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Chapter 1

Introduction

Energy saving is a crucial topic of our time, for both environmental and economical
reasons. It has been estimated that about 40% of primary energy used in Europe is due
to the building sector [1], so there is room for substantial improvements. Of course,
energy savings in buildings should not be reached at expense of indoor environmental
quality (IEQ) and thermal comfort. For this purpose the first step is to optimize the
systems present in buildings using the available measurements as an indicator.

The aim of this work is to give solid tools that could help the energy manager of the
building in the regulation process of Heat, Ventilation and Air Conditioning (HVAC)
systems. The available large amount of measurements are difficult to understand as
they are, therefore the building data-base is used to come up with information everyone
could understand and take advantage of.

Nowadays energy consumption problems are considered in the design process only
and once the building is operating occupants care just about thermal comfort. The
current scenario tells these two sides are equally important and since one is dependent
on the other, they should be faced at the same time.

The foundation of the present thesis is the work of Tisov [2], who developed a
method for buildings data analysis able to visualize both energy consumption and
thermal comfort in a simple and useful way, through the use of a comprehensive figure.
The method was developed using data coming from several building simulation scenar-
ios and then it was applied to a real building. The aim of offering a clear information
about thermal comfort and energy consumption was achieved.
The limitations of the method lie in the room to building data synthesis, since the
available data-set featured a single temperature measure for the whole building, the
work could not properly deal with the synthesis. Furthermore, the work was meant to
review and compare past building indoor conditions, but it did not offer any guidelines
for energy improvements.

The present thesis carries on this work with the following objectives:

• To improve room to building data synthesis and representative temperature deter-
mination by using a data-base featuring multi-room temperature measurements
and studying several data synthesis methods

• To show on the comprehensive figure an optimal scenario for thermal comfort and
energy use, alongside with the actual data-set, serving as guideline for the energy
manager of the building

7
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This thesis was carried on in collaboration with Energocentrum Plus s.r.o, that
shared the building data-base on which this work is based.



Chapter 2

Literature review

2.1 Thermal comfort

Indoor Environmental Quality (IEQ) is defined as the ensemble of Indoor Air Quality
(IAQ), acoustics, lighting and thermal comfort [3]. The degree of satisfaction of building
occupants depends on IEQ, therefore it has a strong importance in people life quality.
For the purposes of this thesis the focus will be principally on thermal comfort.

Defining thermal comfort needs both a physiologically and psychologically evalua-
tion, since it could be defined as the degree of satisfaction with the thermal environment.
Many parameters should be evaluated to define comfort conditions, among those the
standard ASHRAE 55 [4] addresses six primary factors:

• Metabolic rate

• Clothing insulation

• Air temperature

• Radiant temperature

• Air speed

• Humidity

The standard considers a steady state thermal comfort using data of near sedentary
physical activity, that is suitable for an office scenario. Of course forced air ventilated
buildings follow different rules from natural ventilated buildings, where occupants have
more control (for example by opening a window).

When the other variables are fixed a temperature range can be defined, within
which the thermal environmental conditions are acceptable. Since there are personal
and psychological factors, this range calls for a percentage of unsatisfied occupants.
The acceptable percentage of dissatisfaction may be both general (whole body) and
local (partial body).

Predicted Mean Vote (PMV) is developed to take in account this personal factor
and it is defined as “an index that predicts the mean value of the vote of a large group
of people on the seven-point thermal scale”. Along with PMV the standard introduces
the Predicted Percentage of Dissatisfied (PPD), defined as “An index that establishes

9
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a quantitative prediction of the percentage of thermally dissatisfied people determined
from PMV ”. The seven-point thermal scale, defined by ASHRAE to quantify thermal
sensations of people, is the following:

• +3 hot

• +2 warm

• +1 slightly warm

• 0 neutral

• -1 slightly cool

• -2 cool

• -3 cold

The PMV model uses heat balance principles to relate the six key factors for thermal
comfort to the average response of people on this scale, while the hypothesis with the
PPD index is that people voting more than +1 or less than -1 are dissatisfied and it
assumes PPD to be symmetric around a neutral PMV. Once the other key parameters
are fixed, the thermal comfort temperature range is defined when PMV is within the
comfort limits.

The standard EN ISO 7730 [5] suggested a categorization to define different comfort
levels on the PMV/PPD basis. The criteria used to build the categories are explained
in Table 2.1, while the recommended ranges are shown in Table 2.2. PMV/PPD index
is defined over six different primary parameters, so once the category is chosen and
the other key parameters are fixed, it is possible to define an operative temperature
thermal comfort range. The standard EN15251 [6] proposes the temperature ranges
shown in Table 2.3, where the following assumptions were made:

• Relative humidity equal to 50%

• Low air velocity

• Summer clo value equal to 0,5 clo

• Winter clo value equal to 1,0 clo

• Different activity levels depending on the chosen scenario, expressed in met

UNI EN 15251 [6] (Annex F) introduces three methods to evaluate a percentage of
thermal comfort in buildings:

• Method A: Percentage outside the range

• Method B: Degree hours criteria

• Method C: PPD weighted criteria
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Table 2.1: Criteria for the categories definition in EN15251 [6]

Category Criteria

I
High level of expectation to be used for spaces occupied
by sensitive and fragile people, like young children, sick or
elderly people

II
Normal level of expectation to be used in new or renovated
buildings

III
Moderate level of expectation to be used in existing build-
ings

IV
Inadequate thermal conditions, acceptable only for a limited
part of the year

Table 2.2: Examples of recommended categories for design of mechanical heated and
cooled buildings

Category PPD [%] PMV

I < 6 −0, 2 < PMV < +0, 2

II < 10 −0, 5 < PMV < +0, 5

III < 15 −0, 7 < PMV < +0, 7

IV > 15 PMV < −0, 7; or +0, 7 < +0, 7

Method A was first introduced in ISO 7730 and revised in EN 15251 and it calculates
the percentage of occupied hours when the operative temperature (or the PMV) is
outside the comfort range defined over a chosen category. By deciding the category
it is chosen the closeness with which the indoor conditions are controlled and the
expectations on the indoor environmental quality (IEQ) of the building, where Category
I stands for high expectations, and Category III stands for moderate expectations. To
apply PMV limits to the temperature some assumptions about the other key parameters
have to be done. Method A stands that “the parameter in the rooms representing 95%
of the occupied space is not more than as example 3% (or 5%) of occupied hours a
day, a week, a month and a year outside the limits of the specified category”, fixing an
acceptable threshold for thermal discomfort. The limit of this method is the absence
of an indication of how bad the discomfort is.
Method B was introduced in ISO 7730 and revised in EN 15251 as well and it calculates
the Degree Hours (DH), defined as the sum of occupied hours during which requirements
are violated multiplied by weighting factor expressed as a difference (in ◦C) between
actual and limit temperature. The hours with a temperature below the lower limit are
expressed as heating degree hours (HDH), while the hours with a temperature above the
higher limits are expressed as cooling degree hours (CDH). The discomfort is evaluated
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Table 2.3: Examples of recommended categories for design of mechanical heated and
cooled buildings

Type of build-
ing/space

Category Operative Temperature [◦C]

Minimum for
heating season

(1,0 clo)

Maximum for
cooling season

(0,5 clo)

Residential
building
(1,2 met)

I 21,0 25,5

II 20,0 26,0

III 18,0 27,0

Single
office (1,2
met)

I 21,0 25,5

II 20,0 26,0

III 19,0 27,0

Kindergarten
(1,4 met)

I 19,0 24,5

II 17,5 25,5

III 16,5 26,0

Department
store (1,6
met)

I 17,5 24,0

II 16,0 25,0

III 15,0 26,0

on the basis of the width of the comfort range, which depends on the chosen category.
Method C assumes the time during which the PMV exceeds the comfort boundaries to
be weighted by a factor, that depends on the PPD. The PPD is a function of metabolic
rate, clothing insulation, air temperature, mean radiant temperature, air velocity and
air humidity. It is similar to Method B but it has a different weighting factor for the
cooling and heating season.

2.2 Occupancy

Defining thermal comfort in a building and especially in an office building is feasible
only by knowing when it is occupied, in order to obtain a trustworthy representation
of the reality. For this purpose it is crucial to estimate the actual occupancy pattern
of the building.

Knowing the occupancy pattern is beneficial when working on energy management,
since people presence has a relevant effect on space heating, space cooling and ventila-
tion demand. As said, the thermal comfort and IAQ are based on occupancy as well.
Furthermore knowing the real time occupancy allows the energy manager to reduce
energy waste by avoiding the use of HVAC systems when people are not present and
the over-heating or over-cooling of zones where the number of occupants is different
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from the peak one. This could lead to energy savings up to 20% [7]. The real time
occupancy detection could be used in Building Management Systems (BMS) and in
Building Automation Systems (BAS) to improve energy efficiency of the building.

The methods to detect or estimate occupancy can be categorized in direct or indi-
rect approach. The former is based on motion and positioning technology as passive
infrared (PIR) motion detector, video camera and radio-frequency indicator (RFID),
while the latter consists in non-intrusive technologies by using energy consumptions
and environmental sensor data mining.

Occupants of a building have a strong impact on several measures and so they
could be used to evaluate the daily schedule. Among the options the carbon dioxide
seems to be the most useful for an accurate estimation. Other options are the electricity
consumptions of lighting systems and appliances, temperature, humidity and acoustics.
Direct approach methods like motion sensors could lead to false negatives in many
applications, in additions to their privacy issues.

The parameter mainly used to define occupancy profiles is the CO2 concentration
and its generation and decay. There are many methods developed for this purpose:

• Methods based on steady state CO2 concentrations, reliable for a number of
occupants in the order of hundreds [8]. It can estimate the real time occupancy
by measuring the supply and return air CO2 concentration and the supply airflow
rate

• Methods based on a theoretical CO2 mass balance equation [9], able to detect the
presence of occupants in the order of tens, but which needs a lot of information
like volume and air flow rate. It uses four differential equations, for total mass
balance, single zones mass balance, total number of occupants estimation and
number of occupants per room, based on the former two equations. Starting
from these equations it is possible to calculate the single and total air flow rates

• Methods based on radial basis function (RBF) neural network [10], that require
a preliminary learning phase through the use of actual occupancy profiles. The
accuracy in the number of occupants detection is between 85% and 90%. It takes
advantage of indoor temperature, humidity, CO2 concentration, light sound and
motion sensors to make the neural network estimate the real time number of
occupants. It is a low cost and high resolution system able to provide instantly
room level information of the number of occupants

• Methods based on machine learning techniques [11]. These are prediction models
based on indoor environmental data and they use a decision tree algorithm. They
are well suited for occupancy detection and prediction at the future state. Real-
time data can be used for both training process and instantaneous control for
HVAC systems

• Methods based on a dynamic model, called Feature Scaled Extreme Learning Ma-
chine (FS-ELM) [12], able to estimate the number of real-time occupants through
a discrete-time state space model, estimated with a regression process. The dif-
ferences with the standard ELM are an additional layer, which works like a pre-
processing of the inputs, and the random hidden layer weight matrix that is scaled
over the inputs
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• Methods based on the CO2 concentration measure [13], able to detect the sole
presence or absence of occupants and the daily arrival and departure time. They
use few sensors that are generally already present in the buildings, they don’t
need precise records of occupancy for the learning phase and they are reasonably
precise (o precise enough) in the occupancy pattern evaluation. These methods
may lead to both delayed evaluation due to overcrowded rooms and false negatives
in case of open windows

The carbon dioxide concentration is not the only parameter used to estimate occu-
pancy. There are methods with a direct approach:

• Video based method [14], detecting occupants in a video monitored space through
the use of image-processing techniques. It may suffer of problems linked to line
of sight, especially in partitioned spaces. It has also problems with the privacy of
the occupants and with the huge amount of data to be stored and processed

• Methods based on magnetic reed switch door sensor and on a passive infrared
sensor [15]. This approach works for single-occupancy offices and it needs to
leave the door open when the occupants are in the office or nearby

• Methods based on a passive infrared motion sensor (PIR) [16] able to detect the
presence or absence of occupants, but not their number. The accuracy of this
method is 97,9% and it can be improved to 98,4% by combining multiple motion
sensors, while the addition of other type of sensors (CO2, sound, energy usage)
leads to worse results. This may be due to over-fitting when different type of
sensors are combined

• Methods based on the existing information technology infrastructures [17] to re-
place and/or help traditional sensors to detect occupancy by monitoring MAC
and IP addresses in routers and wireless access points. The method, called im-
plicit occupancy sensing, derives the occupancy from sources not directly intended
for this purpose and for this reason the benefits are the absence of additional cost
in terms of hardware and the capability to provide information not available from
dedicated sensors

Limitations of the CO2 concentration parameter as the only occupancy estimation
input are the dependence on non anthropological causes, as passive ventilation. Fur-
thermore it usually takes some time for the CO2 concentration to build up, moving the
time boundaries of occupancy, and because of that it can not be used alone in a real
time estimation process.
Limitations of the use of passive infrared (PIR) and ultrasonic motion sensors are the
high cost of installation, limited accuracy, incorrect installation and lack of network-
ing capabilities. These sensors are generally not able to detect detailed location and
movements, so they are mainly used to control only lighting system.



2.3. CLOTHING INSULATION PREDICTION 15

2.3 Clothing insulation prediction

Clothing works like thermal insulation so it has a strong influence on thermal comfort.
It is considered through the use of the clo parameter, which is equal to 0,155 m2K

W .
The value of clo identifies the temperature range to be used for the thermal comfort
evaluation. Clothing is also one of the six variables that affect the predicted mean vote
(PMV) and predicted percentage of dissatisfied (PPD). The standard EN15251 [6] uses
a seasonal fixed clo value, which is 1 clo for the heating season and 0,5 clo for the
cooling season. This leads to the following thermal comfort temperature range (valid
for Category II).

