
1

Università degli Studi Di Padova
Dipartimento di Fisica e Astronomia “Galileo Galilei”

Corso di laurea in Fisica
TESI DI LAUREA IN FISICA

Deep Learning techniques to search
for New Physics at LHC

Relatore
MARCO ZANETTI

Candidato:
GAIA GROSSO

ANNO ACCADEMICO 2016-2017

2

3

Sommario
L’obiettivo di questa tesi è applicare i più recenti algoritmi di apprendimento automaticoper risolvere problemi
di discriminazione tra processi di segnale e processi di fondo in fenomeni di collisione tra particelle elementari

che hanno luogo a LHC, l’acceleratore di particelle di Ginevra. La prima parte del lavoro consiste in
un’introduzione sull’algoritmo di apprendimento automatico e sull’architettura delle reti neurali usate per

implementarlo. Successivamente viene fornita una breve descrizione dell’esperimento fisico che si svolge a LHC e
delle usuali tecniche di analisi. Infine, dopo aver delineato il particolare processo di segnale da noi preso in

considerazione, vengono presentati i principali risultati ottenuti dal nostro studio. In particolare verrà provata
la tesi secondo la quale architetture neurali complesse, in particolare le reti profonde, allenate a processare dati
relativi alle variabili cinematiche del fenomeno osservato sono in grado di uguagliare o persino superare le
prestazioni di reti neurali più semplici, quelle non profonde, allenate con dati relativi a variabili non lineari
ricavate dalle grandezze cinematiche per ridurre lo spazio delle fasi. Questo risultato è di forte interesse per i
prossimi sviluppi nella ricerca a LHC dal momento che fornisce uno strumento valido per la selezione di segnali

di nuova fisica, per i quali potrebbe non essere chiaro quale siano le variabili non lineari da ricostruire.

Abstract
The purpose of this thesis is to apply more recent machine learning algorithms based on neural network

architectures in order to discriminate signal from background processes in particle collisions experiments which
take place at LHC, in Geneva. First part of this work concerns with neural network architecture and learning
algorithm brief description. Then we outline LHC experiments and analysis tools. Finally we introduce our

work focusing on the physics of signal process used for our tests and we show our principal results. In particular,
we shall confirm that complex neural architectures, namely deep networks, trained on raw kinematics features of
particles produced in the process are able to equal or even surpass performances of simpler neural architectures,
namely shallow networks, trained on few non linear variables derived from kinematic ones to reduce phase space.
This result has a great impact on particle physics research carried on at LHC since it gives a valid alternative

analysis tool to classify signals of new physics, especially when non linear features of interest will be yet
unknown.

4

Contents

I Neural Networks 5

1 The architecture of Neural Networks 7
1.1 Perceptron . 7
1.2 Sigmoid . 8
1.3 Neural Network . 9

2 Learning Algorithm 11
2.1 Loss function . 11
2.2 Optimizer . 12
2.3 Fitting the model . 13

2.3.1 The problem of overfitting . 13
2.3.2 Reducing overfitting: regularization techniques . 14
2.3.3 Weights initialization . 15

II Searching for Exotic Particles in High-Energy Physics with Deep Learning 19

3 The Physics of LHC 21

4 Baldi, Sadowski and Whiteson 25
4.1 The purpose: Shallow Network and Deep Network . 25

4.1.1 Shallow a Deep Networks Complexity . 25
4.2 The topic of the study: process involving new exotic Higgs bosons 27
4.3 Dataset . 27
4.4 Computational tools . 30
4.5 Methods . 30

4.5.1 Validation and testing split . 31
4.5.2 Models . 31
4.5.3 Predetermined hyper-parameters set up . 31
4.5.4 Experiment on new tools for machine learning . 31

4.6 Analysis . 32
4.6.1 Figure of Merit . 32

III Conclusions 35

5 Results 37
5.1 Performances optimization . 37

5.1.1 Data set size . 37
5.1.2 Layer size . 39
5.1.3 Number of hidden layers . 39

5.2 Model error . 41
5.3 Tests on regularization techniques . 43

5.3.1 Autoencoder pre-training and weight initialization . 43
5.3.2 Reducing over-fitting: Dropout . 46

5.4 Comparing Shallow and Deep Networks . 48
5.5 Comparing with Baldi, Sadowski and Whiteson results . 49

i

ii CONTENTS

6 Applying results to discover new Physics 51
6.1 Figure of merits: the physical meaning of our work . 51

7 Future prospectives 55

Appendices 57

A Data simulation 59

Introduction

1

The physics of data

Physicist’s work is based on observing. He watches facts and drives conclusions about how they happen. Physics
has been subject of human investigation since abstract concepts started being made by our mind. This because
driving conclusions means deducing a general truth from a series of particular events having something in
common. As for the mind of a child, the level of understanding of the world have been changed through the
centuries from ancient times up to now, especially thanks to the development of technologies for observation,
which have allowed to enlarge the range of visible phenomena. Mankind has actually surrounded himself with
extensions of his senses able to collect information from the external world; as a consequence of that, he had to
think up new analysis tools to help data to be interpreted. At the beginning, when the only objects men were
able to scan were in scale of human visible, there was the first approach to logical and mathematical languages.
Then they had to be expanded to keep up with growth of information complexity.

During last century, scientists came to explore both subatomic world and first stages of Universe; thanks to
detectors, radioscopes, telescopes and others they collected at incredible speeds more and more large numbers of
data which can assume a variety of shapes. Now they often are named banally big data. To handle them, human
engine was no more sufficient and, as for human senses, also for human brain new extensions were designed,
firstly calculators and then computers.

Calculators speeded up evaluation of a single mathematical operation, while computers allowed the assessment
of multiple operations at a time, opening the way to more and more complex algorithms.

Nowadays computer science is an integral part of physicists’ skill sets since Laws of Physics are often intricate
functions and some of them can not be determined analytically. The principal usages of computers in physicists’
work are numerically solving no analytical functions by approximation (Deterministic Methods) and generating
data sample knowing their probability distribution (Stochastic Methods). The two methods satisfy mathematical
calculus requirements. However, both of them can be implemented only if we take for granted to already know
those functions we want to approximate from our knowledge of Physics Laws.
What if we don’t have a theoretical model?

“Physics emerged from the realization that mathematics could be used as language to reason about our
observations of the natural world. From Galileo onwards, the goal of modern experimental physics has been
to isolate the phenomena of interest in an experiment for which theoretical physics could posit the underlying
mathematical model by just thinking about it. This leads to a strategy that statistics and machine learning
would call generative models, as they are capable to generate synthetic data prior to any observations (also
known as predictions). In general physicists do not think of models being generative because what else could
they be? But it is a choice nonetheless.” 1

More recent developments in the field of informatics meet the requirements of abstraction capability necessary
to infer concepts by evidence. They are application of Artificial Intelligence: complex algorithms able to fit a
large number of given data to just as large number of parameters in order to estimate an engineering model, or
rather an empirical model. Those algorithms actually learn in a similar way as a complex of human neurons do,
thus they are called neural networks.
Men give to the neural network a set of known inputs and respective outputs, called training data; thanks
to them the net can experience and varying the value of the parameters such that the resulting model would
approximate the data as best as it could. These methods, for which model training outputs have to be already
known to the net, are called supervised learning algorithms and generally they deal with events classification.
Conversely, when outputs are not needed we talk about unsupervised learning algorithms, concerning clustering
of events bearing similarities.
The exploit of machine learning techniques for data analysis has been delayed in joining physical matters, since
the generative approach is more of all ingrained in this subject.

1The physics of data, Jeff Byers [1]

3

4 CONTENTS

First evidences of machine learning great successes contributed to revolutionize the ideal of model in physics,
thereby facilitating a more data-centric approach, described by Bayesian statistics.

The Bayesian statistics is based on moving the accent from the simple assumption of a theoretical model
probability (P (model)), called Prior, to the deeper concept of “probability of the model, given the data”
(P (model|data)), called Posterior. The latter can be computed as follows

P (model|data) = P (data|model)P (model)
P (data)

This expression tells us that, while the prior completely ignore how behaves real world, the posterior is weighted
by the evidence of a certain data set, P (data) and by the probability of observing that set of data taking for
granted the model (P (data|model)).

Jeff Byers’ words in merits summarize exhaustively what the point is:

“The prior over models does not represent anything physical in the world but, instead, our varying
confidence about models in the world in our minds.” 2

New computational tools allow to choose models comparing the theoretical ones with those constructed
starting from real data.

Certainly, even though the name artificial intelligence might be misleading, learning algorithms are perhaps
able to tell us something about how the data was created but nothing about why. This is matter for human
deduction.

The topic of this thesis is to present the most recent achievement in particle physics data analysis due
to supervised learning algorithms based on deep learning networks (Chapter 4 and 5). Before starting, we will
introduce what machine learning is (Chapter 1 and 2) and the physical context of elementary particle within
which we would like to apply it (Chapter 3). At the end of the essay we would finally show which advantages
this kind of computational algorithms would bring to High Energy Physics statistical analysis (Chapter 6), and
future prospectives about their deplyment (Chapter 7).

2The physics of data, Jeff Byers [1]

Part I

Neural Networks

5

Chapter 1

The architecture of Neural Networks

The purpose of this chapter is to describe an algorithm which, given some data about an event as inputs, may
be able to label it as event of interest, namely a "signal", or not of interest ("background"). More precisely, we
are interested in building a computing engine able to learn some kind of relation between several inputs and a
single output, a map f : IRn → IR, which could be used as predictive model. Machine learning algorithms based
on neural networks computation are what we need.

1.1 Perceptron

Figure 1.1: Diagram of a perceptron [2]

The first step to get into neural networks is to describe the
simplest artificial neuron: the perceptron.

The perceptron gets a set of binary inputs (x1, ..., xn) and
returns a single binary output through the rule:

output =
{

0 if
∑n
i wixi ≤ threshold

1 if
∑n
i wixi ≥ threshold

where the threshold value is a measure of how easy is to get
the perceptron to fire (output a 1) and the weights, (w1, ..., wn),
enable the neuron to give different significance to every piece of
information in input. It is possible to simplify this description by defining the bias

b = −thresold

and the scalar product

w · x =
n∑
i

wixi

where w = (w1, ..., wn) and x = (x1, ..., xn) represent the set of weights and that of inputs.
In this terms, the output becomes

output =
{

0 if w · x+ b ≤ 0
1 if w · x+ b ≥ 0

Every choice of the parameters (w, b) determines a different predictive model. Because of the binary nature of
the output, the perceptron is an algorithm of binary classification.

Figure 1.2: Neural network of perceptrons [2]

Considering the perceptron as a unit, it is possible to create
more complex neural structures, where only few preceptrons
(input neurons) take as input the set of data (x1, ..., xn), while
the others take as input the outputs of the previous, creating a
net as shown in Figure 1.2.

This kind of neuron could be very useful to build logic circuits,
since it makes simple computing fundamental operations as AND,
OR, NAND, but it shows some limits when it is used to learn an
algorithm. Let’s suppose we have a neural network of perceptron

which has learned an algorithm by finding the best set of parameters to describe the data; in order to state

7

8 CHAPTER 1. THE ARCHITECTURE OF NEURAL NETWORKS

weather the net has worked well or not we need to associate an error to the model. The learning algorithm works
well if small changes in the model lead to small changes in the output. For a perceptron, the smallest change in
the output is 1, which is actually the only one possible; so every small variation in one of the parameter, big
enough to provoke a variation, completely overturns the result. This is why the perceptron can not be a good
choice as unit of building for a learning network. The matter to be solved is the discreteness of the output.

1.2 Sigmoid

Figure 1.3: Activation functions [2]

Sigmoid neuron overcomes the lacks of perceptron neuron. It takes a
set of real inputs, included between 0 and 1, and return a single real
output, included between 0 and 1. To compute the output, first the
variable z is evaluated as

z = w · x+ b

and then z is used to evaluate the logistic function (or sigmoid function)

σ(z) = 1
1 + e−z

which is a specific form of what is called, in terms of neural network,
Activation function. It is evident that both perceptron activation
function and sigmoid one are particular forms of the Fermi function

F (z) = 1
1 + e−az

with different values of the parameter a: a = 1 for the sigmoid function
and a → + inf for the perceptron one. So the perceptron can be
thought as a simpler limit case of the sigmoid neuron.

As we can see from Figure 1.3, the logistic function takes values
that smoothly vary in the interval between 0 and 1, up to saturation.
This smoothness is crucial since it leads to the following expression for
the output error

∆outut ≈
∑
j

∂output

∂wj
∆wj + ∂output

∂b
∆b

which is a linear function of ∆wj and ∆b. That means, by choosing small enough ∆wj and ∆b it is possible to
achieve any desired small ∆outut. So, in principle, there is no limit to the improvement of a neural network,
such that it makes sense looking for a best configuration in order to find more more correct models. This is why
last works in artificial neural networks use sigmoid neurons as fundamental constituent.

Model of artificial neurons Sigmoid function is not the only function that can be used for artificial neural
networks. As it was been remarked above, the smoothness is the required property for a good activation function.
So any other function that regularly increase from any minimum value to a maximum one would be the same.
Here there are some examples of neurons commonly used in artificial neural networks:

• Sigmoid neuron: already discussed in the section above σ(z) = 1
1+e−z

• Tanh neuron: is a rescaled version of sigmoid function σ(z) = tanh(z) = ez−e−z

ez+e−z

• Rectified linear neuron: its peculiarity is the absence of an asymptotic value for saturation σ(z) =
max(0, z)

The reason why only few possible continuous functions are implemented in neurons is the suitability of their
derivatives ∂output

∂wj
and ∂output

∂b : functions composed of exponential expression are the easiest to derivate and
imply the smallest computational effort. We have already encountered these partial derivatives in the expression
of ∆output, but their effective role will be explained completely in next chapter.

1.3. NEURAL NETWORK 9

1.3 Neural Network
Now that is clear what an artificial neuron is and how it works, we can go on describing a complex structure
composed of neurons: the neural network. 1

In principle, any architecture based on neuron-like nodes is possible. Anyway learning algorithm performance
is strictly dependent on the particular design chosen for the net. This is why neural networks researchers have
developed typical design heuristics for the most common cases.

