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Abstract

In this thesis we are going to study instabilities of the density in various geometries
of a 2D single-component dipolar Fermi gas. Due to the anisotropic, partially repulsive
and partially attractive interactions between dipoles, in order to describe appropriately the
system instabilities it is strictly necessary to account for correct correlations between particles.
The well-known Random Phase Approximation completely neglects exchange correlations,
thus describing only partially the actually rich phase diagram of dipolar Fermi gases. After a
critique to the RPA, we introduce local field corrections by mean of the local field factor G(q),
and then we present a scheme proposed in 1968 by Singwi, Tosi, Land and Sjölander (STLS)
which is intended to compute the local field factor in a simple, self-consistent and physically
motivated way. We focus here on the transition to what is known as stripe phase, precisely
the one which is shown to be led by exchange interactions, thus completely neglected by
the RPA. We study the properties of single- and bi-layers geometries, hence extending
to multiple-layers geometries the previous framework. Finally, within a first neighbour
approximation, we try and extend to (N → ∞)-layers geometry our study.
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Introduction

Extraordinary progresses in physics and technology of the last years have
stimulated the investigation in ultracold gases, and in turn, the investigation has
enhanced technology in this sense. In particular, experimental success in trapping
and cooling polar atoms and molecules has attracted huge interest in the study
of quantum gases of particles with high electric and magnetic dipolar moments.
The dipole-dipole interaction is an anisotropic and long-range interaction, which
exhibits both attractive and repulsive parts: All features that make new exotic
phases have to be expected. Other fundamental steps forward have been achieved
in the control of the short-range interactions via Feshbach resonances. Futhermore,
the strength of the dipolar interaction itself can be modified and controlled as we
will see in the secon chapter of this thesis.

If we examinate the dipolar potential, it is clear that two dipoles aligned head-
to-toe feel an attractive force, whereas in the parallel side-by-side configurations
they will repulse each other. It is not difficult to imagine that the attractive part of
the interaction could lead to instabilities of the system. Moreover, many chemical
polar species are highly reactive, thus leading to unstable system because of losses
due to chemical reactions. A relatively simple way to stabilise dipolar quantum
gases consists in lower their dimensionality by confining them into pancake-like
geometries, and keep them aligned via external fields. This is why we are interested
in 2D geometries.

Another relevant part of the discussion considers the quantum nature of in-
teractions in ultracold gases, i.e. in this case we can no more take into account
only the correlations due to the Coulomb or, specifically, dipolar potential, we need
also to consider, in order to get a good description of the system, the exchange
correlations. So that a fundamental role is played by the pair correlation function,
which should enters the equations that describe e.g. the dielectric properties of
the system or system instabilities. Decisive improvements in this direction have
been given by Singwi, Tosi, Land and Sjölander in 1968 and 1970 by mean of a
series of articles entitled “Electron correlations at metallic densities”, in which
the pair correlation function gives rise to an additional term in the effective field
felt by a single electron embedded in an electron gas, hence introducing a new
screened effective potential including exchange correlations. Their work provides
a self-consistent set of equations that allow to estimate the local field factor, that
not only goes far beyond the RPA, by including exchange in the expression of the
susceptibility, but also refines the Hubbard approximation, which excludes from
G(q) the corrections to the correlation hole. The STLS method has been for a long
time, till the advent of Quantum MonteCarlo simulations, one of the more accurate
framework in condensed matter physics [1].
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INTRODUCTION 2

This thesis is articulated as follows: In Chapter 1 we recall schematically the
linear response theory, thus introducing basic quantities such as the response
function (or susceptibility), the static structure factor and so on, then we illustrate
the RPA as a mean field theory, adducing some successful (or less) example of its
results and a critique about its limits. Then, by mean of the stiffness theorem, we
introduce the local field factor, and explain by the very same words of the STLS
scheme authors, providing a comparison with other approximations.

In chapter 2 we analise in details the properties of the dipolar interactions
and to some extent the scattering properties of fermions at low temperatures. We
illustrate a significant method to control the scattering length, that is by using
Feshbach resonances, and we underline a fundamental aspect of dipoles i.e. the
tunability of the interaction strength. Finally, we present the properties of the
dipole-dipole interaction in 2D geometries.

In chapter 3 the study of dipolar fermi gases begins. Actually, one must decide
whether the simple RPA is sufficient or not in order to accurately describe the
properties of such quantum fluids. A few calculations demonstrate that neither in
the long wave length limit nor for small inter-particle separations (either taking
into account of the natural cut-off provided by the thickness of the layer) the
random phase approximation could lead to acceptable results. Then, we study the
phase diagram of a dipolar quantum gas obtained for single-layer and bi-layers
geometries as in Ref. [23] and [24] respectively, and we reproduce results for
a particular phase transition, while showing that a simplified STLS scheme can
describe the phase boundary in an equally effective way. Finally, we calculate for
the first time the phase shift of the wave-density modulation between two layers in
a classical background.

In chapter 4, finally, the study is extended to more complex systems, namely to
many-layers geometries. We apply the simplified STLS scheme and show how the
φ = 0 stripe phase, the peculiar phase we are studying, for small layers separations
overwhelms other phases by occupying almost all the phase diagram. Then we
analise some asymptotic behaviour of the pancake-like system, especially as a
function of the distance between layers and of their number. In the end, we try
and diagonalise the inverse of the susceptibility matrix in the first neighbours
approximation, in order to get a further simplified algorithm and therefore obtain
the phase diagram for an infinity-layers geometry, which may be useful in the study
of real systems having layered structures and anistotropic interactions.



CHAPTER 1

DENSITY MODULATIONS IN FERMIONIC SYSTEMS

In this first chapter we are going to illustrate the introductory material and
basic tools that will be needed later. We first are going to introduce the basic
concepts about the linear response theory, in general terms, and then focus more
specifically on its application to the study of density instabilities. Later in this
chapter we will introduce the Random Phase Approximation (RPA) scheme and
further developments aimed at improving this approximation by adjusting the
effects of interaction correlations. this scheme will be applied all the thesis wide,
allowing us to obtain informations over the phase diagram of dipolar Fermi gases.

Let’s have a insight about the linear response theory.

1.1. Linear response theory

What is a system’s response to a small perturbation acting on it? In many cases
it is possible to expand the perturbation and obtain the response to the first-order:
The linear response theory describes the (linearized) response of a system to a small
perturbation acting on it. Let us begin with an introductory example, by considering
a system in his ground state; if, as a consequence of a perturbation, the unperturbed
mean value of a quantity B̂ is varying of an amount b, the foundamental energy
results to be varied in this manner:

E(b) ' E0 +
αb
2

b2

where αb stands for the second derivative of the enrergy with respect to b: this
parameter is a measure of the stiffness provided by the system to small modifica-
tions of the average value of the quantity B̂. The second term in this expression
is referred to as “stifness energy”. We now apply to the system an external field
linearly coupled to the quantity B̂ and such that the coupling energy is of the type
εb, where ε is positive and can be made arbitrarily small. In this situation the energy
acquires the form

Eε ' E0 +
αb
2

b2 + εb

so that at the equilibrium we have

beq = − ε

αb

which corresponds to the new ground-state energy:

Eε(beq) ' E0 +
ε2

2αb
.

This implies that the linear coupling leads to a new ground-state of lower total
energy, in which the average value of the quantity B̂ deviates from its original

3



1.1. LINEAR RESPONSE THEORY 4

value by an amount directly proportional to the strength of the coupling (a linear
response) and inversely proportional to the corresponding stiffness αb. The linear
response function is thus defined as the following limit:

χbb = lim
ε→0

beq

ε
= − 1

αb
,

a relation showing the simple connection between the response function and
the stifness. Also important is the expression for the stiffness energy, which can be
written, in a quite general manner, as follows:

(1.1.1) δE = −
b2

eq

2χbb
.

This last equation is the result of the stiffness theorem.
Even if very simple, this example leads to a fundamental property of the

susceptibility, i.e. that it ought to be non positive, a condition more generally
known as foundamental condition of stability:

χbb ≤ 0;

clearly this request is due to the fact that a system is stable only if it lays in an
energy minimum, so that a perturbation whatever can only increase its energy.

1.1.1. Generalisations and response functions. In this section we will schemat-
ically show the foundamental definitions of the linear response theory. First of all
we must discuss the meaning of response and then we must state what is linear and
what is not. A system, when stimulated with an external perturbation F(t), will
react and emit, under an appropriate form, an observable output signal R(t) that
we will call response. A possible formulation of the conditions for F(t) and R(t) to
suite the linearity is sketched below:

(1) Stationarity: Let F(t) = f (t) and R(t) = r(t). Then F(t) = f (t + δt)
implies R(t) = r(t + δt). This condition is always valid if in the system
hamiltonian there are no time dependent potentials, i.e. if the hamiltonian
is conservative.

(2) Linearity: the following two conditions guarantee the linearity of the
system response:

a) [F(t)→ R(t)] ⇒ [λF(t)→ λR(t)]

b) F(t) = λ1 f1(t) + λ2 f2(t) → R(t) = λ1r1(t) + λ2r2(t)

(3) Causality: The implication

F(t) = 0 ⇒ R(t) = 0

defines the casuality of the response as a consequece of the perturbation.
The most general relationship between perturbation and response, that satisfies the
above conditions (1-3), is given by:

R(t) =
ˆ t

−∞
φ(t− t′)F(t′) dt′
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which implicitly defines the response function φ(t − t′). In the limit t → ∞ this
relation defines a convolution. Note that the stationarity requirement implies that
the response function depends on time differences.

In general, if we are studying an observable B̂, the response R(t) is given by
the ensemble average of the deviation

〈
∆̂B(t)

〉
=
〈

B̂(t)
〉
−
〈

B̂
〉

of the observable
B̂ from the equilibrium value, and the perturbation F(t) is the external force f (t)
which perturbs the system. In full generality, the external force is supposed to be
coupled to a variable Â that does not necessarily coincide with the observable B̂
weare studying. The validity of the linear response theory is restricted, as stressed
at the beginning of this section, to the range in which f (t) is weak enough to ensure
that

〈
B̂(t)

〉
varies linearly with the force.

Under the influence of the perturbation, the full hamiltonian reads as:

H = H0 + H1

where1

H1 = −Â f (t),
and H0 is the unperturbed hamiltonian.

While the density operator of the unperturbed system reads as:

ρ0 =
1
Z

e−βH0 , Z = Tr
{

e−βH0
}

we define the density operator of the full system as ρ(t), and ensemble averages
over an operator B̂ read as 〈

B̂(t)
〉
= Tr

{
ρ(t)B̂

}
.

The linear response then can be rewritten as

(1.1.2)
〈

B̂(t)
〉
−
〈

B̂
〉
=

ˆ t

−∞
φBA(t− t′) f (t′) dt′

thus making it clear that ρ(t→ −∞) = ρ0 and that the causality can be included in
the response function by requiring

φBA(t− t′) = 0 for t′ > t.

The latter condition allows the extension to the limit t→ ∞ of the above integral
and, if

lim
ε→0+

ˆ ∞

0
|φBA(t)| e−εt dt < ∞

holds, the system is stable under the effect of the perturbation.
Let us consider a perturbation acting on a system during a time interval τ, and

suppose that it is switched off at time t1: Then, given t > t1, if

lim
t→∞

〈
B̂(t)

〉
−
〈

B̂
〉
= 0.

we can talk of dissipation, i.e. there are non-conservative forces in the system.
Actually, dissipation implies a rapid decay of the response function with time, so
the last statement immediatly requires the validity of the stability condition.

1In the following we let drop the obvious circumflex accents but for the two observables Â and
B̂, in order to simplify notation and visualise immediately the perturbation-coupled variable and the
response-coupled one.
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Causality and stability prevents the Laplace transform of the response function
to be ill-defined, and we can take some advantage from the frequency representa-
tion, in fact, let z ∈ C: The function

χAB(z) =
ˆ ∞

0
φBA(t)eizt dt

is an analitic function in the upper complex plane. Then, if we define the Fourier
transform 〈

B̂(ω)
〉
= lim

ε→0+

ˆ ∞

−∞

(〈
B̂(t)

〉
−
〈

B̂
〉)

e−εteiωt dt,

where the factor e−εt is needed in order to compensate the adiabatic switching on
of the perturbation (which is necessary in order to obtain a uniquely determined
evolution of the system), the equation (1.1.2) can be written〈

B̂(ω)
〉
= χBA(ω) f̃ (ω)

where the generalized susceptibility χBA(ω) is defined via

χBA(ω) = lim
η→0+

χBA(z = ω + iη)

and f̃ (ω) is the usual Fourier transform of the perturbation f (t). Thus it is clearly
convenient to work in the reciprocal (frequencies) space rather than in the direct
space.

The same regularity in the upper complex plane allows to define a relation
between the real and the imaginary part of the generalized susceptibility, called
Kramer-Kronig relation

(1.1.3) χBA(ω) =
1

iπ
P
ˆ ∞

−∞

χBA(ω
′)

ω′ −ω
dω′.

The real part χ′ and the imaginary part χ′′ of the response function are called
respectively reactive and absorptive part, so that

χBA(z) = χ′BA(z) + iχ′′BA(z)

Static linear response. We are now looking for an answer to the question “how
does the system react when perturbed?” in the contest of quantum sstatistical
mechanics. Thus one can try and see whether the system reaches an equilibrium
state when a perturbation F(t) is acting on it or not, taking into account the time
dependence of ρ due to the new term H1 in the Hamiltonian. The partition function
is the following:

Z = Tr
{

e−β(H0+H1)
}
= Tr

{
e−β(H0−Â f (t))

}
and the equilibrium density operator reads as:

ρEq =
1
Z

e−β(H0−Â f (t)).

Actually in this specific case we can omit the time dependence in f (t), and simply
write f instead. In the classic limit, the above expression could be expanded till the
first order in f , yelding

ρEq = ρ0 ·
(
1 + β f

(
Â−

〈
Â
〉

0

))
+O( f 2)
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and immediately〈
B̂
〉

f = Tr
{

B̂ρEq

}
=
〈

B̂
〉

0 + β f
[〈

ÂB̂
〉

0 −
〈

Â
〉

0

〈
B̂
〉

0

]
+O( f 2),

where it is possible to recognize, once assumed
〈

Â
〉

0 = 0, the static susceptibility

χBA = β
〈

ÂB̂
〉

0 .

Note that the circumflex accent has been preserved in order to have a direct compar-
ison with the quantistic case; an observable in classical mechanic is not an operator,
indeed; here it could possibly only suggest that the observable are thought as they
were “acting” to a microscopic state of the system

In the quantistic case the expansion we have done is not possible if the two
observables are not compatible. The Japanese physicist Kubo (in japanese久保) has
then find a way to escape from this problem, defining the Kubo transform of an
observable Â as

ÂK(β) =
1
β

ˆ β

0
ÂI(ih̄λ) dλ

where ÂI stands for the observable Â in interaction picture. With this transform
and thancks to the properties of the Laplace transform, the static response function
writes identically in form as the classic, where the Kubo transform of Â:

χBA = β
〈

ÂK B̂
〉

0 .

Dynamic linear response. Here the dynamical evolution of the dendity operator
has to be considered. A very effective way to find out the response function is to
make use of the interaction picture. In this framework the equation of motion for
the density operator is given by

d
dt

ρI = −
i
h̄

eiH0t/h̄ [H1, ρ(t)] e−iH0t/h̄

and because of the lineary of H1 in f (t), we may replace ρ(t) by ρ0, giving

d
dt

ρI '
i
h̄
[
ÂI(t), ρ0

]
f (t).

The solution of the equation of motion give us the time dependent density
operator

ρ(t) = ρ0 +
i
h̄

ˆ t

−∞

[
ÂI(t− t′), ρ0

]
f (t′) dt′

so, because we remind that the aspectation value of an observable is given by
the trace over all the microscopic states of the system weigthed with the density
operator, it is a simple substitution which finally lead to the expression〈

B̂(t)
〉
−
〈

B̂
〉
=

i
h̄

ˆ t

−∞

〈[
B̂I(t), ÂI

]〉
0 f (t′) dt′

and a comparison with equation (1.1.2) finally allows us to achieve the result named
the Kubo formula:

(1.1.4) φBA(t− t′) =
i
h̄

θ(t− t′)
〈[

B̂(t), Â(t′)
]〉

0 ;

notice that the common notation suppresses the index 0, and we will adecuate our
notation in the following.
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The part

KBA(t) =
i
h̄
〈[

B̂(t), Â
]〉

=
〈[

B̂, Â(−t)
]〉

is also called a response function, and it is connected in an obvious way with φBA(t).
The inverse of KBA determines the response

〈
Â(t)

〉
caused by H1 = − f (t)B̂. The

point is that KBA and its inverse are in the following relationship:

KAB(t) =
i
h̄
〈[

Â(t), B̂
]〉

= −KBA(−t).

�We open now a classical parenthesis in the discussion, in order to introduce
some basic concept that will be useful later to better understand the fluctuation-
dissipation theorem.

The Kubo formula express its relevance in the so called Onsager regression
of fluctuation: The formula, in fact, is in relationship with the connected average
which definition is

〈XY〉c = 〈XY〉 − 〈X〉 〈Y〉 .

Including this definition, one can express the response (1.1.2) as

〈B(t)〉 − 〈B〉 ≡ 〈∆B(t)〉 = β f 〈A(0)B(t)〉0c .

In this last expression the connected correlation function appears

CAB(t) = 〈A(0)B(t)〉0c ,

which time derivative yields to the classical Kubo formula for the susceptibility:

φAB(t) = −βθ(t)ĊAB(t).

This result can be explicitly derived through a procedure called regression protocol
(not demonstrated here), which consists in switching off abruptly the external
perturbation, that was alive since t = −∞, and then observe the system while it is
allowed to relax back to equilibrium.

Let for a moment B = A: Then

〈∆A(t)〉 = β f 〈A(t)A(0)〉0c = β f 〈δA(t)δA(0)〉0c

where δA(t) symbolise the fluctuation near the unperturbed average value of A
at the time t. Then the connected correlation function is expected to give full
correlation when t = 0, and zero correlation for t→ ∞, namely:

CAA(0) =
〈

δA2(0)
〉

0
CAA(t→ ∞) = 〈δA(0)〉0 〈δA(t→ ∞)〉0 .

The second expression is zero because we expect 〈δA(0)〉0 = 〈δA(t→ ∞)〉0 = 0.
In general, the time law is

CAA(t) ' CAA(0)e
− |t|τA ,

where τA is the relaxation time of the observable A.
One can only conclude that “if a system is, at time t0 , out of equilibrium, it is

impossible to know if this off-equilibrium state is the result of an external perturbation or of
a spontanoues fluctuation. The relaxation of the system back to equilibrium will be the same
for the two cases (assuming that the original deviation from equilibrium is small enough).”
(Onsager 1931)
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The quantistic expression which include the connected average is obtained via
the Kubo transform: 〈

∆̂B(t)
〉
= f
ˆ β

−∞

〈
ÂI(ih̄λ)B̂(t)

〉
0c dλ.

�

A further important relation is:

(1.1.5) κBA(z) = 2iχ′′BA(z)

in which appear the appropiate (i.e. such that it is analytic in the upper complex
plane) Laplace transform κBA(z) of KBA(t).

Before going on introducing other interesting and useful quantities, we should
mention that the Kubo formula can be expressed in matrix form. The density
operator will be expressed as

ρ̂0 = ∑
n
|n〉 〈n|wn

where the weigth wn is the probability associated at the nth state; in a canonical
ensemble

wn =
1
Z

e−βEn .

