shock wave.

It can be shown that the relation between the Mach number upstream of the shock wave

and the Mach number downstream of the shock wave is

M2
2 =

1 + (γ − 1)/2M2
1

γM2
1 − (γ − 1)/2

(2.35)

Furthermore, the ratio of the properties downstream the shock wave to the properties

upstream can be expressed as a function of the upstream Mach number M1 as follows

ρ2

ρ1

=
(γ + 1)M2

1

2 + (γ − 1)M2
1

(2.36a)

p2

p1

= 1 +
2γ

γ + 1
(M2

1 − 1) (2.36b)

T2

T1

=

[
1 +

2γ

γ + 1
(M2

1 − 1)

]
(γ + 1)M2

1

2 + (γ − 1)M2
1

(2.36c)
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2.4 Oblique shocks

In many real cases, when a supersonic �ow is de�ected and turned into itself, for

example because of the presence of a body such as a wedge or an airfoil, an oblique shock

wave is generated. An oblique shock wave is de�ned as a shock wave which forms an angle

with the upstream uniform �ow direction, called wave angle β. Consider the oblique shock

wave sketched in Figure 2.2, adapted from [1], and the control volume identi�ed by the

dashed lines.

Figure 2.2: Oblique shock wave and control surface

Surface s1 and surface s2 are parallel to the shock wave. In turn, surfaces sa e sb and

surfaces sc e sd are in the direction of the upstream �ow and in the direction of the

downstream �ow, respectively. Consider again the simplifying assumptions of steady,

inviscid, and adiabatic �ow with no body forces. Consider the continuity equation in the

form of Equation (1.10)
∂ρ

∂t
+∇ · (ρV ) = 0 (2.37)

which, under the previous assumptions, simpli�es as follows

∇ · (ρV ) = 0 (2.38)

Integrating over the entire control volume, we have

ˆ
V

∇ · (ρV )dV = 0 (2.39)
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Applying the divergence theorem, that is Equation (1.6), we obtain

ˆ
s1

ρV · ndS +

ˆ
s2

ρV · ndS +

ˆ
sa+sb+sc+sd

ρV · ndS = 0 (2.40)

where ˆ
sa+sb+sc+sd

ρV · ndS = 0 (2.41)

Evaluating the surface integrals, since s1 = s2, we have

ρ2u2 = ρ1u1 (2.42)

Consider now the momentum equation in the form of Equation (1.30)

∂ρV

∂t
+∇ · (ρV V ) = ∇ · (−pI + σ) (2.43)

which under the assumptions listed above simpli�es as follows

∇ · (ρV V ) = ∇ · (−pI) (2.44)

Integrating over the entire control volume, we have

ˆ
V

∇ · (ρV V )dV =

ˆ
V

∇ · (−pI)dV (2.45)

Now, applying the divergence theorem we obtain

ˆ
s1

ρV (V · n)dS +

ˆ
s2

ρV (V · n)dS +

ˆ
sa+sb+sc+sd

ρV (V · n)dS =

−
ˆ
s1

pndS −
ˆ
s2

pndS −
ˆ
sa+sb+sc+sd

pndS (2.46)

Evaluating the surface integrals in the direction normal to the shock wave, we have

−ρ1u
2
1s1 + ρ2u

2
2s2 = p1s1 − p2s2 (2.47)

Since s1 = s2, the previous equation leads to the following result

ρ2u
2
2 + p2 = ρ1u

2
1 + p1 (2.48)

Similarly, evaluating the surface integrals in the direction tangential to the shock wave,
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we have

−ρ1w1u1s1 + ρ2w2u2s2 = 0 (2.49)

Thus

ρ2w2u2 = ρ1w1u1 (2.50)

Dividing Equation (2.50) by Equation (2.42), we have

w2 = w1 (2.51)

Equation (2.51) states that the tangential component of the �ow velocity remains constant

across an oblique shock.

Finally, consider the energy equation in the form of Equation (2.19a)

h1 +
V 2

1

2
= h2 +

V 2
2

2
(2.52)

Since

V 2 = u2 + w2 (2.53)

we have

h1 +
u2

1 + w2
1

2
= h2 +

u2
2 + w2

2

2
(2.54)

From Equation (2.51), we know that w2 = w1. Hence

h1 +
u2

1

2
= h2 +

u2
2

2
(2.55)

Equations (2.42), (2.48), and (2.55) are the continuity equation, the momentum equa-

tion, and the energy equation for an oblique shock wave. As can be noted, in these

equations written for an oblique shock wave, only the normal component of the velocity

appears, so these equations are the same as those written for a normal shock wave. Thus,

the changes of the �ow properties across an oblique shock wave can be calculated from

the normal shock relations previously derived simply by considering the upstream Mach

number normal to the shock wave

Mn1 =
u1

c1

=
v1 sin β

c1

= M1 sin β (2.56)

Thus

M2
n2 =

1 + [(γ − 1)/2]M2
n1

γM2
n1 − (γ − 1)/2

(2.57)

It is important to highlight that across a normal shock waveM2 < 1, so the �ow is always
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subsonic, while across an oblique shock wave Mn2 < 1, but it could be M2 > 1. Hence,

the �ow could be supersonic even downstream of an oblique shock wave.

Without giving any further details for the sake of brevity, the so-called θ-β-M relation

relates the de�ection angle θ, induced for example by a wedge, the wave angle β, and the

Mach number M1 upstream of the shock wave

tan θ = 2 cot β
M2

1 sin2(β)− 1

2 +M2
1 [γ + cos(2β)]

(2.58)

The most important result which can be derived by a more in-depth analysis of Equation

(2.58), omitted here for the sake of brevity, needs to be highlighted because it is funda-

mental to better understand some aspects discussed below. This brief consideration can

be visualized in Figure 2.3, taken and adapted from [1].

Figure 2.3: Examples of shock waves of interest

For any given upstream Mach number M1, there is a maximum de�ection angle for which

the shock wave is straight and attached to the wedge. If the de�ection angle θ induced by

the geometry is greater than the maximum admissible de�ection angle, for example if the

nose of the wedge is too large or if the airfoil has a blunt nose, that is a �nite thickness,

as it occurs in reality, a detached curved shock, called bow-shock, originates at a certain

distance from the body (detachment distance).

In reality, oblique shock waves does not extend to in�nity. In fact, shock waves can

impinge somewhere on a surface and interact with the boundary layer or can intersect

other waves, both shocks and expansion waves. These wave intersections, re�ections and

interactions are important for the design process of turbomachines, wings or engines which

have to deal with supersonic �ows. The related theoretical description of these phenomena

is vast and quite elaborate and a more in-depth analysis is beyond the scope of this work.
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2.5 Expansion waves

A supersonic �ow turned away from itself generates an expansion wave, or an expansion

fan, as shown in Figure 2.4. The expansion fan is a �ow region which can be conceptu-

alized as a continuous expansion made of an in�nite number of in�nitesimal isentropic

disturbances, called Mach waves, each of which forms an angle µ with the �ow direc-

tion. Consider an in�nitesimal expansion wave forming an angle µ with the upstream

supersonic �ow, as skecthed in Figure 2.4, adapted from [1].

Figure 2.4: Expansion fan and Mach wave

Since an expansion wave is very weak, it produces an in�nitesimally small �ow de�ection

dθ. Since the �ow is de�ected of the in�nitesimal angle dθ, as a consequence the velocity

is increased of the in�nitesimal quantity dV . Thus, the �ow velocity downstream of the

wave is V +dV and it is inclined of the angle dθ. The jump relations for an oblique shock

wave can be applied to any kind of discontinuity of any intensity, either compression

waves or expansion waves. So, it can be a�rmed from previous statements that any

change in velocity across a wave involves only the normal component, while the tangential

component remains unchanged across the wave. Hence, we can write

Vt = V cosµ = (V + dV ) cos(µ+ dθ) = (V + dV )t (2.59)

Hence
V + dV

V
=

cosµ

cos(µ+ dθ)
=

cosµ

cosµ cos dθ − sinµ sin dθ
(2.60)
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Since the de�ection angle dθ is in�nitesimally small, we have

cos dθ ' 1 sin dθ ' dθ

and as a consequence
V + dV

V
' cosµ

cosµ− sinµdθ
(2.61)

Now divide the previous equation by cosµ

V + dV

V
' 1

1− tanµdθ
' 1 + tanµdθ (2.62)

Thus, we obtain

1 +
dV

V
= 1 + tanµdθ (2.63)

Simplifying properly, we have
dV

V
= tanµdθ (2.64)

Now, the following expression is valid for a Mach wave propagating through a �ow

sinµ =
a

V
=

1

M
(2.65)

Thus, we have

cos2 µ = 1− sin2 µ = 1− 1

M2
=
M2 − 1

M2
(2.66)

and

tan2 µ =
1

M2

M2

M2 − 1
(2.67)

Thus, we obtain

tanµ =
1√

M2 − 1
(2.68)

Now, consider the de�nition of Mach number M = V/a, from which we have V = Ma.

Considering the logarithms, we have

lnV = lnM + ln a (2.69)

Di�erentiating the previous equation, we obtain

dV

V
=
dM

M
+
da

a
(2.70)
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From Equation (2.1) and Equation (2.6a) we have

a2
0

a2
=
γRT0

γRT
=
T0

T
= 1 +

γ − 1

2
M2 (2.71)

where a0 is the total speed of sound. Solving for a we obtain

a = a0

(
1 +

γ − 1

2
M2

)− 1
2

(2.72)

Di�erentiating Equation (2.72), we have

da

a
=
da0

a0

− 1

2

d

(
1 +

γ − 1

2
M2

)
1 +

γ − 1

2
M2

(2.73)

Since the term da0/a0 is zero for an adiabatic �ow, expanding the di�erential on the

right-hand side, we have
da

a
= − [(γ − 1)/2]MdM

1 + [(γ − 1)/2]M2
(2.74)

Multiplying and dividing by M , we obtain

da

a
= − [(γ − 1)/2]M2

1 + [(γ − 1)/2]M2

dM

M
(2.75)

Substituting Equation (2.75) into Equation (2.70), we have

dV

V
=
dM

M

(
1

1 + [(γ − 1)/2]M2

)
(2.76)

Thus, substituting Equation (2.76) into Equation (2.64), written in the form

dθ =
1

tanµ

dV

V
(2.77)

we obtain

dθ =
1

tanµ

dV

V
=

√
M2 − 1

1 + [(γ − 1)/2]M2

dM

M
(2.78)

Equation (2.78) can be integrated from region 1 upstream of the expansion fan to region 2

downstream of the expansion fan, that is for a �nite number of Mach waves which produce
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a �nite de�ection θ and an increase in Mach number from M1 up to M2. Thus

ˆ θ

0

dθ =

ˆ M2

M1

√
M2 − 1

1 + [(γ − 1)/2]M2

dM

M
(2.79)

and

θ = ν(M2)− ν(M1) (2.80)

Equation (2.80), with the given M1 and the corresponding value of ν(M1), allows to

obtain, using the known value of θ, the value of ν(M2) and the corresponding value of

M2.

Carrying out the integration

ν(M) =

ˆ √
M2 − 1

1 + [(γ − 1)/2]M2

dM

M
(2.81)

we obtain the so-called Prandtl-Meyer function

ν(M) =

√
γ + 1

γ − 1
tan−1

[
γ − 1

γ + 1
(M2 − 1)

]
− tan−1(

√
M2 − 1) (2.82)

The Prandtl-Meyer function and Equation (2.80) just derived represent the end point of

this chapter and the most important result we need for the subsequent discussion. In

fact, they are the main equations which govern the �ow in supersonic cascades, as will be

explained in detail later.
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Chapter 3

Supersonic compressor cascades

In this chapter, the main characteristics of supersonic compressor cascades are de-

scribed. The most important geometric and performance parameters of a supersonic

compressor cascade are brie�y listed and explained. The most common shapes of the air-

foils used in supersonic cascades are presented, along with a qualitative description of the

common shock-wave pattern inside the blade passage. Moreover, by using the equations

derived in the previous chapters, the operating condition of supersonic cascades, referred

as unique incidence, is analyzed.

3.1 Blade and cascade geometric parameters

A typical example of a supersonic compressor airfoil is sketched below in Figure 3.1.

Figure 3.1: Example of supersonic compressor airfoil

35
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The geometry of an airfoil or a blade section is described with a variety of terms, the

most important of which need to be brie�y listed and properly de�ned:

• the leading edge is the point at the front of the airfoil and the trailing edge is de�ned

as the point at the rear of the airfoil;

• the chord line c, or simply chord, is the straight line which connects leading edge

and trailing edge. It is used as the reference dimension of the airfoil;

• the suction surface, or suction side, can be simply de�ned as the upper surface of

the airfoil. The pressure surface, or pressure side, is de�ned as the lower surface of

the airfoil.

• the camber line is de�ned as the curve that is halfway between the suction side and

the pressure side of the airfoil.

An example of cascade is sketched in Figure 3.2. A linear cascade can be simply de�ned

as a two-dimensional array of pro�les, which represent the geometric and aerodynamic

equivalent of an axial compressor rotor blade section. The following design parameters

are used in the geometric description of a two-dimensional axial compressor cascade:

• ξ is de�ned as the coordinate in cascade axial direction and η is de�ned as the

coordinate in cascade tangential direction;

• the pitch s is de�ned as the spacing between two consecutive blades;

• the angle between the axial direction and the chord is de�ned as the stagger angle

βs;

• the projection of the chord on the axial direction is the axial blade chord cax;

• the thickness chord ratio t/c is de�ned as the ratio of the maximum thickness to

blade chord;

• the blade solidity is de�ned as the ratio of blade chord length to pitch

σ =
c

s
(3.1)
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Figure 3.2: Example of supersonic compressor cascade
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3.2 Cascade performance parameters

The main parameters generally used to describe the performance of a cascade are the

axial velocity-density ratio (AVDR), the total-pressure loss coe�cient ω, and the isentropic

Mach number Mis.

The axial velocity-density ratio (AVDR) is a parameter used to check if a �ow through

a cascade is two-dimensional. It is de�ned as the ratio of the product of axial velocity

and density at cascade exit to the product of axial velocity and density at cascade inlet

AVDR =
ρ2u2

ρ1u1

(3.2)

Generally speaking, the �ow through a cascade is two-dimensional when the axial velocity

density ratio (AVDR) is unity. However, in reality, a cascade has a three-dimensional �ow

behaviour, because of the developing of secondary �ows. In a CFD simulation of a periodic

two-dimensional cascade model, the AVDR is always unity and a 2D solver solves a pure

two-dimensional �ow through the cascade. The AVDR has a strong in�uence on the

cascade performance, the mean �ow exit angle, and the shock pattern.

The total-pressure loss coe�cient ω is de�ned as the ratio of the di�erence between

the total pressure at cascade inlet and the total pressure at cascade exit to the di�erence

between the total pressure and the static pressure at cascade inlet

ω =
p01 − p02

p01 − p1

(3.3)

The total-pressure loss coe�cient is an important performance parameter, which gives

the loss in total pressure in a non-isentropic �ow. In a supersonic compressor cascade, the

total pressure losses are due to viscous losses, resulting from the shock wave-boundary

layer interaction and the related separation of the boundary layer, and to shock losses,

caused by the shocks inside the blade passage and the detached bow shock in front of the

blade leading-edge. The total-pressure loss coe�cient is often used instead of the cascade

e�ciency

η =

1−
(
p2

p02

) γ−1
γ

1−
(
p2

p01

) γ−1
γ

(3.4)
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The isentropic Mach number is de�ned as the Mach number without losses in the

�ow and is often plotted for turbomachinery blades. The isentropic Mach number can be

computed from the isentropic �ow relations using Equation (2.6b):

Mis =

√
2

γ − 1

[(
p01

p

) γ−1
γ

− 1

]
(3.5)

where p01 is the inlet total pressure, p1 is the local static pressure, and γ is the ratio of

speci�c heats, for air 1.4.

3.3 Supersonic airfoils for axial compressors

Airfoils for supersonic axial compressors di�er signi�cantly from those adopted for

subsonic axial compressors. The di�erence in shape is due to the supersonic entry �ow,

which requires the airfoil to have particular characteristics, such as a sharp leading edge,

a thickness as thinner as possible, and a small curvature. For that reason, much e�ort

has been made in the past to design airfoils able to e�ciently operating at supersonic

inlet conditions. Without going into too much detail, the main types of supersonic com-

pressor airfoils are the DCA (Double Circular Arc), the MCA (Multiple Circular Arc),

the CW (Circular-wedge), and the S-shape pro�les. Generally speaking, supersonic/tran-

sonic compressor cascades are characterized by airfoils with high stagger angle (> 50◦-60◦),

small thickness (t/c ' 2%), and minimum �ow de�ection angle. Moreover, the overall

performance of the cascade is considerably in�uenced by the shock pattern inside the

passage, which is deeply connected to the shape of the blade. In fact, the shock pattern

in a supersonic compressor cascade varies signi�cantly according to blade geometry, cas-

cade geometry, and operating conditions. The operating range varies according to blade

geometry as well. In fact, it varies from a maximum inlet Mach number around 1.3 for the

MCA pro�les to an inlet Mach number even higher than 1.6 for the S-shape pro�les. A

sketch of the main supersonic compressor cascade blade shapes is reported in the Figures

below, adapted from [16]. In Figure 3.3 a sketch of a DCA-cascade is reported. This class

of airfoils is characterized by both the suction side and the pressure side made of circular

arcs. The �ow, passing through the cascade, is accelerated until a normal shock occurs at

the passage entrance and then it is decelerated to subsonic velocity in the rearmost part

of the passage. The DCA airfoil presents the disadvantage of a large increase in entropy

across the shock ahead of the leading-edge, which becomes considerable at higher Mach

numbers. This fact extremely limits the range of Mach numbers at which the cascade can

operate.
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Figure 3.3: DCA-cascade

The development of MCA airfoils, sketched in Figure 3.4, reduced the shock losses in

the entrance region of the cascade. This class of airfoils is characterized by a suction side

made of several circular arcs of di�erent curvature and by a lower camber. Compared to

the MCA airfoils, the CW pro�les, shown in Figure 3.5, are characterized by a reduction

in the curvature of the suction side at the entrance region up to zero, which guarantees a

further reduction in total pressure losses related to shock waves ahead of the leading-edge.

Figure 3.4: MCA-cascade

Figure 3.5: CW-cascade



3.3 SUPERSONIC AIRFOILS FOR AXIAL COMPRESSORS 41

However, if the Mach number of the incoming �ow is increased to high supersonic val-

ues, typically in the range 1.3-1.6, the rise in entropy becomes too high and the e�ciency

of the cascade is considerably reduced, because of the strong shock wave at the passage

entrance. In order to extend the range of inlet Mach numbers at which a cascade and, as

a consequence, the related compressor rotor in an aircraft engine can operate, a new class

of pro�les, called external compression pro�les, or precompression airfoils, or just S-shape

airfoils, was designed. In Figure 3.6 a generic S-shape airfoils cascade is reported. This

class of airfoils allows to reach quite high supersonic Mach numbers, making the cascade

capable to operate in supersonic regime and not just at transonic inlet conditions.