Figure 1.5: Feedforward neural network[2]

Feedforward neural networks. In general, as we can
see from the example shown in Figure 1.5, a feedforward
neural network is composed of an input layer, on the left, an
output layer, on the right, and, in the middle, the so called
hidden layers. This kind of multiple layers network is some-
times called multilayer perceptrons (MLPs) for historical
reasons, even if it is not actually composed of perceptrons.
The name Feedforward, instead, put in evidence the absence
of loop in feeding the input neurons: information is always
fed forward, never fed back, contrary to what happens in
Recurrent neural networks.

Recurrent neural networks. It is a class of artificial
neural networks where connections between neuron-nodes
form a circle. For the purposes of this work, we will focus
on feedforward neural networks since its learning algorithm
is more powerful and spread to solve the kind of problem
we deal with.

1 About notation:

Figure 1.4: Example of notation. [2]

Before going on, we need to introduce a simple notation to refer to the weights
and the biases of each neuron in the model. This is necessary since the number
of model parameters can become very huge. Let’s suppose having a deep neural
network with n inputs, L hidden layers; be ml the number of neurons of l-th layer
and be the final output layer composed of one neuron only. Let’s focus on the j-th
neuron in the l-th hidden layer: this neuron would have one bias, and a number of
weights equal to the number of output of the (l− 1)-th layers. So every neuron has
got (ml+1 + 1) parameters. This means for every layer there are [ml(ml+1 + 1)]
parameters, and for all the hidden layers their sum is equal to

L∑
l=1

[ml(ml+1 + 1)] (1.1)

The whole weights can be summed up in a 3-dimensional tensor, where the first
label corresponds to the number of the layer, the second one to the number of the
neuron in the considered layer, and the last one to the number of input to which
it is associated. So, for the j-th neuron of the l-th hidden layer, the weights are
represented as: ~wlj = (wlj,1, ...w

l
j,ml−1

).
For the biases the case is simpler: a 2-dimensional tensor, namely a matrix, is
worthwhile; so the bias of the j-th neuron in the l-th layer is represented as blj .
To prevent incomprehensions for the rest of this work, we will assume this notation,
writing first, as apex, the number of the layer and then, as subscript, the position
in the layer. For the weights it will be often used the vectorial notation ~wlj ; anyway
in the case we would specifically refer to the i-th coordinate, it would be written as
subscript too (wlj,i).

10 CHAPTER 1. THE ARCHITECTURE OF NEURAL NETWORKS

Chapter 2

Learning Algorithm

Last chapter we said we will focus on feedforward neural networks; they are made of a set of layers, each one
composed of sigmoid neurons. We have already seen how a single neuron works and how the system of neurons
in its totality constitutes a generative model due to its total set of parameters. But we have not mentioned yet
how this complex architecture is able to learn the right model to evaluate outputs from dataset inputs. This is
the purpose of this chapter.

2.1 Loss function
The first thing to be said is that the net needs to experience; in other words, it needs a set of inputs { ~X} and
the relative set of expected outputs {y(~X)} to verify its performance; this data are called training sample.
Larger the training sample is, more information the net is provided, thus the efficiency in learning grows. In fact
the learning algorithm is essentially based on fitting model parameters to given data. In few words, we need
to find the weights and biases so that the outputs of the net comes as close as possible to their true values,
and this becomes easier and easier by increasing the number of events processed by the net. To quantify how
much the model prediction gets near to the true values we introduce the cost function, C((~w,~b), ytrue, ypred(~X)).
The specific form of the cost function can vary but in any case it still depends on the parameters of the model,
(~w,~b), on the expected values for all the outputs, {ytrue} and on the values for the outputs predicted by the net
{ypred(~X)}. Some of the most spread cost functions are:

• Quadratic loss function:
C(~w,~b) = 1

2N
∑
~X

||ytrue − ypred(~X)||2 (2.1)

where N is the number of events processed by the net, || · || denotes the usual length of an n-dimensional
vector 1, and the sum is over the whole training sample.

• Cross-entropy loss function:

C(~w,~b) = 1
N

∑
~X

∑
j

[yjtrue ln(yjpred) + (1− yjtrue) ln(1− yjpred)] (2.2)

where ~ytrue and ~ypred are expressed in components, so the sum over j denotes the sum over the n
components of vectors ~y2.

Fixing the set of data, the cost function (also named as loss function) depends on the weights and the biases
which constitute the neural model. As this parameters get close to their best values as the cost decreases. So,
starting from an arbitrary set of parameters, (~w,~b)init 3, we need to find a good rule to update their values
in order to decrease the loss function as fast as possible. In practice, this rule consists in an algorithm of
optimization, briefly called optimizer.

1for an n-dimensional vector ~v = (v1, ..vn): ||~v||2 = (v2
1 + v2

2 + ...+ v2
n) =

∑
j
v2
j

2assuming that ytrue and ypred are n-dimensional vectors means that the net is characterized by a generic n-neuron output
layer, so the net will return n values between 0 and 1; on the other hand, the sign of vector above the X remarks that also the
input layer is multidimensional, be m its dimension, so ~X = (x1, ..., xm)

3we will discuss later how choosing the proper initialization values.

11

12 CHAPTER 2. LEARNING ALGORITHM

2.2 Optimizer
As for the cost function, also the choice of the algorithm for optimization is free. Anyway, there are particular
algorithms whose efficiency have been proved. In the paragraphs below we aregoing to describe the algorithm
used for this work.

Gradient Descent. We have seen that C depends on the model parameters {~w, b}lj . Let’s call them as an
unique generic vector ~ν = (ν1, .., νn), and let’s assume its n component to be continue. For small variations of ~ν
we can express a variation of the value of C as

∆C(~ν) ≈ ∂C

∂ν1
∆ν1 + ...+ ∂C

∂νn
∆νn (2.3)

If we define the gradient of C as
∇C = (∂C

∂ν1
, ...,

∂C

∂νn
)

and all the single variations of νi as a unique vector

∆~ν = (∆ν1, ...,∆νn)

we can synthesize the expression 2.3 as follows

∆C(~ν) ≈ ∇C ·∆~ν (2.4)

Since the cost function has to decrease so that the accuracy of the predictions grows, we need ∆C to be
negative. To do so, just chose ∆~ν as

∆~ν = −η∇C (2.5)

where η is a parameter called learning rate and it has to be η > 0. Thus the variation of C (∆C =
−η∇C · ∇C = −η||∇C||2) is certainly negative. More over, it can be proved that the choice of ∆~ν in 2.5 makes
|∆C| maximus, speeding up the decreasing of C.
Anyway we can not leave out that for approximation in 2.3 to be valid, the variation of every single parameter
(∆νi) must be small enough, that means it has to be fixed how much at most any parameter could be changed
fixing the norm of ∆ν; if we introduce this limit as a new parameter ε = ||∆ν||, η can be written as

η = ε

||∇C||

and the law for updating ν becomes
ν′ = ν − η∆C (2.6)

Requiring ε to be small enough is equivalent to require a η has to. So, as we will see more precisely in next
chapter, one of the principal aspects of the learning algorithm is the choice of the right learning rate in order
to speed up the process but still being valid the approximation. In the specific case where the parameters
(ν1, ..., νn) are the weights and the biases {~w, b}lj , the 2.6 becomes

w′lj = wlj − η
∂C

∂wlj
(2.7a)

b′l = bl − η ∂C
∂bl

(2.7b)

Stochastic Gradient Descent. The equations 2.2 represents the Gradient Descent updating rule from a
theoretic point of view. In practice, fixed a value for η 4, we need to compute the partial derivatives of C in
all the parameters of the model. As already mentioned, the number of all the parameters can be very large.
In every single update of the model, the computer need to keep saved all parameters values runtime; thus the
memory of computer used to run the algorithm sets a limit to the complexity of the net to be processed and
this limit can not be controlled by us. Another parameter which influences the attainments of optimization

4we will see that this value does not need to be constant during the whole process

2.3. FITTING THE MODEL 13

algorithms is the number of events to be processed at a time, and this time we can somehow control it; let’s see
how.
We have said that to compute the gradient descent we need to calculate the partial derivatives of C. Let’s give
a look to the forms of these derivatives. Taking as example the Quadratic cost function expressed in 2.1, we can
notice that C has the following form

C = 1
n

∑
~X

C ~X

where C ~X = 1
2 · ||ytrue − y(~X)pred||2, ~X represents a single event processed and n is the total number of events.

So a generic partial derivatives can then be expressed as

∂C

∂νi
= 1
n

∑
n

∂C ~X

∂νi

and the gradient of C can be written as

∇C = 1
n

∑
n

∇C ~X (2.8)

The 2.8 is a mean over the n events of the gradient of C ~X . From a computationally point of view it means
that the algorithm would compute every single ∇C ~X , keep it save till all the ∇C ~X would be computed and
than sum up them. If the number of events is of the order of million events it is easy to understand that this
would be very expensive and would require large memories. In order to overcome to this problem the algorithm
actually implemented for gradient descent optimizer is the so called Stochastic Gradient Descent. The adjective
stochastic suggests the presence of a random mechanism. In fact, the solution proposed by this methods is to
take small sample of randomly chosen training inputs, assuming to be composed of m events {x1, x2, ..., xm},
and estimate ∇C as a mean over this restricted sample:

∇C ≈ ∇̃C = 1
m

∑
{ ~Xm}

∇C ~Xi
(2.9)

Using the restricted sample, called mini-batch, the rule for update weights and biases in becomes

w′lj = wlj −
η

m

m∑
i=1

∂C ~Xi

∂wlj
(2.10a)

b′l = bl − η

m

m∑
i=1

∂C ~Xi

∂bl
(2.10b)

The update is repeated till all the events in the total sample are taken out. This loop is called epoch.
The set of the mini-batch size is fundamental: choosing it too large leads to reduce speed of the algorithm; on
the other hand, choosing it smaller and smaller brings to more and more imperfect estimations of ∇C, since
mean estimator tends to the true value if m tends to infinity. Anyway all we care about is the cost function
goes down, no matter for the exact value of ∇C.
Moreover, it is important to set a proper number of total epoch for training the net: as it will be explained in
subsection 2.3.1, the choice of epochs number is strictly linked to the problem of overfitting the net.

2.3 Fitting the model
In previous sections principal aspects of the learning algorithm has been described. Now we are going to show
how this algorithm works, what troubles could occur and possible solutions to them.

2.3.1 The problem of overfitting
The power of deep neural network models is a huge number of well disposed parameters which lets the model to
reproduce data with high precision. The negative aspect is that the net could even use all these parameters
to overly reproduce the specific training data, becoming inefficient in describing new sets of data (as testing
samples) and loosing its usefulness. So big number of parameters is not always synonym of good model.

14 CHAPTER 2. LEARNING ALGORITHM

Figure 2.1: Comparing training and valida-
tion sample.

When a net has already learned all the general information and starts
updating in order to learn features specifically owned by training data, we
say the net is overfitting (or also overtraining). In order to recognize when
the net has effectively ended to learn we introduce the already mentioned
validation sample5. To monitor the course of the training and notice when
the net start overfitting, we observe the trend of accuracyover the epochs 6,
respectively in training and validation sample. As we can see in examples
shown in Figure 2.1, both loss function and accuracy tend to saturation
for the validation sample, while for training sample they continue varying,
although slowly. Since it is not used in cost function computation and so
for parameters update, validation sample is not affect by the the continuous
improvement of accuracy due to the model learning from data. In the first
epochs, where the trend of the two accuracies is very similar, the neural
net is learning those characteristics that the two sample have in common.
After that, only the training accuracy continue improving, which means
that the net is learning from the training sample but without any gain for
the validation one7. That’s the point when the training process has to be
stopped in order to prevent overfitting.

2.3.2 Reducing overfitting: regularization techniques

We have understood when to stop training. We are also interested in
knowing if there are solutions which eventually reduce, at least partially,
the overlap between training accuracy and validation one.
First of all, the gap goes down by increasing the number of data processed. This happens because a larger set of
data means more experience for the net, which learn better to distinguish and emphasize the features owned by
all the data and not specific of one set. Anyway it is not possible to increase the number of events processed
indefinitely, as it would imply an higher and higher demand of memory, which has a limit fixed by the engine
used.
A second possible solution is to reduce the size of the net, or reduce the number of neurons, since this means
reducing the extent to which overfitting occurs. But if we would study the performances of more and more
complex networks in order to achieve higher and higher accuracies, we would have fixed the architecture of the
network and it would not be changed.
So, fixed the architecture of the net and maximum size of training sample, other solutions that do not require
a rise in the sample size or a change of net architecture consist in modifying the algorithm; they are called
regularization techniques. Let’s see the principal ones.

L2 regularization also called weight decay consists in adding to the loss function the extra term

Ω(w) = λ

2n ||w||
2 = λ

2n
∑
l,j

~wl2j

called regularization term. As usual n is the training sample size, while λ is a new hyper-parameter called
regularization parameter. Thus the cost function becomes

C = C0 + Ω(w)

5Validation data is going to be used as checking sample for the right set of all the hyper-parameter of the net
6In Figure 2.1 is shown the plot of binary accuracy. The result of model predictions, which are float type, are rounded respect to

0.5; then is counted the number of true positive and true negative predictions (Ncorrect), whose value is equal to the relative label
(ytrue), and this sum is divided by the number of total events in the sample (Ntotal):

BinaryAccuracy =
Ncorrect

Ntotal

.
7For the monitor of the algorithm we take as reference the accuracy; in fact what we are interested is how well the model

reproduce the truth value (label) of the validation data. The loss function can be seen as a proxy of accuracy

2.3. FITTING THE MODEL 15

and the law for updating

w′lj = wlj − η
∂C0

∂wlj
− η λ

n
wlj (2.11a)

b′l = bl − η ∂C
∂bl

(2.11b)

L1 regularization adds an extra term to the cost function too. This term is given by

Ω(w) = λ

n

∑
l,j

|~wlj |

As for L2 regularization, also in this case the new term penalizes models with high weights, but the effects on
the rule for updating is different respect to the previous one. With L1 regularization the rule is

w′lj = wlj − η
∂C0

∂wlj
− η λ

n
sign(wlj) (2.12a)

b′l = bl − η ∂C
∂bl

(2.12b)

The correction to the non-regularized rule in 2.12a is given by a term whose absolute value is constant but
whose sign changes according to that of the weight 8. On the contrary, in 2.11a, the correction is proportional
to the absolute value of the specific weight.
While in the first case weights always decrease of the same amount, in the second case the higher weights are
most shrunk than the smaller ones. The result is that L1 regularization tends to drive towards zero most of the
weights keeping few fundamental weights not null.