Some simple algebra will give

(1.1.6) φBA(t) =
i
h̄

θ(t)∑
n,l
(wn − wl)Anl Blnei (En−El )

h̄ t.

1.1.2. Structure factor and fluctuation-dissipation theorem. There is a strong
relation between the time correlation of fluctuations and the absorption (or dissipa-
tion). In order to identify the relation, we define the dinamic correlation function

sBA(t) ≡
〈

B̂(t)Â
〉
−
〈

B̂
〉 〈

Â
〉
=
〈

B̂Â(−t)
〉
−
〈

B̂
〉 〈

Â
〉

.

Notice that it is identical to CBA previously used, but here the average is not
explicitly in the equilibrium state.

Thus it can be immediately identified the relation

(1.1.7) KBA(t) =
i
h̄
[sAB(t)− sAB(−t)] .

A noticeable property of s(t) is the following (it can be readily derived from
the cyclic property of the trace and regarding B̂ in the interaction picture):

sBA(t) = sAB(−t− ih̄β).

As CBA does, sBA vanishes in the limit of infinite time and non-infinite temperature.
From the Fourier transform of the above property we can extract the condition of
detailed balance:

SBA(ω) = eβh̄ωSAB(−ω).

Including the property (1.1.7) of KAB and its Laplace transform (1.1.5) in the detailed
balance condition, we finally get the fluctuation-dissipation theorem

(1.1.8) SBA(ω) = 2h̄
1

1− e−βh̄ω
χ′′BA(ω).
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It is now self-evident the connection between the spontaneous fluctuations of
the system and its power absorption. Moreover the fluctuation-dissipation theorem
relates, even more evidenty, the relation between fluctuation and response function.

In perticular, let B = A†: For ω > 0, SA† A(ω) gives the absorption spectrum
at a frequency ω, and for ω < 0 it gives the stimulated emission spectrum (from
which the name “detailed balance”, that relates incoming and outgoing power in
the system).

SBA(ω) is known as dinamical structure factor as well, and take the attribute
static in the ω → 0 limit. It strongly recalls the structure factor we know from optic:
the dinamic correlation function can in fact describe the scattering properties of the
system.

1.1.3. Multiple coupling. Since we are in a linear approximation, the perturba-
tion(s) will appear in the hamiltonian as a sum of linear terms of coupling between
the external perturbations and their associated observable:

H1(t) = −
ˆ

Â(r) · f(r, t) dr.

From previous theory, we know that the response writes:〈
Âi(r, t)

〉
= 2i

ˆ t

−∞
dt′
ˆ

χ′′Ai Aj
(r, r′, t− t′) f j(r′, t′) dr′

where the sum over repeated indexes is understood and

χ′′Ai Aj
(r, r′, t− t′) =

1
2h̄
〈[

Âi(r, t), Âj(r′, t′)
]〉

0 .

A little work can demonstrate that the fluctuation dissipation theory is still
valid in the identical form as the previous, and writes as follows:

χ′′Ai Aj
(k, ω) =

1
2h̄

(
1− e−βh̄ω

)
SAi Aj ,

so that the whole previous theory still applies even in this case. In particular a new
feature arises, i.e. one can demonstrate that the response factor is a tensor (and this
is the characteristic allowing us to extend in a such direct manner the theory from
one observable to many coupled observables).

1.1.4. Sum-Rules. Sum-rules are identities that connect the moments of the
absorption spectrum distribution to ground state averages of observables.

An example of application of a sum rule is the expression of the relationship
between energy levels transitions and transition amplitudes: By meaning of this
sum rule we can express in a simple form the sum of transition amplitudes [Sanwu
Wang, Generalization of the Thomas-Reiche-Kuhn and the Bethe sum rules, Physical
Review A 60, 262 (1999). http://prola.aps.org/abstract/PRA/v60/i1/p262_1].

Sum rules are derived from the Kramer Kronig relation, showed in equation
(1.1.3): We start from expanding in series of ω powers the denominator in the
integral in the high-frequency limit

1
ω′ −ω

= −
∞

∑
k=0

ω′k

ωk+1 .
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For hermitian observables, the integrals containing even powers vanish and
the high-frequency expansion of Kramers-Kronig relation can be written

χ′BA(ω) = ∑
k

M(2k+1)

ω2k+2

where

M(2k+1) = − 2
π

ˆ ∞

0
ω2k+1χ′′BA(ω) dω.

The conclusion follows on-the-fly by including the Kubo formula (1.1.4) and the
relation (1.1.5) in the series expansion, giving

χ′BA(ω) =
i
h̄ ∑

k
(−1)k

〈[
Â(2k+1), B̂

]〉
0

ω2k+2

which connect any odd moment of the spectrum to the equilibrium expectation
value of an equal-time Green function.

1.2. Density response

The linear response theory, previously formulated in general terms, is here
applied to the case of density perturbations.

1.2.1. The density-density response function. The density-density response
function describes the response of the expectation value of the number density
operator

n̂(r) = ∑
i

δ(r− r′i)

at a point r to a potential Vext(r′, t) that couples linearly to the density. We will
look for the response of a system, actually its density modulation, to an external
perturbation, in the context of the linear response theory. From the definition (1.1.2)
one gets:

δn(r, t) =
ˆ ∞

0
dτ

ˆ
dr′ φnn(r, r′, τ)Vext(r′, t− τ).

Without loss of generality, we start considering the case of a perturbation periodic
in time:

Vext(r′, t) =
1
Ld Ṽext(q′, ω)ei(q′ ·r′−ωt) + c.c.;

a sostitution in the previous definition will give

(1.2.1) δn(r, t) =
1
Ld ∑

q
δ̃n(q, ω)ei(q′ ·r′−ωt) + c.c.

with

(1.2.2) δ̃n(q, ω) = χnn(q, q′, ω)Ṽext(q′, ω),

so obtaining as the response function the Fourier transform of φnn. Another com-
pletely equivalent way to write the response function in the reciprocal space is

χnn(q, q′, ω) =
1
Ld χnqn−q′ (ω).

An important point which must be stressed is that in general a perturbation with
wavevector q′ induces a density modulation at all the wavevectors q 6= 0 for which
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χnn(q, q′, ω) 6= 0. In the case of homogeneous systems this property simplifies and
we are left with

χnn(q, q′, ω) = χnn(q, ω)δq,q′ .

Finally if we are dealing with spatially periodic structures, the susceptibility is
non zero only if the exited density fluctuations differs from the momentum of the
incident perturbation by a reciprocal lattice vector G, namely

χnn(q, q′, ω) = χnn(k + G, k + G′, ω).

1.2.2. The density structure factor. It is the structure factor. We have already
talked about the role of the structure factor in the linear response theory.

First, let us talk about the dynamic structure factor: It can be defined in a
slightly different - but completely equivalent - manner with respect to the definition
we gave before in the chapter:

SAA†(ω) = ∑
nm

wm |Amn|2 δ(ω−ωmn),

this definition, for the observable density, reads

S(q, ω) = Snqn−q(ω) = ∑
nm

wm
∣∣(n̂q)mn

∣∣2 δ(ω−ωmn),

from which the symmetry properties immediatly follow:

S(−q, ω) = S(q, ω).

Both the detailed balance condition and the fluctuation dissipation theorem are
valid, and in particular we underline that the detailed balance condition writes

S(q,−ω) = e−βh̄ωS(q, ω).

The static structure factor, instead, is not the dynamic one in the limit ω → 0, but is
defined as

S(q) =
1
N

ˆ
R

S(q, ω) dω,

where N is the total number of particles in the system.
The static structure factor is in strong relationship with another important

quantity, whose origin will be briefly discussed later (§ 1.3.2): the pair correlation
function g(r). In an isotropic and homogeneous system of identical fermions, we
define

g (|r1 − r2|) =
1
n2

〈
ψ†(r2)ψ

†(r1)ψ(r1)ψ(r2)
〉

.

It is a matter of facts that the relation joining the two quantities is the following:

S(q) = 1 + n
ˆ

[g(r)− 1] e−ir·q dr

and this, together with the anticommutation rules for fermions, yield the following
expression for the static structure factor:

S(q) =
1
N
〈
n̂qn̂−q

〉
− Nδq,0.
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1.2.3. The compressibility sum rule. It is possible to draw out a fundamental
relationship between the proper compressibility and the static density-density
response function. From Kramer-Kronig relations (1.1.3) we note that the static
density-density response function χnn(q, 0) of an homogeneous fermion liquid in
the long wavelength limit is associated with the first negative moment of χ′′nn(q, ω):
This is why we call (with a slight abuse: see § 1.1.4) a sum rule the connection
between the susceptibility and the compressibility of the system.

In order to find the relation, consider an electron liquid which density reads as

n(r) = n(1 + γ cos(q · r)),
where γ � 1. From equation (1.1.1) we can get the variation in the equilibrium
energy when the system suffers the presence of a perturbation, in this case rep-
resented by the small periodic density inhomogeneity. Physical considerations
indicate that the excess of energy in the long wavelength limit q → 0 consists of
two contributions: the electrostatic energy

δEel = N
nvq

4
γ2

(actually valid for each q) and the kinetic plus exchange-correlation energy

δEloc =

ˆ
[n(r)ε(n(r))− nε(n)] dr '

q→0
N

nγ2

4
∂2

∂n2 nε(n).

In the above expressions N is the total number of particles and ε(n(r)) represents
the energy of the homogeneous jellium model. The inverse of the sum of the two
finally gives the relation we were looking for:

(1.2.3) lim
q→0

χnn(q, 0)
1 + vqχnn(q, 0)

=
1

∂2[nε(n)]

∂n2

= −n2K.

It makes sense now to define two proper quantities, which appear quietly in the
previous expression: They are the proper density-density response function

χ̃nn(q, ω) =
χnn(q, ω)

1 + vqχnn(q, ω)

and the proper compressibility K. We use the attribute “proper” because, as a
matter of fact, these quantities are concerned with an interacting system, i.e. the
particles merged in the system feel interaction and external potentials as screened
potentials, because of the presence of the other particles. So proper recalls that
the system is properly described by a complete interaction. Indeed the proper
susceptibility can be implicitly defined through

n1(r, ω) =

ˆ
χ̃nn(r, r′, ω)Vsc(r′, ω) dr′

where n1 is the response of the density to the screened potential Vsc.

1.3. Free electrons

In the last section we just mention the screened potential, talking about a
proper response function. In fact, to calculate a response function of systems such
as electron gases or more generally interacting fermion gases is extremely difficult.
The only susceptibility one can calculate exactly is that of non-interacting fermions.
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For the sake of simplicity and for concreteness we choose here to explain briefly
what is known for a system of non-interacting electrons. We will use the second
quantization formalism, i.e. each operator will be understood to be in the form

Â = ∑
αβ

Aαβ â†
α âβ

with a(†)α distruction (creation) operators.
So the problem now is to find the response of a system of free electrons, which

Hamiltonian writes
Ĥ0 = ∑

αβ

εα â†
α âα,

to an external perturbation that coples linearly to an observable B̂. So the perturbed
Hamiltonian will reads as

Ĥ0F = Ĥ0 − F(t)B̂.

Making use of equation (1.1.6) one readily gets for the response function (we will
use the same symbol χ both for the response function and its Fourier transform):

χ
(0)
AB(t) = −

i
h̄

θ(t) ∑
αβγδ

AαβBγδei
(εα−εβ)

h̄ t
〈[

â†
α âβ, â†

γ âδ

]〉
0

,

and by mean of the Wick’s theorem, introducing the Fermi-Dirac average occupa-
tion number nλ of the λth-state.

χ
(0)
AB(t) = −

i
h̄

θ(t) ∑
αβγδ

AαβBγδei
(εα−εβ)

h̄ t(nα − nβ)

which Fourier transform with respect to time is

χ
(0)
AB(ω) = ∑

αβ

AαβBγδ(nα − nβ)

h̄ω + εα − εβ + ih̄η
.

We have demonstrated that it is possible to obtain straightforwardly an expres-
sion for the susceptibility of a non-interacting system of fermions. Now, we are
interestred in the response of the system to density fluctuations, then we want to
calculate the density-density response function. All we need is the explicit expres-
sion of the numeric density operator, but this is not a real difficulty, because we
can assume that the particles are point-like and the density then is expressed like a
delta:

n̂(r) = ∑
i

δ (r− ri)

whose Fourier transform is
nq = ∑

i
e−iq·ri .

Using the Kubo formula Eqn. (1.1.4), we see that the only components we are
interested in are (

n±q
)

kσ,k′σ′ = δk,k′−qδσσ′ ,
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and a simple substitution will yield the required expression:

(1.3.1) χ
(0)
nn (q, ω) =

1
Ld ∑

k,σ

(nk,σ − nk+q,σ)

h̄ω + εk,σ − εk+q,σ + ih̄η

where Ld is the volume of the system (and d its dimension). This function is actually
a function of the modulus q. What we have obtained is known as Lindhard function
χ0(q, ω).

1.3.1. The Lindhard function. The Lindhard function can be calculated analit-
ically, at least in the zero temperature limit, in each dimension. Here our aim is to
find an analytic expression for the Lindhard function relative to a 2D system. The
main difficulty is to solve the sum that appears in Eqn. (1.3.1), but this difficulty
vanishes in the zero temperature limit. We are going to neglect the spin in the
discussion, but the generalisaton is trivial: Indeed, the complete result is given by
the sum

χ0 = χ0↑ + χ0↓,
so we choose arbitrarily one of the two spin-dependent parts and write χ0σ ≡ χ0
(one-spin Lindhard function).

Let us rewrite (1.3.1) as

χ0(q, ω) =
1
Ld ∑

k

nk
h̄ω + εk − εk+q + ih̄η

+
1
Ld ∑

k

nk+q

−h̄ω + εk − εk+q − ih̄η
,

then, once called ϑ the angle between k and k + q, kF the Fermi wavevector
modulus and vF = h̄kF

m the Fermi velocity, in the thermodinamic limit the sum can
be regarded as an integral and above formula is transformed into the following:

χ0(q, ω) =
mkd−1

F

q(2π)d h̄2

ˆ 1

0
dx
ˆ

xd−1 dΩd
ω

qvF
− q

2kF
− x cos ϑ + iη

+ (ω+ → −ω+)

where ∆ is the dimension of the system, x = k/kF, dΩd is the solid angle element in
dimension d and the shorthand (ω+ → −ω+) indicates the same term as the one
completely explicited but for the substitution h̄ω + iη 7→ −(h̄ω + iη). After further
appropriate substitutions of variables, according to the dimension of the system, the
integral can be analytically resolved. Notice that the solution is a complex function
of ω with a real and an imaginary part which express, respectively, the in-phase
response of the system and its power absorption, as stressed when introducing the
linear response theory. The Lindhard function for a bi-dimensional gas of (spinless)
fermions reads as:

χ0(q, iω) =
m2

2πq2

√2

√√√√a +

√
a2 +

(
ωq2

m

)2

− q2

m

 a =
q4

4m2 −
q2k2

F
m2 −ω2,

In the static limit (ω = 0) the Lindhard function is purely real, for the 2D case
in the T = 0 limit it is easily obtained

χ0(q, 0) =
m

2πh̄

[√
q2 − 4

q
Θ(q− 2)− 1

]
.

In the conclusion of this section we address a comment to the Fourier transform
of the Lindhard function. In fact, it is interesting to note that it physically represents



1.4. THE INTERACTING ELECTRON LIQUID 16

the response of the density to an impurity (charged with the same sign) located at
the origin of the system; at large distances χ0

(
r � k−1

F , 0
)

oscillates and decays
slowly. This phenomenon is known as Friedel oscillations, and — as it is clear from
the direct calculation of the Fourier transform — it is a direct consequence of the
existence of the Fermi surface. We refer the readers to the bibliography of this
chapter for further information.

1.3.2. A picture of the origin of the pair correlation function. The kinetic
and interaction energies are not the unique contributing to the total energy of a
Fermionic system. For example, suppose we have a (eventually spinless) jellium
model: The antisymmetric nature of the wave function make “holes” arise around
each electron, in which any other electron cannot stay. At the same time, this local
“vacuum” allows stronger interactions between positive background and electrons,
and makes the well-known exchange energy originate. Analogous processes exist
in general in any Fermionic system, and generates a depletion region called the
exchange-hole.

This energy contribution can be formalised via the pair correlation function,
defined as the joint probability of finding a fermion in r2 given the presence of
another identical fermion in r1:

g(r1, r2) =

〈
∑i 6=j δ

(
r2 − rj

)
δ (r1 − ri)

〉
n(r1)n(r2)

or equivalently, in terms of field operators

g(r1, r2) = ∑
σ1σ2

〈
ψ̂†

σ2
(r2)ψ̂

†
σ1
(r1)ψ̂σ1(r1)ψ̂σ2(r2)

〉
n(r1)n(r2)

,

whereas in the homogeneous case g(r1, r2) = g(|r1 − r2|).
Thus the fermion-fermion interaction energy can be expressed using g. For

example, in the jellium model the total potential energy writes

(1.3.2)
U
N

=
n
2

ˆ
v(r) [g(r)− 1] dr

It is important to notice that exchange hole always exists in Fermionic systems,
even in the non-interacting case, in particular for spinless fermions in uniform
systems we expect

g(r = 0) = 0, g(r → ∞)→ 1.
In conclusion, g describes the depletion region (see Figure 1.3.1) and therefore the
total amount of the exchange energy of the system.

1.4. The interacting electron liquid

We can now ampliate the frame we are working in by including interaction in
our system, thus better comprehending the meaning of screening potential. The
first and perhaps the most famous approximation that allows the extension of
previous studies to an interacting system is the Hartree-Fock approximation. We
are not intentioned to give explanations about it, and we just remind that it is a
self-consistent mean-field theory, in which the non local exchange potential appears
to be intrinsically included. Historically, the first attempt to go beyond the HF
approximation is the random phase approximation (RPA). We will show here the
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FIGURE 1.3.1. The pair correlation functions g↑↑, g↑↓ and their
average (solid line) in paramagnetic uniform 2D electron gases at
the density corresponding to rs = 5, aB is the Bohr radius. Image
from G. F. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid.

Hartree mean-field approximation and its link to the RPA, then we will furnish a
more detailed analysis of the RPA with its advantages and limits.

Let us begin by considering a “wider” response theory, i.e. including dynamical
mean field approximations: we will present a method based on the independent
electron model that will turn out to be useful to calculate the response of interacting
electron gas.

Consider a time-dependent perturbation so that the hamiltonian reads as

Ĥ(t) = Ĥ + F(t)B̂

where we approximate the ground state hamiltonian Ĥ with a single-particle mean
field hamiltonian:

Ĥ ∼ ĤMF = Ĥ0 + V̂MF.

In the above expression V̂MF can be any mean field potential, for example we can
choose the ground state part of Hartree Fock potential, or more simply the classical
Hartree potential V̂H . So in this picture each operator can be expressed in second
quantization as a single particle operator, and thus the potential writes

V̂MF = ∑
ij

VMF
ij â†

i âj.

It actually can be rewritten as a functional of the density matrix which elements are
ρuy =

〈
â†

u ây
〉
, so that VMF

ij = VMF
ij

[
ρuy
]
. Clearly this is valid for each single particle

operator. Now we can apply the linear response theory, which tell us that the linear
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response for any observable Â that couples linearly to B̂ reads as

χ
f
AB(ω) = ∑

ij

ni − nj

h̄ω + εi − ε j + ih̄η
AijBji.

But we must pay attention, because this is the response function of a fictitious
non-interacting system (the potential is of single-particle) which hamiltonian is
ĤMF. Then it is not the actual response function: The response of the system to the
external perturbation modifies the mean field potential, which now shows a new
time-dependent part.