Table 2.4: Standard temperature ranges

Winter season Summer season

T min 20◦C 22◦C

T max 24◦C 26◦C

This approach leads to a significant loss of information and it is not representing
the actual thermal situation. There are some attempts to find a correlation between
environment parameters (for example indoor and outdoor temperature, relative humid-
ity or air velocity) and clothing behaviour in order to predict the clo parameter and
better fit the actual state. This achievement would lead to improve HVAC system op-
erations and energy savings. In fact, people tend to adapt their clothing during the day
by adding or removing layers (clothing adjustment). Furthermore, sometimes the type
of clothing is prescribed by the workspace (dress code), limiting the adaptive actions
of the individual. There may be gender and social differences in the clothing choice
and adjustment. The developed methods are based on databases of people clothing be-
haviour by investigating both internal (indoor operative temperature, relative humidity,
air speed) and external parameters (outdoor temperature, latitude). Different types of
buildings are investigated, both air-conditioned systems (HVAC), natural ventilated
(NV) and mixed systems (MIX).

De Dear and Brager [18] studied the relationship between clothing insulation and
environmental parameters like indoor and outdoor temperature by using the average
clo value per building to ensure homogeneous conditions, but the study lacks explicit
verification of linear regression assumptions.

De Carli et al. [19] developed a linear regression to predict average clothing insula-
tion as a function of outdoor temperature at 6 o’clock in the morning. Other options
(mean daily temperature, mean temperature during the investigated period, weighted
value on the temperature over the last four days) are considered but they are not reli-
able as the outdoor temperature since it comes out people tend not to have a “weather
memory”. The variation of the minimum and maximum average clo values is studied as
well, to be used to define the optimal temperature range. The variation is negligible in
NV buildings, where the indoor temperature may be considered equal to the external
one due to the high rate of infiltration caused by natural ventilation. Gender differ-
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ences are studied as well but they appear to be very limited and therefore considered
negligible. The influence of latitude is negligible in HVAC buildings while it should
be considered in NV buildings in latitude between 20◦ and 40◦, and -20◦ and -40◦. In
HVAC buildings indoor air temperature plays no role in the clothing behaviour, so it
does not influence substantially the clothing choice. In HVAC buildings the change of
the clo value during the day is independent from the outside temperature and is about
0,2 clo. It corresponds to the insulation of a jacket or a sweater. The change is lower
for NV buildings, especially at higher outside temperatures. A variation of 0,1 clo is
enough to affect the comfort evaluation through the PMV-PDD model. This method
found the following correlations for HVAC buildings:

clomean = −0, 01x+ 0.766 (2.1)

clomin = −0, 008x+ 0, 684 (2.2)

clomax = −0, 009x+ 0, 863 (2.3)

Where x is the outdoor temperature at 6 AM.

Schiavon et al. [20] found some limitations in this model:

• No certainty about the correctness of the regression coefficients, due to the lack
of homoscedasticity

• Absence of the variance introduced by the building

• Data was used regardless of the quality of the measurement

• By using single variable regression models it was lost the opportunity to check
for interaction effect between different variables

• There is no information about the use of other variables such air velocity and
relative humidity

Schiavon developed two multi-variable linear mixed models, the first one uses out-
door air temperature at 6 o’clock as the only variable affecting clothing behaviour, while
the other one adds indoor operative temperature as a second variable. The predictive
model is dynamic, changing daily or hourly in order to be applied in thermal comfort
calculation as well as in HVAC sizing, building energy analysis and building operation.
The results show a median clothing insulation of 0,59 clo in summer and 0,69 clo in
winter, these values are quite different from the standard values of 0,5 clo in summer
and 1 clo in winter. As reported by De Carli, the study reveals no significant gender
difference in the clothing insulation behaviour and it seems to confirm outdoor tem-
perature at 6 o’clock as the most influential environmental variable affecting clothing
behaviour. The other variables are operative temperature, relative humidity and only
partially air velocity and metabolic activity. The study reveals that where no dress
code is in place (for example in shopping mall) the day-to-day variation in clothing
levels is significant.
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2.4 Energy use prediction

A reliable energy consumption prediction is useful both in the design and operative
process of the building life-cycle.
While dealing renovations or construction of new buildings, this process is useful for
assessing benefits of a renovation process and during the design process of Heating,
Ventilation and Air Conditioning (HVAC) systems, whereas for the energy control
strategies and the management of existing buildings it is used to optimize the energy
use in the building, for example by setting the proper starting time of cooling/heating
system and by deciding the amount of energy to be stored during off-peak hours in cool
storage systems.

The methods aimed at predicting building load can be divided in three main cate-
gories:

• Physical models

• Black-box models

• Grey-box models

The physical models are the most detailed option and should be used in complex multi-
ple zones buildings. They require a lot of parameters as input and a precise knowledge
of the building envelope and systems. They are used in software like EnergyPlus [21],
but this approach require a lot of time, making itself generally not cost-effective.

The black-box approaches are built solely on the inputs and outputs study, i.e. on
the external operation of the system. Dhar et al. [22] developed a Generalized Fourier
Series model (GFS), using weather independent loads (like internal loads) and weather
dependent load (like HVAC energy use). In particular weather data are periodic so the
use of the Fourier series is adequate for the study. This method is able to predict the
hourly consumption in commercial buildings by using ambient temperature, ambient
humidity and solar radiation as inputs. Dhar et al. [23] developed a Temperature
based Fourier Series (TFS) to be applied in situations where only temperature data
is available. This approach can model heating and cooling energy use accurately, us-
ing outdoor temperature as the only weather input. When humidity and solar data
are available, the GPS approach has to be preferred because of its higher prediction
power. Zhou et al. used a grey-box approach to develop an on-line weather predic-
tion modules integrated with a building thermal load model for on-line cooling loading
prediction. The weather variables inputs include global solar radiation, outdoor air dry-
bulb temperature, and relative humidity. The prediction is used to properly set the
Building Management System (BMS). The performance of the grey-box model is sat-
isfactory while the prediction model could be affected by temporary weather changes.
The methods is particularly suitable for the on-line prediction of building loads in the
coming day and/or hours.

Simpler techniques are available when forecasting energy consumption on a daily
basis and when a lower level of accuracy is required. The degree-day based techniques
[24], mentioned in Section 2.1, is a commonly used method based on a weather normal-
ized energy use data, performing reasonably well.
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Besides weather dependent variables, the occupant behaviour could strongly influ-
ence the energy consumption of a building. The American Society of Heating, Re-
frigerating and Air-Conditioning Engineers (ASHRAE) [25] recommends a uniform
occupancy schedule to evaluate occupants influence over the energy use. Yu et al. [26]
used k-means clustering analysis to examine the effects of different behaviour patterns
on energy consumption, identifying four behaviour clusters. Diao et al. [27] developed
a method to use an unsupervised clustering algorithm to predict energy consumption
using classified occupants behaviour. The method identifies 10 distinctive behaviour
patterns able to offer a more accurate prediction than the ASHRAE standard sched-
ule. By selecting the proper occupancy schedule, the user could reach energy and cost
savings.

2.5 Energy management

Energy consumption coming from the building sector represents more than 40% of
the European energy consumption [28]. This percentage has risen in the recent years
mainly due to building HVAC systems use. The consumption could be strongly reduced
by carrying out a proper energy management, which today is generally not continuous
and only applied when achieving the energy certification. The technology needed to
collect, analyze and exploit the data is available for its application in the building en-
ergy management to help practitioners solving problems they used to face. The benefit
of a proper building management is the joined reduction of energy use, emissions and
costs, while preserving or improving the thermal comfort in the building. Nowadays
developing a solid building energy management process means dealing with a consid-
erable amount of data. As reported by Molina-Solana et al. [29], the whole process
can be improved through the use of Data Mining, which studies how to get non-trivial
knowledge from collected data with an automated process, and Data Science, that in-
cludes a wide range of techniques for the analysis of complex data-sets. The latter is
used to address the following problems:

• The prediction of energy demand

• The analysis and optimization of building operations and equipment

• The detection of energy consumption patterns

• The enabling of building retrofitting

• The analysis of economic impact of energy consumption

For these purposes classification and clustering methods are frequently used to help the
building managers identifying the proper systems performance among the groups. The
main steps of Data Science are:

• Regression: its main goal is to numerically estimate the relationship between
the variables, understanding which ones are independent and which are not.

• Clustering: it is the separation of objects into groups based on their degree of
similarity
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• Association rules: they represent new information extracted from raw data and
express them for decision-making in the form of implication rules.

• Sequence discovery: through different techniques it identifies statistically rel-
evant patterns in data

• Anomaly detection: it identifies items, events or observations that deviate from
expected patterns or usual behaviour of other data

• Time series analysis: it models data and it uses the model to predict or monitor
future values of the time series.

Energy management is one if the key measures to reach more ambitious goal like
net zero energy buildings (NZEBs) [30], to be used both in the design and the con-
trol processes of the buildings. To improve its usefulness an automated mathematical
building performance optimization (BPO) paired with a building performance simula-
tion (BPS) could be used in the process. The BPO is a process aiming to select the
optimal solutions from a set of variables for a given control problem, according to a set
of performance criteria, called objective functions, identifying the energy or cost or en-
vironmental impacts. Visualization techniques are essential to facilitate the extraction
of relevant information.
In the control phase, the BPO could consider multiple objectives for the optimization
process, like:

• HVAC system control parameters and/or strategy

• Thermal comfort

• Natural ventilation strategies

• Managing of energy storage

• Natural ventilation strategies

Privara et al. [31] presented the model predictive control (MPC), a different approach
to the heating system control design. It predicts inside temperature trends according
to the selected control strategy, using a weather forecast to have a continuous outdoor
temperature prediction. It is able to track the desired temperature very accurately, to
be preferred over a well tuned weather-compensated control. The drawbacks are the
extra effort in the developing of the mathematical model of the building.
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2.6 Building performance indicators

When developing performance indicators, we are focusing on three main categories:

• Energy performance indicators

• IEQ performance indicators

• Energy against IEQ performance indicators

The directive 2002/91/EC passed by the Council of the European Union in 2002 [28]
expressed the need to establish a solid calculation methodology for building energy per-
formance, in order to compare objectively different buildings, with the aim of making
energy use more effective.
The energy performance indicator used for the building rating is usually defined as the
fraction of annual energy use and the floor area inside the external walls [kWh

m2 ]. The
numerator is usually expressed with national energy weighting factors or with primary
energy factors.
Catalina et al. [32] objected that this approach lacks of any considerations about the
building morphology and thermal inertia, so another formulation is proposed, where the
annual energy use is divided by the building envelope U-value, which is the comprehen-
sive thermal transmittance that takes in account the insulation and consequently the
energy loss through the envelope. This approach offers great design flexibility, allowing
the engineering or the architect to choose which thermal element has to be improved
to reduce the global energy use.
In a report by the Building EQ project [28] the energy signature is introduced, described
as a visualization tool for weekly or monthly values, useful for internal benchmarking
with the same building. It is able to show any faults with the building services systems,
so it is significantly useful for commissioning and building management operations.

Some examples of IEQ measured indicators are air temperature, CO2 concentra-
tion, relative humidity, illuminance level, air velocity, noise and polluting particles. In
Section 2.1 the PMV/PPD indicators are introduced, they are used to elaborate mea-
sured data to build more effective indicators. Another thermal comfort indicator to
be paired with PMV/PPD values is the thermal sensation vote (TSV), defined as the
subjective human perception of the thermal environment on a 7 grade scale.
Wong et al. [33] presented the θ index, used to quantify the IEQ acceptance. It is
defined as:

θ = 1 − 1

1 + exp(κ0 +
4∑

i=1
κiφi(ζi))

(2.4)

The terms of Equation 2.4 are: θ1 thermal environment acceptance, θ2 IAQ acceptance,
θ3 aural environment acceptance, θ4 visual environment acceptance, ζ1 [%] PPD, ζ2
[ppm] CO2 concentration, ζ3 [dBA] equivalent noise level, ζ4 [lux] illumination level,
κi constants.
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Wong et al. [33] presented also an index to correlate energy use with IEQ perfor-
mance. The energy-to-acceptance ratio index α [ kWh

m2yr
] is defined as:

α =
Ec

100 × θ
(2.5)

The terms of Equation 2.5 are: Ec [ kWh
m2yr

] is the normalized annual thermal energy
consumption and θ is the IEQ acceptance index defined in Equation 2.4.
Tisov [2] developed a ”single number” indicator, to combine both types of performance
indicators (energy and IEQ) in a single value. It is defined as:

OPR =
CP

PEC
(2.6)

The terms of Equation 2.6 are: OPR overall performance ratio[ %
kWh
m2

], CP calculated

% of occupied hours when Toper was inside the specified range (Category II, 20-26 ◦C)
and PEC primary energy consumption [kWh

m2 ]. It is possible to fix some limits for the
OPR index by introducing the standard [6] requirements for IEQ performance.
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Chapter 3

Methodology

3.1 Building information

This section reports the technical information available for the studied building, along-
side with the data-base description.
To develop the method, the study is based on the IEQ data obtained from an office
building located in Prostějov (Czech Republic). It is a bank built in 1996, with a floor
area of 5042 m2, posted on 5 different floors, that hosts 36 employers. The HVAC
system consists of a gas boiler for heating (all floors) and a chiller for cooling (3rd
floor). The fifth floor features mechanical ventilation, while the others present natural
ventilation. Electricity for both cooling and ventilation is taken from the grid. The
façade of the building is shown in Figure 3.1. The building envelope information are

Figure 3.1: Building façade

shown in Table 3.1.
There are 33 rooms with a temperature measurement, posted on 4 different floors.