Figure 3.6: S-shape supersonic cascade

Instead of obtain the desired compression through the cascade by using one strong

normal shock at the passage entrance, in a cascade made of S-shape airfoils this is realized

by a series of oblique shocks out of the covered passage. This "compression fan" reduces

the average Mach number at the passage entrance to a value lower than the inlet Mach

number, reducing in this way the shock losses and the viscous losses caused by the strong

shock wave-boundary layer interaction on the surfaces of the pro�le. A very thin leading-

edge further minimizes the shock losses caused by the detached bow shock ahead of the

airfoil. However, the shock pattern inside the blade passage becomes more complicated.

In fact, it is characterized by oblique shocks which impinge on the surfaces of the airfoil

and are re�ected throughout the passage, giving rise to a complex shock wave-boundary

layer interaction.
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3.3.1 Speci�cation of axial compressor airfoils geometry

In order to de�ne the shape of a compressor blade pro�le, such as those reported in

the Figures above, the section camber line and the section thickness distribution must

be described mathematically by equations. Once the two main geometric parameters

have been properly speci�ed, the coordinates of the points of the blade surfaces, that is

suction side and pressure side, and the section properties useful for structural analysis

and manufacturing process can be determined. Without going into too much detail,

a brief overview of the method used for designing axial compressor blade sections is

presented below. The simpli�ed overview carried out here takes as its starting point the

mathematical analysis developed in [10].

The camber line is described by an equation of the form y = f(x), where x varies from

0 at the leading edge to 1 at the trailing edge. The x coordinate is usually de�ned in the

cascade plane axial direction and not in the direction of the airfoil chord line. To obtain a

camber line suitable for an S-shape airfoil, it has been proved that it is convenient to write

an expression de�ning a fourth order polynomial camber line or an exponential camber

line. Moreover, the general approach adopted for obtaining an equation for the camber

line of an S-shape airfoil is to write an expression for the second derivative and integrate

twice. The second derivative of a fourth order polynomial can be written in the form of

a parabola

(x− h)2 = 4a(y′′ − k) (3.6)

or

y′′ =
1

4a
(x− h)2 + k (3.7)

where h is the point on x-axis where the second derivative is maximum and k is the value

of the second derivative in that point. Integrating twice, we obtain an expression for a

fourth order polynomial camber line

y =
1

48a
(x− h)4 +

k

2
x2 + bx+ c (3.8)

The coe�cients in the previous equation can be determined by applying a proper set of

conditions. Five conditions are necessary
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x = 0 : y = 0 (3.9a)

y′ = tanα1 (3.9b)

y′′ = P (y′′)max (3.9c)

x = 1 : y′ = tanα2 (3.9d)

y′′ = Q(y′′)max (3.9e)

The conditions above are written in the most general form. The �rst condition �xes a

point in the coordinate system; the second condition and the fourth condition de�ne the

slope at the leading edge and at the trailing edge, respectively; the third condition and the

�fth condition are imposed on the ratio of the second derivative at the leading edge and

at the trailing edge, respectively, to the point where the value of the second derivative is

maximum. The conditions imposed on the second derivative allow to specify a negative,

null or slightly positive camber at the leading edge and to avoid high curvatures at the

trailing edge, which determine large deviation angles and high losses. The application of

the conditions above leads to the following results

a =
1

4(tanα1 − tanα2)

[
P

1− P
h2 + h− 1

3

]
(3.10a)

b =
h3

12a
+ tanα1 (3.10b)

c = − h4

48a
(3.10c)

k = − h2

4a(1− P )
(3.10d)

h =
1

1 +

√
1−Q
1− P

(3.10e)

where Q = 0.5 and P = 0, typically.

In order to obtain an S-shape airfoil satisfying speci�c design and performance charac-

teristics, it is necessary to specify the in�ection point s of the camber line, that is the

point where the camber line changes in curvature. The exponential camber line allows to

specify that point, which can be collocated anywhere on the camber line and can assume

any value. The second derivative for an exponential camber line can be written in the
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following form

y′′ = b(x− s)ea(x−s) (3.11)

Integrating twice, we have

y =
b

a3
ea(x−s)[a(x− s)− 2] + c(x− s) + d (3.12)

Two sets of conditions must be applied for determining the coe�cients in the previous

equation: one set from 0 to s and another set from s to 1, that is from the leading edge to

the in�ection point and from the in�ection point to the trailing edge, respectively. Thus,

eight coe�cients must be determined. Moreover, it is necessary to add another condition

to the set written above

x = s : y′ = tanαs (3.13)

which allows to have a smooth transition across the in�ection point between the forward

and the rearmost portion of the camber line. Considering that the maximum value of the

second derivative is

y′′max = − b

ea
(3.14)

which occurs where y′′′ = 0, that is at

x = s− 1

a
(3.15)

and applying the following conditions for the forward portion of the camber line

x = 0 : y = 0 (3.16a)

y′ = tanα1

y′′ = P (y′′)max

x = s : y′ = tanαs

and the following conditions for the rearmost part

x = s : y′ = tanαs (3.17a)

y2 = y1

x = 1 : y′ = tanα2

y′′ = Q(y′′)max
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the eight coe�cients a1, a2, b1, b2, c1, c2, d1, and d2 can be determined (calculation steps

have been omitted for the sake of brevity, since they are quite complicated).

In order to obtain a double-circular-arc (DCA) airfoil or a multiple-circular-arc (MCA)

airfoil, useful for a wide range of applications in turbomachinery, a circular arc camber

line can be considered. The equation of this camber line is of the form

(x− xO)2 + (y − yO)2 = R2 (3.18)

where (xO,yO) and R are the center and the radius of the circle of which the camber line

is a circular arc. Considering a proper set of conditions, that is neglecting those involving

the second derivative, it is possible to de�ne uniquely a circular-arc camber line for a

DCA or a MCA airfoil.

Once the camber line has been de�ned, the thickness distribution can be expressed in

equation form too. A supersonic compressor airfoil, as stated before, must satisfy some

particular features, so the thickness distribution must be properly de�ned. In particular,

the thickness distribution equation for an S-shape airfoil must allow to collocate the

maximum thickness at any point on the rearmost half part of the airfoil and must allow

to specify any value for the maximum thickness. Moreover, it must avoid any discontinuity

in curvature and must allow to have a leading edge as thinner as possible. The standard

method for de�ning the thickness distribution of an S-shape airfoil is to specify it with

two third-order equations, one from the leading edge to the point of maximum thickness

Z on the camber line and the other from that point to the trailing edge

y = a1x
3 + b1x

2 + c1x+ d1 (3.19)

y = a2(x− Z)3 + b2(x− Z)2 + c2(x− Z) + d2 (3.20)

Applying the following conditions for the forward half part, that is from the leading edge

to the point of maximum thickness

x = 0 : y = y0 (3.21a)

y′′ = 0

x = Z : y = T/2

y′ = 0

and the following conditions for the rearmost half part, that is from the point of maximum
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thickness to the trailing edge

x = Z : y = T/2 (3.22a)

y′ = 0

y′′ = y′′(LEportion)

x = 1 : y = y1

where T is the maximum thickness, the coe�cients of the two equations can be deter-

mined. The conditions listed above allow to specify independently the thickness at the

leading edge and at the trailing edge. Moreover, the airfoil is closed at the leading edge

with a circular arc, which can be de�ned specifying a leading edge radius. Usually, the

airfoil is closed at the trailing edge connecting the pressure side and the suction side end

points with a straight line. The conditions imposed on the �rst and second derivatives

allow to have a continuous thickness distribution.

To specify a thickness distribution for a DCA airfoil or for a MCA airfoil is quite com-

plicated, because it requires to use polar coordinates. Moreover, the thickness of the

airfoil must be de�ned as the di�erence between the mathematical expression of two arcs

representing the upper and the lower surfaces of the airfoil. For further details refer to

[10].

3.4 Typical shock wave pattern in supersonic cascades

As stated before, the shock pattern in a supersonic compressor cascade is quite com-

plex. On the basis of a wide range of experimental results, the shock wave pattern

characteristic of a supersonic compressor cascade at design operating conditions is similar

to the one sketched in Figure 3.7, taken and adapted from [18] and [28].

Figure 3.7: Typical shock wave pattern of a supersonic cascade at design operating
condition
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Obviously, the shock wave pattern varies according to the blade geometry, the cascade ge-

ometry, and the cascade operating conditions. Anyway, generally speaking, for supersonic

compressor cascades operating at the design condition, the typical shock wave pattern is

characterized by two shocks in the passage: the former at the entrance of the cascade and

the latter located near the exit of the passage. The �nite thickness of the leading edge

develops a detached bow shock, which branches o� into two parts. The upper branch,

which is the weaker one, extends into the upstream region of the �ow �eld, while the lower

branch, which is the stronger one, runs into the blade passage. The oblique branch of the

bow shock running into the passage is usually referred as �rst-passage shock; the quasi-

normal shock near the passage exit is usually called second-passage shock. The detached

bow shock in front of the airfoil is weak, since the leading edge is thin. The precompression

shock, which originates from the coalescence of the compression shocks in the foremost

part of the suction side, intersects the bow shock of the adjacent blade. The �rst passage

shock is generally re�ected at the suction side of the adjacent blade, giving rise to a series

of re�ected shocks and to a strong shock-boundary layer interaction. The re�ected shock

can intersect the pressure side of the adjacent blade or the second passage shock, causing

loss in total pressure. In many cases, the �rst passage shock may not be re�ected by the

suction side of the adjacent blade, since it can be a normal shock or can degenerate in a

lambda shock, because of the interaction with the boundary layer. The so-called lambda

shock is an important and very common phenomenon inside supersonic turbomachines.

This particular shock-wave pattern occurs when a shock wave hits a surface and interacts

with the boundary layer. When a straight shock approaches a wall, it becomes curved

at the wall, impinging on the boundary layer. The interaction between the shock wave

and the boundary layer can cause the detachment of the boundary layer with a potential

subsequent reattachment (depending on the strength of the incident shock wave), giving

rise to a very complex system of shock-waves and expansion waves. The second passage

shock, when present, is located at the exit of the blade passage and presents lambda shock

structures at both ends near the surfaces of the two blades between which it is included,

which form because of the strong shock wave-boundary layer interaction.

When the static backpressure is increased, that is at o�-design operating conditions,

the qualitative nature of the shock wave pattern inside the passage changes, as sketched

in Figure 3.8, taken and adapted from [18] and [28]. As we can see, the �ow pattern is

completely di�erent. The �rst passage shock intersects the suction side of the adjacent

blade near the blade passage entrance, giving rise to a lambda-shock with a quasi-normal

shock part and a strong complete boundary layer separation. In this case, the second

passage shock tends to disappear as the static back pressure increases. While the lambda
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shocks lead to a reduction of the shock wave strength and, as a consequence, of the shock

losses, the strong separation of the boundary layer causes an increase in the viscous losses

and in the overall total pressure losses.

Figure 3.8: Typical shock wave pattern of a supersonic cascade at o�-design operating
conditions

3.5 Supersonic inlet �ows

In a supersonic compressor cascade, as the name suggests, the approaching �ow is

supersonic. When the Mach number is supersonic, a complex shock pattern occurs in

front of the leading-edge of the blades and inside the blade passage, as was shown. In a

supersonic compressor cascade, various �ow con�gurations are possible, as can be seen in

Figure 3.9, taken from [19].

LetM1 denote the Mach number at cascade inlet andM2 the Mach number at cascade

exit, in a reference frame relative to the cascade. Consider the inlet �ow angle β1 and

the axial component of the inlet Mach number M1ax = M1 cos β1. Consider the case of

supersonic cascade in whichM1 > 1 andM2 < 1. In this operating condition, ifM1ax < 1,

the axial �ow at cascade inlet is subsonic and there are two possible �ow con�gurations:

• the started condition, sketched in Figure 3.9a, which is characterized by shock waves

and/or expansion waves ahead of the cascade and inside the blade passage, according

to the positive or negative incidence of the inlet �ow. In started supersonic cascade

�ow, the approaching �ow Mach number and the inlet �ow angle are dependent

of each other. The cascade operation is possible only at one particular incidence,

known as unique incidence, which establishes a particular relationship between the

inlet Mach number M1 and the inlet �ow angle β1, stating that it is not possible to

change M1 without a�ecting β1 at once. In this condition, the mass �ow is choked

and the exit Mach number and the exit �ow angle are determined by the back

pressure, whereas the upstream �ow is not in�uenced;
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• the unstarted condition, reported in Figure 3.9b, characterized by a detached bow

shock in front of the leading-edge.

The case of a supersonic cascade in which M1ax > 1, sketched in Figure 3.9c, is not of

practical interest. For that reason and for the sake of brevity, the following analysis is

dedicated just to supersonic cascades operating in started condition with subsonic axial

Mach number, because of their importance for transonic/supersonic compressor rotor

applications. For further details concerning cascade �ows, refer to [14] and [19].

(a) (b) (c)

Figure 3.9: Di�erent inlet �ow conditions for a supersonic cascade

3.6 Unique incidence condition

A wide and very detailed explanation of the unique incidence operating condition for

supersonic cascades is reported in [17]. For the sake of brevity, just a brief qualitative

description is reported below.

Consider a semi-in�nite �at-plate cascade with a stagger angle βs, sketched in Figure

3.10, taken and adapted from [29]. Consider an approaching supersonic �ow with Mach

number M∞ and inlet angle β∞, di�erent than the stagger angle (β∞ 6= βs). Since the

blades of the cascade are �at-plates, their thickness and camber are negligible. Consider

the lowest blade as the �rst blade approached by the �ow. Thus, the �rst blade sees the

inlet �ow approaching with an angle β∞. Two di�erent wave patterns occur depending

on the incidence, positive or negative, of the approaching �ow over the �rst blade, that

is according to the sign of β∞.
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Figure 3.10: Semi-in�nite �at-plate cascade

Consider a semi-in�nite �at plate cascade in a uniform supersonic �ow with β∞ > 0

(or β∞ > βs), that is at positive incidence, as sketched in Figure 3.11, taken and adapted

from [29]. In this case, a series of Prandtl-Meyer expansion waves, depicted by the dashed

lines, develops from the leading edge in the upper region in front of the cascade. The

expansion fan accelerates the �ow up toM1 and turnes it into the �at plate direction, that

is it turns the �ow of an angle β1 = βs, as sketched in Figure 3.11. Since the axial Mach

number is subsonic, the expansion fan a�ects the �ow ahead of all the other blades. Thus,

the incoming �ow approaching all the other blades is characterized by a Mach number

M1 and an incidence angle β1 = βs, that is it approaches all the other blades with null

incidence.

Consider the same semi-in�nite �at plate cascade in a uniform supersonic �ow with

β∞ < 0 (or β∞ < βs), that is at negative incidence, as sketched in Figure 3.12, taken and

adapted from [29]. In this case, a compression shock wave, depicted by the solid line,

develops in the upper region. The shock decelerates the �ow up to M1 and turns it of an

angle β1 = βs.

Thus, in a semi-in�nite cascade with an approaching �ow with both positive and negative

incidence, the �rst blade sees an incoming �ow with Mach number M∞ and �ow angle

β∞ and sets the incoming �ow conditions for all the other blades of the cascade, which

see an approaching �ow with Mach number M1 and �ow angle β1 = βs. All the blades

except the �rst one, experience a periodic inlet �ow with null incidence, regardless of the

Mach number M∞ and the �ow angle β∞ of the undisturbed upstream �ow.
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Figure 3.11: Semi-in�nite �at-plate cascade at positive incidence

Figure 3.12: Semi-in�nite �at-plate cascade at negative incidence
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To further clarify, in a semi-in�nite �at-plate cascade sorrounded by a uniform super-

sonic �ow (M∞,β∞), with an inlet angle larger or smaller than the stagger angle βs, a

wave pattern occurs at the leading-edge of the �rst blade, which can be identi�ed as the

lowest blade in the pictures above. Depending on the incidence of the inlet �ow relative to

the cascade, the wave pattern at the leading-edge can be a Prandtl-Meyer expansion or a

shock wave. If we consider a semi-in�nite �at plate cascade introduced into a supersonic

�ow with positive incidence, the Prandtl-Meyer expansion accelarates the �ow up to M1

and turnes it of an angle equal to the blade direction, that is equal to the stagger angle

(β1 = βs). Therefore, the �ow in front of the second blade is no longer uniform, but sat-

is�es the following condition (M1,β1). Since β1 is equal to the direction of the �at-plate,

that is the blade stagger angle, the �ow is not deviated by the second blade and remains

unchanged in direction. The result is that all the other blades see an approaching �ow

with an inlet angle β1 and an inlet Mach number M1. It can be noted that the �rst blade

can be approached by an inlet �ow with di�erent incidence angles β∞, while the other

blades can be approached by a �ow with only one inlet �ow angle β1, even if the uniform

�ow approaching the cascade can have any direction relative to the cascade. Hence, for

all the blades except the �rst one, only the inlet �ow Mach number M1 can be varied,

while the inlet �ow angle remains the same.

Consider now an in�nite �at-plate cascade, sketched in Figure 3.13, taken and adapted

from [29]. In such a case, it is not possible to identify a �rst blade, so in this case only

β∞ = β1 = βs and M∞ = M1 are possible. Thus, given the geometry of the cascade,

for any given inlet Mach number, only one possible incidence can exist for the inlet �ow,

which in this case corresponds to the null incidence. In fact, the condition β1 = βs is valid

only for �at-plate blade pro�les.

Finally, consider a supersonic cascade in a transonic/supersonic compressor rotor. An

in�nite cascade is the equivalent of the periodic annular cascade of an axial compressor.

However, for the real case of a periodic cascade with �nite thickness and camber in an

axial supersonic compressor, the analysis is more complicated, but the conclusions are

similar. In fact, given the geometry of the cascade, only one possible incidence can exist

for any given supersonic inlet Mach number, and it is referred as unique incidence. In

unique incidence operating condition, the cascade is choked. In fact, just one speci�c

value of the mass �ow corresponds to a given upstream Mach number, that is to each

point (M ,β) of the so-called unique incidence curve, which is a diagram reporting all the

admissible inlet-�ow conditions for a supersonic cascade.
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Figure 3.13: In�nite �at-plate cascade

Obviously, all the considerations above have been made without any speci�cation con-

cerning the blade passage, the blade thickness, and the blade curvature. These parameters

deeply in�uence the inlet �ow con�guration in the region upstream of the cascade, the

mass �ow rate through the blade passage, and the shape of the unique incidence curve.

