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Introduction

In�ation theory was conceived to solve the shortcomings of of the standard Hot Big-Bang model, as

the �atness of universe and horizon problem. Further, it was realized that it provides us also with

a mechanism which explains the origin of all the anisotropies and inhomogeneities we are observing

nowadays, namely CMB anisotropies and Large scale structures (LSS), where it traces them back

to a tiny primordial quantum �uctuations (of one scalar �eld or more) during the early universe

which got stretched to astrophysical scales by the accelerated expansion and ampli�ed by gravitational

instability; similarly, in�ation tends to predict through the same mechanism a relic background of

primordial gravitational waves (or gravitons) [30, 44]. As a consequence of this mechanism and as

con�rmed by data, in�ation leads with a striking success, toward a quasi-scale invariant primordial

power spectra of CMB anisotropies with presence of acoustic peaks as characteristic signature of

adiabatic initial conditions that can be set by in�ation [2]. Hopefully, observations will con�rm soon

the same quasi-scale invariant power spectrum for tensor perturbations through the detection of the B

mode polarization of CMB. However, this convincing scenario is still facing two puzzles which make,

within the suggested solutions, the subject of the thesis.

It has been shown that the in�ationary accelerated expansion drives the initial vacuum coherent

state of curvature and tensor �uctuations into a strongly squeezed state [35] which is a step toward

classicalization of those �uctuations. Since in the strong squeezing limit, the quantum expectations

values of a product of the perturbations �elds operators are indistinguishable from ensemble averages

over products of classical stochastic �elds [39, 66, 6], at least up to two point functions. In other

words, although produced by di�erent mechanisms, both the classical and quantum �uctuations are

normalized to give rise to the same equal-time correlation functions. Unfortunately this implies that

it is extremely di�cult to observe genuine quantum e�ects on CMB, since in this strong squeezing

limit, the measurement of power spectrum alone could not be used to infer the quantum origin of

the primordial perturbations. Nevertheless, at the end, there must be either a classical or quantum

origin for the primordial perturbations, so how could we prove one scenario and rule out the other?

In other words, we are looking for an observable that could distinguish between the two scenarios,

and get di�erent predictions which could, subsequently, be confronted with future experiments. To

this end, many e�orts have been devoted, and we will present the main ones. One of them was

3
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inspired from the work of J.Bell where, as is famously known, he formulated an inequality which must

be respected by any local classical (hidden variable) theory and violated by any non local quantum

theory, and thanks to this inequality it was possible through the experiments carried out since then

to rule out any possibility for a local hidden variable theory. So inspiring from this success we ask

ourselves whether is there any possibility for such an experiment in cosmological context with, of course,

di�erent approaches and ingredients? the answer turns out to be yes, and we will present the ideas

suggested which imply, at least in principle, the possibility of having models that contains an observable

subject to bell inequalities, where J.Maldaecena [46] has devised a baroque model based on existence

of two scalar �elds alongside the in�aton �led which helped to construct a cosmological Bell operator.

Another approach, which is more concrete, was adopted by J.Martin et al and also by Choudhury et al

[49, 50, 51, 24] where they constructed dichotomic operators from the Mukhanov Sasaki (MS) variable,

that is a continuous �led operator, to get a cosmological Bell operator. However, this approach is still

facing some problems due to the impossibility of measuring the extremely suppressed decaying mode

of perturbations, in addition to the non commutativity of some of them with MS variable. So we

conclude that the implementation of bell inequalities in cosmology is still an active research area.

Adopting the scenario of a quantum origin for the universe leads to a confusion that needs to be

cleaned away in order to have a rigid formalism for the derivation of primordial perturbations [66, 65].

We observe certainly a classical universe rather than a quantum one, where we do not observe any of the

weird properties of quantum mechanics, such as superposition of states implied by the squeezed state.

So how did quantum superposition among the quantum state of perturbations was destroyed, and how

it collapsed into a single outcome which represents the inhomogeneous observed universe; besides, why

it collapsed in one basis rather than another. Those last questions get even more serious in the context

of Copenhagen interpretation that attributes the collapse to the act of an external observer which for

sure is not the case for the primordial universe that is considered a single system with no external

classical domain. All the aforementioned questions boil down to the quantum measurement problem

consisting of three aspects that , namely, are the non observability of interference, the problem of

preferred basis and the problem of outcomes, and in order to tackle this questions many models have

been suggested, and cosmology gives the chance to test and constrain those models in a completely

di�erent physical scales compared to our laboratories experiments. Among the many phenomenological

models devised to solve the quantum measurement we �nd dynamical collapse models and decoherence

as the leading ones and the most adequate to apply in cosmology.

The Dynamical, or objective, collapse models are based on modifying Schrodinger equation by

coupling the quantum system to an external stochastic classical �eld called noise, which is supposed to

induce the collapse of the wavefunction. It is worth to mention that collapse models are not formulated

yet in a relativistic context so their application to cosmology, where quantum �eld theory on curved

spacetime governs, should be taken carefully [9, 56]. But the justi�cation to take risk and apply

them in the study of primordial perturbations context is based on the fact that at linear order the
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di�erent Fourier modes evolve independently and they do not interact, thus at this level we could

pass the need for a quantum �eld description. Collapse models are divided into several types, we will

consider two of them, quantum mechanics with universal position localization model (QMUPL) and

Continuous spontaneous localization model (CSL). Applying those models in a cosmological context

and being guided by the high accurate data at our disposal, especially the well con�rmed quasi scale

invariant power spectrum, will lead to constraints on the values of their free parameters which could

subsequently be confronted with the values obtained in laboratory experiments [56, 29, 54, 55].

Decoherence is based on the fact that a quantum system is no more a closed but rather an open

system interacting with its environment and this idea leads to solve the �rst two aspects of measurement

problem without the need to an external observer, but whether it solves the third aspect or not is still

a matter of debate[68] . Through applying decoherence we are considering our whole perturbations

spectrum as open quantum system. Therefore, we study the e�ects of self interactions of large and

short modes of primordial �uctuations, or their interactions with an environment consisting of the rest

degrees of freedom in universe ( which could be standard model �elds that populate post in�ation

era, the beyond standard model �elds,..etc). Decoherence implementation will lead to corrections to

the two and higher point correlation functions of primordial curvature (density) perturbations and

gravitational waves. Where, non vanishing higher-order correlators (i.e primordial non-Gaussianity)

has emerged in the last ten years as a precision tests of in�ation and early universe physics [8, 3]. Most

interestingly, J.Martin et al [53, 52] showed that considering a very massive scalar �eld as environment

for the primordial scalar perturbations will induce a scale invariant corrections to the two point and

four point functions for some value in parameter space of the model they devised. Their computations

make their model in agreement with CMB data, especially regarding the power spectrum which is well

measured. However, due to the type of the interactions considered, J.Martin et al obtained a vanishing

three point function, so our idea was to adopt a di�erent approach and show that for a di�erent type

of interaction operator, there is a possibility of having non vanishing three point function and we

gave its explicit expression. Through our approach we succeeded to generalize the previous results of

J.Martin et al, but also to shed light on new insights and corrections to their work. Another important

result of the thesis, is that we succeeded to generalize the model to include the primordial tensor

perturbations and compute decoherence induced corrections to their power spectrum; the correction

was found to be blue tilted which represents an interesting result. Also combining the corrections to

tensor and curvature perturbations one, we computed decoherence induced correction to the tensor

to scalar ratio. As a conclusion for this part of thesis, we notice that implementing decoherence

in in�ationary context and upon confronting the results obtained for the di�erent point correlation

functions with data will lead to bounds on the strength of interaction between system-environment

and this could reveal some properties of in�ation era through constraining the possible environments.

Another consequence of considering decoherence is the improvement of �t for some in�ation models

with data as power law in�ation, and ruling out others as natural in�ation model.
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All in all, no one denies the success of in�ation in making many strong predictions. However,

in�ation formalism regarding the quantum origin of primordial cosmological perturbations still does not

answer all questions; in particular, the question of quantum to classical transition and the breakdown

of homogeneity and isotropy in the early universe. The answer to this two questions could solve some

anomalies and bring new predictions into light, in addition to constraining any possible new physics

that could be probed in the early universe.



Chapter 1

Quantum �uctuations in the in�ating

universe

The aim of this �rst chapter is to discuss the primordial cosmological perturbation under the frame

of in�ation theory. In contrast to other models, in�ation consider our highly inhomogeneous and

anisotropic universe to be seeded by primordial tiny quantum �uctuations, of the gravitational and

in�aton �eld(s), superposed on top of a highly homogeneous and isotropic universe. We try to con-

vince the reader through this chapter that there is a missing chapter in the in�ationary scenario of

the origin of universe. The chapter is supposed to answer to a crucial question, invoked by many

leading cosmologists, and its answer could bring us to a very important observational constraints and

predictions, because it could open the exciting possibility of observing for the �rst time a genuine

quantum gravitational e�ect. The question could be expressed as follow1

The success of the in�ationary picture about the quantum origin of CMB anisotropies and large scale

structures requires the primordial quantum �uctuations to be converted into classical spatial variations

in the energy density, whose amplitude varies stochastically as one moves from one Hubble patch to

another within the Universe during the much later recombination epoch [18]. Therefore, Starting

from a universe considered as closed quantum system that undergoes a pure unitary evolution, and

observing a purely classical universe around us necessitates an understanding of how did this quantum

to classical transition took place?

To grasp fully the previous question we need to remember that an in�ationary period is supposed

to erase all memory of initial conditions, leading to a �at, homogeneous and isotropic early universe

1In [12] it was argued that the question we are about to express is actually two distinct questions: 1) the �rst is about
classicalization of primordial quantum �uctuations and 2) second is about the breakdown of homogeneity and isotropy.
However, we do not see the point of such separation as we will see clear from our explanation below, namely, because
any mechanism that is responsible for classicalization is non unitary process that could, also, induce a breaking of the
initial symmetries.

7



CHAPTER 1. QUANTUM FLUCTUATIONS IN THE INFLATING UNIVERSE 8

with tiny quantum �uctuations superposed on top of it. However, we should be careful not to confuse

the quantum �uctuations, that are a mere intrinsic quantum uncertainties on the �led state2, with a

statistical physical �uctuations of the �eld. In other words, we know that in quantum mechanics and for

given system S, we cannot argue that S has a de�nite value of an observable Ô prior to its measurement,

which takes place once the system wave function Ψ collapses into an eigenstate of Ô. Before the

collapse, the system state undergoes a unitary evolution that preserves the symmetries of initial state3,

it is only after the collapse, that is a non unitary operation, the initial symmetries of the state get

broken. Having said that, we conclude that the state of the universe is still isotropic and homogeneous

until the wavefunctional of our quantum �uctuations collapse and give rise to statistical and physical

�uctuations. Subsequently, those physical �uctuations evolve classically and give rise, at late time, to

the highly inhomogeneous and anisotropic universe. Therefore, in�ation scenario, implicitly, assumes

a transition from a symmetric quantum state to an essentially classical non-symmetric one4, so how

this transition did took place? and how a single �eld con�guration was chosen out of superposition of

con�guration? [63]

The previous two questions shows that, indeed, there is a missing chapter in the in�ationary scenario

of the origin of universe, so the current chapter serves to discuss in more details the two questions,

and the rest chapters of thesis will attempt to be the missing one!

1.1 Introduction to In�ation

A universe that is perfectly homogeneous and isotropic singles out a unique form of spacetime geom-

etry which is described by the maximally symmetric Friedmann-Lemaitre-Robertson-Walker (FLRW)

metric written as

ds2 = a2 (η)

[
−dη2 +

dr2

1− κr2
+ r2dΩ2

]
, (1.1)

where a (η) is the scale factor encoding the expansion of universe, η is the conformal time related to

the comic time through

dη =
dt

a (t)
, (1.2)

2These could be understood clearly by remembering that the quantum �uctuations are consequence of Heisenberg
uncertainty principle.

3In our case in�aton is initially in Bunch-Davis vacuum that is homogeneous and isotropic state, and it evolves into
a squeezed state which is still a homogeneous and isotropic state. So there must be a non unitary evolution that would
break the symmetry and give rise to physical �uctuations.

4We will see later on this chapter that an evolution governed by Schrodinger equation could not account by itself for
such transition.
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(t, r, θ, φ) are the spherical comoving coordinates measured by an observer comoving with cosmic �uid5,

and dΩ2 = dθ2+ sin2 (θ) dφ2 is the in�nitesimal solid angle and the curvature κ takes the values

κ =


+1 spatially closed

0 spatiallyflat

−1 spatially open

, (1.3)

According to our current observations, the universe is very close to be spatially �at, so to a good a

approximation our universe could be described by the metric

ds2 = a2 (η)
[
−dη2 + dx2

]
, (1.4)

where we used Cartesian coordinates this time, with dx2 = δijdx
idxj . Using Einstein equations

derived from (1.1), we obtain the Friedman equations which govern the evolution of scale factor a as

function of matter content of the universe [10, 30]

H2 = ρ
3M2

pl
− κ

a2 ⇐⇒ (a′)
2

= ρa4

3M2
pl
− a2κ

ä
a = − 1

6M2
pl

(ρ+ 3P )⇐⇒ a′′

a3 = − 1
6M2

pl
(ρ− 3P )

, (1.5)

where H = a′

a2 is Hubble expansion rate, with a prime denoting derivative with respect to η and a dot

denoting a derivative with respect to t. In addition, ρ and P are the background density and pressure,

respectively, that are linked through the constant equation of state P = ωρ, where ω depend on the

energy content considered 

ω = 0 Dust or pressurelessmatter

ω = 1
3 Radiation

−1 Cosmological constantΛ

, (1.6)

Another useful quantity is the so called particle horizon that quanti�es the maximum comoving

5Multiplying them by the scale factor gives rise to coordinates. For a closed universe 0 ≤ r ≤ 1
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distance that a light signal could travel between two times ηi and η
67

dH (t) = η − ηi =

ˆ t

ti

dt

a (t)
=

ˆ ln a

ln ai

(aH)
−1
d ln a , (1.7)

we see that particle horizon is proportional to the comoving Hubble radius8 de�ned by (aH)−1. Using

the constant equation of state mentioned before, It could shown that

(aH)
−1

= H−1
0 a

1
2 (1+3ω) , (1.8)

so for a �nite particle horizon we have

dH (t) =
2

(1 + 3ω)
(aH)

−1
, (1.9)

notice from second Freedman equation in (1.5) that as long as ω > − 1
3 we have a decelerating universe,

therefore, all familiar matter contents satisfying strong energy condition 1+3ω > 0 implies an increasing

of the Hubble radius (aH)
−1
. This last remark tells us that if two patches of the universe get into causal

contact with each other at some time t, then for all t′ < t they were for sure causally disconnected

since (aH)
−1

increases only. However, observations tells us that the cosmic microwave background9

(CMB) is very isotropic, where, we can observe regions that share the same statistical properties (in

particular the same temperature T , up to very tiny �uctuations δT
T ≈ 10−5), without having been in

causal connection ever before, because they are separated by distances that are much larger than the

largest distance traveled by light in all the history of the universe. In particular, detecting two photons

which come from two di�erent directions that are separated by more than one degree on celestial sphere

implies that they were never in causal contact10, see �gure (1.1), and this makes us wonder how they

share almost the same temperature though they have never interacted with each other? This question

sheds light on the horizon problem.

An intuitive solution for horizon problem is to assume that the causally disconnected patches

observed in universe at some time were, actually, during the very early universe in causal contact but

a rapid acceleration phase of the universe expansion caused them to get causally disconnected, since

an accelerated expansion implies a decreasing of Hubble radius (aH)
−1
. After this acceleration phase,

the expansion starts to decelerate and the two patches renter the horizon of each other at late times,

or at least our horizon. This early exponential accelerated phase of expansion of universe is called

6We set the speed of light c = 1.
7It could also be understood as the maximum coordinate distance between two points that have been in causal contact

at some point since ti and until time t.
8Roughly speaking, the Hubble radius measures the distance that a light signal could cross as the scale factor doubles.
9It is electromagnetic radiation that was emitted when electrons recombined with protons to form neutral Hydrogen

atoms. Those last could not scatter the thermal radiation, therefore the universe became transparent to radiation and
photons started their free streaming journey since then until we detect them with our satellites.

10This means that their past light cones do not overlap.
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Figure 1.1: Illustration of horizon problem: Any two points on the surface of last-scattering that are
separated by more than 1 degree, appear never to have been in causal contact. We illustrated this for
opposite points on the sky labeled p and q. [11]

in�ation, which solves also other shortcomings of standard Hot Big-Bang model as Flatness problem

and unwanted relics [44]. . It is worth to mention that an exponential acceleration phase is also

called de-Setter phase which corresponds to a universe energy density that is dominated by a kind of

cosmological constant. However, since we want in�ation to last for a limited period and give rise, at

the end, to radiation era, we are actually looking for a quasi de-Sitter phase.

On mathematical level, we can see from second Freedman equation in (1.5) that an accelerated

expansion
..
a > 0 requires

..
a > 0⇒⇒ ω < −1

3
, (1.10)

but since the energy density could only be positive,i.e ρ > 0, we infer from the previous equation that

in order to have in�ation we need a matter source with negative pressure P < 0. For sure ordinary

matter could not, since they satisfy the strong energy condition, while from (1.10) we see the need

for a �uid that violates strong energy condition, i.e 1 + 3ω<0 . The constraint (1.10) could also be

rexpressed as
..
a > 0⇒ ε1 < 1 , (1.11)

where ε1 = − Ḣ
H2 is called the �rst slow roll parameter for a reason that will be clear in am moment.

But an accelerated phase of expansion alone is not enough to solve Horizon problem! we must be sure

that such accelerated lasted enough time to allow for, at least, the scale that we can probe today to
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Intorducing−−−−−−−→
Inflation

Figure 1.2: Illustration of how in�ation does solve horizon problem. Left: The intersection of our
past light cone with the spacelike slice labeled �recombination" corresponds to the �surface of last-
scattering". We see that without in�ation, most of points on CMB do not have overlapping past light
conses. Right: While introducing in�ation we, somehow, give those points enough time to interact in
their past, and we send the Big bang time singularity to the in�nite past.[11]

be under the horizon when in�ation took place i.e

(a0H0)
−1 ≤ (aiHi)

−1
, (1.12)

where (· · · )0 refers to today's values, and (· · · )i to the values at beginning of in�ation. De�ning the

number of e-folds N by

N = ln

(
af
ai

)
, (1.13)

we can show that in order for in�ation to solve the horizon problem we need N ' 60 − 70, said

di�erently, the early universe should had been expanded by a factor of 1026. It could be shown that

similar values of N could solve the other problems of standard Hot Big-Bang model .

There is a natural question that one can ask: What caused this accelerated expansion? As men-

tioned previously, it could not be the ordinary matter. Actually, it could be shown that a scalar �eld

ϕ, called in�aton, could cause in�ation within some requirements to be ful�lled11. The full action of

our early universe with an in�aton could be written as

Stot = SHE + Sϕ + Sm =
M2
pl

2

ˆ
d4x
√
−g
[
R− 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
+ Sm , (1.14)

11The basic idea behind a scalar �eld, is that it could mimic an e�ective, positive, cosmological constant and is given
by Λeff = 8πG 〈ρ〉, where 〈· · · 〉 refers to vacuum expectation value, and ρ is energy density of our �eld.
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where SHE is the Hilbert Einstein action, Sϕ is the in�aton action, and Sm is action of possible other

�elds present along in�aton. In the last equation, g is the determinant of the metric tensorgµν , R

is the curvature scalar, and V (ϕ) is the potential that possibly has driven in�ation, and it is crucial

for the understanding of the physics of in�ation. There are di�erent forms of V (ϕ) depending on the

model we are considering, we will give some examples in chapter 4. Minimizing the above action with

respect to ϕ, i.e δS
δϕ = 0, yields the �eld equation satis�ed by12 ϕ

1√
−g

∂µ
(√
−ggµν∂νϕ

)
− V ′ (ϕ) = 0 , (1.15)

then minimizing the action with respect to the metric yields the stress energy tensor

Tµν = − 2√
−g

δS

δgµν
=

(
−1

2
gαβ∂αϕ∂βϕ− V (ϕ)

)
− V ′ (ϕ) . (1.16)

Which enters into Einstein equation

Gµν =
1

M2
Pl

Tµν , (1.17)

with Gµν being the Einstein tensor. In case of FLRW metric, the stress energy tensor has the compo-

nents
Tµν =

(
1
2 ϕ̇

2 − V (ϕ)
)
δµν − δ 0

µ δ
0
ν

.
ϕ

2

⇒ ρ = 1
2 ϕ̇

2 + V (ϕ) , P = 1
2 ϕ̇

2 − V (ϕ)
, (1.18)

a very crucial remark is that P could be negative even for a positive potential V . The �rst Friedman

equation13 and �eld equation (1.15) now become

H2 = 1
3M2

pl

(
1
2 ϕ̇

2 + V (ϕ)
)

ϕ̈ +3Hϕ̇+ V ′ (ϕ) = 0

. (1.19)

We discuss, now, the conditions that in�aton should verify in order to realize the early acceleration

phase of universe expansion. If we impose the constraint (1.10) on the in�aton �eld, then from (1.18)

we �nd

ω < −1

3
⇐⇒ P < −ρ

3
⇒ ϕ̇2 � V , (1.20)

therefore, In�ation occurs if the the potential term V dominates over the kinetic term ϕ̇2, and this

12Prime here denotes taking a derivative with respect to the scalar �eld ϕ. This should not be confused with derivative
with respect to the conformal time η; potential V is a function of ϕ only.