Among those, there are 16 rooms featuring also a reliable CO2 measurement, that was
used for the evaluation of human presence in the building, as described in Section 3.2.
The measure of the outdoor temperature is available as well and it was used in Section
3.3 for the evaluation of clothing insulation, as described in Section 2.3.
It was possible to have access to this database thanks to Energocentrum. The database
features measurements every 3 minutes, available since the beginning of September
2016 until January 2017, therefore only a heating season was studied. Despite the

23
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Table 3.1: Building elements, area and heat transmittance

Building
envelope
element

Area
Thermal
transmit-
tance

Primary en-
ergy factor

Specific heat
transfer loss

[m2] [ W
m2K

] [−] [WK ]

External walls 3483,4 1,00 0,71 2473,2

Roof 1608,1 0,30 0,96 463,1

Floor 1608,1 0,72 0,46 532,6

Openings 748,4 2,01 1,00 1504,3

Total 7448,2 - - 5619,1

limited data-base, the method is built in order to be applied to cooling season as well,
therefore the drawn conclusions for thermal discomfort evaluation are relevant for the
whole year.
The monthly energy consumption values are provided separately by Energocentrum,
alongside with the energy audit of the building, featuring construction and equipment
information.

3.2 Detection of occupancy pattern

In the thermal comfort evaluation it is crucial to have a reliable occupancy pattern, so
that just the hours when people are present in a building are considered. This section
describes the occupancy detection method used for this study.
Presented methods use environmental parameters as a presence indicator. The CO2

concentration measurement is a common solution for this purpose. As mentioned in
Section 2.2, there are different methods trying to estimate the presence from the CO2

concentration measurement, but a lot of them use an Extreme Learning Machine (ELM)
algorithm or neural networks [12, 11, 10]. These methods are too complex for the
purpose of this work, so there is the need for something simpler.

As illustrated in the background study in Section 2.2, Guillaume Ansanay-Alex [13]
suggested a simpler way to proceed.
The aim of the developed algorithm is to evaluate the sole presence or absence of any
occupant, not counting how many occupants are present. The available data set for
CO2 concentration represents a measure every 3 minutes, that should be enough accord-
ing to Guillaume Ansanay-Alex paper [13]. Figure 3.2a shows the CO2 concentration
measured data for a single day, where the fluctuation appears to be significant.
Firstly, the algorithm computes the CO2 one hour moving average (Figure 3.2b), in
order to smooth the CO2 concentration data by filtering out the noise from random
fluctuations.
Now looking at a single day data for a room, arrivals and departures will show up as
buildups and decays in the CO2 concentration curve. Instead of using the absolute
value of the CO2 concentration, the algorithm computes the variation of CO2 concen-
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tration, after cleaning it with the moving average technique, over each time step (one
hour each), then the positive values of CO2 variation, corresponding CO2 concentration
buildups, are separated from the negative ones, corresponding to CO2 concentration
decays.
Finally the algorithm creates two distribution plots, one for the positive variations of
CO2 (buildups) and one for the negative ones (decays). The plots feature on the x-axis
the logarithm of the variation of CO2 and on the y-axis the occurrences of each varia-
tion value. The logarithm is needed to make the peak variations easier to be visualized.
The plots for a single day are shown in Figure 3.2c and Figure 3.2d.
The algorithm locates the growth and decrease rate peaks on the distribution plots,
indicating the points of highest variation, and makes them the thresholds of the am-
plitude of buildups and decays, being able to evaluate the arrival and departure time,
i.e. when the growth rate peak occurs for the first time within a day, the algorithm
fixes in the relative hour the arrival time. The same process is used to evaluate the
departure time. This process is based on the assumption that the highest variation of
CO2 concentration corresponds to significant occupancy variation.
If the difference between the maximum and the minimum CO2 concentration within a
day is lower than 150ppm, the algorithm considers that day as unoccupied.
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(a) CO2 daily measure
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(b) CO2 moving average
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day
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(d) Histogram of the decay of CO2 within a day

Figure 3.2: Occupancy estimation from CO2 measure
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The results of the dynamic schedule evaluation are compared with the results ob-
tained with a fixed occupancy pattern, corresponding to the actual opening hours of
the office building, displayed in Table 3.2.
The results of the methods are discussed in Section 5.1.

Table 3.2: Fixed schedule (opening hours)

Day Opening hour Closing hour

Monday to Friday 7 16

Saturday and Sunday Closed
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3.3 Comfort temperature range definition

In this section the aim is to identify the physical parameters affecting thermal comfort
and to build a range of values able to identify satisfactory IEQ conditions.
When defining thermal comfort we are talking about an ensemble of IEQ parameters
leading to the occupants satisfaction with the thermal environment. As mentioned in
Section 2.1, the main parameters affecting thermal comfort are metabolic rate, clothing
insulation, air temperature, radiant temperature, air speed and humidity. Dealing with
an office building some assumptions could be made:

• Negligible air speed

• Constant relative humidity of 50%

• Constant metabolic rate of 1 met

• Mean radiant temperature equal to mean air temperature

With these hypothesis the thermal comfort depends upon indoor tempereature and
clothing used, which is defined by the parameter clo, as explained in Section 2.3. Con-
sequently by fixing the clo value the comfort temperature range is defined.
The first approach used for developing the method was the one suggested in the stan-
dard EN 15251 [6], where it is suggested to use 1 clo for the winter (heating) season
and 0,5 clo for the summer (cooling) season. This would lead to the temperature ranges
of Table 3.3, where Category II is considered.
Since in fact the clothing transition through the seasons is not sharp, the winter and
summer ranges were merged in order to obtain a simple temperature range, as shown
in Table 3.3.

Table 3.3: Standard operative temperature ranges according to EN15251 (Category II)

Winter season Summer season Simplified range

T min 20◦C 22◦C 20◦C

T max 24◦C 26◦C 26◦C
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The second step is to implement a clo estimation algorithm using the method devel-
oped by De Carli et al. [19]. It uses experimental data to build an empirical correlation
between the outdoor temperature at 6 AM and the expected clo value. The developed
equations mentioned in Section 2.3 are reported here:

clomean = −0, 01x+ 0.766 (3.1)

clomin = −0, 008x+ 0, 684 (3.2)

clomax = −0, 009x+ 0, 863 (3.3)

Where x is the outdoor temperature at 6 AM expressed in ◦C. The equations create
a range of expected values of clo for each day. The results are shown in Figure 3.3,
where the standard values are shown as well (clowinter,std and closummer,std).
In order to estimate a comfort temperature range from a clo value, the PMV absolute
value was minimized having fixed all the parameters apart from the indoor temperature.
An algorithm was developed to link the clo value to a temperature range, where Tmean

stands for PMV = 0, Tmin corresponds to PMV = −0, 5 and Tmax corresponds to
PMV = +0, 5. These are the recommended comfort limits according to ASHRAE 55
[4] and refer to Category II, as discussed in Section 2.1. Once a clo value is fixed the
comfort temperature range is defined between Tmin and Tmax, with Tmean representing
the optimal indoor temperature. Of course, higher values of clo would lead to lower
acceptable temperatures, to account the larger thermal insulation. The results are
shown in Figure 3.4, including the comfort temperature range for clomin (3.4a), clomax

(3.4b) and clomean (3.4c).
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Figure 3.3: Estimated values of clo during the studied period

For a single day the clo estimation method produces a range of possible values of
clo, to take in account the different thermal perception of occupants.
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The thermal comfort temperature range is defined as follows:

• The lower acceptable temperature Tmin corresponds to the lower extreme of the
temperature range found using clomax

• The optimal temperature Tmean corresponds to the central value of the temper-
ature range found using clomean

• The higher acceptable temperature Tmax corresponds to the higher extreme of
the temperature range found using clomin

This approach would generate the temperature range shown in Figure 3.4d able to
guarantee thermal comfort for a wide range of people, by contemplating different be-
haviours.
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(a) Comfort temperature range (clomin)
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(c) Comfort temperature range (clomean)
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Figure 3.4: Comfort temperature range from estimated clo values
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3.4 Duration graph

The thermal comfort study is carried on using the assumptions stated in Section 3.3, for
which the comfort depends only on indoor temperature: negligible air speed, constant
relative humidity (50%), air temperature corresponding to radiant temperature, con-
stant metabolic activity. Clothing insulation is studied using both fixed and estimated
clo values, as discussed in Section 3.3. The comparison between the two methods is
presented in Section 5.2.
In this section mathematical tools are used to get a clear representation of the in-
door conditions in every room of the building, allowing comparison and synthesis on a
monthly basis.
As illustrated in Section 3.1, there are 33 rooms in the building and with a measure
taken every 3 minutes, there are 20 values per hour for each room. In order to have a
simpler data-set the hourly mean temperature value for each room is calculated. The
layout of the resulting table is shown in Figure 3.5.
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(a) Input data
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(b) Mean and schedule

Duration Graph Table

Time 
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Sorted Temperatures
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...

Room 1     Room 2      …

(c) Sorted data

Figure 3.5: Representation of tables composition

Since the thermal comfort evaluation requires to account only the occupied hours,
the algorithm filters the hourly mean temperature values, to keep just the data referring
to hours when occupants are present in the building. The daily pattern is deduced as
explained in Section 3.2. The resulting table aspect is shown in Figure 3.5b.
Starting from the data-set created hereinbefore, the algorithm plots a duration graph
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consisting of each room data for every month. This is a useful tool for visualizing
data changing over time and it is done by sorting the data in ascending order and
associating each value with a time percentage. The percentage tells how long the
measured temperature is at least equal to the associated value in the considered month.
The tables composition during the process is shown in Figure 3.5c.
The plot shows the measured temperature (in ◦C) on the y-axis and the percentage
of time the indoor temperature is at least equal to that value on the x-axis. The
algorithm creates a figure for every month, where a plot for each room is shown. An
example of resulting duration graph is shown in Figure 3.6, where the simplified comfort
temperature range according to the standard EN15251 [6] is shown as well.
Once the limits are fixed, it is easy to evaluate the percentage time with thermal
discomfort for each room, as the percentage of time outside the boundaries. Therefore
the algorithm creates a data-set of monthly discomfort percentage time of each room
by using the comfort temperature range developed in Section 3.3.
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Figure 3.6: Temperature duration curve of every room (November 2016)
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3.5 Rooms to building synthesis

Once the single rooms temperature data are available, they should be elaborated in
order to create a simpler representation of the thermal conditions in the whole building.
This is one of the main part of the whole work, aiming at the synthesis of measured
data to develop a usable information of the building thermal conditions. In this section
several statistical methods are used to develop this synthesis and to compute the average
temperature data-set among the single room data-sets.
Starting from the data-set represented by the duration graph, with percentage of time
in the first column and room temperature in the others, the algorithm creates two
data-sets for each month, with the following content.
Table A:

• Mean temperature value

• Standard deviation (SD) of temperature data-set

• Mean temperature value − SD

• Mean temperature value + SD

Table B:

• Median temperature value

• 1st quartile of temperature data-set

• 3rd quartile of temperature data-set

Then the algorithm plots the results with two plots per figure, as shown in Figure
3.7. The plots include a curve for average values (mean and median) and the intervals
to include the dispersion from the average value. It is crucial to include standard
deviation and quartile curves in these figures, in order not to lose information about
the building conditions on a room level. Using just the central value for the building
conditions evaluation would mean losing information on the room level and would lead
to overlooking thermal discomfort in the rooms with indoor conditions different from
the average one.
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Figure 3.7: Mean and Median duration graph for November 2016
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There are several ways to proceed for the average process, therefore two different
methods are developed. The main problem lies in sorting the temperature values with-
out losing the time information. To better understand this concept the methods are
here explained:

A The initial data-set is shown in Figure 3.8a, it features the time information
in the left part and the indoor temperature values for each room in the right
part. Of course, the time information are ordered on a temporal basis, while the
temperature values are not sorted yet. As shown in Figure 3.8b, the algorithm
sorts the temperature values of every room, obtaining an ascending ordered data-
set. This approach is the one used in Section 3.4 for the duration graph. Then the
algorithm computes the mean, median, standard deviation and quartile values for
the temperature averaging the sorted temperature data, as shown in Figure 3.8c.
The resulting data-set aspect is shown in Figure 3.8d, while the average duration
graphs for a single month are shown in Figure 3.9a

B Starting from the data-set shown in Figure 3.8a, the algorithm computes the
mean, median, standard deviation and quartile values, averaging the temperature
measured in each room at the same instant, as shown in Figure 3.8e. The resulting
data-set features the temporal ordered time information in the left part and the
unsorted average temperature values in the right part, as shown in Figure 3.8f.
Then the mean and median temperature data-sets are sorted, obtaining the result
shown in Figure 3.8g, where mean and median data-sets are ascending ordered,
while standard deviation and quartile curves are not strictly ascending, since
those values are temporally linked to the central data. The resulting duration
graphs for a single month are shown in Figure 3.9b

Further comparisons and discussions are present in the next chapters.
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(b) Method B

Figure 3.9: Average duration curves for September 2016

Further attempts were made to get a building representation, in order to get differ-
ent information to be compared with the central ones and to find the most appropriate
way to picture the thermal conditions of the building. The first one considers just
the problematic rooms in the mean and median evaluation. An algorithm creates a
monthly data-set with data coming only from rooms that present a percentage of dis-
comfort time higher than 5% of occupied time, which is the acceptable limit according
to standard EN 15251 [6].

The second studied attempt uses data filtering to consider just the main cluster of
the data-set. The example of duration graph shown in Figure 3.6 shows that every
month there are rooms with significantly different thermal conditions from the others,
as can be seen in Figure 3.6, where three rooms are significantly colder. These rooms
are not representative of the whole building and they influence the average value, un-
dermining the thermal comfort information on the building level.
Two different approaches were adopted in order to get a more reliable data set for every
month:

• Extreme data filtering

• Outlier data filtering

The former is a simple method developed for this purpose, while the latter is a more
common way to proceed, as mentioned by Anderson et al. [34]. The results from both
methods have to be compared in the next chapters.