As stated at the beginning of this section, a wide qualitative analysis of the supersonic

inlet �ow for a cascade is reported in [17]. Di�erent inlet �ow conditions are described for

cascades with both straight and cambered suction sides, that is for a �at-plate cascade

and for cascades of cambered pro�les with sharp leading edge, such as circular arc and pre-

compression (or external compression) blade cascades. The cascade inlet-�ow behaviour,

as stated before, is reported in a diagram in which the inlet �ow angle β∞ is plotted as a

function of the inlet �ow Mach number M∞. The shape of the unique incidence curve for

an in�nite �at-plate cascade is sketched in Figure 3.14, taken from [17].
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Figure 3.14: Unique incidence curve for a �at-plate cascade
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The shape of the unique incidence curve for a real supersonic cascade, that is for a

cascade of cambered pro�les with sharp leading edge, is similar to the ones sketched in

Figure 3.15 and in Figure 3.16, taken from [17]. In Figure 3.15 is depicted the unique

incidence curve characteristic of a circular arc pro�les cascade; in Figure 3.16 is reported

the shape of the unique incidence curve for a cascade made of pro�les with concave suction

sides (S-shape airfoils). As can be noted, the shape of the cascade airfoils deeply in�uences

the shape of the unique incidence curve. This di�erence is due to the di�erent inlet �ow in

the region upstream of the cascade. In fact, the blunt leading edge gives rise to a detached

bow shock in front of the blade, which extends both inside the blade passage and out in

front of the cascade, a�ecting the incoming �ow upstream of the other blades, since the

cascade is periodic. In a precompression airfoils cascade, as described before, the concave

portion of the suction side in the forward part, produces a series of compression waves.

The coalescence of these compression waves forms a precompression shock which intersects

the detached bow shock of the adjacent blade. Moreover, an expansion fan occurs between

the detached bow shock at the leading edge and the compression waves. The phenomena

just described, which characterize the inlet �ow in the upstream region of the cascade,

cause the di�erence in shape between the unique incidence curve for a �at-plate cascade

and the unique incidence curve for a cascade of real pro�les. The most important result

which derives from the di�erence in the shape between the unique incidence curve for a

�at-plate cascade and the unique incidence curve for a real cascade is that for a �at-plate

cascade the unique incidence condition allows to vary the inlet Mach number and, as

consequence, the mass �ow rate without a�ecting the incidence of the approaching �ow,

while in a real cascade changing the inlet Mach number a�ects also the inlet �ow angle.

Thus, the elaborated mass �ow rate can be changed only by modifying both the inlet

Mach number and the inlet �ow angle. Further detailed qualitative explanations of the

unique incidence condition for a supersonic cascade are available in other references, such

as [5], [14], and [19].
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Figure 3.15: Unique incidence curve for a circular arc pro�les cascade

Figure 3.16: Unique incidence curve for a precompression airfoils cascade
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3.6.1 Unique incidence determination

A rigorous mathematical derivation of the equations governing the unique incidence

operating condition for a supersonic compressor cascade is far beyond the scope of this

work. However, by using the equations derived in the previous chapters and adopting a

proper set of simplifying assumptions, a brief description of the main relations at the basis

of this particular operating condition, peculiar to supersonic compressor cascades, can be

carried out. The literature concerning the unique incidence condition for a supersonic

cascade is wide and exhaustive. For example, the development of an analytical model,

usually referred as "simple wave model", for determining the inlet �ow condition in a

supersonic cascade can be found in [15] and in [17]. The approximate solution obtained

through this method is valid for pro�les with sharp leading edge and attached shocks. In

[33], an inviscid method, neglecting the boundary layer and viscous e�ects, is developed

for analyzing the �ow in the entrance region of a cascade. In contrast to the previous

method, it is valid for both attached and detached shocks. Other papers also provide

semi-empirical models to investigate the supersonic inlet �ow approaching a cascade. The

analysis developed hereunder takes as its starting point the analytical method developed

in [15] and reported in [14] and [17]. For a mathematical discussion of the unique incidence

condition under a di�erent point of view, refer to [5].

The problem that must be solved, known as the entrance problem, consists on the

determination of the incidence of the supersonic undisturbed �ow with axial subsonic

component approaching a cascade, given the upstream Mach number M∞, the cascade

geometry, and a suitable static pressure ratio p2/p1. Consider an in�nite linear super-

sonic compressor cascade, representing the annular cascade of a supersonic compressor

rotor, that is equivalent to the two-dimensional array of compressor rotor blade sections.

Consider the cascade introduced into a uniform supersonic �ow with subsonic axial Mach

number, approaching with positive incidence, as sketched in Figure 3.17 (taken and mod-

i�ed from [19]). The geometry of the cascade is given in terms of the stagger angle βs,

the solidity σ = c/s, the cascade pitch s, and the shape of the pro�les y = f(x). As

stated before, for a �at-plate cascade, sketched on the left in Figure 3.17, an expansion

fan occurs in the region in front of the cascade, which turns the �ow into the �at plate

direction. In other words, the �ow is turned by the expansion waves of an angle equal to

the stagger angle, β1 = βs.
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Figure 3.17: Inlet �ow in unique incidence condition: �at-plate cascade and real cascade
with generic airfoils

Conversely, for a cascade of an axial compressor, sketched on the right in Figure 3.17,

the �nite thickness of the leading edge and the camber of the suction side give rise to a

detached bow shock in front of the pro�le. In order to simplify the subsequent discussion,

consider the leading edge sharp enough in such a way that the shock wave is attached

and su�ciently weak. Hence, the oblique bow shock in front of the leading-edge may be

neglected. Adopting this simpli�cation, the region downstream of the bow shock can be

described by Equation (2.80) and the Prandtl-Meyer relation, that is Equation (2.82), as

if it were characterized only by an expansion fan

ν(M) + β = const (3.23)

ν(M) =

√
γ + 1

γ − 1
tan−1

[
γ − 1

γ + 1
(M2 − 1)

]
− tan−1(

√
M2 − 1) (3.24)

Consider the line AB as a reference section for describing the conditions at the passage

entrance. The line AB corresponds to the Mach wave departing from the suction side of

the lower blade (point A) and intersecting the adjacent blade at the leading-edge (point

B), forming a wave angle µ. Refer to the upstream conditions at in�nity with subscript
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∞, and to the conditions along the line AB, that is just ahead the blade passage, with

subscript 1. Thus, the Mach number and the angle of the undisturbed �ow are M∞ and

β∞, respectively. The inlet Mach number M∞ is known, as stated before. Initially, the

point A (xA,yA) on the suction side and, as a consequence, the associated Mach wave

departing from it, can be arbitrarly estimated. The Mach number M1 at the passage

entrance is assumed to be constant along the line AB and the �ow direction can be

assumed parallel to the surface of the pro�le, that is inclined as the slope of the suction

side in point A. By geometric relations, the �ow direction β1 along the line AB and the

wave angle µ can be determined, since the geometry of the blade is given. Moreover, the

Mach number M1 along the line AB can be easily calculated, since it is related to µ by

the following relation

sinµ =
1

M1

(3.25)

which is valid for a Mach wave propagating inside the �ow. Once an initial value of M1

is estimated, the procedure for the calculation of the inlet �ow angle β∞ is as follows.

The Prandtl-Meyer relation, also known as the Riemann invariant, must be valid between

the upstream �ow region at in�nity and the region at the entrance of the cascade passage

ν(M∞) + β∞ = ν(M1) + β1 (3.26)

where β1 is the �ow direction at the passage entrance along the line AB, parallel to the

suction side, and ν is the Prandtl-Meyer function given by Equation (3.24). Now, β1 is

known from the geometry of the blade and ν(M1) is known once M1 has been calculated;

so the unknowns in Equation (3.26) are M∞ and β∞. Thus a further equation for the

calculation of the unknowns must be written. Together with the Prandtl-Meyer relation,

the mass �ow conservation must be satis�ed in the region between upstream and the line

AB. Therefore, consider the mass �ow continuity equation

ρ∞u∞A∞ = ρ1u1A1 (3.27)

where

A∞ = s cos β∞ (3.28)

is the area of the section normal to the upstream �ow and

A1 = l sinµ (3.29)

is the area of the section normal to the mean �ow inside the passage. l is the length of
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the line AB, that is the distance between point A and the leading edge of the adjacent

blade. The value of l can be determined from the cascade geometry and the coordinates

of the point A (xA,yA)

l2 = (s cos βs − yA)2 + (−s sin βs − xA)2 (3.30)

Since the �ow is assumed to be isentropic, the continuity equation can be written in the

following form, derived from one-dimensional gasdynamics [4]

F =
ṁ

A
=

√
γ

RT0

p0

M√(
1 +

γ − 1

2
M2

) γ+1
γ−1

(3.31)

Thus, the continuity equation is of the form

A∞
A1

=
F (M1)

F (M∞)
(3.32)

Moreover, since the �ow can be considered adiabatic and isentropic, because the shocks

are assumed to be weak and friction is neglected, the total temperature To is constant

and the total pressure po is almost constant. Thus, the continuity equation, expanding

both the left-hand side and the right-hand side and simplifying, is

M∞ cos β∞√(
1 +

γ − 1

2
M2
∞

) γ+1
γ−1

=
l

s

M1 sinµ√(
1 +

γ − 1

2
M2

1

) γ+1
γ−1

(3.33)

where

l

s
=

√(
cos βs −

yA
s

)2

+

(
− sin βs −

xA
s

)2

(3.34)

The equations that must be satis�ed from in�nitely far upstream to the cascade entrance

region are then Equation (3.26) and Equation (3.33). M∞ and β∞ can be determined

solving Equation (3.26) and Equation (3.33), beginning with an initial estimation of point

A, since the values of βs and s are known from the cascade geometry, µ and M1 are

assumed known at the entrance location once the point A has been choosen, l depends

on the coordinates of the point A and is determined by Equation (3.30), and A1 is known

once l has been calculated. If the computed inlet Mach number is not equal to the given

Mach number M∞, �xed by the inlet conditions, a new point A and, as a consequence, a
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new value of M1 and β1 must be choosen. Thus, if M1 is assumed known and M∞ is �xed

by the inlet conditions, only one value of β∞ satis�es simultaneously the Prandtl-Meyer

relation and the mass �ow continuity equation. For that reason, the incidence is unique

β∞ = f(M∞,M1, β1, βs, s) (3.35)

As it can be seen, the inlet �ow angle is expressed as a function of: the inlet Mach number

M∞, that must be choosen within a range of Mach numbers admissible for the cascade; the

geometry of the cascade through βs and s; the geometry of the pro�les; the �ow �eld from

dowstream of the bow shock at the leading-edge to the covered passage entrance, by the

Mach wave departing from the point A. Since Equation (3.26) and Equation (3.33) are two

independent equations for one unknown, that is β∞, these equations can only be satis�ed

for a particular value of β∞ once M∞ is given, that is for only one particular combination

of (M∞,β∞). In this sense the incidence is unique, because only one value of β∞ is related

to a given Mach number M∞, once the cascade geometry is �xed. The combination of

values (M∞,β∞) is determined iteratively through the procedure just described. The �ow

chart in Figure 3.18 summarizes the logical process which leads to the determination of

the unique incidence condition.

As has been seen, in a real cascade the inlet �ow angle depends on the stagger angle

βs, the blade curvature and thickness, and the cascade pitch s. All the considerations

above have been made neglecting any in�uence of viscosity and considering cascade blades

with a sharp leading-edge, that is supposing the shock waves ahead of the blades attached

and su�ciently weak, even if in a real cascade the shocks are curved and detached and

the leading-edge of the blade section is blunt. Moreover, the above analysis has been

carried out taking into account only the shrinking of the blade passage due to the �nite

thickness of the blade, and not the reduction of the passage due to the thickness of the

boundary layer on the blade surfaces. The particular pair of values (M∞,β∞), which

satis�es Equation (3.26) and Equation (3.33), determines a speci�c value of the mass �ow

rate. By the continuity equation, the mass �ow rate through a section normal to the �ow

at in�nity must corresponds to the mass �ow rate elaborated by the cascade passage:

thus, for a given upstream Mach number M∞, this occurs only for a particular value of

β∞. Hence, in unique incidence operating conditions, the �ow is choked: the mass �ow

rate is maximum and depends on the blade passage area. The mass �ow rate is �xed,

since the incidence cannot change without a�ecting the inlet Mach number or viceversa,

and a speci�c value of the mass �ow rate corresponds to each point of the unique incidence

curve, that is to each combination of values (M∞,β∞) within the operating range of the

cascade.
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Upstream Mach number

M∞

Select point A

(xA,yA)

CASCADE GEOMETRY

- chord c

- stagger angle βs

- pitch s

- solidity σ

- blade shape y = f(x)

Calculate

- wave angle µ

- �ow direction β1

- length l

Calculate

- Mach number M1

SOLVE

1) Prandtl-Meyer relation

β∞ + ν(M∞) = β1 + ν(M1)

2) Continuity equation

A∞/A1 = F (M1)/F (M∞)
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(M∗
∞,β

∗
∞)
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∞ = M∞

?

UI point

(M∞,β∞)

geometric relations
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Figure 3.18: Flow chart for the analytical determination of the unique incidence condition
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In unique incidence conditions, the upstream �ow is not in�uenced by the presence of

the cascade or by the downstream region, that is by any change in static backpressure.

In fact, any change in static backpressure a�ects only the shock pattern inside the blade

passage, while the upstream �ow �eld is not in�uenced, as stated before. In unique

incidence operating condition, the exit �ow, in terms of exit �ow angle and exit Mach

number, depends on the backpressure. An increase in static backpressure forces the shock

waves inside the blade passage to move towards the passage entrance. The condition in

which a quasi-normal shock occurs exactly at the passage entrance represents the highest

static pressure ratio obtainable for a supersonic compressor cascade operating in unique

incidence at a given inlet Mach number.

If the static backpressure raises over the highest allowable static pressure ratio, a detached

shock in front of the leading-edge occurs. This condition is referred as unstarted or spill

condition. In this case, the unique incidence is no longer valid and a new relation between

inlet Mach number and inlet �ow angle is established, which is parametric with the static

backpressure

β∞ = f(p2/p1) (3.36)

In this condition, small changes of inlet �ow incidence can be pursued in order to change

the mass �ow rate, since a small subsonic region in front of the leading edge allows the �ow

�eld to adapt to the geometry of the passage. However, transonic and supersonic cascades

can whitstand only modest regulations in incidence, before the stall occurs, and the mass

�ow rate depends on the passage area. Moreover, in transonic regime, small variations

in geometry cause great changes in the �ow �eld: the thickening of the boundary layer,

due to the strong shock wave-boundary layer interaction, determines a reduction of the

e�ective area of the passage and, as a consequence, of the maximum mass �ow rate.
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Chapter 4

Fundamentals of CFD and turbulence

models

In this chapter a brief description of the turbulence models employed in computational

�uid dynamics (CFD) to solve turbulent �ows for engineering problems is presented. This

chapter focuses on a brief derivation of the equations employed in the numerical solution

of turbulent �ows, known as the Reynolds Averaged Navier-Stokes (RANS) Equations,

and on the four main turbulence models implemented in the commercial solver ANSYS R©

Fluent, highlighting some of their major characteristics, which will be useful for the sub-

sequent discussions. The turbulence models described below are presented in order of

increasing complexity. For the implementation peculiarities and further theoretical back-

grounds of the turbulence models available in ANSYS R© Fluent, refer to the ANSYS R©

Fluent Theory Guide [7]. For the complete theory of turbulence, refer to [20] instead.

4.1 Turbulent �ows and Reynolds number

Turbulence is de�ned as an unsteady and chaotic motion of a �uid, characterized by

vortices of various sizes, referred as turbulent structures. Giving no further details for

the sake of brevity, the majority of engineering �ows are turbulent and an important

dimensionless quantity used to determine whether a �ow is turbulent, is the Reynolds

number, de�ned as follows

Re =
ρuL

µ
=
uL

ν
(4.1)

where

• ρ is the density of the �uid [kg/m3]

65
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• u is the velocity of the �ow [m/s]

• L is a characteristic dimension [m] (in this case the chord of the airfoil)

• µ is the dynamic viscosity [Ns/m2]

• ν is the kinematic viscosity [m2/s]

Generally speaking, the Reynolds number of a supersonic �ow in a wind tunnel facility

test is typically of the order of 106, based on the airfoil chord and the inlet air velocity.

4.2 Numerical simulations of turbulent �ows

To numerically solve turbulent �ows, three approaches are available:

• DNS (Direct Numerical Simulation). This method consists of solving directly the

complete Navier-Stokes equations for the problem considered. This means that the

whole range of turbulent structures, from the smallest to the largest ones, must be

solved. It can be demonstrated that for a three-dimensional problem the number of

mesh points must be

N3
p ≥ Re9/4 (4.2)

and the number of time steps must be

N∆t ∼ Re1/2 (4.3)

Hence, the computational cost of DNS is huge and can be estimated growing as Re3.

Since the computational cost is too prohibitive, direct numerical simulation is not

useful for industrial and engineering applications.

• RANS (Reynolds Averaged Navier-Stokes). This technique solves a time-averaged

form of the Navier-Stokes equations, called RANS, reducing in this way the overall

computational cost. This is the most widely used approach for engineering problems.

However, it requires additional models to solve the so-called "problem of closure",

related to the mathematical derivation of the RANS equations, which will be brie�y

described below.

• LES (Large Eddy Simulation). This method solve a �ltered form of the Navier-

Stokes equations, considering the largest turbulent structures and ignoring the small-

est ones, whose numerical solution is the most computationally expensive.



4.3 REYNOLDS AVERAGED NAVIER-STOKES (RANS) EQUATIONS 67

4.3 Reynolds Averaged Navier-Stokes (RANS) Equa-

tions

The Navier-Stokes equations for an incompressible �ow can be written in vector no-

tation as follows

∇ · v = 0 (4.4a)

D

Dt
v = −1

ρ
∇p+∇ · (2νe) (4.4b)

where e is the strain rate tensor

e =
1

2
(∇v +∇vT ) (4.5)

Velocity can be decomposed as the sum of two terms

v(r, t) = 〈v(r, t)〉+ v′(r, t) (4.6)

where 〈v(r, t)〉, or V (r, t), is the mean velocity, which describes the mean �ow �eld and

is independent of time, and v′(r, t) the �uctuating part, which depends on time and is

related to the instantaneous variations of the �ow �eld. This decomposition is called the

Reynolds decomposition. The average velocity is de�ned by the ensamble average

V (x) = 〈v(r, t)〉 = lim
N→∞

1

N

N∑
n=1

v(n)(r, t) (4.7)

where n denotes the nth repetition of a turbulent-�ow experiment, or by the time average

V (x) = 〈v(r, t)〉 = lim
T→∞

1

T

ˆ
T

v(r, t)dt (4.8)

For a steady omogeneous turbulent �ow, the previous de�nitions are coincident. It can

be demonstrated that the continuity equation and the momentum equation become

∇ · V = 0 (4.9a)

D

Dt
V = −1

ρ
∇p+ 2ν∇ · E −∇ · 〈v′v′〉 (4.9b)

where E is the mean strain rate tensor. These equations are called the Reynolds Averaged

Navier-Stokes (RANS) Equations. For simplicity, the rigorous mathematical derivation of

these equations has been omitted. The term 〈v′v′〉 on the right-hand side of the momentum
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equation, is the Reynolds stress tensor. The RANS equations form a system of four

equations, that is the continuity equation and the three scalar equations for momentum,

with ten unknowns, that is p, V , and six components of the Reynolds stress tensor

〈v′v′〉 =

 〈u
′2〉 〈u′v′〉 〈u′w′〉

〈u′v′〉 〈v′2〉 〈v′w′〉
〈u′w′〉 〈v′w′〉 〈w′2〉

 (4.10)

which is a symmetric tensor. So, the four equations written above are not enough to solve

the problem, since there are more than four unknowns, because of the appearance of the

Reynolds stresses. This issue leads to the problem of closure, which can be resolved by

using the so-called turbulence models.

