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Università degli studi di Padova

Co-supervisor:
Prof. Alessandro

Astolfi
Imperial College London

2nd October 2013



c© Copyright by Alberto Padoan 2013
All Rights Reserved



To my brother, Riccardo.





ABSTRACT

This thesis is concerned with the analysis of the “zero-interlacing-
poles”(ZIP) systems, a particular, yet fascinating, class of linear
dynamical systems. The present work is divided in four parts.
The first part contains the definitions and the basic properties
of ZIP systems. In the second part, the model order reduction
of ZIP systems by moment matching is studied. Therein, under
suitable assumptions, the inheritance of the ZIP property in the
reduced order model is proved. The third part is devoted to a
nonlinear enhancement of the notion of ZIP system. In the fourth
part, examples and applications arising in the engineering domain
are considered.
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Chapter 1

Introduction

This thesis focuses on the class of linear dynamical systems satisfying the
so-called “zeros-interlacing-poles” (ZIP) property. From a theoretical point
of view, the peculiar class of ZIP systems is composed, by definition, by
systems whose transfer function has interlaced real zeros and poles. From a
practical point of view, ZIP systems arise in the field of electrical networks,
precisely when considering parallel interconnections of RC circuits. However,
the existence of ZIP systems in different frameworks cannot be excluded.

In this work, the novel notion of left ZIP system is introduced and an
originally developed state-space realization of such systems is proposed. The
mentioned representation allows one to easily parameterize zeros and poles of
an arbitrary left ZIP system. A characterization of the zeros of a ZIP systems
is discussed, linking the notion of ZIP and left ZIP system. Subsequently, the
model reduction of ZIP systems by moment matching is investigated. Among
a number of properties holding for ZIP systems, the inheritance of the ZIP
property in the reduced order model undoubtedly stands out. The inherit-
ance issue has been previously discussed in [15]. Therein, it has been shown
that several SVD-based model reduction methods preserve the ZIP property.
Consistently with this previous study, reduced order models of order n of ZIP
systems matching n finite moments and n Markov parameters preserve the
ZIP property. Next, the problem of determining a ZIP reduced order model
with prescribed poles is investigated. Necessary and sufficient conditions for
the feasibility of the pole placement are provided and a polynomial interpret-
ation of the sufficient conditions is explored. Also, an attempt to define a
nonlinear enhancement of the notion of ZIP system is presented. Finally, in
order to validate the proposed results, some examples of ZIP systems arising
in the engineering domain have been selected.
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Notation
Throughout this work we use standard notation. R, Rn and Rp×m respect-
ively denote the set of real numbers, of n-dimensional vectors with real com-
ponents, and of p × m-dimensional matrices with real entries, respectively.
R+ (R−) denotes the set of non-negative (non-positive) real numbers. C de-
notes the set of complex numbers, C0 denotes the set of complex numbers
with zero real part, C− denotes the set of complex numbers with negative
real part. σ(M) denotes the spectrum of the matrix M ∈ Rn×n, while ∅
denotes the empty set. ei denotes the ith vector of the standard basis of Rn,
the vector with a 1 in the ith coordinate and 0’s elsewhere. Lkfh denotes the
kth Lie derivative of the smooth function h along the smooth vector field f ,
as defined in [11, Chapter 1].



Chapter 2

Preliminaries

In this chapter we review some basic results concerning linear dynamical
systems. In a broad outline, a dynamical system is a mathematical model that
describes the variability of a state over time. The behavior of the modeled
process is condensed in a function representing the time dependence of a
point, the state, in an appropriate geometrical space. A dynamical system is
normally intended to absorb inputs, process them in some way and produce
outputs. When the function characterizing the dynamical system qualifies as
linear, the equations governing the evolution of the process are analytically
and numerically well manageable. In addition, properly choosing the inputs,
one may easily predict or even control the state and the output of the system.
The reader is referred to [8, 10] for a clear and exhaustive introduction to
linear dynamical systems.

2.1 Linear dynamical systems

2.1.1 State-space representation of linear systems

Given the linear spaces X = Rn, U = Rm, Y = Rp, respectively called the
state space, the input space and the output space, the state equations describ-
ing a linear continuous-time system are a set of first-order linear differential
equations

ẋ(t) = Ax(t) +Bu(t), t ∈ R, (2.1)

where x(t) ∈ X is the value of the state (function) of the system x : R → X
at time t, while u(t) ∈ U is the value of the input (function) u : R → U at
time t. The output equations are a set of linear algebraic equations

y(t) = Cx(t) +Du(t), t ∈ R, (2.2)
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where y(t) ∈ Y is the value of the output (function) y : R→ Y at time t. In
what follows, the term linear system will be used to denote a linear, finite-
dimensional, time-invariant, continuous time system: linear because X, U,
Y are linear spaces; finite-dimensional because n, m, p are all finite positive
integers; time-invariant because A, B, C, D do not depend on time, hence
their matrix representations are constant n × n, n × m, p × n and p × m
matrices; finally continuous-time since t ∈ R.

Definition 1 (State-space description). The state-space description of a
linear system Σ, is a quadruple of matrices

Σ =

[
A B
C D

]
, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m. (2.3)

The dimension of the system is defined as the dimension of the associated
state space

dim Σ = n. (2.4)

We will also use the notation Σ = (A,B,C,D) or more shortly Σ = (A,B,C)
to denote a system Σ where D = 0 or D is irrelevant for the argument
pursued. Similarly, Σ = (A,B) and Σ = (A,C) will denote a system
Σ = (A,B,C) where respectively C and B are irrelevant for the argument
pursued.

2.1.2 Impulse response and transfer function

In what follows we will give the solution of (2.1). Then, we will derive the
notion of impulse response and consequently define the concept of transfer
function of a linear system. To this end, we briefly recall the definition of
matrix exponential. Given M ∈ Rn×n and t ∈ R, the matrix exponential of
M is defined as

eMt := In +
t

1!
M +

t2

2!
M2 + . . . . (2.5)

Let us denote by x(t;x0, u) the solution of the state equations (2.1), namely
the state of the system at time t attained from the initial state x0 a time t0,
under the influence of the input u. Then, the solution of the state equations
(2.1) has the following expression

x(t;x0, u) = eA(t−t0)x0 +

∫ t

t0

eA(t−τ)Bu(τ)dτ, t ≥ t0. (2.6)
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Substituting (2.6) in (2.2), it follows that the output is given by

y(t) = Cx(t;x0, u) +Du(t)

= CeA(t−t0)x0 +

∫ t

t0

CeA(t−τ)Bu(τ)dτ +Du(t)dτ, t ≥ t0. (2.7)

If we set t0 = −∞, x0 = 0 and u = δ, the δ-distribution, equation (2.7) yields
the so-called impulse response

h(t) =

{
CeAtB + δ(t)D, t ≥ 0,
0, t < 0.

(2.8)

Finally, taking the Laplace transform of the impulse response, returns

W (s) = C(sIn − A)−1B +D (2.9)

which is called the transfer function of Σ. The transfer function of a linear
time-invariant system is a powerful tool, it incorporates the relation between
the input and output. Expanding the transfer function in Laurent series1 in
the neighborhood of infinity, we get

W (s) = D + CBs−1 + CABs−2 + CA2Bs−3 + . . . (2.10)

= h0 + h1s
−1 + h2s

−2 + h3s
−3 + . . . . (2.11)

The matrices h0 = D ∈ Rp×m and hk = CAk−1B ∈ Rp×m are often referred
to as Markov parameters of the system Σ.

1 The Laurent series of a complex function f : C→ C at a point c ∈ C is given by

f(z) =

∞∑
n=−∞

an(z − c)n, z ∈ C,

where the an ∈ C are constants, defined by

an :=
1

2πi

∮
γ

f(z)

(z − c)n+1
dz.

If there exists a holomorphic function g and a positive integer n, such that

f(z) =
g(z)

(z − a)n
(f(z) = (z − a)ng(z)), g(a) 6= 0,

hold, then a ∈ C is called a pole (zero) of f . The smallest such n is called the order of
the pole (zero). A pole of order 1 is called a simple pole.
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2.1.3 Reachability, observability and realization

In this subsection we introduce the fundamental concepts of reachability and
observability. The former describes the ability of an external input to move
the internal state of a system from any initial state to any other final state
in a finite time interval. The latter gives a measure for how well internal
states of a system can be inferred by knowledge of its external outputs. The
observability and reachability of a system are dual concepts, and both con-
tribute to the solution of the realization problem. For a survey on reachability,
observability and realization see [1, 8].

Definition 2 (Reachability). Consider the system Σ = (A,B), A ∈ Rn×n,
B ∈ Rn×m. A state x? ∈ X is reachable from the zero state if there exist an
input u? and a time T ? <∞ such that

x? = x(T ?; 0, u?). (2.12)

The reachable subspace XR ⊆ X of Σ is the set containing all reachable states
of Σ. The system Σ is said reachable if XR = X. Finally, the matrix

R :=
[
B AB · · · An−1B

]
∈ Rn×n (2.13)

is said the reachability matrix of Σ.

Hereafter we list some equivalent conditions to reachability.

Proposition 1 (Reachability conditions). The following statements are equi-
valent.

1. The system Σ = (A,B), A ∈ Rn×n, B ∈ Rn×m, is reachable.

2. The reachability matrix of Σ has full rank: rank(R) = n.

3. No left eigenvector v of A is in the left kernel of B:

v>A = λv> ⇒ v>B 6= 0. (2.14)

4. rank
( [

sIn − A −B
] )

= n for all s ∈ C.

Definition 3 (Observability). Consider the system Σ = (A,C), A ∈ Rn×n,
C ∈ Rp×n. A state x? ∈ X is undistinguishable from the zero state if

0 = y(t) = Cx(t;x?, 0), for all t ≥ 0, (2.15)
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namely, if the output produced by the initial state x? is undistinguishable from
the output produced by a zero initial state for all t ≥ 0. The unobservable
subspace Xno ⊆ X of Σ is the set of all undistinguishable states (from the
zero state) of Σ. The system Σ is said observable if Xno = {0}. Finally, the
matrix

O :=


C
CA

...
CAn−1

 ∈ Rn×n (2.16)

is said to be the observability matrix of Σ.

Hereafter we list some equivalent conditions to observability.

Proposition 2 (Observability conditions). The following statements are
equivalent.

1. The system Σ = (A,C), A ∈ Rn×n, C ∈ Rp×n, is observable.

2. The observability matrix of Σ has full rank: rank(O) = n.

3. No right eigenvector v of A is in the right kernel of C:

Av = λv ⇒ Cv 6= 0. (2.17)

4. rank
([ sIn − A

C

])
= n for all s ∈ C.

Given the sequence of p×m matrices hk, k > 0, the realization problem
consists of finding a positive integer n and constant matrices (A,B,C) such
that

hk = CAk−1B, A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, k = 1, 2, . . . . (2.18)

The system Σ = (A,B,C) is then called a realization of the sequence hk,
and the latter is called a realizable sequence. The system Σ = (A,B,C) is a
minimal realization if among all realizations of the sequence, its dimension
n is the smallest possible. Without loss of generality we assumed for all
sequences h0 = 0.2

2It readily follows without computations that if h0 6= 0, then D = h0.
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The key tool for solving the realization problem is the Hankel matrix

H =


h1 h2 . . . hk . . .
h2 h3 . . . hk+1 . . .
...

...
...

. . .
...

hk hk+1 . . . h2k−1 . . .
...

...
...

...
. . .

 (2.19)

composed by the Markov parameters. It can be proven [1] that the sequence
hk, k > 0, is realizable if and only if the rank of H is finite. More specifically,
if the sequence hk, k > 0, is realizable by means of the system Σ = (A,B,C),
H can be factored as the product of the observability matrix O and of the
reachability matrix R, namely H = OR. Hence, the rank of H is finite.
The converse, that if the rank of H is finite then the sequence hk, k > 0,
is realizable can be proved using the Silverman realization algorithm, and is
considerably more difficult.