Thus the way is traced: we can determine the true response function via a
self-consistent path.

Precisely, the new potential has become

V̂MF(t) = V̂MF
0 + V̂MF

1 (t),

and thanks to its expression as a functional of the density matrix, the time depen-
dent part can be regarded as

V̂MF
1 (t) = ∑

ij
V̂MF

1,ij (t)â†
i âj

= ∑
ij

(
∑
uy

δ

δρuy
VMF

ij
[
ρuy
]∣∣∣∣

g.s.

ρ1,uy(t)

)
â†

i âj

(the subscript “g.s.” indicates that the variation must be calculated in the ground
state — thus at the 0th order). Here the only quantity we have to calculate is ρ1,uy(t),
that can be derived from

ρ1,uy(ω) = χMF
ρuyB(ω)F(ω)

in a self-consistent way: In fact, now we can say that −F(t)B̂ + V̂MF
1 (t) is the term

in the hamiltonian that stems for the perturbation, so that χ
f
AB describes only the

0th order of the total response function, and the response of Â up to the first order
is given by〈

Â
〉

1 (ω) = χ
f
AB(ω)F(ω) + ∑

ij,uy
χ

f
Aρij

δ

δρuy
VMF

ij
[
ρuy
]∣∣∣∣

g.s.

χMF
ρuyBF(ω)

which can be resolved with respect to χMF
ρuyB (the quantity we are interested in) by

choosing Â = ρ̂ij.
In this way we have achieved our aim to express the self-consistent response

function in the picture of a mean field theory as a function of the only χ
f
AB of the

fictitious non-interacting systems.

1.4.1. The RPA approximation. The mean field response theory can now be
used in order to define the random phase approximation in a physically appealing
way, choosing the Hartree field as the static mean field V̂MF

0 . The Hartree potential
is local in space, and it represents the average electrostatic potential created by the
electronic charge density (then it does not include the exchange potential).

Let us consider as usual a gas of electron, and let V(r) be a static potential
acting on it. Then each electron, according to the Hartree approximation feels the
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self-consistent potential

VH(r) = V(r) +
ˆ

e2n(r′)
|r− r′| dr′,

with n(r) the ground-state density. Such a system is called a Hartree system, and its
susceptibility is given by χH

nn(r, r′; ω). The following assumption is that the physical
system will respond as the Hartree system would to perturbating potentials V1(r, t)
and to the electrostatic potentials created by the induced density modulations
n1(r, t):

n1(r, ω) =

ˆ
χH

nn(r, r′; ω)Vsc(r′, ω) dr′

(already introduced in § 1.2.3) where

Vsc(r′, ω) = Vext(r′, ω) +

ˆ
e2

|r′ − r′′|χ
RPA
nn (r′, r′′, ω)Vext(r′′, ω) dr′′

is the screened potential. Thus if one compares this expression to those of the
proper response function, immediately gets

χ̃RPA
nn (r, r′, ω) = χH

nn(r, r′, ω)

i.e. in the RPA the proper susceptibility is given by the Hartree response function.
The whole discussion is valid in full generality, but a little simplification can be

done in the homogeneous case by identificating the proper response function to
the Lindhard function:

χ̃RPA
nn (q, ω) = χ0(q, ω),

indeed the Hartree system for a homogeneous electron system coincides with the
non interacting electron gas.

In conclusion, directly from the compressibility sum rule and the definition of
proper response function one gets:

χRPA
nn (q, ω) =

χ0(q, ω)

1− vqχ0(q, ω)
.

Before proceeding, we define the dielectric function

εRPA(q, ω) = 1− vqχ0(q, ω)

which, note, coincides with the denominator of χRPA
nn .

1.4.2. Properties from χRPA
nn . In this section we refer to the 3D jellium model,

because it shows clearly observable features of the RPA in few simple calculations
which can be readily extended to many systems. We will focus on the screening
effects and to the poles of χRPA

nn , and finally on the correlation energy.
Static limit. The screening properties of the electron gas is controlled by the

static dielectric function εRPA(q, 0) which for a 3D electron gas in the long wave-
length limit is given approximatively by

εRPA(q, 0) ∼ 1 +
q2

TF
q2 , q� kF,

where qTF =
√

6πne2/ε0
F is the Thomas Fermi wavevector, with ε0

F the non-

interacting Fermi energy of the system. Notice that the divergence of εRPA at
small wavevectors perfectly reflects the complete screening property of metals.



1.4. THE INTERACTING ELECTRON LIQUID 20

Hence the physical meaning of the Thomas Fermi wavevector is better under-
stood if one consider the screened potential produced by an impurity in the electron
gas:

Vsc(r) ' F

[
vq

ε(q, 0)

]
= e2 e−qTFr

r
which is a Yukawa-like potential, i.e.: by mean of the dielectric function we have
obtained a rapidly decaying potential, thanks to which impurities are completely
screened after a distance of∼ 1/qTF. This is a simplified approximation, in facts the
true RPA screened potential shows the Friedel oscillations — associated with the
singularity of εRPA(q, 0) in q = 2kF —, whereas the obtained Yukawa-like screened
potential does not predict them. Nevertheless we have obtained correct predictions
at least for q→ 0.

Dynamical limit. The poles of the density density response function are in
correspondence of the excitation energies of collective modes of many body systems.
In our jellium model, such collective modes are called plasmons. It is convenient to
study the zeroes of the dielectric function.

In the limit q→ 0, ω � vFq, the RPA dielectric function for a 3D electron gas
writes

εRPA(0, ω) ∼ 1− 4πne2

m
1

ω2 = 1−
ω2

p

ω2

where ωp is referred to as the electron plasma frequency. Then RPA predicts the
existence of a pole at the frequency ω = ωp, a result experimentally confirmed.
The value of ωp varies with the dimensionality of the system (a result which can be
found classically):

ωp(q) =


√

2πne2

m q 2D√
4πne2

m 3D

and the following dispersion relation is found within the RPA:

Ω2
p(q) ' ω2

p(q) + cdq2v2
F + . . .

where the Fermi velocity can be expressed in terms of the Thomas-Ferm wave
vector and c2 = 3/4 in dimension d = 2 whereas c3 = 3/5 in the 3D case.

Correlation energy. The correlation energy is defined as the difference between
the total energy and the sum (E1) of kinetic energy (E0) of the non-interacting gas
and exchange energy of the system. From the Fourier transform of Eqn. (1.3.2)
which reads

U
N

=
1

2Ld ∑
q 6=0

vq [S(q)− 1]

it can be shown that

E1

N
=

E0

N
+

1
2Ld ∑

q
vq

(
− h̄

nπ

ˆ 1

0
dλ

ˆ +∞

0
χ0(q, iω; λ) dω− 1

)
where λ is a coupling constant. The RPA correlation energy reads as

εRPA
c =

ERPA − E1

N
=

1
2Ld ∑

q

(
− h̄

nπ

ˆ 1

0
dλ

ˆ +∞

0
λv2

qχ0(q, iω; λ)
χ0(q, iω)

1− λvqχ0(q, iω)
dω

)
,
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which can be carried out easily in λ whereas numerical calculations are often
needed for the remaining part.

The correlation energy is an interesting quantity through which we can “test”
the RPA, in facts it involves the susceptibility, the structure factor and the pair
correlation function: Illnesses of these functions may indicate issues in the RPA.

1.4.3. RPA limits of validity. The most intriguing advantage of the RPA is its
simplicity, leading in many cases to very good results. It provides substantially
exact results for the total energy of an electron gas in the high density limit, gives
good descriptions for plasmon oscillations, and the screening effects are derived in
details.

Nevertheless, most details are lost out of the long wave length limit: For
example, in the case of the jellium model to which is widely applied, the RPA
strongly relies on the uniformity of the electron gas, thanks to which the Hartree
term is identically zero. At finite wave lengths, even small density fluctuations
become non-negligible, therefore the Hartree term does not cancel exactly. In
real metals, this rapidly becomes a serious issue. Furthermore, at tipical metallic
densities and small separations, the correlation function becomes unphysically
negative. Another problem is that the RPA does not consider exchange correlations
at all, as will be shown later on. At low densities (in the specific case of the
jellium model) those problems are accentuated. Finally, it is important to notice
the systematic violation of the compressility sum rule: while the compressibiliy
calculated as the second derivative of the energy with respect to the density yields
essentially correct results, the limit limq→0 χ̃RPA

nn (q, 0) yields the compressibility of
a non interacting system, a clear violation of the compressibility sum rule.

1.5. Beyond RPA: Local Field Factors

The preceding critique to the RPA indicates what problems have to be consid-
ered in order to improve the description of interacting fermion gases.

Let us preliminarly discuss the stiffness energy δE of a fermionic system: we
can make the physically reasonable hypothesis that it is composed by the sum
of two terms, the first due to the electrostatic energy associated with the density
modulation, the second related to the kinetic stiffness energy of a non interacting
fermions:

δE = δEC + δET .

It appears clearly that the exchange and correlation energy are completely excluded
from the calculations. A very simple and effective method to fix this issue is to
introduce the non local exchange potential “by hands”, by postulating the existence
of an additional stiffness-energy term of the type

(1.5.1) δEXC = −
vqG(q)n2

q

Ld

where G(q) represents a fractional modification of the Coulomb energy associated
with the exchange-correlation hole. Expliciting term by term one gets

(1.5.2) −
n2

q

χnn(q, 0)Ld =
vqn2

q

Ld −
n2

q

χ0(q, 0)Ld −
vqG(q)n2

q

Ld ,
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and a simple rearrangement of terms in the complete stiffness energy (1.5.2) will
lead to the Hubbard expression

(1.5.3) χnn(q, 0) =
χ0(q, 0)

1− vq [1− G(q)] χ0(q, 0)
;

G(q) is commonly referred to as a (static) many-body local field factor. The reader
should notice that, by modifying χnn, the inclusion of the exchange term will lead to
a change in both the electrostatic and the kinetic energy stiffness via a modification
of the magnitude of the induced density modulations n±q.

It is also possible to extend this simple picture to the dynamic case, where

−vqG(q, ω)nq(ω)

is easily seen to be the Fourier transform of the exchange-correlation potential
created by a density fluctuation of amplitude nq(ω).

We have seen it is possible to generalize RPA, which fails in accounting the
correlations existing between fermions in a many body system, in a simple and
elegant way, by introducing the concept of local effective potential.

It is of some interest to precisely know what is missing when not considering
the correct correlation effects:

; the electrostatic field seen by the test-fermion should not include the field
of that very same fermion;

; the fermionic many-body wave function is antisymmetric: the presence of
a dipole in a certain place excludes the presence of an identical dipole in
the same place and even in the very proximity. This is called “exchange-
hole”, and it is present in non interacting system, too (see § 1.3.2);

; the further decrease of the probability of finding a fermion in the proximi-
ties of another one is generally due to the additional repulsion term of the
Coulomb interaction. This term redistributes the system’s density and is
referred to as “correlation-hole”.

The correlation-hole is mainly important between non identical fermions, i.e.,
between fermions with opposite spin, while exchange-holes act in case of parallel
spins. So this is why it is important to make a distinguish and introduce a spin
dependence in the local field factor, which we take in account precisely in order to
correct the total amount of the hole, overestimated in RPA. Spin effects are handled
by introducing the local field factors Gσσ′(q, ω).

It is quite natural to try and replace the average electrostatic potential by a local
effective potential Veff

σ (~r, t), where σ is the spin of the fermion that feels such a local
potential. In the linear response regime, the Fourier amplitude Veff

σ (~q, ω) is a linear
function of the numeric nσ′(~q, ω) and of ↑-spin and ↓-spin densities. Thus we can
write

(1.5.4) Veff
σ (~q, ω) = Veff

extσ(q, ω) + ∑
σ′

vqnσ′(q, ω)−∑
σ′

vqGσσ′(q, ω)nσ′(q, ω)

where the last term is the one containing the local field factors.2 Actually the real
interest of including the spin in the local field factors is the possibility to define the

2Notice that the G’s always satisfy the symmetry relation G↑↓ = G↓↑, while G↑↑ = G↓↓ is satisfied
only in paramagnetic systems.
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spin symmetric and anti-symmetric combinations

G±(q, ω) =
G↑↑(q, ω)± G↑↓(q, ω)

2
which control respectively the density-density and spin-spin response function of
a paramagnetic fermion liquid, as it can be shown. It is then G+ which properly
enters Eqn. (1.5.3). Thus, the random phase approximation is re-achieved by setting
G↑↑ = G↑↓ = 0.

The reliability of (1.5.4) stands on the possibility to connect the G↑↓ and G↑↑ to
the correlation-hole.

We conclude this section with a phenomenological example first argued by
Hubbard, who originally made an hypotesis over the form the local field factor
should take for a 3D electron liquid interacting via Coulomb potential:

(1.5.5) G↑↑(q, ω) ≈ GH
↑↑(q) =

q2

q2 + k2
F

; G↑↓(q, ω) ≈ 0.

Notice that in this approximation the correlation-hole correction is completely forgot-
ten. Might the reader guess if the approximation (1.5.5) is a physically reasonable
one? Here we propose the Hubbard’s original explanation for this.

(1) The correlation between weakly-coupled fermions principally pops up
from Pauli principle. Hence we won’t consider the correlation hole;

(2) The zone in which correlation disappears is a short ranged one, so that the
exchange (local) potential should be short ranged too. This means that the
local field factor must vanish over long distancies (small wavevectors) and
therefore shoul have an appropriate evolution to compensate divergencies
of the potential;

(3) Conversely, Pauli exclusion acts on short ranges in a similar way as a hard
sphere potential does, making the interaction potential enterely negligible.

Using the equation (1.5.3), this leads to the ansatz G↑↑
q→∞−→ 1.

1.6. The Singwi-Tosi-Land-Sjölander approximation scheme

We are left with the problem of determining the local field factor G(q). In 1968
four physicists, Singwi, Tosi, Land and Sjölander, developed an approch to calculate
the local field factor based on the central idea that, if we know the response function,
we can use it in order to calculate the exchange-correlation hole and then obtain
G(q). They move from the facts that the RPA fails to take account of short-range
effects, and the correction proposed by Hubbard, seen in the previous section,
on the one hand does include the local field correction, while on the other hand
neglects corrections to the correlation hole which would have been expressed by
G↑↓.

A possible way to obtain the self-consistent form of the local field factor is
briefly explained below as formulated in Ref. [8]. One begins by looking for
a solution of the equation of motion, provided by the Liouville equation ∂

∂t f +
{ f , H} = 0, of a classical space and momentum density distribution f , imposing
the following ansatz in order to take account in a self-consistent manner of the short
range correlations responsible for the local field factor corrections:

f (1, 1′) = f (1) f (1′)g(x− x′)
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where g(x) is the pair correlation function. On the other hand, we know that
F [g(r)− 1] = (1/n) [S(q)− 1] is related to the dielectric function via

(1.6.1) S(q) = − q2

4π2n

ˆ ∞

0
= [ε(q, ω)]−1 dω.

The latter equation requires the self-consistency on S(q) and ε(q, ω), for the dielec-
tric function is now a functional of the static structure factor.

Given an external potential Vext(x, t) and the interaction Φ(x), the Liouville
equation explicitly reads as:

(1.6.2)
[

∂

∂t
+ v · ∇x

]
f (x, p; t)−∇xVext(x, t) · ∇p f (x, p; t)+

−
ˆ
∇xΦ

(
x− x′

)
· ∇p f (x, p; x′, p′; t) dx′dp′ = 0

where f (x, p; x′, p′; t) is the two-particle distribution function. We note that equa-
tion of motion is “nested”: If we take the equation of motion of the two-particle
distribution function, it will contain the three-particle distribution function, and so
on. The infinite hierarchy is terminated by making use of the ansatz

f (x, p; x′, p′; t) = f (x, p; t) f (x′, p′; t)g(x− x′),

and g(x) will be the equilibrium static pair correlation function.
Now, if we write the distribution function as a sum of an equilibrium distribu-

tion function f0 and a fluctuation f1, namely

f (x, p; t) = f0(p) + f1(x, p; t),

by linearizing Eqn. (1.6.2) we get the following equation of motion for the fluctua-
tion:

(1.6.3)
[

∂

∂t
+ v · ∇x

]
f1(x, p; t)+

−
(
∇xVext(x, t) +

ˆ
∇xψ

(
x− x′

)
· ∇p f1(x′, p′; t) dx′dp′

)
· ∇p f0(p) = 0

where

(1.6.4) ∇xψ(x) = g(x)∇xΦ(x).

The first main result is the expression of the effective field felt by a particle:

Eeff(x, t) = −∇xVext(x, t)(1.6.5)

−
ˆ
∇xΦ

(
x− x′

)
· ∇p f1(x′, p′; t) dx′dp′

−
ˆ [

g(x− x′)− 1
]
∇xΦ

(
x− x′

)
· ∇p f1(x′, p′; t) dx′dp′

it can be derived from an inspection of the equations (1.6.3) and (1.6.4). The first
two terms correspond to the usual macroscopic field, while the third is new as it
arises from the ansatz and represents the local field correction, completely absent in
the random phase approximation.
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In general one can express the density distribution as the density matrix, and
then obtain from the equation of motion for

〈
φ†

σ(x, t)ψσ(x′, t)
〉

the effective field
(1.6.5).

A solution of Eqn. (1.6.3) is readily found by using standard methods, indeed
one finds the induced density as

nind(q, ω) =

ˆ
f1(q, ω; p) dp

= − Q0(q, ω)

Φ(q) + ψ(q)Q0(q, ω)
Vext(q, ω)

where

ψ(q) = Φ(q) +
1
n

ˆ
q · q′

q2 Φ(q′)
[
S(q− q′)− 1

] dq′

(2π)d

and
Q0(q, ω) = −Φ(q)χ0(q, ω)

have been used. Therefore the dielectric function writes

(1.6.6) ε(q, ω) = 1 +
Q0(q, ω)

1− G(q)Q0(q, ω)

where, at last, the local field factor has been found

(1.6.7) G(q) = − 1
n

ˆ
q · q′

q2 Φ(q′)
[
S(q− q′)− 1

] dq′

(2π)d .

The set of three equations (1.6.1), (1.6.6) and (1.6.7) is a set of self-consistent equa-
tions that allows to calculate the local field factor in a simple and physically mo-
tivated manner. Furthermore, from the expression of the effective field, one can
obtain also the new term in the effective potential due to correlations. It has been
shown [8] that such term can be made local.

Until now we have seen the classical case. The authors of this approximation
scheme generalise to quantum mechanic the argument above by merely replacing
χ0 and S(q) by their correspective quantum mechanical analogs. They also stress
that the only difference with the RPA is that now the density show depletion regions
around each particle due to the exchange-correlation hole.

A partial improvement of the above method, including adjustments for the
pair correlation function and henceforth for the screening, is given in Ref. [9] by
the same authors.

1.6.1. Electrons in 2D: STLS v/s other approximation schemes. The STLS
scheme constitues an important and often very successful improvement to the
RPA [1]. However, it does not represent the only possible scheme that includes
short-range correlations corrections, so does also the Hubbard (HA) and the Hartree
Fock (HF) approximations. In this section we are going to illustrate some important
features of a 2D electron gas that results to be improved by STLS, while comparing
them with other schemes. The discussion and all graphics in this section are from
Ref. [10] (U. de Freitas & al.). Also, one has to take into account that “2D” is only
an approximation, if fact a residual thickness w is always present and could modify
results. So we will do in this section.
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FIGURE 1.6.1. A comparison between G(q) in the STLS (—) and
in the HA (−−−) approximations, for rs = 1 and 20 and w = 20
and 200 (Bohr radius units). Image from Ref. [10].