4.4 Turbulence models

As just stated, in order to solve the RANS Equations, it is necessary to adopt a

turbulence model to close the problem. The Reynolds stress tensor is symmetric and

can be identi�ed as a turbulent stress tensor. It can be modelled in a similar way as the

viscous stress tensor written as follows

T

ρ
= −p

ρ
I + 2νE (4.11)

that is

−〈v′v′〉 = −2

3
kI + 2νTE (4.12)

where νT is the turbulent viscosity and k is the turbulent kinetic energy. The turbulent

kinetic energy is de�ned as half of the trace of the Reynolds stress tensor

k =
1

2
tr(〈v′v′〉) (4.13)

Assuming that the Reynolds stress tensor can be expressed as a function of the mean strain

rate tensor by means of the parameter νT , that is writing the term 2νTE, corresponds to

applying the so-called Boussinesq's hypothesis. Hence, we can write

D

Dt
V = −∇

(
p

ρ
+

2

3
k

)
+∇ · [2(ν + νT )E] (4.14)

The problem is now closed, but νT needs to be modeled, since it is the only unknown

remaining. The most widely used turbulence models are one-equation models or two-



4.4 TURBULENCE MODELS 69

equations models, depending on the turbulence quantities considered and on the model

transport equations used for their description. The software used for the CFD calculations,

ANSYS R© Fluent, allows for a quite wide choice of turbulence models.

4.4.1 The Spalart-Allmaras model

The �rst turbulence model discussed here is the Spalart-Allmaras (S-A) model. It is

a one-equation model which solves a single model transport equation for the turbulent

viscosity νT . The model equation for νT is of the form

DνT
Dt

= ∇ ·
(
νT
σν
∇νT

)
+ Sν (4.15)

where the source term Sν depends on various quantities, such as the laminar and turbulent

viscosities, ν and νT , and the turbulent viscosity gradient |∇νT |.
In ANSYS R© Fluent, the implemented transport equation for νT is of the form

DνT
Dt

= GνT +
1

σνT

[
∇ · (νT∇νT ) + Cb2(∇νT )2

]
− YνT + SνT (4.16)

where GνT is the production of turbulent viscosity and YνT is the destruction of turbu-

lent viscosity. σνT and Cb2 are constants and SνT is a source term. The equation for

the Spalart-Allmaras model written above is obviously a simpli�ed form of the equation

commonly implemented and it has been reported just for the sake of completeness. Since

the details of the model are quite complicated, refer to the original paper [26] and to the

ANSYS R© Fluent Theory Guide [7] for further developments.

The Spalart-Allmaras model has been developed mainly for aerodynamic and turbo-

machinery applications, such as supersonic and transonic �ows over airfoils with mild

boundary-layer separation. It showed good results in solving boundary layers subjected

to adverse pressure gradients.

4.4.2 The k-ε model

As stated above, the two-equations models used to solve the turbulence closure prob-

lem are so called because two model transport equations are solved for as many turbulence

quantities. Most frequently, one of the two turbulence variables employed in the most com-

mon two-equations models is the turbulent kinetic energy k, while the second turbulence

quantity depends on the type of the two-equations model considered. Generally speaking,

these models provide more accurate solutions, even if calculation time and computational
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cost per iteration increase. The quantities of most considerable importance for describing

the processes in turbulent �ows are the already mentioned turbulent kinetic energy k; the

dissipation of turbulent kinetic energy ε, or simply dissipation, de�ned as

ε = 2ν〈e′ : e′〉 (4.17)

where e′ is the �uctuating strain rate tensor; and the production of turbulent kinetic energy

P , or simply production, de�ned as

P = −〈v′v′〉 : ∇V (4.18)

The �rst two-equations model described here is the Standard (STD) k-ε model. This

turbulence model solves a model transport equation for k and a model transport equation

for ε, specifying the turbulent viscosity νT as follows

νT = Cµ
k2

ε
(4.19)

where Cµ = 0.09 is an empirical constant. The problem is closed and it can be solved

once ε and k are speci�ed with proper equations.

The standard model transport equation for k is of the form

∂k

∂t
+ V · ∇k = ∇ ·

[(
νT
σk

)
∇k
]

+ P − ε (4.20)

where

σk = 1.0

The model transport equation for ε is of the form

∂ε

∂t
+ V · ∇ε = ∇ ·

[(
νT
σε

)
∇ε
]

+ Cε1
Pε

k
− Cε2

ε2

k
(4.21)

where the constants are

Cε1 = 1.44 Cε2 = 1.92 σε = 1.3

The standard k-ε model is the simplest two-equations turbulence model available. It is

implemented in a wide range of CFD codes and solvers and it is the main turbulence

model employed in industrial and engineering applications. Generally speaking, it is ro-

bust and reasonably accurate, even if it can provide poor results for �ows with strong
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boundary layer separation and for �ows with large adverse pressure gradients.

In ANSYS R© Fluent the k-ε model is available in three di�erent forms: the already men-

tioned Standard (STD) k-ε model and two improved variants of the base model, the RNG

k-ε model and the REALIZABLE k-ε model. The equations for each model are reported

below just for the sake of completeness, since the details behind the implementation of

these turbulence models are far beyond the scope of this work. For further details con-

cerning the main di�erences among the three formulations of the k-ε model, refer to the

ANSYS R© Fluent Theory Guide [7]. The transport equations for k and ε for the STD k-ε

model implemented in ANSYS R© Fluent can be written in a simpli�ed form as follows

Dk

Dt
= ∇ ·

[(
νT
σk

)
∇k
]

+Gk − ε+ Sk − YM (4.22)

Dε

Dt
= ∇ ·

[(
νT
σε

)
∇ε
]

+ Cε1
ε

k
Gk − Cε2

ε2

k
+ Sε (4.23)

where Sk and Sε are source terms, Gk is the generation of turbulent kinetic energy, and

YM is a term which takes into account the e�ects of compressibility for supersonic �ows.

4.4.3 The RNG k-ε model

The RNG k-ε model is mathematically derived from the standard k-ε model. Without

giving too much details, compared to the standard model, in the RNG k-ε model the

transport equation for ε is implemented in a modi�ed form

Dε

Dt
= ∇ ·

[(
νT
σε

)
∇ε
]

+ Cε1
ε

k
Gk − C∗ε2

ε2

k
+ Sε (4.24)

and the model constants are di�erent from those in the standard k-ε model.

4.4.4 The REALIZABLE k-ε model

The REALIZABLE k-ε model di�ers from the standard k-ε model in the de�niton of

the turbulent viscosity (the constant Cµ is now computed) and in the form of the transport

equation for ε, which is

Dε

Dt
= ∇ ·

[(
νT
σε

)
∇ε
]

+ C1Sε− C2
ε2

k +
√
νε

+ Sε (4.25)



72 CHAPTER 4. FUNDAMENTALS OF CFD AND TURBULENCE MODELS

4.4.5 The k-ω model

The second two-equations model is the k-ω model, which solves a model transport

equation for k and a model transport equation for the speci�c dissipation ω, or dissipation

per unit turbulence kinetic energy, which is another turbulence quantity de�ned as follows

ω =
ε

k
(4.26)

Introducing Equation (4.26) into Equation (4.19), the turbulent viscosity becomes

νT = Cµ
k2

ε
= Cµk

k

ε
= Cµ

k

ω
(4.27)

The model transport equation for k is the same described in the previous section. The

equation for ω is assumed to have the same form of the equation for ε

∂ω

∂t
+ V · ∇ω = ∇ ·

[(
νT
σω

)
∇ω
]

+ Cω1P
ω

k
− Cω2ω

2 (4.28)

Generally speaking, the k-ω model is more accurate in solving the boundary layer, and

performs satisfactorily for �ows under adverse pressure gradients with boundary layer

separation.

4.4.6 The SST k-ω model

An improved version of the k-ω model is the Shear Stress Transport (SST) k-ω model.

This turbulence model allows to gradually switch from the standard k-ω model near

a wall to the k-ε model at a certain distance from the wall, in the outer part of the

boundary layer. How this transition is carried out is here brie�y derived and discussed.

As previously stated, the equation for ω, that is Equation (4.28), is formally the same as

that for ε, that is Equation (4.21). However, the k-ε and the k-ω model are di�erent form

both a mathematical and a numerical point of view, and one way to prove it is to derive

the equation for ω from the equation for ε. The demonstration of this statement is quite

laborious, but it is useful to understand the main aspects of the SST k-ω model.

Consider Equation (4.21), expressed for simplicity in terms of substantial derivative

Dε

Dt
= ∇ ·

(
νT
σε
∇ε
)

+ Cε1
Pε

k
− Cε2

ε2

k
(4.29)
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Substitute ω = ε/k

D(ωk)

Dt
= ∇ ·

(
νT
σε
∇(ωk)

)
+ Cε1

Pε

k
− Cε2

(ωk)2

k
(4.30)

Thus

k
Dω

Dt
+ ω

Dk

Dt
= ∇ ·

(
νT
σε
∇(ωk)

)
+ Cε1

Pε

k
− Cε2

(ωk)2

k
(4.31)

Consider now Equation (4.20)

Dk

Dt
= ∇ ·

(
νT
σk
∇k
)

+ P − ε (4.32)

Substituting the previous equation into Equation (4.31) and considering again ω = ε/k,

we obtain

k
Dω

Dt
+ ω

(
∇ ·
(
νT
σk
∇k
)

+ P − ε
)

= ∇ ·
(
νT
σε
∇(ωk)

)
+ Cε1

Pε

k
− Cε2

(ωk)2

k
(4.33)

Dividing by k and rearranging, we have

Dω

Dt
= −ω

k
∇ ·
(
νT
σk
∇k
)

+
1

k
∇ ·
(
νT
σε
∇(ωk)

)
+ (Cε1 − 1)

Pε

k
− (Cε2 − 1)ω2 (4.34)

Consider the �rst term on the right-hand side of Equation (4.34) and substitute Equation

(4.19); thus, we have

−ω
k
∇ ·
(
νT
σk
∇k
)

= −Cµ
σk

(
∇k∇k
ω

+∇2k − ∇k∇ω
ω

)
(4.35)

Similarly, for the second term on the right-hand side of Equation (4.34) we have

1

k
∇ ·
(
νT
σk
∇(ωk)

)
=
Cµ
σε

∇k∇ω
ω

+
1

σε
∇
(
Cµk

2

ε
∇ω
)

+
Cµ
σε
∇2k +

Cµ
σε

∇k · ∇k
k

(4.36)

By substituting Equation (4.35) and Equation (4.36) into Equation (4.34) and rearranging,

we obtain

Dω

Dt
= ∇ ·

(
νT
σε
∇ω
)

+ (Cε1 − 1)
Pω

k
− (Cε2 − 1)ω2+

Cµ

(
1

σε
+

1

σk

)
1

ω
∇ω · ∇k + Cµ

(
1

σε
− 1

σk

)(
∇2k +

1

k
∇k · ∇k

)
(4.37)
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If we take

Cω1 = Cε1 − 1 Cω2 = Cε2 − 1 σk = σε = σω (4.38)

and substitute into Equation (4.37), we obtain

Dω

Dt
= ∇ ·

(
νT
σω
∇ω
)

+ Cω1
Pω

k
− Cω2ω

2 +
2νT
σωk
∇ω · ∇k (4.39)

By comparing Equation (4.39) and Equation (4.28), we can see the presence of an addi-

tional term
2νT
σωk
∇ω · ∇k (4.40)

called blending function. Close to the wall, the blending function is zero and Equation

(4.39) corresponds to the standard ω equation. On the other hand, far enough from the

wall, the blending function is unity and Equation (4.39) corresponds to the standard ε

equation. Hence, this function allows a gradual transition from the standard k-ω model

near the wall to the k-ε model at a certain distance in the outer portion of the boundary

layer, taking advantage of the best properties of the two models. For further details about

the main characteristics of the SST k-ω model implemented in ANSYS R© Fluent, refer to

the ANSYS R© Fluent Theory Guide [7].

The SST k-ω model is one of the most widely used turbulence models for aerodynamic

problems. The SST k-ω model provides results similar to the standard k-ω model in solv-

ing the �ow �eld in the region near a wall, that is in solving the boundary layer. Compared

to other turbulence models, the SST k-ω model gives good results for �ows subjected to

mild adverse pressure gradients with boundary layer separation. However, in regions with

strong shock-boundary layer interaction, the SST k-ω model could excessively overesti-

mate separation. Despite this, the SST k-ω model is one of the most common turbulence

model used for aerodynamic problems and turbomachinery performance analysis dealing

with single airfoil or cascade under adverse pressure gradients.

4.5 Dimensionless wall distance y+

An important parameter in CFD simulations is the so-called dimensionless wall dis-

tance y+. It is de�ned as a non-dimensional distance from a wall and it is used to evaluate

if a mesh is properly sized, that is how coarse or �ne a mesh is, in order to ensure accu-

rate simulation of the �ow�eld and in particular of the boundary-layer. Therefore, it is

necessary to specify a suitable size for the �rst grid layer to have an y+ ' 1, in order to

accurately solve the boundary layer without using wall functions. Without going into too
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much details, the procedure employed later for estimating the distance of the �rst layer

of the grid from the wall derives from the boundary-layer theory for a �at-plate reported

in [32] and is brie�y described below.

Consider the �uid properties, that is density ρ, viscosity µ, and freestream velocity U∞,

known from the inlet boundary conditions. So, the Reynolds number can be calculated

applying the de�nition

ReL =
ρU∞L

µ
(4.41)

where L is a reference length, in this case the chord of the blade section. The skin friction

on the plate can be estimated as follows

Cf = 0.026Re
−1/7
L (4.42)

The wall shear stress can be found once the skin friction coe�cient has been calculated

τw =
1

2
CfρU

2
∞ (4.43)

Hence

Uτ =

√
τw
ρ

(4.44)

Since the value of y+ is imposed to be equal to 1, considering the de�niton of y+

y+ =
ρUτ∆s

µ
(4.45)

and rearranging, the �rst cell height ∆s should be approximately

∆s =
y+µ

Uτρ
(4.46)

For the complete and exhaustive theory of the boundary-layer, which is beyond the scope

of this work to elaborate, refer to [23].
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Chapter 5

Simulation of Flow Through ARL-SL19

Supersonic Cascade

In this chapter, the numerical simulation of the �ow through a supersonic compressor

cascade, referred as ARL-SL19, for di�erent operating conditions is widely described.

The grid sensitivity analysis and the validation study carried out with three di�erent

grid sizes and several turbulence models are illustrated. The CFD results, in terms of

cascade performance and shock-wave pattern, are compared with the experimental results

obtained in a supersonic wind tunnel facility.

5.1 ARL-SL19 cascade model

The ARL-SL19 supersonic compressor cascade derives from a rotor near-tip section

of a transonic axial compressor, described in [30] and [31]. The airfoil employed in the

ARL-SL19 supersonic cascade is a precompression (S-shape) pro�le, which belongs to

the so-called ARL supersonic pro�le category. The cascade is the two-dimensional aero-

dynamic equivalent of the compressor rotor blade section, from which it di�ers by the

camber angle and the stream-tube area contraction at design. The cascade is the result of

a design, fabrication, and testing process conducted at the Detroit Diesel Allison (DDA)

Division of the General Motors Corp. In the 70's, it worked under the sponsorship of

the Fluid Mechanics Research Laboratory of the Aerospace Research Laboratories (ARL)

in Ohio, as reported in [6]. This cascade has aroused an ever-growing interest because

of the excellent performance data obtained from the tests at DDA. The ARL-SL19 su-

personic compressor cascade was also largely used for the experimental investigation of

cascade performance and �ow behaviour at various operating conditions, in particular

for the analysis of the strong shock wave-boundary layer interaction on the blade suction

77
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side. For that purpose, the cascade was also tested in other two supersonic cascade wind

tunnel facilities, at the DFVLR in Cologne, as reported in [28], and at the ONERA, as

reported in [9], with substantial di�erences in the examined operating conditions and in

the testing arrangement, such as the number of blades, the blade chord, the cascade pitch,

and the blade aspect ratio. Detailed experimental results are presented in other papers.

For example, a comparison of the cascade results obtained at DFVLR, at DDA and at

ONERA can be found in [25]. All these papers provide a thorough description of the

cascade performance and the shock wave pattern for di�erent operating conditions and

analyze the in�uence of the main �ow and geometric parameters on the overall cascade

performance. For that reason, the ARL-SL19 supersonic compressor cascade has been

considered suitable for the scope of this work.

5.1.1 Airfoil geometry

The shape of the airfoil employed in the ARL-SL19 cascade is given by points in [28]

and reported in Table 5.1. The DFVLR cascade blade section coordinates were scaled

from the original DDA values. As stated before, the airfoil of the ARL-SL19 supersonic

compressor cascade is a S-shape airfoil, which is typical of supersonic axial compressors.

A drawing of the cascade airfoil is sketched in Figure 5.1.
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Suction side

Figure 5.1: Airfoil geometry of ARL-SL19 supersonic cascade
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Table 5.1: Coordinates of ARL-SL19 supersonic cascade airfoil

Suction side Pressure side

x/c y/c x/c y/c

0.001389 0.001279 0.001170 -0.001274

0.012656 0.000661 0.012425 -0.002454

0.024082 0.000153 0.023844 -0.003535

0.035660 -0.000250 0.035422 -0.004518

0.047387 -0.000549 0.047164 -0.005402

0.071285 -0.000838 0.071114 -0.006885

0.095750 -0.000745 0.095658 -0.007995

0.120746 -0.000293 0.120748 -0.008761

0.146218 0.000481 0.146333 -0.009213

0.172107 0.001527 0.172342 -0.009395

0.198339 0.002790 0.198684 -0.009346

0.224836 0.004206 0.225272 -0.009132

0.251495 0.005714 0.252015 -0.008796

0.278244 0.007255 0.278317 -0.008390

0.305014 0.008783 0.305619 -0.007964

0.331755 0.010256 0.332374 -0.007536

0.358421 0.011662 0.359032 -0.007139

0.384988 0.012960 0.385573 -0.006784

0.411438 0.014149 0.411990 -0.006478

0.437768 0.015228 0.438286 -0.006219

0.463991 0.016203 0.464468 -0.005994

0.490107 0.017071 0.490544 -0.005806

0.516126 0.017836 0.516510 -0.005650

0.542037 0.018498 0.542370 -0.005524

0.567845 0.019048 0.568116 -0.005432

0.593545 0.019481 0.593746 -0.005371

0.619125 0.019797 0.619252 -0.005352

0.644583 0.019931 0.644619 -0.005370

0.669897 0.020033 0.669842 -0.005437

0.695076 0.019944 0.694920 -0.005552

0.720106 0.019713 0.719858 -0.005713

0.744997 0.019313 0.744659 -0.005884

0.769747 0.018729 0.769331 -0.006049

0.794367 0.017943 0.793885 -0.006171

0.818368 0.016949 0.818345 -0.006219

0.843268 0.015727 0.842723 -0.006164

0.867576 0.014268 0.867028 -0.005972

0.891806 0.012556 0.891284 -0.005617

0.915964 0.010575 0.915488 -0.005073

0.940058 0.008310 0.939661 -0.004310

0.964095 0.005741 0.963793 -0.003300

0.988073 0.002853 0.987909 -0.002021

1.000045 0.001283 0.999955 -0.001277
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5.1.2 Cascade geometric parameters

The cascade geometric parameters adopted in this work are the ones adopted at the

DFVLR and reported in [28]. The cascade geometric parameters are listed in Table 5.2.