2.1.4 Interconnections

Σ

u y

Figure 2.1: The two-port block represents a system with input u and output
y, where the directions of the arrows specify which is which.

It is convenient to represent systems by block diagrams as in Figure 2.1.
These diagrams generally serve as compact representations for complex equa-
tions. Although not explicitly represented in the diagram, one must keep in
mind the existence of the state, which affects the output through the initial
condition.

Interconnections of block diagrams are useful to highlight special structures
in state-space equations. To clarify, consider the systems

Σ1 : ẋ1(t) = A1x1(t) +B1u1(t), y1(t) = C1x1(t) +D1u1(t), (2.20)

Σ2 : ẋ2(t) = A2x2(t) +B2u2(t), y2(t) = C2x2(t) +D2u2(t), (2.21)

where x1(t) ∈ Rn1 , u1(t) ∈ Rm1 , y1(t) ∈ Rp1 , x2(t) ∈ Rn2 , u2(t) ∈ Rm2 ,
y2(t) ∈ Rp2 , t ∈ R. Denote by H1(s) and H2(s) the transfer functions
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of these two systems respectively. So to speak, the general procedure to
obtain the state-space representation for the interconnected system consists
of “stacking” the states of the individual subsystems in a “tall” vector x
and computing x using the state and output equations of the individual
blocks. The output equation is also obtained from the output equations of
the subsystems.

Σ2

u2 y2

Σ1

u1 y1

u = u1 = u2 y = y1 + y2
+
+

Figure 2.2: Parallel interconnection of Σ1 and Σ2.

Parallel interconnection The parallel interconnection Σp of Σ1 and Σ2

is shown in Figure 2.2. The interconnection is described by equations

u = u1 = u2, (2.22)

y = y1 + y2. (2.23)

Assuming X = X1 ⊕ X2 as state space for Σp, the equations governing the
evolution of system Σp are

[
ẋ1

ẋ2

]
=

[
A1 0
0 A2

] [
x1

x2

]
+

[
B1

B2

]
u (2.24)

y =
[
C1 C2

] [x1

x2

]
+
[
D1 +D2

]
u (2.25)

The transfer function of the parallel interconnection is Hp(s) = H1(s) +
H2(s). We will also use the notation Σp = Σ1 + Σ2 to denote the parallel
interconnection of systems Σ1 and Σ2.
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Σ1

u = u1 y1 = u2

Σ2

y2 = y

Figure 2.3: Series interconnection of Σ1 and Σ2.

Series interconnection The series interconnection Σs of Σ1 and Σ2 is
shown in Figure 2.3. The interconnection is described by equations

u = u1, (2.26)

y1 = u2, (2.27)

y = y2. (2.28)

Assuming X = X1⊕X2 as state space for Σs and eliminating the connection
variable y1 = u2, the equations governing the evolution of system Σs are[

ẋ1

ẋ2

]
=

[
A1 0
B2C1 A2

] [
x1

x2

]
+

[
B1

B2D1

]
u (2.29)

y =
[
D2C1 C2

] [x1

x2

]
+
[
D2D1

]
u (2.30)

The transfer function of the series interconnection is Hs(s) = H1(s)H2(s).
We will also use the notation Σs = Σ1 → Σ2 to denote the series intercon-
nection of systems Σ1 and Σ2.

Σ2

Σ1
+

−

y1 = u2 = yu− y2 = u1u

y2 u2

Figure 2.4: Feedback interconnection of Σ1 and Σ2.

Feedback interconnection The (negative) feedback interconnection Σf

of Σ1 and Σ2 is shown in Figure 2.4. The interconnection is described by
equations

u1 = u− y2, (2.31)

y = y1 = u2. (2.32)
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For our purposes it will be sufficient to consider Σ1 and Σ2 as single-input
single-output (SISO), namely m1 = m2 = p1 = p2 = 1. Assuming X = X1 ⊕
X2 as state space for Σf and eliminating the connection variable u1 = u−y2,
the equations governing the evolution of system Σf are[

ẋ1

ẋ2

]
=
([A1 0

0 A2

]
+

1

1−D1D2

[
0 B1

B2 0

] [
C1 D1C2

D2C1 C2

]) [x1

x2

]
+

1

1−D1D2

[
B1

D1G2

]
u (2.33)

y =
1

1−D1D2

[
C1 D1C2

] [x1

x2

]
+
[

D1

1−D1D2

]
u (2.34)

When D1D2 = 1 the feedback interconnections is ill-posed, and the intercon-
nection is not feasible. The transfer function of the feedback interconnection
is Hf (s) = H1(s)

1+H1(s)H2(s)
. We will also use the notation Σf = Σ1♦Σ2 to denote

the feedback interconnection of systems Σ1 and Σ2.

2.2 The Sylvester equation

Given the matrices A ∈ Rn×n, B ∈ Rk×k, C ∈ Rn×k, the matrix equation

AX +XB = C (2.35)

in the unknown X ∈ Rn×k is the Sylvester equation, and it is one of the most
important matrix equations in theory and applications.
Let us recall some of its well-known properties that may be found in standard
references on matrix analysis as [1]. The Sylvester equation has a unique
solution for each C if and only if A and B have no eigenvalues in common.
Roth proved in [14] that the Sylvester equation has some solution (possibly
nonunique) if and only if[

A C
0 B

]
and

[
A 0
0 B

]
are similar. (2.36)

The concepts of reachability and observability are intimately related with
properties of the Sylvester equation, see for instance [6].
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Chapter 3

ZIP systems

In this chapter, we study the family of linear systems satisfying the so-called
“zeros-interlacing-poles” (ZIP) property. These systems may arise in the
synthesis of RC networks[12, 15] or engineering-related issues, such as the
modeling of axial bearings [9]. Hereafter, we formally define the concept of
ZIP system, extend this notion to left ZIP systems and characterize some
properties of their state-space realizations.

3.1 ZIP systems

Definition 4 (ZIP system). Consider an n-dimensional single-input-single-
output linear continuous time system Σ = (A,B,C) and let its trasfer func-
tion be

W (s) = K

∏n−1
j=i (s+ zj)∏n
i=i(s+ ai)

. (3.1)

The system Σ, and correspondingly the transfer function W (s), are ZIP if
0 < ai < zi < ai+1 holds for i = 1, . . . , n− 1.

Without loss of generality K is assumed to be positive in the sequel. By
referring to the previous definition, consider the system Σ = (A,B,C) and
define

O :=


C
CA

...
CAn−1

 ∈ Rn×n, (3.2)

R :=
[
B AB · · · An−1B

]
∈ Rn×n, (3.3)
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H :=


CB CAB · · · CAn−1B
CAB CA2B · · · CAnB

...
. . . . . .

...
CAn−1B CAnB · · · CA2n−2B

 = OR ∈ Rn×n, (3.4)

σH :=


CAB CA2B · · · CAnB
CA2B CA3B · · · CAn+1B

...
. . . . . .

...
CAnB CAn+1B · · · CA2n−1B

 = OAR ∈ Rn×n. (3.5)

Definition 5 (Simple compartment). A simple compartment is a one-dimensional
system described by the transfer function

C(s) =
b

s+ a
, (3.6)

with a > 0 and b > 0.

Proposition 3 (Properties of ZIP systems). The following statements are
equivalent.

1. W(s) is a ZIP transfer function.

2. W(s) describes a system composed by the parallel interconnection of n
simple compartments with distinct (negative) poles.

3. W(s) can be written as

W (s) =
n∑
i=1

b2
i

s+ ai
, (3.7)

with ai > 0, b2
i > 0, ai 6= aj ∀i 6= j.

4. W(s) admits an asymptotically stable minimal diagonal realization

Σ =

[
A B
C 0

]
=


−a1

. . .

−an

b1
...
bn

b1 · · · bn 0

 , (3.8)

where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n with ai > 0, bi > 0, ai 6= aj∀i 6=
j.

5. H > 0 and σH < 0.

Proof. The proof of Proposition 3 can be deduced combining [3, p.332] and
[15, pp.1-2].
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3.2 Left ZIP systems

Parallel to what was done for ZIP systems, we introduce the notions of simple
left/right compartment and left/right ZIP system. Then, we study the prop-
erties of left ZIP systems and discuss their relation with ZIP systems.

Definition 6 (Left/Right simple compartment). A left simple compartment
(LSC) is a one-dimensional system described by the transfer function

C(s) =
s+ z

s+ a
, (3.9)

with a > 0 and z > a. The system is said a right simple compartment (RSC)
if a > 0 and z < a.

−a −z

−a−z
RSC

LSC

Figure 3.1: The zero −z of a LSC is smaller than the pole −a, conversely
the pole −a of a RSC is smaller than the zero −z.

Remark 3.1 (Realization of a left simple compartment). The transfer func-
tion of an arbitrary left simple compartment can be written as

C(s) =
s+ z

s+ a
= 1 +

z − a
s+ a

. (3.10)

Defining b :=
√
z − a, a minimal diagonal realization of C(s) is given by

Σ =

[
A B
C D

]
=

[
−a

√
z − a√

z − a 1

]
=

[
−a b
b 1

]
(3.11)

Finally, every zero-pole pair (−z,−a) of a transfer function satisfying
−z < −a, as shown in Figure 3.1, can be regarded as a simple compartment
and hence represented by (3.11) with b > 0. N

Definition 7 (Left/Right ZIP system). Consider a single-input-single-output
linear continuous time system Σ = (A,B,C,D) and let its transfer function
be

W (s) = K

∏n
j=i(s+ zj)∏n
i=i(s+ ai)

(3.12)
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Notice that the The system Σ is left ZIP (LZ) if

−z1 < −a1 < −z2 < −a2 < · · · < −zn < −an < 0. (3.13)

The system Σ is right ZIP (RZ) if

−a1 < −z1 < −a2 < −z2 < · · · < −an < −zn < 0. (3.14)

By definition, a left/right simple compartment is a one-dimensional left/right
ZIP system. Notice that the transfer function of a left/right ZIP system (as
well as its inverse) is biproper, namely the degree of its numerator equals the
degree of its denominator.

Henceforward, we will refer to left simple compartments and left ZIP
systems when not specified. We now investigate the properties of left ZIP
systems and their connection with simple compartments. We will assume
hereafter that K = 1.1

3.2.1 Left ZIP systems representations

We begin with a simple example incorporating the main idea that we will
expand throughout this section.

Example 8 (Series interconnection of two left simple compartments). Con-
sider the series interconnection of two arbitrary left simple compartments

C1(s) =
s+ z1

s+ a1

, a1 > 0, z1 > a1, (3.15)

C2(s) =
s+ z2

s+ a2

, a2 > 0, z2 > a2, (3.16)

with different poles and whose corresponding minimal realizations are re-
spectively

Σ1 =

[
A1 B1

C1 D1

]
=

[
−a1 b1

b1 1

]
, (3.17)

Σ2 =

[
A2 B2

C2 D2

]
=

[
−a2 b2

b2 1

]
, (3.18)

where without loss of generality a1 > a2 and b2
i = zi − ai for i = 1, 2.

The transfer function of the series interconnection Σs := Σ1 → Σ2 is

Cs(s) = C1(s)C2(s) =
(s+ z1

s+ a1

)(s+ z2

s+ a2

)
. (3.19)
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−z1 −a1 −z2 −a2

Figure 3.2: Assuming a1 > a2, Σs = Σ1 → Σ2 is left ZIP if and only if
−a1 < −z2.