13For a �at universe, i.e κ = 0.
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could be done by a su�ciently �at potential. Such in�ation is called the slow roll in�ation14 and is

well compatible with data [44, 4, 3]. The constraint (1.20) is called �rst slow roll condition, and in

order to assure that in�ation lasts for enough time we need to introduce a second slow roll condition

that is de�ned by

ϕ̈� 3Hϕ̇ . (1.21)

After some straight forward calculations exploiting (1.19, 1.20, 1.21), we can show that the �rst slow

roll parameter we de�ned in (1.11) is given by

ε1 = − Ḣ

H2
' 3

2

ϕ̇2

V
, (1.22)

form where we can understand its name, therefore, ε1 could be seen as the ratio between kinetic energy

and potential15. Using now second slow roll condition (1.21) we can de�ne a second slow roll parameter

that is de�ned by16

ε2 = − ϕ̈

Hϕ̇
� 1 . (1.23)

There are various potentials which ful�ll the two slow roll conditions, more details could found in

[44, 10].

During in�ation the observed universe can become extremely homogeneous and isotropic. How-

ever, small inhomogeneities always exist due to quantum �uctuations17. Therefore, we may ask several

questions: How to describe those �uctuations and compute their evolution? Since they will be quan-

tized and in the matter of predictive power and computations easiness, is there an advantage in using

Heisenberg picture over Schrodinger one ? Or they are totally equivalent? Our next section carries

the answers to those questions.

1.2 Heisenberg or Schrodinger picture ?

Since we are talking about quantum perturbations in in�ation then we should choose the picture to work

with, Heisenberg or Schrodinger. Even though it is well known that they are equivalent in their physical

implications, still one picture could be more convenient to work with than the other, due to di�erence

14Fortunately, it could be shown that slow-roll solution is an attractor: systems with wildly di�erent initial conditions
tend towards it as the �eld value changes.

15It could also be shown that ε1 ' εV1 = 1
16πG

(
V ′

V

)2
,so in this sense εV1 quanti�es the �atness of potential. εV1 is

called �rst potential slow roll parameter.

16Similarly, It could also be shown that ε2 = εV2 − ε1, with εV2 = 1
16πG

(
V ′

V

)2
. So in this sense εV2 constrains the

�atness of potential to last enough time. εV2 is called second potential slow roll parameter.
17It is worth remarking that the theory was not engineered to produce these �uctuations, but that their origin is

instead a natural consequence of treating in�ation quantum mechanically. [11]
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between the two in the language and parameters used to describe the state of a quantum system

[66]. On the one hand, Heisenberg picture is featured by the use of mode functions and Bogolubov

transformations for creation and annihilation operators, where the study of primordial perturbations

in this picture usually ends up by considering the mode functions as classical variables with stochastic

Gaussian amplitudes, and some cosmologists see this answers to the of question classicaliztion of

perturbations [39, 6, 35], but we will see that this is not enough! [73, 63]. On the other hand, the

Schrodinger picture is featured by the use of the wave function and Schrodinger equation to study

its evolution, and this picture is more practical to implement decoherence and collapse models in the

study of in�ationary perturbations [56, 29, 53]. We will see throughout this chapter how the squeezed

state formalism links the two pictures together in the cosmological context following [66, 6]. Let us

now translate the above discussion into equations.

1.2.1 Heisenberg picture and squeezing formalism

Since we are about to discuss in�ationary �uctuations we need to go beyond the homogeneous and

isotropic FRW metric, therefore superposing small perturbations on top of FLRW metric gives rise to

the perturbed one, which including all type of metric perturbations, scalar, vector, tensor, could be

written as18 [67, 1, 58]

ds2 = a2 (η)

{
−
(

1 + 2
∑+∞
n

ψ(n)

n!

)
dη2 + 2

∑+∞
n

ω
(n)
i

n! dxidη +

[(
1− 2

∑+∞
n

φ(n)

n!

)
δij +

∑+∞
n

χ
(n)
ij

n!

]
dxidxj

}

ωi = ∂iω
q + ω⊥i

χij = Dijχ
q + 2∂(iχ

⊥
j) + χTij

,

(1.24)

where n stands for the order of perturbations. ψ, φ, ωq,χq represents metric scalar perturbations,

ω⊥i , χ
⊥
i , χ

⊥
j the pure transverse (i.e divergence-free) vector parts

(
∂iω⊥i = 0, ∂iχ⊥i = 0

)
, and χTij is

transverse trace-free pure tensor parts19
(
∂iχTij = 0, χiTi = 0

)
, �nally Dij is the trace free operator. We

will not go into details here, since our aim in this chapter is to discuss the quantized �elds in �at

FLRW background , however more details on the relativistic cosmological perturbations and the gauge

problem could be found in many of the standard books as [44, 30]. In what follows we will focus

on scalar perturbations up to �rst order since they are the dominant in CMB and are the only ones

observed so far, in addition, to the fact that they decouple from the tensor ones20, so (1.24) becomes

18Now on we put ourselves in a �at universe, and switch to Cartesian coordinates.
19Of course all those perturbations are spacetime dependent since we are considering an inhomogeneous and anisotropic

universe.
20We will discuss the tensor perturbations in the chapter devoted to decoherence.
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ds2 = a2 (η)
{
− (1 + 2ψ) dη2 + 2ωidx

idη +
[
(1− 2φ) δij +Dijχ

q]dxidxj
}
, (1.25)

due to the gauge freedom the four scalar degrees of freedom could be reduced into only two[7, 61] which

by turn could be combined into single gauge invariant (GI )quantity, namely the Bardeen potential [7]

ΦB (η,x) = −φ− 1

6
∇2χq +Hωq − 1

2
H
(
χq) , (1.26)

primes denote derivatives with respect to η, gauge invariance formalism is well suited to study the

evolution of vacuum �uctuations as is the case in in�ationary scenario.

Having presented the geometric part of perturbations we turn now to matter sector. The in�aton

is decomposed into classical background ϕ0 (η) plus a �uctuation δϕ (η,x) to be quantized later, this

last, i.e δϕ (η,x) can be treated as a massless scalar �eld, which is an excellent approximation when

the in�aton �eld satis�es the slow-roll conditions [39]

ϕ (η,x) = ϕ0 (η) + δϕ (η,x) , (1.27)

similarly to (1.26), we can combine in�aton �uctuation, included in δρ, with scalar metric perturbation

into single gauge invariant quantity

δρgi = δρ+ ρ′0
(
ωq − χq ′) , (1.28)

but thanks to the Einstein perturbed equations, the Bardeen potential and δρgi could be combined

into single gauge invariant variable called Mukhanov Sasaki (MS) variable that is given, in the spatially

�at gauge, by [41, 60]

v (η,x) = a

(
δϕ (η,x) +

ϕ′0
H
φ

)
, (1.29)

where H represents the conformal Hubble parameter H = a′

a . We emphasize on the fact that v

characterizes fully the scalar sector. The MS variable is related to the so called comoving curvature ζ

through [10]

v (η,x) =
aϕ′0
H

ζ , (1.30)

Curvature perturbations ζ have the advantage of being conserved on super-horizon scales until they

renter horizon at the radiation or matter era, thus, they are not a�ected by the reheating era compli-

cations. We will see in 1.3 that ζ is very important to link late time observations with early universe

predictions.

The goal now is to derive the action Spert governing v and subsequently its equation of motion.
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Obviously the starting point is expanding the action of in�aton

S =

ˆ
d4x
√
−g
[
−1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
, (1.31)

up to second order of perturbations which yields [61]

S
(1)
pert =

1

2

ˆ
d4x

[
(v′)

2 − (∇v)
2

+
z′′

z
v2

]
, (1.32)

with z ≡ a
√

2ε1Mpl , ε1 = 1− H
′

H2 is the �rst slow roll parameter and Mplis the reduced Planck mass.

Notice that (1.32) represents the action of a massive scalar �eld with time dependent e�ective mass

given by21 m2
eff = z′′

z . It is important to mention that we are considering, for simplicity, the intrinsic

mass of the in�aton mϕ to be zero, otherwise we would have m2
eff = z′′

z −m
2
ϕ. Anyway, the in�ation

mass is always mϕ << H or mϕ ' H, since, having mϕ � H would lead to the suppression of the

primordial �uctuations.

The action S
(1)
pert will be useful in the Schrodinger picture, while its equivalent one S

(2)
pert

22, up to

total derivative, will be more convenient to work with in the Heisenberg picture especially for the

analysis of the squeezing of modes [6, 29]

S
(2)
pert =

1

2

ˆ
d4x

[
(v′)

2 − (∇v)
2

+−2
z′

z
vv′ +

(
z′

z

)2

v2

]
, (1.33)

We will consider that the slow roll parameters vary negligibly with time, therefore z′′

z =
a′′

a and
z′

z = a′

a ,

we can proceed now with the standard quantization and the study of squeezing modes.

First, we need to get the Hamiltonians describing v as a classical �eld, and subsequently we will

quantize it along its canonical conjugate momentum de�ned for each of the two equivalent actions 1

and 2, by

p(1) = ∂L(1)

∂v′ = v′

p(2) = ∂L(2)

∂v′ = v′ − a′

a v

, (1.34)

L(i) is the Lagrangian density that can be derived from from the action S
(i)
pert (1.33). The computations

get simpler by working in Fourier space because we are working at linear order of perturbation theory,

hence, all modes evolve independently and do not interact with each other [56] so decomposing the

21Or, equivalently, it represents the action of parametric harmonic oscillator, i.e a harmonic oscillator with time
dependent mass.

22By (1) and (2)we just refer to the action type 1 or two 2 and not to perturbative order up to which we are expanding
the total action of our system, since it is clear that this last was expanded up to second order as mentioned above.
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�elds (v, p) into their Fourier modes

v (η,x) = 1
(2π)3/2

´
d3kvke

ik.x

p (η,x) = 1
(2π)3/2

´
d3kp̂ke

ik.x

, (1.35)

with v̂∗k = v̂−k since v (η,x) is real. Then, the Hamiltonians () are given by

H(i) =
´

d3xH(i) =
´

d3x
[
pv′ − L(i)

]
FT−−→ H(1) = 1

2

´
d3k

[
pkp
∗
k + vkv

∗
k

(
k2 − a′′

a

)]
FT−−→ H(2) = 1

2

´
d3k

[
pkp
∗
k + k2vkv

∗
k + a′

a (vkp
∗
k + v∗kpk)

] , (1.36)

the integral over k is only over half of Fourier space due to v∗k = v−k,. From (1.2.1) we can easily

see why S
(1)
pert, or equivalently H(1), is suitable to the Schrodinger picture, where H(1) represents a

collection of parametric oscillators (one per each mode) with time dependent frequency given by23

ω2 (η, k) = k2 − a′′

a
, (1.37)

and the similarity between parametric and simple harmonic oscillators in some regimes 24 makes it

easier to solve it, and that will be important to show the equivalence of Schrodinger and Heisenberg

picture, but also for the implementation of CSL later on. Notice also that the dependence of ω2on

a and a′′implies that di�erent in�ation models (i.e potentials) give rise to di�erent ω, therefore to

di�erent behaviors of vk[56], which result in observational consequences since as we will see power

spectrum is ∝ v∗kvk.
The modes vk satisfy the Mukhanov Sasaki equation which obviously could be derived from either

of the actions above

v′′k + ω2 (η, k) vk = 0 (1.38)

from this equation we can see that indeed each mode evolves independently. In order to solve the

previous equation fully, we need to specify the in�ation model, thus the potential V (ϕ), in addition

to the initial conditions.

23It is well known that a �eld in �at space-time can be interpreted as an in�nite collection of harmonic oscillators, each
oscillator corresponding to a given Fourier mode. Likewise, a scalar �eld living in a cosmological, curved, space-time
can be viewed as an in�nite collection of parametric oscillators, the fundamental frequency of each oscillator becoming
a time-dependent function because of cosmic expansion.[54]

24As in sub Hubble regime −kη � 1 .
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Quantizing the �elds (v, p) in the Heisenberg picture where (v̂, p̂) are time dependent and expressing

them as function of creation and annihilation operators
(
âk, â

†
−k

)
de�ned as usual by

ak (η) =
1√
2

(√
kv̂k (η) + i

1√
k
p̂k (η)

)
, (1.39)

with suitable normalization, leads to

v̂k (η) =
ak(η)+a†−k(η)

2k

p̂k (η) = −i
√

k
2

(
âk (η)− â†−k (η)

) , (1.40)

those last equalities could easily be reversed to express
(
âk, â

†
−k

)
as function of (v̂k, p̂k). The canonical

conjugate variables (v̂ (η,x) , p̂ (η,x)) ,(v̂k (η) , p̂k (η)),
(
âk, â

†
−k

)
satisfy the canonical commutation

relations
[v̂ (η,x) , p̂ (η,y)] = iδ(3) (x− y)

[
v̂p (η) , p̂†k (η)

]
= iδ(3) (p− k)

[
âp (η) , â†k (η)

]
= δ(3) (p− k)

, (1.41)

notice from (1.40) that (v̂k (η) , p̂k (η)) are not hermitian and they mix di�erent modes (k,−k), but

we can easily construct a pair of hermitian operators (q̂k (η) , π̂k (η)) that will turn out to be useful

when we discuss Bell inequalities in the next chapter,

q̂k (η) =
ak(η)+a†k(η)

2k

π̂k (η) = −i
√

k
2

(
âk (η)− â†k (η)

) , (1.42)

(v̂k (η) , p̂k (η)) and (q̂k (η) , π̂k (η)) are related by25

v̂k = 1
2

[
q̂k + q̂−k + i

k (π̂k − π̂−k)
]

p̂k = 1
2i [k (q̂k − q̂−k) + i (π̂k + π̂−k)]

, (1.43)

25In order to avoid heavy notations we will omit the time dependence from operators from now on since it is clear
that we are working in the Heisenberg picture.
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Using (1.40) the classical Hamiltonian H(2) gives rise to the two mode Hamiltonian operator

Ĥ(2) =
1

2

ˆ
d3k

[
k
{
âkâ
†
k + â†−kâ−k

}
− ia

′

a

{
âkâ−k − â†kâ

†
−k

}]
, (1.44)

which could be written in a more illuminating way as

Ĥ(2) =
1

2

ˆ
R3

d3kĤfree (k) + λ (η)
1

2

ˆ
R3

d3kĤint (k) , (1.45)

with λ (η) = a′/ (2a) is a time dependent coupling constant and

Ĥfree (k) =
k

2

(
âkâ
†
k + â†−kâ−k

)
, (1.46)

is the free evolution piece the Hamiltonian that describes a collection of free harmonic oscillators, while

the squeezing piece

Ĥint (k) = −i
(
âkâ−k − â†kâ

†
−k

)
, (1.47)

represents the interaction of quantum perturbations with the classical background which will be crucial

in our discussion of squeezing and how this last phenomenon contribute to the classicalization of

primordial quantum �uctuations. Notice that in case of non dynamical background, i.e Malinowskian,

then λ (η) = 0. [54]

To study the evolution of our quantum scalar �uctuations we have to de�ne their initial state. To

this end, we assume that all the modes of interest (i.e. the modes on subhorizon scales today) are

well within the horizon at the initial time ηin so that kηin � 1 therefore λ (ηin) � H−1 and (1.45)

reduces to the free Hamiltonian which leads to choose for the initial state the ground state of the

free Hamiltonian, i.e. the Poincare invariant vacuum state[6], which is known in in�ation literature as

Bunch-Davies vacuum state [17],

|0〉in = ⊗
k
|0k〉 , (1.48)

with âk (ηin) |0k〉 = 0, notice that in (1.48) the di�erent modes are assumed to be uncorrelated initially.

The choice we have just made is a key factor for the empirical success of in�ationary paradigm [54].

However, it would be interesting to see what would happen if we start from an excited states based on

the BD state, or starting from non BD vaccum state; another possibility is to consider an entangled

initial state, either between the modes of the same degree freedom or with another degree of freedom.

For the last case we present brie�y some of the results obtained in [5, 14, 13], because this possibility

will be related to our work on decoherence where we will assume an uncorrelated initial state of our

system with the environment, we will discuss this point in more details later. For the case of an initial

excited state we refer the reader to [47, 28, 36, 26, 27, 21].

Having chosen the initial conditions, let us now write the equations of motion of operators
(
âk, â

†
−k

)
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and their solutions, using Heisenberg equation

dâk
dη

= i
[
Ĥ

(2)
k , âk

]
, (1.49)

leads to the system  â′k

â†′−k

 =

 −ik
a′

a

a′

a ik


 âk

â†−k

 (1.50)

a general solution to this coupled equations is given by Bogolubov transformation26

âk (η) = uk (η) âk (η0) + vk (η) â†−k (η0)

â†−k (η) = u∗k (η) â†−k (η0) + v∗k (η) âk (η0)

, (1.51)

which physically means that particles are produced in pairs with opposite momenta, this phenomenon

is also called squeezing Schrodinger picture [39] . It is worth to mention that this phenomenon of Bo-

golubov transformation and large squeezing is induced by the interaction with the expanding universe

in addition the existence of Hubble radius [66]. In quantum �eld theory, this is a common situation

and typical examples are the dynamical Schwinger e�ect [16]. The canonical commutation relations

(1.41), preserved under unitary time evolution, are satis�ed by (1.51) provided that

|uk (η)|2 − |vk (η)|2 = 1 , (1.52)

which suggest substituting (1.51) into (1.50) leads to equations of motion for mode functions uk (η) ,

vk (η)

u′k = −ikuk + a′

a v∗k

v′k = −ikvk + a′

a u∗k

. (1.53)

The MS variable could be decomposed in terms of mode functions fk (η) as

v̂k (η) = fk (η) âk (ηin) + f∗k (η) â†−k (ηin) , (1.54)

imposing the canonical commutation relations relations again leads to constrain the conserved Wron-

skian27 to satisfy

W = fkf
∗′
k − f∗kf ′k = i , (1.55)

26Here vk is the Bogolubov transformation factor, or mode function, and not the MS variable vk (η).
27It easy to show that W is conserved W ′ = 0 using (1.56).
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substituting (1.54) into Ms equation (1.38) gives the Euler Lagrange equation satis�ed by mode function

f ′′k + ω2 (η, k) fk = 0 , (1.56)

it is important to notice that both fk and f∗k satisfy the same equation and represent two linearly

independent solutions as is clear from the non zero Wronskian. Comparing (1.40) and (1.54) results

in an important relation between mode function fk and Bogolubov factors uk and vk which will be

useful later to link Heisenberg and Schrodinger pictures

fk =
uk + v∗k√

2k
, (1.57)

doing the same for the momentum modes, then

p̂k (η) = −i
[
gk (η) âk (ηin)− g∗k (η) â†−k (ηin)

]
, (1.58)

and is related to uk and vk by

gk =

√
k

2
(uk − v∗k) . (1.59)

We will pause now to discuss another formalism that is equivalent to Heisenberg and Schrodinger

one, but most importantly it will help to link them together. We can �nd di�erent starting points to

introduce it in litterateurs, either we start from the constraint (1.52) or more fundamentally from the

Hamiltonian (1.44). We will present both approaches, so let us start by the former, where from (1.52)

we can infer that a possible parameterization of uk and vk is

uk (η) = e−iθk cosh rk

vk (η) = eiθk+2iφk sinh rk

, (1.60)

where the three functions rk(η), φk (η),θk (η) are called the squeezing parameters, squeezing angle and

rotation angle, respectively [29, 56]. Equations (1.57) and (1.60) give explicitly the relation between the

mode functions fk which are typically used in the Heisenberg approach and the squeezing parameters

characteristic for the Schrodinger approach[66]. In order to get a taste of the physics behind the

squeezing parameters, we should introduce them through linking the squeezed state formalism to that

of particles creation in an external �eld [35, 6].