Table 5.2: ARL-SL19 cascade geometric parameters

Cascade geometric parameters

number of blades n 5

chord c 85 mm

pitch s 55.58 mm

solidity σ = c/s 1.5294

stagger angle βs 56.93◦

leading edge radius/chord rLE/c 0.00128

maximum blade thickness/chord tmax/c 0.0255

axial chord cax 46.38 mm

The ARL-SL19 supersonic compressor cascade has a design inlet Mach number of

1.612, with a corresponding subsonic axial Mach number of about 0.90. The cascade

design inlet Mach number M1, static pressure ratio p2/p1, and axial velocity-density ratio

(AVDR) are summarized in Table 5.3.

Table 5.3: ARL-SL19 design point parameters

Design point parameters

Mach number M1 1.612

static pressure ratio p2/p1 2.15

axial-velocity-density ratio AVDR 1.00
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5.2 Flow solver and computational domain

In this section, the grid generation procedure and the CFD solver setup are described.

A powerful and user-friendly mesh generation software has been employed for creating

the computational grids used in simulations. A widely used commercial CFD software,

ANSYS R© Fluent v16, has been employed for the numerical calculations.

5.2.1 Grid generation

The computational domain used for the simulations is shown in Figure 5.2. It consists

of a periodic domain around a single blade airfoil with periodicity equal to the pitch

spacing. The computational domain extends from −1cax < x < 3.14cax, where x = 0

corresponds to the leading edge of the airfoil. The dimensions of the domain in the mesh

generator have been normalized by the chord and rescaled afterwards in the CFD solver.

Figure 5.2: Computational domain

A multiblock structured grid with one O-grid around the airfoil was used, as shown

in Figure 5.3. A multiblock structured grid is a mesh in which the domain is divided into

di�erent regions, called blocks, each of which is occupied by a structured grid, that is a

mesh made of two-dimensional quadrilateral elements arranged in a uniform pattern. The

O-grid around the airfoil was generated by using hyperbolic extrusion.
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Figure 5.3: Computational grid topology

Generally speaking, for meshes which need accurate solutions of the boundary layer

around airfoils or blades, a growth gate not exceeding 1.1 is recommended. A value of

0.0000016 m for the �rst cell height has been set. This value for the �rst grid layer has

been computed using the �at-plate boundary layer theory described in Section 4.5. An

example of the input set for the estimation of the dimensionless wall distance y+ and

the corresponding outcomes useful for the validation and the grid sensitivity analysis is

summarized in Table 5.4. Input parameters have been choosen in order to respect the

given Reynolds number, based on the operating conditions of the wind tunnel facility in

which the experiments were carried out.

Table 5.4: Parameters for dimensionless wall distance estimation

Input

freestream velocity U∞ 448 [m/s]

freestream density ρ∞ 0.43 [kg/m3]

dynamic viscosity µ 0.0000133 [kg/ms]

reference length L 0.085 [m]

target dimensionless wall distance y+ 1

Output

wall spacing ∆s 0.0000016 [m]

Reynolds number Re ' 1.2 · 106
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Three grids with di�erent nodes and elements numbers were investigated in order to

�nd the suitable grid size providing the calculated data of better consistency with the

experimental results, saving computational time at once. A coarse mesh of about 100k

elements (Grid 1), a medium mesh of about 200k elements (Grid 2), and a �ne mesh of

about 500k elements (Grid 3) have been created. A comparison of the three di�erent grid

sizes is sketched in Figure 5.4, in which a close-up of the leading edge (on the left) and a

close-up of the trailing edge (on the right) are shown. The grid size is increased from top

to bottom.

Figure 5.4: Comparison of the three grid sizes: a close-up of the leading-edge (on the
left) and a close-up of the trailing-edge (on the right)
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5.2.2 Grid quality check and improvement

Generally speaking, the quality of a mesh deeply a�ects the accuracy and the stability

of a numerical simulation and this statement assumes an even higher importance for

simulations of transonic �ows. A good mesh can converge faster and can provide more

accurate results. In contrast, a bad quality mesh usually provides inaccurate results, can

converge slowly or not converge at all.

Most often, the main parameter used to check if a mesh is good enough or not is

the skewness angle, or equiangle skewness. The skewness angle determines how close to

equilateral a cell is. It is de�ned as the maximum ratio of the angles included in a cell to

the angle of an equilateral element. The skewness varies between 0 (good quality) and 1

(bad quality). The skewness is computed as follows

max

[
(θmax − θe)
(180− θe)

,
(θe − θmin)

θe

]
(5.1)

where θmax is the largest angle in the cell, θmin is the smallest angle in the cell, and θe is

the angle of an equilateral element, that is 90◦ for quadrilaterals (all angles are in degrees).

Another important parameter employed for grid quality checking is the aspect ratio. It

is de�ned as the ratio of longest to the shortest length in the cell and ideally it should be

equal to 1 to ensure best results. However, in structured quadrilateral grids, high aspect

ratios are acceptable for the boundary layer cells.

In ANSYS R© Fluent, the quality parameters are Orthogonal Quality, Ortho Skew, and

Maximum Aspect Ratio. Orthogonal Quality ranges from 0 to 1, where values close to 0

correspond to low quality, and Ortho Skew ranges from 0 to 1, where values close to 1

correspond to low quality. The range of skewness and othogonal quality values with the

related cell quality, provided by ANSYS R© Fluent, are listed in the Tables on the next

page. Table 5.7 summarizes the characteristics and the grid quality parameters of the

three grids employed for the validation and the grid sensitivity analysis. According to the

values of skewness and orthogonal quality listed below, the three mesh present very good

quality characteristics.
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Table 5.5: ANSYS R© Fluent range of skewness values and related cell quality

Value of skewness Cell quality

0 Equilateral

> 0− 0.25 Excellent

0.25− 0.50 Very good

0.50− 0.80 Good

0.80− 0.94 Acceptable

0.95− 0.97 Bad

0.98− 1.00 Unacceptable

Table 5.6: ANSYS R© Fluent range of orthogonal quality and related cell quality

Value of orthogonal quality Cell quality

0− 0.001 Unacceptable

0.001− 0.14 Bad

0.15− 0.20 Acceptable

0.20− 0.69 Good

0.70− 0.95 Very good

0.95− 1.00 Excellent

Table 5.7: Grid quality parameters

Coarse Medium Fine

Total Elements 100k 200k 500k

Minimum Orthogonal Quality 0.79 0.78 0.77

Maximum Ortho Skew 0.21 0.22 0.23
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5.2.3 Flow solver setup and boundary conditions

All simulations were carried out in ANSYS R© Fluent v16. Two-dimensional steady

state simulations were performed in double precision. Table 5.8 summarizes the main

setups and the boundary conditions adopted.

At the inlet, a pressure-far-�eld boundary condition was imposed, in order to specify

the inlet Mach number and the inlet �ow angle (M1,β1) for respecting the unique incidence

condition.

At the outlet, a pressure outlet boundary condition was imposed, specifying the outlet

static pressure p2 derived from a given static pressure ratio p2/p1.

To create the periodic boundary, the following command was typed into the Text User

Interface (TUI):

/de�ne/boundary-conditions/modify-zones/make-periodic

Blade walls, that is suction side, pressure side, leading-edge, and trailing-edge, were

considered as no slip walls.

In order to obtain more accurate results and to ensure a better convergence, simula-

tions have been carried out performing a few initial iterations with the �rst-order scheme

and then turning on the second-order scheme. The calculation has then been continued

until convergence.

In order to guarantee a more stable convergence, the Courant Number has been prop-

erly modi�ed case-by-case to stabilize the convergence behaviour, even if a pressure-based

simulation of a time-independent �ow was carried out.

Convergence has been further accelerated by using the Full Multigrid initialization

(FMG initialization). This type of initialization, compared to the Hybrid initialization,

provides a better initial solution at a minimum computational cost. To customize and

perform the FMG initialization, the following commands have to be typed into the TUI:

/solve/initialize/set-fmg-initialization

/solve/initialize/fmg-initialization

Convergence was established when all residuals went under 1e−06 and oscillations of

some variables of interest (such as inlet and exit Mach number, inlet �ow angle, and mass

�ow rate) were below a certain threshold or were stable around low values.

A journal �le was developed in order to automatically set up the simulations in

ANSYS R© Fluent.
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Table 5.8: CFD solver setup and boundary conditions

ANSYS R©Fluent solver setup

General

Solver Type Pressure-based

Time Steady

2D Space Planar

Models

Models Energy On

Viscous

Materials

Materials Air

Properties Density Ideal Gas

Cp (Speci�c Heat) constant

Thermal Conductivity constant

Viscosity sutherland

Molecular Weight constant

Boundary Conditions

Zone inlet pressure-far-�eld

outlet pressure-outlet

upper/lower boundaries periodic

suction side wall

pressure side wall

leading edge wall

trailing edge wall

Solution Methods

Pressure-Velocity Coupling Scheme Coupled

Spatial Discretization Gradient Least Squares Cell Based
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5.3 Grid sensitivity analysis and validation

In this section, the main outcomes of the grid sensitivity analysis and the valida-

tion study will be illustrated. The validation study is aimed at obtaining a reliable and

accurate numerical model, saving computational time and verifying that the results re-

main essentially unchanged. Three grid sizes were employed for the validation study: a

coarse grid of about 100k elements, a medium grid of about 200k elements, and a �ne

grid of about 500k elements. The turbulence models used for the simulations, ordered by

complexity and increase in computational cost per iteration, were the Spalart-Allmaras

model (S-A), the k-ε model in its three available formulations (STD k-ε, RNG k-ε and

REALIZABLE k-ε), and the Shear-Stress Transport (SST) k-ω model.

5.3.1 Test cases

Three test cases, conducted in the supersonic cascade wind tunnel facility at the

DFVLR and reported in [28], were selected for the validation of the numerical model and

the grid sensitivity analysis. The test facility and instrumentation are widely described

in [28]. A drawing of the wind tunnel test section in which the experiments were carried

out is shown below, for illustrative purposes only. The picture is taken from [28].

Figure 5.5: Sketch of the wind tunnel section
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Inlet �ow conditions and outlet �ows data for each test case, such as the inlet Mach

number M1, the static pressure ratio p2/p1, the total-pressure loss coe�cient ω, the exit

�ow angle β2, and the exit Mach number M2 are listed in Table 5.9. The inlet Mach

number is equal to 1.58 and 1.59, while the static pressure ratio is 2.16, 2.12, and 2.21,

respectively. The AVDR is almost unity (AVDR= 1.00) in each of the three test cases.

Table 5.9: Test cases data used for the validation

Parameter Test case 1 Test case 2 Test case 3

Input

inlet Mach number M1 1.58 1.58 1.59

inlet �ow angle β1 57.9◦ 57.9◦ 57.9◦

static pressure ratio p2/p1 2.16 2.12 2.21

axial velocity-density ratio AVDR 1.00 0.99 1.02

Output

exit Mach number M2 0.91 0.93 -

exit �ow angle β2 60.8◦ 61.2◦ 60.2◦

total-pressure loss coe�cient ω 0.143 0.144 0.150

It is important to underline that the choice to simulate a single two-dimensional blade

airfoil in a periodic domain does not accurately re�ect the experimental setup, because

all the cascade tests were conducted with a three-dimensional geometry, a �nite number

of blades, that is 5, and with sidewall boundary layer suction to avoid adverse e�ects.

However, the periodic condition allows to simulate the case of a real �ow through a

rotating axial turbomachine. Moreover, this conscious simpli�cation allows to simulate

a �ow not dependent on the AVDR, because the axial velocity-density ratio is always

unity for a two-dimensional simulation. Moreover, the presence of secondary �ows and

non-periodicity e�ects are avoided.

The experimental behaviour of the isentropic Mach number on the suction side and

on the pressure side of the blade section for the three test cases is shown in Figure 5.6.
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Figure 5.6: Experimental blade isentropic Mach number distribution for the three test
cases
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5.3.2 Speci�cation of the unique incidence condition

As stated before, for supersonic inlet �ows with axial subsonic component, in order

to respect the inlet �ow conditions imposed by the unique incidence, it is necessary to

specify the Prandtl-Meyer relation, also referred as the supersonic Riemann invariant

β + ν(M) = const (5.2)

that is the relation between the inlet Mach number and the inlet �ow angle. The pressure-

far-�eld adopted as inlet boundary condition allowed to specify this relation, because it

makes it possible to set the inlet Mach number and the inlet �ow direction. However, the

inlet �ow angle depends on how the mesh grid is aligned with the �ow and for that reason

it is not equal to the experimental inlet �ow angle. Thus, for a given Mach number,

the inlet �ow angle becomes an outcome of the simulation, that is a dependent variable,

and must be determined. For that reason, in order to identify the correct �ow condition

(M1,β1) that satis�es the unique incidence, for a speci�ed inlet Mach number, the inlet

�ow angle was manually varied until the di�erence between the calculated inlet Mach

number and the imposed inlet Mach number was below a certain threshold.

5.3.3 Inlet �ow conditions

For the wide range of cascade tests described in [28], the wind tunnel operating con-

ditions were set to an upstream total pressure in the range 100 and 130 kPa and a total

temperature between 300 and 312 K. The chord Reynolds numbers were in the range

1.1 · 106 to 1.4 · 106, for cascade inlet Mach numbers between 1.30 and 1.71.

For the purpose of this work, having no information about the exact cascade operating

conditions for the test cases selected as benchmark data for the validation, a total pressure

of 101325 Pa, a total temperature of 300 K, and a Reynolds number of about 1.2 · 106

were set as operating conditions, referring to the experimental range reported in [28] and

listed above. The turbulence intensity for the test cases at DFVLR reported in [28] was

measured to be less than 1, as reported in [25]. Thus, having no further information

about the turbulence levels in the wind tunnel in which the experiments were carried out,

a value of 1% for the turbulence intensity and a value of 1 for the turbulent viscosity

were used, even if the preset default values for turbulent intensity and turbulent viscosity

ratio (5% and 10, respectively) are reasonable for cases in which no information about

turbulence at inlet is available. However, the adopted speci�cation of turbulent intensity

and turbulent viscosity ratio is more reasonable for a freestream in a wind tunnel.
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5.3.4 Calculation of the variables of interest

Downstream calculations of static pressure, total-pressure, exit Mach number, and

mean exit �ow angle were obtained with a mass-weighted average surface integral at an

axial distance of 26 mm (ξ/cax = 0.56) downstream of the cascade exit plane, exactly

where the probe was located during the experiments in the supersonic wind tunnel, as

reported in [28]. The location of the measurement plane is sketched in the Figure below,

adapted from [28]. Inlet Mach number, inlet �ow angle, inlet static pressure, and inlet to-

tal pressure were calculated using a mass-weighted average surface integral at the domain

inlet. The total-pressure loss coe�cient was also calculated and compared with the cor-

responding experimental coe�cient. The estimated uncertainties reported in [28] for the

key dependent variables, that is the inlet �ow angle β1, the mean exit �ow angle β2, and

the total-pressure loss coe�cient ω are listed below. These relatively large uncertainties

are due to non-periodicity e�ects and secondary �ows, as stated in [28]. In the reference

article, all the average variables have been calculated by using the "mixed-out" type of

integration.

Table 5.10: Estimated uncertainties for the main quantities

Quantity Uncertainty

Inlet �ow angle β1 ±0.5◦

Exit �ow angle β2 ±1.5◦

Loss coe�cient ω ±0.010

Figure 5.7: Measurement plane location downstream of the cascade
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5.3.5 Results and discussion

The CFD results for each test case are listed in the Tables in the following pages, in

comparison with the experimental results. For brevity, only the outcomes obtained with

the S-A model and the STD k-ε model are reported, because the simulations carried out

with these two turbulence models gave more accurate results. The calculated isentropic

Mach number distributions for the S-A model and the STD k-ε are plotted in comparison

with the experimental trends, along with the contours of the Mach number through the

cascade for the �nest grid.

The CFD results obtained with the S-A model and the STD k-ε are in substantial

agreement with the corresponding experimental results. The variations of cascade perfor-

mance and exit �ow variables as a function of grid size are quite subtle. Moreover, the

isentropic Mach number distribution is not a�ected at all by the grid size.

As regards the inlet �ow angle, the di�erence between the calculated inlet �ow an-

gle and the experimental inlet �ow angle, whose prediction seems to be overestimated

regardless grid size, is due to the turbulence model employed, which can be more or less

dependent on the inlet turbulence entity speci�ed, and to the mesh quality, as previously

speci�ed. As a consequence, the inlet angle and also the exit angle are shifted to higher

values than the experimental ones. The reported experimental inlet �ow angle was 57.9◦,

against a inlet �ow angle of 58.4◦ and 58.6◦ calculated with the S-A model and the STD

k-ε respectively in the �rst test case and in the second test case. The inlet �ow angle

calculated using the S-A model and the STD k-ε for the third test case was 58.3◦ and

58.5◦ respectively. Based on the results, the STD k-ε seems to overestimate the inlet �ow

angle slightly more.

As regards the exit Mach number, it is quite well predicted regardless the turbulence

model employed and the grid size in each of the two test cases for which the experimental

results are available.