Figure 2.2: Example of dropout techinque of regulari-
tazion. [4]

Dropout acts on the network without modifying the cost func-
tion. In practice applying dropout technique to an hidden layer
consists in randomly hiding a rate of the neurons composing the
layer. This mechanism constrains the net to reproduce the results
without the contribution of a casual subset of parameters, thus
any neuron is forced to learn regardless of the rest of the net. The
advantage of dropout is that it brings to prformances resembling
those obtained by mediating results of a large set of different
models trained on the same data.

“Every time an input is presented, the neural net-
work samples a different architecture, but all these
architectures share weights.” 9

That is the point: the effects of overfitting on the final parameters
are different in every model architecture. This is why they are cut down by repeating the learning process on
several nets and then mediating over all the results. Because of the computational and time expense of repeating
over and over the learning algorithm for complex and big networks (which can need even few days), the dropout
technique represents the more efficient alternative to that. Each hidden neuron is usually dropped out with a
probability of 0.5 every time a new input is presented. Then, to compute the accuracy on the testing sample, all
the neurons are kept and their output are multiplied by a factor 0.5 to take in account their probability. Set in
this way, the net requires about double the number of epochs to converge, only a factor 2, which is a low cost
compared with that necessary to repeat the all algorithm several times.

2.3.3 Weights initialization
Since the learning algorithm is not self-starting, in section 2.1 we have already mentioned the necessity of
initializing model parameters. Now we are going to say something more about this topic. Let’s try to understand
why a proper choice for initialization is fundamental.

8Note that sign(w) is not defined for w = 0; anyway, since we do not need to decrease w if it is already null, we can simply
define sign(0) = 0 thus no changes are brought on it.

9From [5]

16 CHAPTER 2. LEARNING ALGORITHM

We start from the related problem of weights saturation. Let’s suppose to initialize all the parameters of
a considered net by random values distributed as a normal gaussian, with mean 0 and standard deviation 1.
Imagine to compute the output of one neuron in the net; first we need to evaluate z as

z =
∑
i

wixi + b

where the sum is over all the input xi of the neuron, and then calculate σ(z) using a specific chosen activation
function. If we assume the input {xi} to be known, then z will result also distributed as a normal gaussian with
mean 0 but standard deviation equal to

√
n where n is the number of parameters, the weights and thee bias, of

the neuron. Bigger the inputs size, bigger the number of weights and the standard deviation too. This means
that there is a good probability that either z � 1 or z � −1 , thus σ(z) will result 0 or 1 with the same good
probability. As can be seen in figure 1.3 of section 1.2, in general for the activation functions the derivative
tends to 0 for z � −1 and z � 1 so the changes made thanks to the gradient descent algorithm will be very
small and this means the net is going to learn slowly and that the improvement achieved by the model could be
even so small that we could not observe it. In practice, it is said the network has saturated.
Saturation is a problem for the training: if a neuron accidentally evolves towards a configuration with σ(z)→ 0
or σ(z)→ 1 it has poor probability to come back, even if that configuration is not the best one; so the values of
its parameters stay quite the same till the end of the training inhibiting the correct process learning.

Weights initialization determines also the speed of learning. A proper choice of initial model parameters
allows to reach the best learned configuration in a fewer number of iterations. There are not precise dispositions
on what is the best way of initializing, considering that the solution changes for each kind of net and dataset.
However, the introduction of a new technique of unsupervised initialization could solve the question.

(a) Autoencoder scheme [15].

(b) Example of autoencoder pretraining. On the left the two
autoencoder used to pretrain the first and the second layer in the
deep network on the right.[17].

Figure 2.3

Autoencoder pre-training. In neural net-
works terminology, we speak about Autoencoder
networks referring to those networks which learn
to reproduce as outputs their own inputs. More
precisely, as Figure 2.3a outlines, they are all
characterized by a first encoding part and a sec-
ond decoding one. Let’s suppose to give n inputs
to the autoencoder; the first side of neural ar-
chitecture, the encoder, compresses all inputs
information towards a final layer of m neuron;
then, in the second side of the net, the decoder
takes the compressed representation, i.e. the
m neurons in the middle, and decompresses it
up to a final n-neuron output layer. The final
structure assumes the shape of two symmetric
bottlenecks.

We are interested in Autoencoder networks
due to their possible application on unsupervised
pre-training techniques. Given a neural network
and its associated model to be trained, we define
pre-training technique a starting algorithm which
trains other neural networks; we can extract
from them the final values of some parameters
of theirs and use them as initial values for the
given net. The adjective unsupervised denotes
that to run this algorithm it is not necessary
to associate an already known output label to
the input sample; this is true for autoencoder
networks which compare their output to the

initial input. Autoencoder networks can be used to build such an algorithm to determines layer by layer some
initial values for weights and biases of a deep network DN . Taking as reference Figure 2.3b, we can describe an
example of autoencoder pretraining10. Let’s start from the first layer (L1). We build an autoencoder having

10Pay attention because the figure can be misleading: the inputs and the outputs are represented with circular shape, while the

2.3. FITTING THE MODEL 17

two layers: the first one (the encoder1) takes the inputs and gives as output the same of L1; the second one
(the decoder1) takes n1 inputs and gives a number of outputs equal to the inputs one. The autoencoder is
then trained comparing the outputs to the inputs till the algorithm has finished learning. Then we save the
final parameters of the encoder1 as initial value for L1 in DN . Let’s go to the second layer (L2). As in the
previous case, we build an autoencoder with two layers. This time the inputs are that obtained as output by
encoder1; the number of encoder2 outputs is the same of L2 and that of decoder2 are once again the same taken
as inputs by ecoder2. After training the net, this time we save the final parameters of encoder2. The methods
is analogue for all the successive hidden layers till the end of DN . Thus we have built an algorithm which
attributes weights and biases to our net without the need of any arbitrary assumption. Training techniques
which make use of autoencoder pretraining are generally called semi-supervised learning algorthms (SSL) for
the presence of an initial unsupervised training and a final supervised fine-tuning. This computational tool is
showing all its strength in several applications; some of them are mentioned in [16].

layers are actually the lines connecting the input and output circles. In fact model parameters denoted with w(i) are put between
the circles columns, in correspondence of the lines connecting them

18 CHAPTER 2. LEARNING ALGORITHM

Part II

Searching for Exotic Particles in
High-Energy Physics with Deep

Learning

19

Chapter 3

The Physics of LHC

Up to now, it has been generally described a new computational engine that is neural networks machine learning.
The purpose of this thesis is to apply such powerful tool to data of high energy physics collected at the Large
Hadron Collider (LHC) in Geneva. LHC is the largest particle accelerator in the world. The four experiments
carried on at LHC detect a huge number of adrons collisions per second1 and for each event they record various
forms of data. The large size, the variety and the high rate of collisions production at LHC are the reasons why
they can be named as big data and they are one of the more suitable dataset for testing the efficiency of this kind
of computational engine. On the other hand, employing more and more efficient machine learning algorithms to
LHC datasets will let high energy Physics community to extract from data all the available information. This
would allow to reduce the waste of data.

Figure 3.1: LHC complex. [9]

Let’s look in detail how the experiments on
LHC operate and what they observe. As we
can see in Figure 3.1, the Large Hadron Col-
lider is composed of one main ring, 27 km long,
made of superconducting magnetic tubes inside
which two separated protons beams run, one
clockwise and the other counterclockwise. Thou-
sands of magnets constituting the tubes are
used to make beams trajectory curve enough
to keep the particles inside the pipes; oth-
ers are used to keep the particles in bunches
in order to maximize the cross section; the
rest of them is used to accelerate the particles
so that they could acquire energy. The mi-
nor rings shown in the figure, the Proton Syn-
chrotron Booster (PSB), the Proton Synchrotron
(PS) and the Super Proton Synchrotron (SPS),
are used in the preparatory phases of accel-
eration, just after the protons have been ex-
tracted from Hydrogen atoms. When the par-
ticles achieve the right energy the two beams
flowing in LHC are made to collide inside
four detectors: ALICE, ATLAS, CMS and
LHCb (marked by yellow arrows in Figure
3.1).
The energy of the beams is fundamental since it de-
termines the range of phenomena that could be ob-
served after the collision. Since June 2015 proton-
proton collisions has achieved the energy of 13
TeV.

1Three of them (named CMS, ATLAS and LHCb) only take care of proton-proton collisions while ALICE is concerned with
collision between lead ions too.

21

22 CHAPTER 3. THE PHYSICS OF LHC

Protons are not elementary particles, they are made of three quarks, two top and one down, keep together
by strong forces mediated by gluons. This is why different combination of products are possible. The strong
interaction acts as a dynamic vacuum, which means that all around the three main quarks are continuously
generated and annihilated couples of quark and relative antiquark, or couples of gluons and anti gluons
which determine, due to a screen effect, the intensity of the attraction or repulsion between the three static
quarks. So, when two protons collide, actually all these particles merge themselves generating an explosion
in which new particles combinations are pulled away with high kinetic energy and revealed by the detectors.

Figure 3.2: Inside a detector (CMS). [11]

Particles detectors, usually cylinder shape, surround
the point where the collision takes place; different
technologies are used to observe different features of
the particles going across them. The closest one is a
vertex detector of silicon pixels and strips used to track
charged particles near to the point of interaction; then
there is the charged particle tracking chamber which
distinguishes positive and negative charges measuring
the curvature of the particles in a magnetic field; next
layer consists in two calorimeters: one absorbing the
electromagnetic-showers and the other the hadronic-
showers; finally the muon chambers which absorb the
heaviest particles called muons.

All these components together are able to absorb
all the energy issued by the collision except that carried out by neutrinos, elementary particles which can not be
detected through this kind of detectors.
From the pieces of information collected by each layer of the detector, high energy physicists are able to go
back to the nature of the particles produced by the collision and study the fundamental Laws of Physics which
regulate these processes. Anyway, almost always particles detected by instruments are not the initial products
of the interaction. They constitute the traces of pre-existent particles so unstable that they decade into other
particles just after the collision, before the instrument could detect them. This intermediate metastable state is
called resonance.

Figure 3.3: Resonance in classical systems

Resonances and collisions The name resonance in subnuclear physics
comes from the analogy with resonant systems in classical physics. In the
simple case of a one dimensional model, given an object of mass m that
oscillates along x with a proper frequency ω0 and equilibrium in 0, if it is
perturbed by a periodic external force with variable frequency ω,

F (t) = F0cos(ωt)

then the solution for x is

x(t) = Acos(ωt+ δ)

where the amplitude of oscillation is

A =
F0
m√

(ω2
0 − ω2) + Γ2ω2

and the phase

δ = arctg

(
Γω

ω2
0 − ω2

)
The effect of the forcer on the object is maximum when ω = ωR ≈ ω0, as in
Figure 3.3.

Metastable particles can be observed as resonances too. Interactions between elementary particles can be
modeled as traditionally

• elastic collision: when particles before and after the interaction stay the same.

• anelastic collision: when particles come out from the collision are not the same that collided.

23

Total impulse and total energy laws of conservation delimit the range of energy and impulses each particle
can reach after the collision, giving shape to the so called phase space. In physics the phase space is a
multidimensional space where all the possible configurations of the system lay. Each configuration is described
by particular values of the observables of the system.
After hadron-hadron collisions the system we deal with is composed of all the produced particles. Each of them
is characterized by the measurements of three spatial coordinates:

• the momentum transverse to the beam direction (pT)

• the polar angle (θ)

• the azimuthal angle (φ)

For convenience, at hadron colliders, the polar angle (θ) is replaced by the pseudorapidity, defined as

η = −ln
(
tg

(
θ

2

))
So if we have n products, the phase space is 3n-dimensional and each point of this space, identified with a
3n-tuple of coordinates, determines a different possible configuration of the global system. Analyzing all the
events stored during the run of the accelerator, physicists can build an histogram counting the events distributed
on the phase space. Then this distribution can be compared to that expected by the theoretical models. Up to
now, the model of reference for elementary physics is the Standard Model (SM), a description of particle physics
processes which seems to explain as well as possible the experiments results. The presence of anomalous peaks
in the experimental density distributions which do not find correspondences in SM, suggest the presence of new
resonances, that means new metastable particles, not included in the model, or not yet observed. A recent
example of that kind of resonance is the discover in 2014 of the Higgs boson, firstly theorized in 1964. We re
going to discuss about it again talking about the signal process simulated to make the dataset for our tests.

Figure 3.4: Schematic of a resonant formation study [7]

Data analysis: approximating the Likelihood
Finding resonances is anything but trivial for the fol-
lowing reasons. First of all, physicists need a huge
number of events to carry out statistical analysis. Sec-
ondly, the phase space is so wide that they have to
restrict it. But often it is not enough: resonances, let’s
call them signals, can be so slight that they can not
significantly be discriminate from background events.
Thus they need to make new variables from the raw
ones which better highlight differences and then iso-
late a subspace of events choosing a range for them. For example, let’s consider a reaction of the following
type

a+ b→ c+ d+ e

To find out if there is any resonant intermediate state we first have to choose the resonance to look for; let’s
suppose that the resonant state, call it R, produces the particles c and d. Thus the reaction can be also written
as follows

a+ b→ R+ e→ c+ d+ e

Then we have to choose a proper variable able to put the resonance in evidence. Since in the passage

R+ e→ c+ d+ e

the particle e stays the same, we can suppose that the invariant mass of R would be the same of the system of
the two particles c and d. So we can look for resonance on the events distribution of along a new non linear
features that is the invariant mass of the particle R

MR =
√

(Ec + Ed)2 − |~pc + ~pd|2

If actually the resonance exists, the plot of the cross section should have the form shown in Figure 3.4 on
the right side, where the smooth shape of the background distribution is broken by the presence of a peak.