The corresponding state-space description is given by

Σs =

[
As Bs

Cs Ds

]
=

 A1 0
B2B

>
1 A2

B1

B2

B>1 B>2 1


=

 −a1 0
b2b1 −a2

b1

b2

b1 b2 1

 , (3.20)

having exploited equations (2.29) and (2.30). As shown in Figure 3.2, Σs is
left ZIP if and only if

a1 > a2 > 0;
bi 6= 0, i = 1, 2;
a1 > z2 = a2 + b2

2.
(3.21)

or, equivalently,
a1 > a2 > 0;

bi 6= 0, i = 1, 2;
b2 <

√
a1 − a2

(3.22)

Note that the ordering of ai’s, and correspondingly the ordering of bi’s, is rel-
evant to obtain the state-space description given by equation (3.20). Finally,
the zeros of Σs are straightforwardly given by zi = ai + b2

i for i = 1, 2. �

The reasoning of the previous example will be exploited now to derive a new
state-space representation for n-dimensional left ZIP systems.

Consider the series interconnection Σs := Σ1 → Σ2 → · · · → Σn of n simple
compartments Σi = (−ai, bi, bi, 1), indexed so that the corresponding poles
verify

a1 > a2 > · · · > an > 0. (3.23)

1If K 6= 0, it is sufficient to consider W̄ (s) = W (s)
K . Assuming K = 1 corresponds to a

scaling in the measurement unit of u.
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The transfer function of Σs is

Cs(s) =
n∏
i=1

Ci(s) =
n∏
i=1

(s+ zi
s+ ai

)
(3.24)

and necessary and sufficient conditions for system Σs to left ZIP are2

a1 > a2 > · · · > an > 0;
bi 6= 0, i = 1, 2, . . . , n;

ai > zi+1 = ai+1 + b2
i+1, i = 1, 2, . . . , n− 1.

(3.25)

−z1 −a1 −z2 −a2 . . . −zn −an

Figure 3.3: The system Σs = Σ1 → Σ2 → · · · → Σn is left ZIP if and only if
−ai < −zi+1 for all i = 1, . . . , n− 1.

In light of equations (2.29) and (2.30), given two linear systems of the form
Σi = (Ai, Bi, B

>
i , Di), for instance i = 1, 2, their series interconnection is

Σ1 → Σ2 =

 A1 0
B2B

>
1 A2

B1

B2D1

D2B
>
1 B>2 D1D2

 . (3.26)

Now, think of Σs as the repeated interconnection of n consecutive systems

Σs := ((. . . ((Σ1 → Σ2)→ Σ3)→ . . . )→ Σn). (3.27)

Σ1 Σ2 Σ3 Σn

Σ2
s

. . .

Σn
s

Figure 3.4: Iterative construction of Σn
s .

2These conditions translate on the coefficients bi the left ZIP property; see Figure 3.3.
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Denoting the series of the first k systems by Σk
s := Σ1 → Σ2 → · · · → Σk

and repeatedly exploiting (3.26), we have

Σ1
s =

[
A1
s B1

s

C1
s D1

s

]
=

[
−a1 b1

b1 1

]

Σ2
s =

[
A2
s B2

s

C2
s D2

s

]
=

 A1
s 0

B2(B1
s )
> A2

B1
s

B2D
1
s

D2(B1
s )
> B>2 D1

sD2

 =

 −a1 0
b1b2 −a2

b1

b2

b1 b2 1



Σ3
s =

[
A3
s B3

s

C3
s D3

s

]
=

 A2
s 0

B3(B2
s )
> A3

B2
s

B3D
2
s

D3(B2
s )
> B>3 D2

sD3

 =


−a1 0 0
b1b2 −a2 0
b1b3 b2b3 −a3

b1

b2

b3

b1 b2 b3 1


...

Σk
s =

[
Aks Bk

s

Ck
s Dk

s

]
=

 Ak−1
s 0

Bk(B
k−1
s )> Ak

Bk−1
s

BkD
k−1
s

Dk(B
k−1
s )> B>k Dk−1

s Dk



=



−a1 0 · · · 0 0
b1b2 −a2 0 · · · 0
b1b3 b2b3 −a3 . . . 0

...
...

. . . . . . 0
b1bk b2bk · · · bk−1bk −ak

b1

b2
...

bk−1

bk
b1 b2 · · · bk−1 bk 1


The sequence terminates at the n−th step, yielding

Σs = Σn
s =

[
Ans Bn

s

Cn
s Dn

s

]
(3.28)

=



−a1 0 · · · 0 0
b1b2 −a2 0 · · · 0
b1b3 b2b3 −a3 . . . 0

...
...

. . . . . . 0
b1bn b2bn · · · bn−1bn −an

b1

b2
...

bn−1

bn
b1 b2 · · · bn−1 bn 1


. (3.29)

In this form, the zeros of the system can be straightforwardly calculated
using the relation zi = ai+b2

i . The minimality of the system is guaranteed as
the entries bi are nonzero. The ordering of ai’s, and correspondingly of bi’s,
is important, since it implies the cascade of inequalities bi+1 <

√
ai − ai+1,
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i = 1, 2, . . . , n. Finally, provided that K is unitary, there is a one to one
correspondence between a system represented by the previous state space
realization and a left ZIP transfer function.

A fortiori we can state the following

Proposition 4 (Left ZIP state-space canonical form). An n-dimensional
single-input single-output linear continuous time system Σ is left ZIP if and
only if there exist a1, a2, . . . , an ∈ R+ and b1, b2, . . . , bn ∈ R+ such that

Σ =

[
A B
C D

]
=



−a1 0 · · · 0 0
b1b2 −a2 0 · · · 0
b1b3 b2b3 −a3 . . . 0

...
...

. . . . . . 0
b1bn b2bn · · · bn−1bn −an

b1

b2
...

bn−1

bn
b1 b2 · · · bn−1 bn 1


, (3.30)

where
a1 > a2 > · · · > an > 0;
bi 6= 0, i = 1, 2, . . . , n;
bi+1 <

√
ai − ai+1, i = 1, 2, . . . , n− 1.

(3.31)

3.3 ZIP systems and left ZIP systems

In this section, we focus on the relation between ZIP systems and left ZIP
systems in order to get different state-space descriptions of ZIP systems and
characterize their zeros.

3.3.1 Diagonal state-space description of a left ZIP
systems

· · ·−z1 −an−a1 −z2 −a2 −zn−1−an−1−zn

ΣZ

ΣLZ

Figure 3.5: Common zeros and poles of ΣZ (dashed) and ΣLZ (dash-dotted).
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Assume ΣLZ is a left ZIP system, whose transfer function is

WLBZ(s) =

∏n
j=i(s+ zj)∏n
i=i(s+ ai)

. (3.32)

Without loss of generality we assumed WLZ(∞) = 1. If not, we can consider

W̃LZ(s) := WLZ(s)∑n
i=1 b̄

2
i

instead. As displayed by Figure 3.5, WZ(s) := WLZ(s)
(s+z1)

is

a ZIP transfer function. By Proposition 3, there exist b̄1, b2, . . . bn ∈ R such
that

WZ(s) =
n∑
i=1

b2
i

s+ ai
. (3.33)

Combining what stated until now

WZ(s) :=
WLZ(s)

(s+ z1)
⇔ WLZ(s) = (s+ z1)WZ(s)

⇔ WLZ(s) = (s+ z1)
( n∑
i=1

b2
i

s+ ai

)
⇔ WLZ(s) =

n∑
i=1

b2
i

(s+ z1

s+ ai

)
. (3.34)

Hence, a left ZIP system can be decomposed as the convex combination3 of
n simple left4 compartments with n distinct poles, a (unique) common zero
z1. This result allows us to calculate the residues5 of WLZ(s) at its (simple)
poles

Res(WLZ(s),−ak) = lim
s→−ak

(s+ ak)WLZ(s)

= lim
s→−ak

(s+ ak)
n∑
i=1

b2
i

(s+ z1

s+ ai

)
= b2

k(z1 − ak)
=: rk > 0, k = 1, 2, . . . , n. (3.35)

Expanding the transfer function WLZ(s) in partial fractions, the left ZIP

3Indeed, 1 = WLZ(∞) =
∑n
i=1 b

2
i and b2i > 0 for all i = 1, . . . , n.

4Indeed, −z1 < −ai for all i = 1, 2, . . . , n.
5The residue Res(f, c) of f : C→ C at c ∈ C is the coefficient a−1 of (z − c)−1 in the

Laurent series expansion of f around c.
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transfer function WLZ(s) can be decomposed as

WLZ(s) = WLZ(∞) +
n∑
k=1

rk
s+ ak

= 1 +
n∑
k=1

rk
s+ ak

= 1 +
r1

s+ a1

+
r2

s+ a2

+ · · ·+ rn
s+ an

(3.36)

Since rk > 0 for all k, by equation (3.36), a minimal realization of WLZ(s) is

ΣLZ :=

[
A R
R> 1

]
=


−a1

. . .

−an

√
r1
...√
rn√

r1 · · ·
√
rn 1

 . (3.37)

This argument allows us to draw several conclusions. Given an arbit-
rary left ZIP system ΣLZ , the (strictly proper) system (drawn from ΣLZ),
(A,R,R>), is a ZIP system. Conversely, adding 1 (or more generally a con-
stant K > 0) to a ZIP transfer function yields a left ZIP transfer function.
Finally, if the zeros of the numerator and the zeros of the denominator of
WLZ(s) “interlace”, meaning

−z1 < −a1 < −z2 < −a2 < · · · < −zn < −an < 0, (3.38)

then the zeros of the numerator and the denominator of the transfer function
obtained by subtracting the constant WLZ(∞) (representing the so-called DC
gain) still “interlace”, having

−a1 < −z̃2 < −a2 < · · · < −z̃n < −an < 0. (3.39)

K ·W (s)
+

−

Figure 3.6: A closed-loop transfer function.

Remark 3.2 (Root locus of a ZIP transfer function). Figure 3.6 depicts the
(negative) feedback interconnection of KW (s), with K ∈ R, and a unitary
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gain. In this case, KW (s)
1+KW (s)

is said to be a closed-loop transfer function. As-

suming without loss of generality that n(s) and d(s) are coprime polynomials
such that

W (s) =
n(s)

d(s)
, (3.40)

the closed-loop poles are the poles of the closed-loop transfer function

KW (s)

1 +KW (s)
=

Kn(s)

d(s) +Kn(s)
(3.41)

namely, the roots of
d(s) +Kn(s) = 0 (3.42)

and the root locus is the set of values of s ∈ C for which the equation (3.42)
is satisfied as K ∈ R varies. The root locus analysis provides a graphical
method for examining how the poles of the closed-loop transfer function
move as the value of the gain K varies. The root locus is said positive
(negative) if K > 0 (K < 0). Using a few basic rules, the root locus can be
sketched in the complex plane; for a more detailed survey on the root locus
analysis the reader is referred to [4, 7]. Given a ZIP transfer function W (s),
its root locus can be easily determined. We will describe henceforward the
positive locus of an arbitrary ZIP transfer function W (s), being its negative
locus the complementary part of the real axis. This fact is true since zeros
and poles of a ZIP transfer function are real and interlaced, but untrue
in general. Assuming K > 0, recall the locus starting points are at the
(open-loop) poles, the locus ending points are at the (open-loop) zeros and
deg(n(s))− deg(d(s)) = n− (n− 1) = 1 branch end at infinity. As all roots
must be real, all the points of the locus are real. To conclude, a point belongs
to the positive locus of a ZIP transfer function if and only if it is a point on
the real axis such that it is to the left of an odd number of poles and zeros.
Conversely, a point belongs to the negative locus of a ZIP transfer function
if and only if it is a point on the real axis such that it is to the right of an
odd number of poles and zeros.
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Figure 3.7: Positive root locus (top) and negative root locus (bottom) of a
5−dimensional ZIP system.

N

3.3.2 Triangular state-space realization of ZIP systems

Assume we are given a minimal ZIP system

Σ̂ =


−a1

. . .