G(q) and static structure factor. Some difference between GHA (Eqn. (1.5.5))
and GSTLS has already been underlined previously, i.e. it is known that in HA
only corrections to exchange are included. Corrections due to correlations, in-
stead, may manifest through a dependence of the thickness w: In fact GSTLS varies
significatively with w while GHA does not, see Figures 1.6.1 and 1.6.2.

Correlation energy. Correlation energy can be written as

Ec(rs) = −
√

2
r2

s

ˆ rs

0
dr′s

ˆ ∞

0
F(qw; r)

[
S(q; r′s)− 1

]
dq
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FIGURE 1.6.2. S(q) behaviour in the STLS approximation for
w = 20 and various values of rs (top), and comparison of S(q)
in the STLS (—), in the HA (− · −) and in the RPA (− − −) ap-
proximations for w = 20 and rs = 10 (bottom). Image from Ref.
[10].

where symbols have thier usual meaning and F(qw; r′s) ∼ 1/ε is the screening
factor (ε is the dielectric function).

The RPA overestimates correlation energy (see for example [5, 1, 6]), as far
as we expect HA does. In fact, numerical results confirm our expectations, and
systematically Ec

STLS < Ec
HA < Ec

RPA.
Pair correlation function. The pair correlation function is a key element to eval-

uate how well an approximation scheme: For example, we have seen that the
RPA pair correlation funtion takes unphysically negative values at tipical metallic
electronic densities, that makes the approximation rather unsatisfactory. The STLS
pair correlation function on the contrary is always positive till rs < 4 and for higher
rs has only slighlty negative values at small particle separations. See Figure 1.6.3, in
which diferent approximations are compared.

Dispersion relation. It is well known that the excitation spectrum of a electron
gas can be found by studying the zeroes of the dielectric function

ε = 1− vq [1− G(q)] χ0(q, ω) = 0.

Clearly, different approximations of the local field factor yields different excitation
spectra. Not only, but also the dimensionality of the system influences the spectrum,
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FIGURE 1.6.3. A g(r) comparison for rs = 10, w = 20 in the STLS
(—), the HA (−−−) and the RPA (− · −) approximations (top).
STLS scheme results for w = 200 and various rs values (bottom).
Image from Ref. [10].

and by the way, in quasi 2D systems the thickness w is expected to play a role
in modifing excitations, even though it has lower effects. It is found that, for
ω > q2 + q, the above equation can be rewritten√

ν2
+ − 1−

√
ν2
− − 1 = −q [qB(q) + 1]

where

B(q) =
1√

2rsF(qw) [1− G(q)]
, ν± =

1
2

(
±ω

q
− q
)

.

Thus the dispersion relation reads as:

ωp(q) = [1 + qB(q)]

√√√√q
4 + 2B(q)q3 + B2(q)q4

2B(q)
[
1 + 1

2 qB(q)
]

and for very thick films in the long wave length limit one obtains

ωp(q) ' (2
3
2 rsq)

1
2 ∝
√

q,

the same relation found for a 2D electron gas with interactions like 1/r [12]. In
Figure 1.6.4 we provide a comparison between the three approximations.
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FIGURE 1.6.4. Here the excitation spectra are shown for the three
approximations STLS (−−−), HA(− · −), and RPA (—), for rs =
10, w = 20. Image from Ref. [10]



CHAPTER 2

DIPOLAR GASES

Most of the properties of systems like quantum gases are governed by the
potentials acting between the gas components, and their scattering properties are
of particular interest. Recently, new effective cooling methods both for bosonic
and fermionic particle, has attracted huge interest in the study of new kind of
quantum gases, whit richer interactions and new exotic phases. In particular, it is
possible to cool down and trap molecules which exhibit also anisotropic interac-
tion potential, such as the dipolar interaction. A gas of particles with permanent
electric or equivalently magnetic dipoles, even in the weakly interacting limit, may
lead to a new species of degenerate quantum gas. Specifically, the dipole-dipole
interaction has recently attracted huge interest for two reasons: First, a significant
experimental progress in trapping and handling ultracold gases, in particular of
polar molecules and atoms with strong magnetic and electric dipolar moment, and
second the peculiarities of the dipole-dipole interaction, strongly different from
isotropic and/or contact interactions.

In this chapter we are going to present the most general features of the interac-
tions in a quantum gas of dipoles.

2.1. Dipole-dipole interaction

One of the most relevant features in a many body system is the interaction
between its components. In order to classify interactions, a first relevant distinction
can be made on the basis of their range. Down to some details, a possible definition
of the range of an interaction U(r) comes with the finiteness of the integral

ˆ +∞

r0

U(r) ddr,

where d stands for the dimensionality of the system: For U(r) to have a long range
it is necessary to decay as 1/rn≤d, so whether the above integral is finite or not
states, respectively, whether the interaction is short-range or long-range. Note that
this definition strongly depends on the dimensionality of the system. Another
important subdivision is based on the symmetry of the interaction potential, i.e.
whether it is isotropic or not.

The peculiarity of the dipolar interaction potential is its anisotropy, in facts it
has the same symmetry of the second order Legendre polynomial P2(cos ϑ), see
Figure 2.1.1. This anisotropy involves also the fact that the potential changes from
being attractive if ϑ < arccos(1/

√
3) to being repulsive in the opposite case (the

transition from attactive to repulsive is smooth). The dipolar interaction energy (as

30
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FIGURE 2.1.1. Dipole-dipole interaction. The angle ϑ is referred
to one’s dipole dipolar moment.

written for two dipoles A and B) reads

(2.1.1) Vdd(r) =
Cdd
4π

(eA · eB)r2 − 3(eA · r)(eB · r)
r5 ,

where r represents the reciprocal position of the two dipoles, whose dipolar mo-
ments are oriented as eX . The dipole-dipole interaction is long-range only in three
dimensions, and short-range at lower dimensions. The factor Cdd which appears in
Eqn. (2.1.1) is a coupling constant: If we are considering identical dipoles, in the
case of magnetic dipoles with magnetic dipole moment µ it reads as

CB
dd = µ0µ2

whereas its value when dealing with permanent electric dipoles of dipole moment
D is given by

CE
dd =

D2

ε0
.

Thus the energy shows the same expression both for magnetic and electric dipoles,
indeed the only difference stands in the coupling constant.

Incidentally we note that in the case of parallel dipoles, the interaction energy
expression simplifies and can be rewritten

(2.1.2) Vdd(r) =
Cdd
4π

1− 3 cos2 ϑ

r3 .

However, no matter the alignment between dipole moments, and no matter
the dimensionality of the system, the dipolar potential not only controls distant
interactions, but also influences the scattering properties due to contact interactions.
This occurs because the dipolar potential does not conserve the angular momentum
in scattering processes even though scattering between polarized dipoles conserves
the projection of the angular momentum along the polarization axis. More precisely
the dipolar potential Vdd(r) mixes the angular momenta scattering channels, odd
angular momenta scattering channels for fermions, and even angular momenta
scattering channels for bosons. This coupling generates a short range contibution
to the total effective potential in the s-wave channel, that adds to the contact
interaction [18] + bibliografia dello stesso articolo con ref. 20,27-33. Thus it is possible
to isolate two contributions in the interaction potential between dipoles: A slow
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decaying potential, due to their electric or magnetic configuration, and a contact
potential.

Contact interaction. All gases are in general composed of atoms or molecules,
which interact via what we can call an interparticle potential U(r), like the Van der
Waals or the Lennard-Jones potential. Close to the particles, one can in general
model the potentials as an hard-sphere isotropic potential, which constitutes the
contact potential. When two particles interact, in general we can observe scattering.

Consider a system composed of a fixed target, which can be modeled as a
central potential and stays in the origin of the coordinates axes, and of a particle in
free motion along the z-axis toward the target; the central (interparticle) potential is
assumed to vanish rapidly. We can cast an adecuate wavefunction for our central
scattering problem: A good choice is

ψk(r) = eikz + f (θ)
eikr

r

where r = |r| is the norm of the position vector, and θ the angle of r with respect to
the z-axis. The above choice is justified if we think at the complexive wavefunction
of the incident particle as the sum of an asymptotically free plane wave and a
spherical wave, result of the scattering process, and then has cylindrical symmetry,
so we can expand it in series of Legendre polynomial: From the coefficients of this
expansion we get the required scattering amplitude f (θ) which squared modu-
lus corresponds to the differential scattering section of the system dσ

dΩ = | f (θ)|2.
Moreover in the long wavelength limit

lim
k→0

ψk(r) ∝ 1− a
r

and we can define the s-wave scattering length

a := − lim
k→0

f (θ)

which determines whether the interaction is attractive (a < 0) or repulsive (a > 0),
as can be proved e.g. within the Born approximation

aBorn =
m
2π

ˆ
U(r) dr.

In general then scattering properties depends of the potential, and in particular:

(1) A scattering potential which is not deep enough to hold a bound state,
exhibits a < 0 and the attractive properties, whereas

(2) if one can modulate the potential parameters like depth such that it can
eventually hold a bound state, then the scattering length becomes positive,
a > 0, and the potential repulsive.

At this point we must account for the fermionic nature of the particles, that implies
that the global wavefunction must be antisymmetric and hence that f (θ) + f (θ +
π) = 0. Thus for a one-component Fermi gas, skew-symmetry directly leads to
σ = 0, i.e. for such a system at zero temperature there is no s-wave scattering
between identical particles, and their wave function is simply given by the plane
wave ψ(r) = eikz.
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Feshbach resonances. We have seen that different potentials shows, obviously,
different scattering properties: At the same time, if one can tune the parameters
of the potential, it is possible to control scattering processes. However, we have
seen that the only parameter which actually controls scattering processes between
fermions is the scattering length a. Consider then an interatomic Van der Waals-like
potential which also depends of spin Uw(r, s). Hence we may raise or lower Uw by
mean of an external magnetic field B, somewhat similar to the Zeeman effect, by
removing the possible degeneracy in the energy, thus splitting the energy levels.
In the most simple case, two new channels will originate from that splitting , each
with its own bound state energy levels. We call Ubg(r) the potential connecting
two free atoms corresponding to the open channel, and Uc(r) the raised potential,
called closed channel. By varying B, a bound state Ec hold by the closed channel
may coincide with the threshold state of the open channel, and therefore even a
weak coupling can lead to strongly mixed channels. If this is the case, then two
atoms collides at an energy E close to the crossing, they can resonantly couple:
This phenomenon is known as Fesbach resonance [22]. Feshbach resonances are
characterised by a magnetic field dependent scattering length

a(B) = abg

(
1− ∆

B− B0

)
,

where ∆ is the resonance width and B0 is the resonance position: Crossing the reso-
nance a varies from −∞ (tightly bound molecule) to +∞ (loosely bound molecule),
the phenomenon is clearly visible in BEC-BCS crossover. Incidentally, the binding
energy of near-threshold states depends of the scattering length Et ∼ 1/a2.

We can conclude that it is possible to regard the dipole-dipole interactions as a
pseudopotential, sum of a short range part and a long range part. The short range
term will be characterized by a scattering length a, it can be written like a delta
function:

(2.1.3) Vcontact(r) =
4πh̄2a

m
δ(r) = gδ(r).

Explicitly, the more general expression for the total (pseudo)potential which
we are dealing with reads as:

(2.1.4) V(r) = gδ(r) +
Cdd
4π

(eA · eB)r2 − 3(eA · r)(eB · r)
r5 .

Tuning of the interaction. Purely contact interactions at low energies, as al-
ready seen, are characterised by an unique parameter, the s-wave scattering length
a, which can be modified e.g. via Fesbach resonances. But more complicated inter-
actions, such as the anisotropic dipolar interaction, can modify, as previously cited,
the scattering properties of particles.

Also the dipolar interaction exhibits tunability properties, that makes the dipo-
lar quantum gases particularly interesting and versatile objects in experimental
contests. The tunability is represented in the expression of the interaction by the co-
efficient Cdd (Eqn. (2.1.1) and (2.1.4)), trough its dependence of the dipole moment.
Because of the scattering properties of the dipolar interaction the tuning of the long
range part of the interaction modifies the properties of the short range part, too,
as discussed previously and in the cited articles. Precisely, the scattering length is
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modified, due to its dependence of the interaction strength. Then it is convenient
to define the following “dipolar length”:

add ≡
Cddm
12πh̄2 .

It represents the absolute strength of the dipolar interaction. Thus it can be shown
[EXACT REFERENCE NEEDED] that add is in relation with the s-wave scattering
length (due to contact interactions):

a =
3g
Cdd

add

where g is the same as in Vcontact (2.1.3). In some circumstances the ratio between
the two lengths determines the physics of the system: It compares the strength of
dipolar and contact interactions; if one wants to observe dipolar effects, the ratio
must be non negligible.

But how can one tune the interaction strength? Dipole moment can be induced,
in the case of neutral molecules without intrinsic dipole moment, by applying an
external field (a DC electric field in the case of elecrtic dipoles). However, even in
dipolar gases the external field is necessary in order to create a permanent dipole
moment: It induces a coupling between spherically symmetric rotational ground
state and anisotropic excited state with different spatial parity, reducing quantum
and thermal disorder. Once saturation has been reached and disorder is at its
minimum, further increasing the intensity of the external field will make the atomic
and molecular orbitals polarize, but it is a lower effect.

An external static field is a possible solution to tune the dipolar strength, but
it is not the only one. Namely it is possible to decrease by time averaging the
dipole-dipole interaction, or even to invert its sign, via a fast rotating external field.

For example, let us consider a gas of magnetic dipoles trapped in somewhat
optical trap with low density and temperature. Suppose then to apply a fast rotating
external magnetic field

B(t) = Be(t),
where

e(t) = cos φez + sin φ
[
cos(Ωt)ex + sin(Ωt)ey

]
and where Ω is the rotation frequency, which we choose simultaneously much
greater than the trapping frequency and much smaller than the Larmor frequency.
Then the dipolar moment of the dipoles will rotate with the applied field, defining
a cone of aperture 2φ. The appropriate choice of Ω allows one to average the
dipole-dipole interaction over the rotation period τ = 2π/Ω so that the obtained
effective interaction becomes

〈Vdd(r)〉 =
Cdd
4π

1− 3 cos2 ϑ

r3 α(φ).

The factor α(φ) = (3 cos2 φ− 1)/2, result of the time averaging, can be varied in a
continuous manner from 1 to−1/2 if φ is changed, tuning the interactiong strength.

2.2. Dipolar interactions in 2D

2.2.1. 2D confinement. Optical lattices are to some extent the “Petri dishes” of
condensed matter physics: They are intended to reproduce the crystalline structure
of a solid, with the advantage of only very few or no unknown parameters, and
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absence of defects. In optical lattices experiments, the cold atoms plays the role as
elecrons in a crystal. The optical lattices are obtained using pairs of counterpropa-
gating lasers, whose intensity and direction can be controlled thus creating almost
any kind of lattice. In particular, the lasers can be arranged in order to create a 1D
or 2D lattice.

This is the case also for the dipolar Fermi gas, which can be cooled down (e.g.
via sympathetic cooling, where fermions, in a mixture of fermions and bosons, are
cooled down by mean of their interactions with bosons, which adsorbe and then
lower, by evaporating, the momentum of the fermions) and the trapped in a 1D
lattice of layers, whose lattice parameter and layer thickness can be modulated.

1D lattices of layers of dipolar gases constitue the model we are going to study.
The parameters one controls in this model are the dipolar strenght U of particles,
which also include the density of the gas (see below), the dipolar tilting angle ϑ
— by mean of an external field —, and the lattice parameter d. The thickness of
the layers, instead, is always assumed to be w� d, as explained in the following
paragraphs.

2.2.2. Intra-layer interaction. Once trapped the gas in layers, we ought to
know what the interactions between dipoles of the same layer are. Our system
is composed by parallel dipoles, so we consider the following form of the dipole-
dipole interaction

Vdd(r) =
Cdd
4π

1− 3 cos2 ϑ

r3 .

The expression for the 2D interaction in the case ϑ = 0 can be recovered [30] by
using

Edd =
1
2

ˆ
ρ̃(r)Vdd(r− r′)ρ̃(r′) drdr′ =

1
2

ˆ
ρqṼdd(q)ρ−q dq

where, thanks to the optical trapping, we can assume that the density is uniform in
the plane and gaussian in the z-direction:

ρ̃(r) =
1√
πw2

exp
(
− z2

w2

)
ñ(x, y) ρq = exp

(
− (qzw)2

4

)
nqx nqy

with w the width of the gaussian, and

Ṽdd(q) = F [Vdd(r)] =
4πD2

3
(3 cos2 ϑq − 1),

being cos ϑq = q̂ · ẑ. Including the latter formulae in Edd, one gets, in polar coordi-
nates (q, φ) on the xy-plane

vϑ=0(q) =
8πD2

3
√

2πw

[
1− 3

2

√
π

2
erfc

(
qw√

2

)
qwe

(qw)2
2

]
,

here clearly q =
√

q2
x + q2

y. Notice the absence of the azimuthal angle φ.
In the general case ϑ 6= 0 a completely analogous derivation yields

vϑ(q, φ) =
2D2

3w

(√
2π(3 cos2 ϑ− 1)− 3πqwe

(qw)2
2 erfc

(
qw√

2

)
(cos2 ϑ− cos2 φ sin2 ϑ)

)
which in the limit qw� 1 (the supposed regime of experiments) reduces to

vϑ(q, φ) =
2
√

2πD2

3w

(
3 cos2 ϑ− 1

)
− 2πD2q

(
cos2 ϑ− cos2 φ sin2 ϑ

)
.
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In the following we will drop the subscript ϑ and write only v(q, φ).
In our calculations we will use the dimensionless quantity U = mD2kF/h̄2 to

parametrize the dipolar interaction, where m is the fermion mass and kF =
√

4πn
for a density n of fermions is the modulus of the Fermi wave vector. The constant
term in v corresponds to the contact interactions we have described in previous
paragraphs.

Then we can define and use the simplified dipolar interaction:

v(q, φ) = 2πU
[
V0 − q

(
cos2 ϑ− sin2 ϑ cos2 φ

)]
.

As already stressed, V0 is strongly connected to the scattering properties of the
dipole-dipole interaction, furthermore V0 depends of the confinement w, and pro-
vides a cut-off for high values of the wave vectors Λ� kF. [23]

2.2.3. Bilayers: inter-layer interaction. Dipoles in different layers can interact
via the inter-layer potential that writes

V12(r3D) =
D2

r3
3D

(
1− 3 cos2 ϑr, 3D

)
=

D2

(r2 + d2)
3
2

(
1− 3

(r sin ϑ cos φr + d cos ϑ)2

r2 + d2

)
,

here r and φr are the polar coordinates of the proiection of r3D in the xy-plane. In
the very same way we have Fourier-transformed the intra-layer interaction, this
can be Fourier transformed too, with the only change in the density distribution
that now is given by

ρ1(qz) =
e−

(qzw)2
4

√
2π

ρ2(qz) =
e−

(qzw)2
4

√
2π

e−iqzd

therefore

v12(q) =
ˆ

R

ρ1(qz)Ṽ12(q)ρ2(qz) dqz

where Ṽ12(q) = F [V12(r3D)]. After some algebra, in the limit w � d we get the
following expression for the inter-layer potential in the space of momenta:

v12(q) = −2πUqe−qd
[(

cos2 ϑ− sin2 ϑ cos2 φ
)
+ i sin 2ϑ cos φ

]
.