The extreme values data filtering works with the monthly temperature data-set
comprehensive of all rooms measures. The developed algorithm computes the hourly
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mean temperature value and subtracts it from the actual hourly measure in every
room, to display the dispersion from the central value. In order to show more clearly
the dispersion and help the visualization, the algorithm computes the second power of
every temperature difference, then it creates an array made up of the maximum hourly
values of dispersion for the entire month, called extreme dispersion array. The use
of the second power makes the algorithm to not consider if the difference is positive
or negative, i.e. if the dispersion is above or below the central value. Considering
the temperature duration graph of the previous example (Figure 3.6), the extreme
dispersion array found by the algorithm is red marked in Figure 3.10. Once the array
of the misleading temperature values is found, the algorithm filters the corresponding
room data-sets for the whole month, in order to keep the main data cluster only. The
resulting filtered data-set for the month of November 2016 is shown in Figure 3.11, in
comparison with the complete data-set.
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Figure 3.10: Graphic visualization of extreme dispersion array (marked in red) of data
for extreme values data filtering
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(a) Complete data-set
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(b) Extreme filtered data-set

Figure 3.11: Duration curves for complete and extreme filtered data-set for November
2016

As mentioned, the extreme data filtering method developed for this study should
be compared with a more traditional data cleaning method through the use of outlier



3.6. THERMAL DISCOMFORT EVALUATION 37

detection.
The method [34] used to detect potentially wrong data considers as outliers the ones
outside the range defined by:

[Q1 − k ∗ (Q3 −Q1), Q3 + k ∗ (Q3 −Q1)] (3.4)

Where k defines the range extent (k = 1 in this study), while Q1 and Q3 are the
first and third quartiles, respectively. For our case of study the range is found for every
hourly observation. It becomes:

[2 ∗Q1 −Q3, 2 ∗Q3 −Q1] (3.5)

The algorithm examines every room curve and creates a new data set without the
rooms considered as outliers. The resulting duration graph is shown in Figure 3.12,
where it is compared to the complete data set.
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(a) Complete data-set
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(b) Outlier filtered data-set

Figure 3.12: Duration curves for complete and outlier filtered data-set for November
2016

Once the filtered data-sets are found, the algorithm computes mean, median, stan-
dard deviation and quartile values, for both extreme and outlier filtered data-sets, that
could be used for thermal discomfort evaluation on building level.

The duration graphs resulting from extreme and outlier filtered data-sets are shown
in Figure 4.2, while the methods are discussed in Section 5.3.

3.6 Thermal discomfort evaluation

In this section the temperature data-sets developed in the previous sections are used to
quantify thermal discomfort on the building level. The study is based on the method
A mentioned in the standard EN 15251 [6] and reported in Section 2.1. The method
defines thermal discomfort as the percentage time when indoor temperature exceeds
the thermal comfort temperature range developed in Section 3.3. According to the
standard, the thermal discomfort is acceptable if the monthly discomfort percentage
time does not cross the 5% threshold, corresponding to the acceptable deviation to
take in account thermal adjustment time, for example when opening windows. Several
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approaches have been examined for the thermal discomfort evaluation, as reported
hereinafter.

Firstly the algorithm computes the monthly thermal discomfort percentage time
using mean (further called Method I in the report) and median (further called Method II
in the report) values calculated using the methods explained in Section 3.5. Analogously
to the evaluation of thermal discomfort done in Section 3.4 for every room data-set,
the algorithm computes the monthly thermal discomfort percentage time as the sum of
plow and phigh, defined as the percentage of time below the lower comfort temperature
limit and above the upper comfort temperature limit, respectively.
Then the algorithm makes use of standard deviation and quartiles to evaluate thermal
discomfort. For the former, the hourly parameter to be studied are:

Tmin = Tmean − SD (3.6)

Tmax = Tmean + SD (3.7)

Where Tmean is the hourly mean temperature value and SD is the respective standard
deviation.
The algorithm (further called Method III in the report) computes plow as the percentage
of time when Tmin is below the lower comfort temperature limit and phigh as the
percentage of time when Tmax is above the upper comfort temperature limit.
Having called Q1 the hourly 1st quartile value and Q3 the hourly 3rd quartile value, the
algorithm (further called Method IV in the report) computes plow as the percentage of
time when Q1 is below the lower comfort temperature limit and phigh as the percentage
of time when Q3 is above the upper comfort temperature limit.

Moving forward, the hourly thermal discomfort is computed using the hourly mean
temperature of the extreme filtered data-set (further called Method V in the report)
and the outlier filtered data-set (further called Method VI in the report).

Since the methods just presented work with central values and dispersion range,
they do not take in account the thermal discomfort of rooms with extreme conditions.
Therefore further methods were developed in order to get a boundary information, to
be compared with the results dealing central values.
Among these, the first solution (further called Method VII in the report) is to evaluate
thermal discomfort by including only problematic rooms in the computing. According
to the standard EN 15251 [6] the monthly thermal conditions of a room are considered
problematic if the thermal discomfort percentage time exceed the 5% threshold for
that month, otherwise the room is considered suitable. The output data-set consists
of problematic rooms only thermal discomfort percentage time, suitable rooms only
thermal discomfort percentage time, all rooms thermal discomfort percentage time.
A further method (further called Method VIII in the report) to account extreme room
conditions is to show monthly mean thermal discomfort percentage time alongside with
worst room thermal discomfort percentage time. This approach helps showing both the
average and extreme conditions to get a global idea of the overall thermal state.

The illustrated methods compute thermal discomfort percentage time using building
synthesis data-sets as input, for example hourly mean temperature values. The forth-
coming approach (further called Method IX in the report) computes overall thermal
discomfort percentage time as the monthly mean of single rooms monthly discomfort
percentage time.
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3.7 Energy use forecasting

This part of the work deals with energy use prediction for energy management goals. In
Section 2.4 several forecasting methods were presented, but they need detailed building
information to be tuned and work. The aim of this work was to implement an energy
forecasting algorithm using only indoor and outdoor temperature values and actual
historical energy consumption data as input, in order to apply the method in a wide
range of building studies. As a matter of fact, it is not that common to access detailed
building information needed for precise energy simulations, whereas indoor and outdoor
temperature measure are frequent and often available on a multi-zone basis.
The aim of the predicted energy consumption is to show an optimum energy use (for
given thermal comfort respecting indoor conditions), alongside with the actual working
point. The detection of the optimal working point is dealt in the next chapters and it
is based on PMV minimization discussed in Section 3.3.
As discussed in Section 2.4, Girotto [35] developed a forecasting method able to forecast
heating consumption using clustering method to gather the data and successively linear
regression to interpolate the information. The available actual energy consumption data
can be used to interpolate a function like this:

EC = f(Tindoor, Toutdoor) (3.8)

Where EC are energy consumption data, depending on indoor and outdoor temperature
only.
Each available energy consumption value forms an interpolation point together with
the ∆t parameter, defined as follows:

∆t = Tindoor − Toutdoor (3.9)

Firstly a linear interpolation is studied in order to estimate the a and b parameters in
the following equation:

EC = a ∗ ∆t+ b (3.10)

A 2nd grade polynomial interpolation is studied as well, where the parameters to be
estimated are a, b and c of the following equation:

EC = a ∗ ∆t2 + b ∗ ∆t+ c (3.11)

The parameters a, b and c used in Equation 3.10 and 3.11 are building characteristics.
The fit process was done using Curve fitting app built in Matlab. The fit results are
shown and discussed in Section 5.5. The current database does not feature an energy
consumption measure, so the monthly data were provided externally. As mentioned
in Section 3.1, the temperature measures in the database are available for 5 months
only. As a result there are only 5 points to be interpolated for the forecasting formula
development, corresponding to monthly energy consumption and monthly mean ∆t
values. The narrow data-set leaves room for future improvements, as discussed in
Section 5.5.
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3.8 Comprehensive figure

In this section the developing of the comprehensive figure is explained. It is the graphic
approach developed by Tisov [2] for achieving a clear representation of the thermal
indoor conditions of the building.
The figure represents the monthly IEQ conditions of a building alongside with the
corresponding energy consumption. It is based on a scatter plot where each point
corresponds to a single month conditions. Furthermore the dots are labeled to be
identified and connected to better visualize the changes through time. The figure is
composed as follow:

• On the x-axis the thermal discomfort percentage time [%] is shown, to account the
monthly average IEQ conditions. The 5% limit is shown as well to help visualize
whether the building has a thermal discomfort problem or not

• On the y-axis the monthly specific energy consumption [kWh
m2 ] is shown, to account

the monthly thermal energy use.

The figure could be developed for every definition of thermal discomfort evaluation
introduced in Section 3.6. The results and discussion are presented in the next chapters.
In the comprehensive figure two data-sets are presented:

• Actual data-set, where thermal discomfort is evaluated using the methods illus-
trated in Section 3.6, while energy consumption values are the measured one

• Optimal data-set, where thermal discomfort is evaluated using the optimum in-
door temperature and the energy consumption values are predicted to guarantee
the optimal indoor temperature

The referred optimal indoor temperature in evaluated using the tools introduced in
Section 3.3. As mentioned in Section 2.1, thermal comfort is quantified with the PMV
parameter, where PMV = 0 represents the ideal absence of thermal discomfort and the
complete satisfaction with the environmental conditions. The PMV values depends of
air temperature, radiant temperature, relative humidity, air speed, metabolic activity
and clothing insulation. For the study the assumptions presented in Section 3.3 are
used. In Sections 2.3 and 3.3 the presented clothing prediction method achieves a
range of reasonable clo values, identified by the extremes clomin and clomax and with the
central value clomean. Then, every clo value identifies a range of acceptable temperature
values, where the extremes are Tmin (PMV = −0.5) and Tmax (PMV = +0.5) and
the central value is Tmean (PMV = 0). The daily optimal indoor temperature value
corresponds to Tmean evaluated with clomean. The result is shown in Figure 3.13 as
the central values plot, marked in red. The monthly optimal thermal discomfort is
evaluated using the methods previously applied, by quantifying the percentage of time
outside the comfort temperature range.
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Figure 3.13: Optimal indoor temperature range

The optimal working points presented in the figure and especially the foreseen
energy consumption could form two possible scenario, depending on what is causing
the current discomfort:

• If the discomfort comes from an overheating (or overcooling) problem, the energy
consumption would be reduced by setting a lower (or higher) operative tempera-
ture, resulting in both a comfort and consumption benefit

• If the discomfort comes form a subheating (or subcooling) problem, the energy
consumption would be increased by setting an higher (or lower) operative tem-
perature, resulting in an higher expense

The former option identifies the current building IEQ conditions studied in this work,
where the indoor temperature is often too high causing thermal discomfort, even in
the heating season. This scenario is reached with a senseless HVAC management.
The latter option could be reached when the HVAC system is undersized or totally
missing (for example in the cooling season). It could also be reached with inadequate
energy management, meant to achieve economic saving. In both cases the indication
follows the standard guidelines but since the thermal judgment is strongly personal,
the information brought by the figure could also be used for a more aware choice
about the energy management of the building. For example in the studied building
the energy manager could choose to stick with an overheating approach and accepting
higher energy consumption in order to better suit the occupants thermal perception.
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In Figure 3.14 an example of comprehensive figure is shown, concerning thermal dis-
comfort evaluated through the mean indoor temperature (Method I) and with standard
fixed temperature range. The 5% boundary limit, defined in the standard EN15251
[6] as the maximum acceptable discomfort percentage time, is shown as well.
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Figure 3.14: Comprehensive figure for mean temperature thermal discomfort (Method
I)



Chapter 4

Results

4.1 Duration graphs

In this section, results for monthly duration graphs are presented. The figures are
developed as discussed in Section 3.4 and show the plots for indoor temperature for
every room of the building. The monthly data are sorted in ascending order and then
plotted on a monthly figure.
The results are shown in Figure 4.1, where the dynamic comfort temperature range is
shown as well, evaluated as discussed in Section 3.3.
In Section 3.5 extreme and outlier filtering methods are presented to be used for data
synthesis. The duration graphs of filtered data-sets are shown and compared in Figure
4.2, while the results are discussed in Section 5.3.

43
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(a) Duration graph for September 2016

0 10 20 30 40 50 60 70 80 90 100
15

20

25

30

35

 Temperature Duration Diagram month: Oct   2016

   Time [%]   

 T
e

m
p

e
ra

tu
re

 [
°C

] 

(b) Duration graph for October 2016
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(c) Duration graph for November 2016
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(d) Duration graph for December 2016
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(e) Duration graph for January 2017

Figure 4.1: Monthly duration graphs for complete data-set
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(a) Extreme filtered data-set (September 2016)
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(b) Outlier filtered data-set (September 2016)
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(c) Extreme filtered data-set (October 2016)
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(d) Outlier filtered data-set (October 2016)
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(e) Extreme filtered data-set (November 2016)
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(f) Outlier filtered data-set (November 2016)

Figure 4.2: Monthly duration graphs for extreme and outlier filtered data-set
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(g) Extreme filtered data-set (December 2016)
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(h) Outlier filtered data-set (December 2016)
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(i) Extreme filtered data-set (January 2017)
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(j) Outlier filtered data-set (January 2017)

Figure 4.2: Monthly duration graphs for extreme and outlier filtered data-set (cont.)
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4.2 Room to building synthesis

In this section results for room to building level data synthesis are presented, as dis-
cussed in Section 3.5. Each month features two figures, one for mean curve and the
other for median curve. The dispersion range is shown in each figure, identified by
standard deviation for the mean plot and 1st&3rd quartiles for the median curve. For
the dispersion range Method B, presented in Section 3.5, is used, as discussed in Section
5.3.
The results are shown in Figure 4.3, where the standard fixed comfort temperature
range is shown alongside, as presented in Section 3.3.
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(a) Data synthesis for September 2016
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(b) Data synthesis for October 2016

Figure 4.3: Data synthesis for complete data-set
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(c) Data synthesis for November 2016
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(d) Data synthesis for December 2016
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(e) Data synthesis for January 2017

Figure 4.3: Data synthesis for complete data-set (cont.)
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4.3 Thermal discomfort evaluation

In this section, results for thermal discomfort percentage time are presented.
In Section 3.6 several methods for monthly thermal discomfort percentage time ptot
evaluation were presented. The same methods are reported in Table 4.1

Table 4.1: Thermal discomfort evaluation methods recap

Method Indicator Limit

I Tmean 5%

II Tmedian 5%

III Tmean ± σ 5%

IV 1st&3rd Tquartile 5%

V Tm,ext,filter 5%

VI Tm,out,filter 5%

VII Tm,problematic 5%

VIII ptot,worstroom 5%

IX ptot,mean 5%

Where the percentage time limit of 5% is the acceptable deviation as defined by the
standard EN 15251 [6] and described in Section 3.6.