We start from (1.44) and derive the corresponding evolution operator ÛHk
(η, η0) which could be

written as product of squeezing operator Ŝ (rk, φk) and rotation operator R̂ (θk),

ÛHk
(η, η0) = Ŝ (rk, φk) R̂ (θk) , (1.61)
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with

R̂ (θk) = exp
[
−iθk

(
âkâ
†
k + â†−kâ−k

)]
, (1.62)

and

Ŝ (rk, φk) = exp
[rk

2

(
e−2iφk â−kâk − h.c

)]
, (1.63)

such decomposition is a general property of momentum preserving quadratic Hamiltonians [70, 69],

notice that time dependence in (1.62) and (1.63) is solely through squeezing parameters while creation

and annihilation operators are �xed at ηin. From (1.62) and (1.63) we see that rk gives us a measure

of the excitation of the state, while φk measures the sharing of the excitation between the canonical

variables, and θkcontributes just by a phase [6]. Applying such decomposed evolution operator to the

initial vacuum state chosen above would reveal us the reason behind the nomination assigned to S and

R. The action of this last on the vacuum state (1.48) produces an irrelevant phase thus the name of

R
R̂ (θk) |0〉in = e−iθk |0〉in , (1.64)

while the action of S evolves the vacuum state into a two mode squeezed state28[70, 69, 35]

|Ψ2sq〉 = Ŝ (rk, φk) |0〉in =
1

cosh rk

∑
n

(
e−2iφk tanh rk

)n |n,k;n,−k〉 , (1.65)

where

|n,k;n,−k〉 =
1

n!

(
â†kâ
†
−k

)
|0〉in , (1.66)

is the two mode occupation number state. Usually, this squeezing which ampli�es the initial vacuum

�uctuations by creating momentum conserving pairs of quanta is thought to be su�cient to explain

the quantum to classical transition in early universe, particularly, for the superhorizon modes. This

last statement is justi�ed by knowing that, on the one hand, the number of created particles is given

by

nk = 〈Ψ2sq| N̂k |Ψ2sq〉 = sinh2 rk , (1.67)

on the other hand, and as we will show in a moment, the value of the squeezing parameter rk gets

very large values for superhorizon modes (kη → 0), i.e the modes k probed in the CMB. Where the

cosmological typical values of rk is of the order ≈ 102, and this value is much larger than what can be

achieved in the laboratory [56]. However, as we will discuss in details towards the end of this chapter,

large squeezing is not enough to explain the quantum to classical transition in early universe, as �rst

hint of that is to notice that the state (1.65) is an entangled one. It is therefore reasonable to conclude

that the quantum state |Ψ2sq〉is a highly non-classical state.

Before of deriving the evolution equations of of squeezing parameters, it is worth to link the

28Notice that here we switched temporarily to Schrodinger picture since we are talking about the evolution of states,
and this is for the purpose of linking this picture to Heisenberg as we will do soon.
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Bogolubov transformations and squeezed state formalism through

âk (η) = R̂†kŜ
†
kâk (ηin) ŜkR̂k , (1.68)

so that, now, we see explicitly equivalence of Schrodinger and Heisenberg pictures.

The dynamical equations satis�ed by the squeezing parameters could be obtained by substituting

(1.60) into (1.53) and using the identity satis�ed by hyperbolic functions cosh2 rk − sinh2 rk = 1

r′k = a′

a cos 2φk

φ′k = −k − a′

a sin 2φk coth 2rk

θ′k = k + a′

a sin 2φk tanh 2rk

, (1.69)

notice that in the superhorizon limit which has rk � 1, (φk + θk)
′
rk�1 → 0, thus in this limit φk+θk →

δkand the mode function (1.57) could be written as

fk |rk�1 → e−iδkerk cosφk , (1.70)

this freezing of phases on superhorizon scales in standard in�ation is related the appearance of acous-

tic peaks in the CMB; we will see later, the implementation of collapse models does not spoil this

distinguished feature of standard in�ation[29].

The solution of evolution modes equations is given by Bessel function, and upon using Bunch Davies

vacuum as initial state leads to

fk = 1√
2k

(
1− i

kη

)
e−ikη

gk ≡ i
(
f ′k − a′

a fk

)
=
√

k
2 e−ikη

, (1.71)

now using (1.57, 1.58, 1.60), and by simple manipulations we obtain the following expressions of

squeezing parameters29

rk = sinh−1
(

1
2kη

)
φk = π

4 −
1
2 tan−1

(
1

2kη

)
θk = kτ + tan−1

(
1

2kη

)
, (1.72)

29In those solutions we are considering η ≡ |η| .
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we can see from the �rst equation above that in the superhorizon limit k |η| → 0 we indeed have rk � 1

as we were stating before. While in the subhorizon limit, the squeezing parameters oscillate [6, 66, 35].

One of the key predictions of in�ation is the quasi scale invariant power spectrum of CMB anisotropies,

therefore as a direct way to show the equivalence of the two pictures is to compute it in both and

show the that we get the same result. The Heisenberg picture is, usually, the one used in standard

in�ation literature to compute power spectrum so we will reproduce it here. The power spectrum of

MS variable is de�ned as the two point correlation function of this �uctuations

in 〈0| v̂ (η,x) v̂ (η,x) |0〉in =

ˆ
dk

k
Pv (k) , (1.73)

where here Pv (k) is the dimensionless power spectrum related to dimensional one by

Pv (k) =
k3

2π2
Pv (k) , (1.74)

and Pv (k)is given by

in 〈0| v̂∗k (η) v̂k′ (η) |0〉in = (2π)
3
Pv (k) δ (k′ + k) , (1.75)

using (1.54) we obtain

Pv (k) =
k3

2π2
|fk|2 , (1.76)

therefore the power spectrum of curvature perturbations is obtained using (1.30),

Pζ (k) =

(
H
aϕ′0

)2

∗
Pv (k) ≡ Askns−1 , (1.77)

where (· · · )∗ means the quantity is computed at horizon crossing k = a∗H∗. As determines the ampli-

tude of power spectrum, and the spectral index ns encodes the scale dependence of power spectrum

which is predicted by in�ation to be ns ' 1, where in a quasi de Sitter spacetime

Pζ (k) =
H2
∗

2π2

(
H2

ϕ2′
0

)
∗

(
k

aH

)3−2ν

, (1.78)

with ν = 3
2 − 3εV1 + εV2 , and ε

V
1 , ε

V
2 are the �rst and second potential slow roll parameters. Indeed, by

the observation of CMB spectra this prediction was con�rmed by Planck satellite[2]

ns = 0.968± 0.006 (95% C.L) , (1.79)
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1.2.2 Schrodinger picture and squeezing formalism

In the Schrodinger approach, the quantum state of the system is described by a wavefunctional,

Ψ[v(η, x)], and since we work in Fourier space, In addition to the fact that the theory is still free in

the sense that it does not contain terms with power higher than two in the Hamiltonian, then each

mode k evolves independently and so do the real and imaginary parts of their wavefunctional), the

wavefunctional can also be factorized into mode components [56]

Ψ [v (η, x)] =
∏
k

Ψ
[
vRk , v

I
k

]
=
∏
k

ΨR
k

(
vRk
)

ΨI
k

(
vIk
)
, (1.80)

with

v̂k =
v̂Rk + iv̂Ik√

2
, (1.81)

similarly for p̂k. The canonical commutation relations of (v̂k (η) , p̂k (η)) admit the representation

v̂kΨ = vkΨ, p̂kΨ = −i ∂Ψ

∂vk
. (1.82)

The common point between the two pictures from which we will start the computations is the

initial state of the �eld amplitude v that was chosen to be vacuum at some initial time,

âk (ηin) |0〉in , (1.83)

this state corresponds to Gaussian and time evolution preserves its Gaussianity since it is evolved

through a quadratic Hamiltonian. The most important trick which will enable us to translate the

Heisenberg picture results into Schrodinger one is to reexpress the above relation using (1.54) and

(1.58) as follow {
v̂k (η) + iΩ−1

k (η) p̂k (η)
}
|0, ηin〉H = 0 , (1.84)

the time dependent function Ωk (η) could be inferred through (1.57) and (1.59)

Ωk = k
u∗k − vk
u∗k + vk

≡ g∗k
f∗k

= −if
∗′
k

f∗k
+ i

a′

a
. (1.85)

Translating (1.84) into Schrodinger picture by applying (1.61) to (1.83) as follow

Sâk (ηin)S−1 |0, η〉S = 0 ⇐⇒ S
{
v̂k (η) + iΩ−1

k (η) p̂k (η)
}
S−1 |0, η〉S = 0 , (1.86)



CHAPTER 1. QUANTUM FLUCTUATIONS IN THE INFLATING UNIVERSE 27

leads to {
v̂k (ηin) + iΩ−1

k (η) p̂k (ηin)
}
|0, η〉S = 0 , (1.87)

notice the similar structure between (1.84) and (1.87). However, since the sate has evolved in time and

due to to creation of particles the state will be annihilated by a more complicated operator[39]. Using

the representation of operators (v̂k (η) , p̂k (η)) in (1.82), then multiplying (1.87) from the left by the

basis vector30|vk (η)〉 and solve the equation we can easily see that outcome is a Gaussian functional

Ψ [vk (ηin) , v−k (ηin)] = Nk (η) exp (−Ωkvk (ηin) v−k (ηin)) , (1.88)

decomposing it into real and imaginary part

ΨR,I
k

[
η, vR,Ik (ηin)

]
=
√
Nk (η) exp

(
−Ωk (η)

2

(
vR,Ik

)2
)
, (1.89)

the functions Nk (η) and Ωk (η) do not carry indices R/I because they are the same for real and

imaginary parts. Notice that the wavefunctional (1.89) is completely known once the time dependence

Ωk (η) is determined, and this will be done through Schrodinger equation. It is worth to notice that

role of Schrodinger equation here is not to get the wavefunctional form since this last was already

determined by the initial state constraint (1.87), however, the role is to get the equations governing

the evolution of Nk (η) and Ωk (η).

For each mode k, the real and imaginary parts of the wavefunctional ΨR,I
k satisfy the functional

Schrodinger equation,

i
∂ΨR,I

k

∂η
= ĤR,Ik ΨR,I

k , (1.90)

where now we use H(1)due its similarity to that of the harmonic oscillator, in Fourier space it could

be written as

Ĥk = ĤRk + ĤIk , (1.91)

and now the conjugate momentum is given by

pk =
∂L
∂v′k

= v
∗′
k , (1.92)

therefore using (1.82) we �nd

ĤR,Ik = −1

2

∂2

∂vR,Ik
2

+
1

2
ω2
(
vR,Ik

)2

, (1.93)

30choosing the �eld amplitude eigenstates |vk (η)〉 is motivated by the fact that the they are the pointer basis as we
will discuss in the chapter of decoherence. But, it could also be seen through (1.77) and (1.108) where we see that is the
�eld v not conjugate momentum p that is related to observation.
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where the frequency ω expression was given (1.37). and by substituting (1.89) into (1.90) we get the

equations we are looking for

i
N ′k
Nk

= Ωk
, (1.94)

Ω′k = -iΩ2
k + iω2 , (1.95)

but notice that with the Hamiltonian H(1) , Ωk is given now by

Ωk = k
u∗k − vk
u∗k + vk

≡ g∗k
f∗k

= −if
∗′
k

f∗k
, (1.96)

needless to say that substituting this in (1.95) would result in equation for fk that is exactly the same

one given by (1.56), where by doing such substitution we have reduced the Ricatti equation into second

order linear di�erential equation. We can see (1.96) as a solution to (1.95) while the solution of (1.94)

is given by

|Nk| =
(
ReΩk
π

)1/2

, (1.97)

ˆ
dvR,Ik Ψ

∗R,I
k ΨR,I

k = 1 , (1.98)

which assures proper normalization of the wavefunctional. Before moving forward, it is important to

mention that now fk is a mere mathematical parameter which would help one to simplify commutations

and determine the functional form of Ωk in Schrodinger picture, while in the Heisenberg picture it was

representing a mode function that is a physical observable [29].

Let us now see what are the initial conditions that could be obtained for Nk (η) and Ωk (η) through

imposing the state of quantum �eld v to be initially in the vacuum state. This last choice was chosen,

as explained previously, due to the in�ation assumption that all modes of interest toady were inside

the horizon at the beginning in�ation i.e ω2 (η, k)→ k2, so we are exactly in the case of an harmonic

oscillator, instead of the parametric one. In this regime the solution of (1.56) is given by

fk (η) = Akeikη +Bke−ikη , (1.99)

therefore (1.96) gives

Ωk = −k
2

A∗ke−ikη −B∗keikη

A∗ke−ikη +B∗keikη
, (1.100)

and in order for (1.89) to represents the ground ⇒ Ωk = k/2, which implies from (1.100) that Ak = 0.

Having now the expression of fk we can Compute the Wronskian and get W = 2ik |Bk|2, so imposing

(1.55) leads to Bk = 1/
√

2k, therefore by imposing the initial state of �uctuations to be the vacuum

has completely �xed the initial conditions [56]. Before moving forward, we can easily obtain the
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corresponding probability to the wavefunctional (1.89)

P (vk (ηin) , v−k (ηin)) ∝ exp
(
−2ReΩk |vk (ηin)|2

)
. (1.101)

Having established the formalism describing perturbations in Schrodinger picture, we are able now

to compute the power spectrum in this picture and compare it to the one obtained in Heisenberg

picture. We will follow closely [56, 29], starting by the two point correlation function de�nition in

Schrodinger picture

〈Ψ| v̂ (η,x) v̂ (η,x) |Ψ〉 =

ˆ
d3pd3q

∏
k

dvRk dvIkΨ∗k
[
vRk , v

I
k

]
v̂ (η,x) v̂ (η,x) Ψk

[
vRk , v

I
k

]
. (1.102)

Fourier transforming the MS variables in the above expression yields

〈Ψ| v̂ (η,x) v̂ (η,x) |Ψ〉 =
1

(2π)
3

ˆ
d3pd3qei(p+q).x

∏
k

(
ReΩk
π

)ˆ ∏
k

dvRk dvIke
−
∑
k

ReΩk

[
(vRk )

2
+(vIk)

2
]
vpvq ,

(1.103)

since the the integral over is weighted over a Gaussian then it vanishes

• If we consider p 6= ±q, since the integrand becomes linear in vR.Ip or vR.Iq .

• If we consider p = q, then the only non linear term in vpvq is given by
[(
vRp
)2 − (vIp)2]/2 and

each term contributes equally therefore the di�erence gives vanishing result.

so the only choice remaining is p = −q, because through v−p = v∗p , we can see that vpvq =
[(
vRp
)2

+
(
vIp
)2] 6

2 and this obviously gives non vanishing result

〈Ψ| v̂ (η,x) v̂ (η,x) |Ψ〉 =
1

(2π)
3 2

ˆ
d3p

∏
k

(
ReΩk
π

)ˆ ∏
k

dvRk dvIke
−
∑
k

ReΩk

[
(vRk )

2
+(vIk)

2
] (
vRp
)2
,

(1.104)

the factor two comes from the fact that
(
vRp
)2
and

(
vIp
)2

contributes equally. Carrying out the integrals

above using the well known expressions for
´

dxe−αx
2

and
´

dxx2e−αx
2

we end up with

〈Ψ| v̂ (η,x) v̂ (η,x) |Ψ〉 =
1

(2π)
3

ˆ
d3p

1

4ReΩk
, (1.105)

using (1.96). then it is easy to get

〈Ψ| v̂ (η,x) v̂ (η,x) |Ψ〉 =
1

2π2

ˆ
dk

k
k3 |fk|2 , (1.106)
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therefore we conclude31

Pv (k) =
k3

2π2
|fk|2 , (1.107)

which is exactly the result obtained in Heisenberg picture (1.76).

1.3 From quantum �uctuations to CMB anisotropies

Figure 1.3: CMB anisotropies probed by Planck satellite

The importance of curvature perturbations lays on their conservation on superhorizon scale and being

immune against the complications of post in�ationary phase, especially the reheating phase [75, 71,

42], until they renter horizon in the radiation or matter dominated era and evolve according to the

laws of standard cosmology[48, 45], and this evolution is captured by appropriate transfer functions

in the Sachs-Wolfe e�ect [30]. Therefore, the primordial quantum �uctuations in the in�aton and

gravitational �elds could have many observational implications, on top of them we have the existence

of Cosmological microwave background (CMB) anisotropies, where by measuring those last we can

probe primordial �uctuation. The two types of perturbations, temperature along the direction e in

the sky and curvature, are related at the last scattering surface by Sachs-Wolfe e�ect(
δT

T

)
(e) =

1

5
ζ [ηlss,−e (ηlss − η0) + x0] , (1.108)

31We changed variable p→ k.
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where T represents the averaged background temperature T ≈ 2.73K, ηlss and η0 the conformal

time at last scattering surface (i.e time of emission) and today, respectively, x0 is the position of the

earth from where the �uctuations are observed. Since for a cosmological perturbations of quantum

origin the MS variable has been quantized v̂, then we quantize also the curvature perturbation R̂ and

temperature perturbation δ̂T
T . The temperature anisotropies live in the celestial sphere, therefore their

corresponding operator is expanded over spherical harmonics according to [30, 56](
δ̂T

T

)
(e) =

∞∑
l=2

m=l∑
m=−l

âlmYlm (θ, φ) , (1.109)

the angles (θ, φ) de�ne the direction of e. The angular two point correlation function could be expressed

in terms of multipole moments Cl as

〈Ψ| âlmâ∗l′m′ |Ψ〉 = Clδll′δmm′ , (1.110)

therefore the two point correlation function of temperature anisotropies operator could be expressed

as

〈Ψ| δ̂T
T

(e1)
δ̂T

T
(e2) |Ψ〉 =

1

4π

∞∑
l=2

(2l + 1)ClPl (e1.e2) , (1.111)

where Pl denotes the Legendre polynomials. Now it comes the step where we can see directly how the

primordial quantum �uctuations determine the CMB anisotropies, to this end we express the multipole

moments in terms of cosmological �uctuations power spectrum using (1.108 and 4.245)

âlm =
1

(2π)
3/2

ˆ
dΩed3k

ζ̂k (ηlss)

5
e−ik.[e(ηlss−η0)−x0] , (1.112)

from this expression and using

〈Ψ| ζ̂kζ̂∗p |Ψ〉 =
1

2a2Mplε1

2π2

k3
Pv (k) δ (k − p) , (1.113)

we can show that

Cl =
1

2a2Mplε1

4π

25

ˆ
dk

k
j2
l [k (η0 − ηlss)]Pv (k) , (1.114)

here jl represents the Bessel function which could be considered here as transfer function that translates

the three dimensional spatial frequency k into two dimensional frequency on celestial sphere. Notice

that this last result is valid only on large scales for which we supposed that the transfer function

accounting for the subsequent evolution after horizon reentry Tζ is Tζ (k → 0) = 1. [56]
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1.4 Why do cosmological perturbations look classical?

1.4.1 Squeezing and Wigner function

We mentioned previously that under the momentum conserving quadratic Hamiltonian, the quantum

�uctuations initial state, i.e vacuum state, evolves into a strongly squeezed state which is an important

piece of the answer to the question asked above, so let us discuss it in more detail.

The fact that in the super-Hubble regime the the squeezing parameter reaches very large values

is seen in the literature as an implication of the classicalization of the quantum �uctuations, and

therefore justifying the standard scenario of structure formation dealing with classical �uctuations

[66, 34, 39, 43]. But, what does the classicalization mentioned in those references means? is it the

same one we used to discuss in the standard quantum mechanics ? or, does it refer to something else?

To answer the above questions, we use the winger function that could be seen as classical probability

distribution function whenever it has positive values everywhere, which is expected to be the case here

because we are dealing with a Gaussian wavefunctional. Wigner function is our tool to study the

nature of mode functions on superhorizon scales weather are classical or quantum, where the function

recognizes the correlation between the the canonical conjugate operators, in our case (v̂, p̂) [56, 29] .