Notice that the potential is complex in this space. About the analytical aspect, the
fact that it is complex originates from the parity properties in the real space, in fact
if r is the projection of r3D in the xy-plane, then V12(−r) 6= V12(r) unless ϑ = 0. In
the following this will result more clearly.

The complex nature of this potential, besides having a mathematical origin,
has a slightly curious physical interpretation. It emerges simply re-writing the
angular-dependent part of the potential as follow:

v12(q) = −2πUqe−qd (cos ϑ + i cos φ sin ϑ)2 .

The argument into the brackets can be viewed as an ellipse in the complex
plane. To change the sense of percurrence of the ellipse, namely the sign of cos φ, is
not distinguishable from to change the orientation from ϑ to −ϑ for the dipoles in
the plane, or equivalently to apply a parity operator.
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↗ ↗ ↗ −→ ↖ ↖ ↖
cos φ > 0, ϑ > 0

or
cos φ < 0, ϑ < 0

r 7→−r−→


cos φ < 0, ϑ > 0

or
cos φ > 0, ϑ < 0

Moreover, the change in sign of cos φ consists in an inversion of the direction
of the moment of the interaction propagator, and this finally might be interpreted
as we are switching the two layers for each others. Indeed, the parity conjugation
in the real space corresponds to the complex conjugation in the reciprocal space;
this yelds to

(2.2.1) v?12(q) = v21(q)

and then straightforwardly to

(2.2.2) v?12(q) = v12(−q) ⇔ v12(−q) = v21(q).



CHAPTER 3

DENSITY INSTABILITIES IN DIPOLAR FERMI GASES:

SINGLE- AND BI-LAYERS GEOMETRIES

The anisotropic nature of dipolar interactions makes dipolar gases be interest-
ing and quite curious systems from a physical point of view. They exhibit a rich
phase diagram where exotic phases like stripes emerge from density instabilities.
The study and the realisation of such phase transitions are still object of debate,
while what seems to be clear is that the random phase approximation, by neglect-
ing exchange correlations, is never sufficiently accurate to describe dipolar gases,
giving fallacious and incomplete phase diagrams.

In this chapter we are going to apply the STLS scheme in order to obtain the
phase diagram of a quasi-2D dipolar Fermi gas in two different configurations:
At first we analyse a single layer geometry, and later we will add a second layer.
This two simple models are examinated in order to put in evidence the behaviours
tipically due to the intra-layer interaction and separate them from other behaviours
induced by the inter-layer interaction. In particular, we attempt here to reproduce
results from Ref. [23] and [24], where the full STLS have been applied, for the
transition toward the collapse (in the case of a single layer) or toward the φ = 0
stripe phase. In fact, in these cases a simplified STLS scheme can be applied,
nevertheless obtaining good results if compared with the complete theory.

Finally, a new calculation is explained that demonstrate how the phase shift in
the density modulation (in the bi-layer geometry) may only be due to the dipolar
interaction.

3.1. RPA for dipolar fermions: What to do?

What is the limit of validity and what the reliability for a perturbation theory
in the study of dipolar Fermi gases? In order to make a comparison we refer to a
neutral jellium model of electrons on a positive background; so that we can address
the question by a semi-quantitative reasoning, i.e. considering the ratio between
the interaction, which we think to as the perturbation, and the mean kinetic energy
of a particle. We must account for the following arguments:

; because of the indetermination principle, the kinetic energy is of the order
of h̄2/mr2

0, with r0 the radius of the specific volume (volume per particle);
; the Coulomb interaction, instead, within the first neighbours approxima-

tion is proportional to −e2/r0;
; thus the ratio is ∼ r0.

The perturbative expansion is valid when the ratio is small, then in the case of
electron gas the limit of validity of the perturbational approach is the high-density
limit.

38
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An analogue calculation, if developed for a dipolar interaction, yields to a ratio
of the order of

∼ 1
a(φ)r0

where a(φ) is a sort of Bohr radius which modulus strongly depends of the direction,
mean, of the angle between the one dipole moment and the relative position of
the second one with respect to the first. Notice that such a “dipolar length” can
assume negative values, too. Nevertheless, the proportionality to r−1

0 leads to
the conclusion that the perturbation theory is valid when the gas density is small
enough.

3.1.1. Why not RPA for dipolar Fermions. We have shown how to improve
the RPA method via the so called Singwi-Tosi-Land-Sjölander scheme in Chapter 1,
and in Chapter 2 some of the most important features of dipole-dipole interaction
have been described.

Now the important question we have to answer is: How much is it important to
care about the corrections to the correlations? STLS introduce them by the local field
factor G(q): We can show the entity of these corrections through the calculations
that follow.

In RPA the system response to a perturbation is that of a non-interacting system
to an external potential, which is regarded as the sum of the actual external potential
plus an effective potential due to the density perturbation, so that in the expression

δn(q, ω) = χ(q, ω)Vext(q, ω)

we replace
Vext(q, ω) 7→ Vext(q, ω) + v(q)δn(q, ω)

giving
χ−1

RPA(q, ω) = Π−1(q, ω)− v(q).

As already said in previous paragraphs RPA overestimates correlation effects
between fermions, then we introduced the local field factor (in fact from a phys-
ical point of view it is a correction to the RPA effective potential that stems for
correlations), and we included it into the susceptibility:

χ(q, ω) =
Π(q, ω)

1− v(q) [1− G(q)]Π(q, ω)
.

We actually take the static limit ω = 0 in our study.
As we have seen, the interaction between the single dipolar molecules can

be written as the sum of a contact potential (a δ potential) and the long ranged
dipole-dipole interaction:

V(r) = gδ(r) +
d2

r3 (1− 3 cos2 ϑ)

with symbols as in Chapter 2.
If we consider the r → 0, or equivalently the q→ ∞ limit, the contact interaction

will suppress the long range interaction. As explained extensively later in this
chapter, this implies G(q) = 1, thus it arises clearly that exchange correlations
uniquely due to the Pauli exclusion are totally neglected in RPA. In the q→ ∞ limit
then RPA completely fails.
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Even in the opposite (q→ 0) limit it will be shown that, for a dipolar gas, the
RPA is not a good approximation.

Below we will further examine this aspect and then use the STLS formalism to
make prediction over the phase transitions of the dipolar Fermi gas.
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FIGURE 3.2.1. Coordinates frame on a monolayer. The dipole
moment p is aligned to the external field Eext, tilted with an angle
ϑ in the zx-plane.

3.2. Single layer geometry

Geometry of the system. The dipole gas is reduced to a 2D system through
an harmonic potential in the z direction, which works as a confining potential. By
mean of this potential we can infer that the wavefunction along the z-axis is the
one of an harmonic oscillator, and we and we make the assumption, being at zero
temperature, that the gas is in its ground state. So the denisty of dipoles in the
direction transversal to the plane has a gaussian distribution, as explained in § 2.2.

We furthermore assume that the gas is initially homogeneus, and that we can
make use of an external constant and uniform electrostatic potential, in order to
keep the dipoles all aligned along a unique direction: We define ϑ as the tilting
angle of the dipoles with respect to the normal to the layer, the z-axis. The projection
of the dipole moment on the plane will define the x coordinates axis, and we can
eventually define a polar coordinates system (ρ, φ) on the plane such that the
x-axis will coincide with the direction φ = 0. Notice that the φ coordinate will
be preserved by the Fourier transform. In this manner, we have a well defined
coordinate system on our layer (see Figure 3.2.1).

Finally, in order to isolate the significant quantities of this problem it is useful
to define dimensionless units, by renormalizing the moment with respect to kF and
by using m = h̄ = 1. In this way the dipolar system is parametrized solely by the
angle ϑ and by the interaction strength U = mD2kF/h̄2.

3.2.1. Recalls on STLS. Moving from the background of the first chapter it is
possible to start analyze our system, constitued by a flat layer of fermionic dipoles.
We begin by reminding the self-consistent equations of the STLS scheme, for a
system of a single species of fermions:

(3.2.1) G(q) = − 1
n

ˆ
dk

(2π)2
q · k

q2
v(k)
v(q)

[S(q− k)− 1]

(3.2.2) S(q) = − h̄
nπ

ˆ ∞

−∞
=[χ(q, ω)]dω = − h̄

nπ

ˆ ∞

0
χ(q, iω)dω

(3.2.3) χ(q, ω) =
Π(q, ω)

1− v(q) [1− G(q)]Π(q, ω)
.
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The first step is to consider a 0th-order approximation i.e. to start with a non
interacting system, and then stop at the first recursion, that is: As we are dealing
with a 2D system the susceptibility is at first recovered as the following Lindhard
function (see § 1.3.1), relative to a non-interacting system:

Πi(q, iω) =
m2

i
2πq2

√2

√√√√ai +

√
a2

i +

(
ωq2

mi

)2

− q2

mi

 ai =
q4

4m2
i
−

q2k2
F,i

m2
i
−ω2,

then the static structure factor writes

S(0)
ij (q) = −

δij

nπ

ˆ ∞

0
Πi(q, iω)dω

(where the indices i, j indicate the layers or, eventually different species of fermions)
and it is possible to demonstrate [11] that in this case it takes the following analytical
expression:

S(0)
ij (q) = δij

 2
π arcsin

(
q

2kF,i

)
+ q

πkF,i

√
1−

(
q

2kF,i

)2
q < 2kF,i

1 q ≥ 2kF,i.

The interacting potential must be now included into the STLS equations. The
Fourier transform for the interaction between dipoles in a plane can be calculated,
giving as seen previously (§ 2.2)

(3.2.4) v(q, φ) = 2πU
(

V0 − q
(

cos2 ϑ− sin2 ϑ cos2 φ
))

.

The latter is the dipole-dipole interaction for parallely aligned dipoles. Notice
that D represents the dipole moment, whereas the term V0 in (3.2.4) is a constant
representing the contact interaction, and we recall it is related to the thickness of
the layer, so Λ ∼ 1/w� kF provides a natural cut-off for high q.

In order to find the density instabilities of the system we must study its dielec-
tric function. It is useful then to explore the limit behaviours of the local field factor,
which we are going to estimate within the STLS scheme for a system of dipoles.
As we will see, STLS will represents great improvement of the RPA, which on the
contrary turns out to be always unaccurate for dipolar interactions.

First: retrieving RPA. Working within the RPA scheme, in which exchange
correlations are completely neglected, essentially means to impose G(q) = 0.

Then it is necessary to understand the meaning of G(q) = 0 in the STLS picture,
and show its relationship with the pair correlation function. Let us move from
equation (3.2.1), after notice the evident fact that G is actually independent of q,
indeed it is a constant. In this case we impose:

0 = − 1
n

ˆ
1

(2π)2
q · k

q2
v(k)
v(q)

[S(q− k)− 1] dk;

it is always possible to eliminate the dependence of q in S(q− k) by mean of the
substitution k 7→ p + q, obtaining

0 =

ˆ
q · (p + q)

q2
v(p + q)

v(q)
[S(p)− 1] dp.
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We are left with the problem of how to eliminate the dependence of q in the right
side of the equation. Imposing q2v(q) 6= 0, we obviously recoverˆ (

q + p cos(φp − φq)
)

v(p + q) [S(p)− 1] dp = 0.

There are only two possibilities: the first is to choose q = q(p), but it does not
make sense, because q and p are two independent variables. Then it clearly results
that the only possibility to get the equality is for S(p) to be identically 1.

Finally, the following relationship stands:

g(r) = 1 +
1
n

F [S(q)− 1],

leading to g(r) = 1, that is: G(q) = 0 is equivalent to neglect any correlation in the
system.

Second: purely contact interaction. At very short distancies the dipolar interaction
becomes negligible, and we are left with an extremely strong (δ-like) central contact
potential, due to Pauli exclusion. Then the study of the scattering properties at low
energies (T = 0) can be treated as the scattering from a central potential, excluding
anisotropies arising from the dipole-dipole interaction.

So consider the expression of G(q) in the case of a constant potential v(q) = V0:

G(q) = − 1
n

ˆ
dp

(2π)2
q2 + q · p

q2 [S(p)− 1];

in polar coordinates, imposing kF = 1

G(q, φq) = − 1
π

ˆ 2π

0
dφp

ˆ +∞

0

q2 + qp cos
(
φp − φq

)
q2 [S(p, φp)− 1]p dp

= − 1
π

ˆ 2π

0
dφp

ˆ +∞

0
[S(p, φp)− 1]p dp +

− 1
π

ˆ 2π

0
dφp

ˆ +∞

0

p2 cos
(
φp − φq

)
q

[S(p, φp)− 1] dp.

It must be considered now that the static structure factor, in the case of constant
potential, does not depend at all of the angle: In fact S(0) does not, and at higher
orders of iterations an angular dependence could enter the structure factor only
via the potential, which in turn is constant. Therefore the second term is zero by
integrating over φp and we are left with

G(q, φq) = − 1
π

ˆ 2π

0
dφp

ˆ +∞

0
[S(p)− 1]p dp

= 1−
(

1 +
1
π

ˆ 2π

0
dφp

ˆ +∞

0
[S(p)− 1]p dp

)
where the argument between parenthesis is

g(r = 0) = 1 +
1
π

ˆ 2π

0
dφp

ˆ +∞

0
[S(p)− 1]p dp.

From previous discussion we know that (see also § 1.3.2) g(0) = 0, henceforth

G(q, φq) = 1− g(0) = 1.
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What has been achieved is that being the potential a merely contact interaction
the local field factor reaches the value G = 1, meaning that we are in presence of an
isotropic non-interacting system.

In the specific case of the dipolar potential, we have already seen it is possible
to divide the potential in two contribution: a constant term leading to a constant
contribute to G, and a second term depending of q. By imposing the physical
constraint g(0) = 0, one can see that the local field factor makes the suceptibility
independent of the constant term, for by defining G(q) = Ğ(q, v(q))/v(q), and
by using the short notation v(q) = 2πU(V0 − qA(φq)) where A(φq) = cos2 ϑ −
sin2 ϑ cos2 φq, the dielectric function writes:

1− v(q) (1− G(q))Π0 = 1− v(q)

(
1− Ğ(q, v(q))

v(q)

)
Π0

= 1−
(
2πU(V0 − qA(φq))− Ğ(q, v(q))

)
Π0

= 1 + 2πU
(
qA(φq)− Ğ(q, qA(φq))

)
Π0

so there is not dependence of V0 at all thanks to g(0) = 0. The unphysical depen-
dence of V0 can be removed at each order of iteration by imposing the constraint
g(0) = 0.

Third: q→ 0 limit behaviour for a weakly interacting system. For an electron gas
in the q → 0 limit the RPA is a good approximation, as it can be shown. On the
contrary for dipolar system this is not true: In order to demonstrate it, one can
estimate G(q→ 0), that can be done by using the compressibility sum rule

lim
q→0

χ−1(q, ω = 0) = − ∂2

∂n2 (nε),

which can be rewritten

lim
q→0

G(q) = 1− 1
V0

(
∂2

∂n2 (nε)− 1
)

.

Thus it is sufficient to calculate the fundamental state energy ε of the system and
include it in the latter equation. A good choice for ε is the Hartree Fock mean
field approximation, which is expected to work fine at least for weakly interacting
systems (U � 1). The εHF writes

εHF =
1
2

nv(0) +
1

2V ∑
q

v(q) (S0(q)− 1)

where the continuous limit can be taken, that is identical to the 0th-order STLS
interaction energy, and gives

εHF =
4πnh̄2

m

[
1
4
+

16
45π

U (3 cos 2ϑ− 1)
]

.

For the sake of simplicity and without loss of generality we choose ϑ = 0. Now, by
using the compressibility sum rule we can extract informations about the local field
factor:

G(0) = 1− 32h̄2 U
3mV0

.
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Because we are in the weak interaction limit, the interaction strength U is small,
and G(0) ' 1 so that RPA fails one more time.

In conclusion, it is now clear that RPA can never be a satisfying approximation
when dealing with dipole gases.

3.2.2. Applying STLS: study of the phase diagram. In Figure 3.2.2 the com-
plete phase diagram of the single-layer geometry of a dipolar Fermi gas is shown.
In this chapter we are only interested in the transition toward the collapsed phase,
as it is well reproduced also by a one-iteration STLS scheme.

Starting from low tilting angles, we note the improvement of predictions by the
RPA: the stripe phase boundary is shown that results to be shifted at higher U with
respect to the RPA boundary, this is because in the STLS includes corrections to
interaction correlations that were overestimated otherwise. The stripe phase exhibit
a density instability whose wave vector is oriented like the y-axis, i.e. orthogonally
to the direction of the dipole alignment.

At higher ϑ a p-wave superfluid phase is found, due to correlations between
fermions with anisotropic interaction.

Finally, the collapsed phase is encountered for sufficiently strong interactions
(U > 1) and high dipoles tilting. The RPA does not predict this phase at all, whereas
HF partially does (HF underestimates U at which transition occurs): this is simply
because this transition is led by exchange correlation and attractive interactions
overwhelm Pauli exclusion. This is also the cause for which one iteration of the STLS
scheme is enough to describe rather correctly the collapse boundary, as explained
later on. A fundamental aspect of this intability is that the compressibility goes
to infinity in the collapsed phase boundary. Actually it is anisotropic, i.e., goes to
infinity only for φ = 0 [23]. The soundness of this transition is that of a BCS-BEC
crossover: The system goes from a p-wave Cooper pairing to a three body bound
state, like in a Feshbach resonance. A last important remark must be done for the
ϑ = π/2 case.

Full v/s zeroth order. Our aim is to estimate the local field factor. The first step
in the STLS scheme is to consider the non interacting susceptibility Π0 and insert
the obtained S0(q) in the expression for G(q), which can be called G(1)(q); to
take S(q) = S0(q) is equivalent to the choice G(0)(q) = 1. Then G(1)(q) includes
exchange correlations only. We can call the first iteration step the 0th-order STLS.
The so-called full STLS, instead, consists of repeated iterations till the convergence
of the self-consistent method. Note that the STLS scheme does not assure g(0) = 0
at each iteration step, so an improved version of the scheme may be applied [23]:
g(0) = 0 is used as a constraint, and a corrective term δS(q) is added to S(q) then
substituing S→ S + δS in the scheme, similarly to Ref. [29]. In particular, the ansatz

δS(q) =
(

S0(q)− S(q) + Ae−q2/(2kF)
2
)(

1− e−q2/(2kF)
2
)

is used to interpolate S for q < 2kF and the non interacting one S0 for q� 2kF.
However, here we are interested only in the 0th-order, as it provides good results

for the transition at φ = 0 and high ϑ.
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FIGURE 3.2.2. Complete phase diagram of the 2D dipolar gas.
Here the collapse boundary calculated with full STLS (red trian-
gles) approximation is compared with 0th-order STLS (red solid
line). At small ϑ another phase is present, that is the φ = π/2
stripe phase (green circles), which boundary has been calculated
with full STLS approximation and RPA (dashed green line). In this
case the boundary is noticeably shifted, because RPA underesti-
mate interaction correlations. A superfluid phase is visible, too,
which at the moment we are not interested in. Image from Ref.
[*CITAZIONE*]

3.2.3. System’s instabilities. We proceed with our analysis by looking at the
density-density response function of the system, taking the static limit, i.e.:

χ(q, ω = 0) =
Π(q)

1− v(q) [1− G(q)]Π(q)

and in this case the polarization takes (in our dimensinless units) the simpler form

Π(q, ω = 0) = Π(q) =
1

2π

[√
q2 − 4

q
Θ(q− 2)− 1

]
.