−an

b̂1
...

b̂n
b̂1 · · · b̂n 0

 (3.43)

whose transfer function is

Ŵ (s) =
n∑
i=1

b̂2
i

s+ ai
. (3.44)

Hereafter we investigate the link between the representation (3.43) and the
state-space representation (3.30). We show that there exists a similar version
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of (3.30) for ZIP systems, though not so powerful.


−a1

. . .

−an

b̂1
...

b̂n
b̂1 · · · b̂n 0





−a1 0 · · · 0 0
b1b2 −a2 0 · · · 0
b1b3 b2b3 −a3 . . . 0

...
...

. . . . . . 0
b1bn b2bn · · · bn−1bn −an

b1

b2
...

bn−1

bn
b1 b2 · · · bn−1 bn 1



+1

−z1 −a1 −z2 −a2 . . . −an−zn

W (s) =
∏n

j=1(s+zj)∏n
i=1(s+ai)

State space realization

−1

bi = zi + a2
i

Figure 3.8: Triangular state space realization of ZIP systems.

As already stated, adding 1 (or more generally a constant K > 0) to
the ZIP transfer function Ŵ (s) yields a left ZIP transfer function W (s) =
Ŵ (s) + 1. Being the poles of the left ZIP transfer function W (s) the known
ai’s, computing its zeros with any efficient algorithm, we get

W (s) =

∏n
j=1(s+ zj)∏n
i=1(s+ ai)

. (3.45)

Defining bi :=
√
zi − ai, by (3.30), W (s) admits the following the state-space

realization



−a1 0 · · · . . . 0
b1b2 −a2 0 · · · 0

b1b3 b2b3 −a3
. . .

...
...

...
. . . . . . 0

b1bn b2bn · · · bn−1bn −an

b1

b2
...

bn−1

bn

b1 b2 · · · bn−1 bn 1


. (3.46)

Now, subtracting the unitary constant (or the constant K) that we initially
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added, yields the following state-space realization for Ŵ (s)

−a1 0 · · · . . . 0
b1b2 −a2 0 · · · 0

b1b3 b2b3 −a3
. . .

...
...

...
. . . . . . 0

b1bn b2bn · · · bn−1bn −an

b1

b2
...

bn−1

bn

b1 b2 · · · bn−1 bn 0


. (3.47)

Since we added a unitary constant, changed the coordinates in the modified
system Σ and subtracted the unitary constant again, we did not change the
input-output behavior of the system Σ̂, as displayed in Figure 3.9. Thus,
the state-space realizations (3.43) and (3.47) represent the same system.6

Importantly, the state-space realization (3.47) does not allow one to calculate
the zeros of the system with the formula zi = bi + a2

i .

Ŵ (s)
+
−

+
+

Σ

Σ̂

Figure 3.9: The input-output behavior does not change by adding and sub-
tracting the same quantity to a transfer function.

3.3.3 Characterization of the zeros of a ZIP transfer
function

Given an arbitrary ZIP transfer function

W̄ (s) =
n∑
i=1

b̄2
i

s+ ai
, (3.48)

6 Consequently there exists a change of coordinates T ∈ Rn×n that leads system (3.43)
to the form (3.47). The change of coordinates T is discussed in Appendix B.1.



3.4. FURTHER PROPERTIES OF LEFT/RIGHT ZIP TRANSFER FUNCTIONS27

we will describe a procedure to characterize the zeros of W̄ (s) by means of
the state-space representation (3.30).



−a1 0 · · · . . . 0
b1b2 −a2 0 · · · 0

b1b3 b2b3 −a3
. . .

...
...

...
. . . . . . 0

b1bn b2bn · · · bn−1bn −an

b1

b2
...

bn−1

bn

b1 b2 · · · bn−1 bn 0



·(s+ z1)

State space realization·(s+ z1)−1

W (s) =
∑n

i=1
b2i
s+ai

,W̄ (s) =
∑n

i=1
b̄2i
s+ai

,

Figure 3.10: Characterization of the zeros of a ZIP system.

Choosing z1 > a1, the multiplication of the ZIP transfer function W̄ (s) by
(s+z1) yields a left ZIP transfer function W (s) := (s+z1)W̄ (s). By means of
any efficient realization algorithm W (s) admits a state space representation
of the form (3.30). This representation allows one to calculate the zeros as
zi = −(ai + b2

i ). Hence, the transfer function W (s) may be represented as

W (s) =

∏n
j=1(s+ zj)∏n
i=1(s+ ai)

. (3.49)

Finally, dividing W (s) by (s+ z1) yields a factorized expression of the initial
transfer function

W̄ (s) =
W (s)

s+ z1

=

∏n
j=2(s+ zj)∏n
i=1(s+ ai)

(3.50)

and consequently the zeros of W̄ (s), zj for j = 2, . . . , n.

3.4 Further properties of left/right ZIP trans-

fer functions

Hereafter we outline some additional properties of left/right ZIP transfer
functions.

Proposition 5 (Properties of left/right ZIP transfer functions). The follow-
ing properties hold.
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(i) W (s) is LZ/RZ ⇒ 1
W (s)

is RZ/LZ.

(ii) W (s) is LZ/RZ ⇒ W (s+ α) is LZ/RZ for all α ∈ R+.

(iii) W (s) is LZ/RZ ⇒ αW (s) is LZ/RZ for all α ∈ R+.

(iv) If W1(s) and W2(s) are LZ/RZ, and the rightmost pole/zero of W1(s)
is strictly less than the leftmost zero/pole of W2(s), then W1(s)W2(s)
is LZ/RZ.

(v) If W1(s) =
∑n

i=1
b2i
s+ai

and W2(s) =
∑2n

i=n+1
b2i
s+ai

are two ZIP transfer
functions with distinct poles and non zero bi for all i = 1, . . . , 2n, then
W1(s) +W2(s) is ZIP;

(vi) If W1(s) = W1(∞) +
∑n

i=1
b2i
s+ai

and W2(s) = W2(∞) +
∑2n

i=n+1
b2i
s+ai

are LZ/RZ transfer functions with distinct poles and non zero bi for all
i = 1, . . . , 2n, then W1(s) +W2(s) is LZ/RZ;

(vii) 1
W1(s)

+W2(s) is LZ/RZ⇔ W1(s)♦W2(s) = W1(s)
1+W1(s)W2(s)

is RZ/LZ;

(viii) If W1(s) is RZ/LZ and W2(s) is LZ/RZ and W1(s) has no zero equal

to a pole of W2(s) ⇒ W1(s)♦W2(s) = W1(s)
1+W1(s)W2(s)

is RZ/LZ.

Proof. (vii). W1(s)♦W2(s) = W1(s)
1+W1(s)W2(s)

= 1
1

W1(s)
+W2(s)

= (W1(s)+W2(s))−1

is RZ/LZ if and only if 1
W1(s)

+W2(s) is LZ/RZ.

(viii). If W1(s) is RZ/LZ and W2(s) is LZ/RZ and W1(s) has no zero equal
to a pole of W2(s), by (i), 1

W1(s)
+W2(s) is LZ/RZ. By (viii), W1(s)♦W2(s) =

W1(s)
1+W1(s)W2(s)

is RZ/LZ.



Chapter 4

Model reduction by moment
matching for ZIP systems

Model reduction, also called dimensional model reduction or model order
reduction (MOR), is a technique that aims at distilling a simpler substitute
model for a (possibly large scale) complex system, while preserving the input-
output behavior.

Model reduction techniques are of paramount importance for many prac-
tical purposes and have been used extensively in the fields of control theory
[1], electrical circuits simulation [1, 2], microelectromechanical systems [1, 5],
weather forecasting [1, 16], etc. For a detailed overview the reader is referred
to [1].

Two classes of methods are currently in use, namely

• Singular Values Decomposition (SVD) based methods and,

• moment matching based methods.

The former techniques center the issue of system approximation around the
singular values of the associated Hankel operator. A very popular SVD-based
method is model reduction by balancing. Roughly speaking, model reduction
by balancing consists in finding a state space representation where the states
which are difficult to reach are simultaneously difficult to observe. Then,
the reduced model is obtained simply by truncating the states which have
this property. Unfortunately the SVD methods are computationally rather
demanding.

In systems theory language, the latter techniques generalize the well-
known partial realization problem. Even if moment matching based methods
do not automatically preserve stability and have no global error bounds,
these methods can be iteratively implemented yielding numerically efficient
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algorithms. In addition, model reduction by moment matching admits a
nonlinear enhancement [2].

In what follows, we study the problem of model reduction by moment
matching for linear systems. Then, we apply this technique to the class of ZIP
systems to show that, under suitable assumptions, the reduced order model
inherits the ZIP property. Finally, we consider the possibility of placing
prescribed poles in the reduced order model, with the additional constraint
of maintaining the ZIP property.

4.1 Model reduction by moment matching for

linear systems

Consider an N -dimensional single-input single-output continuous time linear
system described by

Σ =

[
A B
C 0

]
, (4.1)

where A ∈ RN×N , B ∈ RN×1, C ∈ R1×N and whose transfer function is

W (s) = C(sIN − A)−1B. (4.2)

Definition 9 (0-moment, k-moment). The 0-moment of system (4.1) at
s? ∈ C is the complex number η0(s?) = C(s?I − A)−1B. The k-moment of
system (4.1) at s? ∈ C is the complex number

ηk(s
?) =

(−1)k

k!

[ dk
dsk

(C(sI − A)−1B)
]
s=s?

= C(s?I − A)−(k+1)B (4.3)

Since the moments are associated with the transfer function of the system
(4.1), in what follows we assume that the system (4.1) is a minimal realization
of its transfer function.

Moments can be also characterized, for almost all s? ∈ C, by means
of suitable Sylvester equations [2]. Assuming s? /∈ σ(A), the moments
η0(s?), . . . , ηk(s

?) are in one-to-one relation with the matrix CΠ, where Π ∈
RN×n is the unique solution of the Sylvester equation

AΠ +BL = ΠS (4.4)

with S ∈ Rk+1×k+1 any non-derogatory1 matrix such that det(sI − S) =
(s− s?)k+1 and L ∈ R1×k+1 such that (S, L) is observable.

1A matrix is non-derogatory if its characteristic and minimal polynomials coincide.
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In addition, the moments η0(s1), . . . , η0(sk) are in one-to-one relation with
the matrix CΠ if we choose any non-derogatory matrix S ∈ Rk×k such that

det(sI − S) =
n∏
i=1

(s− si). (4.5)

We now give the precise definition of (reduced order) model.

Definition 10 (Model, reduced order model). The system[
F G
H 0

]
, (4.6)

where F ∈ Rn×n, G ∈ Rn×1, H ∈ R1×n, is a model of system (4.1) at σ(S),
with S ∈ Rn×n and σ(S) ∩ σ(A) = ∅ if

σ(S) ∩ σ(F ) = ∅ (4.7)

and
CΠ = HP (4.8)

where L is such that (S, L) is observable, and Π and P are respectively the
unique solutions of the equations

AΠ +BL = ΠS (4.9)

FP +GL = PS (4.10)

Furthermore system (4.6) is a reduced order model of system (4.1) if n < N .

As mentioned in [2] system (4.6) solves the model reduction problem with
moment matching at σ(S) for system (4.1).

For the sake of ease, we assume henceforward that S and A do not have
common eigenvalues and S and F do not have common eigenvalues. Now,
selecting P = I yields a family of reduced order models for system (4.1) at
S, hence achieving moment matching, described by matrices of the form

P = I =⇒


F = S −∆L
G = ∆
H = CΠ

namely

Σ∆ =

[
S −∆L ∆
CΠ 0

]
, (4.11)

with ∆ any matrix such that σ(S) ∩ σ(S −∆L) = ∅.
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Finally, the family of reduced order models achieving moment matching
is parameterized directly by the matrix ∆, which has to satisfy a generic
constraint. As a consequence, the relations between the matrix ∆ and the
properties of the reduced order model are straightforward and easy to char-
acterize.