As regards the total-pressure loss coe�cient, the S-A model and the STD k-ε seem to

be in very good agreement with the experiments, even if the S-A model underestimates the

total-pressure loss coe�cient in the third test case, while the STD k− ε seems to slighlty

overestimate it in the �rst test case and in the second test case. The estimation of the

total-pressure loss coe�cient with the STD k-ε model seems to be in better agreement

with the experiments, since the percentage error is never greater than 3%, against a

percentage error of 5.6%, 4.9%, and 11.3% calculated with the S-A model in the three

test cases respectively. The relative percentage error as a function of the grid size for the

three test cases is reported in the Tables and in the Figures in the following pages.
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Table 5.11: Calculated loss coe�cients and relative percentage errors (Test case 1)

Exp. ω Grid size S-A err% STD k-ε err%

0.143 100k 0.138 3.5 0.149 4.2

200k 0.135 5.6 0.146 2.1

500k 0.135 5.6 0.145 1.4
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Figure 5.8: Relative percentage error for the total-pressure loss coe�cient as a function
of grid size (Test case 1)
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Table 5.12: Calculated loss coe�cients and relative percentage errors (Test case 2)

Exp. ω Grid size S-A err% STD k-ε err%

0.144 100k 0.140 2.8 0.151 4.9

200k 0.137 4.9 0.148 2.8

500k 0.137 4.9 0.148 2.8
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Figure 5.9: Relative percentage error for the total-pressure loss coe�cient as a function
of grid size (Test case 2)
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Table 5.13: Calculated loss coe�cients and relative percentage errors (Test case 3)

Exp. ω Grid size S-A err% STD k-ε err%

0.150 100k 0.136 9.3 0.149 0.7

200k 0.133 11.3 0.147 2.0

500k 0.133 11.3 0.147 2.0
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Figure 5.10: Relative percentage error for the total-pressure loss coe�cient as a function
of grid size (Test case 3)
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The calculated isentropic Mach number distributions on the suction side and on the

pressure side of the airfoil present substantial di�erences in comparison with the experi-

mental pro�les, especially around the peaks representing the location of the shock waves

on the blade surfaces, as we can see in the Figures in the following pages. This signi�cant

diversity is due to three main reasons:

• the turbulence model employed for the simulations; in fact, the way in which the

�ow �eld and the wave pattern are solved depends on the turbulence model. Con-

sequently, also the isentropic Mach number distribution on the suction side and on

the pressure side of the airfoil depends on the turbulence model employed;

• the presence of three dimensional e�ects and disturbances during the experiments;

• the approach adopted for the validation and the grid sensitivity analysis; the input

parameters of the simulations, such as the inlet Mach number, the inlet �ow angle,

and especially the static pressure ratio have been set in such a way that they showed

the best agreement with the experimental quantities, and not in such a way that

the isentropic Mach number distribution and the shockwave location were in the

best agreement with the experimental distribution and layout, respectively. In fact,

the numerical inlet boundary conditions, especially the static pressure ratio, should

be slightly adjusted case-by-case with respect to the experimental values, in a way

that the shock wave pattern and the isentropic Mach number distribution obtained

from the simulations result in good agreement with the experiments. However, this

adjustement could bring to a static pressure ratio signi�cantly di�erent from the

imposed experimental one, because of the turbulence model used. This approach

takes away every information on the e�ective static pressure ratio at which the

cascade is operating, adapting the problem to the static pressure ratio "seen" by

the turbulence model. This validation approach is widely used to validate codes or

numerical solvers. Since the aim of the validation in this work is to identify the tur-

bulence model which gives the results of better consistency with the experimental

performance parameters for a given static pressure ratio and then evaluate the per-

formance of the cascade for di�erent operating conditions, this validation approach

is not recommended for the purpose of this work.

Anyway, the S-A model seems to better reproduce the isentropic Mach number distribu-

tion on the pressure side and the suction side of the airfoil in all the analyzed test cases. In

other words, the S-A model better reproduces the shock wave pattern inside the cascade

passage.
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The blade-to-blade wake losses for the second and the third test case, calculated with

the S-A model and the STD k-ε, are sketched in Figure 5.23 and in Figure 5.24, respec-

tively. The wake seems to be quite well captured by the S-A model. In fact, the local

loss coe�cient curves calculated with the S-A model are well aligned on the peak and on

the left concavity, which represent viscous losses and shock losses respectively. The not

complete consistency with the experimental results is probably due to mixing phenomena

downstream of the cascade, which are unsteady and not predictable by a steady state

simulation, and to the non-periodicity of the experimental cascade. In fact, it can be seen

quite easily that the experimental blade-to-blade loss pro�le is not periodic, because of

the �nite number of blades in the testing arrangements. The results of the validation are

also in quite good agreement with the ones obtained in [18] for the second test case and

the third test case.

Overall, the CFD results seem to accurately predict the cascade performance, even

considering the quite high experimental uncertainties. The validation study and the grid

sensitivity analysis suggested that for the purpose of this work the medium grid could be

adopted, because it represents the best compromise between accuracy and computational

time. As regards the turbulence model, the validation study showed that the S-A model

gave more precise results in simulating the �ow in the blade passage and across the wake,

even if it seems to slightly underestimate the total-pressure loss coe�cient. Despite this,

it has been choosen as the turbulence model for the subsequent simulations. Another

important reason behind the choice of the S-A model will be described later.

The main considerations resulting from the validation study are summarized below:

• as regards the total-pressure loss coe�cient, the S-A model has a tendency to un-

derestimate it, while the STD k-ε seems to overestimate it;

• as regards the isentropic Mach number pro�le, the S-A model better predicts the

distribution on the pressure side and on the suction side of the airfoil;

• as regards the downstream blade-to-blade total-pressure loss, the curves calculated

with the S-A model are better aligned with the experimental ones;

• as regards the inlet �ow angle, it is better determined by the S-A model;

• as regards the exit Mach number and the mean exit �ow angle, there are no signif-

icant di�erences between the two turbulence models employed.
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Although not reported here for brevity, it is worth to say a couple of words about

the results obtained with the other turbulence models tested in the validation study. As

regards the total-pressure loss coe�cient, the mean exit �ow angle and the exit Mach

number, they seem to be quite well calculated by the REALIZABLE k-ε model and

the RNG k-ε model. However, the isentropic Mach number distribution and the blade-

to-blade losses measured downstream of the cascade were not as well predicted. The

isentropic Mach number distribution on the suction side is not well captured by both the

turbulence models, especially in the rearmost part near the trailing-edge, as well as the

blade-to-blade total-pressure loss coe�cient, which results deeply underestimated. The

SST k-ω model gave a poor resolution of the isentropic Mach number distribution on

the suction side of the blade in the �rst test case and seems to widely underestimates the

total-pressure loss coe�cient in the second test case and in the third test case, showing an

excessive boundary layer separation on the blade suction side, which a�ects the calculation

of the isentropic Mach number distribution and the total-pressure loss coe�cient.
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Table 5.14: Cascade parameters calculated with Grid 1 (Test case 1)

Mesh coarse 100k

M1 = 1.58 p2/p1 = 2.16

Parameter Exp. S-A STD k-ε

β1 57.9 58.4 58.6

M2 0.91 0.91 0.90

β2 60.8 61.1 60.9

ω 0.143 0.138 0.149

Table 5.15: Cascade parameters calculated with Grid 2 (Test case 1)

Mesh medium 200k

M1 = 1.58 p2/p1 = 2.16

Parameter Exp. S-A STD k-ε

β1 57.9 58.4 58.6

M2 0.91 0.91 0.90

β2 60.8 61.1 60.8

ω 0.143 0.135 0.146

Table 5.16: Cascade parameters calculated with Grid 3 (Test case 1)

Mesh �ne 500k

M1 = 1.58 p2/p1 = 2.16

Parameter Exp. S-A STD k-ε

β1 57.9 58.4 58.6

M2 0.91 0.91 0.90

β2 60.8 61.1 60.8

ω 0.143 0.135 0.145
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Figure 5.11: Distribution of isentropic Mach number using S-A model (Test case 1)

Figure 5.12: Mach number contours using S-A model (Test case 1)
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Dimensionless blade chord
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Figure 5.13: Distribution of isentropic Mach number using STD k-ε model (Test case 1)

Figure 5.14: Mach number contours using STD k-ε model (Test case 1)
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Table 5.17: Cascade parameters calculated with Grid 1 (Test case 2)

Mesh coarse 100k

M1 = 1.58 p2/p1 = 2.12

Parameter Exp. S-A STD k-ε

β1 57.9 58.4 58.6

M2 0.93 0.92 0.91

β2 61.2 61.2 60.9

ω 0.144 0.140 0.151

Table 5.18: Cascade parameters calculated with Grid 2 (Test case 2)

Mesh medium 200k

M1 = 1.58 p2/p1 = 2.12

Parameter Exp. S-A STD k-ε

β1 57.9 58.4 58.6

M2 0.93 0.92 0.91

β2 61.2 61.2 60.9

ω 0.144 0.137 0.148

Table 5.19: Cascade parameters calculated with Grid 3 (Test case 2)

Mesh �ne 500k

M1 = 1.58 p2/p1 = 2.12

Parameter Exp. S-A STD k-ε

β1 57.9 58.4 58.6

M2 0.93 0.92 0.91

β2 61.2 61.2 60.9

ω 0.144 0.137 0.148
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Dimensionless blade chord
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Figure 5.15: Distribution of isentropic Mach number using S-A model (Test case 2)

Figure 5.16: Mach number contours using S-A model (Test case 2)
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Dimensionless blade chord

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Is
e
n
tr

o
p
ic

 M
a
c
h
 n

u
m

b
e
r,

 M
is

0.8

1

1.2

1.4

1.6

1.8

2

Exp. SS

Exp. PS

Calc. SS

Calc. PS

Figure 5.17: Distribution of isentropic Mach number using STD k-ε model (Test case 2)

Figure 5.18: Mach number contours using STD k-ε model (Test case 2)
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Table 5.20: Cascade parameters calculated with Grid 1 (Test case 3)

Mesh coarse 100k

M1 = 1.59 p2/p1 = 2.21

Parameter Exp. S-A STD k-ε

β1 57.9 58.3 58.5

β2 60.2 61.2 60.9

ω 0.150 0.136 0.149

Table 5.21: Cascade parameters calculated with Grid 2 (Test case 3)

Mesh medium 200k

M1 = 1.59 p2/p1 = 2.21

Parameter Exp. S-A STD k-ε

β1 57.9 58.3 58.5

β2 60.2 61.2 60.9

ω 0.150 0.133 0.147

Table 5.22: Cascade parameters calculated with Grid 3 (Test case 3)

Mesh �ne 500k

M1 = 1.59 p2/p1 = 2.21

Parameter Exp. S-A STD k-ε

β1 57.9 58.3 58.5

β2 60.2 61.2 60.9

ω 0.150 0.133 0.147
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Figure 5.19: Distribution of isentropic Mach number using S-A model (Test case 3)

Figure 5.20: Mach number contours using S-A model (Test case 3)
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Dimensionless blade chord
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Figure 5.21: Distribution of isentropic Mach number using STD k-ε model (Test case 3)

Figure 5.22: Mach number contours using STD k-ε model (Test case 3)
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Figure 5.23: Wake total pressure loss pro�le (Test case 2)
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Figure 5.24: Wake total pressure loss pro�le (Test case 3)
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5.3.6 Numerical shock-wave pattern and �ow �eld

In order to further verify the accuracy of the validation study, a brief qualitative

analysis of the shock-wave pattern has been performed. Even if Schlieren pictures of the

shock-wave pattern for the analyzed test cases are not reported in [28], a quite exhaustive

examination of the �ow �eld in the cascade can be done in accordance with the typical

shock-wave patterns which result from supersonic cascades experiments performed in wind

tunnels. In Figure 5.25, a picture of the shock-wave pattern by means of the magnitude

of the density gradient, that is a so-called numerical Schlieren picture, is reported. The

�gure on the left refers to the �rst test case, that is for an inlet Mach number of 1.58 and

a static pressure ratio equal to 2.16. The �gure in the center and the �gure on the right

refer to the second and the third test case respectively, that is for an inlet Mach number

of 1.58 and 1.59 and a static pressure ratio equal to 2.12 and 2.21, respectively. A close

up of the leading edge is also sketched in Figure 5.26. A detail of the shock wave pattern

in the blade passage is reported in Figure 5.27.

Figure 5.25: Numerical Schlieren pictures of the cascade for the three test cases
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Figure 5.26: Numerical Schlieren picture of the leading edge: close-up of the bow shock
and the precompression shock

Figure 5.27: Numerical Schlieren picture of the cascade: shockwave pattern in the blade
passage
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Even if the shock wave pattern varies according to blade geometry, cascade geometry,

and operating conditions, as stated before, for cascades operating in unique incidence

condition a typical con�guration of shock waves and expansion waves can be identi�ed.

As previously described, the most common shock wave pattern in a S-shape cascade

presents a �rst shock at the entrance of the cascade passage and a second shock located

near the passage exit. First of all, it can be seen that the �nite thickness of the leading

edge develops a detached bow shock, as is to be expected. As stated before, two oblique

shock branches depart from the bow shock, a weaker branch that extends into the region

upstream of the cascade entrance plane and a stronger branch that runs into the passage

and intersects the suction side of the adjacent blade. In this case, as is reported in [28],

the intersection between the oblique shock in the passage and the suction side of the

adjacent blade occurs at about 75% chord for values of static backpressure lower than

or equal to the design backpressure. The location in which the shock wave encounters

the adjacent blade and is re�ected slightly varies according to the turbulence model used

in the simulation. For example, running a simulation using the S-A model, the location

has been roughly estimated to be at about 80% chord, so it is quite well predicted. The

oblique shock in the foremost portion of the passage is strong enough that, impinging on

the suction side of the adjacent blade, causes the detachment of the boundary layer. The

upper portion of the bow shock a�ects the entire region in front of the other blades of

the cascade and the resulting �ow �eld is a distinctive feature of supersonic �ows with

subsonic axial Mach number in supersonic cascades. In fact, because of the periodicity

of the cascade, there is a series of left-running waves extending in front of the entire

cascade. The expansion waves at the leading edge are also well captured, as well as

the pre-compression shock typical of this kind of cascade with S-shape pro�les, which

intersects the bow shock in front of the leading edge of the adjacent blade, as can be seen

in Figure 5.26. The second passage shock at the outlet of the cascade passage is a normal

shock wave, with a lambda shock at the end near the blade surface, originated by the

strong shock wave-boundary layer interaction in that region.



Chapter 6

Parametric study of ARL-SL19

supersonic cascade

In this chapter, the parametric study of the ARL-SL19 supersonic cascade is presented.

The main independent variables in a parameteric study are �ow variables, that is the inlet

Mach number, the static pressure ratio, and the axial velocity-density ratio (AVDR), or

geometric parameters, such as the cascade solidity. All of these parameters strongly

in�uence the cascade performance. Dependent variables are the exit Mach number, the

mean exit �ow angle, and the total-pressure loss coe�cient. The inlet �ow angle is

also a dependent variable which must be determined, since it is a function of the inlet

Mach number because of the unique incidence. The outcomes are presented for di�erent

operating conditions. Numerical data were obtained over a range of di�erent inlet Mach

numbers, static pressure ratios, and solidity values. Since the AVDR is not a parameter

in a two-dimensional simulation, only the inlet Mach number, the static pressure ratio,

and the cascade solidity were tested.

The presentation of the results obtained from the parametric study is organized into

�ve sections. The �rst section considers the cascade design operating condition: the cas-

cade behaviour is analyzed at design condition and the results in terms of performance

and shock pattern are compared with the available experimental data. The second section

is about the numerical determination of the cascade unique incidence operating condition:

the numerical unique incidence curve for the cascade is determined by points and com-

pared with the theoretical curves reported in [28]. The last three sections are concerned

with the parametric study of the cascade: the in�uence of the main �ow and geometric

variables, that is inlet Mach number, static pressure ratio, and solidity, on the overall

cascade performance is investigated.

113
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6.1 Analysis of cascade design operating condition

The cascade design operating condition has been widely examined in order to further

verify the accuracy of the simulations and the correctness of the choice of the turbulence

model. Moreover, a detailed numerical knowledge of the cascade design operating con-

dition is necessary for the subsequent analysis. At design point condition (M1 = 1.612,

p2/p1 = 2.15, AVDR= 1.00), the total-pressure loss coe�cient and the mean exit �ow

angle, determined experimentally in [28], are 0.143 and 61.0◦, respectively. The measured

inlet �ow angle associated with the unique incidence condition is 57.6◦. The calculated

�ow turning between the cascade inlet and the cascade outlet (∆β = β1−β2) is of −3.4◦.

The experimental inlet and outlet parameters determined at design operating condition

are summarized in Table 6.1. As it can be noted, the AVDR at design condition is unity,

so this operating condition is particularly suitable for being analyzed with a 2D simula-

tion. A sketch of the approximate wave pattern at the cascade entrance region at the

design inlet Mach number is shown in Figure 6.1, taken form [28], with an estimation of

the Mach number in certain points of the cascade passage, such as at the leading-edge,

dowstream of the precompression shock, and upstream of the �rst-passage shock.

Table 6.1: Design parameters of ARL-SL19 supersonic cascade

Cascade design parameters

Input Output

M1 1.612 Max 0.87

p2/p1 2.15 ω 0.143

β1 57.6◦ β2 61.0

AVDR 1.00 ∆β −3.4◦

Figure 6.1: Approximate wave pattern at design inlet condition
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The CFD results obtained at the cascade design operating condition, calculated using

the S-A model, are reported in Table 6.2 and compared with the experimental data listed

above.

Table 6.2: CFD results for cascade design operating condition

M1 = 1.612 p2/p1 = 2.15 AVDR = 1.00

Parameter Exp. Calculation

β1 57.6 58.2

β2 61.0 61.6

∆β = β1 − β2 −3.4◦ −3.4◦

ω 0.143 0.142

Max 0.87 0.85

The CFD results are in quite total agreement with the experimental data.

As regards the inlet �ow angle and the mean exit �ow angle, the numerical values are

shifted to higher values than the experimental ones. The reason behind this di�erence

between the measured inlet �ow angle and the calculated inlet �ow angle, and as a con-

seguence between the measured mean exit �ow angle and the calculated mean exit �ow

angle, has already been pointed out. The calculated �ow turning is well predicted anyway

(−3.4◦). The fact that the calculated mean inlet �ow angle is slightly higher than the

experimental value a�ects the value of the calculated axial component of the inlet Mach

number, which is slightly lower than the experimental one.

The total-pressure loss coe�cient calculated with the S-A model corresponds to the ex-

perimental one (the relative percentage error is of about 1%). In comparison, the corre-

sponding total-pressure loss coe�cient calculated by using the STD k-ε was 0.154, which

is clearly overpredicted. This result con�rms the tendency of the STD k-ε to overpredict

the total-pressure loss coe�cient. Hence, the choice of the S-A model as the turbulence

model for the parametric study derived from the validation has been con�rmed as being

correct.

The Mach number contours at cascade design operating condition are shown in Figure

6.2. As it can be noted from Figure 6.1, the theoretical Mach number at the leading edge

is reported to be 1.76, with a corresponding maximum Mach number of 1.68 near the

suction side upstream of the oblique shock wave inside the blade passage. The calculated

Mach number at the leading edge and the maximum Mach number are 1.87 and 1.69,

respectively.
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Figure 6.2: Mach number contours at design operating condition
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Figure 6.3: Velocity magnitude contours at design operating condition

Figure 6.4: Density contours at design operating condition
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Figure 6.5: Shock-wave pattern in the cascade at design operating condition



6.2 NUMERICAL DETERMINATION OF THE UNIQUE INCIDENCE CURVE 119

6.2 Numerical determination of the unique incidence

curve

As widely discussed before, a supersonic cascade �ow with a subsonic axial component

implies a dependency of the inlet �ow angle on the inlet Mach number. The unique

incidence curve for the ARL-SL19 cascade has been numerically calculated for several inlet

Mach numbers and compared with the theoretical unique incidence curve determined in

[28] by using an analytical method. The theoretical unique incidence curves for the present

cascade, reported in [28] and determined following the analytical method developed in

[27], are shown in Figure 6.6. The points identi�ed by triangular markers represent

the experimental values. The curves identi�ed by solid-lines were calculated considering

approximated losses due to the leading-edge bow shock, which determines a lower axial

Mach number. The curves identi�ed by the dashed lines were calculated neglecting these

losses, as reported in [28].