24 CHAPTER 3. THE PHYSICS OF LHC

Moreover, if we are searching a particular resonance of the particles c and d but other resonances have already
been included in the theoretical model, we need to compare the expected resonance curve with the experimental
one in order to establish if there are new configurations which can contribute to that peak, that means finding
new physics. For this reason, analysts make use of a particular statistical tool named Likelihood ratio test. It
compares different hypothesis by doing the ratio of the two relative Likelihood functions (Neumann Pearson
lemma) and comparing the result with a reference value kα:

L({x}|H1)
L({x}|H0) > kα

Each Likelihood function L({x}|H) represents the probability of an hypothetic theoretical model H, given a
fixed experimental sample {x} in the phase space. If the n events constituting the experimental sample are
independent and identically distributed, the Likelihood function has the following form:

L({x}|H(θ)) = p({x}|θ) = Pois(n|ν(θ))
n∏
e=1

p(xe|θ)

where e refers to a generic event and θ to the parameters of the hypothetical model. So making the ratio
between the null hypothesis H0 (the experimental data are distributed as the expected background) and another
hypothesis H1 which assumes a specific metastable configuration means comparing the two probabilities of
fitting experimental evidence.
Because the high dimensionality of the phase space, often it is not possible to analytically compute the likelihood
function so physicists resort to Monte Carlo simulations to represent the values the function takes on the phase
space. Anyway, the phase space is so wide that it is impossible simulating enough events to fully cover it. This
is why, actually, it is necessary reducing the phase space dimensionality. Significant part of Data Analysis is
approximating the likelihood as best as possible.
Machine learning with deep neural networks overcomes this troubles, offering new tools to handle all raw features,
without needing to reduce the phase space, as it provides signal and background distributions without going
through Likelihood.

Chapter 4

Baldi, Sadowski and Whiteson

In order to experiment neural networks capabilities in support of physicists’ work of analysis at LHC, we aim
to reproduce Baldi, Sadowski and Whiteson’s work of analysis with machine learning, pubblished on 5th June
2014with title Searching for Exotic Particles in High-Energy Physics with Deep Learning 1. Our work will make
use of the same dataset of simulated events used by them and, in order to tune in short time the net, we will
also take as reference the hyper-parameter optimization already found by them. Thanks to their work we have
built starting neural networks already well-working, so that we could procede studing them and discussing about
deep neural networks advantages and limit in the scope of High Energy Physics.

4.1 The purpose: Shallow Network and Deep Network
4.1.1 Shallow a Deep Networks Complexity
Thanks to Horrnik, Stinchcombe andWhite’s workMultilayer Feedforward Networks are Universal Approximators,
we can state that

Theorem Feed forward networks are capable of arbitrarily accurate approximation to any real-valued continuous
function over a compact set.

This theorem has been proved both for single hidden layer and multi hidden layer networks2, establishing
that these kind of networks are universal approximators. For single hidden layers networks (Shallow Networks)
the mapping accuracy grows with the number of neurons in the layer, while for multi layers networks (Deep
Networks) it grows principally increasing the number of hidden layers. More precisely, the complexity of a space
S is often measured by the sum B(S) of the Betti numbers3. Theoretical studies published in [14] demonstrates
that

Proposition 1 For network architectures with a single hidden layer, the sum of the Betti numbers, B(Sχ),
grows at most polynomially with respect to the number of the hidden units h, i.e., B(Sχ) ∈ O(hn), where n is
the input dimension.

Proposition 2 For deep networks, B(Sχ) can grow exponentially in the number of the hidden units, i.e.
B(Sχ) ∈ Ω(2h).

This is why Circuits complexity theory tells us that raising the complexity of a neural network by adding
more neurons per layer is more expensive than increasing the number of the layers keeping their size fixed. For

1[13]
2See [12] for the full treatment and demonstration
3It is possible to measure the complexity of a given function

fχ : IRn → IR

by the topological complexity of the space
Sχ = {x ∈ IR|fχ(x) > 0}

, that is, in the neural networks scope, the ensemble of the network inputs belonging to the positive class. The topological complexity
of a n-dimensional space can be described through n numbers called the Betti numbers [14]

25

26 CHAPTER 4. BALDI, SADOWSKI AND WHITESON

this reason, it should be more efficient improving the performances of the net moving from Shallow networks to
Deep Networks.

Anyway when we try training deep networks some impediments occurs first in tuning their hyper-parameters
and then in speeding up the learning, affected by the so called Vanishing gradient problem.

(a) 2 hidden layers.

(b) 3 hidden layers.

(c) 4 hidden layers.

Figure 4.1: Example of Vanishing Gradient Problem.
Figures show how the speed decreases moving towards
the first hidden layers and how the latter decreases itself
by adding hidden layers to the net.[2]

The former has not got a solution: the set of hyper-parameters
is based on previous experiences and relies on rules of thumbs.
But let’s spend some few words on the latter. The vanishing
gradient problem deals with the different speeds of learning of
different hidden layers in a deep neural network.
It has been observed that neurons in the earlier layers learn much
more slowly than neurons in later layers. In fact, adding new
hidden layers to a deep architecture, the speed of the first hidden
layer decreases extending the time needed by the deep network
to complete the training. For this matter there is not a solution
yet, but it is possible, for example, alleviating the problem of the
increasing training time in the following ways:

• Increasing the training dataset size.

• Speeding up the computation with graphics processors.

• Using new learning algorithms such as Autoencoder pre-
training and Dropout method to prevent over-fitting.

The main intent of Baldi, Sadowski and Whiteson was to
demonstrate that, although deep networks are difficult to train
for the reasons we have just mentioned, recent developments
in machine learning made possible to overcome this difficulties,
so that deep networks performances can equal those of shallow
networks or even exceed them.
This is a great news, in particular for physicists: the common use
of machine learning in particle physics up to now was giving as
input to a shallow network few no linear variables, constructed
cleverly by humans to reduce the kinetic phase space dimensions.
In this approach, machine learning comes into play only in the
last steps of analysis, requiring a lot of manual work by physicists
about features construction. Positive results with deep neural
networks would mean that statistical analysis can be carried on
even if physicists do not know exactly which are the right high-
level features: we could try only using deep networks to exploit

the all raw kinetic features. But deep networks can help even when some high-level features has already been
found. In fact, as we are going to show, considering both the raw features and the high ones leads to better
performances in signal recognition, which means that deep network engine can extract more information by raw
data than that extracted by human brain through high-level features.

4.2. THE TOPIC OF THE STUDY: PROCESS INVOLVING NEW EXOTIC HIGGS BOSONS 27

4.2 The topic of the study: process involving new exotic Higgs
bosons

Figure 4.2: Diagrams for Higgs benchmark. (a) Diagram de-
scribing the signal process involving new exotic Higgs bosons
H0 and H±. (b) Diagram describing the background process
involving top-quarks (t). In both cases, the resulting particles
are two W bosons and two b-quarks. [13]

Standard Model (SM) for particle physics describes Higgs
Field mediator as a single particle h0 with mass mh0 =
125GeV . Signal processes we are searching for follow a
possible extension of SM where no more only one Higgs
particle is present, but five: h0, H0, H+, H− and A. This
process in particular deals with the searching of new exotic
Higgs bosons H0 and H±. They should be observed as a
resonant state in two gluons fusion processes. The sequence
of reactions is the following:

g g → H0 → H±W± → h0W±W± → b b̄W±W± (4.1)

As we can see from Figure 4.2, the process involving the
resonant state we are interested in (Signal process) competes
with another process having the same decay products. It
can be written as

g g → g → t t̄→ bW+ b̄W− (4.2)

Since the latter has actually the same products of our signal,
it can be used as irreducible background for our study. Since
there is no way to distinguish it from signal observing their
outputs, the only thing we can do is finding differences in
their kinematic features and this is actually what we would
try on neural network algorithms.

4.3 Dataset
To train the net we used the same simulated events used in [13]4. In both signal and background processes the
couple of W bosons and that of b quarks decay too: W bosons can decay to a lepton and neutrino or to an
up-type quark and a down-type quark. Thus what detectors see are their final products.
To simulate events for this work it has been chosen the semi-leptonic decay mode, that is one W bosons decaying
to a lepton and a neutrino (lν) and the other W boson in a pair of jets (which correspond to a couple of up-type
and down-type quarks). Thus the selected final products of 4.1 and 4.2 are: lν b jj b.
Events have to satisfied the following requirements for transverse momentum (pT) and pseudorapidity (η):

• Exactly one lepton, electron or muon, with pT > 20GeV and |η| < 2.5.

• At least four jets, each with pT > 20GeV and |η| < 2.5.

• b-tags on at least two of the jets, indicating that they are likely due to b-quarks rather than gluons or
lighter quarks.

All these requirements are summed up by 21 low-level features:

• 4 jets, each of them described through 4 variables: pt, η, φ and the b tag.

• 1 lepton described through 3 variables: pt, η, φ.

• 1 neutrino indirectly described by: missing energy magnitude and missing energy φ.

Their distributions are shown in Figure A.15

4Simulated events are generated with the Madgraph5 event generator assuming an energy of
√
s = 8TeV for protons collisions

as at the latest run of the Large Hadron Collider, with showering and hadronization performed by Pythia and detector response
simulated by Delphes. For the benchmark case here, mH0 = 425GeV and mH± = 325GeV has been assumed.[13]

5see Appendix A

28 CHAPTER 4. BALDI, SADOWSKI AND WHITESON

(a) Lepton pT (GeV) (b) Lepton η (c) Lepton φ (rad)

(d) Missing momentum pT
(GeV)

(e) Missing momentum φ
(rad)

(f) Jet 1 pT (GeV) (g) Jet 1 η (h) Jet 1 φ (rad) (i) Jet 1 b− tag

(j) Jet 2 pT (GeV) (k) Jet 2 η (l) Jet 2 φ (rad) (m) Jet 2 b− tag

(n) Jet 3 pT (GeV) (o) Jet 3 η (p) Jet 3 φ (rad) (q) Jet 3 b− tag

(r) Jet 4 pT (GeV) (s) Jet 4 η (t) Jet 4 φ (rad) (u) Jet 4 b− tag

Figure 4.3: Low-level features.

4.3. DATASET 29

(a) Mjj(GeV/c2) (b) Mjjj(GeV/c2)

(c) Mlν(GeV/c2) (d) Mjlν(GeV/c2)

(e) Mbb(GeV/c2) (f) MWbb(GeV/c2)

(g) MWWbb(GeV/c2)

Figure 4.4: High-level features.

For what concerns reducing phase space dimension-
ality, the theoretic hypothesis regarding signal and
background processes allows to construct new features
which better highlight the differences in the two pro-
cesses. These features are the invariant masses of the
metastable particles. In particular, for signal processes
the following resonant decays have been theorized and
the related invariant masses have been computed:

• W → lν: the invariant mass Mlν should show a
peak at the known mass of the W boson MW .

• W → jj: the invariant mass Mjj should show
a peak at the known mass of the W boson MW .

• h0 → bb̄: Mbb should show a peak at Mh0 .

• H± → W±h0: MWbb should show a peak at
MH± .

• H0 → WH±: MWWbb should show a peak at
MH0 .

They represent 5 high-level features. On the other
hand, for background processes the same W decays
are expected, but another one can be taken in account:

• W → lν: as for signal processes, the invariant
massMlν should show a peak at the known mass
of the W boson MW .

• W → jj: as for signal processes, Mjj should
show a peak at MW .

• t → Wb: both Mlνb and Mjjb should show a
peak at Mt.

Thus two more invariant masses, Mlνb andMjjb, must
be computed. In total, we have 7 high-level features.
Figure 4.4 shows their distributions.

Before being passed on to neural networks datasets
have been standardized as follows:

• For those features which could assume negative values, they have assumed a normal Gaussian data
distribution; all the values have been shifted by the mean value of feature distribution; then they have
been renormalized dividing them by the deviation standard of the set. In this way the final set of data
had mean 0 and standard deviation 1.

• For those features whose maximum value is greater than 1, they have assumed an exponential data
distribution; in this case they only divided all the data by their mean value, as the final sets of data has
got mean equal to 1.

Handling data in such way would facilitate calculus.

Baldi, Sadowski and Whiteson have published a 11 million data with all the 28 features included6.

6The data are availa in the UCI Machine Learning Repository:
archive.ics.uci.edu/ml/datasets/HIGGS

30 CHAPTER 4. BALDI, SADOWSKI AND WHITESON

4.4 Computational tools
Due to the huge number of data to process and the various degree of freedom of deep network models, the
computational cost necessary to run the algorithm is not a marginal issue. Running the code, a single calculator
must be able to keep all input data uploaded (for us, the file containing all the data is about 8 Gb) and, at
the same time, to process subparts of them using stochastic gradient descent. During one epoch, all the initial
and final parameters of the model has to be temporally stored together. This is why bigger the calculator’s
memory is the more complex model would be trained. To make the most of the computational power, this
great quantity of stored information should be handled in such a way that the code would go through it nimbly,
without making the computation heavy.

Python and new packages to handle big data Python is a high-level programming language that
makes our case. It allows the usage of several libraries written to meet the needs of almost all the scientific
areas. In particular, more than one library have been written to make use of machine learning techniques and
the developments of these utilities is still in progress. We decided to move from the code written by Peter
Sadowski7 to a new code using more recent machine learning packages. In particular we decided to use Keras
functionalities.

Keras8 is a high-level neural networks Application Programming Interface (API), written in Python and
capable of running on top of TensorFlow9, CNTK10, or Theano11. Keras library contains all the basic
computational tool necessary to build and run a machine learning algorithm based on neural networks. It let to
chose between different kind of models based on feedfarward, convolutional, recurrent layers and many others;
the principal learning methods have already been implemented too. But even more useful is the possibility of
personalizing the code by implementing new functionalities through backend utilities. This turned out to be
helpful in handling plots and encoding analysis results .

Table 4.1: Virtual machines
properties

RAM 16 GB
VCPUs 8 CPU
Disk 25 GB

Virtual machines According to what has been said so far, machine learning
algorithms need calculators with a huge memory and all the facilities for the
encoding, that is Python and its machine learning libraries, such as Pandas,
Numpy, Keras and so on. For this reason, we run our code on a cluster of six
virtual machines instantiated on the Cloud area padovana 12. The six machines
were used in a standalone mode, that means as single calculators13. Thus it was
possible to try running six different versions of the algorithm at the same time,
allowing to accumulate results quickly.