4.2 Inheritance of the ZIP property by the

reduced order model

Without loss of generality an N -dimensional single-input single-output linear
continuous time ZIP system Σ = (A,B,C) has the form

Σ =

[
A B
C 0

]
=


−a1

. . .

−aN

b1
...
bN

b1 · · · bN 0

 , (4.12)

where A ∈ RN×N , B ∈ RN×1, C ∈ R1×N with ai > 0, bi > 0, ai 6= aj ∀i 6= j.
Define

On−1 :=


C
CA

...
CAn−1

 ∈ Rn×N , (4.13)

Rn−1 :=
[
B AB · · · An−1B

]
∈ RN×n, (4.14)

Hn−1 :=


CB CAB · · · CAn−1B
CAB CA2B · · · CAnB

...
. . . . . .

...
CAn−1B CAnB · · · CA2n−2B

 = On−1Rn−1 ∈ Rn×n,

(4.15)
and, since A = A> = diag{−a1,−a2, · · · ,−aN} and B = C>, we have

On−1 = R>n−1 (4.16)

Hn−1 = On−1O>n−1 (4.17)

Consider the linear system (4.12). Let s1, s2, . . . , sn ∈ C be given inter-
polation points such that the presence of si ∈ C \ R implies the presence of



4.2. INHERITANCE OF THE ZIP PROPERTY 33

its complex conjugate s̄i ∈ C − R. Assuming 0 < 2n < N , consider any
non-derogatory matrix S ∈ Rn×n such that

det(sI − S) =
n∏
i=1

(s− si) (4.18)

and L ∈ R1×n such that the pair (S, L) is observable.
Define the reduced order system ΣG = (F,G,H) := (S − GL,G,CΠ)

where F ∈ Rn×n, G ∈ Rn×1, H ∈ R1×n and Π ∈ RN×n is the (unique)
solution of the Sylvester equation

AΠ +BL = ΠS (4.19)

Remark 4.1 (Matching the first n Markov parameters). For the linear sys-
tem (4.1) the k−moments at infinity are defined as ηk(∞) = CAk−1B, i.e.
the first k moments at infinity coincide with the first k Markov parameters
[1]. To match the first n moments at infinity of Σ and ΣG, G must satisfy

CΠ
CΠ(S −GL)

...
CΠ(S −GL)n−1

G =


CB
CAB

...
CAn−1B

⇔


CΠ
CAΠ

...
CAn−1Π

G =


C
CA

...
CAn−1

B
(4.20)

⇔ On−1ΠG = On−1B (4.21)

hence
G = (On−1Π)−1On−1B (4.22)

As a consequence, the reduced order model can be cast as

F = S −GL
(4.22)
= S − (On−1Π)−1On−1BL

(4.19)
= (On−1Π)−1On−1AΠ (4.23)

G = (On−1Π)−1On−1B (4.24)

H = CΠ = e>1On−1Π (4.25)

N
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Remark 4.2 (Observability matrix with moment matching at infinity).
Matching the first n Markov parameters drastically simplifies the calcula-
tion of the observability matrix of ΣG. Indeed, consider equation (4.20). We
have

CΠ(S −GL) = CΠS − CΠGL

(4.19)
= C(AΠ +BL− ΠGL)

= CAΠ + (CB − CΠG)︸ ︷︷ ︸
=0⇔CB=CΠG

L.

Assuming that the first Markov parameter is matched, i.e. CB = CΠG, we
have

CΠ(S −GL)2 = CΠ(S −GL)︸ ︷︷ ︸
CAΠ

(S −GL)

= CA(ΠS − ΠGL)

(4.19)
= CA2Π + (CAB − CAΠG)︸ ︷︷ ︸

=0⇔CAB=CAΠG

L.

Inductively, the structure
CΠ

CΠ(S −GL)
...

CΠ(S −GL)n−1

 =


CΠ
CAΠ

...
CAn−1Π

 = On−1Π

is achieved if and only if the first n Markov parameters are matched. N

Letting n be the order of the reduced model, we will prove that the ZIP
property is inherited by the reduced order model when matching the first n
Markov parameters.

Proposition 6 (Inheritance of the ZIP property). Let (A,B,C) be an asymp-
totically stable minimal realization of an arbitrary ZIP system Σ of order
N > 1. Given 0 < n < N

2
interpolation points s1, s2, . . . , sn ∈ C consider any

non-derogatory matrix S ∈ Rn×n such that

det(sI − S) =
n∏
i=1

(s− si)

and L ∈ R1×n such that the pair (S, L) is observable.
Define the reduced order system ΣG = (F,G,H) := (S − GL,G,CΠ) where
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F ∈ Rn×n, G ∈ Rn×1, H ∈ R1×n and Π ∈ RN×n is the (unique) solution of
the Sylvester equation

AΠ +BL = ΠS. (4.26)

Finally, choose G such that the first n Markov parameters are matched. Then
ΣG is an asymptotically stable (minimal) ZIP system.

Proof. Proof provided in Appendix A.1.

4.3 Pole placement in the reduced order model

Consider a single-input single-output linear continuous time ZIP system

Σ =

[
A B
C 0

]
=


−a1

. . .

−aN

b1
...
bN

b1 · · · bN 0

 , (4.27)

where A ∈ RN×N , B ∈ RN×1, C ∈ R1×N with ai > 0, bi > 0, ai 6= aj ∀i 6= j.

Given 0 < n < N
2

, define the reduced order system as ΣG = (F,G,H), where
F ∈ Rn×n, G ∈ Rn×1, H ∈ R1×n. Recall that choosing G so that the first n
Markov parameters (of ΣG) are matched (with the ones of Σ) implies that
ΣG is a ZIP system.

We wish to investigate whether, properly choosing the triple (F,G,H), the
spectrum of F

σ(F ) = {f1, . . . , fn}, fi > 0, fi 6= fj, i 6= j, (4.28)

with σ(F ) ∩ σ(A) = ∅, can be freely assigned, while preserving the ZIP
property and matching the first n Markov parameters.2

4.3.1 The bidimensional case

Assume we are matching the first n = 2 Markov parameters of Σ and ΣG,
namely [

α1

α2

]
:=

[
CB
CAB

]
=

[
HG
HFG

]
. (4.29)

2By Proposition 6, if the first n Markov parameters matched, ΣG inherits the ZIP
property.
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Since we are matching the first 2 Markov parameters, ΣG is guaranteed to
be ZIP. Hence, without loss of generality, we may assume

H> = G =

[
g1

g2

]
(4.30)

and F = diag(f1, f2). Substituting (4.30) in equation (4.29) yields

{
g2

1 +g2
2 = α1

f1g
2
1 +f2g

2
2 = α2

⇔

{
g21
α1

+
g22
α1

= 1
g21

α2/f1
+

g22
α2/f2

= 1

⇔
[

1 1
f1 f2

]
︸ ︷︷ ︸
:=V ∈R2×2

[
g2

1

g2
2

]
=

[
α1

α2

]
. (4.31)

Since we are assuming that fi 6= fj for all i 6= j, the Vandermonde matrix
V is non-singular. Inverting V yields[

g2
1

g2
2

]
=

[
1 1
f1 f2

]−1 [
α1

α2

]
=

1

f2 − f1

[
α1f2 − α2

−α1f1 + α2

]
. (4.32)

The left hand entries of equation (4.32) are positive. Hence, assuming
without loss of generality f2 − f1 > 03, the pole placement is feasible if and
only if

f1 <
α2

α1

< f2. (4.33)

f1

α2

α1 f2

Figure 4.1: Pole placement conditions for n = 2: f1 <
α2

α1
< f2.

Conversely, equations (4.31) yield a degenerate situation if and only if one of
the minors (of order n = 2) of the following matrix is zero

C :=

[
1 1
f1 f2

α1

α2

]
. (4.34)

Geometrically speaking, equations (4.31) represent the intersection of a circle
and an ellipse. In this case, the length of a semi-axe of the ellipse equals the
radius of the other circle, see Figure 4.3.1. Correspondingly, there exists gi
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g1 g1 g1

g2 g2 g2

α1 α1 α1

α2

f1
= α1

α2

f2
= α1 f1 <

α2

α1
< f2

Figure 4.2: Geometric interpretation of pole placement for n = 2: degenerate
situations (left, center) and feasible situation (right).

which is zero (hence ΣG is not minimal). This is nothing but a consequence
of Cramer’s rule.4 Finally, the (unique) zero is given by

z1 =
g2

1

g2
1 + g2

2

f2 +
g2

2

g2
1 + g2

2

f1 (4.35)

which is a convex combination of the two (negative) poles. As expected, the
system ΣG is ZIP.

4.3.2 The n-dimensional case

Assume we are matching the first n Markov parameters of Σ and ΣG, namely
α1

α2
...
αn

 :=


CB
CAB

...
CAn−1B

 =


HG
HFG

...
HF n−1G

 . (4.36)

3 If f2−f1 < 0, it is sufficient to change the basis by resorting to a suitable permutation
matrix.

4 Consider the linear system

Ax = b, x, b ∈ Rn, A ∈ Rn×n,det(A) 6= 0,
in the unknown x = [x1, . . . , xn]>. Cramer’s rule states that the system has a unique
solution, whose individual values for the unknowns are given by:

xi =
det(Ai)

det(A)
, i = 1, . . . , n,

where Ai is the matrix formed by replacing the i−th column of A by the column vector b.
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Since we are matching the first n Markov parameters, ΣG is guaranteed to
be a ZIP system. Hence, without loss of generality, we may assume

H> = G =


g1

g2
...
gn

 (4.37)

and F = diag(f1, f2, . . . , fn). Substituting (4.37) in equation (4.36) yields
g2

1 +g2
2 + . . . +g2

n = α1

f1g
2
1 +f2g

2
2 + . . . +fng

2
n = α2

...
...

...
...

...
fn−1

1 g2
1 +fn−1

2 g2
2 + . . . +fn−1

n g2
n = αn

(4.38)

which is equivalent to
1 1 . . . 1
f1 f2 . . . fn
...

... · · · ...
fn−1

1 fn−1
2 . . . fn−1

n


︸ ︷︷ ︸

:=V ∈Rn×n


g2

1

g2
2
...
g2
n

 =


α1

α2
...
αn


︸ ︷︷ ︸

:=α∈Rn×1

(4.39)

Since we are assuming that fi 6= fj for all i 6= j, the Vandermonde matrix
V is non-singular and the solution can be easily found.5 However, the pole
placement is feasible if and only if the solution of V x = α is a (strictly)
positive vector.
Parallel to the case n = 2, the following question arises:

• given σ(F ) = {f1, . . . , fn}, fi 6= fj, i 6= j,, under which conditions
on α = (α1, α2, . . . , αn) do there exist strictly positive solutions x̄ to
equation V x = α?

5 Denoting by B = [bij ] the inverse matrix of V, then bij has the following expression

bjk = (−1)k−1



∑
1≤m1<...<mn−k ≤n

m1,...,mn−k 6=j

fm1
· · · fmn−k

∏
1≤m≤n
m 6=j

(fm − fj)

 . (4.40)

Several factorisations of V , and consequently of V −1, have been proposed in literature,
see for instance [13]; however, handling these equations might be tricky.



4.3. POLE PLACEMENT IN THE REDUCED ORDER MODEL 39

In the next subsection, we analyze some necessary and sufficient conditions
for the existence of positive solutions to equation V x = α. When such x̄
exists, the pole placement is feasible and the zeros and the poles of ΣG are
guaranteed to interlace.