Wigner function is de�ned by

W
(
vRk , v

I
k; pRk , p

I
k

)
=

1

(2π)
2

ˆ
dxdyΨ∗k

(
vRk −

x

2
, vIk −

y

2

)
e−ip

R
k .x−ip

I
k.yΨk

(
vRk +

x

2
, vIk +

y

2

)
,

(1.115)

substituting the wavefunctional found for the system (1.89) we get

W
(
vRk , v

I
k; pRk , p

I
k

)
= Ψ∗Ψ 1

πReΩk
exp

[
− 1

ReΩk

(
pRk + ImΩkv

R
k

)]
exp

[
− 1

ReΩk

(
pIk + ImΩkv

I
k

)]
= 1

π2 exp
[
−ReΩk

(
vR 2
k + vI 2

k

)]
exp

[
− 1

ReΩk

(
pRk + ImΩkv

R
k

)]
exp

[
− 1

ReΩk

(
pIk + ImΩkv

I
k

)] ,

(1.116)

it is worth to note that in case we used the Hamiltonian H(2) instead of H(1) in the Schrodinger picture

computations then we would have found the same Wigner function at the end.

The function (1.116) is product of four Gaussians, the �rst two have standard deviation given

by
√

2/ReΩkwith zero mean value while the last two Gaussians have have standard deviation given√
ReΩk/2 with mean value ImΩkv

R
k and ImΩkv

R
k respectively. The nature of the Wigner function is

determined by the values of variances which using de�nitions (1.57) and (1.96) are given by

ReΩk = k
cosh(2rk)+cos(2φk) sinh(2rk)

ImΩk = k sin(2φk) sinh(2rk)
cosh(2rk)+cos(2φk) sinh(2rk)

, (1.117)
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from (1.72) we see that on superhorizon limit |rk| → ∞ and φk → π
4 therefore

ReΩk → 0, ImΩk →∞ , (1.118)

in this limit (1.116) could be written as

W
(
vRk , v

I
k; pRk , p

I
k

)
=

1

π2
exp

[
−ReΩk

(
vR 2
k + vI 2

k

)]
δ
(
pRk
)
δ
(
pIk
)
, (1.119)

thus the Wigner function acquires the cigar-like shape distinguishing the Wigner function of highly

squeezed state. In contrast to coherent states whose Wigner function is centered around one physical

trajectory in phase space with minimum uncertainty, it comes with an in�nite number of classical

trajectories. (see �gure 1.4).

Figure 1.4: Plot of Wigner function for variables
(
vRk , p

R
k

)
at di�erent times which encoded are through

di�erent values of rk. The upper left �gure is for rk = 0.0005, the right upper �gure rk = 0.48, the
left bottom panel rk = 0.88, the right bottom rk = 2.31. We the squeezing in the direction of
momentum[56].

The result obtained for Wigner function does carry a part of the answer to the question asked in

the title of this section, where we see that in high squeezing limit one of the variances does vanish.

But unfortunately the vanished variance is the one related to the measurement of conjugate variable

p, or �led momentum, while we saw in the previous section that the �eld amplitude v is the one

linked to observation of CMB anisotropies observables, but v measurements come along enormous
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uncertainty as seen through32 (1.118) and (1.119). Therefore from this last statement we conclude

that the cosmological perturbations are highly non classical, which is totally expected since they are

placed in a highly squeezed state which described as highly non classical state, in contrast to coherent

states that are considered the closest to classical states.

We are not over yet, there is one more option to use to overcome the non classicality of states.

The aim is to be able, at least, to make predictions without the need of having rigorous mechanism

or model that would induce the transition from quantumness to classicality. But such a model is still

crucial and could have observational implications and corrections to current predictions3.

The option mentioned above consist in exchanging quantum expectation values by averages over a

classical stochastic �eld through considering the quantum �eld v as a classical stochastic one, however

the price to pay is the lost of any possibility to test the quantum origin of universe, since with this

approach a set of classical perturbations would just lead to the same predictions. But how can we

justify this approach?

The starting point is to observe that in the strong squeezing limit we have

〈Ψ|
(
p̂Rk
)2 |Ψ〉 =

(ImΩk)
2

ReΩk
, (1.120)

and the result could be obtained if we use the Wigner function, instead,

ˆ
dvR

k dpR
kWrk→∞

(
vRk , p

R
k

) (
pRk
)2

=
(ImΩk)

2

ReΩk
, (1.121)

it may seem a surprising result and that it justi�es the exchange of quantum expectation values with

classical averages; but actually this is neither a surprising result nor justi�cation of the approach

mentioned, simply because there is a theorem which states that exact the Wigner function, and not

necessarily the squeezing limit of it, satis�es for an arbitrary operator Â
(
vRk , p

R
k

)
〈Ψ| Â

(
vRk , p

R
k

)
|Ψ〉 =

ˆ
dvR

k dpR
kW

(
vRk , p

R
k

)
A
(
vRk , p

R
k

)
, (1.122)

where we see that (1.120) and (1.121) is a particular case [66].

The particularity that makes the approach justi�ed, is the fact in the large squeezing limit all

quantum expectation values could be reproduce if one assumes that the system always follow classical

laws but has random initial conditions [38, 40, 39, 56], where in those last references they considered

an example of free particle and the measured observable was position, �rst as quantum expectation

value, then as classical average over an ensemble of classical particles. Therefore to sum up, the

classicality discussed in literature is usually in the sense that the cosmological quantum �uctuations

32We will see later that an appropriate CSL model would cure that an rend the cigar like shape of Wigner function
along the �eld amplitude v instead of momentum p.
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could be described, or mimicked, by classical stochastic process and is this consideration what made

in�ation predictive for some cosmological observables, as CMB anisotropies. Another way to see this

kind of classicality is to understand it in the following sense: if we assign to each point in phase-

space (v(k), p(k)) the probability given by (1.101), then it will evolve in time according to the classical

Hamiltonian equations [66]. But with such pragmatic approach [39] and because of the observational

indistinguishability between classical and quantum correlation functions in this closed system approach,

in�ation is unable to provide a direct test of the quantum origin of the universe that could not be

mimicked by non-in�ationary cosmological models in which perturbations are assumed to be classical

from the beginning on. In order to have such test, we need to implement some other tools as Bell

inequalities, collapse models or decoherence, where the �rst one serves just to test the quantum origin,

while the last two33 provides also a mechanism to explain the transition from a quantum to classical

universe. Before concluding it is useful to compute the density matrix

ρ̂R,Ik =
∣∣∣ΨR,I

k

〉〈
ΨR,I

k

∣∣∣ , (1.123)

corresponding to the wavefunctional (1.89) which is nothing but the Fourier transform of Wigner

function, working in the �led operator v̂k eigenbasis |v̂k〉

〈
v̂R,I ′k

∣∣∣ ρ̂R,Ik

∣∣∣v̂R,Ik

〉
=

(
ReΩk
π

)1/2

e
−ReΩk

[
(v̂R,I ′k )

2
+(v̂R,Ik )

2
]
e
−iImΩk

[
(v̂R,I ′k )

2−(v̂R,Ik )
2
]
, (1.124)

from this last equation we can see the that o� diagonal elements, or interference terms, v̂R,Ik 6=
v̂R,I ′k oscillate rapidly and they do not vanish, which is totally expected because we are considering

pure state. Therefore in order for the decoherence de�ned as the suppression of interference terms to

take place we need to consider the interaction of our system with an environment [56], and this will

make the subject of a whole chapter in this thesis, but before getting there, we still have many stations

worth to stop by!

1.4.2 Decoherence without decoherence

We turn now to discuss another motivation that enable us to consider the cosmological perturbations

as classical in the standard model of cosmology; regardless of whether they were, initially, originated

through a quantum or classical process. We go back to the solution of MS equation (1.38) and write

the �eld amplitude solution (1.54) in more illuminating way [39, 66]

vk (η) =
√

2kfk1 (η) vk (ηin)−
√

2

k
fk2pk (ηin) , (1.125)

33Those consider an open system approach.



CHAPTER 1. QUANTUM FLUCTUATIONS IN THE INFLATING UNIVERSE 36

where fk1 = Refk and fk2 = Imfk. Similarly for the �eld momentum

pk (η) =

√
2

k
gk1pk (ηin) +

√
2kgk2 (η) vk (ηin) , (1.126)

now the question is: after quantizing the variables (v, p), to which extent they will remain classical as

universe evolve?

Notice that in case fk2 and gk1vanish (or equivalently fk1 and gk2), then the non commutativity of

the variables (v, p) is no more relevant since the two are related by

pk (η) ≡ pclk (vk (η)) ' gk2 (η)

fk1 (η)
vk (η) , (1.127)

where by pclk (vk (η)) we refer to the fact that once an expectation value of v̂k (η) is obtained, then

p̂k (η)is �xed and is equal to the classical momentum corresponding to the value 〈v̂k (η)〉, therefore we
can consider the quantum system to be e�ectively equivalent to a classical random system. Actually,

this value pclk (vk (η)) is the value we see in (1.4) around which the Wigner function is peaked in large

squeezing limit.

Another way to see the classical limit considered above, i.e vanishing fk2 and gk1 , is to compare to

the ratio of growing mode to that of decaying mode in fk, where this last could be written as

fk (η) = f1 (k) a+ f2 (k) a

ˆ η

∞

dη′

a2 (η′)
, (1.128)

similarly gk is written as

gk (η) = O
(
iC1 (k) k2aη

)
+ i

C2 (k)

a
, (1.129)

using the expressions obtained for fk and gk in (1.71) then

f1 (k) =
Hk√
2k3

, f2 (k) = −i k
3/2

√
2Hk

, (1.130)

the �rst term in (1.128) is the growing mode, also called the quasi isotropic mode, and it gives rise

to constant value of in�aton perturbation δϕ; similarly, it gives rise to the leading term of scalar,

adiabatic, metric perturbations in synchronous gauge [66]. As the name reveals, the decaying mode

becomes quickly suppressed and quantum coherence between growing and decaying mode gets lost,

where the coherence is described by the correlation relation

fk1gk1 + fk2gk2 =
1

2
, (1.131)
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and the ratio ratio between the decaying mode to growing one is given by

fk2
fk2
∝ e−2|rk| , (1.132)

form this last expression we can see that large squeezing implies the suppression of decaying mode and,

consequently, suppression of coherence. This last observation gives rise to the notion of �decoherence

without decoherence� [66], which refers to achieving a classical limit without considering any external

environment or concrete decoherence process34. Therefore this notion of �decoherence without deco-

herence� is independent of the interaction with other �elds in the theory and relies solely on the fact

that the solutions of the Heisenberg equations of motion for a minimally coupled scalar �eld feature

a growing and a decaying mode in the long time limit after the particular physical wavelength has

become super-Hubble. This feature does not apply to either fermionic �elds (which are never classical)

nor to massless conformally coupled scalar �elds (at least in absence of interactions) [15]. However,

this pragmatic view about classicalization of primordial perturbations has many shortcomings and is

only a way to understand the reason behind the observational success of the predictions based on using

initially pure classical perturbations in the study of large scale structures formation, CMB anisotropies,

and generally the evolution of the universe [73]. So we still in a need for concrete model to understand

properly and rigorously the quantum to classical transition35. We will discuss the shortcomings we just

mentioned in the coming section, but as quick argument against the notion of �decoherence without

decoherence� is su�cient to notice in the density matrix expression (1.124) that, even in large squeez-

ing limit, the interference terms do not vanish but oscillate rapidly, while usually the disappearance of

interference terms is a considered a key element of classical limit.

Before closing this discussion, we prefer to explain better the role of decoherence without decoher-

ence in the success of standard cosmology predictions. As we mentioned previously, the �eld amplitude

v is the one directly related to observations, therefore we put ourselves in the v̂k eigenbasis |vk〉, and
try to compute the expectation value of an operator Â (v̂, p̂)[74]. From (1.127), we see that |vk〉 is an

34consisting in an almost vanishing commutator between conjugate variables (v, p), therefore they could be seen
classical stochastic �elds.

35It is worth to mention that some physicists who believe on the universality of quantum mechanics do not agree with
this sentence, for example in [73] we read �most people would agree that there are no classical or quantum regimes.
The fundamental description ought to be always a quantum description. However, there exist regimes in which certain
quantities can be described to a su�cient accuracy by their classical counterparts represented by the corresponding
expectation values. All this depends, of course, on the physical state, the underlying dynamics, the quantity of interest,
and the context in which we might want to use it�.
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eigenbasis of both operators (v̂, p̂), therefore

〈
Â (v̂, p̂)

〉
= Tr

(
Â (v̂, p̂) ρ̂

)
=
´
dvk

〈
vk

∣∣∣Â(v̂, gk2 (η)

fk1 (η) v̂k

)
ρ̂
∣∣∣ vk〉

=
´
dvk 〈vk |ρ̂| vk〉A

(
vk,

gk2 (η)

fk1 (η)vk

)
, (1.133)

so expectation values of operators can be calculated just as classical stochastic avrages with a phase

space probability distribution given by 〈vk |ρ̂| vk〉 δ
(
vk −

gk2 (η)

fk1 (η)vk

)
, consequently, we think that a more

appropriate term is �Semi-classicalisation without decoherence�.

1.5 Shortcomings of the pragmatic view

The basis of the pragmatic approach to the quantum-to-classical transition discussed above, for the

primordial �uctuations, lays on the approximate coincidence between quantum and classical expecta-

tion values shown in (1.133). However, as was pointed out, this is not su�cient and there must be more

fundamental way to deal with such transition. Indeed, before enumerating the arguments in favor of

a more rigorous way of dealing with quantum to classical transition it would be useful to quote from

some literature and show that cosmologists do acknowledge that there seems to be something unclear

at this point, we will present those cited in [73]

• T. Padmanabhan in [64] indicates that one must work with certain classical objects mimicking

the quantum �uctuations, and that this is not easy to do and to justify.

• S.Weinberg in [76] states �... the �eld con�gurations must become locked into one of an ensemble

of classical con�gurations with ensemble averages given by quantum expectation values... It is

not apparent just how this happens....�

• S.Mukhanov acknowledges in [59] that the problem is not resolved simply by invoking decoher-

ence: � .. However decoherence is not enough to explain the breakdown of translational invari-

ance..�, Actually this last argument will be discussed in the conclusion, when we will come to

discuss weather decoherence or collapse models accounts better for quantum to classical transi-

tion. However, it could be inferred, at least, that the author agrees with the fact that there is

an unclear part concerning standard treatment of primordial perturbations.

From those statements and others in the di�erent literature on cosmology, we realize that indeed there

is a gap, or a missing chapter in our understanding of the origin of the universe and that the pragmatic
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approach is unable to provide us with convincing explanation to feel the gap. But let us be more speci�c

and ask: what are precisely the shortcomings of pragmatic approach that any quantum to classical

transition model is supposed to address and clean away? To answer this question, we will enumerate

the most important missing points in the pragmatic approach or �decoherence without decoherence�,

so those last do not explain:

1. Given a system whose initial quantum state has a given symmetry (in the situation at hand

the symmetry is homogeneity and isotropy), there is no mechanism by which the standard uni-

tary evolution governing the system, would result in a state lacking that symmetry, as long as

the dynamics governing the evolution respects the symmetry [73]. How the transition from a

homogeneous and isotropic state to an inhomogeneous and anisotropic state took place?

2. Starting from a highly non classical and pure state given by the entangled and squeezed state in

(1.65), how we ended up with a mixed state that mimics a classical system?

3. Why the universe is localized in the �eld amplitude eigenbasis v̂ rather than �eld momentum p̂

one?

4. Why we have speci�c CMB map rather than another? In other words, we have seen that CMB

anisotropies are related to quantum �eld amplitude v̂ which is supposed to be in superposition

of states, or values, so how a single value is obtained rather than another one?

5. Finally, we ask an interesting question related to the other quantum �elds coexisting with in�aton,

for example, the �elds of standard model of particles that dominate post in�ation era. If some

modes of quantum in�aton �eld become equivalent to their classical counterpart at the end of

in�ation, then, how about the other quantum �elds, do they have a classical part also? we will

not tackle this question in the current thesis, but a more detailed discussion of it could be found

in [73].

Even though all the points listed above are related, but the points 2), 3), 4) boil down to the quantum

measurement problem on which we will spend few words in a moment. But before doing so, the point

1) is worth to receive a special attention, so following closely [22, 54] we will consider a simple example

where point 1) is involved.

We saw that the temperature anisotropies δT
T (e) probed by di�erent satellites, COBE, WMAP,

and Planck, correspond to operators36 δ̂T
T (e) that are observable quantities. According to basics of

quantum mechanics, the CMB map must be an eigenstate |Planck〉 of the observables δ̂T
T (e) in the

following way

δ̂T

T
(e) |Planck〉(e) =

δT

T
(e) |Planck〉(e) , (1.134)

36One operator for each direction (e)in the sky.
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but the squeezed state (1.65) could not be the eigenstate |Planck〉(e)we are looking for. This last

statement could be proven either by direct computation or by just physical and intuitive argument

based on symmetry considerations, and it is this last method which will highlight the point 1) in the

list of shortcomings.

For the sake of simplifying the argument, we use the fact that curvature perturbations could be

seen as a massless scalar �eld on top of FLRW background with an action

S = −1

2

ˆ
d4x
√
−ggµν∂µζ∂νζ , (1.135)

and we de�ne the four momentum operator by

P̂µ = −
ˆ

d3x
√

(3)gT̂ 0
µ , (1.136)

where T̂µν is the quantized stress energy tensor that could be calculated from the action given above

using37

T̂µν = ∂µξ̂∂ν ξ̂ − gµνgαβ∂αζ̂∂β ζ̂ , (1.137)

and (3)g in is the determinant of the spatial part of the metric. In cosmic time, the operator P̂0

corresponds to the generator of time evolution of the system i.e the the Hamiltonian, and the operator

P̂i = a

ˆ
d3x

˙̂
ζ∂iζ̂ , (1.138)

corresponds to spatial translations along xi, using (1.30) and (1.40) we can express the P̂i in terms of

creation and annihilation operators as

P̂i ∝
ˆ

d3kkiâ
†
kâk , (1.139)

and by acting on initial vacuum state we obviously have

P̂i |0〉in = 0 , (1.140)

and same result would be obtained for the rotation generator i.e angular momentum L̂i

L̂i |0〉in = 0 , (1.141)

those last two results express the fact that vacuum state is homogeneous and isotropic, which re�ects

the symmetries of FLRW background. Having shown that, we want now to investigate whether the

37Notice that we are following semi classical approach here, where we quantized the matter sector as could be inferred
from T̂µν , while the geometric part gµν is still classic i.e unquantized.
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unitary time evolution through Schrodinger equation would break those symmetries and allow for CMB

anisotropies to show up. As stated above, the the time evolution is generated by the Hamiltonian (1.45)

so using the explicit expression of the two pieces, Ĥfree and Ĥint, in terms of creation and annihilation

operators it could be shown that [
P̂i, Ĥfree

]
= 0,

[
P̂i, Ĥint

]
= 0 , (1.142)

similarly [
L̂i, Ĥfree

]
= 0,

[
L̂i, Ĥint

]
= 0 , (1.143)

therefore the unitary time evolved state by Schrodinger equation, through Ĥ ∝ Ĥfree + Ĥint, is still

an eigenstate of P̂i and L̂i i.e

P̂i |Ψ2sq〉 = 0 , (1.144)

L̂i |Ψ2sq〉 = 0 , (1.145)

therefore the squeezed state is still describing an homogeneous and isotropic state and so it could not

be |Planck〉(e) because this last is characterized by

P̂i |Planck〉(e) 6= 0 , (1.146)

and

L̂i |Planck〉(e) 6= 0 , (1.147)

therefore a serious question arises is how the transition from a homogeneous and isotropic state to an

inhomogeneous and anisotropic state took place?