These methods depends on the thermal comfort temperature range and occupancy
patterns. Since for both of them different options were tried, as explained in Sections
3.2 and 3.3, the methods are applied in 4 studied scenarios:

• Fixed schedule, fixed temperature range (Table 4.2)

• Fixed schedule, dynamic temperature range (Table 4.3)

• Dynamic schedule, fixed temperature range (Table 4.4)

• Dynamic schedule, dynamic temperature range (Table 4.5)

Therefore all the methods have to be compared for a fixed scenario (see following tables)
and each method has to be compared for the different scenarios (see Section 7.4). Figure
4.4 shows the graphical comparison for a fixed scenario, using the comprehensive figure,
while Figure 4.5 shows a comprehensive figure for each discomfort evaluation method,
comparing the different scenarios.
The scenarios comparison is developed in Sections 5.1 and 5.2, while the methods are
compared in Section 5.4.
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Table 4.2: Monthly discomfort evaluation with fixed occupancy and fixed temperature
range

Year Month Method I Method II Method III Method IV Method V

2016 09 60,8% 63,3% 92,5% 87,4% 58,5%

2016 10 45,0% 45,9% 95,2% 87,9% 57,1%

2016 11 35,5% 28,1% 93,4% 79,8% 26,4%

2016 12 23,7% 27,5% 94,4% 74,6% 24,7%

2017 01 44,4% 50,3% 97,0% 74,2% 45,7%

Year Month Method VI Method VII Method VIII Method IX

2016 09 65,3% 62,8% 99,0% 60,3%

2016 10 44,6% 81,8% 99,6% 44,9%

2016 11 43,4% 53,5% 99,6% 41,3%

2016 12 29,6% 45,3% 99,0% 37,5%

2017 01 33,3% 64,2% 99,7% 45,1%

Table 4.3: Monthly discomfort evaluation with fixed occupancy and dynamic temper-
ature range

Year Month Method I Method II Method III Method IV Method V

2016 09 37,7% 35,2% 76,9% 61,8% 34,7%

2016 10 10,4% 12,6% 85,7% 63,6% 16,0%

2016 11 16,1% 10,7% 88,4% 61,6% 10,7%

2016 12 12,5% 9,8% 85,7% 56,4% 13,6%

2017 01 42,5% 48,7% 97,0% 72,8% 46,2%

Year Month Method VI Method VII Method VIII Method IX

2016 09 40,7% 40,7% 96,5% 44,7%

2016 10 8,2% 34,6% 98,7% 38,0%

2016 11 18,2% 28,5% 99,6% 38,4%

2016 12 16,7% 40,8% 98,6% 36,2%

2017 01 29,8% 49,5% 99,7% 53,1%
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Table 4.4: Monthly discomfort evaluation with dynamic occupancy and fixed temper-
ature range

Year Month Method I Method II Method III Method IV Method V

2016 09 66,4% 67,7% 93,5% 86,2% 65,0%

2016 10 44,9% 45,8% 95,1% 88,0% 57,3%

2016 11 32,8% 24,6% 93,3% 79,6% 26,3%

2016 12 23,0% 26,7% 94,5% 73,3% 28,5%

2017 01 44,4% 50,3% 97,0% 74,2% 45,7%

Year Month Method VI Method VII Method VIII Method IX

2016 09 69,6% 68,2% 99,1% 64,3%

2016 10 44,9% 81,8% 99,6% 45,0%

2016 11 41,5% 51,8% 99,4% 40,5%

2016 12 29,4% 44,8% 99,1% 36,9%

2017 01 33,3% 64,2% 99,7% 45,1%

Table 4.5: Monthly discomfort evaluation with dynamic occupancy and dynamic tem-
perature range

Year Month Method I Method II Method III Method IV Method V

2016 09 45,2% 39,6% 80,6% 65,4% 41,0%

2016 10 11,1% 12,9% 85,8% 63,6% 16,4%

2016 11 14,0% 7,8% 86,0% 54,9% 10,9%

2016 12 14,5% 5,5% 85,5% 61,9% 14,5%

2017 01 42,5% 48,7% 97,0% 72,8% 46,2%

Year Month Method VI Method VII Method VIII Method IX

2016 09 44,7% 47,9% 96,8% 49,0%

2016 10 8,4% 34,2% 98,7% 38,1%

2016 11 17,9% 24,1% 99,7% 38,0%

2016 12 14,5% 40,1% 98,8% 35,9%

2017 01 29,8% 49,5% 99,7% 53,1%
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(a) Fixed schedule, fixed temperature range
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(b) Fixed schedule, dynamic temperature range

Figure 4.4: Discomfort evaluation methods comparison with fixed hypothesis for occu-
pancy and comfort temperature range detection
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(c) Dynamic schedule, fixed temperature range
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(d) Dynamic schedule, dynamic temperature range

Figure 4.4: Discomfort evaluation methods comparison with fixed hypothesis for occu-
pancy and comfort temperature range detection (cont.)
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(a) Method I
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(b) Method II
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(c) Method III
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(d) Method IV
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(e) Method V
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(f) Method VI
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(g) Method VII
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Figure 4.5: Discomfort evaluation methods comparison with different hypothesis for
occupancy and comfort temperature range detection
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4.4 Energy use forecasting

In Section 3.7 energy forecasting method is developed, where both a 1st and 2nd grade
polynomial fits were applied to the data-base. The comparison about the two methods
and the goodness of the fit are discussed in Section 5.5.
Table 4.6 shows the monthly foreseen consumption values alongside with the actual
consumption.

Table 4.6: Foreseen energy consumption for 1st and 2nd grade fits [kWh/m2]

Year Month Actual data 1st grade polynomial fit 2nd grade polynomial fit

2016 09 1,0 0,0 0,0

2016 10 7,5 7,4 7,1

2016 11 13,5 12,1 11,6

2016 12 16,7 16,2 15,9

2017 01 23,6 21,2 21,4

4.5 Comprehensive figure

In this section results for comprehensive figure are presented. The figures are developed
as discussed in Section 3.8 and show the scatter plots with monthly values for thermal
discomfort percentage time on the x-axis and energy consumption on the y-axis. Each
figure presents a different method for thermal discomfort evaluation, as presented in
Section 4.3.
The figures refer to fixed schedule for occupancy (see Section 3.2) and dynamic tem-
perature range for discomfort evaluation (see Section 3.3). This choice is discussed in
Section 5.1 and 5.2.
The comprehensive figures for every scenario of occupancy detection and temperature
range evaluation are shown in Section 7.5.
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Figure 4.6: Comprehensive figure for Method I thermal discomfort evaluation
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Figure 4.7: Comprehensive figure for Method II thermal discomfort evaluation
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Figure 4.8: Comprehensive figure for Method III thermal discomfort evaluation
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Figure 4.9: Comprehensive figure for Method IV thermal discomfort evaluation
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Figure 4.10: Comprehensive figure for Method V thermal discomfort evaluation
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Figure 4.11: Comprehensive figure for Method VI thermal discomfort evaluation
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Figure 4.12: Comprehensive figure for Method VII thermal discomfort evaluation
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Figure 4.13: Comprehensive figure for Method VIII thermal discomfort evaluation
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Figure 4.14: Comprehensive figure for Method IX thermal discomfort evaluation



Chapter 5

Discussion

5.1 Occupancy evaluation

As illustrated in Section 3.2, two approaches were studied for the occupancy detection,
on which the thermal comfort evaluation is based:

• Fixed occupancy pattern, corresponding to the opening hours of the building
reported in Table 5.1

• Dynamic occupancy pattern, evaluated from the indoor CO2 concentration mea-
surement

Table 5.1: Fixed schedule (opening hours)

Day Opening hour Closing hour

Monday to Friday 7 16

Saturday and Sunday Closed

Figure 5.1 shows the comparison between the two studied options, where the zero value
corresponds to an unoccupied day. The results of the two methods appear to be quite
close, both in the time prediction and the weekend detection. The problems lie in the
peaks where the departure time reaches 10 PM, significantly later than the closing hour
of the building. Some weekends are missed and appear to be occupied, that is equally
suspicious, which leaves room for improvements and more accurate tuning.
As mentioned in Section 3.1, only half of the room feature a reliable CO2 concentration
measurement (some rooms have a fixed unconvincing measure), moreover the method
appears difficult to be automated, especially in the CO2 concentration peaks detection.
For this reason, in the present study the occupancy pattern was evaluated for a single
room measure and then it is applied to the whole building.

59
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Figure 5.1: Arrival and departure time plot for both fixed and dynamic evaluation
methods

A more detailed study would feature occupancy detection for every thermal zone,
with individual comfort evaluation. This approach better fits the modern concept of
office work, where each worker has its own schedule instead of a fixed one. A thermal
comfort study must consider this behaviour to get a reliable information. Both methods
studied are not capable of dealing this problem, a further study would feature a neural
network or a machine learning algorithm for a better occupancy pattern detection.

Figure 5.2 shows the comprehensive figure displaying results for Method I, explained
in Section 3.6, for a fixed comfort temperature range scenario, while Table 5.2 shows
the numerical results.
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Figure 5.2: Comprehensive figure comparison for fixed and dynamic schedule (Method
I)



5.1. OCCUPANCY EVALUATION 61

Year Month Fixed limits Dynamic limits

2016 09 60,8% 66,4%

2016 10 45,0% 44,9%

2016 11 35,5% 32,8%

2016 12 23,7% 23,0%

2017 01 44,4% 44,4%

Table 5.2: Table comparison for fixed and dynamic temperature range (Method I)

As predicted, the dynamic schedule results appear to be pretty close to the fixed
one, since the predicted time table fits the opening hours of the building, as shown
in Figure 5.1. In particular, the evaluated discomfort is nearly identical for October,
December and January, while they move in September and November. Those months
are characterized by the presence of the mentioned peaks, as shown in Figure 5.1.
The need is to understand if the deviation from the fixed schedule is due to a wrong
evaluation or not. For this purpose, Figure 5.3 shows the CO2 concentration level in ev-
ery room during a week where a peak is located. The corresponding occupancy pattern
evaluated by the algorithm is shown in Table 5.3. Figure 5.3 is pretty clear about the
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Figure 5.3: CO2 concentration level [ppm] in every room for a problematic week

absence of occupants during the 12th of November 2016, while the algorithm detected
a presence from 7:24 to 21:45. Furthermore the 12th of November is a Saturday, which
justifies the previous impression.
This approach for occupancy pattern detection shows just minor benefits in comparison
with the fixed schedule approach and the prevalent difference comes from fault detec-
tion of the algorithm. In conclusion the fixed schedule approach seems to work better
for this study, while the dynamic occupancy pattern detection from CO2 concentration
presented in this work could be the starting point for further development.
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Table 5.3: Detected occupancy pattern

Day Arrival hour Departure hour

11/11/2016 7:24 16:00

12/11/2016 7:24 21:45

13/11/2016 Unoccupied

14/11/2016 7:36 15:12

15/11/2016 7:42 16:42

5.2 Temperature range definition

In Section 3.3 the comfort temperature range was dealt, using the hypothesis of neg-
ligible air speed, constant relative humidity of 50%, constant metabolic rate of 1 met,
radiant temperature corresponding to air temperature. These simplified assumptions
are needed to focus on the clothing insulation, which is the most time changing pa-
rameter. In particular, the metabolic rate assumption is relevant, since the standard
EN15251 [6] uses 1,2 met for an office scenario. A lower value leads to an higher
temperature comfort limit, so it is a conservative choice with the available data-base
characterized by an overheating problem. However, the elevated indoor temperature
suggest that occupants have a different perception from what the standard fixed. This
fact was considered by using a lower metabolic rate. With these assumptions two cases
of study were compared:

• Fixed comfort temperature range defined over seasonal fixed clo values, 0,5 clo
for summer (cooling) season and 1 clo for winter (heating) season, according to
standard EN 15251 [6]

• Dynamic comfort temperature range defined over daily estimated clo value, de-
pending on the outdoor temperature at 6AM, described in Section 3.3

The data-base features only measurements from September to January, therefore the
method was applied to the heating season only. Further studies could use the adaptive
comfort model, described in standards EN15251 [6] and ASHRAE 55 [4], to define
a dynamic comfort temperature range for the cooling season. This model applies to
natural ventilated building only and it considers human behaviour adjustments to better
tolerate the warm weather, for example by opening windows and changing clothes. The
dynamic temperature range is defined over outdoor mean temperature and results in a
wider range compared to the standard fixed one.