Remark 4.3 (On the minimality of the reduced order model). Parallel to
what we found for n = 2, by Cramer’s rule, gj = 0 if and only if the determ-
inant of the matrix Cj is zero, where Cj is obtained by eliminating the j-th
column of

C :=


1 1 . . . 1
f1 f2 . . . fn
...

...
. . .

...
fn−1

1 fn−1
2 . . . fn−1

n

α1

α2
...
αn

 . (4.41)

Geometrically speaking, equations (4.38) represent the intersection of n el-
lipsoids. In this case, the length of a semi-axe of an ellipsoid equals the the
length of a semi-axe of another ellipsoid. Correspondingly, there exists gi
which is zero (hence ΣG is not minimal). N

4.3.3 Pole placement and the Farkas’ lemma

Provided that fi < 0 and sign(αj) = sign(CAj−1B) = (−1)j−1, it is not
restrictive to assume that all the terms in the equation V x = α are positive.
Indeed, it is sufficient to premultiply the equation V x = α by a sign matrix
P = (1,−1, 1,−1, . . . , (−1)n−1) ∈ Rn×n. Furthermore, we stress that this
assumption is equivalent to assume that fi > 0 and aj > 0 for all i, j.

Theorem 1 (Farkas’ lemma). Let A ∈ Rm×n and let b ∈ Rm be nonzero.
Then exactly one of the following holds:

1. There is a positive solution x̄ ∈ Rn to the system Ax = b.

2. There is a vector w ∈ Rm for which A>w ≥ 0 and w>b < 0.

Focusing on the existence of positive solutions for the equation V x = α,
letting A = V and b = α, we can state that the following

Corollary 1 (Pole placement in the reduced order model). Exactly one of
the following holds:

1. There is a positive solution x̄ ∈ Rn+ to the system V x = α.

2. There is a vector w ∈ Rn for which V >w ≥ 0 and w>α < 0.
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Notice that Corollary 1 states a necessary and sufficient condition for the
feasibility of the pole placement in the n−dimensional reduced order model
matching the first n Markov parameters. More precisely, the pole placement
is feasible if and only if there is no vector w ∈ Rn for which V >w ≥ 0 and
w>α < 0.

On the non-feasibility of the pole placement
We now analyze the previously found alternative condition to the non-feasibility
of the pole placement. Namely, the pole placement is not feasible if and only
if there exists a vector w ∈ Rn for which V >w ≥ 0 and w>α < 0.

Proposition 7 (Non-feasibility of the pole placement). The following state-
ments are equivalent.

1. There is a vector w ∈ Rn for which V >w ≥ 0 and w>α < 0.

2. There exists a polynomial

w(s) =
n−1∑
k=0

wks
k, wi ∈ R, (4.42)

such that

• w(f1) ≥ 0, w(f2) ≥ 0, . . . , w(fn−1) ≥ 0, w(fn) ≥ 0,

•
∑n

j=1 b
2
jw(aj) < 0,

where the bj’s are the entries of B in the realization (4.27).

Proof. Given w ∈ Rn such that V >w ≥ 0 and w>α < 0 hold, define the
polynomial

w(s) := w0 + w1s+ · · ·+ wn−1s
n−1 (4.43)

=
[
w0 w1 . . . wn−1

]


1
s
...

sn−1

 (4.44)

where wi ∈ R for all i = 1, . . . , n. As a preliminary remark, note that

V >w =


w(f1)
w(f2)

...
w(fn−1)

 . (4.45)
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It follows that

V >w ≥ 0⇔ w(f1) ≥ 0, w(f2) ≥ 0, . . . , w(fn−1) ≥ 0. (4.46)

Additionally, notice that

w>α =
[
w0 w1 . . . wn−1

]


CB
CAB

...
CAn−1B

 (4.47)

= C(
n−1∑
k=0

wkA
k)B = Cw(A)B (4.48)

=
n∑
j=1

b2
jw(aj). (4.49)

The claim is an obvious consequence of equations (4.46) and (4.49).

Noting that

n∑
j=1

b2
jw(aj) < 0⇔

∑n
j=1 b

2
jw(aj)∑n

j=1 b
2
j

< 0, (4.50)

Proposition 7 can interpreted as follows: the pole placement is non-feasible
if and only if we are able to find a polynomial in one complex variable with
real coefficients w(s) such that

• w(s) is non-negative when evaluated at s = fi for i = 1, . . . , n;

• the convex combination of the points of w(aj), with coefficients
b2j∑n
j=1 b

2
j
,

is negative.

Example 11 (A non-feasible pole placement). Figure 4.3 displays a non-
feasible pole placement. Indeed, since N = 4 and n = 3, the polynomial
mentioned in Proposition 7 has the form

w(s) = w2s
2 + w1s+ w0, w0, w1, w2 ∈ R. (4.51)

Due to the particular structure depicted in Figure 4.3, it is easy to realize
that we are always able to find a parabola such that w(fi) ≥ 0 for i = 1, 2, 3
and w(aj) < 0 for all j = 1, . . . , 4. Indeed, all the poles aj lie in the open
interval (f2, f3). Consequently, it is always possible to find two points s1, s2 ∈
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w(a1)

w(a2) w(a3)

w(a4)

∑
j b

2
jw(aj)

a1 a2 a3 a4

w(f2)

f2

w(f3)

f3

w(f1)

f1

s1

s2

Figure 4.3: A non-feasible pole placement: w(fi) ≥ 0 and
∑n

j=1 b
2
jw(aj)∑n

j=1 b
2
j

< 0.

(f2, f3) such that the inclusions (a1, a2) ( (s1, s2) ( (f2, f3) hold. Choosing
w0, w1, w2 such that w2 > 0 and w(s1) = w(s2) = 0 yields a poynomial w(s)
satisfying w(fi) ≥ 0 and w(aj) < 0. Thus, for each choice of the entries bi,
w(s) satisfies the conditions

• w(f1) ≥ 0, w(f2) ≥ 0, w(f3) ≥ 0,

•
∑4

j=1 b
2
jw(aj) < 0,

then, by Proposition 7, the pole placement is non-feasible. �

Example 12 (The bidimensional case). Assuming f1 < f2, in subsection
4.3.1 we stated that for n = 2 the pole placement is feasible if and only if
f1 <

α2

α1
< f2. In this example, we will give a graphical interpretation of

Proposition 7 also checking the correspondence with the non-feasibility of
the pole placement.

Being n = 2, the polynomial mentioned in Proposition 7 has the form

w(s) = w1s+ w0, w0, w1 ∈ R. (4.52)

It is not restrictive to assume w0 ∈ R+. As depicted in Figure 4.4, condition
f1 <

α2

α1
< f2 imply w(f1) ≤ w(α2

α1
) ≤ w(f2). This means that conditions

w(f1) ≥ 0, w(f2) ≥ 0 and w(α2

α1
) =

∑2
j=1 b

2
jw(aj) < 0 are never met simul-

taneously. Conversely, if α2

α1
< f1 < f2 (f1 < f2 <

α2

α1
), it is easy to verify that

there always exists a line meeting the conditions w(f1) ≥ 0, w(f2) ≥ 0 and
w(α2

α1
) =

∑2
j=1 b

2
jw(aj) < 0. Notably, given the position of α2

α1
the feasibility

of the pole placement is decidable.
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w(f2)

f2

w(f1)

f1

w(α2

α1
)

α2

α1

w(α2

α1
)

α2

α1

R2

w(s) = w1s+ w0

w(f1)

w(f2)

Figure 4.4: A feasible pole placement (dashed) and a non-feasible pole place-
ment (dash-dotted) for n = 2.

�
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Remark 4.4 (Sign conditions and pole placement). The polynomial w(s) =∑n−1
k=0 wks

k, mentioned in Proposition 7 has real coefficients. Thus, w(s) can
be written as

w(s) = wn−1

( ν∏
i=1

(s− µi)
)( η∏

j=1

(s2 + ω2
j )
)
, µi, ωj ∈ R, ν + 2η = n− 1.

(4.53)
Without loss of generality, assume wn−1 > 0.6 What determines the sign of
w(s) when evaluated along the real axis is the product

ν∏
i=1

(s− µi) = (s− µ1)(s− µ2) · · · (s− µn). (4.54)

In particular, along the real axis

sign(s− µi) =

{
1, s > µi,
−1, s < µi.

(4.55)

This means that

• w(s) < 0 if and only if there is an odd number of real zeros µi > s;

• conversely, w(s) > 0 if and only if there is an even number (possibly
zero) of real zeros µi > s.

Conversely w(s) > 0 if and only if there is an even number (possibly zero) of
µi > s (at the right of s). With a similar reasoning, we infer that w(aj) < 0
for all j = 1, . . . , n if and only if there is an odd number of zeros of w(s)
at the right of aj for all j. Finally, note that w(aj) < 0 for all j = 1, . . . , n
implies

∑n
j=1 b

2
jw(aj) < 0.

Thus, if we find a polynomial w(s) with real coefficients and wn−1 > 0 such
that

• there is an even number of zeros of w(s) (possibly zero) at the right of
fi for all i,

• there is an odd number of zeros of w(s) at the right of aj for all j,

then, the pole placement is not feasible. Dually, if we find a polynomial w(s)
with real coefficients and wn−1 < 0 such that

• there is an odd number of zeros of w(s) (eventually zero) at the right
of fi for all i,
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µ1 s1 µ2 µ3

µ1 µ2 s2 µ3

w(s) > 0

w(s) < 0

Figure 4.5: Pictorial representation of the positive (dotted) and negative
(dash-dotted) terms determining the sign of w(s), when wn−1 > 0.

• there is an even number of zeros of w(s) at the right of aj for all j,

then, the pole placement is not feasible.
N

The conclusions of Remark 8 are summarized in the following

Proposition 8 (Sign conditions and pole placement). If there exists a poly-
nomial

w(s) =
n−1∑
k=0

wks
k, wi ∈ R, (4.56)

such that

1. there is an even (respectively odd) number of zeros of w(s) (possibly
zero) at the right of fi for all i,

2. there is an odd (respectively even) number of zeros of w(s) at the right
of aj for all j,

then there is a vector w ∈ Rn for which V >w ≥ 0 and w>α < 0. Con-
sequently, the pole placement is not feasible.

6If wn−1 < 0, the direction of the inequalities has to be switched. We will take into
account this situation later.
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Chapter 5

Nonlinear ZIP systems

Herein, we propose a nonlinear enhancement of the notion of ZIP system.

5.1 Nonlinear ZIP system definition

Consider a nonlinear affine system described by equations of the form{
ẋ = f(x) + g(x)u
y = h(x)

(5.1)

with x(t) ∈ RN , u(t) ∈ R, y(t) ∈ R and f(·), g(·) and h(·) smooth mappings.
Following the arguments presented in [2, p. 2329] and [11], it is possible to
define the k-th Markov parameter, for k ≥ 0, of the nonlinear system as

ηk(∞) = y
(k)
I (0) = y

(k)
F,g(0)(0) = Lkfh ◦ g(0), k ≥ 0. (5.2)

This definition allows us to derive a reduced order model which matches the
first k moments at infinity of system (5.1) for any positive integer k.

In the linear case the reduced order model ΣG = (F,G,H) built from
a ZIP system matching the first n moments at infinity is still ZIP. We in-
vestigate whether, suitably defining the notion of “nonlinear ZIP system”,
the inheritance property is preserved. To combine the notion of moment at
infinity of a nonlinear system with the fact that a linear ZIP system satisfies
H > 0 and σH < 0, we give the following definition.

Definition 13 (Nonlinear ZIP system). The system (5.1) is said to be a
nonlinear ZIP system of order n (at least) if there exists a neighborhood of
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the origin U such that for all x ∈ U the following hold

Hnl
n−1 :=


L0
fh ◦ g(x) L1

fh ◦ g(x) · · · Ln−1
f h ◦ g(x)

L1
fh ◦ g(x) L2

fh ◦ g(x) · · · Lnfh ◦ g(x)
...