Actually it could be that |Ψ2sq〉 is superposition of inhomogeneous and anisotropic states, but the

superposition makes the state |Ψ2sq〉 homogeneous and isotropic. Then, at some point the superposition

breaks and single outcome is picked out, and here comes the discussion of points 2), 3), 4) which

,as mentioned above, refer to the well known quantum measurement problem38. However, in the

cosmological context this problem is more subtle and gets exacerbated compared to laboratory [73] for

the following reason:

Based on quantum mechanics postulates a measurement takes place upon the collapse of the system

wavefunction into an eigenstate of the observable measured. Let us project the content of this postulate

on our case and specify the ingredients building up the measurement problem: The system for us

is the primordial quantum �uctuations, the operator (or observable) to be measured is the CMB

anisotropies δ̂T
T (e), the eigenvalue and the eigenstate we get after measurement is the values δT

T (e)

and the CMB map |Planck〉(e), respectively. Having said that and bearing in mind that CMB was

emitted at recombination era, when the �uctuations started to grow and give rise to the structures

38Is also called �macro-objectivation� problem.
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we are observing nowadays, including ourselves!; we conclude that there was not an observer at the

time of emission of CMB, nor before, therefore how could we �t the postulate mentioned above to

CMB case. More precisely, though no external observer was there to induce the collapse, how did the

wavefunction collapsed into the CMB map eigenvalue and eigenstate? ; who or what decided the basis

on which the collapse is supposed to take place ? and how a speci�c outcome of measurement arises

rather than another one?

To answer those questions we can either [54]

• Look for di�erent interpretation of quantum mechanics39 and leave the formalism unmodi�ed.

• Add new degrees of freedom to the mathematical formalism which is done usually to rend quan-

tum theory deterministic, as example de Broglie-Bohm theory.

• Leave quantum theory unmodi�ed and consider that our system is a part of bigger one. We con-

sider an appropriate interaction between the two and study its e�ects on the system, decoherence

falls within this option.

• Consider quantum mechanics as an approximate theory of a more universal theory that is valid

at all scales.

The last two options are the closest to experimental tests and so are falsi�able, because they lead

to di�erent predictions from that of conventional quantum mechanics. In this thesis we will see how

the application of collapse models and decoherence in the in�ationary context lead to interesting

predictions that di�er from the ones obtained from standard quantum mechanics.

39For example: Copenhagen, many worlds, ...etc.



Chapter 2

Signatures of a quantum universe

In this chapter we discuss brie�y various possible probes of the origin of the universe that had been

suggested so far. We will focus on the cosmological Bell inequalities implementation and the obstacles

facing those attempts, and whether there are other alternatives to probe the origin of universe? To

answer this last question in the a�rmative, we summarize the results obtained in a recent work about

using non Gaussianities to con�rm whether the universe originated quantumly or classically.

2.1 Bell inequalities in quantum mechanics

Bell inequalities were devised by J.Bell as a mean of testing whether or not particles connected through

quantum entanglement communicate information faster than the speed of light. Where, the violation of

those inequalities con�rm that no theory of local hidden variables can account for all of the predictions

of quantum mechanics. Before presenting the models that had been suggested so far to implement

those inequalities in cosmology, we prefer to show how they are performed in laboratory and the needed

ingredients. Our aim, later, is to �nd for each laboratory experiment ingredient a counterpart in the

cosmological context.

The elements composing Bell experiment are [46]:

• Two separate spatial places, causally disconnected, where measurements could be performed, we

call them Alice's and Bob's location.

• An entangled quantum st state with components at these two locations.

• At each location we should be able to perform two possible measurements that are described

by two non-commuting operators. Call them Â and Â′ for Alice's location and B̂, B̂′ for Bob's

location, with
[
Â, Â′

]
6= 0 and

[
B̂, B̂′

]
6= 0.

43
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Figure 2.1: A generic Bell experiment setup, the black lines refer to classical channels of information
transmission.[46]

• Alice should have the �free will� to select randomly between the Â and Â′. The same holds for

Bob for his choice of B̂, or B̂′. These choices are made locally and are uncorrelated with each

other. These choices are made by physics outside the quantum system under consideration. In

practice this is done by looking at local random variables that are assumed to be independent of

the quantum system in question.

• We should have a quantum measurement of these operators with de�nite answers.

• We classically transmit the results of these measurements to a central location where we correlate

the results.

The simplest example to see all those elements enter the experimental protocol is to consider a bipartite

system under Clauser, Horne, Shimony and Holt (CHSH) setup, where the bipartite systems Hilbert

space is written as H = HA⊗HB [51, 24]. The entangled state corresponds to a pair of spins belonging

to the particles A and B whose spin along z direction are correlated, as seen in �gure (2.2), and the

state of the system is assumed to be

|Ψ〉 =
1√
2

(|+−〉 − |−+〉) , (2.1)

where |±〉 are eigenstates of Ŝzwith eigenvalues ±1. The particle A is sent to Alice location and
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Figure 2.2: Standard set up of Bell experiment using a spin singlet.[51]

similarlyB to Bob location, such that Alice and Bob will act on the state by one of a two non commuting

operators that correspond to di�erent directions i.e Alice has Â = −→n A.
−→
S A and Â′ = −→n ′A.

−→
S A such that[

Â, Â′
]
6= 0, similarly for Bob

[
B̂, B̂′

]
6= 0. Alice and Bob's choice of the either of the operators should

be independent from each other. The direction −→n is given by −→n = (sin θ cosϕ, sin θ sin θϕ, cos θ), so

the eigenstates of −→n .
−→
S with eigenvalues + and − are, respectively,

|+−→n 〉 = cos (θ/2) e−iϕ/2 |+〉+ sin (θ/2) eiϕ/2 |−〉

|+−→n 〉 = cos (θ/2) e−iϕ/2 |+〉+ sin (θ/2) eiϕ/2 |−〉

. (2.2)

We introduce Bell operator [25]〈
B̂CHSH

(
Â, B̂

)〉
=
〈
ÂB̂
〉

+
〈
Â′B̂

〉
+
〈
ÂB̂′

〉
−
〈
Â′B̂′

〉
, (2.3)

that is a particular linear combination of expectation values ±1.

We want now to show how the Bell operator could distinguish between quantum mechanics and

a local hidden variable theory. According to this last, for each value of the hidden variable we have

well de�ned answer for each of the two possible measurements at each location, and since there is

no possibility for a causal contact between them, then measuring A or A′ does not in�uence the
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measurement of B and B′. Therefore, we can have for each value of hidden variable B = B′ and

B = −B′ so either the �rst two terms cancel (2.3), or the last two ones, which set an upper bound∣∣∣〈B̂CHSH(Â, B̂)〉∣∣∣ ≤ 2 (2.4)

We come now to quantum mechanics prediction, we will see that actually the upper bound on∣∣∣〈B̂CHSH(Â, B̂)〉∣∣∣ is bigger. The starting point is the fact that Â2 = Â2′ = 1Î, then, B̂CHSH
(
Â, B̂

)
could be written us

B̂2
CHSH = 4−

[
Â, Â′

] [
B̂, B̂′

]
, (2.5)

we see that the product of commutators could make the bell operator bigger than 2, from which

we understand why any violation of (2.4) would rule out any local hidden variable theory. Since∣∣∣[Â, Â′]∣∣∣ ≤ 2 where the maximum could be reached for example for Â = σ̂x and Â
′ = σ̂y, then we can

see that in quantum mechanics we have∣∣∣〈B̂CHSH(Â, B̂)〉∣∣∣ ≤ 2
√

2 , (2.6)

it is worth to mention that any violation this last inequality, i.e 2
√

2 <
∣∣∣〈B̂CHSH(Â, B̂)〉∣∣∣, would

single out another theory to take over standard quantum mechanics!

Going back to our two particles example and choosing θA− θB = π
4 , θA− θ

′
B = θ′A− θB = −π4 and

θ′A − θ′B = −3π/4 leads to
〈
B̂CHSH

(
Â, B̂

)〉
= −2

√
2, so quantum mechanics win. It is well known

that experiments proved the violation of Bell inequalities which rules out any possible local hidden

variable theory.

2.2 Bell inequalities tests on CMB

We have seen in the previous section how Bell experiments were decisive in singling out quantum

theory to describe nature, at least up to some approximation. Therefore, as we are facing the puzzle

of origin of universe and weather it is classical or quantum, we ask ourselves if there is any possibility

to perform a Bell experiment, but this time at a cosmological scale. The role of such experiment is to

reveal us the quantum, or classical, nature of origin of universe.

The �rst attempt to perform a Bell experiment on the sky is to do as follow, see �gure (2.3),

• Divide the celestial sphere into causally disconnected regions, at least back to recombination,

and each region gets also divided into two disconnected sub-regions to play the role of Alice and

Bob locations.

• The two non commuting observables to be measured could be the the �eld amplitude and mo-

mentum conjugate variables (v̂, p̂).
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Figure 2.3: a) An unsuccessful set up for a cosmological Bell inequality. [46]

But, unfortunately, such set up is unlikely to work due to the fact that the �eld momentum p̂ is

proportional to the decaying mode which makes the commutator extremely suppressed, k3 [v̂, p̂] ∝
a−3 ≈ e−3Nk where Nk is the number of e folds spent outside horizon for the mode k. Therefore, for

scales of observational interest that has Nk ≈ 30 − 40 we need a precision greater than 10−90 which,

even for a theorist, looks impossible [46]. Therefore, we cannot rely on (v̂, p̂) to a perform a Bell

experiment and we need more creativity!

The analysis just made was quite qualitative, so it would be advantageous to show, in a concrete

way, how does decaying mode prevent us from performing a Bell experiment on CMB. A �rst step

toward answering this question is to build out of the operators (v̂, p̂), that have continuous spectrum,

a set of dichotomic operators, which have discontinuous spectrum. Those last will mimic the spin

operators seen in previous section, therefore we will call them pseudo spin operators.

There are various ways of getting the pseudo spin operators out of (v̂, p̂), we will adopt the Gour-

Khanna-Mann-Revezen (GKMR) spin operators that are de�ned as function of

|Ek〉 = 1√
2

(|qk〉+ |−qk〉)

|Ok〉 = 1√
2

(|qk〉 − |−qk〉)
, (2.7)

where the |qk〉 is the eigenstate of the operator q̂kde�ned in (1.42) which plays the role of position in

the subspace Ek. So using (2.7) we obtain the pseudo spin operators which satisfy the SU (2) algebra,
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[ŝm, ŝn] = 2iεmnlŝl,

ŝx =
´

dqk (|Ek〉 〈Ok|+ |Ok〉 〈Ek|)

ŝy =
´

dqk (|Ok〉 〈Ek| − |Ek〉 〈Ok|)

ŝz =
´

dqk (|Ek〉 〈Ek| − |Ok〉 〈Ok|)

, (2.8)

the other de�nitions of the pseudo spin operators could be found in [49, 50, 51]. Having found our

pseudo spin operators, the next step is to de�ne the Bell operator as follow

B̂GKMR (k,−k) = ÂB̂ + Â′B̂ + ÂB̂′ − Â′B̂′

= −→n .ŝ (k)⊗−→m.ŝ (−k) +−→n .ŝ (k)⊗−→m′.ŝ (−k)

+−→n ′.ŝ (k)⊗−→m.ŝ (−k)−−→n ′.ŝ (k)⊗−→m′.ŝ (−k)

. (2.9)

Now, the di�erence between our case and the standard Bell experiment discussed in previous section,

is that in cosmological case we compute the mean value
〈
B̂GKMR

〉
of Bell operator with respect to

the two mode squeezed state (1.65)〈
B̂GKMR

〉
= 〈Ψ2sq| B̂GKMR |Ψ2sq〉 . (2.10)

For the sake of simplifying computations, we assume that all azimuthal angles vanish so that −→n .ŝ =

sin θnŝx+cos θnŝz, and all mean values of cross terms, as 〈ŝx (k) ŝz (−k)〉, vanish. In addition, choosing
θn = 0, θn′ = π/2, and θm′ = −θm with the optimal choice of θmwhich maximizes the violation Bell

inequalities one on obtains [51]〈
B̂GKMR

〉
= 2
√
〈Ψ2sq| ŝz (k) ŝz (−k) |Ψ2sq〉2 + 〈Ψ2sq| ŝx (k) ŝx (−k) |Ψ2sq〉2

= 2
√

1 + 〈Ψ2sq| ŝx (k) ŝx (−k) |Ψ2sq〉2
, (2.11)

in the large squeezing limit, rk →∞ and φk → −π2 , we get the Cirel'son bound saturation i.e

〈
B̂GKMR

〉
= 2
√

2 . (2.12)

It could be shown that the same result is obtained for other de�nitions of pseudo spin operators,

but the question now is the following: having shown, theoretically, thst we do have Bell violation,

then, could we measure such a violation? or the previous qualitative analysis regarding the decaying
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Figure 2.4: Mean value of Bell operator as function of squeezing parameters ( the GKMR operator is
with dashed lines).[51]

mode will show up again to obstruct us from achieving such goal?

Since curvature perturbations are directly related the temperature anisotropies through Sachs-Wolf

e�ect, our starting point is reexpress the operator q̂k as function of curvature perturbation operator

and its conjugate momentum, so using (1.43) and (1.30) we get

q̂k =
z

2

(
ζ̂k + ζ̂−k

)
+

z

2k

(
ζ̂ ′k − ζ̂ ′−k

)
. (2.13)

From this last equation we notice that the knowledge of q̂k requires the knowledge of momentum

conjugate ζ̂ ′k proportional to decaying mode. However, if we neglect the decaying mode, since it is

extremely suppressed, then we have

q̂k = q̂−k ⇒ ŝx (k) = ŝx (−k)⇒ 〈Ψ2sq| ŝx (k) ŝx (−k) |Ψ2sq〉 = 1 , (2.14)

therefore we sill have a maximal violation of Bell inequalities, i.e〈
B̂GKMR

〉
= 2
√

2 , (2.15)

which is quite remarkable result. Because in our previous qualitative analysis we argued that the

suppressed decaying mode is an obstacle toward Bell experiment on CMB, however with our current

quantitative analysis we realized that even if we neglect the decaying mode, we still have a maximal

violation of Bell inequalities. Actually, the real obstacle comes from the fact that with the eigenvalues
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of a single operator, namely q̂k ∝ ζ̂k ∝
(
δ̂T
T

)
(e) we have to infer the values of, at least, two of the

pseudo spin operators introduced in (2.8), and this is possible if and only if we have at least two pseudo

spin operators commute with q̂k. Unfortunately, this is not the case neither for GKMR operators nor

for the other possible de�nitions, where in our case we have only ŝx that commutes with q̂k

〈qk| [ŝx (k) , q̂k] |q′k〉 = 0 , (2.16)

while ŝy and ŝz do not commute. Therefore, we have shown with a concert example that it is impossible

to use CMB as an arena of a Bell experiment by extending the standard Bell experiment set up. But

there still a possibility to implement a CMB experiment on CMB if we design a method which makes

use of only one pseudo-spin component, indeed, using Leggett-Garg inequality based on measuring the

same spin component at di�erent times we can hope for a CMB bell experiment, since it has been

show with Leggett-Garg proposal, that for squeezed states we do have a violation of Bell inequality.

2.3 Cosmological baroque model of bell inequalities

While we are waiting to �nd a way of implementing a Bell experiment on CMB, we can look for other

alternatives and hope nature to be on our side. We ask ourselves: what if the universe already carried

out a Bell experiment during its evolution, speci�cally before the end of in�ation, and the outcomes

of the experiment are right there waiting us to collect them. Let us follow this ambitious idea and see

weather there is a possibility for it.

We will work with a single �eld, and consider that its quantum �uctuations are the source of

entangles states subject to Bell experiment. The measurement should be some process which depends

on the quantum state of one of the pieces of the entangled sate. We split our �uctuations into long

wavelengths which are of observations interest to us, and the short wavelengths which will act, both, as

the decider of measuring Â (B̂) or Â′(B̂′) for Alice (Bob), and as the measuring apparatus. The choice

of short wavelengths to act as the free decider assures that choice is made locally and independently

between Alice and Bob locations. The outcomes of measurement will be left as imprints on the classical

�uctuations background that would be transmitted to us. However the set up we just described su�er

from a sever problem, which is the fact that the measuring apparatus is �more� quantum than the

measured system. Where we have seen that there is a strong argument in favor of the classicalization

of primordial �uctuations as they exit horizon, therefore the short wavelengths could not act as classical

measuring apparatus.

To come out of this conundrum, J.Maldecena proposed a baroque model of in�ation to show that

an in�ation Bell friendly model is possible, at least conceptually, though nature is unlikely to choose

such multi�eld model. In What follows we will present the main points of Maldecena model, and more

details could be found in [46].
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Figure 2.5: A diagram of a more successful set up where the whole process occurs during in�ation.[46]

As mentioned previously, the model is based on three scalar �elds, 1) the in�aton ϕ, 2) a massive

scalar �eld ψ, 3) an axion �eld θ, the last two are very crucial for the Bell experiment set up. In

order to make the presentation relatively simple we will list the Bell experiment ingredients presented

previously and discuss their counterparts in Maldecena model .

• The quantum system: The massive scalar �eld is supposed to create pairs of entangled scalar

particles that have in�aton dependent mass, m (ϕ). Their mass is very heavy, m(ϕ)� H, except

for a value ϕ0where they become relatively light m(ϕ0) ∼ H and they get created. The massive

particles should not be created with very large numbers, but only with enough abundance to be

observed leave distinguishable signatures for post in�ation observers. We also require the distance

between the elements of each pair to be large enough to allow for a local measurement that is

independent of that of the other particle. The particles have an isospin degree of freedom and

are created in spin singlet, where the masses of particles have an isospin dependent contribution.

It is exactly this last point that enables the measurement to be observable for post in�ation

observers. where di�erent masses will result in hot spots and hotter spots.

• The free decider : We assume an axion �eld θ that has an in�aton dependent decay constant

fa (ϕ)→ fa (η)

S =

ˆ
d4x

f2
a (η)

H2

[
(∂ηθ)

2 − (∂iθ)
2
]

η2
, (2.17)

where this last is very large fa > H except around ϕ ' ϕ1where it becomes relatively small

fa (ϕ1) > H which creates �uctuations in the axion �eld at distances x ∼ |η1|. as result of

this �uctuations it is important that θ picks di�erent values values around each member of the

scalar particles in order to act as free decider, see �gure (2.6); needless, to say that we need

to have ϕ0 . ϕ1. The axion �uctuations induce isocurvature �uctuations in the dark matter
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Figure 2.6: The axion �eld pro�le, where we see that each member of the pair sees di�erent value of
the �eld.[46]

component, however they are subdominant, so by measuring their size we can determine the

initial amplitude of θ in the di�erent regions of the sky, therefore we get the �Alice� and �Bob�

choice of the measured operator.

• Measurement: The measurement is induced through the breaking of isospin symmetry, where the

massive particles are coupled to in�aton and their mass has a component that depends on the

isospin projection along an axis that depends on the axion �eld. So expressing the massive scalar

�eld as isospin doublet ψ = (ψ1, ψ2), then the interaction describing the measurement could be

written as
m2

1 (ϕ)ψ†ψ + λ2 (ϕ)ψ† (σx cos nθ + σy sin nθ)ψ

= m2
1 (ϕ)

[
|ψ1|2 + |ψ2|2

]
+
[
λ2 (ϕ) einθψ∗1ψ2 + c.c

] , (2.18)

with σ being Pauli matrices. The diagonalization of previous interaction leads to

m± =
√
m2

1 (ϕ)± |λ2 (ϕ)| , (2.19)

at early times λ2 must be small so that the particles pair are created in spin singlet, then at late

times λ2 increases such that λ2 ≈ m1 and m± ∼ Mpl to make the two masses observable and
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distinguishable.

• Late time observation: As stated before, the primordial axion �uctuations that survive to the

post in�ation era and which represent isocurvature �uctuations will inform us about the free

�decider choice� made in Alice and Bob location. Then, the outcome of measurement will show

up as very hot, corresponding tom− and super hot spots form+, superposed on top of a Gaussian

distributed scalar �uctuations. In other words, the outcomes of Bell measurement will be stored

in the late time, e�ectively, classical probability distribution. It is worth to mention that the

coupling of the massive particles to in�aton induce modi�cation of the �uctuations of in�aton,

where the pairs delay locally the end of in�ation which by turn results in a modi�ed power

spectrum of curvature �uctuations with [46]

〈ζpart (x)〉 =
m (η = − |x|)

2
√

2εMpl

×
(

1

2π
√

2ε

H

ϕ

)
, (2.20)

where the factor m(η=−|x|)
2
√

2εMpl
captures the modi�cation induced by presence of massive particles.

In order to make this modi�cations visible for post in�ation observers, it must stand out among

quantum �uctuations, therefore we require

m (η = − |x|)
2
√

2εMpl

> 1 , (2.21)

so for m ∼Mpl we need ε ≈ 10−3, this analysis is summarized in �gure (2.7).