The density-density response function gives a lot of information about the
system, and, as an example, we can search for phase transition. Some property of
the phases are provided by the compressibility sum rule (1.2.3).

First of all, we examinate the conditions under which the system undergoes
density intabilities. Operatively, it means that we must find a divergence in the
susceptibility, but it is clearly convenient to look for zeros of the inverse of the
(renormalized) susceptibility, instead:

(3.2.5) Πχ−1(q) = 2πU(V0 − q(cos2 ϑ + sin2 ϑ cos2 φ))(1− G(q))Π(q).
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So, intabilities manifest when Πχ−1(q; ϑ) = 0; it is a function of q and the
tilting angle ϑ is considered as a parameter, in particular, for each fixed U, the higer
is ϑ the lower values the curve Πχ−1 gets.

The new phase, at least in the proximities of the transition point, will show a
density modulation which is periodic with q, where we understand that it is the
wave vector at which instability occurs.

Minimum of Πχ−1. This function does not evolve smoothly in each variables
(think at the polarization or at the static structure factor), implying we cannot find
minima by a simple derivative with respect to each of this variable. Even more,
sometimes it will be not possible at all, because we need a numerical evaluation of
the static structure factor.

Briefly, we look for minima in q and φ and evaluate if these minima are affected
by the system’s paremeters U and ϑ.

U and ϑ effects. It follows immediately from derivation with respect to φ that U
will not modify at all the position of the minima in (3.2.5):

∂

∂φ
Πχ−1 =

∂v
∂φ

(1− G) + v
[

∂G
∂φ

]
= 0

where U simply has eliminated indeed.
More complicated is the case of the parameter ϑ. The most direct way to

evaluate this peculiarity is to trace some graphic numerically. It emerges that
effectively Πχ−1 changes with ϑ, as described above, but for large values of this -
which we are interested in - the position of minimum does not vary. Precisely, we
find that the minimum in q is not a stationary point, and it take place at q = 0 (see
Figure 3.2.3).

Minima in φ. We have already demonstrate that the minimum of the rinormal-
ized inverse of the susceptivity is indipendent of ϑ and U, it would be great now
to find out if there are convenient conditions in which caluculate, if it exists, the
boundary of a phase with infinite compressibility. We know that the system is
non-isotropic, and this suggests that maybe it would be a preferred direction where
our layer might manifest its instabilities. This would be the case if the quantity
Πχ−1(q, φ) had a minimum along a certain direction, determined by φ.

Let us assume first that Πχ−1 is a smooth function of φ:

Πχ−1(q, φ) = 1− 2πU(V0 − q(cos2 ϑ + sin2 ϑ cos2 φ))(1− G(q, φ))Π(q).

Now we look for stationary points by imposing the condition ∂Πχ−1

∂φ
!
= 0, i.e. we

must find the roots of

q
(

sin2 ϑ sin 2φ
)
(1− G(q, φ))Π(q)+

+
(

V0 − q
(

cos2 ϑ + sin2 ϑ cos2 φ
))(∂G

∂φ
(q, φ)

)
Π(q) = 0.

At this point of the discussion we do not know whether the stationary point
is a saddle, a maximum or a minimum point, and in order to obtain a complete
information we should consider the gradient ∇

(
Πχ−1(q, φ)

)
. But we have already

seen, numerically, that the minimum is always in q = 0, hence we can try and ignore
the dependence of q to outdraw a sort of equation of motion of G as a function of φ
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FIGURE 3.2.3. Behaviour of Πχ−1 varying ϑ: minimum in q = 0
does not move. We are observing the susceptibility behaviour for
a fixed U ' 3 and fixed φ = 0.

only, then looking at q as a parameter. After a trivial algebraic passage, this is the
new form of the latter equation:

1
1− Gq

dGq

dφ
=

−q sin2 ϑ sin 2φ

V0 − q
(
cos2 ϑ + sin2 ϑ cos2 φ

) ,

that can be straightforwardly solved via variable sparation. From integration we
get:

(3.2.6)
1− Gq(0)
1− Gq(φ)

=
−2q + 8V0 − 6q cos 2ϑ + 4q cos 2φ sin2 ϑ

−2q + 8V0 − 6q cos 2ϑ + 4q sin2 ϑ
.

We can now impose the constrain q = 0.

(3.2.7) G0(0) = G0(φ),

meaning that the direction φ = 0 is a good candidate.
The minimum condition is verified if limq→0 Πχ−1(q, δ)−Πχ−1(q, 0) > 0 for

small δ at least. The latter condition is completely equivalent to limq→0 Gq(δ)−
Gq(0) < 0, which can be verified numerically. Then the direction φ = 0 is the one
minimizing Πχ−1, even not necessarily the only one: In (3.2.6), in fact, one can
see a periodic dependence on 2φ. Actually both in RPA (analitically) and in STLS
(numerically) a minimum is encountered in φ = π/2.
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3.2.4. Phase transition. We are able to find a phase transition boudary, by
looking for the values of the two system’s parameters ϑ and U within the constraint
minq

{
Πχ−1} = 0.

The most direct way to find the boundary is to find a relation between ϑ and U.
We could glimpse what results from the constraint:

min
q

{
Πχ−1

}
= min

q

{
1− 2πU(V0 − q(cos2 ϑ + sin2 ϑ cos2 φ))(1− G(q, φ))Π(q)

}
that, once imposed minq

{
Πχ−1} = 0, leads to the conclusion

U =
1

2π maxq
{
(V0 − q(cos2 ϑ + sin2 ϑ cos2 φ))(1− G(q, φ))Π(q)

} .

Then one can equivalently search the maximum of the denominator or imposing
the values of the variables that have been found to minimize the normalized
susceptibility. In this case we already know, from previous paragraphs, what these
values are, than we simply impose them and find the curve as a function of ϑ.

Evaluation of the points of the curve must be done numerically. The phase
boundary obtained with the STLS scheme for φ = 0 is visible in Figure 3.2.2: One
immediatly notice that an asymptote of the boundary emerges in the limit U → ∞.
We define the value of the angle corresponding to the asymptote as the critical
tilting angle ϑc. Equivalently it is possible to introduce the critical interaction
strength Uc as the value of U at which transition occurs for ϑ = π/2.

In the monolayer case ϑc ' 0.88 is recovered.
An important consideration must be done: For sufficiently strong dipoles (large

U) and large dipole tilting, the system of one layer undergoes a collapse. It is known
from the compressibility sum rule (1.2.3), which tells us that the compressibility
goes to infinity being q→ 0. Furthermore, the value of the momentum q at which
the system gets the instability allows to catch the term of the Fourier transform
of the density fluctuations that is dominating in the phase transition. In this case
the term is that describing the λ → ∞ wavelength, i.e. the density fluctuations
involving the whole layer.
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3.3. Bilayer geometry

Thanks to the study of the one-layer system, it has been possible to classify
behaviours and peculiarities exclusively due to the intra-layer interaction, such as
the collapse of the dipolar Fermi gas. But in general, real systems are composed
by a great number of layers. The our simple model can be made more complex
if a second layer is added at a distance d to the first one. This is a first step in
the direction of a multi-layer system. What is new, in this case, is the presence of
an interlayer potential, i.e. the interaction between the fermions confined in two
distinct layers. It would be conceptually the same if we were treating a mixture
of two distinguishable fermions. More precisely the system is constitued by two
layers, the first lies in the xy-plane and the second, parallel to the first, overlies at a
distance z = d.

Multiple coupling and susceptibility. In these systems a multiple coupling
density-density response function has to be considered (see § 1.1.3) instead, as
explained below.As for the case of the monolayer, we are interested in the density
properties of the system; now the layers are two, and each of them will respond to
external perturbations and to the interlayer interactions showing density fluctua-
tions. In this system, the susceptibility is described by a matrix, and the fluctuations
of the density in the two layers are coupled as cast by the law

〈
Âk(r, t)

〉
= 2i ∑

j

ˆ t

−∞
dt′
ˆ

χ′′Ak Aj
(r, r′, t− t′) f j(r′, t′) dr′

as already explained in § 1.1.3 (Âi = δni is the density fluctuation of the i-th layer).
Actually the susceptibility matrix is hermitic, then it can be diagonalized and

its eigenvalues are real.
Each distinct eigenvector gives informations about a distinct configuration

of the system. Precisely, each talks about the relationships between the density
fluctuations in the various layers. it is well known that to each eigenvector is
associated an eigenvalue. Then, as we are studying the density-density response
function, we can associate to each configuration of the system its susceptibility.
Furthermore, as the matrix has been diagonalized, we can order the eigenvalues
and then the possible configurations from the more stable to the less stable. Let
us suppose that the system undergoes a transition if some parameter varies: The
configuration assumed from the system after the transition is the one that was less
stable, i.e. the one which susceptibility eigenvalue would have reached a singularity
first. The other configurations will not realize at all, and are not physical.

It is clear that we are only interested in the state which susceptibility is the very
next to a singularity.

3.3.1. RPA approximation for a system of two layers. Even though we al-
ready know that the RPA is never a good approximation, it can be useful, before to
proceed and apply STLS, to very breifly present some calculations within the RPA
approximation that we can use as to make a comparison.

All evaluations in this approximation can be done analytically, first of all
because we are neglecting both intra and inter-layer exchange correlations, and this
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traduces in Gij = 0. Then the χ̂−1 matrix simplifies and takes the form

χ̂−1 =

( 1
Π − v11 −v12
−v?12

1
Π − v11

)
.

Its inverse matrix, the susceptibility, has two distinct eigenvalues:

(3.3.1) χ∓ =

(
χ−1)

∓
det (χ̂−1)

=
1

(χ−1)±

where the eigenvalues of the inverse susceptivity are(
χ−1

)
±
= χ−1

11 ±
∣∣∣χ−1

12

∣∣∣ ;

here χ−1
11 and χ−1

12 are the corresponding matrix elements of χ̂−1. Clearly the
eigenvalues of χ̂ are the opposit of those of χ̂−1.

Now in order to find the “directions” in the system, namely sets of variables
and parameters, along which instabilities are favoured, we look for the minor
between the two quantities Π

(
χ−1)

+ and Π
(
χ−1)

−, and then for its minimum. It
is the very same procedure we followed in the monolayer case, but for the fact that
susceptibility was a scalar. Back to the bilayers, we must operate a choice between
the eigenvalues: being the Lindhard function a negative function, we immediately
choose the eigenvalue

(
χ−1)

+.
In the RPA approximation the direction (in the sense specified above) minimiz-

ing the normalized susceptibility is still independent of the tilting of the dipoles,
as one can promptly verify: φ = π

2 must be choosen. Then, but in reality indepen-
dently of φ, as in the monolayer case, it is found to be qc = 2kF the critical value of
the momentum. In this way, the phase transition boundary is

U =
1

2 cos2 ϑ
(
1 + e−2d

)
and we are not in presence of a collapse, in this case as well as in the monolayer
case within the same approximation.

What if Gii = 1? An improved RPA for two layers. As alredy pointed out,
the limit G = 1 means that there are only contact interactions in the system we are
considering. It is a quite interesting exercise to isolate the inter-layer interaction
by supposing for a while to kill intra-layer interactions. We are watching at what
would be going on if the transition were led by inter-layer potentials, indeed. This
already constitues an improvement of the RPA, because, at least for intra-layer
interactions, by imposing G11 = G22 = 1 we are including corrections to the
correlation.

Let’s begin directly considering the eigenvalues matrix of susceptibility

ˆ̃χ =
1

det( ˆ̃χ−1)

(
λ+ 0
0 λ−

)
where in this particular case λ± = 1

Π ∓ |v12| and then the eigenvalues writes

χ̃± =
(

1
Π ± |v12|

)−1
. This time too we will choose the χ̃+ value for our pourposes,
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as Πχ̃−1
+ < Πχ̃−1

− . Now the minimum of Πχ̃−1
+ occurs at{

q = 1
d if d ≥ 2

q = 2 if d < 2
and

{
φ = 0 + 2kπ or
φ = π

2 + kπ, k ∈ Z

and we can see two important things: The first is the stabilization of the system
exactly via the inter-layer potential, because the minimum of q will never occur at
q = 0. Well, it could occur for d = ∞, but clearly we are not interested in this.
Second: RPA-like behaviours appers once more if the two layers are close enough
to each other, so we could imagine that things go almost as there was an intra-layer
interaction without exchange correlation effects.

As a final consideration, we write the phase boundary expression:

U =
1

2πqce−qcd
((

cos2 ϑ− f sin2 ϑ
)2

+ f sin2 2ϑ
) 1

2

where the symbolic expression f stands for 1 if φ = 0 and for 0 if φ = π
2 .

3.3.2. Bilayer within the STLS scheme. It is then necessary to update the
STLS equation by including the peculiarities of two differents layers.

Briefly, we write the new set of self-consistent equations of the STLS scheme
for the bi-layer system.

Sij(q) = −
h̄

nπ

ˆ ∞

0
χij(q, iω)dω

Gij(q) = −
n

ninj

ˆ
dk

(2π)2
q · k

q2

vij(k)
vij(q)

[
Sij(q− k)− ni

n
δij

]
and finally now the response function is a 2× 2 matrix:

χ−1
ij =

δij

Πi
− vij(1− Gij).

Beyond to ensure the reality of the potential in the direct space, the relations (2.2.1)
and (2.2.2) will simplify the susceptibility matrix, which is expected to be hermitic.
His inverse writes

χ̂−1 =

(
1

Π1
− v11(1− G11) −v12(1− G12)

−v?12(1− G?
12)

1
Π2
− v11(1− G11)

)

and assuming the same species of molecules (then with the same mass) and the same
numeric density in the two layers we can impose Π1 = Π2 = Π: in fact the only
properties of the system that could affect the validity of this assumption are these
two we mentioned, but effectively we are here considering identical layers.

The symmetry properties of the relations (2.2.1) and (2.2.2), transfer to the
whole set of STLS equation via the self-consistency of the equations themselves, as
it will be skatched below.
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(1) G12(−q) = G?
12(q) → S12(−q) = S?

12(q): this is readily demonstrated
starting to the definitions of G and S:

G12(q 7→ −q) = +
n

n1n2

ˆ
dk

(2π)2
q · k

q2
v12(k)

v12(−q)
S12(−q− k)

k’=-k
= − n

n1n2

ˆ
dk′

(2π)2
q · k′

q2
v?12(k

′)

v?12(q)
S12(k′ − q) !

= G?
12(q)

and the only way this request can be satisfied is through the validity of
the relation S12(−q) = S?

12(q).
(2) v12(−q) = v?12(q) → G12(−q) = G?

12(q): now here the self-consistency
plays his role. Starting from the 0th-order approximation, we can write
χ−1

12 = −v12, and immediately χ12 = v12
det(χ̂−1)

. Given that det
(
χ̂−1) is

real, from the definition of S and G we get the conclusion, clearly valid at
each order.

As a matter of facts, the relation (1) above is the sufficient and necessary condition
to ensure the reality of the pair-correlation function g12(r) and now it will be shown
as easily as the previous statements, let’s see:

From the definition of the static structure factor for a multiple coupled system

Sij(q) =
ni
n

δij +
ninj

n

ˆ
dr e−ir·q(gij(r)− 1),

we can see that a Fourier transform relates the pair-correlation function and the
static structure factor. Then the relation (1) is enough to ensure the reality of g12(r).

We have at last obtained a 2× 2 hermitic susceptibility matrix for a coupled
double layer system in the self-consistent STLS scheme.

0th-order approximation. In which, as previously done for the monolayer, we
initially impose G(0)

ij = 1 for all i, j. This is equivalent to assume that the system is
non interacting (eventually see § 3.2.1), or rather, that we are assuming that only
exchange interaction is relevant; then we will introduce the correlation due to the
dipolar interactions, by using the first step of the STLS scheme. This step will be
called 0th-order approximation.

In this rough zero-approximation the susceptibility matrix is diagonal:

χ̂(0) =

(
Π 0
0 Π

)
.

This implies that at the initial stage of the calculations there are only the intra-layer
static structure factors, namely S11 and S22, with S11 = S22. It directly follows that
the off diagonal local field factors S12 and S21 are zero in this approximation. So
we need no further calculations to write the first order susceptibility, because we
already know all the necessary to trace the formal expression

[
χ̂−1

](1)
=

(
1
Π − v11(1− G(1)

11 ) −v12

−v?12
1
Π − v11(1− G(1)

11 )

)
.
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FIGURE 3.3.1. Bilayers’ complete phase diagram at fixed interlayer
distance, kFd = 2, as a function of ϑ and interaction U. The liquid
phase is superfluid (SF). The (green) open triangles [circles] set
the boundary of the stripe phase oriented along φ = 0 [φ = π/2],
derived from a self-consistent STLS calculation. The filled (green)
square at ϑc ' 0.75 and U ' 15.65 is a quantum critical point
beyond which there is a phase transition between the two stripe
phases. The (blue) open diamonds for the φ = 0 stripe phase are
instead determined including exchange correlations only (see text).
These boundaries can be compared to the φ = π/2 stripe transi-
tion (dashed line) and the collapse instability (dashed-dotted line)
for the single-layer case (see Figure 3.2.2). The shaded “bosonic”
region is where the system can be described in terms of interlayer
bosonic dimers. The (red) filled diamond and thick (red) line at
ϑ = π/2 indicate collapse in the bilayer. Image from Ref. [24].

The complete phase diagram. The complete phase diagram [24] of a bilayer
system looks very similar to the one of a single-layer system. What is completely
new is the stripe phase in the same region where before there was the collapsed
phase. It arises from the stabilization of the system via the inter-later interaction,
as explained above. Identically as in the monolayer case, we note an instability
toward the φ = π/2 stripe phase at small ϑ, whereas in the strong interaction
region (U > 10), if the two layers are close enough, we note the instauration of
a bosonic coupling between the two layers (not object of this thesis). At higher
tilting angles, the φ = 0 occupies most of the phase diagram. It is also noticeable
the presence of a new phase boundary between the two (orthogonally oriented)
stripe phases: A critical angle exists at which the switch from φ = π/2 to φ = 0
occurs. Again, we note that the zeroth order STLS represents a good approximation
of the full STLS if we look for a description of the instability toward the φ = 0.

Finally, for ϑ = π/2 we note the onset of a collapsed phase: There, intra-layer
interactions are not softened by inter-layer interactions, and the surplus of exchange
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correlation toghether with the absence of correlation hole make the system undergo
a collapse, as in the monolayer geometry.

Eigenvalues. . . What we have to do now is to find as in previous cases the
eigenvalues, and find out the one that takes the lowest values. The eigenvalues
have the same formal expression as in Eqn. (3.3.1), even if the local field factor
makes numerical calculation necessary. Then the pourpose to minimize it will
be achieved numerically, except for the dependence of the angle φ, of which the
minima at the two values φ = 0, π

2 can be found analitically.
We will focus on the φ = 0 minimum: Why? Because the φ = π

2 transition is
driven by interaction induced correlations, whereas the φ = 0 one is well described
by Hartree-Fock like approximations: Our firts order STLS approximation in fact
is basically a sort of HF approximation at this iteration order. The φ = π

2 can be
otherwise be described by full STLS calculation, but this is not in our poureposes.
A rough estimation can nevertheless be studied in the RPA approximation, even
if it yields a shifted transition, i. e. by RPA the transition could have place at
lower interaction strength U with respect to the full STLS prediction: In fact RPA
overestimates the interaction correlations.