. . . . . .
...

Ln−1
f h ◦ g(x) Lnfh ◦ g(x) · · · L2n−2

f h ◦ g(x)

 > 0, (5.3)

σHnl
n−1 :=


L1
fh ◦ g(x) L2

fh ◦ g(x) · · · Lnfh ◦ g(x)
L2
fh ◦ g(x) L3

fh ◦ g(x) · · · Ln+1
f h ◦ g(x)

...
. . . . . .

...
Lnfh ◦ g(x) Ln+1

f h ◦ g(x) · · · L2n−1
f h ◦ g(x)

 < 0. (5.4)

Remark 5.1. If system (5.1) is a linear system Σ = (A,B,C) of order
N = n, i.e. f(x) = Ax, g(x) = B and h(x) = Cx, then Hnl

n−1 = Hn−1 and

σHnl
n−1 = σHn−1. Indeed y

(k)
I (0) = dk

dtk
(CeAtB)

∣∣∣
t=0

= CAkB for any positive

integer k. Hence, the linear system Σ is nonlinear ZIP of order n if and
only if Hn−1 > 0 and σHn−1 < 0, thus, by Proposition 3, if and only if Σ is
ZIP. N

Remark 5.2. If system (5.1) is nonlinear ZIP of order n, then it is nonlinear
ZIP of order k, for any 1 ≤ k ≤ n. To show this, note that eliminating from
Hnl
n−1 and σHnl

n−1 the last row and column we get Hn−2 > 0 and σHn−2 < 0,
then (5.1) is nonlinear ZIP of order n − 1. By induction, system (5.1) is
nonlinear ZIP of order k, for any 1 ≤ k ≤ n. Conversely, if system (5.1) is
not nonlinear ZIP of order k, for some k̄ ≥ 1, then it not nonlinear ZIP for
any k ≥ k̄. To prove this, assume that Hnl

k̄
is not positive definite. Thus,

note that Hnl
k̄

is a principal submatrix of Hnl
k , for any k ≥ k̄. For any

k ≥ k̄, since of the principal minors of Hnl
k is not positive, namely detHnl

k̄
,

the system cannot be nonlinear ZIP of order k. The proof is similar if σHnl
k̄

is not negative definite. N

Remark 5.3. A necessary condition for system (5.1) to be nonlinear ZIP of

order n, for some n ≥ 1, is to have y
(0)
I (0) = yI(0) > 0. N

Proposition 9 (Inheritance of the ZIP property by the reduced order model).
Given a nonlinear ZIP system of order n described by equations of the form
(5.1), consider the linear system ΣG described by

ΣG =

[
F G
H 0

]
, (5.5)

where F ∈ Rn×n, G ∈ Rn×1, H ∈ R1×n, and assume HF iG = y
(i)
I (0), for

i = 0, 1, · · · , 2n− 1. The linear system thus constructed is
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1. a model of the nonlinear system achieving moment matching at infinity;

2. an asymptotically stable (minimal strictly proper) ZIP system.

Proof. The first part is a direct consequence of the above discussion com-
bined with [2, pp. 2229-2230].
To prove the second part, it is sufficient to note that Hnl

n−1 = Hn−1 and

σHnl
n−1 = σHn−1, since HF iG = y

(i)
I (0), for i = 0, 1, · · · , 2n− 1. The nonlin-

ear ZIP definition implies Hn−1 = Hnl
n−1 > 0 and σHn−1 = σHnl

n−1 < 0. By
Proposition 3, ΣG is a(n asymptotically stable minimal) ZIP system.

Remark 5.4. By Proposition 6, the (linear) ZIP system (5.5) can be further
reduced to a smaller (linear) ZIP system, still preserving matching at infinity.

N

In future works, it might be interesting to investigate whether letting k
grow there is a bound from which system (5.1) is not nonlinear ZIP anymore,
i.e. there exists a positive integer k such that either Hk � 0 or σHk � 0.
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Chapter 6

Examples and applications

In this chapter, we describe a few examples and applications arising in net-
work analysis of electrical circuits, such as the parallel interconnection of
series RC circuits, or in engineering-related problems, such as the modeling
of non-laminated axial magnetic bearings [9] that can be modeled as ZIP sys-
tems. The behavior of the simulated ZIP systems and the model reduction
algorithms described in the previous sections have been respectively simu-
lated and implemented in MATLAB 2012 and were run on an Intel i5 CPU
running at 1.7 GHz.

Example 14 (Parallel interconnection of series RC circuits). Consider the
series resistor−capacitor (RC) circuit in Figure (6.1). Straightforwardly, the

B

C
R

A

Figure 6.1: Series RC circuit.

transfer function from the input voltage between A and B, vin, to the voltage
across the capacitor C, vC , is

W (s) =
VC(s)

Vin(s)
=

1

1 +RCs
=

1
RC

s+ 1
RC

. (6.1)

Defining a := 1
RC

, it is easy to see that W (s) is a simple compartment.

W (s) =
a

s+ a
, a > 0. (6.2)
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The parallel interconnection of N series RC circuit, with different ai := 1
RiCi

,
is a ZIP system. Indeed, denoting by Wi(s) the transfer function of the i−th
series RC circuit, the overall transfer function, W (s), is given by

W (s) =
N∑
i=1

Wi(s) =
N∑
i=1

ai
s+ ai

, 0 < a1 < a2 < · · · < aN . (6.3)

By Proposition 3, W (s) is a ZIP transfer function. In what follows, a de-
scription of how we simulated systems of this form is given. Then, pictorial
evidence of the good level of approximation achieved with model reduction
by moment matching is provided.

In these experiments, the N−dimensional ZIP system to be reduced Σ,
corresponding to (6.3), has been randomly generated as follows. The N
coefficients ai were selected and ordered through the MATLAB functions
randperm and sort. The continuous time system has been created, by means
of the MATLAB functions zpk and ss, summing the N simple compartments
Wi(s). Lastly, two n−dimensional reduced order models have been created,
respectively denoted by ΣG and ΣPP . In the former functions, the n in-
terpolation points si ∈ R are i.i.d. random variables drawn from a uniform
distribution over the interval [−105, 0]. In the latter, we tested the pole place-
ment assigning n distinct poles fi ∈ R, selected as i.i.d. random variables
drawn from a uniform distribution over the interval [−105, 0].

Denoting by W (s), WG(s) and WPP (s) the transfer functions of Σ, ΣG

and ΣPP respectively, Figure 6.2 displays the Bode plots of W (s), WG(s) and
WPP (s). It is easy to see that the Bode plots of W (s) and WG(s) almost
coincide, while W (s) and WPP (s) show a slight difference. In all likelihood,
forcing the reduced order model to have prescribed poles might not be the
optimal choice in terms of distance between the Bode plots.

�
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Figure 6.2: Amplitude and phase Bode plots of W (s) (solid), WG(s) (dashed)
and WPP (s) (dash-dotted) with N = 11 and n = 4 .

Example 15 (Model reduction). In these experiments, we reduced a ZIP
system Σ = (A,B,C) of dimension N . The system Σ has been randomly
generated as follows. The 2N − 1 (different and) interlacing zeros and the
poles of Σ, respectively denoted by z and p, have been selected and ordered
through the MATLAB functions randperm and sort. By means of the MAT-
LAB functions zpk and ss, the continuous time system with zeros z, poles
p has been created, where for simplicity the gain k has been chosen unitary.
Lastly, to create the n−dimensional reduced order model ΣG, the n inter-
polation points si ∈ R are i.i.d. random variables drawn from a uniform
distribution over the interval [105, 0].

Denoting by W (s) and WG(s) the transfer functions of Σ and ΣG respect-
ively, Figure 6.3 displays the Bode plots of W (s) and WG(s) for different
values of N and n. One may notice that the Bode plots of W (s) and WG(s)
almost overlap.

�
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Figure 6.3: Amplitude and phase Bode plots of W (s) (solid) and WG(s)
(dashed) with N = 7, n = 3 (top), N = 15, n = 5 (middle), N = 105,
n = 10 (bottom).



Appendix A

Proofs

A.1 Proof of Proposition 6

To prove the claim, we wish to derive a transformation T ∈ Rn×n, with
det(T ) 6= 0, such that the following equations hold

T−1FT = diag(−f̄1,−f̄2, · · · ,−f̄n) =: F̄ (A.1)

Ḡ := T−1G = (HT )> =: H̄> (A.2)

where f̄i > 0, ḡ = h̄i > 0, f̄i 6= f̄j ∀i 6= j.

The proof of the claim will proceed as follows:

(i) we will construct a change of coordinates T simultaneously verifying
(A.1) and (A.2);

(ii) we will verify that the diagonal entries of F̄ , f̄i, are real negative num-
bers;

(iii) we will prove that all the diagonal entries of F̄ are distinct: f̄i 6= f̄j ∀i 6=
j;

(iv) we will complete the proof showing that the entries of H̄, h̄i, can be
assumed positive for all i = 1, . . . , n.

(i). To begin with, consider equation (A.2). The following equivalences hold

(HT )> = T−1G⇔ (CΠT )> = T−1(On−1Π)−1On−1B = (On−1ΠT )−1On−1B

⇔ (On−1ΠT )(T>Π>O>n−1)e1 = On−1B

⇔ (On−1Π)TT>(Π>O>n−1)e1 = On−1O>n−1e1
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Choosing

T = (On−1Π)−1On−1Q (A.3)

equation (A.2) holds for any matrix Q ∈ RN×n such that QQ> = In.

Assuming T has the form (A.3), we now investigate the existence of Q
such that equations (A.1) and (A.3) are verified.

Define
X := Π(On−1Π)−1On−1 ∈ RN×N . (A.4)

Since X2 = X, X is a projection matrix onto Im(Π) along ker(On−1). Note
that rank(X) = n. In addition, the following properties hold

XΠ = Π, (A.5)

On−1X = On−1. (A.6)

Consider now equation (A.1). The following identities hold

F̄
(A.1)
= T−1FT

(A.3)
= [(On−1Π)−1On−1Q]−1F [(On−1Π)−1On−1Q]

(4.23)
= (On−1Q)−1On−1AΠ(On−1Π)−1On−1(On−1Q)

(A.4)
= (On−1Q)−1On−1AXQ (A.7)

for any matrix Q ∈ RN×n such that QQ> = In.

We now wish to show that there exist Q ∈ RN×n, respecting Q>Q = In,
such that the following equation holds

F̄
?
= (On−1Q)−1On−1AXQ. (A.8)

Equation (A.8) can be cast as

F̄ = (On−1Q)−1On−1AXQ⇔ On−1QF̄ = On−1AXQ

(A.6)⇔ On−1XQF̄ = On−1AXQ (A.9)

A sufficient condition for equation (A.9) to hold is

XQF̄ = AXQ (A.10)

Premultiplying equation (A.10) by X> yields

X>XQF̄ = X>AXQ (A.11)
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Since X>X is a symmetric matrix and rank(X>X) = n, there exists a or-
thogonal matrix U ∈ RN×N , such that U>U = UU> = IN , and a diagonal
matrix

D :=

[
D1

0N−n

]
=


d1

. . .

dn

0N−n

 ∈ RN×N (A.12)

such that

U>X>XU =

[
D1 0
0 0

]
(A.13)

Premultiplying equation (A.11) by U−1 = U> yields

X>XQF̄ = X>AXQ⇔ U−1(X>X)(UU−1)QF̄ = U>X>AX(UU−1)Q

⇔ [U>(X>X)U ]︸ ︷︷ ︸
=D

[U>Q]︸ ︷︷ ︸
:=Q̄

F̄ = [U>X>AXU ]︸ ︷︷ ︸
Ā=Ā>:=

 Ā11 Ā12

Ā>12 Ā22


[U>Q]︸ ︷︷ ︸

:=Q̄

⇔ DQ̄F̄ = ĀQ̄

⇔
[
D1

] [
Q̄1

Q̄2

]
F̄ =

[
Ā11 Ā12

Ā>12 Ā22

] [
Q̄1

Q̄2

]
⇔
[
D1Q̄1F̄

0

]
=

[
Ā11Q̄1

Ā>12Q̄1

]
(A.14)

It is always possible to choose Q̄ ∈ RN×n such that Q̄1 is a (square) orthogonal
matrix, namely Q̄1Q̄

>
1 = Q̄>1 Q̄1 = In. Invertibility of Q̄1 together with

equation (A.14) imply Ā>12 = 0N−n×n. Thus, to verify equation (A.14), Ā
must be a block-diagonal matrix. It can be shown that this assumption is
not restrictive1.