Figure 2.7: We see hot spots induced by massive particles superposed on top of the quantum �uctua-
tions .[46]
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Figure 2.8: Left: quantum �uctuation resulting in creation of three correlated particles from vacuum,
with no physical poles. Right: Classical �uctuations of a state containing physical particles, leading
to net creation of particles with possibility of decay (dashed line) that gives rise to physical poles.[33]

As stated at the beginning of this section, the model just discussed serves just to show that there

is a possibility for a Bell experiment to be arranged spontaneously by the universe itself during its

evolution, and that the outcomes of it are right there waiting us to collect them with our instruments.

There could be a closer Bell experiment model to the currently successful slow roll single �eld in�ation

but is waiting us to �nd its ingredients and implement it!

2.4 quantum signatures in non Gaussianities

Fortunately, Bell experiments are not the only tool to probe the origin of the universe, but there are

other tools among which we �nd higher order correlation functions of the density �uctuations, namely

non Guassianities . A recent work showed that three point functions could carry the signature of a

quantum or classical universe, and here we will summarize the arguments presented there[33].

The main idea is that the origin of �uctuations, the non local quantum or the local classical theory,

gives rise to di�erent analytical structures for the shapes of non Guassianities, speci�cally the type of

poles in the correlator expression1. This di�erence is due to the fact that in the case of a quantum

origin, the long range correlations arise from vacuum �uctuations resulting through their local non

linear evolution into creation of virtual particles, without possibility of decay, since we are talking

about vacuum; see �gure (2.8) . Therefore, the absence of decay processes lead to the absence of

physical momenta as poles in non Gaussianities, because of possibility for tiny violation of energy

1We are considering a Gaussian initial conditions, and that non Gaussianities arise from non local evolution of
perturbations.
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conservation in an expanding universe 4t ∼ H−1. As case in point, we adopt a cubic interaction

Hint = −λ
3
ζ̇3 , (2.22)

Using in-in formalism we get for bispectrum

〈ζk1
ζk2

ζk3
〉′q = i

´
dτ ′ 〈[Hint (τ ′) , ζk1

ζk2
ζk3

(0)]〉

=
4λH−146

ζ

(k1+k2+k3)3k1k2k3

, (2.23)

where by the primed 〈. . .〉′ we refer to a bispectrum up to a momentum conserving δ function; notice

that the pole is given by total momentum kt = k1 +k2 +k3. No physical momenta poles because there

are no real particles to scatter o� in the vacuum, but only a creation of the three virtual particles

giving rise to late time observed long correlations.

When it comes to initial classical �uctuations, then, we are talking about real particles which could

decay and annihilate through various on shell process, as k1 → k2 + k3, which gives rise to poles in

Folded limit, indeed, the bispectrum is given by

〈ζk1
ζk2

ζk3
〉′c =

λH−146
ζ

3k1k2k3

[
3
k3t

+ 1
(k1+k2−k3)3

+ 1
(k1−k2+k3)3

+ 1
(k2−k1+k3)3

]
, (2.24)

So comparing (2.8) and (2.8), we conclude that quantum mechanics is the only way we can guarantee

a non-Gaussian signal without violations of locality/causality, while avoiding the existence of poles at

physical momenta. A direct comparison between the quantum and classical computation of bispectrum

gives for an interactionHint = − λ
3!

∏
l

(
D̂l=1,2,3ζ

)
, where D̂l is a local di�erential operator with respect

to to xl,

〈ζ (x1, τ) ζ (x2, τ) ζ (x3, τ)〉q − 〈ζ (x1, τ) ζ (x2, τ) ζ (x3, τ)〉c =

iλ
24

∑
σ

´ τ
−∞ d3x′dτ ′a4 (τ ′)

[
ζ (x1, τ) , D̂σ(1)ζ (x′, τ ′)

] [
ζ (x2, τ) , D̂σ(2)ζ (x′, τ ′)

] [
ζ (x3, τ) , D̂σ(3)ζ (x′, τ ′)

] ,

(2.25)

where σ is a permutation of (1, 2, 3) .The integral over commutators reveals the di�erence between the

classical and quantum case, where it goes to zero in the limit of vanishing commutators.



Chapter 3

Dynamical collapse models in

cosmology

The Dynamical, or objective, collapse models are based on modifying Schrodinger equation by coupling

the quantum system to an external stochastic classical �eld called noise. On mathematical level

it consists in adding non linear, stochastic and non unitary terms to Schrodinger equation, where

non linearity lead to the breakdown of superposition during measurement, stochasticity is needed to

generate random outcomes and non unitary evolution (but norm preserving) allows stochastic evolution

to cause all but one outcome to decay exponentially [9, 20]. With this properties we solve two aspects

of the measurement problem and remain the one of preferred basis unsolved in explicit way, where

the collapse operator is to be chosen �by hand�. In addition to solving the measurement problem,

the dynamical collapse models allow to derive the Born rule rather than being postulated as is done

in standard quantum mechanics. However, the new added terms to Schrodinger equation should be

e�cient, only, at the macroscopic level in order not to spoil the success of standard quantum mechanics

at the microscopic level. Indeed, this constraint is captured by the ampli�cation mechanism resulting

from the mass density dependence of the collapse parameter which gets very large only for macroscopic

objects inducing an e�cient and quick collapse. It is worth to mention that collapse models are not

formulated yet in a relativistic context so their application to cosmology, where quantum �eld theory

on curved spacetime governs, should be taken carefully [9, 56, 20]. However, the justi�cation to take

risk and apply them in the in�ationary perturbations context lays on the fact that, at linear order,

the di�erent Fourier modes evolve independently and they do not interact, therefore, at this level we

could overpass the need for a quantum �eld description.

Collapse models are divided into several types, we will consider two of them, quantum mechanics

with universal position localization model (QMUPL) and Continuous spontaneous localization model

(CSL). They di�er by the choice of collapse operator in addition to the type of noise implemented.

56
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QMUPL adopts position as collapse operator and the noise is, solely, time dependent so this model

has one free parameter, collapse rate. For CSL model, the collapse operator is the mass (or energy)

density1, while, the noise is time and space dependent, therefore, it has two free parameters: collapse

rate and collapse length. Applying those models in cosmological context and being guided by the high

accurate data at our disposal, especially the well con�rmed quasi scale invariant power spectrum, will

lead to constraints on the values of their free parameters which could be, subsequently, confronted

with the values obtained in laboratory experiments. [56, 29, 54, 55].

3.1 QMUPL model

The basic idea behind dynamical collapse models is to consider the continuous interaction between the

quantum system and an external classical stochastic �eld, that we call noise; the nature of this last is

still a matter of research. The interaction between the system and the noise induces spontaneous and

random wave function collapses that occur all the time for all particles, whether isolated or interacting

and whether they are forming a microscopic, mesoscopic or macroscopic system [9, 29].

The external white noise, that is solely time dependent in the context of QMUPL, is encoded by

a stochastic classical function of time Wt, which is nothing but the usual Wiener process (Brownian

motion). The coupling parameter, called collapse parameter, between the system and the noise is given

by γ, and in the standard QMUPL is proportional to the mass of the object2 m i.e γ ≡ γ (m) , such

that it gets very large values for large objects, resulting in e�cient collapse and localization for those

objects. Having said that, and combing all those ingredients together result in the following modi�ed

Schrodinger equation

dΨt =
[
−iĤdt+

√
γ (x̂− 〈x̂〉) dWt −

γ

2
(x̂− 〈x̂〉)2

dt
]

Ψt , (3.1)

with E (dWtdWt′) = δ (t− t′) dt; localization is supposed to take place in position space x̂ as required

by the de�nition of QMUPL. We notice that under collapse models we have two types of averages

1. A stochastic average E (. . .) refers to ensemble average over the system �nal states which resulted

from the evolution, of initial state, through the non unitary, stochastic, part of (3.1).

2. A quantum average, or expectation value, over the system �nal states resulted from evolution

through unitary part of (3.1).

the existence of this two types average, at the same time, would result in an ambiguity in de�ning the

power spectrum of curvature perturbations under the framework of collapse models.

1This choice creates a problem in cosmology since we face the so called gauge problem resulting from the invariance
of Einstein equations under di�eomorphism, thus, in order to implement CSL in cosmology we need to pick up a gauge
invariant variable as the ones introduced by J.Bardeen[54].

2For example γ
γ0

= m
m0

, with m0 being the mass the nucleon or particle composing the object.
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When it comes to the application of QMUPL in in�ation, speci�cally to the primordial curvature

�uctuations, we have two aims to ful�ll, �rst, we would like to rend the Wigner function squeezed in

the �eld amplitude v direction, rather than �eld momentum p as was obtained in standard in�ation

formalism, see equation (1.119). Second, we wold like to obtain quasi scale invariant correction to

the curvature perturbations power spectrum. However, in order to implement collapse models in

in�ationary context, we need to clean away two ambiguities:

First one concerns the collapse operator, we ask what is the equivalent of position operator x̂ in our

case of curvature perturbations? To answer this question, we need to remember that the MS operator

v̂, see equation(1.114), is the one related directly to observation, therefore it would be legitimate

to assume that the perturbations wave functional Ψt will be localized in the eigenbasis |v〉 of v̂ in

order to allow for well de�nite outcomes to our cosmological experiments. Actually, this last choice

is consistent with previous approaches aimed at studying decoherence of cosmological perturbations

where the pointer basis is often assumed to be precisely the Mukhanov-Sasaki operators [37], we will

give more details on this point in the next chapter.

The second ambiguity consists in the cosmological scale that would capture the ampli�cation mech-

anism, where in standard QMUPL the scale was the object mass. To clean this ambiguity away we

need to remember from the �rst chapter, that the modes k were getting squeezed as they cross the

Hubble radius kη → 0, and that squeezing leads toward the equivalence between quantum expectation

values of operators and classical stochastic averages of complex variables, which could be considered

a semi-classicalization of our quantum �uctuations. Therefore, this give us a hint to adopt a collapse

parameter that depends on the modes scale as follow [29]

γ =
γ0 (k)

(−kη)
α . (3.2)

It is worth to mention that [56] adopted a constant γ, which leaded them to unsatisfactory results as

we will show brie�y, in a moment.

So having agreed on using the MS operator as collapse operator and remembering that we are

interested in working in Fourier space, then, it could be shown that the �uctuation wavefunctional

Ψ [v, η] is still decomposable into real and imaginary parts such that each component satisfy

d
∣∣∣ΨR,I

k

〉
=

[
−iĤR,I

k dt+
√
γ
(
v̂R,Ik −

〈
v̂R,Ik

〉)
dWη −

γ

2

((
v̂R,Ik −

〈
v̂R,Ik

〉))2

dt

] ∣∣∣ΨR,I
k

〉
, (3.3)

notice that the dimension of γ depends on the dimension of scale factor, and whether we adopt constant

γ, or scale dependent one as in (3.2). The above equation could be written as[20]

dΨR,I
k = −i

[
ĤR,I

k dt+ iĤR,I
k,collapse

]
ΨR,I

k , (3.4)
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where the collapse Hamiltonian is given by

ĤR,I
k,collapse =

√
γ
(
v̂R,Ik −

〈
v̂R,Ik

〉)
dWη −

γ

2

(
v̂R,Ik −

〈
v̂R,Ik

〉)2

dη , (3.5)

Obviously, the main part of this section is to solve the modi�ed Schrodinger equation (3.3), and

compute the various quantities of interest, namely the Wigner function and the dimensionless power

spectrum Pv ∝ kns−1. 3 Since, the initial state of �uctuations, i.e Bunch Davies vacuum, is of Gaussian

shape and since both ĤR,I
k and ĤR,I

k,collapse are quadratic, then, we can consider that the most general

solution of (3.3) assumes a Gaussian shape that is given by

ΨR,I
k

(
v̂R,I , η

)
=
√
|Nk (η)| exp

[
−ReΩk (η)

2

(
vR,Ik − v̄R,Ik

)2

+ iσR,Ik (η) + iχR,Ik (η) vR,Ik − iImΩk (η)

2

(
vR,Ik

)2
]
,

(3.6)

where v̄R,Ik , σR,Ik (η), and χR,Ik (η) are stochastic real functions which if we set equal to zero, then, we

recover the Gaussian functional adopted in the standard Schrodinger formalism.

3.1.1 Constant collapse parameter γ

In this subsection we will summarize the main results obtained in [56] by considering a constant collapse

parameter γ (k) ≡ γ. Substituting the suggested solution (3.6) in (3.3) and by using Itô calculus we

derive the equations satis�ed by the various functions parameterizing the solution (3.6), we will write

only those of ReΩk (η)and ImΩk (η) since those last are the ones involved in the Wigner function

expression and power spectrum de�nition [56]

|Nk|′
Nk

= 1
4

(ReΩk)′

ReΩk

(ReΩk)
′

= γ + 4 (ReΩk) (ImΩk)

(ImΩk)
′

= −2 (ReΩk)
2

+ 2 (ImΩk)
2

+ 1
2ω

2 (η, k)

, (3.7)

with ω2 (η, k)being given by (1.37), we quoted also the equation ofNkbecause of its role in renormalizing

ΨR,I
k

(
v̂R,I , η

)
and its link to ReΩk. The �rst equation in (3.7) implies the conservation of the norm

of the wavefunctional in case it was initially normalized as

|Nk| =
(
ReΩk

π

)1/2

. (3.8)

Next, by combining the second and third equation of (3.7) we arrive at the Ricatti equation for

3It is worth to mention that in [20] the authors made a distinction between the collapse operator with respect to
which the wavefunctional will get localized, v̂in our case, and the �focus operator� that represents the observable we
want measure.
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ReΩk + iImΩk

Ω′k = −iΩ2
k + iω̃2 , (3.9)

notice the similarity of this equation with the one obtained from standard theory (1.95), except that

now we have ω̃2(η, k) = ω2− 2iγ = κ2− a′′

a with κ2 = k2− 2iγ. It is important to note that under the

framework of Collapse models modi�ed theory we do not have anymore the corresponding Heisenberg

picture, because of their lack for for a Lagrangian formulation. Therefore, in using the trick Ωk = −i f̄
′
k

f̄k
,

the function fk is a mere parameter that serve to simplify computations and has nothing to do with

Heisenberg modes functions. The equation of motion for fk is given by

f ′′k +

(
κ2 − a′′

a

)
fk = 0 , (3.10)

notice that now f∗kdoes not satisfy the same equation due to the fact that κ is a complex number now,

therefore, we de�ne f̄k by

f̄k ≡ f∗k with γ → −γ , (3.11)

it is easy to see check that f̄k satisfy the same equation as fk

f̄ ′′k +

(
κ2 − a′′

a

)
f̄k = 0 , (3.12)

so they both represent a linearly two independent solutions. Adopting the same notation as in the

squeezing formalism, and exchanging uk → ūk in the de�nition of Ωkas

Ωk ≡ −i
f̄ ′k
f̄k

= κ
ūk − vk
ūk + vk

. (3.13)

Following the same steps as was done in the Schrodinger picture to solve (3.12) and adopting the

same limits, namely super horizon limit kη → 0 and equivalently large squeezing rk � 1, will lead us

to two di�erent expressions of ReΩk as function of the scale4 γ
k2 , in case large modes γ

k2 � 1 then

ReΩk ≈
2γ

k
(−kη) , (3.14)

while for the shorter modes γ
k2 � 1 we get

ReΩk ≈ 2k (−kη)
2
, (3.15)

Notice that in both cases we do have ReΩk → 0 as −kη → 0, so from (1.116) we can see that

the Wigner function is still squeezed along the �led momentum p direction, as was obtained in stan-

4For more details on the steps toward the expression of ReΩk , see [56, 29].
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dard in�ation theory, and this is not the desired result, sought for, which could explain the macro-

objecti�cation of the in�ationary quantum �uctuations.

On the other hand and concerning the power spectrum we see through equation (1.105), that the

scale dependence of curvature power spectrum Pζ comes from
(
a2ReΩk

)−1
and since ReΩk depends

on time we will evaluate at the end of in�ation inspired by standard in�ation formalism prediction of

the freeze out of large modes until horizon reentry. Therefore, having

− kη =
k

k0
e−4N , (3.16)

with k0 being the comoving mode that is at horizon today, i.e k0 = a0H0, we get for power spectrum

Pζ =


1

16π2εMpl
for γ

k2 � 1

k3

16π2εMplγ
for γ

k2 � 1

, (3.17)

we see that the power spectrum corresponding to larger modes are still scale dependent, so it was

suggested in [56] the existence of a transition scale kγsuch that

kγ
k0
� 1 , (3.18)

this last constraint rends the modes for which we obtain a scale dependent power spectrum, called

QMUPL branch, to be much larger than current Hubble radius. Their ratio was estimated to be

lH
lγ
� 10−13 , (3.19)

But this could arise a confusion regarding the role of implementing collapse models in the study

of in�ationary perturbations, where we see that the observed modes which we were expecting to be

a�ected the most, in order to have quantum to classical transition model, were unfortunately the less

a�ected. Therefore, we need to look for loophole in our previous treatment and try to follow another

approach. Indeed, Das et al in [29] noticed that the missing piece was the key feature of collapse

models, namely the ampli�cation mechanism. Where with a constant collapse parameter we were

putting the di�erent scales on the same footing, so the idea is to a complicate a bit the formalism.

However before doing so, some comments are in order here:

• Notice that our suggested solution of the modi�ed Schrodinger equation (3.6) consisted of single

Gaussian, therefore what we were doing was the study of its localization, the decrease of its

spread in a given eigenbasis, namely, that of the collapse operator. However to study collapse

of the wavefunctional, we need to consider two, or more, Gaussians and study the evolution of
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our wavefunctional. In this last case, there are two possibilities, either the wavefunctional will

collapse into one of the Gaussians or the Gaussians will merge into a single one. It was shown

in [56] that collapse takes place much faster than merging phenomenon.

• The choice of MS operator v̂ as collapse operator is certainly not a unique choice, since we could

have associated a function of scale factor to it as h (a) v̂, this arbitrariness is called the temporal

gauge problem. Indeed, by associating a function h (a) to the collapse operator will lead to some

results which are quite similar to a case of collapse parameter given by (3.2). In particular, for an

adequate choice of h (a) we can get a Wigner function localized in the �eld amplitude direction,

but, unfortunately, regardless of the choice of h (a) there is no possibility to get scale independent

power spectrum.

• In [56] the authors adopted the power spectrum de�nition

Pv (k) = E
(〈
v̂2
k

〉)
− E

(
〈v̂k〉2

)
, (3.20)

however, it was argued by D.Sudarsky that such a de�nition is not fully accurate, simply, because

such power spectrum does not vanish in the limit γ → 0. While it would be logical that in this

limit, where our wavefunctional did not collapse, we are still in homogeneous and isotropic

universe. Therefore, D.Sudarsky suggested, instead, the following de�nition that does vanish in

the aforementioned limit

Pv (k) = E
(〈
v̂2
k

〉)
− E2 (〈v̂k〉) , (3.21)

as we mentioned previously such ambiguity arises whenever we have two types averages, namely,

a quantum and classical stochastic averages in our case. Where, the quantum expectation value

〈v̂k〉is no more a number but stochastic quantity so we need to make the stochastic average

E (〈v̂k〉) to end up with a meaningful quantity.

3.1.2 Scale dependent collapse parameter γ

In order to cure the shortcomings of the previous implementation of collapse models in cosmology, we

make the ansatz

γ =
γ0 (k)

(−kη)
α , (3.22)

with α > 0 so that ampli�cation mechanism e�ect increases as the modes cross the horizon. Using

(3.2), then the evolution equation of fk becomes

f ′′k +

(
κ2 − a′′

a

)
fk , (3.23)
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where κ2 is given now by

κ2 = k2 − 2iγ0 (k) (−kη)
−α

, (3.24)

ifα > 2 the term proportional to γ in (3.23) dominates the dynamics at the end of in�ation, when kη

goes to 0, in and one can expect the power spectrum scale invariance to be destroyed. Therefore we

are left with the cases 0 < α ≤ 2.

With a scale dependent collapse operator we obtain at leading order in |kη|, and for superhorizon

limit kη → 0, the following expression of ReΩk [29]

ReΩk ≈
k

2
(−kη)

1−α
(

2γ0 (k)

k2

)
. (3.25)

In order to have a localization in the direction of �eld amplitude v we need ReΩk →∞, therefore,

from the last equitation we can see that for 1 < α ≤ 2 we do have localization in �led amplitude, see

�gure (3.1), which is a quite interesting result.

Figure 3.1: A schematic representation of a Wigner function localized in �eld amplitude direction.