At the beginning, the code was run using Theano backend for Keras library, but it seemed not to be
compatible with our virtual machines: they went out of memory and swapped till the process was killed; it
happened when the number of events used to train the net overstepped a threshold about at 100 000 events. We
tried to find an explanation through the lines of the code but there was nothing we could do to solve the problem.
So we tried to run the code on another computer, with the same RAM of the virtual machines, and we found
out that the problem did not occur anymore. So we supposed there was some unknown hitch on how the loaded
libraries handled the code in Teano backend on the virtual machines. We thus moved to TensorFlow and
noticed that the code started running perfectly. Therefore, from that moment on, we have kept TensorFlow
backend as default configuration.

4.5 Methods
I proceeded in the study of Deep Networks taking as reference the study in [13]. I set the network hyper-
parameters as described in the papers and I trained the models using three different set of inputs: the 21
low-level, the 7 high-level features and all them together. I did several runs changing the size of the dataset, the
number of hidden layers, the number of neurons per layer and the weights initialization. Other parameters of
the method stayed the same for all the runs.

7The source is available at: https://github.com/uci-igb/higgs-susy
8Keras documentation at: https://keras.io
9TensorFlow documentation at: https://www.tensorflow.org

10CNKT documentation at: https://docs.microsoft.com/en-us/cognitive-toolkit/
11Theano documentation at: http://deeplearning.net/software/theano/
12login at: https://cloud-areapd.pd.infn.it/dashboard/auth/login/
13A more efficient way of running codes on a cluster is by distributing part of one single algorithm to each component of the

cluster. In this way the process would speed up. But it is not treated in this work; Chapter 7 will tell something more about this
topic.

4.5. METHODS 31

4.5.1 Validation and testing split
Starting form the full set of data I constructed three subset dividing the full set in ten parts and choosing one of
them as validation sample, another one as testing sample and the sum of the remaining ones as training sample.
Thus, when all the 11 million events were used, validation and testing sample were composed of 1.1 million
events and training sample of 8.8 million events. The code is written such that 10 different choices of testing
and validation split are available, thus the same algorithm could be executed repeatedly.

4.5.2 Models
We considered two kind of feedforward neural network: the Shallow Network, that is a single hidden layer
network, and the Deep Network, a multi hidden layers network. The input layer could have 21, 7 or 28 neurons
depending on which subset of features was used. The output layer has always been one single neuron with
floating output between 0 and 1. Thus the model would be a binary classifier, that means a model able to
collocate with a certain probability input events into two different label categories. The hidden layers have all
the same number of neurons. In order to compare the results with that gained in [13], the final value chosen for
the number of hidden layers was 3 and for the number of neuron per layers was 300.

4.5.3 Predetermined hyper-parameters set up
Those parameters of the learning algorithm which have stayed the same during all the run are described below.

Activation functions. For input and hidden layers a tanh activation function has been set, while for the
output the sigmoid one.

Mini-batch size It has been set at 100.

Learning rate It has been scheduled with an initial value of η0 = 0.05 and has been reduced by a factor
q = 1.0000002 every batch computation till it reached the minimum value ηmin = 10−6 which stayed constant.
In practice, the rule for learning rate update was

η′ = η

q

Starting from the relation η1 = η0
q , knowing the batch number (batch) the rule can be rewritten as

η′ =
{ η

qbatch if η > ηmin
η if η = ηmin

Momentum As for the learning rate, also momentum has not remained constant; its initial value has been
set at µ0 = 0.9 and it has been increased linearly over the first 200 epochs till it reached the final value of
µmax = 0.99 which stayed constant. The rule for update is then

µ′ =
{
µ0 + ∆µ

∆e e if µ < µmax
µ if µ = µmax

where e stays for the actual epoch, ∆µ = µmax − µ0 and ∆e = 200.

Number of epochs To prevent over fitting, an early stopping algorithm has been inserted 14. It schedules to
stop training when the accuracy computed over the validation set has not changed more than a factor 0.00001
in 20 epochs.

4.5.4 Experiment on new tools for machine learning
Autoencoder pretraining Implementing autoencoder pretraining is not difficult; as we described in subsec-
tion 2.3.3, autoecoder networks for pretraining are only two layers long. The obstacles appear when we tried to
run the code with large datasets. The process went out of memory at the end of the second layer pretraining.
The cause is that computational expense was too much for a single memory. For this reason we performed
autoencoder tests using a restricted sample of 2 million events.

14This algorithm has been modified respect to the one described in [13]. The latter seemed not to be adeguate to the network,
since it scheduled a minimum 200 epochs to be executed, while our networks went over fit in this way.

32 CHAPTER 4. BALDI, SADOWSKI AND WHITESON

Dropout When we used dropout technique we apply it only on hidden layers with a standard drop rate of
0.5. We did our tests on deep network with 3 hidden layer and 300 units per layer varying the size of dataset.
In particular we tested the net using as training data 200 000 events, 2 million events and then 8.8 million.

4.6 Analysis

(a) Loss function over epochs. (b) Accuracy over epochs.

(c) ROC curve for validation sam-
ple.

(d) Histogram of signal and back-
ground prediction distributions
(not normalized).

Figure 4.5: Example of analysis results

As described in the paragraph above, sev-
eral studies have been executed with deep
and shallow networks . In order to estimate
the stability and the eventual presence of
over-fitting troubles, we plotted the trends
of loss function and binary accuracy over
the epochs, both for the training and the
validation sample.

In addition we built an histogram of
the predicted events over the possible out-
puts of the model; to this scope, the output
range [0, 1] has been divided into 20 bins.
The net discriminates well if the predicted
signal distribution presents a peak towards
1 and the predicted background distribu-
tion towards 0.

To compare the results, we used the
most common parameter of evaluation in
machine learning scope, that is the Area
Under the ROC Curve (AUC); as we will
see later, it can be related to particle
physics significance.
ROC is the acronym for Receiver Oper-
ating Characteristic, which is a graphical
method to observe binary classifiers effi-
ciency. In this case it has been constructed

by plotting the signal efficiency versus the background rejection, varying the point of cut, that is the value
between 0 and 1 over which the events are classified as signals by the net. Signal efficiency is the ratio between
the number of true signal-tagged events (namely those signal events whose predicted output is over the cut
value) and the total number of signal-tagged events; the second one is the ratio between the number of true
background-tagged events (namely those background events whose predicted output is under the cut value) and
the total number of background events. More AUC results near to the unity the best classification is. The cut
value has been varied between 0 and 1 with a step of 0.01, thus the ROC curve has been constructed over 100
points. Some examples of the output of a training analysis is proposed in Figure 4.5.

4.6.1 Figure of Merit

Figure 4.6: Example of FOM

One more quantity was computed to get the results closer to physical scopes.
That is called Figure Of Merit (FOM). Maximizing this quantity means
maximizing signal and background discrimination, so it helps us to choose the
more efficient cut point for signal classification. In other words, considering
background distribution over the phase space expected by our theoretical
model, a good choice of the cut point allows physicists to determine wether
a difference in experimental distributions can be identified as new signal or
not. We assumed as FOM the following quantity:

FOM = S√
B

where S stays for the total number of labeled events evaluated as signals by
the net while B for those evaluated as background in function of the chosen

cut point. The term
√
B represents the error on the number of background events (B) assuming they follow a

4.6. ANALYSIS 33

Poisson distribution. More precisely, to state wether signal events (S) are actually a resonance or only statistical
fluctuations, the effective error should take in account also the error on the number of signal events, that is

√
S,

as signals follow poissonian distribution too. So the correct expression for the error should be

σ =
√
B + S (4.3)

where the two contributes are added in quadrature. Since in our case S � B we approximate 4.3 as follows

σ =
√
B + S ≈

√
B

Data used for running this work were simulated as described in subsection 4.3 and they were built such
that signal and background would have the same probability; thus, for a large dataset we expected about 50%
events labeled as signals and equally 50% as backgrounds. The consequence is that, when discrimination is
good enough, the number of signal predicted events should be quite the same of background predicted. In data
collected by experiments a signal of new physics is usually a rare phenomenon which competes with lots of
standard processes included in background. So the real cross section of signal events may be so small that it
may be confused with background. FOM computation allows to find the optimal cut point to put in evidence
the presence of signals.

Thanks to all these observables, several studies have been done: it has been studied the evolution of a fixed
deep networks changing the size of the training inputs; the response of a deep network to the variation of the
number of hidden layers; that of a shallow network to the variation of the number of neurons in the single
hidden layer; the differences caused by different choices in weights and biases initialization and those caused by
the introduction of dropout.

Varying data size For this study I used two different models: a shallow network built as described above,
with 1 hidden layer and 300 neurons per each of them; a deep network with the same set but 3 hidden layers. As
dataset I used that of low-level features. The total number of events (i. e. the sum of training, validation and
testing data) used for the tests are: 5000, 10 000, 50 000, 100 000, 500 000, 1 000 000, 5 000 000, 10 000 000.

Varying the number of hidden layers For this study I used a deep network with a number of hidden
layers that varies between 1 and 6; each hidden layer has got 300 units. The training sample was composed of
8.8 million events, 1.1 million for the validation and the testing samples.

Varying the number of neurons per layer For this study I used a shallow network with a only one hidden
layer. The number of units in the hidden layer used for the tests are: 7, 100, 300, 1000, 2000, 10 000, 20 000.
The training sample was composed of 8.8 million events, 1.1 million for the validation and the testing samples.

Changing weights initialization Starting from a deep network with 3 hidden layers and 300 units per layer,
I trained the net first with a random normal initialization, then with a uniform and finally using autoencoders
pretraining.

Random normal initialization schedules parameters sampled from a gaussian distribution with mean 0 and
standard deviation of 0.1 in the input neurons, 0.001 in the output single neuron and of 0.05 in the hidden
neurons.

Uniform initialization schedules parameters sampled from a constant distribution probability whose value 1
n

depends on the number of units per layer n.
Autoencoder pretrainings have been implemented as well described in subsection 2.3.3. All the learning

hyper-paramters set for the fine-tuning have been used also to set autoencoder networks.

34 CHAPTER 4. BALDI, SADOWSKI AND WHITESON

Part III

Conclusions

35

Chapter 5

Results

5.1 Performances optimization

5.1.1 Data set size
The set of figures reported in 5.1 shows how the accuracy of the learning process changes varying the number of
example passed to the deep network to do experience1.

(a) 400 000 training events. (b) 4 000 000 training events.

(c) 4000 training events. (d) 10 000 training events. (e) 40 000 training events.

(f) 80 000 training events. (g) 800 000 training events. (h) 8 000 000 training
events.

Figure 5.1: textbfAccuracy Comparison. Study of over-fitting varying dataset size.

The red lines mark the trend of
the accuracy on training sam-
ples while the green ones on
the validation ones. Points
on the green lines oscillate
more than those of the red
ones, in particular for smaller
datasets in 5.1c, 5.1d and
5.1e. This happens because
the model is updated in or-
der to fit the training sam-
ple and not the validation one,
whose role is only to check for
stopping training. When the
dataset are small the model
does not generalize well, or
rather overfits the training
data.
The model therefore adapts it-
self to the events it has experi-
enced.
Increasing the number of events
(see in the order the plots 5.1f,
5.1a, 5.1g, 5.1b and 5.1h), a
saturation curve becomes evi-
dent both for training and val-
idation data; this shape lets
us guess the presence of an
asymptotic maximum for the
accuracy reachable by the algo-
rithm.

1The same plots for the shallow network are not shown here, since there are not relevant variations on the trend respect to that
of the deep network. The only interesting aspect is that oscillations on validation accuracy stay evident also for large dataset. This
because here we used the low-level features to train the algorithm and the shallow network has more difficulty to generalize starting
from raw features than the deep one.

37

38 CHAPTER 5. RESULTS

Training set size AUC AUC
NN DN

4 000 0.599 0.622
8 000 0.620 0.642
40 000 0.652 0.664
80 000 0.658 0.696
400 000 0.715 0.642
800 000 0.710 0.774
4 000 000 0.759 0.826
8 000 000 0.763 0.840

Table 5.1: Study of dataset size. Comparison of deep networks
with different number of training events in term of the Area Under
the ROC Curve (AUC). The deep networks processing 21 raw features
have 3 hidden layers and 300 units in each of them. Autoencoder pre-
training and dropout have not been used.

As figures 5.1a and 5.1b highlight well the
saturation value for training and validation ac-
curacies is not the same, but they tend to
near as the samples expand. The gap too
is a consequence of the over fitting, and the
fact that it gets smaller adding events to the
samples proves that increasing the size of the
datasets helps to solve the problem of overfit-
ting.

Another logical consequence of expanding the train-
ing sample is that the performance improves. This is
obvious since if we pass on to the neurons more infor-
mation they do learn more. Less obvious is how quick
the performance improves varying the size of train-
ing dataset, that means asking what is its derivative

respect to the sample size.

(a) AUC vs. number of events

(b) AUC vs. number of events (log scale)

Figure 5.2: AUC performances vs. data size.

In figure 5.2a is delineated the variation of
AUC with the data size, both for the deep net-
work and the shallow one. A part from one point
it is evident that, using low-level features, the
deep network performs better than shallow one re-
gardless of the size of the sample used to train
them.
Since we have only one single run for each test, we are
not able to associate a statistical error to the AUC
results; an error could justify the switched behavior
at 400 000 events that is almost surely a fluctua-
tion.
Anyway we know that the error would decrease
increasing dataset size so we can be more confi-
dent in last results. As the accuracy in the pre-
vious plots, also the AUC suggests the presence
of a saturation point. Shallow network perform
seems to near that point slower than the deep
one.
In fact, if we consider the logarithmic scale ver-
sion of AUC vs. sample size (5.2b) and try to
do a linear interpolation we find the following re-
sults

Deep network:

a1 = 0.069± 0.003 (4.9%)
a0 = 0.772± 0.005 (0.6%)

Shallow network:

a1 = 0.050± 0.002 (3.874%)
a0 = 0.715± 0.003 (0.377%)

where a0 and a1 represent respectively the 0-degree and the 1-degree coefficients of the linear polynomial function.
It is clear that the logarithmic speed of shallow network is lower than those of deep network, that means the
first one is nearer to its saturation point than the second one is, which implies that if we suppose to add even
more events, the deep network would still learn something new while the shallow network actually much less.
This result is the first proof that deep networks have great potentiality.