So the eigenvalues of the susceptibility take the form of the expressions (3.3.1)
and we immediately obtain[

χ−1
±

](1)
= χ−1

11 ±
∣∣∣χ−1

12

∣∣∣ = 1
Π
− v11(1− G(1)

11 )± |v12|

at the first of iteration, but the expression can be straightforwardly updated for
each number of iterations n, and in full generality results[

χ−1
±

](n)
=

1
Π
− v11(1− G(n)

11 )±
∣∣∣v12(1− G(n)

12 )
∣∣∣ ∀n;

clearly from now on we consider only the first iteration, then we can omit the order
between parenthesis.

The first observation that can be done once chosen the appropriate eigenvalue
χ−1

min is that now the position of the minimum of Πχ−1
min(q) is not constant, but varies

in the range included between q = 0 and q = 2kF. This results from the presence
of the inter-layer potential, as underlined in the previous section, but the position
of qc is influenced also by the intra-layer local field factor. At higher orders the
off-diagonal local field fators will influence its position, too. Thus, we cannot
include the critical values of the quantities directly in the constraint Πχ−1

min = 0 to
find the phase boundary, but we can find out numerically the maximum of 1

U . Note
that the system is characterized by the further parameter d, that might not only
influence the minimum behavior, as we already know, but also modify the value of
the critical tilting angle of the dipoles.

For the sake of order, we choose here first to fix the inter-layer distance whereas
the tilting varies, and then to observe the behavior of an eventual critical angle ϑ
when d varies. The critical value of ϑ is expected to tend at the value it had in the
one-layer system ϑc,mono ' 0.88 when the interlayer distance grows to infinity. This
is verified, as shown in Figure 3.3.2. Thus the phase boundary varies with d.

. . . and eigenvectors. At this point of the analisys, we recall the foundamental
expression of the density reponse:

δni(q, ω) = χij(q, ω)Vext
j (q, ω),
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FIGURE 3.3.2. Phase boundaries obtained in the 0th-order STLS
and in the RPA. We have reproduced the boundaries for various
values of the distance d. It clearly appears that the φ = π/2
phase RPA boundary remains substantially unvaried, while more
evidently the spacing between the layers influence the φ = 0 stripe
phase boundary, obtained with STLS at the first reiteration. The
monolayer behaviour (“1layer” in the graphic) is approximated as
d becomes sufficiently great.

here the indices indicate the layer which we are referring to.
Let a± = a

(
χ−1
±

)
be the two eigenvectors of χ̂: they reflect the evolution of

one layer density with respect to the other.
The general expression for the ratio between the two components of the eigen-

vectors, valid at each order, is:

a±1
a±2

= ∓ v12(1− G12)

|v12(1− G12)|
.

Then two eigenvectors of the susuceptibility writes

a± =

(
1

∓ |χ12|
χ12

)

from which we choose the one relative to the + eigenvalue, for it is the physically
relevant one.

Being χ12 a complex quantity, the second component of both eigenvectors are
two (identical and opposite) phases, thus it indicates that the system is having a
phase shift between the two layers, and a density wave modulation.
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FIGURE 3.3.3. Values assumed by the wavevector of the density
modulation as a function of the distance between the layers (left)
and as a function of ϑ (right).

It is easily found that (η has been explicited for the 1st-order STLS):

|χ12|
χ12

= e−iη , η =

{
2ϑ if φc = 0
0 if φc =

π
2

.

On the other hand, not only the density in the second layer reproduces the first
layer’s one, but also there is a wave-modulation of the density response, which
wave length is λ̄c =

2π
qc

; here the adimensional quantity λc ≡ λ̄ckF has been used.
As we have already said studying the limit case in which we considered G11 = 1

and G12 = 0, the second layer is expected to stabilise the system: Now we can
see that effectively this was true not only in the limit case, but in this first order
approximation too. In Figure 3.3.3 it is possible to see the wavevector as a function
of the dipole tilting angle.

Calculations show that the wave length becomes infinite for ϑ = π
2 , reminding

a collective phenomenon, involving the whole layer in a uniform shift of density.
In facts, it is what happens for a single layer, in which there is not a further layer
which would stabilise the system, as we have seen in a previous paragraph. single
layer behaviour re-obtained for large d’s.

The relationship between d and qc. In the small d limit, the critical q tends
to saturate at qc = 2 (in units of kF, of course). In the opposite limits of d → ∞,
instead, the stabilising effect of the second layer becomes weaker and weaker, till it
disappears: This will make the qc to tends to the values assumed in a monolayers

system: qc
d→∞−→ 0.

In order to verify this behaviour we fitted the numerical data with a power
series. Before the fitting, in order to choose the appropriate powers we verified
the behaviour of the integrated curve: this has been integrated between d = 1 and
d = 20 by mean of the rectangle method.

The best fit of this curve has been find to be

f (d) = a logb(d),
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where b → 1− and a ∼ 0.73. Notice that the integral function could be underesti-
mated at each point by mean of

δ f (di) ∼ [log(di + δd)− log di]
δd
2

= [log di+1 − log di]
δd
2

,

giving a complexive uncertainty over the integration interval [D1, D2] of length D

∆ f (D) =
N

∑
i=0

δ f (di) ∼
log(D2/D1)

2D
(δd)2.

Then the derivative

f ′(d) = ab logb−1(d)
1
d
−O

(
(δd)2

d

)
∼ a

d
−O

(
(δd)2

)
represents the fitting we were looking for.

3.4. A classic comparison: a dipole in a dipolar ribbons field.

0 l
−α

0

α

+ − + −

x

δn

FIGURE 3.4.1. Introduced den-
sity modulation.

How would a classical
dipole merged in a field of
dipolar ribbons behave? This
question arises in order to
make a comparison between
our system in the stripe phase
and a more simple classical
model, in order to highlight the
stable equilibrium conditions.

The model: We take an iso-
late dipole floating over a 2D
density of a gas of dipoles. We
choose the plane to be perpen-
dicular to the z axis.

In order to reproduce the
stripe phase on the (x, y) plane where the dipolar gas lies, we need to introduce
a dipolar density modulation: e.g. we can choose a periodic cosinusoidal density
modulation, namely a plane wave, constitued of ϑE-tilted dipoles

δn(x) = Dα cos(kx);

this must be summed to the uniform background of ϑE-tilted dipoles whose density
is nP. If α = 0 the density is uniform, and it is possible to demonstrate that the
interaction of the floating dipole with the uniform dipolar layer is identically zero:
The angle ϑr between the relative position vector t (x, 0, d) of the floating dipole
and the dipolar tilting direction is defined by

cos2 ϑr =
(x sin ϑE + d cos ϑE)

2

r2

whereas the dipole-dipole interaction writes

V(r) = D2 1− 3 cos2 ϑr

r3 .
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FIGURE 3.4.2. Scheme of the classic model. Note the relative
coordinate η and the relative position of the dipole moment of the
floating dipole p and of the dipolar distribution of the ribbon in
the origin. The motion of the floating dipole is restricted to the
plane z = d.

The interaction energy between the floating dipole and the planar uniform distribu-
tion is given by

EdP = D2nP

ˆ ∞

0
ρ dρ

ˆ 2π

0

(
1

(ρ2 + d2)
3/2 − 3

(ρ cos φ sin ϑE + d cos ϑE)
2

(ρ2 + d2)
5/2

)
dφ

= 0,

thus we can neglect any uniform background and restict our study to the interac-
tions with density fluctuations.

Including the δn(x) modulation reproduce the series of “peaks” and “graves”
in the density due to the stripes.

We can simplify the model by mean of the substitution of the plane waves with
a 1D lattice of dipolar wires: at each maximum we place a “ribbon” of dipolar linear
density γ and dipole moment p̂ oriented along the ϑE direction. In the calculation
we will account for the interaction of the floating test-dipole with those wires
and with the graves, too, but for the graves the sign of the interaction is changed,
because they are the results of “digging” into the uniform dipolar density.

The simplified model, in sum, consists in the system of N → ∞ wires in the
xy-plane, aligned along the x-axis at a distance l to each other and parallel to the y-
axis, as schematized in Figure 3.4.2. In order to describe the position of the floating
dipole we usefully defines the new coordinate η relative to the middle point among
two consecutive ribbons in the following way:

x =

(
ν(n) +

1
2

)
l + η, η ∈

[
− l

2
,

l
2

]
,
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where ν(n) = n̄− n if the ribbon-dipole distance is referred to a +-ribbon, whereas
ν(n) = n̄− (n + 1

2 ) if referred to a −-ribbon. In our expressions n̄ represents the
+-ribbon closest to the test-dipole with the lower index. In the name of the discrete
traslational symmetry we are always free to choose n̄ = 0.

The dipoles energy writes as usually:

(3.4.1) ESd =

ˆ
ρS(r)VSd(r− r′)ρd(r

′) drdr′

with

ρS(r) =
∞

∑
n=−∞

δ(x− nl)δ(z)γ,

ρd(r
′) = Dδ

(
x′ −

(
1
2

l + η

))
δ
(
y′
)

δ
(
z′ − d

)
where γ is the dipoles density of the ribbons whereas D is the dipole moment of
the test-dipole.

We underline that ρd(r′) means that the position of the test-dipole is r′ =
( 1

2 l + η, 0, d).
In particular we are considering the case in which the dipoles are all aligned

in the zx-plane, tilted with an angle ϑE whit respect to the z-direction, and γ is a
constant. In such a way the dipole moment is oriented like p̂ = (sin ϑE, 0, cos ϑE).

The final interaction potential VSd is the sum over all the ribbons of the interac-
tion Vdd between aligned dipoles.

Once called ϑrn the angle formed by the dipole tilting direction and the position
of the test-dipole with respect to the nth ±-ribbon, we can write

VSd(rn − r′) =
1− 3 cos2 (ϑrn)

|rn − r′|3
.

Now we can substitute the cosine with the expression

cos2 (ϑrn) ≡
(p̂ · rn)

2

r2
n

where the position vector is rn = (
(

ν(n) + 1
2

)
l + η, 0, d).

So

p̂ · rn = d cos ϑE +

[(
ν(n) +

1
2

)
l + η

]
sin ϑE.

Finally for the sake of brevity we define

α2
n = d2 +

[(
ν(n) +

1
2

)
+ η

]2
.

Performing the integration after including the previous expression in (3.4.1),
the interaction energy results to be

E+
Sd = 2γD ∑

n

1
α2

n
− 2

α4
n

(
d cos ϑE +

[
η +

(
−n +

1
2

)
l
]

sin ϑE

)2

for the interaction with the +-ribbons and

E−Sd = −2γD ∑
n

1
α2

n
− 2

α4
n
(d cos ϑE + [η − nl] sin ϑE)

2
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d < l

0 π/4 π/2

−0,4

−0,2

0

ϑ

η
/

l

Minimum position

d & l
d < l

FIGURE 3.4.3. Energy minimum behaviour. Left: Energy profile
(energy has been rescaled: ẼSd = ESd

(
cosh

(
d2)− 1

)
) varying

the ratio d/l; note that for if d/l � 1 two minima may appear.
The arrow indicates the direction to which the minimum moves
towards when ϑ increases. Right: Position of the minimum as a
function of ϑ. The behaviour for d/l < 1 is due to the presence of
two local minima.

for the −-ribbons.
It is now necessary to perform the two sums, from which result: 1) a periodic

dependence on the angle ϑE and on the coordinate η and 2) a more-than-exponential
decay of the interaction with the distance:

E+
Sd = 2γD

π2

l2

{
cos (2ϑE)<

[
sech2

(π

l
(d + iη)

)]
− sin (2ϑE)=

[
sech2

(π

l
(d + iη)

)]}
,

E−Sd = 2γD
π2

l2

{
cos (2ϑE)<

[
csch2

(π

l
(d + iη)

)]
− sin (2ϑE)=

[
csch2

(π

l
(d + iη)

)]}
.

To get the whole interaction energy results from the sum ESd = E+
Sd + E−Sd.

Now let z ∈ C: then from the hyperbolic functions properties it is true that

csch2z + sech2z = 4 coth(2z)csch(2z).

So we define f (η) = 4 coth
( 2π

l (d + iη)
)

csch
( 2π

l (d + iη)
)

giving

ESd = 2γD
π2

l2 {cos (2ϑE)< [ f (η)]− sin (2ϑE)= [ f (η)]} .

The pourpose was to find the stable equilibria of the test-dipole. Clearly it can
be done by simply derivating with respect to η and imposing the stationary point
condition. Then the equation that should be resolved is

∂η<
∂η=

= tan(2ϑE),

that must be done numerically, because it is a trascendental equation. In the limit
d & l it is obtained (see Figure 3.4.3) a linear dependence of the type

ηeq ∝ 2ϑE

as expected.
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Change of perspective. Nevertheless, we do not actually know if the distortion
from the linear dependence in the opposit limit d < l is only due to the higher
spatial resolution of the lattice of ribbons as viewed from the test dipole, or to other
proximity effects.

We can try and rest the previous ribbon approximation together with the relative
coordinate η.

The new coordinates of the test dipole are simply the coordinates in the frame
fixed with the layer; we will nevertheless indicate the (fixed) x-coordinate of the
test dipole with the symbol η, which recalls us the phase-shift introduced before in
the chapter.

We definitely remove the ribbons, and assume a uniform plane density of
dipoles in the layer instead; consequentely the calculation of the interaction energy
will be performed through a “per-wires” integration, wires that are parallel to
ŷ. The density modulation effects will be re-obtained with the assumpion that
those wires have a linear density of dipolar moment modulus which is a function
of the x-coordinate: If we look at the integration-wire in the position x = ξ, its
linear dipolar density will be γ(ξ) = γ0 cos

( 2π
l ξ
)
, with l the wavelength of the

modulation. Clearly, as in the previous treatment, the dipoles in the xy-plane and
the floating dipole are all aligned along the same direction which tilting is ϑE.

After this change, the densities of dipolar “charge” read as:

ρd(r
′) = Dδ

(
x′ − η

)
δ
(
y′
)

δ
(
z′ − d

)
for the floating dipole and

ρw(r) = γ(ξ)δ(x− ξ)δ(z)

for the integration-wire.
The choice of the so called per-wires integration makes sense because, once

written the expression for the interaction between the integration-wire in ξ and the
test dipole, it is sufficent to sum over all the wires in the layer.

We do not need further calculations to extract the two quantities

p̂ · r = d cos ϑE + [η − ξ] sin ϑE

α2
ξ = d2 + [η − ξ]2

and include them in ESd that now writes

ESd =
1
L

ˆ +∞

−∞
2γ(ξ)D

{
1
α2

ξ

− 2
α4

ξ

[d cos ϑE + (η − ξ) sin ϑE]
2

}
dξ.

The explicit calculation of this integral makes use of residues: The trick stands
in rewrite the cosine in its exponential form, and then replace η − ξ 7→ X. The
renormalization constant 1

L can be absorbed in γ0 that becomes the dipolar surface
density Γ0. Some tedious calculation yields

ESd(η, d, ϑE) = −4πDΓ0
e−

2π
l d

l
cos

(
2π

l
η − 2ϑE

)
and it is clear that now the position of the minimum does not depend on d:

∂

∂η
ESd = 0
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if and only if
2π

l
η = 2ϑE + (2πz) , z ∈ Z.

We can faithfully conclude that also in the quantum bilayer system the phase
shift is a purely classical effect.



CHAPTER 4

MULTILAYERS SYSTEMS

By using previously developed techniques, we proceed in the analysis of system
composed by an increasing number of layers. While the presence of more layers is
expected to stabilize the dipole gas, preventing it to collapse, at the same time it
furthers the arise of the stripe phase. This is suggested from the fact that the critical
dipole tilting angle is lower in the case of two layers with respect to the monolayer
case. Is this trend confirmed if the number N of layers increases? The very next
pourpose is to examinate the properties of systems with low N, as to find out some
peculiar behaviour.

At first, we will focus on the 3 and 4 layers systems, then some numerical
analysis result for systems with an increasing number of layer will be presented.
Later, we will present an attempt to simplify the interactions and make predictions
in an approximate fashion, i.e. we will consider a first neighbours approximation.
After a numerical study of this approximation, a diagonalising method will be
proposed and its results will be shown.

Some preliminar discussion. Our study starts from the (inverse) susceptibil-
ity matrix, the real core of phase transitions. The general formula for the matrix
elements is already known, then we directly writes down the inverse of the suscep-
tibility in the 0th-order of approximation:

χ̂−1 =


1
Π − v11(1− G11) −v12 −v13 · · ·

−v?12
1
Π − v11(1− G11) −v12 · · ·

−v?13 −v?12
1
Π − v11(1− G11)

...
...

. . .


where

vjk = −2πUqe−|j−k|qd (cos ϑ− isgn (j− k) cos φ sin ϑ)2 ,

which can be rewritten as vjk = Uujk.
In order to extract eigenvalues and eigenvectors we separate its diagonal part

from its off-diagonal part.
Precisely, we are interested in the minimum eigenvalue χ−1

x of the matrix in
rder to get the level set Πχ−1

x (q, ϑ) = 0 for some q and fixed ϑ, as well as we did in
previous chapters. Observe that χ̂−1 can be written

χ̂−1 = χ111 + Uû

where Uû is the matrix of the off-diagonal elements. Now, let ω̂ be the matrix of
the eigenvalues of û, and let Â be the respective matrix of the eigenvectors. Then

64
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the action of χ̂−1 on a vector ~v whatever reads as:

χ̂−1~v =
(

χ−1
11 1 + UÂω̂Â−1

)
~v

= Â
(

χ−1
11 1 + Uω̂

)
Â−1~v.

Let now ~v =~amin =~a(umin) be the eigenvector associated with the minimum
eigenvalue umin of û, then it is true that

χ̂−1~amin ≡ Â
(

χ−1
11 1 + Uumin1

)
Â−1~amin

=
(

χ−1
11 + Uumin

)
1~amin

= χ−1
x ~amin,

namely that the separation into diagolal and off-diagonal part of a matrix shaped
as χ̂−1 will not modify the eigenvectors of the complete susceptibility matrix with
respect to the ones of û. So the χ̂−1 minimum eigenvalues is χ−1

x = χ−1
11 + Uumin.

Hence we only have to evaluate the eigenvalues and eigenvector of û to obtain
all the informations about the system.

In particular, for a three layers system it can be proved that

~a(umin) =
t (x(umin), 1, x?(umin))

where

x(umin) =
v12umin − v?12v13

u2
min − |v13|2

.

The hermiticity of the matrix û ensures the reality of its eigenvalues; neverthe-
less they cannot be obtained analitically if N ≥ 3, then numerical solution will be
used.

Quantities of interest. Significant quantities can be extracted from the phase
diagram, first of all the critical angle which we are going to define as follows:

The critical angle. The critical tilting angle is defined as

ϑc = min {ϑ |U → ∞, δn 6= 0}

and δn is the stripe phase density modulation. This is the definition we have
implicity used until now. The request for U → ∞ is necessary, because if in the
phase diagram (U, ϑ) the boundary has no asymptotes, “criticity” of an angle
makes no sense.

In fact we will see that if the layers are not spaced enough the phase boundary
will not show any asymptote, so that for each values of the tilting of the dipoles we
ca have a striped phase.

The critical distance. It is defined as

dc = {d | ϑc = 0} ;

clearly, if d < dc there is no critical angle.
We are looking for a relation between two parameters of the system, i.e. the

number of layers, and the critical dipole tilting at which transition occurs. The
search for a relationship should opportunely include the ϑ dependence of the
distance d between layers. Such a relation is found in the phase boundary, which in
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FIGURE 4.1.1. Schematic of a multi-layers system. Each quantity
has been introduced in the text.

turn can be determined through the expression minq
{

Πχ−1
x
}
= 0. Including all

the opportune substitutions in leads us to search for

1
U

= max
q
{Π ((1− G11) v11 + umin)}

and then plot it against ϑ.