In order to compute the correction to power spectrum we restrict ourselves to the range 1 < α ≤ 2

, so using (3.25) and (3.16) , then, the curvature power spectrum is proportional to [29]

Pζ ∝
k3

a2ReΩk
≈
(
γ0 (k)

k2

)−1(
k

k0

)1+α

e−(1+α)4N , (3.26)

so if γ0 is independent of k then we get scale dependent power spectrum, however we can take advantage
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of the remaining freedom in our ansatz (3.2) and adopt the following form [29]

γ0 (k) = γ̃0

(
k

k0

)β
, (3.27)

with γ̃0 being a constant. Therefore, combining the last two equations yield

Pζ ∝ k3+α−β , (3.28)

so if we we set β = 3 + α, then, we obtain a scale independent power spectrum. For 1 < α ≤ 2,

the parameter β is constrained to the range 4 < β < 5. But it is important to remember that there

still the problem of time dependence of power spectrum which rends any comparison of it to that of

recombination a highly non trivial task due to the complications of pre- and reheating phase [56, 29].

Remark. A similar work of implementing collapse models in the study of primordial perturbations

was done in [20], however there was several di�erences in their approach with respect to that used in

[56, 29], which consequently leaded to a di�erent conclusion . We summarize the main di�erences in

the following:

• The authors in [20] adopted a semi classical approach where metric perturbations were remained

classical while in�aton ones were quantized, while the authors in [56, 29] adopted the standard

approach of quantizing both, metric and matter, perturbations. Therefore, in the former case the

observable related to CMB measurements was power spectrum that is proportional to momentum

conjugate of matter perturbations i.e
〈
p̂2
〉

(k), while in the case of [56, 29] the observable was

power spectrum proportional to MS variable i.e
〈
v̂2
〉

(k) . Using the terms of [20] then we can

say that the �focus operator� in the two approaches was p̂ and v̂, respectively.

• The aim of [20] from implementing collapse models was, solely, to account from the quantum

to classical transition and get a scale independent power spectrum, but there was not a need to

rend the Wigner function squeezed in �eld amplitude direction, because their focus operator was

the momentum conjugate �eld along which the Wigner function was already squeezed. However,

in [56, 29] the focus operator was MS variable, so the aim was twofold, �rst, rend the Wigner

function squeezed along of it, and second to obtain a scale independent power spectrum.

• The constraints obtained in [20] on the collapse operator γ to get a scale independent power

spectrum depended on the choice of collapse operator
γ ∝ k−1 if the collapse operaor was p̂

γ ∝ k if the collapse operaor was ŷ

, (3.29)
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where ŷ is the operator associated to the matter perturbation. On the other hand, we saw that

[56, 29] obtained a scale independent power spectrum in case we adopt the ansatz

γ = γ̃0

(
k

k0

)β
(−kη)

−α
, (3.30)

for 
1 < α ≤ 2

4 < β ≤ 5

. (3.31)

As �nal comment, we would like to mention that unfortunately the constraints obtained on collapse

parameter through cosmological QMUPL could not be confronted with those obtained thorough lab-

oratory QMUPL where the collapse operator is chosen to be position. In other words, each time one

considers di�erent �collapse operators�, this leads to di�erent collapse parameters with di�erent mass

dimension, so it is meaningless to compare them. What could be done is to consider the CSL theory

where the �collapse operator� is usually taken to be the averaged density operator δρ (η,x) which is

unfortunately not uniquely de�ned in cosmology due to the gauge problem. Therefore, we need to

complicate a bit the computations and consider a gauge invariant de�nition of δρ (η,x) to be able to

compare the cosmological constraints on γ to those of laboratory, such work was done in [54, 55] and

we will summarize the main results in next section.

3.2 CSL model

As mentioned previously the CSL model considers the mass/energy density operator as a collapse

operator, so the modi�ed Schrodinger equation adapted to cosmological perturbations is given in

comoving coordinates [54] 5by

dΨ (x, t) =
[
−iĤdt+ 1

m0

√
γ
a3

´
d3xa3

(
Ĉ (x)−

〈
Ĉ (x)

〉)
dWt (x)

− γ
2m2

0

´
d3xa3

(
Ĉ (x)−

〈
Ĉ (x)

〉)2

dt

]
Ψ (x, t)

, (3.32)

5The comoving coordinate x and physical ones xp are related by xp = ax. Notice also that the equation is written
as function of cosmic time.
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if we write the energy density as ρ̂ = ρ̄ + δρ̂, where ρ̄is the background energy density that remains

classical, while δρ̂ is the �uctuation that gets quantized and is involved as collapse operator through

Ĉ (x) = ρ̄
δρ̂

ρ̄

∣∣∣∣
cg

(x) = 3M2
pl

H2

a2

δρ̂

ρ̄

∣∣∣∣
cg

(x) , (3.33)

where we used the �rst Friedman equation. In the previous equation we coarse grained δρ̂
ρ̄

∣∣∣
cg

(x) over

the localization distance rc using the a Gaussian coarse-gaining

δρ̂

ρ̄

∣∣∣∣
cg

(x) =

(
a

rc

)3
1

(2π)
3/2

ˆ
d3y

δρ̂

ρ̄
(x + y) e

− |y|
2a2

2r2c , (3.34)

As we mentioned previously and due to the gauge problem in the relativistic study of cosmological

�uctuations, there is no a unique de�nition of δρ̂ρ̄ and each choice would lead to a di�erent cosmological

CSL theory. However [54] considered that a well physical motivated choice consists in measuring the

energy density relative to the hypersurface which is as close as possible to a �Newtonian� time slicing,

and is given by
δρ

ρ̄
= ε1ζ − ε1

(
1 + ε1H2∂−2

)
ζ ′/ (3H) , (3.35)

for a universe dominated by a scalar �eld. Notice also that, now and in contrast to QMUPL,

the wiener process Wt (x) is function of both space and time and satis�es E [dWt (x) dWt′ (x
′)] =

δ (x− x′) δ (t− t′) dt2.

Even though we are still using a quadratic Hamiltonian, we may worry that the stochastic part of

(3.32) would induce interaction between the di�erent modes in Fourier space. However and fortunately

this not the case, where it was shown in [54] each mode satisfy an individual equation, that is given by

dΨR,I
k (t) =

[
−iĤR,I

k dt+
1

m0

√
γa3

(
ĈR,Ik −

〈
ĈR,Ik

〉)
dWR,I

t − γa3

2m2
0

((
ĈR,Ik −

〈
ĈR,Ik

〉))2

dt

]
ΨR,I

k (t) ,

(3.36)

where

δρ̂scg (k) = αkv̂
s
k + βkp̂

s
k , (3.37)

with

αk ≡ M2
plH

2ε1
z e−

k2r2c
2a2

[
4 + ε2

2 − 3
(
aH
k

)2
ε1 (1 + ε2)

]
βk ≡ M2

plH
2ε1

az e−
k2r2c
2a2

[
3ε1
(
aH
k

)2 − 1
] , (3.38)

where ε2 ≡ d ln ε1/d ln a is the second slow roll parameter. So the presence of the extra stochastic and

non-linear terms does not destroy the property that the modes still evolve separately. It is worth to
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mention that form the last two equations we can see explicitly from the exponential term that CSL

e�ects become e�cient only after the mode wavelength exceeds the localization distance i.e k
a < r−1

c .

This last property is important, since it implies that at early time, when k
a > r−1

c the standard theory

applies, which implies. By turn, that one of the great advantages of in�ation, namely the possibility

to choose well-de�ned initial conditions in the Minkowski limit (the so-called Bunch-Davies vacuum

state), is preserved.

Substituting again the most general stochastic Gaussian (3.6) in (3.36), and de�ning the dimen-

sionless power spectrum by [54]

Pv (k) =
k3

2π2

{
E
(〈
v̂s2k
〉)
− E

[〈
(v̂sk − v̄sk)

2
〉]}

s ≡ R or I , (3.39)

will lead us to di�erent expressions of power spectrum depending on weather the collapse of the

wavefunctional took place during in�ation or during radiation dominated era. Knowing that the

collapse of the wavefunctional is quanti�ed through the parameter D de�ned as

D =
E
[〈

(v̂sk − v̄sk)
2
〉]

E (v̄s2k )
, (3.40)

which measures the ratio of the width of ΨR,I
k (t) relative to the typical dispersion of its mean v̄sk,

therefore, an e�cient collapse corresponds to D � 1. From (3.6) we can see that the wavepacket is

centered around v̄sk with a variance
〈

(v̂sk − v̄sk)
2
〉

= (4ReΩk)
−1
, and it could be shown that E

(
v̄s2k
)

=(
4ReΩk|γ=0

)−1

, this last two pieces of information will be useful in the discussion of power spectrum

expression. Beofre turning on to the discussion of CSL e�ect on power spectrum and for the sake of

comparison with QMUPL, we quote here the equation of motion satis�ed by Ωk

Ω′k =
4iγa4αkβk

m2
0

Ωk − 2

(
i+

2γa4β2
k

m2
0

)
Ω2

k +
γa4α2

k

m2
0

+ i
ω2 (k, η)

2
, (3.41)

we can, easily, see that (3.41) reduces to an equation very similar to (3.9) for αk = 1, βk = 0, and

m0 = 1, and this could understood form (3.37) where we see that for the aforementioned values of

αk, βk the collapse operator becomes MS operator just as in QMUPL.

The evaluation of Pv (k) depends on weather rc was crossed during in�ation or during radiation

dominated era. In case the collapse took place during in�ation, then

Pv (k) =
k3

2π2

1

4ReΩk| γ = 0

[
1 +

3γ

2m2
0

ε31ρ̄inf

(
k

aH

)−1

end

−
ReΩk|γ=0

ReΩk

]
, (3.42)

where ρ̄inf = 3H2
infM

2
pl, and ReΩk|γ=0 refers to the value of ReΩk obtained in standard in�ation,

namely the ReΩk present in equation (1.88). Let us now discuss the previous expression of power
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spectrum as function of collapse parameter γ:

• For γ < γmin the power spectrum vanishes and this could be understood from the discussion we

had previously on the de�nition of power spectrum, where for γ = 0 there is no collapse so our

state is still homogeneous and isotropic which implies a vanishing power spectrum. Notice that

the J.Martin et al adopted a di�erent de�nition of power spectrum in [54] with respect to that

they were adopted in [56].

• For γmin < γ < γmax the collapse takes place so the last term in (4.67) vanishes, and if the second

term remains negligible, since it is proportional to ε31, then we get a scale independent power

spectrum.

• If γmax < γ, then the second term will dominate and the power spectrum acquires a spectral

index ns = 0 which is excluded by data. Therefore, this last observation will help us to constrain

the value of collapse parameter. Using k
aH

∣∣
end

= e−4N with 4N ≈ 50 being the number of

e-folds spent by a mode between Hubble radius crossing during in�ation and the end of in�ation,

then we get an upper bound on γmax as follow

3γmax

2m2
0

ε31ρ̄inf

(
k

aH

)−1

end

� 1⇒ γmax � m2
0

(
448ε31ρ̄inf

)−1
e−4N . (3.43)

On the other hand requiring the collapse to take place before the end in�ation, i.e Hendrc < e4N,

would provide us with lower bound on γ

D � 1⇒ γmin > m2
0 (1152ρ̄inf)

−1
e−4N , (3.44)

so we conclude that if the collapse took place during in�ation then the collapse parameter is

constrained to be

m2
0 (1152ρ̄inf)

−1
e−4N < γ � m2

0

(
448ε31ρ̄inf

)−1
e−4N , (3.45)

Combining the last constraints with those of the case of a collapse taking place during radiation dom-

inated era result in the �gure (3.2), which compares the cosmological constraints with those obtained

from di�erent laboratory experiments. We notice that there is no overlap between the cosmological

constraints and the others, therefore, we conclude that for the choice we made for δρ
ρ̄ , CSL theory is

ruled out. However, it is important to remember that there could other choices of δρρ̄ , for which there

exist an agreement between cosmological CSL and laboratory CSL [54, 55].
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Figure 3.2: Observational constraints on the two parameters rc and λ = γ 6
(
8π3/2r3

c

)
of the CSL

model. The white region is allowed by laboratory experiments while the unbarred region is allowed
by CMB measurements (one uses ∆N = 50 for the pivot scale of the CMB, Hinf = 10−5Mpl, and
ε1= 0.005). The two allowed regions are incompatible[54].



Chapter 4

Decoherence of primordial

perturbations

In the chapter one we saw the notion of �decoherence without decoherence� which was derived by

studying the intrinsic properties of primordial perturbations, in particular their evolution into squeezed

states and the e�ect of squeezing on their classicalization. However, by doing this we were actually

studying how much the states were classical, so now the aim is to focus on the quantum coherence

properties of the states, and understand how coherence gets lost to give rise to classical perturbations

that seeded CMB anisotropies and large scale structures. Decoherence is a powerful tool to investigate

such question, not only from theoretical and foundational perspective, but also and most importantly

from observational point of view as we will see. In addition, decoherence implementation in the study

of cosmological primordial perturbation is due to the fact that those last compose an open system

interacting, at least gravitationally, with the other degrees of freedom present in the early universe.

Therefore it is unavoidable to study the e�ect of those extra degrees of freedom on the evolution of

primordial perturbations, to this end we should derive the Lindblad equation describing our system

evolution and how the interaction with the environment modi�es it. Then, we use this equation to

study the statistical properties of cosmological perturbations and compare the results with standard

ones that are well constrained by the measurement of CMB anisotropies.

70
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4.1 Derivation of the Lindblad equation

4.1.1 Free system

We reserved the appendix B to discuss the formalism of decoherence and how it contributes to solve

the measurement problem1, so in this chapter we focus solely on its application to cosmology.

The quantum system, we are interested in, is described by the wavefunctional (1.80), where in

the free case the time evolution induced by the free Hamiltonian or intrinsic system Hamiltonian

Ĥ(1) ≡ ĤS will preserve the initial factorized form of system state i.e

Ψ [v (η, x)] =
∏

k∈R3+

Ψ
[
vRk , v

I
k

]
=
∏
k

ΨR
k

(
vRk
)

ΨI
k

(
vIk
)
. (4.1)

However in case there was non linear interactions, then, the evolved state could no more be in factorized

form due to coupling between modes, therefore we will work with Ψ [v (η, x)]. Since our main goal is

to study quantum to classical transition, then it is more practical to use the density matrix operator

ρ̂sys (η) = |Ψ [v]〉 〈Ψ [v]| , (4.2)

through which we can see the transition of our initial pure state into a mixed one as result of suppression

of the interference terms. As long as we are in the free theory, i.e no mode coupling, ρ̂v could be

factorized as

ρ̂sys (η) =
∏

k∈R3+

∏
s=R,I

ρ̂sk (η) , (4.3)

the evolution of the system is controlled by the Schrodinger equation or equivalently the Liouville-von

Neumann equation
dρ̂v
dη

= −i
[
ĤS , ρ̂v

]
, (4.4)

We move to Fourier space where the left hand side could be written as

dρ̂sys
dη

=

ˆ
R3+

d3k

(
dρ̂Rk
dη

ρ̂Ik + ρ̂Rk
dρ̂Ik
dη

) ∏
k′ 6=k

∏
s=R,I

ρ̂sk′ , (4.5)

then using

Ĥsys =

ˆ
R3+

d3k
∑
s=R,I

Ĥsk , (4.6)

1In appendix B it is explained why decoherence does not solve the whole measurement problem and how to cure that.



CHAPTER 4. DECOHERENCE OF PRIMORDIAL PERTURBATIONS 72

the commutator in (4.4)could be written as[
Ĥsys, ρ̂v

]
=
´
R3+ d3k

∑
s=R,I

[
Ĥsk, ρ̂v

]

=
´
R3+ d3k

([
ĤRk , ρ̂Rk

]
ρ̂Ik + ρ̂Rk

[
Ĥsk, ρ̂Ik

]) ∏
k′ 6=k

∏
s=R,I

ρ̂sk′

, (4.7)

therefore from (4.5) and (4.5) we get

dρ̂sk
dη

= −i
[
Ĥsk, ρ̂sk

]
, (4.8)

so the Liouville-von Neumann equation decouples into a set of equations governing the evolution of

each Fourier mode, independently of the others, as result of the absence of non linear interactions.

This property will remain valid also when we consider a linear interaction between the system and

the environment. Notice also that that the density matrix is not a usual operator, in the sense that

it follows the von Neumann equation (4.8) where the sign is opposite to the standard Heisenberg

equation.

4.1.2 Interacting system

A truly closed gravitational system is a practical impossibility (unless one considers the totality of the

universe to constitute the system as in, for example, quantum cosmology) [57]. Therefore one should

rather consider the primordial perturbations to be an open system interacting with an environment

that could be composed of all other degrees of freedom of other �elds as cosmological perturbations

outside our causal horizon, physics beyond the UV or IR cuto�s of the theory...etc [53]. To be more

precise about a possible environment we can consider the reheating phase implications. Where, after

the end of in�ation and during reheating, an excitation of some degrees of freedom is supposed to take

place and give rise to radiation dominated era, and this implies the existence of a coupling between

in�aton and those degrees of freedom. Based on physical grounds, Such interaction could not switch on

only at the end of in�ation but it was present even during in�ationary stages [15], therefore those �elds

(fermionic and scalar) composing radiation era could be an environment that decohere the primordial

quantum �uctuations.

The total Hamiltonian of the composite system i.e system+environment, living in the Hilbert space

E = ES ⊗ EE , is given by

Ĥ = Ĥ0 + Ĥint = Ĥsys ⊗ Îenv + Îsys ⊗ Ĥenv + gĤint , (4.9)

where Ĥsys is the intrinsic Hamiltonian of the system acting on the Hilbert space ES , Ĥenv is the
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free evolution Hamiltonian of the environment acting on EE that could be left unspeci�ed, Ĥint is the

interaction Hamiltonian and g is a dimensionless constant. We specialize to the case of interest for �eld

theory, where interactions are local. Suppose, then, that system and environment interact through

interactions of the local form,Ĥint could be written as

Ĥint (η) =

ˆ
d3xÂ (η,x)⊗ R̂ (η,x) , (4.10)

where Â denotes a local functional of the �elds describing the system sector, and similarly for R̂ that

belongs to the environment sector. The pointer, or preferred, basis choice is dictated by the system

sector part of Ĥint (η) where, as was explained in Appendix B, the preferred basis is the eigenstates

basis of Â (η,x)due to the non commutativity criteria. However, in our case we will do things in the

opposite way, where based on the fact that CMB map is localized in the �eld amplitude v̂ basis (look

at equation (1.114)) we conclude that |vk〉 constitute the pointer basis [37] and that Â (η,x) involves

only the v̂ i.e

Â ≡ Â [v̂n] , (4.11)

with n an integer, however, the computations that will be made all throughout this chapter could also

be applied for the case where Â is function of momentum �eld p̂ as well [53]. But still there is an other

reason behind neglecting a dependence of Â on p̂, where as could be seen through equation (1.129),

the momentum �eld is proportional to the decaying mode, therefore any contribution from p would

be subdominant compared to that of v̂. We give more details on this point when we discuss the case

of a system and environment made of same degree of freedom and the horizon plays the role of cuto�

such that long wavelength modes of observation interest makes the system, and short wavelengths act

as environment [57, 15, 18].

We come now to derive the Lindblad equation that will turn out to be crucial for all the results

obtained in this chapter, we will follow closely [53, 15, 57, 18]. We will get a quantum master equation

up to second order in the coupling2.

We adopt the local form of interaction given by (4.10), we also assume no initial correlation, or

entanglement, between system and environment

ρ̂ (ηin) = ρ̂sys (ηin)⊗ ρ̂env (ηin) , (4.12)

the presence of the interaction Ĥint generates correlations between the two sectors as the system

evolves; these correlations make a general description of their further evolution di�cult. However, a

great simpli�cation is possible if some conditions are satis�ed as we will see in a moment. It is worth

to mention that many interesting results emerge when we consider our system to be initially entangled

2The linear order in g gives vanishing contribution to Lindblad equation due to the assumption 3 in the below list.
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with its environment, while the total system evolve according to

Ĥ = Ĥsys ⊗ Îenv + Îsys ⊗ Ĥenv , (4.13)

where no interaction term in the total Hamiltonian and both components evolve freely, we will summa-

rize the main results of such model later on this chapter. Besides, it could be a good idea to investigate

the case where we combine both of previous models, namely the case of having an initial correlation

between the system and environment but they still interacting with each other during their evolution.