Defining the thermal comfort temperature range just on the clothing insulation is
clearly a simplification, but it works for an office building since it has generally standard
indoor conditions (for example same activities and same schedule during the year).
The comparison between standard fixed and estimated clo value is shown in Figure 5.4.
Looking at the figure, the estimated clo values appear to be significantly different from
the standard fixed ones. The standard values appear to be a rough representation of
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real clothing insulation, according to the database used to develop the clo evaluation
method [19], since the fixed clo values are constantly outside the expected clo range.
Furthermore a daily estimated value helps representing the gradual clothing changes
through the season.
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Figure 5.4: Estimated values of clo during the studied period compared to standard
ones

Figure 5.5 shows the resulting thermal comfort temperature range from both meth-
ods.
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Figure 5.5: Estimated comfort temperature range compared to stadard fixed one

The dynamic temperature limits appear in the figure to be higher than the fixed
ones. In particular the lower limit appears to be significantly different, while the higher
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ones are close to each other, even if the standard limit is referring to the summer (cool-
ing) season and the data-set refers to the winter (heating) season. Despite it depends
on the assumption made at the beginning of the section, this fact reveals the unreliabil-
ity of the standard hypothesis, that carries on a misleading information about thermal
comfort. The superior temperature limit, by being higher, reveals a minor clothing
insulation, in comparison to the fixed value of 1 clo. This accounts the behaviour of
occupants, able to adapt their clothing to the environment, for example by taking off
a jacket when they get into the building. The lower limit, being significantly higher
than the standard one, reveals a minimum clothing insulation needed, for example for
dressing code reasons.
The data-base shows a significant overheating problem in the building, as reported in
the duration graph of Figure 3.6. By using the dynamic evaluated temperature limit,
the computed discomfort percentage time would be lower, as shown in Figure 5.6, where
Method I results are compared on the comprehensive figure for fixed and dynamic com-
fort temperature limits. The figure clearly shows that using fixed clo value leads to
overestimation of discomfort. For both cases of study, fixed schedule is used. The table
results are shown in Table 5.4.
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Figure 5.6: Comprehensive figure comparison for fixed and dynamic temperature range
(Method I)

Year Month Fixed limits Dynamic limits

2016 09 60,8% 37,7%

2016 10 45,0% 10,4%

2016 11 35,5% 16,1%

2016 12 23,7% 12,5%

2017 01 44,4% 42,5%

Table 5.4: Table comparison for fixed and dynamic temperature range (Method I)
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5.3 Room to building synthesis

In Section 3.5 several hypothesis to achieve a reliable building synthesis were presented,
aimed to obtain a thermal representation on the building level without sacrificing rel-
evant information on the room level. The mathematical tool used to visualize the
monthly data-base of the whole building is the duration graph, where the room tem-
perature is plotted in ascending order. In this section temperature data synthesis is
discussed, while thermal discomfort evaluation on the building level is discussed in
Section 5.4.

Firstly a comparison between mean and median curves for complete data-set is
developed. The curves were obtained averaging every room temperature measurements
for a fixed instant, as discussed in Section 3.5. Figure 5.7 shows the comparison on
the duration graph for a single month plot. It refers to November 2016, where the
deviation is more visible. In order to better compare mean and median use for the data-
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Figure 5.7: Mean and median temperature results comparison for November 2016

set synthesis, Figure 5.8 shows the temperature distribution over time for November
2016 in four points of the duration graph. They are marked in red in Figure 5.7 and
correspond to 1% (a, Figure 5.8a), 33% (b, Figure 5.8b), 66% (c, Figure 5.8c) and 100%
(d, Figure 5.8d) percentage time values on the x-axis of the duration graph. The other
months distribution are shown in Appendix chapter (Section 7.3). The distribution
has a slight negative skew in the left part of the duration graph (Figures 5.8a and
5.8b) and a slight positive skew in the right part (Figures 5.8c and 5.8d). The effect
is observable in Figure 5.7, where the median is higher than the mean in the left part
and lower in the right part. This tendency is observable in every month distribution, as
shown in Section 7.3. However, the skew is not excessively large in any of the studied
distribution, so the central tendency approach is considered reliable.
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(a) Temperature distribution for a percentage
time of 1%
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(b) Temperature distribution for a percentage
time of 33%
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(c) Temperature distribution for a percentage
time of 66%
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(d) Temperature distribution for a percentage
time of 100%

Figure 5.8: Temperature distribution in November 2016

The presence of outliers is clear and it surely influences the mean value. The outliers
tend to show up as temperature measures significantly lower than the others and they
move the distribution to its left side. For example in Figure 5.8c the outlier makes the
distribution to cancel skews present in the main cluster, while ignoring that value the
result would be a positive skew.
However, these measurements still represent the thermal conditions of a single room,
that could not be ignored, but in the meantime they downsize the overheating problem
of the building. Further studies are needed to evaluate how much these measurements
affect the global thermal information.
As explained in Section 3.5, two different methods were tried to filter the data-base
from outlier values:

• Extreme values filtering

• Outlier values filtering

The results from the two methods are compared to evaluate if they improve the synthe-
sis information or not. To fulfill the comparison, Figure 5.10 shows the duration graphs
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featuring mean and median plots for complete data-set, alongside with mean plots for
extreme and outlier data-set filtering methods, while Figure 5.11 shows the comparison
between extreme and outlier filtered temperature distribution for the month of Novem-
ber 2016. The other months distribution comparisons are shown in Appendix chapter
(Section 7.3). Monthly average duration graph comparison is developed hereafter:

• September 2016 (Figure 5.10a): extreme filtered and outlier filtered plots are
pretty close (maximum difference is 0, 33◦C) and the complete data-set mean plot
lies in between. The complete data-set median plot has a significant fluctuation
but it follows the mean plot (maximum difference is 0, 23◦C). For these data-sets
there is no method to prefer over the others

• October 2016 (Figure 5.10b): extreme filtered and outlier filtered plots are pretty
close (maximum difference is 0, 27◦C), but the former is superior, differently from
Figure 5.10a. The complete data-set mean plot follows firmly the outlier filtered
plot. The complete data-set median plot is still fluctuating but pretty close to the
mean one. The extreme filtered plot is the only one giving a different information
from the other methods

• November 2016 (Figure 5.10c): extreme filtered and outlier filtered plots are
more distant compared to previous cases (maximum difference is 0, 38◦C), with
the outlier filtered data-set mean higher than the extreme one. The mean curve
is located among the extreme filtered mean curve and the outlier filtered mean
curve, following the former on the left side (lower temperatures) and the latter on
the right side (higher temperatures). Conversely, the median follows the outlier
filtered mean curve on the left side (lower temperatures) and the extreme filtered
data-set on the right side (higher temperatures)

• December 2016 (Figure 5.10d): extreme filtered and outlier filtered plots are
distant in the left side (maximum difference is 0, 32◦C), while the distance shrinks
to the right until they correspond. The complete data-set mean plot follows firmly
the extreme filtered plot, while the complete data-set median plot is strongly
fluctuating with values higher than the mean on the left side and lower on the
right side. This tendency is visible in every month plot, but it is stronger in this
case

• January 2017 (Figure 5.10e): extreme filtered plot is higher than outlier filtered
one, similarly to conditions of October 2016, with a maximum distance of 0, 26◦C.
Complete data-set mean plot starts lower than outlier filtered plot and ends just
above the extreme filtered one. The complete data-set median plot is quite moved
away from the other plots, being higher than the mean for almost the whole
month, with a maximum distance of 0, 66◦C
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To better understand the values of complete data-set mean (CDMN), complete
data-set median (CDMD), extreme filtered data-set mean (EFDM) and outlier filtered
data-set mean (OFDM) a look at the monthly temperature distribution is needed. The
distribution figures for each month could be found in Appendix chapter (Section 7.3),
while Figure 5.11 shows the temperature distribution comparison for November 2016.

• September 2016 : temperature distribution is nearly normal, so CDMN and CDMD
values are close. On the right side the distribution shows a negative skew, result-
ing in CDMN to be higher than CDMD. Extreme and outlier data-set filtering
work in the same temperature range, but the former cuts more on the right while
the latter cuts more on the left side. Consequently OFDM is higher than EFDM

• October 2016 : temperature distribution shows two outliers on the left side, cor-
responding to two rooms significantly colder than the others, and a positive skew
in the main group of measures, for this reason CDMD is slightly superior than
CDMN. Both extreme and outlier data-set filtering cut the two left outliers, but
the latter cuts some measures on the right side too. The result is a value of
EFDM higher than OFDM, which is closer to CDMN and CDMD

• November 2016 : temperature distribution shows one outlier on the left side, while
the main part of the data-set moves from a negative skew (left side of the duration
graph) to a positive skew (right side of the duration graph), resulting in CDMD
to be higher than CDMN in the left side of the data-set and lower in the right
side. Both extreme and outlier data-set filtering cut the left outlier, but the latter
method has a stronger effect. The result is a value of OFDM higher than EFDM

• December 2016 : temperature distribution shows two outliers on the left side, cor-
responding to two rooms significantly colder than the others, while the main part
of the distribution moves from a negative to a positive skew when the measured
temperatures increase. The result is a value of CDMD higher than CMDN on
the left side and lower on the right side. Extreme data-set filtering cuts only one
left outlier, while outlier data-set filtering cuts both of them. Furthermore outlier
data-set filtering cuts some measures on the right side, resulting in OFDM to be
higher than EFDM due to the weight of the left outlier kept by extreme data-set
filtering

• January 2017 : temperature distribution shows an outlier on the left side, sig-
nificantly different from the main part of the data-set, resulting in median value
to be higher than mean value, especially for the left side of the duration graph,
where the main part of the data-set has a positive skew, while in the right side of
the duration graph the main part of the data-set has a negative skew, leading to
CDMN to be alike CDMD. Both extreme and outlier data-set filtering cut the left
outlier, with the latter cutting some measures on the right side too. The result
is EDFM to be higher than ODFM, since the data-set is moved to the left
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Globally, the data-base shows outliers on the left side, corresponding to rooms with
a significantly lower indoor temperature compared to the others, leading to underrate
the CDMN value. CDMD tends to be higher than CDMN of the left side on the
duration graph and lower on the right, due to the temperature distribution moving
from a negative to a positive skew in the main part of the data-set (ignoring outliers).
This tendency is shown in Figure 5.9, where the skew is computed as follows:

s =
3(Tmean − Tmedian)

σ
(5.1)

Where σ is the standard deviation.
Except for September, which is not totally part of the heating season, the monthly
curves show a skew moving from a negative to a positive value, especially in the main
cluster, when moving from low to high temperatures (see changes from Figure 5.8a to
5.8d).
Extreme data-set filtering method tends to be more tolerant than the outlier data-set
filtering method, which is cutting more measures, especially on the low temperature
side.
Median curve for the complete data-set seems to better represent the whole building in-
door conditions, since it is not cutting any temperature measures, but it is not distorted
by the presence outliers as well.
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Figure 5.9: Monthly skew index plot
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(a) Duration graph comparison for September
2016
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(b) Duration graph comparison for October
2016
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(c) Duration graph comparison for November
2016
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(d) Duration graph comparison for December
2016
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(e) Duration graph comparison for January 2017

Figure 5.10: Mean and median duration graph for complete and filtered data-set
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(a) Extreme filtered temperature distribution
for a percentage time of 1%
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(b) Outlier filtered temperature distribution for
a percentage time of 1%
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(c) Extreme filtered temperature distribution
for a percentage time of 33%
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(d) Outlier filtered temperature distribution for
a percentage time of 33%
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(e) Extreme filtered temperature distribution
for a percentage time of 66%
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(f) Outlier filtered temperature distribution for
a percentage time of 66%
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(g) Extreme filtered temperature distribution
for a percentage time of 100%
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(h) Outlier filtered temperature distribution for
a percentage time of 100%

Figure 5.11: Extreme and outlier filtered temperature distribution in November 2016
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Lastly, the methods to compute average temperature data-set presented in Section
3.5 have to be discussed. The results for September 2016 are shown in Figure 3.9, the
other months figures are shown in Section 7.3.
Figure 3.9a shows the results for Method A, where the room temperature values are
sorted before computing the average. The result is losing the temporal link between the
central value and the dispersion range, identified by standard deviation or quartiles.
Figure 3.9b shows the results for Method B, where the room temperature values are
sorted after computing the average. The result is keeping the temporal link between
the central value and the dispersion range, but through unsorted spread limits.
Method B has to be preferred, in order not to lose the temporal correlation among
data. The central value has to be sorted for the purpose of duration graph, but once
the average is defined, the energy manager should be able to know the actual dispersion
for a specific temperature measure, instead of the spread of sorted values offered with
Method A.
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5.4 Thermal discomfort evaluation

In Section 3.6 several ways to define thermal discomfort on the building level are pre-
sented.
As a result of previous discussions, in this section the following assumptions were made:

• Fixed schedule is used for the occupancy pattern

• Dynamic comfort temperature range is used for thermal discomfort evaluation

• 1st grade polynomial fit is used for energy forecasting

The results for the other hypothesis are shown in Section 7.5.
The information resulting from the different methods used are significantly diverse, in
particular three main groups are compared:

• Mean and median from complete data-set (Methods I,II,III,IV)

• Mean and median from filtered data-set (Methods V,VI)

• Other methods (Methods VII,VIII,IX)

Methods I and II define monthly thermal discomfort through evaluation of the hourly
average temperature, using mean and median temperature, respectively. A comparison
between the goodness of building conditions synthesis achieved by mean and median is
developed in Section 5.3. As discussed, the monthly data-base do not follow a normal
distribution, due to the presence of outliers that move the mean. In particular Figure
5.10 shows that the mean curve is higher than the median one for low temperatures
(left side of the duration graph) and lower for high temperatures (right side of the
duration graph). The result on thermal discomfort evaluation are shown in Table 5.5,
Monthly discomfort comparison:

• September 2016 : As shown in Section 5.3, the mean and median plots for Septem-
ber 2016 are quite close in the left side of the duration graph, while in the right
side the median curve is slightly lower the mean, so the former crosses the thermal
superior comfort boundary after the latter. The thermal discomfort evaluated by
the median is lower than the one evaluated by the mean, but the difference in
terms of discomfort percentage time is narrow (2,5%)