Figure 6.6: Analytical and experimental unique incidence curves for ARL-SL19
supersonic cascade
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The Mach numbers imposed for determining the numerical unique incidence curve

were in the range 1.32 to 1.71. The unique incidence condition has been numerically

determined with a simple iterative approach, that is for an imposed Mach number the

inlet �ow angle has been slightly varied until the di�erence between the calculated inlet

Mach number and the imposed inlet Mach number was below a certain threshold. The

numerical inlet �ow angles and the corresponding inlet axial Mach numbers calculated

for each inlet Mach number in the range speci�ed above are listed in Table 6.3.

Table 6.3: Numerical inlet �ow angle and corresponding inlet axial Mach number for the
unique incidence condition

Inlet Mach number Inlet �ow angle Axial Mach number

M1 β1 Max

1.32 59.3 0.67

1.40 59.1 0.72

1.51 58.7 0.79

1.58 58.4 0.83

1.612 58.2 0.85

1.71 59.4 0.88

The comparison of the numerical, the analytical, and the experimental unique in-

cidence curves is reported in Figure 6.7. The point identi�ed by a diamond marker

represents the measured inlet �ow angle and the axial Mach number at design operating

condition. The comparison of the calculated, the experimental, and the theorical axial

Mach number curves, is reported in Figure 6.8. Let �rst consider Figure 6.7. As it can

be seen, the agreement among measured, predicted, and calculated values for the inlet

�ow angle is quite good. The measured inlet �ow angle at the design inlet Mach number

is 57.6◦, against a predicted theoretical value of 57.2◦. The numerical inlet �ow angle

at the design inlet condition is 58.2◦. This di�erence, as discussed before, is due to the

turbulence model and the way in which the grid guides the �ow, that is related to mesh

quality. The percentage error is about 1%. If we take a look at Figure 6.8, the agreement

between the experimental and the calculated values is quite good also in this case, with

a measured axial inlet Mach number of 0.87 at design, against a calculated value of 0.85.

The percentage error in this case is about 2%. The numerical unique incidence curve

is similar to the one reported in [17] and sketched in Figure 3.16. The di�erences be-

tween the two diagrams are obviously due to the fact that the unique incidence condition

depends on the blades thickness, the suction side curvature, and the stagger angle.
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Figure 6.7: Unique incidence curves of ARL-SL19 supersonic compressor cascade
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Calculations of local Mach number and local �ow angle for an inlet Mach number of

1.51 were performed. The inlet measurement plane was located at 1.54 mm upstream of

the cascade inlet plane. The results were compared with the experimental and theoretical

data reported in [28], as can be seen in Figure 6.9. The curves for local inlet Mach num-

ber and local inlet �ow angle plotted with dashed lines represent the solution obtained by

applying the expansion fan equations at the leading-edge of the airfoil, that is the theoret-

ical solution obtained by applying the Prandtl-Meyer relation. The vertical curves drawn

with dashed lines represent the location where the bow shock waves and precompression

shock intersect the measurement line in the CFD simulation and the measurement plane

in the experiments. The calculated results are in fairly good agreement with both the

theoretical results and the experimental results.
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6.3 In�uence of inlet Mach number

The inlet Mach number is one of the most important parameters which in�uence the

performance of a supersonic compressor cascade. The quantity which is mainly in�uenced

by the inlet Mach number is the maximum static pressure ratio achievable by the super-

sonic compressor cascade. In order to investigate the in�uence of the inlet Mach number

on the maximum static pressure ratio, a series of simulations were carried out, identify-

ing the maximum static pressure ratio achievable for each imposed Mach number. The

total-pressure loss coe�cient corresponding to each maximum static pressure ratio was

calculated. Five Mach numbers were investigated, varying the static pressure ratio until

the maximum value were achieved, that is when a quasi-normal shock wave was exactly

at the passage entrance. The in�uence of inlet Mach number on the maximum achievable

static pressure ratio and the related total-pressure loss coe�cient is reported in Figure

6.10 and Figure 6.11. The results were graphically compared with the interpolation line of

the available experimetnal data reported in [28]. The maximum achieved static pressure

ratio and the corresponding total-pressure loss coe�cient for each inlet Mach number are

listed in Table 6.4.

Table 6.4: Calculated maximum static pressure ratio and corresponding total-pressure
loss coe�cient

Mach number Max. static pressure ratio Total-pressure loss coe�cient

M1 p2/p1 ω

1.32 1.9 0.064

1.40 2.06 0.077

1.51 2.30 0.109

1.58 2.47 0.129

1.612 2.53 0.138
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First of all, lets take a closer look at the in�uence of inlet Mach number on the

maximum static pressure ratio achievable by the cascade. The results show an evident

trend according to which increasing inlet Mach number corresponds to an increase of

the maximum static pressure ratio. The interpolation of the experimental data shows a

linear dependence of maximum achievable static pressure ratio on inlet Mach number and

this trend is reproduced by the CFD results in a satisfactory manner. For lower inlet

Mach numbers (1.32-1.40), the maximum static pressure ratio achievable by the cascade

is well predicted. For moderate inlet Mach numbers (1.51) and higher inlet Mach numbers

(1.58-1.612), the maximum static pressure ratio is slightly overestimated (by around 2%).

For example, a maximum static pressure ratio of 2.47 was obtained experimentally at the

design inlet Mach number (1.612), against a maximum pressure ratio of 2.53 calculated via

CFD. This slight mismatch is due to the turbulence model employed in the simulations,

which has a tendency to not exactly predict the position of the shock waves inside the

blade passage. Even if the e�ective static backpressure at which the cascade is operating

corresponds to the imposed one, the di�erent location of the shock waves in�uences the

outcomes, because the shock waves are estimated to be further back than they are. This

in turn causes the cascade to operate at static pressure ratios beyond the experimental

maximum static pressure ratio, that is beyond the experimental spill point, even if the

cascade still operates in unique incidence condition. The relative percentage error in

overestimating the maximum static pressure ratio achievable by the cascade is within

the model tolerance limits anyway. Lastly, according to both the experimental and the

related numerical trend, it can be noticed that increasing inlet Mach number determines

an increase in the range of static pressure ratios at which the cascade, or the corresponding

compressor rotor stage, can operate.

As regards the in�uence of the inlet Mach number on the total-pressure loss coe�-

cient, the results show that increasing inlet Mach number corresponds to an increase of

the total-pressure loss coe�cient. This is quite obvious, because increasing Mach number

causes an increase in strength of the shock waves and, as a consequence, a correspond-

ing increase of the shock losses. Moreover, the stronger interaction between shock waves

and the boundary layer causes an increment of viscous losses, due to the separation of

the boundary layer. The CFD results quite well predict this trend. The total-pressure

loss coe�cients calculated for the experimental maximum static pressure ratio are quite

well calculated, also taking into account the quite high measurement uncertainties and

the di�erent method with which the total-pressure loss coe�cient was determined in the

reference article. We can distinguish two di�erent sets of calculated total-pressure loss

coe�cients for each inlet Mach number: the former includes the total-pressure loss coe�-
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cients calculated at the experimental maximum static pressure ratio; the latter groups the

total-pressure loss coe�cients calculated at the maximum static pressure ratio determined

via CFD, which is slightly di�erent. The total-pressure loss coe�cient obtained in [28] at

the design inlet Mach number for the experimental maximum static pressure ratio (2.47)

was 0.130 (AVDR= 1.18), against a calculated total-pressure loss coe�cient of 0.133 at

the corresponding static pressure ratio (with a 2% margin of error). The main reason

why the calculated total-pressure loss coe�cient is slightly higher than the experimental

total-pressure loss coe�cient can be due primarily to the di�erent value of the AVDR: in

fact, increasing the AVDR for moderate to high static pressure ratios, that is above the

design static pressure ratio, causes a reduction in loss. Di�erentiating two sets of data for

the total-pressure loss coe�cient gives a better meaning to the comparison between the

available experimental data and the CFD results. At very high inlet Mach numbers, that

is far beyond the design value, the total-pressure loss coe�cient calculated via CFD at the

corresponding experimental maximum pressure ratio results overestimated. For example,

at an inlet Mach number of 1.71, for the experimental maximum static pressure ratio of

2.61, the calculated total-pressure loss coe�cient was 0.161, against a total-pressure loss

coe�cient of 0.183 determined via CFD. This signi�cant di�erence is essentially due to

the boundary layer separation caused by the strong shock wave-boundary layer interac-

tion, which determines an increase in the viscous losses. Moreover, this large boundary

layer separation pushes the turbulence model over its limits of application.

It is necessary to specify that the results refer to a supersonic cascade slightly dif-

ferent from the experimental one tested in [28]. In fact, three main di�erences must be

underlined: the non-periodicity of the experimental cascade, that is the �nite number

of blades; the fact that the cascade model is two-dimensional, that is AVDR is unity;

the total absence of secondary �ows phenomena and disturbances in the �ow due to the

presence of measurement instruments and equipments. Moreover, the value of the AVDR

for the experiments, carried out in [28] for determining the maximum static pressure ratio

and the corresponding total-pressure loss coe�cient varying the inlet Mach number, is not

reported, so a complete consistency between the numerical results and the experimental

data is not ensured. To summarize, we can draw some conclusions of a general nature:

increasing inlet Mach number corresponds to an increase of the maximum static pressure

ratio and the total-pressure loss coe�cient.
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6.4 In�uence of static pressure ratio

Varying the static backpressure at a �xed inlet condition, that is for a �xed inlet Mach

number and a corresponding inlet �ow angle determined by the unique incidence condition,

modi�es the shock wave pattern inside the cascade passage and the exit �ow �eld, in

terms of mean exit �ow angle and exit Mach number. The overall performance, in terms

of total-pressure loss coe�cient, is in�uenced as well. The procedure for investigating the

in�uence of the static pressure ratio on the other cascade parameters was to set the inlet

Mach number and then increase gradually the static pressure ratio from low values to

the maximum value achievable by the cascade while mantaining periodicity, that is the

unique incidence condition. Five nominal inlet Mach numbers have been investigated.

Experimentally, varying the AVDR independently of the static pressure ratio is not

possible. In fact, static backpressure and AVDR are closely related to each other, since

varying the former in�uences the latter. As stated in [28], increasing the static pressure ra-

tio between the cascade entrance and the cascade exit is always followed by an increase in

the AVDR. Increasing the backpressure causes a considerable thickening of the boundary

layer and an enlargement of the wake width, with a corresponding reduction of the passage

between two adjacent blades. For that reason, the reference experimental data obtained in

[28] were a�ected by some scatter, due to the simultaneous increase of AVDR with static

pressure ratio. Hence, an e�ort to separate the in�uence of the AVDR and the static

pressure ratio on the main exit variables was made in [28]. The curves for the exit Mach

number, the exit �ow angle, and the total-pressure loss coe�cient reported in [28] are

referred as "semi-empirical" curves and were obtained by applying the conservation equa-

tions of gas dynamics (continuity, momentum, and energy) to a quasi-three-dimensional

control volume (assuming blade-to-blade periodicity). The mathematical procedure which

led to these semi-empirical curves for the main exit variables, reported in Figure 6.12, is

widely described in [28]. These curves can be useful for a qualitative comparison with the

numerical results, but some caution should be used if these curves are applied in a quan-

titative manner, since they are the results of a manipulation of the experimental data.

Moreover, the curves refer just to a single inlet Mach number and inlet �ow angle. The

AVDR in the simulations is always unity, so the results obtained via CFD are a�ected

only by the static pressure ratio. For that reason, the comparison between the CFD and

the experimental results must be done even more carefully, since the experimental data

were manipulated and some aspects may have been disregarded.
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Figure 6.12: Semi-empirical curves showing the in�uence of static pressure ratio and
AVDR on the main cascade exit variables
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This section is organized into three main subsections: the �rst one is concerned with

the in�uence of static pressure ratio on exit Mach number; the second one considers the

in�uence of static pressure ratio on the mean exit �ow angle and the �ow turning; the

third one deals with the in�uence of the static pressure ratio on cascade performance, in

terms of total-pressure loss coe�cient.

6.4.1 Exit Mach number

The in�uence of the static pressure ratio on the exit Mach number is reported in Figure

6.13. The curves in Figure 6.13 clearly reveal a linear dependence of the exit Mach number

on the static pressure ratio and this trend re�ects the one reported in [28]. Moreover, the

CFD results show that increasing inlet Mach number, for a �xed static pressure ratio,

corresponds to an increase in exit Mach number, while increasing static pressure ratio,

for a �xed inlet Mach number, corresponds to a decrease of the exit Mach number.
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Figure 6.13: In�uence of static pressure ratio on exit Mach number
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6.4.2 Exit �ow angle and �ow turning

The variations in exit �ow angle with static pressure ratio are reported in Figure 6.14.
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Figure 6.14: In�uence of static pressure ratio on exit �ow angle

As it can be seen, the trend of the CFD results depicted in Figure 6.14 substantially

re�ects the semi-empirical overall behaviour for an AVDR equal to unity reported in [28].

For example, increasing the static pressure ratio from low values (1.4) to high values

(2.5), for a �xed inlet Mach number (1.612), corresponds to an increasing and then a

decreasing of the mean exit �ow angle, with a net change almost null. For di�erent inlet

Mach numbers, that is lower than the design inlet Mach number, increasing the static

pressure ratio determines a similar behaviour of the mean exit �ow angle. The maximum

�ow turning has been calculated to be at most of 2◦ and this fact is experimentally

con�rmed. The maximum mean exit �ow angle is reached at near-sonic exit condition,

that is when the exit Mach number downstream of the cascade is near unity. This fact is

con�rmed in [17], even if for �at-plate cascades. The reason behind the di�erence between

measured and calculated exit �ow angles at the design operating condition has already

been discussed and it is related to mesh quality. Another interesting observation can be

done looking at the contours of the Mach number resulting from the increasing in static
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pressure ratio. It can be seen that from low to moderate static pressure ratios, the wake

at the trailing edge is thin and almost symmetrical; at high pressure ratios the wake is

asymmetrical and relatively thick, sign of a signi�cant boundary layer separation on the

suction side. The variation of the wake width from low to high static pressure ratio is

reported in Figure 6.15 (static pressure ratio is increased from top to bottom).

Figure 6.15: Variations of wake width with static pressure ratio
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6.4.3 Total-pressure loss coe�cient

The total-pressure loss coe�cient curves are plotted in Figure 6.16.
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Figure 6.16: In�uence of static pressure ratio on total-pressure loss coe�cient

Generally speaking, taking a look at Figure 6.16, some considerations about the total-

pressure loss coe�cient can be made varying inlet Mach number for a �xed static pressure

ratio or, on the other hand, varying static pressure ratio at �xed inlet conditions.

For a �xed static pressure ratio, increasing inlet Mach number corresponds to an

increase of the total-pressure loss coe�cient. This fact is quite obvious, since increasing

inlet Mach number, that is �ow speed, corresponds to an increase in strength of the shock

waves. As a consequence, shock losses and viscous losses increase, since the boundary-

layer separation on the suction side is stronger. Thus, the total-pressure loss coe�cient

increases.

For a �xed inlet Mach number, increasing static pressure ratio from low to moderate

values causes an increase in total-pressure loss. It has been found that the total-pressure

loss coe�cient is maximum when a normal shock wave is situated near the exit of the

cascade passage. This statement is experimentally con�rmed in [28]. On the other hand,

keeping the inlet conditions �xed and varying the static pressure ratio from moderate
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to high values, leads to a reduction of the total-pressure loss coe�cient. The general be-

haviour is that increasing the static backpressure from moderate to high values determines

a reduction in shock losses, but, on the other hand, causes an increase in viscous losses due

to the strong suction side boundary layer separation. In fact, the lambda shock patterns,

which are produced by the interaction between the shock waves and the boundary layer,

lead to a reduction of shock losses, but determine a corresponding increase in viscous

losses. In fact, the lambda-shock systems rising in the passage determine a reduction in

strength of the shock waves within the passage, but cause a considerable thickening of

the boundary layer. The minimum total-pressure loss point is achieved just before the

cascade spill point condition occurs. This fact has been experimentally demonstrated in

[24], even if for a MCA pro�le cascade at slightly supersonic/transonic inlet Mach num-

bers, that is for an operating condition characterized by weaker shock wave-boundary

layer interaction. However it is necessary to make a distinction. For relatively low inlet

Mach numbers, that is for 1.32 and 1.40, the downward trend of the total-pressure loss

coe�cient with increasing static pressure ratio is kept until the maximum cascade static

pressure ratio is reached. On the other hand, for higher inlet Mach numbers (1.51, 1.58,

and 1.612), the total-pressure loss coe�cient reaches its minimum at a certain value of

the static pressure ratio and then it raises again. This trend could be due to three main

reasons:

• the in�uence of AVDR on total-pressure loss coe�cient. The increasing of viscous

loss due to the strong boundary layer separation on the suction side can be mitigated

only by increasing the AVDR, as has been experimentally demonstrated in [28]. In

fact, an increase in AVDR reduces shock losses and viscous losses related to the shock

wave-boundary layer interaction on both the pressure side and the suction side. In

addition, wake width is considerably reduced when AVDR is increased and this

corresponds to a reduction of overall losses, a reduction of the mean exit �ow angle,

and an increase in the �ow turning. Since in a real supersonic compressor cascade,

periodic or not, increasing the static backpressure corresponds to an increase in

AVDR, and an increase in AVDR leads to a reduction of viscous loss, the total-

pressure loss coe�cient decreases if the static pressure ratio is increased to higher

values than the design one. Moreover, the loss reduction due to the increasing of the

AVDR is more pronounced at higher static pressure ratios, as has been demonstrated

in [28] for the present cascade and in [13] for a similar one. Since all the simulations

were carried out with a unity AVDR, the overall behaviour of the total-pressure loss

coe�cient is a�ected only by the static pressure ratio and not by the in�uence of the

AVDR. Hence, the trend of the total-pressure loss coe�cient beyond the minimum
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point may be not completely realistic (for that reason it has been depicted with

dashed lines). In order to better reproduce the cascade behaviour, it would be

necessary to consider the in�uence of the AVDR, which cannot be reproduced in a

two-dimensional simulation;

• the reaching of the limits for the turbulence model applicability, due to the large

boundary layer separation and the high level of shock wave-boundary layer interac-

tion, which can lead to an overestimation of the viscous loss and, as a consequence,

of the total-pressure loss;

• the fact that the cascade maximum static pressure ratio results slightly overesti-

mated, so the cascade is operating at static pressure ratios beyond the spill point,

even if the unique incidence condition is still valid. For that reason, the operating

conditions beyond the experimental maximum static pressure ratio could not have

any physical meaning.