4.1. Three and four layers

We can begin by verifying that if the layers are quite far from each other we
actually re-obtain a monolayer-like behaviour.

In Figure 4.1.2, in order to better appreciate the variations of the system parame-
ters due to the interlayer separation, we have chosen to fix a large ϑ, 0.88 < ϑ < π/2:
it emerges that (left graphic) the convergence toward the single layer behaviour
slightly slows down as far as the number of layers increases, and it requires lower
values of the interaction strength to realize the transition to stripe phase (shadowed
area). In the graphic on the right, significant differences in the density modulation
wavevector cannot be observed between the three systems of 3, 4 and 5 layers. How-
ever, this modulation tends to have an infinite wavelength when the inter-layer
distance is very large, reproducing a tipical single-layer behaviour.

3 layers. Down to some details, we look now at the features of a three layers
system. We will fix three values of d: a distance below dc, dc itself — calculated
from the definition — and a distance above dc. In the graphics, data relative to the
critical distance dc are always represented by red solid lines.

The first fact one could notice in the phase diagrams (U, ϑ) is that for values
of the spacing d ≥ dc the boundary exhibits a horizontal asymptote, whereas for
d ≤ dc the curve falls down vertically, i.e.

∂U
∂ϑ

∣∣∣∣
ϑ=0

= 0 ∀d < dc,
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FIGURE 4.1.2. Values of qc and Uc (critical) at a fixed tilting angle
ϑ = 0, 9 as a function of the distance between layers. It can be seen
that for large d’s the monolayer behaviour is re-obtained.
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FIGURE 4.1.3. Boundary and critical wavevector for a 3 layer
system. In red is visible the boundary and the qc(ϑ) curve for the
distance at which ϑc becomes zero.

clearly visible in Figure 4.1.3, in conjunction with the fact that the density modula-
tion shows larger wave vectors at small d’s rather than at larger distances. These
are universal behaviours in multilayers systems. We observe also the onset of a
collapsed phase at ϑ = π/2, independently of d.

Another aspect of the critical angle dependence of the distance between layers
is underlined in Figure 4.1.4. It is noticeable how suddenly the critical ϑ increases
at d = dc; the approach to the superior asymptote ϑ ' 0.88 is appreciably fast, too:
borrowing some terminology from signal theory, we can say that the “rise time” of
the curve ϑc(d) is ∆d ' 2, while the 70% of the “signal amplitude” is reached in just
∆d ' 0, 5. We do not need enormous distancies between layers to approximatively
obtain a monolayer-like behaviour. Explicitly multi-layers behaviours are visible if
the layers are not far from each other.

Now, looking at the eigenvectors of the susceptibility, it is possible to explore
the properties of the density modulation that looms up in the gas. As it has been
clarified in the study of a two layer system (§ 3.3) , one can read some information
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FIGURE 4.1.4. A graphic of how ϑc varies when the distance d
between the layers varies. Notice the sharp edge where the change
occurs.

about relative phase shift and relative modulation amplitude simply looking at the
ratio between the various components of those eigenvectors.

In the following figures (Figures 4.1.5, 4.1.6 and4.1.7) the relative amplitude
and phase shifts are drawn, calculated as the ratio between the components of the
eigenvector relative to the minimum eigenvalue χ−1

x . The two magnitudes have
been evaluated for each the three values of d chosen, as a function of the dipole
tilting angle.

In this case it is not clearly distingushable any particular behaviour in relation
to the value of the distance, but a certain flatness in the relative amplitude if d = dc,
i.e. for that value of d the wave amplitude depends very weakly of the angle ϑ.

The phase shift, instead, varies linearly with the number of the layer, and
almost linerly along almost the whole range in which ϑ varies.
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FIGURE 4.1.5. Relative amplitude (left) and phase shift (right) of
the density modulation between the layers. Here the distance is
taken to be d = 1, 5.

0 π
4

π
2

0,4

0,6

0,8

1

ϑ

A(ϑ)
Amplitude

0 π
4

π
2

0

π

2π

ϑ

η Phase

η12
η13

FIGURE 4.1.6. Relative amplitude and phase shift, d = dc.
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FIGURE 4.1.7. Relative amplitude and phase shift, d = 0, 7.
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4 layers. The same considerations as for the three layers system are still valid
for a system of four layers. If we make a comparison with the three layers system
described above, we can observe:

; slightly lower values of the modulus of the wave vector at all the angles
and spacings, and

; the same almost linear evolution with ϑ of the relative phase shift, as in
the previous case.

The two central layers show equal amplitude of the density modulation, clearly
because of the simmetry of the system; with respect to that of the central layer in
the three layers system it is a little bigger. One can note also that the complexive
variation of the amplitude between ϑ = 0 and ϑ = π/2 results greater that the one
of the three layers system.
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FIGURE 4.1.8. Boundary and critical wavevector for a 4 layer
system. In red is visible the boundary and the qc(ϑ) curve for the
distance at which ϑc becomes zero.

0,5 1 1,5 2 2,5 3
0

0,2

0,4

0,6

0,8

d

ϑ
c

ϑc(d)

FIGURE 4.1.9. A graphic of how ϑc varies when the distance d
between the layers varies. Notice the sharp edge where the change
occurs.



4.1. THREE AND FOUR LAYERS 71

0 ϑc
π
4

π
2

0,4

0,6

0,8

1

ϑ

A(ϑ)
Amplitude

0 ϑc
π
4

π
2

0

π

2π

ϑ

η Phase

η12
η13
η14

FIGURE 4.1.10. Relative phase shift (left) and amplitude (right)
between the layers.

0 π
4

π
2

0,4

0,6

0,8

1

ϑ

A(ϑ)
Amplitude

0 π
4

π
2

0

π

2π

ϑ

η Phase

η12
η13
η14

FIGURE 4.1.11. Relative phase shift (left) and amplitude (right)
between the layers.
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FIGURE 4.1.12. Relative phase shift (left) and amplitude (right)
between the layers.
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4.2. Asymptotic trends

If we consider each layer as a point of a 1D lattice, we can think of the inter-
layer potential as of a short-range potential. Strictly speaking, it is not a good
argument, but it it provides the valid insight that the “relevant” interactions take
place between nearest layers, then adding more points to the lattice will not, or it
will only partially, modify the behaviour of the system. Therefore we can hypotise
the onset of asysmptotic trends as the lattice growths.

Comments on asymptoticities. We have already observed that ϑc(N = 3) <
ϑc(N = 4), hence ϑc(N) can be cast as a non-decreasing function of the number
of layers N, making the φ = 0 stripe phase occupy the whole phase diagram for
sufficiently large U, provided d sufficiently small. On the contrary, a great spacing
between layers will make monolayer-like behaviours emerge, independently of the
number of layers.

In Figure 4.2.1 seven series of critical angles are shown, each series associated
with a distinct value of the interlayer distance. The upper series are concerned with
more spaced layers.

A first qualitative conclusion is the critical angle dependence of the distance:
ϑc increases as d increases, till the value of ϑc,mono ' 0.88 of the monolayer system.

Second: for sufficiently close layers, and for a sufficient number of them, the
case ϑc = 0 can be realized.

Third, a critical distance dc exists above which the stripe phase will not appear
until a non-zero critical tilting angle ϑc > 0 is reached. This last fact can be forecast
from Figure 4.2.2, where the distance at which ϑc = 0 is plotted against the number
of layers. Furthermore, data suggest an asymptoticity of dc to a finite and small
value as the number of layers becomes larger (at N = 100 layers, dc ' 1.46). Such
an asymptote can be defined as the limit distance:

dl := dc(N → ∞).

From previous paragraphs considerations we can also infer that for each N

dc(N − 1) < dc(N).

By this way, once fixed the number of layers, if the distance between the layers is
lower than dc, a critical tilting angle cannot exist any more, because for each ϑ there
will be a critical interaction strength Uc at which the phase transition will occur.
Anyway, for any ϑ we can measure the wave length of the density modulation and
make some comparison with other systems. In particular, one can choose ϑ = 0.

So let us define qc as a function qc = qc(N, d, ϑ) and let N be the number of
layers at which ϑc = 0 and, obviously, d = dc. It is a matter of fact that the following
relation is valid within a very good approximation:

qc (N, dc(N− 1), 0) = qc (N, dc(N), ϑc) .

Remind that ϑc(N, dc(N)) = 0, then in the right side of the equation ϑc ≡ 0.
In those points the “derivative” of the curve qc(N) varies quite abruptly; it

coincides with the fact that the number of layers N becomes higher than N.
Finally, we stress that even for a fixed distance, the wave length slightly in-

creases with the number of layers.
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FIGURE 4.2.1. Critical tilting angle as the number of layers N
increases, for some distance d fixed. We will not obtain a ϑc(N) = 0
for any n if d & 1.5.

5 10 15 20 25

0,8

1

1,2

1,4

N

d c

dc(N)

FIGURE 4.2.2. Distance at which ϑc = 0. Below this distance, for
a sufficiently big interaction strength U, the system will always
assume the φ = 0 stripe phase configuration.
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FIGURE 4.2.3. Module of the wavevector as the number of layers
N increases, for some distance d fixed. For each point we choose
the critical angle. The lines interrupt if d is too small to have a
critical angle for that number of layers.

4.3. First neighbours approximation

We would like to extract the eigenvalues of χ̂−1 in an analytic form. Such a
formalism could enable us to find out the properties of a bulk system of layers, and
determine the asymptotic behaviours we have roughly hypotised. One possible
way is the first neighbours interaction approximation (FNA). Anyway, we should
honestly evaluate the errors we made in calculations by forgetting the complete
interaction, numerically, making a comparison with the previous calculations.
Furthermore, we must take in account that the previous results come from a 0th-
order STLS approximation, which can also significatively differ from the full STLS
approximation (as in the case of a wave density modulation along the φ = π/2
direction). This approximation should therefore be carefully examinated.

How the results are expected to differ. All the results obtained in previous sections
have been extracted numerically, so that we should settle for qualitative previsions
of the expected results.

About the critical angle, being the interlayer interaction the one driving the
system to the stripe phase, to reduce the coupling between layers will lead to larger
critical angle; in the same way this will simulate a weaker interlayer interaction
and the critical distancies will decrease.

We can also point out that the asymptotic behaviours related to a large number
of layers will be reached more rapidly, because the layers beyond the very next one
are invisible to each others. This also means that the module of wavevector of the
coupling, and then of the density modulation, will be greater with respect to the
complete interaction.
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FIGURE 4.3.1. Distance at which ϑc = 0: A comparison between
exact interaction and first neighbours interaction approximation.
It is manifest that the newly calculated limit distance is lower with
respect to that of the complete interaction.

Figures 4.3.1 and 4.3.2 confirm the above reasoning; there, one can quickly
realise that FNA gives qualitatively similar results to SLTS, but quantitatively bad
results.

4.3.1. Diagonalization of susceptibility. The susceptibility matrix within the
FNA results with evidence simplified, it is a tri-diagonal matrix, and along each
diagonal the matrix entries are all the same:

χ̂−1
FNA =


1
Π − v11(1− G11) −v12 0 · · ·

−v?12
1
Π − v11(1− G11) −v12 · · ·

0 −v?12
1
Π − v11(1− G11)

...
...

. . .

 .

We are interested in the eigenvalues of this matrix for a system of an arbitrarily
great number N of layers, so the problem is the diagonalization of a tri-diagonal
N × N matrix. Fortunately, it can be shown that diagonalization is possible in the
reciprocal space of the 1D lattice of layers.

First of all, diagonalization can be further simplified, as proved at the beginning
of this chapter, by the reduction of χ̂−1

FNA in a diagonal plus an off-diagonal part:

χ̂−1
FNA = χ−1

11 1− û′,
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FIGURE 4.3.2. Critical tilting angle as the number of layers N
increases, for some distance d fixed. Here the first neighbour
approximation is compared with the exact interaction. Due to
the approximate interaction, the systems behaves as the distance
between the layers were major of what it is in reality. The effect
is quite minor if the spacing is wide, indeed. In transparency, the
exact results. The same marker correspond to the same layers
spacing.

where

û′ =


0 v12

v?12 0 v12
v?12 0

. . .

 .

Hence we can diagonalise the mere off-diagonal part û′; from its eigenvalues, we
take only u′max. Notice that with respect to the argument at the beginning of the
chapter the sign has changed, namely umin = −u′max.

Imposing periodic boundary conditions, we define the lattice reciprocal space
κ

κ =
2π

Nd
m, m ∈

]
−N

2
,

N
2

]
therefore we can also define the discrete Fourier transform for the inter-layer
potential (the intra-layer potential does not need to be transformed, because it
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appears uniquely in the diagonal part):

vjk(q) =
1
N

N
2

∑
m=− N

2 +1

exp
(

i
2πm(j− k)

N

)
vm(q),

and its inverse

vm(q) =
N

∑
j=1

exp
(
−i

2πm(j− k)
N

)
vjk(q).

The only terms that are non-zero in the sum are those for which j− k = ±1, so that
explicitly:

vm(q) = ei 2π
N mvk−1,k(q) + e−i 2π

N mvk+1,k(q).
Actually, this expression is k-independent, in fact

vk+1,k(q) = v?k−1,k(q) = v?12(q) ∀k.

It is convenient to rewrite the potintial in the trigonometric form v12(q) = ρϑ(q, φ) exp(iηϑ(φ)),
and its inclusion in the expression of vm(q) yields

vm(q) = ρ(ei 2π
N m+iη + c.c.) = 2ρ cos

(
2π

N
m + η

)
.

For concreteness and simplicity, from now on we refer to the case φ = 0. Thus the
latter expression writes

vm(q) = −2ρϑ(q, 0) cos
(

2π

N
m + 2ϑ

)
and it is now clear that the maximum eigenvalue we were looking for is the one for
which the constrain

m
N

=
ϑ

π
+

1
2

is valid. Clearly, in the case of a small N, it is difficult to strictly satisfy this relation,
then the m closest to fulfill the constrain must be taken. Anyway, due to the periodic
boundary condition, the obtained eigenvalues give a good description of the system
only in the limit L� d, where L = N − 1 is the total length of the 1D lattice. In this
limit we can approximate the cosine up to a constant ε = O(N−2) by writing

cos
(

2π

N
m + 2ϑ

)
= −1 + ε, 0 < ε� 1

and
u′max(q, φ = 0) = 2(1− ε)ρϑ(q, 0).

Finally, the (i + 1)-th component of the eigenvector relative to u′max can be cast in
the form

ai+1 =
2ρ(1− ε)ai − v?12ai−1

v12
,

and the parameter ε vanishes in the N → ∞ limit.
At this point, the boundary of the φ = 0 stripe phase can be found by including

u′max in the susceptibility formula, and looking for the point of the set

1
U

= max
q

{
Π
(
(1− G11) v11 − u′max

)}
.
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FIGURE 4.3.3. Uc(d) and qc(d) at fixed ϑ = 0.9, obtained from
diagonalisation in the reciprocal space.
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FIGURE 4.3.4. Boundaries and relative qc(ϑ) curves for three val-
ues of d.

Results from this approximation are in good agreement with expectative, even
though unfortunately this model does not predict the collapse expected for ϑ = π/2,
which in the exact model has been found, neither with numerical diagonalization
nor by using the proposed method.

The application of the FNA to a N → ∞ system gives the results in reported in
Figures 4.3.3 - 4.3.5.
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CHAPTER 5

CONCLUSIONS

The introduction of the STLS self-consistent scheme has actually improved
the description of quantum systems like dipolar Fermi gases: In fact, we have
seen how the STLS scheme can reproduce both Hartree-Fock and RPA results in a
unique, simple way, which furthermore refines their predictions. Its simplicity is
given in the expression of the susceptibility, which results to be as simple as in the
RPA and at the same time includes all the effects previously neglected. In fact, we
have shown that the RPA is never a good approximation when applied to dipolar
systems. Also, we have seen that the simplified 0th-order STLS is similar to HF
as it roughly takes into account — actually exaggerating a bit — the corrections
necessary to include the exchange correlation in the system. Such a simplified
scheme is a good approximation at least where the correlation hole is almost absent,
namely for large tilting angles of the dipoles. In this way, simple calculations have
allowed us to estimate the phase boundary between the superfluid phase and the
collapsed regions in the single-layer geometry, and between the superfluid and a
φ = 0 density-wave phase in the bi-layer geometry: Those are exchange-driven
instabilities, indeed.

We have seen that the inter-layer interaction stabilises the system preventing
it to collapse, and at the same time it allows the onset of the already cited φ = 0
stripe-phase. However, such a preventing action is not enough to ensure stability
also for ϑ = π/2: When the dipoles are aligned head-to-toe, in facts, the attractive
nature of the dipole-dipole interaction simply overcomes correlations, and collapse
is inevitable. We have shown that the eigenvectors of the susceptibility matrix let a
phase shift emerge between the two layers. Such a phase shift seems to be uniquely
due to classical effects, as it can be predicted by the simple model of a floating
classical dipole over a planewave distribution of dipolar density.

We have focused on the wave vector qc of the density modulation, studying,
in particular, its dependence on the distance d between layers and finding qc ∼
1/d. At the same time, we have observed that the φ = 0 stripe phase boundary
approximates, as obviously expected, the single-layer collapsed phase boundary
for d→ ∞. On the contrary, the φ = 0 stripe phase tends to enlarge its limits and
occupies the whole phase diagram for sufficiently high interaction strength U, at
least in the 0th-order STLS scheme.

Encouraged by these results, we have applied the 0th-order STLS scheme to
systems composed of many layers: The cases of three and four layers has been
studied extensively, highlighting in particular the existence of a critical distance
dc, slowly increasing with the number of layers N and almost constant after a
sufficiently large N ≥ N̄, such that for lower values of the inter-layer separation
the φ = 0 stripe phase occupies the whole phase diagram. In turn, numerical
calculations also suggest that over a certain limit distance dl the φ = 0 stripe phase

80
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can never invade completely the phase diagram, neither in the limit N → ∞. This
limit distance is estimated in dlkF ' 1.47 or more.

In order to make predictions on the N → ∞ case, we have attempted a first
neighbour approximation, in which inter-layer interactions are considered not ne-
glectable only between two consecutive layers. In this approximation, all quantities
are expected to converge more rapidly to their eventual asymptotic value: So does
the limit distance, whose value is given in dFNA

l kF ' 1.23. Hopefully one might find
out the asymptotic value also for the relevant quantity qc(N → ∞), unfortunately
this approximation does not yields reliable results. In fact, we do not recover the
result qc(ϑ = π/2) = 0, expected for each value of N because it is uniquely due to
intra-layer interactions.

To do. The very next and quite obvious step to improve the multi-layers phase
diagram is to apply the full STLS scheme, and then study the complete phase
diagram. Then one can reconsider the FNA, and correct the wrong predictions
about the wave vector, which, unphysically, never goes to zero.

Actually the complete phase diagram involves, for sufficiently large interaction
strength and sufficiently small distances between layers, the possibility of a strong
coupling between fermions of different layers as underlined in Ref. [24]. This
coupling eventually leads to the formation of composite bosons, and their presence
could describe the multi-layered system better than the fermionic behavior.

Finally (from the personal point of view of the author), perhaps it is possible to
abandon the FNA and diagonalise the inverse susceptibility matrix via the Lanczos
method, i.e., via the Lanczos method one can obtain, starting from the complete
matrix, its equivalent tridiagonal form in an opportune basis (whose seed could
be the unit vector eiη ê1) and then get the eigenvalues of the tridiagonal form by
diagonalising in the reciprocal space, as previously done.
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