To prove that equation (A.14) holds for some Q̄1, choose Q̄1 = D
− 1

2
1 Q̃1.

Then

D1Q̄1F̄ = Ā11Q̄1 ⇔ D1D
− 1

2
1 Q̃1F̄ = Ā11D

− 1
2

1 Q̃1

⇔ D
1
2
1 Q̃1F̄ = Ā11D

− 1
2

1 Q̃1

⇔ F̄ = Q̃>1 D
−>

2
1 Ā11D

− 1
2

1︸ ︷︷ ︸
:=Ã11

Q̃1

⇔ F̄ = Q̃>1 Ã11Q̃1 (A.15)

1Proof provided in Appendix A.2.
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Observe that Ã11 is a symmetric matrix, thus all its eigenvalues are real, so
there exists an orthogonal matrix Q̃1 ∈ Rn×n that diagonalizes it. Properly
choosing Q̃1, we get

T = (On−1Π)−1On−1Q (A.16)

= (On−1Π)−1On−1(U

[
Q̄1

Q̄2

]
) (A.17)

= (On−1Π)−1On−1(U

[
D
− 1

2
1 Q̃1

Q̄2

]
), (A.18)

the change of coordinates we were looking for. The degree of freedom on
Q̄2 is exploited to satisfy condition Q>Q = In. Namely, we have to choose
Q̄2 = −Q̃>1 D−1

1 Q̃1.

(ii). To show that the diagonal entries of F̄ are negative, observe that for
every nonzero x ∈ Rn

x>F̄ x
(A.15)

= x>Q̃>1 Ã11Q̃1x (A.19)

= x>Q̃>1 D
−>

2
1︸ ︷︷ ︸

=y>

Ā11D
− 1

2
1 Q̃1x︸ ︷︷ ︸

:=y

(A.20)

= y>Ā11y < 0. (A.21)

Indeed, for every nonzero y ∈ Rn

y>Ā11y = (y>
[
In 0

]
U>X>) A︸︷︷︸

<0

(XU

[
In
0

]
y) ≤ 0. (A.22)

On the other hand, rank(Ā11) = n.2 Thus, inequality (A.22) must be strict
and the eigenvalues of F̄ are all negative and real.

(iii). To show that the diagonal entries of F̄ are distinct, note that
σ(S) ∩ σ(S − GL) = ∅.3 Thus the pair (S − GL,G) = (F,G) is reach-
able4 and the algebraically equivalent pair (F̄ , Ḡ) is reachable as well. Since
F̄ is diagonal, the single-input single-output system (F̄ , Ḡ) is reachable if
and only if ḡi = h̄i 6= 0 for all i = 1, . . . , n and the eigenvalues f̄i are distinct.

2Proof provided in Appendix A.2.
3Proof provided in Appendix A.3.
4See [p.6][3].
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(iv). To show that all entries of H̄ = Ḡ> can be assumed positive, consider
the transformation

R = diag(sign(h̄1), · · · , sign(h̄n)). (A.23)

Note that R−1 = R, that RF̄R−1 = F̄ and that

H̄R−1 = (RḠ)> =
[
|h̄1| · · · |h̄n|

]
, (A.24)

hence the claim.

A.2 Proof of U>X>AXU = diag(Ā11, Ā22)

Recall U ∈ RN×N , UU> = U>U = IN and

U>X>XU =

[
D1 0
0 0

]
. (A.25)

In addition, X is a projection matrix, hence there exists a non-singular matrix
V , such that

V −1XV =

[
In 0
0 0

]
⇔ X = V

[
In 0
0 0

]
V −1. (A.26)

We wish to show that U>X>AXU is block diagonal, i.e. that

U>X>AXU =

[
Ā11 0
0 Ā22

]
. (A.27)
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Preliminarily observe that

[
D1

0

]
(A.13)

= U>X>XU

= U>V −>
[
In

0

]
V >V︸ ︷︷ ︸

:=V̄

[
In

0

]
V −1U

= U>V −>
[
In

0

] [
V̄11 V̄12

V̄ >12 V̄22

] [
In

0

]
V −1U

= U>V −>︸ ︷︷ ︸
:=Ω>

[
V̄11 0
0 0

]
V −1U︸ ︷︷ ︸

:=Ω

=

[
Ω>11 Ω>21

Ω>12 Ω>22

] [
V̄11 0
0 0

] [
Ω11 Ω12

Ω21 Ω22

]
=

[
Ω>11V̄11Ω11 Ω>11V̄11Ω12

(Ω>11V̄11Ω12)> Ω>12V̄11Ω12

]
⇒ Ω12 = 0

⇒ Ω = V −1U =

[
Ω11 0
Ω21 Ω22

]
. (A.28)

Now consider the following equalities

U>X>AXU = U>V −>︸ ︷︷ ︸
=Ω>

[
In

0

]
V >AV

[
In

0

]
V −1U︸ ︷︷ ︸

=Ω

=

[
∗ ∗
∗

] [
∗

] [
∗ ∗
∗ ∗

] [
∗

] [
∗
∗ ∗

]
=

[
∗

] [
∗ ∗
∗ ∗

] [
∗

]
=

[
∗

]
:=

[
Ā11

0

]
(A.29)

hence the claim. Note that Ā22 = 0. Since U>X>AXU = (U>X>AXU)>

and rank(U>X>AXU) = n, equation (A.29) implies Ā11 = Ā>11 and rank(Ā11) =
n.
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A.3 Proof of σ(S) ∩ σ(S −GL) = ∅
By contradiction assume that there exists λ ∈ σ(S)∩ σ(S −GL) 6= ∅. Then,
there exist two nonzero vectors v, w ∈ Rn such that{

Sv = λv
w>(S −GL) = λw>

⇒
{
w>Sv = λw>v
w>(S −GL)v = λw>v

(A.30)

⇒ (w>G︸ ︷︷ ︸
∈R

)( Lv︸︷︷︸
∈R

) = 0 (A.31)

⇒
{
w>G = 0
Lv = 0

(A.32)

In either case equations in (A.32) lead to a contradiction. Indeed, if it was
Lv = 0, then

L
LS
...

LSn−1

 v =


Lv

L(Sv)
...

L(Sn−1v)

 =


Lv

L(λv)
...

L(λn−1v)

 =


1
λ
...

λn−1

 (Lv) = 0.

By the observability of (S, L), v must be zero, a contradiction. By using a
dual version, being (S − GL,G) reachable, w must be zero, again a contra-
diction.
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Appendix B

Further properties

B.1 The coordinate transformation T

Given the vector B =
[
b1 b2 . . . bn

]> ∈ Rn we derive a coordinate trans-
formation T = T (A,B), such that


−a1 0 · · · 0 0
b1b2 −a2 0 · · · 0
b1b3 b2b3 −a3 . . . 0

...
...

. . . . . . 0
b1bn b2bn · · · bn−1bn −an


︸ ︷︷ ︸

=:As∈Rn×n

T = T−1


−a1 0 · · · 0 0

0 −a2 0 · · · 0
0 0 −a3 . . . 0
...

...
. . . . . . 0

0 0 · · · 0 −an


︸ ︷︷ ︸

=:A∈Rn×n

T.

(B.1)

Obviously, the coordinate transformation T must be triangular. It is not
restrictive to assume that T has unitary diagonal entries, namely

T =


1 0 0 · · · 0
t21 1 0 · · · 0

t31 t32 1
. . . 0

...
...

. . . . . . 0
tn1 tn2 · · · tnn−1 1

 . (B.2)
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Premultiplying equation (B.1) by T yields


1 0 0 · · · 0
t21 1 0 · · · 0

t31 t32 1
. . . 0

...
...

. . . . . . 0
tn1 tn2 · · · tnn−1 1




−a1 0 · · · 0 0
b1b2 −a2 0 · · · 0
b1b3 b2b3 −a3 . . . 0

...
...

. . . . . . 0
b1bn b2bn · · · bn−1bn −an



=


−a1 0 0 · · · 0
−a2t21 −a2 0 · · · 0

−a3t31 −a3t32 −a3
. . . 0

...
...

. . . . . . 0
−antn1 −antn2 · · · −antnn−1 −an

 .

Provided that tii = 1 for all i = 1, . . . , n, the entries of the m-th row of T
satisfy

−tmlal + bl

( m∑
k=l+1

tmkbk

)
= −amtml, ∀m > l. (B.3)

Equivalently

tml =
bl

al − am

( m∑
k=l+1

tmkbk

)
, ∀m > l. (B.4)

For m = 1, 2, . . . , n, equation (B.4) yields the entries of the m−th row of T ,
namely

tm,m = 1,

tm,m−1 =
bm−1bm

am−1 − am
,

tm,m−2 =
bm−2bm

am−2 − am

(
1 +

b2
m−1

am−1 − am

)
,

tm,m−3 =
bm−3bm

am−3 − am

(
1 +

b2
m−1

am−1 − am
+

b2
m−2

am−2 − am
+

b2
m−1b

2
m−2

(am−1 − am)(am−2 − am)

)
,

...
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Hence, T = T (A,B) has the form

T =


1 0 0 · · · 0
b2b1
a1−a2 1 0 · · · 0

b3b1
a1−a2 (1 +

b22
a2−a3 ) b3b2

a3−a2 1 · · · 0
...

...
. . . . . .

...

· · · · · · bnbn−1

an−1−an 1

 . (B.5)
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[13] H. Oruç and G. M. Phillips. Explicit factorization of the Vandermonde
matrix. Linear Algebra and its Applications, 315(1):113–123, 2000.

[14] W. E. Roth. The equations AX − Y B = C and AX − XB = C in
matrices. Proceedings of the American Mathematical Society, 3(3):392–
396, 1952.

[15] B. Srinivasan and P. Myszkorowski. Model reduction of systems with
zeros interlacing the poles. Systems and Control Letters, 30(1):19 – 24,
1997.

[16] M. Verlaan. Efficient Kalman Filtering Algorithms for Hydrodynamic
Models. 1998.


	Introduction
	Preliminaries
	Linear dynamical systems
	State-space representation of linear systems
	Impulse response and transfer function
	Reachability, observability and realization
	Interconnections

	The Sylvester equation

	ZIP systems
	ZIP systems
	Left ZIP systems
	Left ZIP systems representations

	ZIP systems and left ZIP systems
	Diagonal state-space description of a left ZIP systems
	Triangular state-space realization of ZIP systems
	Characterization of the zeros of a ZIP transfer function

	Further properties of left/right ZIP transfer functions

	Model reduction by moment matching
	Moment matching
	Inheritance of the ZIP property
	Pole placement in the reduced order model
	The bidimensional case
	The n-dimensional case 
	Pole placement and the Farkas' lemma


	Nonlinear ZIP systems
	Nonlinear ZIP system definition

	Examples and applications
	Proofs
	Proof of Proposition  6
	Proof of UXAXU = diag(11,22)
	Proof of (S) (S - GL) = 

	Further properties
	The coordinate transformation T