5.1. PERFORMANCES OPTIMIZATION 39

5.1.2 Layer size

(a) AUC vs. number of units per layer

(b) AUC vs. number of units per layer(log scale)

Figure 5.3: AUC performances vs. number of units per layer.

In this paragraph we will show the results of
tests over different number of hidden layers for
both the shallow network (SN) and the deep net-
work (DN). These examples are useful to com-
pare the raising of complexity due to the ad-
dition of neurons per layer, with that of deep
network due to the addition of hidden lay-
ers.
The latter would be discussed in the following para-
graph.
As we can see from Figure 5.3, the trend for shal-
low network seems staying constant, in particu-
lar when trained with high-level features; more
variations are visible in performances with low-
level features. On the contrary, for deep net-
work the variation is clearly evident in all three
cases. Anyway, also in this case, the one which
varies more widely is that trained with low-level
features. This is a first evidence of how com-
plexity of input data influences the learning al-
gorithm. Moreover, if we focus on DN-low
level and DN-all features trends we can see a
smooth peak corresponding to the model with
300 units per layer, which is the final config-
uration chosen by Baldi, Sadowski and White-
son.

Table 5.2 reports the results for shallow networks
with 10, 100, 300, 1000, 2000 and 10 000 units per
layer.
The same tests was executed by Baldi, Sadowski
and Whiteson, thus we can easily compare their
results to ours. For this topic, go to subsection
5.5.

5.1.3 Number of hidden layers

Figure 5.4: Performances trends. Figure showing the different the
speeds using low, high or all features for training the deep networks.
Values used for the plot are reported in Table 5.3

As we mentioned before, in this paragraph it
is shown a study of deep network performances
raising up its complexity by adding more hid-
den layers to the net. First we can sup-
pose that raising deep model complexity would
bring to more evident improvements than rais-
ing the shallow one. Anyway we have to con-
sider the effects of the vanishing gradient prob-
lem (see 4.1), which put a limit to AUC improve-
ments.
Upper limit is evident from Figure 5.4 and it
is clear that it differs for each input set of
features: more features the higher threshold
is.

Table 5.3 reports AUC results for this set of tests.

40 CHAPTER 5. RESULTS

Table 5.2: Study of deep architecture: layer size. Comparison of deep networks with 3 hidden layers of different sizes in term of the
Area Under the ROC Curve (AUC). Autoencoder pre-training and dropout have not been used.

AUC
Technique Neurons per layer Low-level High-level Complete

NN 100 0.731 0.780 0.815
300 0.675 0.763 0.812
1000 0.731 0.778 0.812
2000 0.739 0.780 0.814
10 000 0.746 0.777 0.845

DN 100 0.814 0.795 0.850
200 0.839 0.796 0.858
300 0.840 0.793 0.859
500 0.837 0.794 0.851
700 0.820 0.793 0.844

Table 5.3: Study of deep architecture: number of hidden layers. Comparison of deep networks with different number of hidden
layers in term of the Area Under the ROC Curve (AUC). Hidden layers have 300 units in each of them. Autoencoder pretraining and
dropout have not been used.

AUC
Number of hidden layers Low-level High-level Complete

NN 0 hidden layer 0.675 0.763 0.812
DN 1 hidden layer 0.760 0.786 0.826
DN 2 hidden layers 0.815 0.793 0.847
DN 3 hidden layers 0.840 0.793 0.859
DN 4 hidden layers 0.845 0.794 0.860
DN 5 hidden layers 0.846 0.796 0.858
DN 6 hidden layers 0.847 0.794 0.859

5.2. MODEL ERROR 41

5.2 Model error

(a) AUC vs. model complexity

(b) AUC vs. model complexity (log scale)

Figure 5.5: Performances trends. Figure showing the different the
speeds using low, high or all features for networks wih different num-
ber of model parameters. Values used for the plot are reported in
Table 5.4

To quantify the goodness of the fit we have to
take in account two kind of error: the system-
atic error (bias) and the sensitivity of the predic-
tion (variance). The first one measures how much
the model predictions systematically deviate from
their true values regardless the particular dataset
used; the second one measures the error depending
on the particular set of randomly chosen training
data.
The size of the error depends principally on model
complexity: by increasing the number of pa-
rameters, more data should be captured by the
model, thus the bias should decrease. On the
other hand, since the model would move eas-
ily towards the specific training data, the risk
of over-fitting raises up and the variance too.
This is why it is necessary to choose the model
in order to find a compromise between the two
trends.

Model complexity: bias. Figure 5.5 merges re-
sults obtained testing shallow and deep network layers
size and deep network number of hidden layers, plot-
ting AUC versus total number of model parameters
(data used for the plots are reported in Table 5.4).
Plots allow us to experimentally observe which model
maximizes the performance and at the same time
which is the simplest way to reach it.

I decided to plot testing AUC versus number of
trainable parameters since the total number of param-
eters is actually a measure of model complexity which
is common to every architecture, while AUC gap from
the unity, that is its mathematical expectation, gives

the idea of model bias; so a gain in AUC is equivalent to reducing bias. Let’s take a look at Figure 5.5a.
First thing to be said is that the choice of input features has a great influence on how the AUC can evolve.

Training with raw features (red lines) lets the model to variate quickly respect to training with high-level ones
(green lines). This means that information contained in high-level features can be extracted easier even by the
simplest model that is the shallow network, but the fact remains that that information is not complete thus
performances achieved with high-level features do not equal that with low-level.
On the other hand, low-level features contain all the kinematic information collected by the experiments but it
is not easy at all to model it, thus also a little improvement in learning algorithm would bring to the raising of
AUC result. Therefore, to more information corresponds an higher upper limit.
Following this argument, the best benefit of all is obviously gained by the usage of all 28 features as inputs
(blue lines). In this way, high-level features suggest the net about which route to take and the low-level add
more details to refine the results. In few words, the more input units the better result is achieved.

The second aspect to be considered is how increasing the model complexity in the most efficient way. Again
in Figure 5.5a we can note that the faster improvement of AUC result is gained by varying the number of hidden
layers. For instance, by adding one more layer to the a shallow network with 300 units we can reach an higher
value for AUC than what we would obtain by increasing the number of units from 300 to 500.

Table 5.4 reports AUC results related to number of total trainable parameters, namely weights and biases,
for all architectures tested for this study.

42 CHAPTER 5. RESULTS

Table 5.4: Study of model complexity. Comparison of networks with different number of trainable parameters in term of the Area Under
the ROC Curve (AUC) computed on the testing sample. Autoencoder pretraining and dropout have not been used. For more infomation
about networks architecture see 5.1.2 and 5.1.3

Model AUC Model AUC Model AUC
Network architecture parameters Low-level parameters High-level parameters Complete

NN 7 units 64 0.666 162 0.760 211 0.775
NN 100 units 901 0.724 2301 0.781 3001 0.813
NN 300 units 2701 0.675 6901 0.763 9001 0.812
NN 1000 units 9001 0.731 23001 0.778 30001 0.812
NN 2000 units 18001 0.739 46001 0.780 60001 0.814
NN 10 000 units 90001 0.746 230001 0.777 300001 0.845
NN 20 000 units 180001 0.683 460001 nan 600001 0.696

300 neuron per layer
DN 1 hidden layer 93001 0.760 97201 0.786 99301 0.826
DN 2 hidden layers 183301 0.815 187501 0.793 189601 0.847
DN 3 hidden layers 273601 0.840 277801 0.793 279901 0.859
DN 4 hidden layers 363901 0.845 368101 0.794 370201 0.860
DN 5 hidden layers 454201 0.846 458401 0.796 460501 0.858
DN 6 hidden layers 544501 0.847 548701 0.794 550801 0.859

DN 3 hidden layers
100 units per layer 31201 0.814 32601 0.795 33301 0.850
200 units per layer 125201 0.839 122401 0.796 126601 0.858
300 units per layer 273601 0.845 277801 0.794 279901 0.860
500 units per layer 756001 0.837 763001 0.794 766501 0.851
700 units per layer 1478401 0.820 1488201 0.793 1493101 0.844

Model stability: variance. Let’s now turn to the second component of the error which is the variance. Here
is presented the study of model variance for a deep neural network processing each of the three set of features
and using the 8.8 million events as training examples.

I decided to measure the variance in term of the AUC variance, computed by repeating the train 7 times
and evaluating AUC over the testing sample. As for the bias, this approach is justified by the fact that AUC is
strictly related to the accuracy of predictions so, in its own way, this quantity shows fluctuations on the result
due to the particular set of examples used to compute it. In table 5.5 is given a final estimation for the 3-hidden
model ability of prediction. As we can see the variance is very small, thus the AUC relative error for low-level is
only about 0.24%, about 0.10% for high-level, and %0.23 for all features; it means this algorithm has got a great
stability and this occurs especially thanks to the large size of training sample.
We can notice a difference in error entity depending on wether raw data are included in the sample or not: the
presence of raw data in the inputs causes a rise of relative error. This is another evidence that generalizing from
raw data is not trivial.
Table 5.5: Study of model variance. Estimation of deep network variance in term of that affecting the Area Under the ROC Curve
(AUC) of testing sample. The deep networks have 3 hidden layers and 300 units in each of them. Autoencoder pre-training and dropout
have not been used.

DN 3 hidden layers AUC
(11 million ev.)

Test nr. Low-level High-level Complete
1 0.846 0.796 0.859
2 0.840 0.795 0.855
3 0.841 0.794 0.856
4 0.844 0.795 0.859
5 0.841 0.796 0.856
6 0.843 0.794 0.856
7 0.844 0.795 0.853

Variance 0.000005 0.0000006 0.000004
σ 0.002 0.0008 0.002

Mean 0.8427±0.0008 0.7950±0.0003 0.8563±0.0008

5.3. TESTS ON REGULARIZATION TECHNIQUES 43

5.3 Tests on regularization techniques
5.3.1 Autoencoder pre-training and weight initialization
We have already talked about autoencoder pretraining in Subsection 2.3.3. Here we aim to add something more
about the expected effects of this algorithm on the training, according to [16].

AUC
Technique Init. Low-level High-level Complete
11 million uniform 0.675 0.779 0.803

NN normal 0.675 0.763 0.810
11 million uniform 0.833 0.793 0.858

DN normal 0.840 0.793 0.859
3 hidden layers
2.5 million uniform 0.812 0.793 0.841

DN normal 0.813 0.789 0.837
3 hidden layers autoenc 0.803 0.792 0.836

Table 5.6: Study of weight initialization. Comparison between different methods of model
parameters initialization in term of the Area Under the ROC Curve (AUC). Hidden layers have
300 units in each of them. Autoencoder pre-training and dropout have not been used.

Experiments shown in [16] sup-
port the vision of autoencoder
pretraining as an unusual form
of regularization. In virtu-
ally, it has been observed that
loss function is an highly un-
convex function of the parame-
ters with many distinct local
minima. This make its opti-
mization with stochastic gradi-
ent descent a challenge for anal-
ysis, especially in a regime with
large amounts of data, since in
this way networks could be in-
fluenced more by early exam-
ples, determining which local
minimum to approach.

(a) Low-level features (b) High-level features (c) All-level features

Figure 5.6: Pretraining accuracy for first layer. Study of autoencoder pretraining of first
layer for a Deep Network of a 3 hidden layers and 300 units per layer. Both input layer and the
3 hidden ones have been pretrained starting from a uniform initialization and for a maximum of
100 epochs. Dropout have not been used.

The pre-training procedure
restricts the parameters into
a small volume of the param-
eter space, called local basin
of attraction and increases lo-
cally the cost function complex-
ity adding more topological fea-
tures such as peaks, troughs
and plateaus. Thus it gives a
good initial point for the fine-
tuning process and further it
renders locally more difficult to
travel significant distances via
a gradient descent procedure,
putting a constrain over the pa-
rameters evolution. The latter
is the reason why autoencoder pretraining can be seen as a regularizer: although it does not directly modify the
cost function as L1 or L2 algorithms do, it gives a Prior on the dataset (P (X)) which determines the consequent
probabilities of the final model configurations (P (Y |X)2). Briefly, learning P (X) is helpful in learning P (Y |X).
What more surprisingly was observed in [16] is that

“Unsupervised pre-training, as a regularizer that only influences the starting point of supervised training,
has an effect that, contrary to classical regularizers, does not disappear with more data (at least as far as we
can see from our results).”

That sounds good since it means that autoencoder pretraining would always bring to an improvement of the
performances.

Now let’s see if it happens in our experiment too. Using a set of 2 million training examples, the introduction
of unsupervised pretraining do not help so much. As reported in Table 5.6, random normal and uniform
initialization perform quite always the same or even better than pretraining initialization.

2where P (Y |X) denotes the posterior probability of Y given X, X the inputs dataset and Y the output computed by the net.

44 CHAPTER 5. RESULTS

(a) Pretrain layer 2 (b) Pretrain layer 3 (c) Pretrain layer 4

Figure 5.7: Pretraining accuracy using low-level features. Study of autoen-
coder pretraining for a Deep Network of a 3 hidden layers and 300 units per layer.
Both input layer and the 3 hidden ones have been pretrained starting from a uniform
initialization and for a maximum of 100 epochs. Dropout have not been used.

(a) Pretrain layer 2 (b) Pretrain layer 3 (c) Pretrain layer 4

Figure 5.8: Pretraining accuracy using high-level features. Study of autoen-
coder pretraining for a Deep Network of a 3 hidden layers and 300 units per layer.
Both input layer and the 3 hidden ones have been pretrained starting from a uniform
initialization and for a maximum of 100 epochs. Dropout have not been used.

(a) Pretrain layer 2 (b) Pretrain layer 3 (c) Pretrain layer 4

Figure 5.9: Pretraining accuracy using all features. Study of autoencoder
pretraining for a Deep Network of a 3 hidden layers and 300 units per layer. Both
input layer and the 3 hidden ones have been pretrained starting from a uniform
initialization and for a maximum of 100 epochs. Dropout have not been used.