• October 2016 : As shown in Section 5.3, the mean and medium plots for October
2016 are close, especially in the central area of the duration graph. The medium
plot is slightly higher than the mean one, so the former crosses the superior
comfort temperature limit before the latter. The thermal discomfort evaluated
by the median is higher than the one evaluated by the mean, but the difference
in terms of discomfort percentage time is narrow (2,2%)

• November 2016 : As shown in Section 5.3, the mean and medium plots for Novem-
ber 2016 are more diverse compared to the previous months. The medium plot
is higher than the mean plot in the left side of the duration graph and lower in
the right side, so the former crosses the superior comfort temperature limit after
the latter. The thermal discomfort evaluated by the median is lower than the
one evaluated by the mean, with a significant difference in terms of discomfort
percentage (5,4%)
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• December 2016 : As shown in Section 5.3, the mean and median plots for De-
cember 2016 follow a different trend, with the medium plot being higher than
the mean plot in the left part of the duration graph and lower in the extreme
right side, so the former crosses the superior thermal comfort boundary after the
latter. The thermal discomfort evaluated by the median is lower than the one
evaluated by the mean, but the difference in terms of discomfort percentage time
is still narrow (2,7%)

• January 2017 : As shown in Section 5.3, the mean and medium plots show a
strong difference in the left side of the duration graph, that shrinks toward the
right side. When they cross the superior comfort temperature limit, the medium
plot is higher. The thermal discomfort evaluated by the median is higher than the
one evaluated by the mean and the difference in terms of discomfort percentage
time is relevant (6,2%)

Generally Method II presents a lower thermal discomfort percentage time with the use
of predicted dynamic comfort temperature range, while using fixed comfort tempera-
ture range Method I presents a generally lower thermal discomfort percentage time,
since the fixed temperature range is moved downward compared to the predicted one.
Method II gives a proper building information, since the medium plot is less influenced
by the presence of outliers and represents better the actual temperature distribution.
Nevertheless, using Method I could give a more cautious information, since the mean is
moved toward the extreme values. Methods III and IV are developed to evaluate ther-
mal discomfort over the whole dispersion of the data-set, by using Tmean−SD and 1st
quartile to define lower thermal discomfort percentage time (plow) and Tmean +SD and
3rd quartile to define higher thermal discomfort percentage time (phigh). The concept
is to show to the energy manager the information coming from a group of measures
instead using the single central value. The problem lies in the complexity of the dis-
comfort definition, thus the addressees (energy manager and practitioners) would get
just a number, not being able to get a clear idea of what it represents. Of course this
fact would not meet the building managers needs, making these methods not suitable
for the purpose of this work.
Filtering methods were discussed in Section 5.3, with a proper look to their effect on
the temperature distribution. The outlier filtering method revealed to cut more values
compared to the extreme filtering method. This fact means not considering the thermal
conditions of a relevant part of the building, developing an information of questionable
reliability. As shown in Section 5.3, extreme and outlier filtered data-set plots are
parallel on the duration graph, resulting in significantly diverse thermal discomfort in-
formation. Furthermore during some months (October and January) the discomfort
percentage time computed by Method V is higher than the one computed by Method
VI, while during other months (September, November and December) it is lower. Gen-
erally cutting measures out of the data-set restricts the benefits of the whole thermal
discomfort detection method, furthermore the measures dispersion is taken into con-
sideration by the median plot.
Among the other methods, Method VII considers just a narrowed data-set, computing
thermal discomfort using only problematic rooms data. Therefore the information is
not representing the actual thermal conditions of the whole building, but it could be
used alongside with the average plot to monitor the boundary conditions and how much
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they are diverse from the central value. However, Method VII needs another informa-
tion about the percentage of problematic rooms to deliver a meaningful information,
otherwise the energy manager could not know if the discomfort is restricted to few
rooms or if it is spread in the whole building. Due to the extent of data needed to get
a reliable information, Method VII appears not to be effective enough for the purpose
of the work.
Method VIII presents the thermal discomfort percentage time of the room character-
ized by the worst thermal conditions. This approach could be used to get boundary
conditions information and it is useful to avoid considering the central conditions only.
Of course, the resulting discomfort is typically a very number, carrying few information
if used alone. In particular, for the available data-base the worst room has always a
thermal discomfort percentage time around 99%. Therefore this method could be used
alongside with another one dealing with the average building conditions and it could
be especially useful when the latter are good, to monitor if this information is true for
the whole building. Compared to Method VII, Method VIII delivers a more extreme
but clear information that could be preferred if the aim is to avoid thermal discomfort
in the whole building.
Method IX computes mean thermal discomfort percentage time as the mean value of
each room thermal discomfort percentage time, without using the average data-set ob-
tained in the room to building data synthesis. It can be used as reference information
to be compared with the central conditions coming from Methods I and II, but it could
not be used by itself, since it is the average between the thermal problematic rooms
and thermal good ones. As a result, a single room with bad thermal conditions could
twist the thermal comfort information for the whole building. The main problem lies in
avoiding the room to building data synthesis, which prevents data corrupting associated
to the presence of outliers.

The values for thermal discomfort percentage time resulting from the described
methods are compared to the acceptable deviation of 5% as defined by the standard
EN 15251 [6] and described in Section 3.6. It accounts transients for instantaneous
thermal variations due to environmental adjustments (for example windows opening).
Anyway, future improvements of the method should face this threshold and define a
new one that could better fit the global discomfort definition and the actual thermal
conditions.
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Table 5.5: Monthly discomfort evaluation with fixed occupancy and dynamic temper-
ature range

Year Month Method I Method II Method III Method IV Method V

2016 09 37,7% 35,2% 76,9% 61,8% 34,7%

2016 10 10,4% 12,6% 85,7% 63,6% 16,0%

2016 11 16,1% 10,7% 88,4% 61,6% 10,7%

2016 12 12,5% 9,8% 85,7% 56,4% 13,6%

2017 01 42,5% 48,7% 97,0% 72,8% 46,2%

Year Month Method VI Method VII Method VIII Method IX

2016 09 40,7% 40,7% 96,5% 44,7%

2016 10 8,2% 34,6% 98,7% 38,0%

2016 11 18,2% 28,5% 99,6% 38,4%

2016 12 16,7% 40,8% 98,6% 36,2%

2017 01 29,8% 49,5% 99,7% 53,1%
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5.5 Energy use forecasting

In Section 3.7 it was explained how the monthly energy consumption was predicted
from the indoor and outdoor temperature measures. A fit was developed for both a 1st
and 2nd grade polynomial interpolation, trying to define the coefficients of equations
5.2 and 5.3, respectively.

EC = a ∗ ∆t+ b (5.2)

EC = a ∗ ∆t2 + b ∗ ∆t+ c (5.3)

The resulting coefficients are shown in Table 5.6, while the corresponding plots are
shown in Figure 5.12. Table 5.7 shows foreseen energy consumption values, using
optimal indoor temperatures, defined in Section 3.3, from both methods, in comparison
with actual consumption.

Table 5.6: Curve fitting for energy forecasting

1st grade polynomial fit 2nd grade polynomial fit

Model f(x) = p1 ∗ x+ p2 f(x) = p1 ∗ x2 + p2 ∗ x+ p3

p1 1.032 (0.8684, 1.196) 0.009183 (-0.01783, 0.0362)

p2 -8.762 (-12.34, -5.182) 0.6712 (-0.4073, 1.75)

p3 ø -5.732 (-15.55, 4.09)

R-square 0.9926 0.9964

RMSE 0.8573 0.7298

Table 5.7: Foreseen energy consumption for 1st and 2nd grade fits, in comparison with
actual consumption [kWh/m2]

Year Month Actual data 1st grade polynomial fit 2nd grade polynomial fit

2016 09 1,0 0,0 0,0

2016 10 7,5 7,4 7,1

2016 11 13,5 12,1 11,6

2016 12 16,7 16,2 15,9

2017 01 23,6 21,2 21,4
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(a) 1st grade polynomial fit plot
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(b) 2nd grade polynomial fit plot

Figure 5.12: Polynomial interpolation plots

The results in terms of R-square value are nearly identical (see Table 5.6), so there
is no need to embrace a more complex method for the energy forecasting purpose. Bas-
ing the judgment on the R-square and RMSE values, the fit seems accurate.
Table 5.7 shows how foreseen energy consumption values are pretty close among the
two methods. This fact confirms that using the 1st grade polynomial fit would lead to
reliable results.
The main problem lies in the available data-base, since the energy consumption mea-
sures are given on a monthly basis and they need to be coupled with monthly tem-
perature data, available for 5 months only. The result is a data-base with 5 elements
couple, as explained in Section 3.7, corresponding to monthly energy consumption and
monthly mean ∆t values. For a more reliable fit the data-base should cover several
years of measures, in order to avoid wrong evaluations produced by oddity. For exam-
ple, if a winter season is unusually warm the resulting energy consumption measures
would not be the average ones.
However, for the purpose of the work, the presented forecasting method works well
enough, since the goal is not an accurate thermal load prediction, but just a qualitative
one, intended to offer an achievable optimal scenario to the energy manager of the
building.

Table 5.7 shows the foreseen optimal energy use in comparison with the actual
one. As discussed in Section 5.6, due to the overheating problem of the building, the
optimal monthly energy consumption values are always lower than the actual ones, but
the difference is not particularly significant.
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Table 5.8: Actual and optimal energy use and resulting energy saving

Actual energy use 313, 8 MWh

Optimal energy use 286, 6 MWh

Energy saving 27, 3 MWh

However, the values are presented in kWh
m2 , so considering the whole building floor

area of 5042m2, the actual energy use reduction is significant, as shown in Table 5.8.
The results show a significant energy savings value, especially because it comes from a
smarter energy management and does not need expensive investments for structural or
technology improvements.

5.6 Comprehensive figure

In Section 3.8 the developed comprehensive figure was presented, where both actual
and optimal working points are presented, characterizing them by monthly thermal
discomfort percentage time and monthly energy consumption.
The result is shown in Figure 5.13. The thermal discomfort percentage time of the ac-
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Figure 5.13: Comprehensive figure

tual conditions is defined as discussed in Section 5.4, using the mean temperature curve.
The thermal discomfort percentage time of the optimal scenario is defined, as discussed
in Section 3.7, using the central value of the comfort temperature range defined as
discussed in Section 3.3. The resulting thermal discomfort is null, corresponding to the
optimal scenario. Of course an energy manager could prefer an in-between scenario,
for example trying to keep a thermal discomfort percentage time of 5%, corresponding
to the standard boundary.
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The actual monthly energy consumption data are part of the available data-base, as
discussed in Section 3.1. The foreseen energy consumption value for optimal scenario
are evaluated and discussed in Sections 3.7 and 5.5 and could present two scenario:

• If the discomfort comes from an excessively high use of heating (or cooling) sys-
tem, the energy consumption would be reduced by setting a lower (or higher)
operative temperature, resulting in both a comfort and consumption benefit

• If the discomfort comes form an excessively low use of heating (or cooling) sys-
tem, the energy consumption would be increased by setting an higher (or lower)
operative temperature, resulting in an higher expense

The available data lies in the first option and for this reason the foreseen energy con-
sumption values result lower than the actual ones, even after the significant improve-
ments in terms of thermal comfort. However, if the discomfort had been caused by
excessively low use of heating, the information brought by the comprehensive figure
would be equally meaningful, allowing the energy manager to visualize the actual ther-
mal conditions and to have all the tools needed to decide how much getting close to
the optimal scenario.
From this fact comes the main point of the work, whereas the energy manager of the
studied building could get a simple information about indoor conditions, matching
thermal comfort and energy consumption, that could be easy to read and understand,
significant improvements could be achieved, even without technical and construction
interventions. The method do not force a thermal indoor condition, instead it is meant
to offer a clear picture of the actual conditions, letting the energy manager of the
building choose consciously the strategy to adopt.



Chapter 6

Conclusions

6.1 Conclusions

This work developed a method to improve the energy management of buildings by
an easy visualization of IEQ and energy consumption data on the comprehensive fig-
ure. Matching those information allows taking aware choices about HVAC systems
regulation without neglecting neither thermal satisfaction of occupants nor energy per-
formance.

Room to building synthesis was one of the key element of the developed method
and several approaches were studied to come out with the most accurate building
representation. Nevertheless single room information are elaborated and made available
whereas a detailed analysis is needed.

Dealing with thermal satisfaction of building occupants can not avoid considering
their behaviour, therefore a clothing insulation prediction were implemented in the
method to evaluate thermal comfort as accurately as possible. The algorithm showed
good results, improving the effectiveness of the discomfort evaluation compared to the
conditions defined by the standard.

To enhance the decision process, an energy forecasting method was developed, in
order to predict the consumption resulting from the energy manager choice. The algo-
rithm is built using past energy consumption, indoor and outdoor temperature mea-
surements only, in order to be adopted with the information of every data-base.

The developed comprehensive figure shows the monthly information concerning IEQ
and energy use alongside with the optimal scenario based on recommended thermal
conditions and resulting consumption. This tool should serve as a guideline for the
energy manager of the building to allow judging the actual conditions in comparison
to the optimal ones and knowing how far are these two scenarios.

The method was applied to an office building in Czech Republic to be tested and
tuned. It revealed an overheating problem, resulting in significant thermal discomfort
and high energy use. Overheating and overcooling are common problems everyone
experiences and the developed method could help solving them. The study revealed that
whereas the energy manager could get a simple information about indoor conditions,
matching thermal comfort and energy consumption, that could be easy to read and
understand, significant improvements could be achieved, even without technical and
construction interventions.
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The method offers a clear picture of the actual conditions, letting the energy manager
of the building choose consciously the strategy to adopt.

6.2 Future work

As mentioned in Section 5.1, the method accuracy could be improved with a precise
occupancy detection algorithm, by the use of an Extreme Learning Machine (ELM) or
a neural network, able to detect the single room occupancy pattern from CO2 measure-
ment. Several parameters could be coupled to the CO2 to improve the information, as
mentioned in Section 2.2.