An important observation can be made comparing the semi-empirical curves for the total-

pressure loss coe�cient reported in Figure 6.12 with the curves resulting from the para-

metric study reported in Figure 6.16. It can be easily noted that the numerical trend

does not correspond to the semi-empirical one. This is simply due to the fact that the

semi-empirical trend of the total-pressure loss coe�cient has been determined manipulat-

ing the experimental data in order to separate the in�uence of AVDR from that of the

static pressure ratio. Since the experimental data have been mathematically manipulated

by applying the conservation equations, some aspects have been neglected. In fact, as

stated in [28], the semi-empirical loss-coe�cient curves have not been determined using

measured loss data, but following an indirect approach. On the other hand, the curves

resulting from the CFD analysis have been determined calculating the total-pressure loss

coe�cient directly from the resulting values of total pressure upstream and downstream of

the cascade. Moreover, the total-pressure loss coe�cient, since the AVDR is unity in a 2D

simulation, is a�ected only by the variation of the static pressure ratio. In summary, the

overall trend of the total-pressure loss coe�cient taking into account only the in�uence

of the static pressure ratio could be summarized as follows: increasing the static pressure

ratio from low to moderate values corresponds to an increase in the total-pressure loss co-

e�cient; the point of maximum total-pressure loss corresponds to the condition in which a

normal shock wave is located at the blade passage exit; increasing then the static pressure

ratio from moderate to high values determines an overall reduction in total-pressure loss

until a mimimum total-pressure loss point is achieved. The unique incidence is valid for

all the operating conditions below the maximum achievable static pressure ratio.
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Table 6.5: Cascade parameters variations with static pressure ratio (M1 = 1.32)

M1 = 1.32

Static pressure ratio Exit �ow angle Exit Mach number Total-pressure loss coe�cient

p2/p1 β2 M2 ω

1.1 58.8 1.21 0.066

1.2 59.3 1.14 0.070

1.4 59.5 1.01 0.086

1.6 59.1 0.89 0.088

1.7 58.8 0.84 0.080

1.8 58.4 0.79 0.070

1.9 58.2 0.76 0.064

Table 6.6: Cascade parameters variations with static pressure ratio (M1 = 1.40)

M1 = 1.40

Static pressure ratio Exit �ow angle Exit Mach number Total-pressure loss coe�cient

p2/p1 β2 M2 ω

1.1 58.8 1.29 0.064

1.2 59.5 1.23 0.066

1.4 60.0 1.10 0.077

1.6 59.9 0.98 0.100

1.7 59.7 0.92 0.108

1.8 59.5 0.87 0.099

1.9 59.3 0.83 0.090

2.0 58.9 0.78 0.080

2.06 58.6 0.76 0.077

Table 6.7: Cascade parameters variations with static pressure ratio (M1 = 1.51)

M1 = 1.51

Static pressure ratio Exit �ow angle Exit Mach number Total-pressure loss coe�cient

p2/p1 β2 M2 ω

1.4 60.7 1.22 0.076

1.6 61.0 1.11 0.091

1.8 60.9 1.00 0.116

2.0 60.5 0.90 0.122

2.12 60.3 0.85 0.113

2.16 60.2 0.84 0.109

2.21 60.0 0.82 0.106

2.25 59.8 0.80 0.107

2.31 59.5 0.77 0.109
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Table 6.8: Cascade parameters variations with static pressure ratio (M1 = 1.58)

M1 = 1.58

Static pressure ratio Exit �ow angle Exit Mach number Total-pressure loss coe�cient

p2/p1 β2 M2 ω

1.4 60.9 1.30 0.072

1.6 61.7 1.19 0.080

1.8 61.8 1.08 0.106

2.0 61.5 0.98 0.132

2.12 61.2 0.93 0.136

2.16 61.1 0.91 0.134

2.21 61.0 0.89 0.130

2.30 60.8 0.86 0.122

2.41 60.4 0.81 0.125

2.47 60.1 0.79 0.129

Table 6.9: Cascade parameters variations with static pressure ratio (M1 = 1.612)

M1 = 1.612

Static pressure ratio Exit �ow angle Exit Mach number Total-pressure loss coe�cient

p2/p1 β2 M2 ω

1.4 61.0 1.33 0.069

1.6 61.8 1.23 0.083

1.8 62.0 1.12 0.104

2.0 61.9 1.02 0.125

2.12 61.7 0.96 0.141

2.15 61.6 0.95 0.142

2.21 61.5 0.93 0.139

2.30 61.4 0.89 0.132

2.41 61.0 0.85 0.129

2.47 60.7 0.82 0.134

2.53 60.4 0.80 0.138



6.4 INFLUENCE OF STATIC PRESSURE RATIO 137

6.4.4 Shock wave pattern and �ow �eld

As previously stated, static pressure ratio a�ects not only the performance of a cascade,

but also the shock wave pattern and the �ow �eld within the blade passage. In Figure

6.17, Figure 6.18, and Figure 6.19 a sketch of the shock wave pattern is reported for an

inlet Mach number of 1.32 and for the design inlet Mach number. The static pressure ratio

is increased from low, to moderate, and then to high values, that is the static pressure

ratio varies from values below to values above the design static pressure ratio. Taking a

look at the wave pattern for di�erent static pressure ratios at a �xed inlet condition, it

can be noted how deeply the increase in static pressure ratio a�ects the �ow �eld through

a supersonic compressor cascade. As it can be seen, the shock wave pattern also varies

according to the value of the inlet Mach number.

At low static pressure ratios, an oblique shock system develops from the trailing-edge

of the pro�les and spreads into the downstream region. The oblique shock waves at the

trailing-edge are re�ected on the pressure side of the adjacent blade and give rise to a

complex interaction with the wake. The re�ection of the shock-wave on the pressure side

can produce a weak boundary-layer separation with reattachment.

Increasing the static backpressure from low to moderate values moves the shock at

the trailing-edge forward into the blade passage. The shock wave located at the trailing-

edge becomes gradually a normal shock wave, forming a lambda-shock structure at the

suction side. For lower inlet Mach numbers, the lambda shock near the trailing edge of

the airfoil is conspicuously smaller. The resulting shock wave-boundary layer interaction

on the suction side causes a boundary-layer separation. In this operating condition, the

�ow �eld inside the cascade passage is characterized by a �rst passage shock near the

entrance of the cascade passage and a second passage shock close to passage exit, with

one or more re�ected shocks. At design inlet conditions, this wave pattern is kept until

the design static pressure ratio is achieved.

At high static pressure ratios, the oblique shock located at the passage entrance be-

comes a quasi-normal shock forming a lambda-shock with a related boundary-layer sepa-

ration, while the second passage shock moves forward in the blade passage. The second

passage shock, as it moves inside the passage, reduces its strength until it almost disap-

pears. The width of the wake has considerably increased, a�ecting all the covered passage

and the rearmost portion of the suction side, causing a shrinking of the passage area

and an increase in viscous loss. For lower values of inlet Mach number, since the shock

wave-boundary layer interaction is weaker, the boundary layer separation on the suction

side is smaller and the wake is visibly thinner.
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Figure 6.17: Numerical Schlieren pictures at low static pressure ratios for two values of
inlet Mach number
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Figure 6.18: Numerical Schlieren pictures at moderate static pressure ratios for two
values of inlet Mach number
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Figure 6.19: Numerical Schlieren pictures at high static pressure ratios for two values of
inlet Mach number
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The point of minimum total-pressure loss is reached when the �rst passage shock has

become a quasi-normal shock located near the leading-edge. At the operating condition

with minimum total-pressure loss, the shock at the passage entrance is still attached. On

the other hand, the maximum total-pressure loss coe�cient is obtained when a normal

shock wave is located near the passage exit. For example, in Figure 6.20 a sketch of

the shock wave pattern for the condition in which the total-pressure loss is maximum is

reported. It refers to an operating condition with a nominal inlet Mach number of 1.58 and

a static pressure ratio of 2.12, which corresponds to the point of maximum total-pressure

loss.

Figure 6.20: Example of the shock wave pattern at maximum total-pressure loss point



142 CHAPTER 6. PARAMETRIC STUDY OF ARL-SL19 SUPERSONIC CASCADE

6.5 In�uence of cascade solidity

As stated before, cascade solidity deeply a�ects the overall performance of a supersonic

compressor cascade. In fact, changing the solidity determines a modi�cation of the passage

width and, as a consequence, of the shock wave pattern inside the blade passage.

In order to analyze the in�uence of cascade solidity on the overall performance of the

cascade, �ve cascades with di�erent values of solidity were constructed. The variation

in solidity has been performed varying the pitch and mantaining the blade chord (85

mm). Thus, it has been necessary to slightly modi�ed the mesh for each analyzed value

of cascade solidity. Table 6.10 summarizes the cascade solidity values employed in the

simulations and the corresponding values of the cascade pitch.

Table 6.10: Investigated range of cascade solidity

Solidity Pitch

σ s [mm]

1.47 57.82

1.50 56.67

1.5294 55.58

1.56 54.49

1.60 53.125

As can be seen, for a �xed value of the blade chord, increasing the cascade solidity

corresponds to a decrease of the cascade pitch. Moreover, increasing the cascade solidity

corresponds to an increase of the length of the covered passage, since adjacent blades

are closer to each other. The range of variation of the solidity is not too large, since in

supersonic cascades small changes in geometry can produce great variations in the shock

pattern, leading to unexpected results. The variation in cascade solidity from the baseline

value of 1.5294 is around 5%, while the overall variation from the lower value (1.47) to

the higher value (1.60) is approximately 9%.

The in�uence of the cascade solidity was carried out by examining some values of

static pressure ratio in the range between the maximum and minimum total loss point,

for an inlet Mach number equal to 1.612, that is the design inlet Mach number. The

baseline cascade has a solidity equal to 1.5294, as previously speci�ed. The calculated

total-pressure loss coe�cient for each value of cascade solidity and static pressure ratio is

reported in Table 6.11, 6.12, and 6.13.
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Table 6.11: In�uence of solidity on total-pressure loss coe�cient (p2/p1 = 2.15)

p2/p1 = 2.15

Solidity Total-pressure loss coe�cient

σ ω

1.47 0.142

1.50 0.143

1.5294 0.142

1.56 0.141

1.60 0.140

Table 6.12: In�uence of solidity on total-pressure loss coe�cient (p2/p1 = 2.30)

p2/p1 = 2.30

Solidity Total-pressure loss coe�cient

σ ω

1.47 0.133

1.50 0.132

1.5294 0.1316

1.56 0.131

1.60 0.132

Table 6.13: In�uence of solidity on total-pressure loss coe�cient (p2/p1 = 2.40)

p2/p1 = 2.40

Solidity Total-pressure loss coe�cient

σ ω

1.47 0.132

1.50 0.131

1.5294 0.129

1.56 0.127

1.60 0.125
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These results demonstrate that increasing cascade solidity corresponds to a reduction

of the total-pressure loss coe�cient and, as a consequence, an increase in cascade e�ciency.

By comparing the total-pressure loss coe�cient calculated at the design static pressure

ratio and at the minimum loss static pressure ratio, for the maximum and the minimum

values of cascade solidity considered, the decrease in total-pressure loss is around 2% and

5%, respectively. For that reason, it can be concluded that increasing the solidity of the

cascade results in a reduction of the total-pressure loss. However, supersonic compressor

cascades are quite susceptible to changes in solidity and, for that reason, solidity cannot

be modi�ed above certain limits. The in�uence of cascade solidity on the total-pressure

loss coe�cient for a �xed static pressure ratio is reported in Figure 6.21. Conversely, the

in�uence of static pressure ratio on the total-pressure loss coe�cient for a �xed value of

the solidity is reported in Figure 6.22.

As regards the other exit �ow variables, that is mean exit �ow angle, exit Mach

number, and inlet �ow angle, which is a dependent variables related to the inlet Mach

number by the unique incidence, changes in solidity did not provide signi�cant variations.

As stated before, even small variations in cascade solidity can provide great change in

the shock wave pattern and in the �ow �eld within the blade passage. In fact, increasing

or decreasing the cascade solidity of about 5% from the baseline value corresponds to

a deep modi�cation of the shock wave layout inside the passage. The Figures in the

following pages compare the shock wave patterns obtained with a solidity equal to 1.47,

1.5294, and 1.60, respectively. The static pressure ratio is increased from left to right. As

we can see, increasing the cascade solidity determines a lengthening of the blade covered

passage and an increment of the number of shock waves within the passage. Consequently,

the �ow passing through each shock wave is slower, the strenght of the shock waves is

reduced, and then the shock loss decreases, determining a reduction in total-pressure

loss. Even if the behaviour of the �ow passing throughout a supersonic cascade may

not be easily understood, this simple consideration could explain the total-pressure loss

coe�cient trend resulting from the simulations. However, the increased number of shocks

inside the passage determines a stronger interaction with the boundary layer, which tends

to become thicker as the cascade passage becomes narrower, because of the increase in

solidity. It may also be seen that, when cascade solidity is increased, the oblique shock

re�ected on the suction side of the adjacent blade does not impinge anymore on the quasi-

normal portion of the second passage shock, but on the pressure side of the blade by which

it is generated, creating a more complex interaction with the boundary layer on the blade

surface.
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Figure 6.21: In�uence of cascade solidity on total-pressure loss coe�cient for a �xed
static pressure ratio
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Figure 6.22: In�uence of static pressure ratio on total-pressure loss coe�cient for a �xed
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Figure 6.23: Numerical Schlieren pictures of the cascade �ow �eld at di�erent static
pressure ratios for σ = 1.47

Figure 6.24: Numerical Schlieren pictures of the cascade �ow �eld at di�erent static
pressure ratios for σ = 1.5294

Figure 6.25: Numerical Schlieren pictures of the cascade �ow �eld at di�erent static
pressure ratios for σ = 1.60
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Moreover, taking a look at the magnitude of the density gradient and at the Mach

number contours at the leading-edge for a cascade solidity equal to 1.47 and 1.60, it can be

noticed that the pre-compression shock intersects the bow shock of the adjacent blade on

the suction side and on the blade leading-edge, respectively. Reasonably, a further increase

in solidity makes the pre-compression shock to intersect the bow shock of the adjacent

blade on the pressure side. The condition in which the pre-compression shock intersects

the bow shock of the adjacent blade at the leading-edge corresponds to the maximum

e�ciency operating condition. If the intersection point is on the pressure side, the �ow

upstream of the cascade is not in�uenced by the pre-compression shock; conversely when

the intersection point is on the suction side, the pre-compression shock in�uences the �ow

in the upstream region of the cascade.

Figure 6.26: Numerical Schlieren pictures of the leading-edge for σ = 1.47 and σ = 1.60

Figure 6.27: Mach number contours for σ = 1.47 and σ = 1.60
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Conclusions

The thesis provided a detailed study of the two-dimensional �ow in a linear supersonic

compressor cascade. After a preliminary mesh validation study, a parametric analysis was

carried out in oder to investigate the in�uence of the main �ow and geometric quantities

on the overall cascade performance, highlighting their e�ects on the main exit �ow vari-

ables. The numerical results of the parametric study of the two-dimensional supersonic

compressor cascade, known as ARL-SL19, have been presented and widely discussed. The

cascade was tested over a quite wide range of inlet Mach numbers, static pressure ratios,

and cascade solidity. The main results obtained from the validation and the parametric

study, which was the focus of the present work, can be summarized as follows:

• the results obtained with the SA model showed the best agreement with the exper-

imental data;

• the results concerning the numerical determination of the unique incidence for the

cascade present good agreement with the experimental data and the analytical re-

sults;

• the design operating condition (M1 = 1.612, p2/p1 = 2.15, AVDR= 1.00) is well

reproduced by the numerical model. The calculated total-pressure loss coe�cient

was 0.142, with a corresponding �ow turning of −3.4◦, against measured values of

0.143 and −3.4◦, respectively;

• a linear dependency of the maximum static pressure ratio achievable by the cas-

cade on inlet Mach number was determined, over the range of inlet Mach numbers

considered;

• increasing the static pressure ratio from low to moderate values corresponds to

an increase in total-pressure loss, while increasing the static pressure ratio from

moderate to high values corresponds to a reduction in total-pressure loss;

• it has been numerically con�rmed that the maximum �ow turning occurs at near-

sonic exit conditions;

149
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• a linear dependency of the exit Mach number on static pressure ratio was found;

• a moderate increase in cascade solidity corresponds to a reduction in total-pressure

loss of around 2%-5% for static pressure ratios in the range between the design value

and the static pressure ratio near the minimum loss point.

The CFD results have shown that the numerical solver ANSYS R© Fluent provides a quite

accurate solution of the two-dimensional supersonic �ow through the ARL-SL19 super-

sonic compressor cascade and an excellent reproduction of the shock wave pattern in front

and within the cascade passage. The overall performance data for di�erent operating con-

ditions are well predicted and in quite total agreement with the available experimental

data. The results obtained from the parametric study in the present work may be of

support to the preliminary design of a transonic/supersonic compressor cascade, the cor-

responding rotor blade section, or the stage of a supersonic compressor or fan, because

they provide an accurate description of the in�uence of the main �ow and geometric pa-

rameters on the performance, the exit �ow variables, and the shock wave pattern in the

cascade.

Future works and developments

Many other di�erent aspects of the supersonic cascade treated in this thesis can be

investigated in order to have a fuller and more developed analysis. As stated before, the

present thesis has been mainly focused on the investigation of the main �ow and geometric

quantities, such as inlet Mach number, static pressure ratio, and solidity, on the overall

cascade performance and on the shock wave pattern throughout the blade passage, whose

knowledge is essential for the preliminary design of a supersonic compressor rotor. Even if

the abovementioned quantities are the ones which deeper in�uence the behaviour and the

performance of a supersonic cascade, additional variables can be considered for carrying

out a parametric study as comprehensive as possible. For that reason, the Reynolds

number Re, the maximum thickness t of the blade section, the leading-edge radius rLE,

and the stagger angle βs can be investigated in a parametric study, highlighting their

in�uence on the cascade performance, on the cascade mean exit �ow variables, and on the

cascade inlet �ow variables. For example, varying the Reynolds number can slightly a�ect

the value of the unique incidence inlet �ow angle, while a modi�cation of the leading edge

radius can a�ect the precompression shocks. 3D simulations can be carried out in order

to investigate the in�uence of the AVDR on the cascade. Moreover, a single-objective or a

multi-objective design optimisation can be carried out on the S-shape airfoil of the cascade,
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with a following parametric study aimed at �nding the more e�cient blade shape. Lastly,

since the airfoils for supersonic turbomachines are very thin structures introduced into a

high speed �ow, they can be characterized by the dangerous aeroelastic phenomenon of

�utter, which can seriously a�ect the integrity of the blade. For that reason, an aeroelastic

analysis can be carried out, testing di�erent sections and material properties.
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