This result seems disappoint our expec-
tations. Nevertheless, it has its relevance:
thanks to this study we understand that
unsupervised pretraining is a complex mat-
ter on which it is not easy drive general
conclusions at all. In this case, we can not
completely agree with [16] for the following
reasons. First of all, we are in front of a
completely different kind of input data and
inputs ensemble characteristic strictly par-
ticularizes the solving strategy for learning
optimization. Thus we can not completely
rely on results obtained for tests carried on
MNIST3 data to infer property of autoen-
coder applied to binary classification with
kinetic features as inputs. Secondly, to be
useful autoencoder networks should learn
well and optimizing them networks is not
trivial.
Let’s give a look to our results. Small
differences can be seen inside our tests be-
tween training with high-level features and
low-level features. As Table 5.6 shows, au-
toencoders cause some improvements only
on high-level processed algorithms.

For a possible explanation we have to
consider basically three aspects. First of all,
autoencoder pretraining role is to prevent
overfitting; if the train is not affected by
over fitting then preventing it might be not
necessary. In our case, we used a set of 2
million events to training the net; this size
should be large enough for overfitting not

to be significant (to see accuracy magnitude varying training data size, refer to plots in 5.1.1).
Secondly, autoencoder helps finding an optimal starting configuration for model parameters and this is

useful when we do not have idea how to chose a good initialization. In our algorithm, we used a basic uniform
initialization and the normal one, described in [13]. They already do a good work without pretraining.

Finally, but most important, the major difficulty resides in first layer pretraining. It is the core of autoencoder
pretraining since it abstract the first trait of input data, which is the most salient. In our tests autoencoder
network with one hidden layer is not able to generalize well, in particular when raw features are included in
inputs. This fact is put in evidence by 5.6a, 5.6b and in 5.6c, where learning process for first layer pretraining is
outlined.
On the contrary, pretrain successive layers is not a problem for this kind of architecture. Anyway the first one
influences all the rest of the training since next layers pretraining derive from it, using inputs derived from the
first layers pretraining. In our tests first layer is better pretrained when high-level features are used and this is
why then also the fine tuning performs better and we can see a little improvement. Figures 5.7, 5.8 and 5.9
show the accuracy trend for validation sample during pretraining of hidden layers.

3database of handwritten digits available at: http://yann.lecun.com/exdb/mnist/

5.3. TESTS ON REGULARIZATION TECHNIQUES 45

(a) Low-level features (b) High-level features (c) All features

Figure 5.10: Pretraining accuracy of first layer. Study of autoencoder pretraining of first
layer for a Deep Network of a 3 hidden layers and 300 units per layer. Both input layer and the
3 hidden ones have been pretrained starting from a uniform initialization and for a maximum of
100 epochs. Dropout has not been used.

(a) Learning rate η = 0.05 (b) Learning rate η = 0.005 (c) Learning rate η =
0.0005

Figure 5.11: Pretraining accuracy of first layer varying the learning rate. Study of
autoencoder pretraining of first layer for raw inputs. First layer has been pretrained starting
from a uniform initialization and for a minimum of 100 epochs. Dropout has not been used.

Stated that we need to op-
timize first layer pretraining, I
tried to put a constrain over the
minimum number of training
epochs, asking the learning pro-
cess not to stop before having
performed at least 50 epochs.
Figure 5.10 shows the results
for accuracy trend in first layer
pretraining: the request did not
help and the same even impos-
ing 20 minimum epochs. There
are still problems with low-level
features generalization. Ta-
ble 5.7 shows results for the
three tests, proving there is not
a relevant effect in changing
the number of epochs. Nev-
ertheless, accuracy trends in
5.10 show some kind of smooth
peaks that let us guess the pres-
ence of local minima for the
loss function. The algorithm
goes through them leaving pos-
sible points of convergence.

To have a complete outlook on the accuracy shape evolution, I tried to prolong once again the time of learning
moving the minimum epochs to 100 and change the value of learning rate to check for those possible local
minima which 0.05 learning rate resolution does not distinguish. Lowering the value of learning rate acts as
zooming out on accuracy trend in the first epochs, since we are slowing down learning speed. Figure 5.11 shows
our results: even using a learning rate two orders of magnitude smaller (5.11c) than the initial one (5.11a), the
net is not able to perceive other local minima of loss function.

DN 3 hidden layers
(2.5 million ev.) AUC
Autoencoder

Test nr. Low-level High-level Complete
10 epochs 0.803 0.7925 0.8360
50 epochs 0.809 0.7930 0.8398
50 epochs 0.806 0.7925 0.8361
20 epochs 0.810 0.7903 0.8371
Variance 0.000007 0.000001 0.000002

σ 0.003 0.001 0.002
Mean 0.807±0.001 0.7919±0.0006 0.8372±0.0008

Table 5.7: Model variance with autoencoder pretraining

Considering the kind of data
we are working with, the con-
clusion is that using a random
initialization is more convenient
than applying autoencoder pre-
training.
Maybe a more thorough search-
ing for autoencoder optimiza-
tion would have brought to
more successful results, but this
goes beyond the scope of this
work.

46 CHAPTER 5. RESULTS

5.3.2 Reducing over-fitting: Dropout

(a) Accuracy vs. epochs (b) Distribution of sig-
nals and background events
(testing sample)

Figure 5.12: Study of dropout techinque of regularization: 11 millions evets. Application
of dropout technique with rate of 0.5 to hidden layers of a Deep Network with 3 hidden layers,
each of them with 300 units. All features have been used to train the net. The full dataset has
been used, so 8.8 million events as training data and the rest equally divided between validation
and testing data. Autoencoder has not been used.

(a) Accuracy vs. epochs (b) Distribution of sig-
nals and background events
(testing sample)

Figure 5.13: Study of dropout techinque of regularization: 2.5 million events. Application
of dropout technique with rate of 0.5 to hidden layers of a Deep Network with 3 hidden layers,
each of them with 300 units. All features have been used to train the net. Autoencoder has not
been used.

(a) Accuracy vs. epochs (b) Distribution of sig-
nals and background events
(testing sample)

Figure 5.14: Study of dropout technique of regularization: 250 000 events. Application
of dropout technique with rate of 0.5 to hidden layers of a Deep Network with 3 hidden layers,
each of them with 300 units. All features have been used to train the net. Autoencoder has not
been used.

Let’s turn to Dropout. We
applied dropout technique to
deep networks with 3 hidden
layers. Figure 5.12a shows ac-
curacy trends using 8.8 mil-
lion training events. There is
a great difference respect to
those shown in Figure 5.1h in
subsection 5.1.1: here we find
the green line, which represents
the accuracy on validation set,
above the red one, represent-
ing that on training set. This
happens thanks to the action of
Dropout as regularizer, that is
randomly changing every epoch
the 50% units per layer which
will take part to the training.
It is evident, however, that
validation accuracy fluctuates
around a value which stays
quite constant during the
epochs. In fact, training with
all features and full dataset the
value for AUC results 0.814,
quite less than 0.859 performed
without any regularization. So
Dropout technique results use-
less when large datasets are pro-
cessed.

If we analyze more in de-
tail how dropout effects change
varying training data size, we
find that, using low-level fea-
tures, accuracy oscillaions are
more evident for large datasets
than for small ones. That is
exactly the opposite of what
we observed in subsection 5.1.1,
where the curve of validation
accuracy becomes more stable

increasing data size.

Datasize AUC
Low-level High-level Complete

8.8 million 0.741 0.781 0.814
4 million 0.733 0.781 0.819
2 million 0.715 0.777 0.811
0.2 million 0.713 0.758 0.782

Table 5.8: Dropout technique varying data size.Test on deep network with 3 hidden layers
and 300 units per layer.

Moreover, with the help of
dropout technique high-level
performances surpass low-level
ones; this probably means that
also dropout technique validity
depends on input features.

5.3. TESTS ON REGULARIZATION TECHNIQUES 47

AUC
Test nr. Low-level High-level Complete

1 0.719583968828 0.777 0.811
2 0.715264812438 0.774 0.811
3 0.714817433643 0.768 0.799

Variance 0.000005 0.00001 0.00003
σ 0.002 0.003 0.005

Mean 0.717±0.001 0.773±0.002 0.807±0.003

Table 5.9: Model variance with dropout technique of regularization Test on deep network
with 3 hidden layers and 300 units per layer using 2 million training events.

In conclusion, we show in
Table 5.10 the best results
obtained by our tests. In
summary, we found that both
dropout technique and autoen-
coders pretraining should be ap-
plied to small dataset, other-
wise they are useless. In addi-
tion, even with few examples,
we noticed that autoencoder
techniques strictly depends on
the complexity of input data,
since tuning the autoencoder al-
gorithm can be as difficult as
tuning the deep network they

should regularize. Also dropout effects changes with the particular kind of input sample.
So, if possible, it is preferable to increase the number of events to train the net or, in alternative, adding to raw
inputs one or more high-level features to route the algorithm towards convergence, as we have done when we
used all 28 features.
Table 5.10: Study of regularization techniques. Comparison of trainings with and without the use of dropout or autoencoders
pretraining in term of the Area Under the ROC Curve (AUC). The model used for the tests is a deep network with 3 hidden layers, each
of them with 300 units, trained on 2 million events.

AUC
Technique Architecture Low-level High-level Complete

Basic DN 3 layers 0.811±0.001 0.7887±0.0001 0.8385±0.0008
Dropout DN 3 layers 0.717±0.001 0.773±0.002 0.807±0.003

Autoencoder DN 3 layers 0.807±0.001 0.7919±0.0006 0.8372±0.0008

48 CHAPTER 5. RESULTS

5.4 Comparing Shallow and Deep Networks

(a) Feature 5: Mbb

(b) Feature 1: Mjj (c) Feature 2: Mjjj (d) Feature 3: Mlν

(e) Feature 4: Mjlν (f) Feature 6: MWbb (g) Feature 7: MWWbb

Figure 5.15: Distribution Comparison. Distribution of signal predictions of a Shallow Net-
work trained with high-level features compared with that of a 3 hidden layers Deep Network
trained with low-level features and with the expected distribution. Autoencoder pretraining
and dropout have not been used.

Figure 5.16: ROC curves comparison. Comparison between shallow network trained on
8.8 million events using high-level features and deep network trained on 8.8 million events
using low-level features.

We have already noted in several
occasion that shallow networks per-
formances can compete with those
of deep networks only if the first
ones are trained with the high-level
features while the second with the
low-level features. That means
shallow network need a help from
human engine. To better under-
stand the differences between how
the two algorithms work, we shall
investigate how each model general-
ize, or rather how they reconstruct
the discriminant features necessary
to see our resonant exotic signal.

Histograms in 5.15 show all
the high-level features distribu-
tion. Red and blue plots repre-
sent in order background and sig-
nal expected distributions, those
obtained using the already known
label 0 and 1 to classify events.
Green plots outline the reconstruc-
tion of signal events acted by the
deep network training with low-
level features, while the yellow ones
those acted by the shallow network
training with high-level features.

Figure 5.15a is the one which
better puts in evidence the differ-
ent behavior of the two. We can
see that the yellow histogram ac-
centuates the peak more than it
should do, while the green looks
more like the blue one. In virtu-
ally, since the shallow network gets
a restricted number of inputs, it
has less information to extrapolate
so it tends to emphasize them. On
the other hand, the deep network
has not got any prior about which
discriminative features to construct
in order to delineate the most im-
portant traits of the dataset. So it
has a conservative behavior.

These results therefore show
that handmade features waste part
of information; using them to do
statistical analysis puts a lower
limit to the maximum performance
obtainable, leading to the need of
more and more data.

So in high energy physics, deep
network techniques reach perfor-
mances that human engine alone
can not.

5.5. COMPARING WITH BALDI, SADOWSKI AND WHITESON RESULTS 49

5.5 Comparing with Baldi, Sadowski and Whiteson results
Now, at the end of this essay, we just have to compare our best results for signal discrimination to those
presented in [13].In the following table there are placed side by side the AUC final results found in [13] and that
of our tests.

In previous sections we concluded that the best solution is to use the 8.8 million events as training sample.
With such a large training sample our virtual machines are not able to compute autoencoder pretraining while
dropout does not causes any improvement in AUC results.

Therefore our best results are the ones obtained without the use of regularization techniques.

Table 5.11: Study of network size and depth. Comparison of shallow networks with different number of hidden units (single hidden
layer), and deep networks with varying hidden layers in term of the Area Under the ROC Curve (AUC). The deep networks have 300 units
in each hidden layer. On the left side AUC resulting in [13] and on the right those resulting from our tests.

AUC AUC
Technique Low-level High-level Complete Low-level High-level Complete

NN 300-hidden 0.733 0.777 0.816 0.675 0.763 0.812
NN 1000-hidden 0.788 0.783 0.841 0.731 0.778 0.812
NN 2000-hidden 0.787 0.788 0.842 0.739 0.780 0.814
NN 10000-hidden 0.790 0.789 0.841 0.746 0.777 0.845

DN 3 layers 0.836 0.791 0.850 0.840 0.793 0.859
DN 4 layers 0.868 0.797 0.872 0.845 0.794 0.860
DN 5 layers 0.880 0.800 0.885 0.846 0.796 0.858
DN 6 layers 0.888 0.799 0.893 0.847 0.794 0.859

Our results do not achieve the performances in [13]. Our algorithms, indeed, run for about 40-60 epochs
before reaching the condition of overfitting, while those implemented by Baldi, Sadowski and Whiteson run
for 200-1000 epochs. This is a great difference. It means they were able to regularize the algorithms such that
overfitting was pulled away.

(a) NN performances in [13]. (b) DN performances in [13].

(c) NN performances from our work. (d) DN performances from our work.

Even if we did not achieve
the same results as in previous
work, we are able to prove that
using low-level features in deep
networks leads to better per-
formance than using high-level.
Conversely, for shallow network
it does not happen.

50 CHAPTER 5. RESULTS

Chapter 6

Applying results to discover new
Physics

6.1 Figure of merits: the physical meaning of our work

(a) FOM (b) Event distributions.

Figure 6.1: 40 000 events.Test on deep network with 3 hidden layers
and 300 units er layer using raw features.

(a) FOM (b) Events distribution.

Figure 6.2: 800 000 events.Test on deep network with 3 hidden
layers and 300 units er layer using raw features.

(a) FOM (b) Events distribution.