The figure could be used to compare different buildings from thermal conditions
point of view. Every building information could be synthesized in a single value of
thermal discomfort and consumption, for example a yearly indication, that could iden-
tify a single point on the comprehensive figure. The result would be a single figure
where every dot represents a single building thermal conditions, leading to an easy
comparison.

This work is dealing only the method describing how the monitoring system could
work, but the actual look available for the users should be improved by a programmer
and/or a designer. The first view should be the comprehensive figure, that can instantly
give the first information about the building thermal conditions, then the user should be
able to access more information. For example by clicking on a dot in the comprehensive
figure, the system could show the actual discomfort percentage of every room or the
discomfort temperature range. All these data are available in the algorithm but they
should be displayed in a proper way.
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Chapter 7

Appendix

7.1 Appendix 1: Matlab script

1 A001 import data
2 %
3 A010 occupancy schedule
4 A011 l ab e l c r e a t i on
5 A012 daymean
6 A013 datac leaning
7 A014 templimit
8 A015 bu i ld ing area
9 %%

10 A020 month creation
11 roomtemperature=c e l l (mm,33 ) ;
12 d i s comfor t=c e l l (mm, 1 ) ;
13 c l e a r i j k k o ld mm m 0 a 0
14 %
15 % Room durat ion graph
16 A030 room plots
17 %
18 A031 compl tab creat ion
19 %media
20 A040 average p lo t s
21 n f i g u r a=mm+pd+1;
22 %ANA’ s Figure
23 A050 anas 1
24 %
25 A060 fo r e ca s t i ng
26 A061 appl i ed formula
27 A062 sav ing ca l cu l a t i on
28 %f i n a l c l ean
29 A070 c l ean ing va lue s

7.2 Appendix 2: Script explanation

A summary of the main parts of the basic script:

• A001 import data: it opens all the data needed from the Excel files downloaded
from the Mervis database, for example temperature measures and energy con-
sumption, as a matrix
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• A010 occupancy schedule: it opens the fixed schedule and it attach it to the
indoor temperature database

• A011 label creation: it creates the labels for every month

• A012 daymean: it calculates the hourly mean temperature for every room

• A013 datacleaning : it creates a new matrix with just the temperature data within
the schedule time.

• A014 templimit : it fixes the standard temperature limits

• A015 building area: it contains the floor area of the building to calculate the
specific energy consumption

• A020 month creation: it creates the line reference in the temperature table for
each month

• A030 room plots: it creates a figure for each month with a duration graph for
each room and the temperature limits, then it calculates the monthly thermal
discomfort for each room.

• A031 compl tab creation: it creates a cell array with the numeric values of each
duration graph

• A030 average plots: it calculates the mean and median hourly temperature, with
standard deviation and quartiles, then it plots the mean and median duration
graph for each month and it calculates the average monthly discomfort

• A050 anas 1 : it creates the comprehensive figure with thermal discomfort in the
x -axis and energy consumption in the y-axis.

• A060 forecasting : it fixes the outdoor temperature database and it calculates
monthly average temperature for both indoor and outdoor temperature

• A061 applied formula: it creates a matrix with the optimal points from the clo
estimation method and it applies the fitting formula to these points, then it
calculates the optimal thermal discomfort and it plots the optimal points on the
comprehensive figure.

• A062 saving calculation: it stores the new data in a new matrix

• A070 cleaning values: it cleans the workspace from the unnecessary results.
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7.3 Appendix 3: Temperature distribution figures
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Figure 7.1: Temperature distribution in September 2016
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Figure 7.2: Temperature distribution in October 2016
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Figure 7.3: Temperature distribution in November 2016
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Figure 7.4: Temperature distribution in December 2016



7.3. APPENDIX 3: TEMPERATURE DISTRIBUTION FIGURES 93

16 18 20 22 24 26 28
0

1

2

3

4

5

6

7

8

9

10

Temperature [°C]

F
re

q
u
e
n
c
y

(a) Temperature distribution for a percentage
time of 1%

20 22 24 26 28 30
0

1

2

3

4

5

6

7

8

9

10

Temperature [°C]

F
re

q
u
e
n
c
y

(b) Temperature distribution for a percentage
time of 33%

22 23 24 25 26 27 28 29 30
0

1

2

3

4

5

6

7

8

9

10

Temperature [°C]

F
re

q
u
e
n
c
y

(c) Temperature distribution for a percentage
time of 66%

25 30 35 40 45 50
0

2

4

6

8

10

12

14

Temperature [°C]

F
re

q
u
e
n
c
y

(d) Temperature distribution for a percentage
time of 100%

Figure 7.5: Temperature distribution in January 2017
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7.4 Appendix 4: Thermal discomfort comparison

This section features tables for thermal discomfort percentage time comparison. Each
table refers to a different method and compare the results for the different scenarios,
that are:

• Fixed occupancy, fixed comfort temperature range (labelled FF)

• Fixed occupancy, dynamic comfort temperature range (labelled FD)

• Dynamic occupancy, fixed comfort temperature range (labelled DF)

• Dynamic occupancy, dynamic comfort temperatre range (labelled DD)

Table 7.1: Thermal discomfort percentage time for Method I

Year Month FF FD DF DD

2016 09 60,8% 37,7% 66,4% 45,2%

2016 10 45,0% 10,4% 44,9% 11,1%

2016 11 35,5% 16,1% 32,8% 14,0%

2016 12 23,7% 12,5% 23,0% 14,5%

2017 01 44,4% 42,5% 44,4% 42,5%

Table 7.2: Thermal discomfort percentage time for Method II

Year Month FF FD DF DD

2016 09 63,3% 35,2% 67,7% 39,6%

2016 10 45,9% 12,6% 45,8% 12,9%

2016 11 28,1% 10,7% 24,6% 7,8%

2016 12 27,5% 9,8% 26,7% 5,5%

2017 01 50,3% 48,7% 50,3% 48,7%

Table 7.3: Thermal discomfort percentage time for Method III

Year Month FF FD DF DD

2016 09 92,5% 76,9% 93,5% 80,6%

2016 10 95,2% 85,7% 95,1% 85,8%

2016 11 93,4% 88,4% 93,3% 86,0%

2016 12 94,4% 85,7% 94,5% 85,5%

2017 01 97,0% 97,0% 97,0% 97,0%
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Table 7.4: Thermal discomfort percentage time for Method IV

Year Month FF FD DF DD

2016 09 87,4% 61,8% 86,2% 65,4%

2016 10 87,9% 63,6% 88,0% 63,6%

2016 11 79,8% 61,6% 79,6% 54,9%

2016 12 74,6% 56,4% 73,3% 61,9%

2017 01 74,2% 72,8% 74,2% 72,8%

Table 7.5: Thermal discomfort percentage time for Method V

Year Month FF FD DF DD

2016 09 58,5% 34,7% 65,0% 41,0%

2016 10 57,1% 16,0% 57,3% 16,4%

2016 11 26,4% 10,7% 26,3% 10,9%

2016 12 24,7% 13,6% 28,5% 14,5%

2017 01 45,7% 46,2% 45,7% 46,2%

Table 7.6: Thermal discomfort percentage time for Method VI

Year Month FF FD DF DD

2016 09 65,3% 40,7% 69,6% 44,7%

2016 10 44,6% 8,2% 44,9% 8,4%

2016 11 43,4% 18,2% 41,5% 17,9%

2016 12 29,6% 16,7% 29,4% 14,5%

2017 01 33,3% 29,8% 33,3% 29,8%

Table 7.7: Thermal discomfort percentage time for Method VII

Year Month FF FD DF DD

2016 09 62,8% 40,7% 68,2% 47,9%

2016 10 81,8% 34,6% 81,8% 34,2%

2016 11 53,5% 28,5% 51,8% 24,1%

2016 12 45,3% 40,8% 44,8% 40,1%

2017 01 64,2% 49,5% 64,2% 49,5%
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Table 7.8: Thermal discomfort percentage time for Method VIII

Year Month FF FD DF DD

2016 09 99,0% 96,5% 99,1% 96,8%

2016 10 99,6% 98,7% 99,6% 98,7%

2016 11 99,6% 99,6% 99,4% 99,7%

2016 12 99.0% 98,6% 99,1% 98,8%

2017 01 99.7% 99,7% 99,7% 99,7%

Table 7.9: Thermal discomfort percentage time for Method IX

Year Month FF FD DF DD

2016 09 60,3% 44,7% 64,3% 49,0%

2016 10 44,9% 38,0% 45,0% 38,1%

2016 11 41,3% 38,4% 40,5% 38,0%

2016 12 37,5% 36,2% 36,9% 35,9%

2017 01 45,1% 53,1% 45,1% 53,1%
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7.5 Appendix 5: Comprehensive figures for every scenario
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Figure 7.6: Comprehensive figure for Method I thermal discomfort evaluation for fixed
occupancy and fixed comfort temperature range
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Figure 7.7: Comprehensive figure for Method II thermal discomfort evaluation for fixed
occupancy and fixed comfort temperature range
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Figure 7.8: Comprehensive figure for Method III thermal discomfort evaluation for
fixed occupancy and fixed comfort temperature range
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Figure 7.9: Comprehensive figure for Method IV thermal discomfort evaluation for
fixed occupancy and fixed comfort temperature range
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Figure 7.10: Comprehensive figure for Method V thermal discomfort evaluation for
fixed occupancy and fixed comfort temperature range
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Figure 7.11: Comprehensive figure for Method VI thermal discomfort evaluation for
fixed occupancy and fixed comfort temperature range
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Figure 7.12: Comprehensive figure for Method VII thermal discomfort evaluation for
fixed occupancy and fixed comfort temperature range
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Figure 7.13: Comprehensive figure for Method VIII thermal discomfort evaluation for
fixed occupancy and fixed comfort temperature range
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Figure 7.14: Comprehensive figure for Method IX thermal discomfort evaluation for
fixed occupancy and fixed comfort temperature range
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Figure 7.15: Comprehensive figure for Method I thermal discomfort evaluation for fixed
occupancy and dynamic comfort temperature range
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Figure 7.16: Comprehensive figure for Method II thermal discomfort evaluation
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Figure 7.17: Comprehensive figure for Method III thermal discomfort evaluation
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Figure 7.18: Comprehensive figure for Method IV thermal discomfort evaluation
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Figure 7.19: Comprehensive figure for Method V thermal discomfort evaluation
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Figure 7.20: Comprehensive figure for Method VI thermal discomfort evaluation
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Figure 7.21: Comprehensive figure for Method VII thermal discomfort evaluation
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Figure 7.22: Comprehensive figure for Method VIII thermal discomfort evaluation
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Figure 7.23: Comprehensive figure for Method IX thermal discomfort evaluation
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Figure 7.24: Comprehensive figure for Method I thermal discomfort evaluation for
dynamic occupancy and fixed comfort temperature range
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Figure 7.25: Comprehensive figure for Method II thermal discomfort evaluation for
dynamic occupancy and fixed comfort temperature range
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Figure 7.26: Comprehensive figure for Method III thermal discomfort evaluation for
dynamic occupancy and fixed comfort temperature range
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Figure 7.27: Comprehensive figure for Method IV thermal discomfort evaluation for
dynamic occupancy and fixed comfort temperature range
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Figure 7.28: Comprehensive figure for Method V thermal discomfort evaluation for
dynamic occupancy and fixed comfort temperature range
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Figure 7.29: Comprehensive figure for Method VI thermal discomfort evaluation for
dynamic occupancy and fixed comfort temperature range
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Figure 7.30: Comprehensive figure for Method VII thermal discomfort evaluation for
dynamic occupancy and fixed comfort temperature range
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Figure 7.31: Comprehensive figure for Method VIII thermal discomfort evaluation for
dynamic occupancy and fixed comfort temperature range
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Figure 7.32: Comprehensive figure for Method IX thermal discomfort evaluation for
dynamic occupancy and fixed comfort temperature range
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Figure 7.33: Comprehensive figure for Method I thermal discomfort evaluation for
dynamic occupancy and dynamic comfort temperature range
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Figure 7.34: Comprehensive figure for Method II thermal discomfort evaluation for
dynamic occupancy and dynamic comfort temperature range
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Figure 7.35: Comprehensive figure for Method III thermal discomfort evaluation for
dynamic occupancy and dynamic comfort temperature range



7.5. APPENDIX 5: COMPREHENSIVE FIGURES FOR EVERY SCENARIO 107

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

Sep  

Oct  

Nov  

Dec  

Jan  

 Monthly energy consumption against % of discomfort 

   Discomfort time [%]   

 E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
s
 [

k
W

h
/m

2
] 

Sep  

Oct  

Nov  

Dec  

Jan  

 

 

Actual consumption

Optimal consumption

Figure 7.36: Comprehensive figure for Method IV thermal discomfort evaluation for
dynamic occupancy and dynamic comfort temperature range
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Figure 7.37: Comprehensive figure for Method V thermal discomfort evaluation for
dynamic occupancy and dynamic comfort temperature range

0 5 10 15 20 25 30 35 40 45
0

5

10

15

20

25

Sep  

Oct  

Nov  

Dec  

Jan  

 Monthly energy consumption against % of discomfort 

   Discomfort time [%]   

 E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 [

k
W

h
/m

2
] 

Sep  

Oct  

Nov  

Dec  

Jan  

 

 

Outliers Cleaned Actual Data
Optimal consumption

Figure 7.38: Comprehensive figure for Method VI thermal discomfort evaluation for
dynamic occupancy and dynamic comfort temperature range
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Figure 7.39: Comprehensive figure for Method VII thermal discomfort evaluation for
dynamic occupancy and dynamic comfort temperature range
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Figure 7.40: Comprehensive figure for Method VIII thermal discomfort evaluation for
dynamic occupancy and dynamic comfort temperature range
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Figure 7.41: Comprehensive figure for Method IX thermal discomfort evaluation for
dynamic occupancy and dynamic comfort temperature range