Figure 6.3: 8 800 000 events. Test on deep network with 3 hidden
layers and 300 units er layer using raw features.

Up to now, we have not discussed yet physical implica-
tions of our results. We compared different networks
via AUC in order to select the best neural architecture
and the best choice of hyper-parameters. Now we
aim to translate AUC in a more suitable metric for
physics scope, in order to get a measure of discovery
significance.
Figures 6.1a, 6.2a and 6.3a show how FOM value
changes varying the cut point for labeling of signal
predictions. In the first example FOM trend shows a
peak at about 0.5 while increasing the number of train-
ing events, it gradually disappeared till it completely
vanish thus the maximum value for S√

B
is obtained

when the cut point tends to 1.This because output
predictions get nearer and nearer to a binary classifica-
tion. A part from the trends, such FOMs say nothing
about a concrete significance value: as Figures 6.1b,
6.2b and 6.3b show, our dataset is composed equally of
signal and background, but that does not correspond
to physical reality. As we have already said in chapter
3, signal events of new physics are rare, so their cross
section is smaller than that of background. To under-
stand if obtained results can help discriminating new
signals we need to renormalize histograms such that
they correspond more or less to real experiments.

To compare significance results to those calcu-
lated by Baldi, Sadowski and Whiteson (see TA-
BLE I in [13]) we have to assume 100 signal events
and 1000 background events and compute our FOM.
1

1In [13] significance has been computed in a more sophisticated way, evaluating the Likelihood ratio between different hypothesis
of events distribution based on a signal strenght parameter (µ). They assume distribution to be background-only like if µ = 0 and
background plus signal if µ = 1, such that probability distribution for n events is a marked Poisson model:

P ({x1, .., xn}|µ) = Pois(n|µS +B)[
n∏
e=1

µSfS(xe) +BfB(xe)
µS +B

]

The analysis have been done using HistFactory on Root. More information at [21].

51

52 CHAPTER 6. APPLYING RESULTS TO DISCOVER NEW PHYSICS

Using this efficiency rate, histograms of events distribution and FOM functions assume the following shapes:

(a) Low-level features. (b) High-level features. (c) All features.

(d) Low-level features. (e) High-level features. (f) All features.

Figure 6.4: FOM and histograms after renormalization. Performances obtained after normalization for deep network with 3 hidden
layers and 300 units per layer, using 8.8 million training events assuming 100 signal events and 1000 background events.

Relative results for significance are:

Model Features Cut Sgnificance Sgnificance
NN Low-level 0.45 3.34 σ 2.5 σ

High-level 0.65 3.69 σ 3.1 σ
All 0.7 4.11 σ 3.7 σ

DN Low-level 0.75 4.44 σ 4.9 σ
High-level 0.7 3.85 σ 3.6 σ

All 0.75 4.66 σ 5.0 σ

Table 6.1: Significance results. Results obtained after histogram renormalization assuming 100 signal events and 1000 background.
Training on shallow network (NN) with 300 hidden units and on deep network (DN) with 3 hidden layers and 300 units per layer. On the
left side significances resulting by our tests, on the right those resulting in [13].

As we could foresee from AUC comparison in previous chapter, our significances do not achieve those in
[13]. We can anyway find the minimum number of signal events and a correspondent cross section, to achieve a
discovery.

To do it we can, for instance, compute an hypothesis test based on χ2 distribution. We can define χ2 as
follows:

χ2 =
nbins∑
i=1

(Oi −Ai)2

Ai
(6.1)

where the sum is over histogram bins, Oi is the observed i-th bin height and Ai the expected one. We assume
as observed distribution that of signal plus background while as expected distribution that of background only,
which is also called null hypothesis (H0). Distribution of signal and background events over a single bin is
poissonian like, thus the variance for a number of expected events Ai in a single bin is Ai. We can then rewrite
equation 6.1 as

χ2 =
nbins∑
i=1

((si + bi)− bi)2

bi
=
nbins∑
i=1

s2
i

bi

where si is the number of signal events in the i-th bin, bi that of background events and denominator is the
poissonian variance of bi. From statistics we know that the expectation value for a quantity distributed as χ2 is
equal to the number of degree of freedom (ν). In our histograms we have 49 total bins between 0 and 1, 0.02
width, but we decided to restrict the χ2 computation to a smaller region, choosing as cut point 0.94, the value
for which FOM is maximum and discrepancies between signal and background distributions are highlighted

6.1. FIGURE OF MERITS: THE PHYSICAL MEANING OF OUR WORK 53

as best as possible. In this way the number of considered bins is only 3 and this is also our ν. Assuming a
confidence level (CL) of 95%, the cut point for a χ2 with ν = 3 is about 7.81, thus we can discard H0 hypothesis
if the computed χ2 is major of 7.81.
To procede in computing χ2, we first need to renormalize background distribution such that its integral coincides
with the total number of expected events. The number of events (N) for a process with cross section σ is given
by

N = Lint·σ

where Lint is the textitintegrated luminosity with respect to time. Lint is a parameter used to characterize the
performance of particle accelerator. Here we assume Lint = 20.3 fb−1, as in [22]. For what concerns background
cross section we reference to simulations run with Madgraph5 2:

σbkg = (27.92± 0.08) pb

Number of background events becomes

Nbkg = Lint·σbkg ≈ 566776

Fixed Nbkg, we varied number of signal events till we found the minimum value for which χ2 allows to reject H0.
We found that the minimum number of signal events is Nsign ≈ 886. Normalizing signal distribution respect
to 886 and considering as cut point 0.94 we found FOM ≈ 2.53 in unit of σ and χ2 ≈ 7.91, which allow to
reject H0 with 95%CL. We can also convert the result in term of minimum cross section for signal evidence.
Assuming the same integrated luminosity used for background (20.3 fb−1), minimum cross section is equal to

σsign = Nsign
Lint

≈ 43.6 fb

Thus the ratio between signal and background cross section is

σsign
σbkg

≈ 43.6 fb
27.92 pb ≈ 1.6 · 10−3

2See Appendix A.

54 CHAPTER 6. APPLYING RESULTS TO DISCOVER NEW PHYSICS

Chapter 7

Future prospectives

In this work several tests have been done. We studied how performances are influenced by a specific network
architecture, especially by the number of hidden layers; we tried new methods for algorithm regularization with
poor results and we observed variance of predictions. During this work we encountered troubles related to
handling large dataset size: first of all, we needed moving to virtual machines useful to upload all data at a time;
nevertheless there were still limits in the choice of algorithm complexity due to the RAM of these machines
which does not allow to apply Autoencoder pretraining to the full dataset. Moreover, the long training time
stretched also the time needed to execute the all optimization tests. Possible solutions to these drawbacks
already exist.

To speed up the computation and optimize memory management we can procede in two different ways: on
one hand, we can operate on hardware level strengthening the capacity of processors, especially moving from
CPUs to GPUs; on the other hand, we can upgrade software going from single thread to multi thread executions.

Clustering: distributed Keras packages As for software development, next step in our work should be,
for instance, moving from Keras packages to that of Distributed Keras, a deep learning framework still under
construction based on distributed optimization algorithms and data parallel methods 1. Distributed Keras is
built on Keras libraries for machine learning and Apache Spark, a general engine to process large sets of data
using cluster computing 2. The idea is to exploit all the power of virtual machines cluster created into in the
Cloud to make all them contribute to run the same single learning algorithm using only one shared training
datasets.

Autoencoder potentiality: building latent spaces For what concerns future prospectives on deep neural
networks in High Energy Physics, more in-depth studies should be carry on about unsupervised training
algorithms as autoencoders. Their capability in finding the principal features of a data sample will be optimized
and exploited to recognize new topologies on phase space which human engine and theoretical physics have not
reached yet.

In any case, development in machine learning with deep networks for High Energy Physics is still in progress
and algorithm optimization has not been concluded. During this work we have been able to notice the sensitivity
of neural networks to the specific input features besides network architecture. We have seen that having a large
training dataset could solve part of regularization problems without looking for more sophisticated algorithms,
but at the same time this means facing new troubles in handling big data, as infrastructures and software
development. This work seeks to take only a first look at this subject. Even if our results do not achieve the
best performances already experimented in [13], we were able to prove the overcoming of deep neural networks
on shallow neural networks. This result make us hopeful that getting on with machine learning algorithms
would bring to improvements in analysis performances at LHC.

1More information about Distributed Keras at: https://github.com/cerndb/dist-keras
2Apache Spark: https://spark.apache.org

55

56 CHAPTER 7. FUTURE PROSPECTIVES

Appendices

57

Appendix A

Data simulation

Dataset used as training sample was standardize such that gaussian and uniform distributions, namely that of η
and φ, have mean 0 and standard deviation 1, while exponential distributions (invariant mass and transverse
momentum) have mean 1. To reconstruct the effective features distributions we simulated 10000 signal and
background events using MADGRAPH5 with DELPHES and PYTHIA at

√
s = 8TeV at leading order.

Thus we could see the real scale of each quantity. The distributions obtained due to simulations are shown
below.

(a) Lepton pT (GeV) (b) Lepton η (c) Lepton φ (rad) (d) Missing momentum
pT (GeV)

(e) Missing momentum
φ (rad)

(f) Jet 1 pT (GeV) (g) Jet 2 pT (GeV) (h) Jet 3 pT (GeV) (i) Jet 4 pT (GeV)

(j) Jet 1 η (k) Jet 2 η (l) Jet 3 η (m) Jet 4 η

(n) Jet 1 φ (rad) (o) Jet 2 φ (rad) (p) Jet 3 φ (rad) (q) Jet 4 φ (rad)

Figure A.1: Low-level features. Distributions obtained from MADGRAPH5 simulations.

59

60 APPENDIX A. DATA SIMULATION

Bibliography

[1] Jeff Byers (July 3rd, 2017)
The physics of data.
www.nature.com/naturephysics

[2] Michael Nielsen
Neural networks and deep learning
http://neuralnetworksanddeeplearning.com/index.html

[3] Recurrent neural networks (RNNs)
https://en.wikipedia.org/wiki/Recurrent_neural_network

[4] CS231n Convolutional Neural Networks for Visual Recognition
http://cs231n.github.io/neural-networks-2/

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton (2012)
ImageNet Classification with Deep Convolutional Neural Networks.

[6] Yoshua Bengio (Version 2, September 16th, 2012)
Practical Recommendations for Gradient-Based Training of Deep Architectures

[7] Alessandro Bettini (Second Edition, 2014)
Introduction to Elementary Particle Physics

[8] The Large Hadron Collider (LHC)
https://home.cern/topics/large-hadron-collider

[9] LHC complex
http://atlas.kek.jp/sub/photos/Accelerator/0107024_01.jpg

[10] Inside a proton
http://www.quantumdiaries.org/2016/02/01/spun-out-of-proportion-the-proton-spin-crisis/

[11] Inside a detector (CMS slice)
https://cms-docdb.cern.ch/cgi-bin/PublicDocDB/RetrieveFile?docid=4172&filename=CMS_Slice.gif&version=2

[12] K. Hornik, M. Stinchcombe, H. White (1989)
Multilayer Feedforward Networks are Universal Approximators

[13] P. Baldi, P. Sadowski, and D. Whiteson (June 5th, 2014)
Searching for Exotic Particles in High-Energy Physics with Deep Learning
https://arxiv.org/pdf/1402.4735.pdf

[14] M. Bianchini, F. Scarselli (January 6th, 2014)
On the complexity of shallow and deep neural network classifiers
IEEE Transactions on Neural Networks and Learning Systems (Volume: 25, Issue: 8, Aug. 2014)
https://pdfs.semanticscholar.org/2786/feab5c644bf0bde98fb6f9d1dbd0b58ca80c.pdf

[15] Building Autoencoders in Keras - The Keras Blog
https://blog.keras.io/building-autoencoders-in-keras.html

[16] D. Erhan, Y. Bengio, A. Courville, P.A. Manzagol, S. Bengio P. Vincent
Why Does Unsupervised Pre-training Help Deep Learning?
(Journal of Machine Learning Research 11 (2010))

61

62 BIBLIOGRAPHY

[17] Example of autoencoder pretraining.
https://www.researchgate.net/figure/304249651_fig3_Fig-3-Pretraining-procedure-for-autoencoder-The-weights-of-a-5-layer-autoencoder

[18] Keras Documentation
https://blog.keras.io/building-autoencoders-in-keras.html

[19] Theano Documentation
http://deeplearning.net/software/theano/

[20] Tensorflow Documentation
https://www.tensorflow.org

[21] K. Cranmer, G. Lewis, L. Moneta, A. Shibata, W. Verkerke
HistFactory: A tool for creating statistical models for use with RooFit and RooStats
http://cds.cern.ch/record/1456844/files/CERN-OPEN-2012-016.pdf?subformat=pdfa&version=1

[22] ATLAS Collaboration (December 6th, 2013)
Search for a multi-Higgs-boson cascade in W +W − bb̄ events with the ATLAS detector in pp collisions at√
s = 8TeV

https://arxiv.org/pdf/1312.1956.pdf

[23] Distributed Keras
https://github.com/cerndb/dist-keras

	I Neural Networks
	The architecture of Neural Networks
	Perceptron
	Sigmoid
	Neural Network

	Learning Algorithm
	Loss function
	Optimizer
	Fitting the model
	The problem of overfitting
	Reducing overfitting: regularization techniques
	Weights initialization

	II Searching for Exotic Particles in High-Energy Physics with Deep Learning
	The Physics of LHC
	Baldi, Sadowski and Whiteson
	The purpose: Shallow Network and Deep Network
	Shallow a Deep Networks Complexity

	The topic of the study: process involving new exotic Higgs bosons
	Dataset
	Computational tools
	Methods
	Validation and testing split
	Models
	Predetermined hyper-parameters set up
	Experiment on new tools for machine learning

	Analysis
	Figure of Merit

	III Conclusions
	Results
	Performances optimization
	Data set size
	Layer size
	Number of hidden layers

	Model error
	Tests on regularization techniques
	Autoencoder pre-training and weight initialization
	Reducing over-fitting: Dropout

	Comparing Shallow and Deep Networks
	Comparing with Baldi, Sadowski and Whiteson results

	Applying results to discover new Physics
	Figure of merits: the physical meaning of our work

	Future prospectives
	Appendices
	Data simulation