The total density matrix ρ̂ obeys the unitary Lioiville von Neumann equation

dρ̂

dη
= −i

[
Ĥ, ρ̂

]
, (4.14)

since we assumed an uncorrelated initial state then the important physics is coming from the evolution

induced by Ĥint, therefore we can factor out the time dependence of ρ̂ due to Ĥ0by moving into

interaction picture, so having the unitary time evolution operator of the free theory

Û (t) = e−i
´ t
0

H0(t′)dt′ with Û (0) = 1 , (4.15)

governed by the equation

i
dÛ

dη
= Ĥ0 (t) Û , (4.16)

we obtain

ρ̃ (t) = Û†ρ (t) Û , (4.17)

H̃int = Û†ĤintÛ , (4.18)

where ˜(· · · )refers to operators in interaction picture. As consequence, the evolution equation is

dρ̃

dη
= −i

[
H̃int, ρ̃ (t)

]
, (4.19)

whose formal solution is

ρ̃ (t+4t) = ρ̃ (t)− ig
ˆ t+4t

t

dt′
[
H̃int (t′) , ρ̃ (t′)

]
, (4.20)

this expression gives rise to a Born expansion in g of the solution of (4.19) , Indeed, this solution is
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inserted back into (4.19) leading to the iterative equation

ρ̃ (t+4t)− ρ̃ (t) = −ig
´ t+4t
t

dt′
[
H̃int (t′) , ρ̃ (t)

]
− g2

´ t+4t
t

dt′
´ t+4t
t

dt′′

×
[
H̃int (t′) ,

[
H̃int (t′′) , ρ̃ (t)

]] , (4.21)

notice that in the second term of this last equation the density matrix is evaluated at time t, but

evaluating it at another time between t and t+4t would just lead to a correction of order g3, so for

future convenience we evaluate it at3 t′′.

Since we are interested on the study of the system and the in�uence of the environmental �elds

on it, we need the system reduced density matrix and the quantum master equation that describes its

time evolution which is the ultimate goal of this subsection. A �rs step toward that is to consistently

trace over the environmental degrees of freedom

ρ̃sys (t) = Trenv [ρ̃ (t)] , (4.22)

so acting by this trace on (4.21) yields

ρ̃sys (t+4t)− ρ̃sys (t) = −ig
´ t+4t
t

dt′Trenv

[
H̃int (t′) , ρ̃ (t)

]
− g2

´ t+4t
t

dt′
´ t+4t
t

dt′′

×Trenv
[
H̃int (t′) ,

[
H̃int (t′′) , ρ̃ (t′′)

]] , (4.23)

same line of thoughts apply in case we were interested in the studying environment, where its density

matrix is given by

ρ̃env (t) = Trsys [ρ̃ (t)] , (4.24)

knowing that generally even if (4.12) holds, but generally the evolved density matrix is given by

ρ̃ (t) = ρ̃sys (t)⊗ ρ̃env (t) + gpρ̃correl (t) , (4.25)

where ρ̃correl (t) describes the correlation between the system and environment; it satis�es Trsys [ρ̃correl (t)] =

0 and Trenv [ρ̃correl (t)]. In our case, ρ̃correl (t) appears if and only if Ĥint is switched on, simply be-

cause we started from uncorrelated density matrices (4.12), and this fact justi�es the appearance of

3We did this to be able to use equal time commutators.
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gp in front of it in (4.25) with p being an unknown natural integer. Plugging (4.25) in (4.23) leads to

ρ̃sys (t+4t)− ρ̃sys (t) = −ig
´ t+4t
t

dt′Trenv

[
H̃int (t′) , ρ̃sys (t)⊗ ρ̃env (t)

]
−igp+1

´ t+4t
t

dt′Trenv

[
H̃int (t′) , ρ̃correl (t)

]
−g2
´ t+4t
t

dt′
´ t′
t
dt′′Trenv

[
H̃int (t′) ,

[
H̃int (t′′) , ρ̃sys (t′′)⊗ ρ̃env (t′′)

]]
−gp+2

´ t+4t
t

dt′
´ t′
t
dt′′Trenv

[
H̃int (t′) ,

[
H̃int (t′′) , ρ̃correl (t

′′)
]]

,

(4.26)

The aim now is determine the terms that contribute the most to the time evolution of ρ̃sys (t), to this

end, we need to specify the form of Ĥint so we assume that it is of the form

Ĥint = A (t)⊗R (t) , (4.27)

then we will generalize our results to the interaction form (4.10). Based on (4.15) and (4.27), we see

that the evolution operator Ûcould be factorised as

Û = Ûsys ⊗ Ûenv , (4.28)

as consequence

H̃int (t) =
(
Û†sys ⊗ Û†env

)
(A (t)⊗R (t))

(
Ûsys ⊗ Ûenv

)
=
(
Û†sysA (t) Ûsys

)
⊗
(
Û†envR (t) Ûenv

)
= Ã (t)⊗ R̃ (t)

, (4.29)

we now use this result to evaluate the �rst term of (4.26) and get

Trenv

[
H̃int (t′) , ρ̃sys (t)⊗ ρ̃env (t)

]
= Trenv

[
R̃ (t′) ρ̃env (t)

] [
Ã (t′) , ρ̃sys (t)

]
, (4.30)

to make it further in the computations we must adopt some some crucial assumptions regarding

the environment which will give it its properties that could help to constrain the set of possible

environments,

1. Since the system is supposed to be small, then we assume that the environments state evolution
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is negligibly a�ected by its interaction with the system, theretofore

ρ̃env (t) ' ρ̃env (0) ≡ ρ̃env , (4.31)

is constant in time in the interaction picture, but still, we could have ρ̂env (t).

2. We assume that the intrinsic environment Hamiltonian is time independent, i.e environment is

in stationary state so

Ûenv = e−iHenvt , (4.32)

in addition, we assume

[ρ̃env, Henv] = 0⇒
[
ρ̃env, Ûenv

]
= 0 , (4.33)

then from (4.17),

ρenv (t) = Û ρ̃envÛ
† , (4.34)

we see that ρenv (t) is itself time independent, i.e ρenv = ρ̃env. Consequently,

[ρenv, Henv] = 0 , (4.35)

and the environment density operator can be written as

ρ̃env =
∑
n

pn |n〉 〈n| , (4.36)

where |n〉are eigenstates of HE with eigenvalues En, and pn are constant real coe�cients. This

second assumption called factorization in [15], or together with previous assumption they are

called Born approximation in [68], could be written as

ρ̃ (t) = ρ̃sys (t)⊗ ρ̃env (0) , (4.37)

and as argued in this last reference, the factorization assumption is an ubiquitous approximation.

[62, 19]

3. Finally, we assume that the mean value of R̂ (t) vanishes, namely 4

〈
R̂ (t)

〉
= Trenv

[
R̂ (t) ρ̃env

]
= 0 , (4.38)

the trace is taken with respect to environmental initial states in Hilbert space E . This condition
4This condition could be a achieved by a simple rede�nition of system Hamiltonian and interaction Hamiltonian

while the total one remains unchanged, namely we perform the transformation Ĥsys → Ĥsys + Trenv
[
R̂ρ̃env

]
and

Ĥint → A (t)⊗R (t)− Trenv
[
R̂ρ̃env

]
⊗ Ienv .
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could be achieved by a simple rede�nition of system Hamiltonian and interaction Hamiltonian

while the total one remains unchanged, namely we perform the transformation Ĥsys → Ĥsys +

Trenv

[
R̂ρ̃env

]
and Ĥint → A (t) ⊗ R (t) − Trenv

[
R̂ρ̃env

]
⊗ Ienv. The same assumption was

adopted in [15], where he assumed an interaction Hamiltonian normal ordered in R̂ i.e

Ĥint = A (t)⊗ (R (t)− 〈R (t)〉env) , (4.39)

where 〈R (t)〉env refer to the expectation value with respect to the initial density matrix ρ̃env.

Notice that we have in (4.30) Trenv

[
R̃ (t′) ρ̃env

]
, so how to relate this last to the assumption in

(4.38)?

using the cyclic property of the trace in addition to (4.33), then

Trenv

[
R̃ (t′) ρ̃env (t)

]
= Trenv

[
Û†ER̂ÛE ρ̃env

]
= Trenv

[
Û†ER̂ρ̃envÛE

]
= Trenv

[
ÛEÛ

†
ER̂ρ̃env

]
= Trenv

[
R̂ρ̃env

]
= 0

,

(4.40)

therefore the �rst term in (4.26), and this result will enable us to constrain the value of p. Since in

the absence of interaction, i.e Ĥint = 0 , the reduced system density matrix in interaction picture ρ̃sys

does not evolve we conclude that the left hand side of (4.26) is proportional to gp+1. While the right

hand side of (4.26) has terms proportional to g2, gp+1, gp+2, so identifying the two sides constrain the

value of p to 2 which gives the dominant contribution, therefore (4.26) reduces now to

ρ̃sys (t+4t)− ρ̃sys (t) = −g2

ˆ t+4t

t

dt′
ˆ t′

t

dt′′Trenv

[
H̃int (t′) ,

[
H̃int (t′′) , ρ̃sys (t′′)⊗ ρ̃env (t′′)

]]
,

(4.41)

cutting the other terms induces a fourth implicit assumption that is

4.The interaction modi�es the dynamics of the system in the perturbative regime only, so (4.41) is

valid only at leading order in g and this last statement will be important when we come to evaluate

the di�erent correlation functions, where it will dictate the terms of Lindblad which could contribute.

The Lindblad equation, or more precisely the real and non unitary Lindblad term, we are looking

for will result from (4.41) so a �rst step toward its derivation is to develop the double commutator5,

Trenv

[
H̃int (t′) ,

[
H̃int (t′′) , ρ̃sys (t′′)⊗ ρ̃env (t′′)

]]
=
[
Ã (t′) , Ã (t′′) ρ̃sys (t′′)

]
CR (t′ − t′′)

−
[
Ã (t′) , ρ̃sys (t′′) Ã (t′′)

]
CR (t′′ − t′)

, (4.42)

5More details on the computations could be found in Appendix A of [53].
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where CR refers to the environment two point correlation function

CR (t′, t) = Trenv

[
ρ̃env (t) R̃ (t) R̃ (t′)

]
, (4.43)

Since the environment is in stationary state it could be shown that CR (t′, t)is in fact a function of

τ = t− t′, where we just need to use the cyclic property of the trace in addition to

R̃ (t) = eiHenvtR̃ (0) e−iHenvt , (4.44)

so

CR (t′, t) ≡ CR (τ) = CR (t′ − t) , (4.45)

If we use the expansion (4.36) then we can obtain a more explicit from of CR (τ)

CR (τ) =
∑
n,m

pnei(En−Em)τ
∣∣∣〈n| R̃ (0) |m〉

∣∣∣ , (4.46)

with

CR (−τ) = C∗R (τ) , (4.47)

we see that CR (τ) is sum of exponentials oscillating at Bohr frequencies of environment 6, so in case of

large environment with an almost continuous set of energy levels, then destructive interferences occurs

quickly within a characteristic time tc

CR (τ) ' CR (0) e−|τ |/tc , (4.48)

Before substituting (4.42) in (4.41) and carry out the integral, we perform a change of the integration

domain into the parameters t′and τ = t′ − t′′ so that

ˆ t+4t

t

dt′
ˆ t′

t

dt′′ =

ˆ 4t
0

dτ

ˆ t+4t

t+τ

dt′ , (4.49)

notice that τ is comprised

0 ≤ τ ≤ 4t , (4.50)

so once we �x τ then integration along t′is bounded from below by t + τ , the original integration

domain is displayed in blue in �gure (4.1). But due to the presence of CR (τ)and CR (−τ) in (4.42)

the integrand vanishes for |τ | � tc, so the support of
´4t

0
dτ is limited by the pale green strip in �gure

(4.1).

6Since the energy levels refer to states of environment.



CHAPTER 4. DECOHERENCE OF PRIMORDIAL PERTURBATIONS 80

Figure 4.1: Original Integration domain (hatched blue surface). In the limit where tC � ∆t , the
extended integration domain (hatched red surface) almost coincides with the initial one when restricted
to the region where the integrand is not vanishingly small (pale green surface).[53]

In order to simplify the integration we consider an extended integration domain

ˆ ∞
0

dτ

ˆ t+4t

t

dt′ , (4.51)

where the upper bound on τ has been extended to ∞, and the lower bound on t′ to t, this extension

adds to original integration domain two regions. The �rst is outside integrand support and therefore

is very suppressed, while the second one is the small triangle that is inside the integrand support but

its contribution would be very suppressed if

tc �4t , (4.52)
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so we add a �fth assumption into the four previous ones and suppose that

5. We follow the evolution of the reduced density matrix for the system on time scales ∆t much

larger than the typical correlation time of the environment. In this case the dynamics of system over

times t� tc does not retain any memory of the correlations with environment, since these only survive

for much shorter times. This allows us to treat the evolution of system in the presence of environment

as a Markov process.

Taking into account all this transformations in addition to the �fth assumption, then substituting

(4.42) in (4.41) yields

ρ̃sys (t+4t)− ρ̃sys (t) = −g2
´∞

0
dτ
´ t+4t
t

dt′
{[
Ã (t′) , Ã (t′ − τ) ρ̃sys (t′ − τ)

]
CR (τ)

−
[
Ã (t′) , ρ̃sys (t′ − τ) Ã (t′ − τ)

]
CR (−τ)

} , (4.53)

the time derivative of ρ̃sys (t) could be approximately obtained by dividing the left hand side by 4t.
Notice that since the time variation of ρ̃sys (t) is proportional to g2 then, as we are interested in the

leading order evolution of it, we can approximate ρ̃sys (t′ − τ) in the right hand side by ρ̃sys (t), this

approximation is called the second Markov approximation [15]. A �nal assumption is

6.The time scale 4t is much smaller than the time scale by which the system interaction operator

Âvaries, i.e Ã (t′) ' Ã (t)and Ã (t′ − τ) ' Ã (t− τ). This automatically implies that Â must vary on

time scales much larger than environmental autocorrelation time tc.

With those considerations the integral over t′is now trivial and gives a factor of 4t

4ρ̃sys
4t = −g2

´∞
0
dτ
{[
Ã (t) , Ã (t− τ) ρ̃sys (t)

]
CR (τ)

−
[
Ã (t′) , ρ̃systÃ (t− τ)

]
CR (−τ)

} , (4.54)

the above equation describes a Markovian process, since the evolution of the system is dictated only by

its current state. In order to compare it to the mater equation obtained in other papers for a similar

system, i.e cosmological perturbations and especially scalar ones, we de�ne

L̂1 ≡ g2
´∞

0
dτCR (τ) Ã (t− τ)

L̂2 ≡ g2
´∞

0
dτCR (−τ) Ã (t− τ) = g2

´∞
0
dτC∗R (τ) Ã (t− τ) = L†1 (t)

, (4.55)

the last equality holds if Ã is hermitian. using L1and L2 then (4.54) it could be written

4ρ̃sys
4t

=
[
Ã (t) , ρ̃sys (t)L2

]
−
[
Ã (t) , ρ̃sys (t)L1

]
, (4.56)
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this equation could be simpli�ed further by computing the explicit expressions of L1and L2, so using

(4.48) and (4.52) in addition to the fact that Ã (t− τ) ' Ã (t) then

L̂1 = g2

ˆ ∞
0

dτCR (τ) Ã (t− τ) ' g2

ˆ ∞
0

dτCR (0) e−|τ |/tcÃ (t) = g2CR (0) tcÃ (t) , (4.57)

and same expression for L̂2, therefore (4.56) becomes

dρ̃sys
dt

= −g2CR (0) tc

[
Ã (t) ,

[
Ã (t) , ρ̃sys

]]
, (4.58)

so going back to standard picture

dρ̂sys
dt

= i
[
ρ̂sys, Ĥsys

]
− g2CR (0) tc

[
Â (t) ,

[
Â (t) , ρ̃sys

]]
, (4.59)

we obtained the standard Lindblad equation, that was also obtained in the various references mentioned

above. As intermediate step toward the Lindblad equation describing the local interaction (4.10) we

consider

Ĥint =
∑
i

Âi (t)⊗ R̂i (t) , (4.60)

associated to the the environmental two point correlation function

CR,ij (t, t′) ≡ TrE
[
ρ̃env (t) R̃i (t) R̃j (t′)

]
, (4.61)

redoing the steps leaded to (4.59) yield

dρ̂sys
dt

= i
[
ρ̂sys, Ĥsys

]
− g2

∑
i,j

CR,ij (0) tc,ij

[
Âi (t) ,

[
Âj (t) , ρ̃sys

]]
, (4.62)

where tc,ij is the characteristic time of correlation functions CR,ijand they all must be less than 4t.
Now it is easy to see how to generalize the previous equation in case we promoted the discrete indices

(i, j) into continuous ones (x,y) so that Ĥint is now given by (4.10) and (4.62) becomes

dρ̂sys
dη

= i
[
ρ̂sys, Ĥsys

]
− γ

2

ˆ
d3xd3yCR (x,y)

[[
ρ̂sys, Â (x)

]
, Â (y)

]
, (4.63)

where γ = 2g2tc, knowing that any possible dependence of tc on (x,y)is absorbed in CR (x,y) that

represents the same time correlation function of R̂ in the environment. In addition, the parameter γ

is generally time dependent so we adopt for it a power law dependence in scale factor [53]

γ = γ∗

(
a

a∗

)p
, (4.64)
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where p represents a free parameter, and ∗ refers to reference time that is taken to be the Hubble

time crossing of the pivot scale k∗ = 0.051Mpc−1, i.e k∗ = a∗H. We need also to adopt a conven-

tion for the correlator CR (x,y), so assuming the environment to be in statistically homogeneous, i.e

CR (x,y) ∝ x− y, and isotropic con�guration, i.e CR (x,y) ∝ |x− y|, in addition, if we assume also

that it is characterized by a correlation, physical, length scale lE then CR (x,y) must be a function of
7a |x− y| /lE , and for convenience we assume it to be top hat function [53]

CR (x,y) = C̄RΘ

(
a |x− y|

lE

)
, (4.65)

with

Θ (x) =


1 if x < 1

0 otherwise

, (4.66)

and C̄R is constant. The correlation function will be left unspeci�ed in the following, but it could

computed explicitly once a speci�c model for the environment is considered, some examples could be

found in [15, 53, 18].

Before moving to discuss the important consequences of (4.63) we summarize brie�y the conditions

under which this equation holds, essentially are [52]

1. The environment evolves on a time scale that is much smaller than that of the system.

2. The backreaction of the system on the environment is negligible.

3. The in�uence of the environment on the system, that is here clearly crucial, can be treated

perturbatively.

4.1.3 Transition from pure to mixed state

A key feature of transition from quantum to classical state is the transition from a pure state

ρ̂sys = |Ψ〉 〈Ψ| , (4.67)

for which there exist a vector state |Ψ〉 encoding all the information about the system, into a mixed

state which could not be built from a vector state as in (4.67), and for which the o� diagonal elements

of ρ̂sys are suppressed. Our aim now is to show how the non unitary, real, Lindblad term in (4.63) is

responsible for transition, and that such suppression of non diagonal elements of ρ̂sys is controlled by

the correlation function CR (x,y), we will follow closely [18].

7Remember that (x,y) are comoving coordinates.
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Let us pick up the �eld amplitude v̂ eigenbasis |v〉 as pointer basis, such that v̂ |v〉 = v |v〉, therefore
the system density matrix elements in this basis are given by

ρsys [v′, v] = 〈v′| ρ̃sys |v〉 , (4.68)

and the action of Â (x) on |v〉is given by

Â (x) |v〉 = A (x) |v〉 and Â (x) |v′〉 = A′ (x) |v′〉 , (4.69)

where for simplicity we supposed that Â (x) are functions of v̂. So taking into account that the

eigenbasis vectors are �xed in time , then from (4.63) we have

dρsys[v′,v]
dη = i 〈v′|

[
ρ̂sys, Ĥsys

]
|v〉 − γ

2

´
d3xd3yCR (x,y) 〈v′|

[[
ρ̂sys, Â (x)

]
, Â (y)

]
|v〉

= i 〈v′|
[
ρ̂sys, Ĥsys

]
|v〉 − γ

2ρsys [v′, v]
´
d3xd3yCR (x,y) [A (x)−A′ (x)] [A (y)−A′ (y)]

.

(4.70)

Notice that upon integration the �rst term in right hand side describes a Hamiltonian evolution

which could not generate a mixed state from an initial pure state, so focusing on the second term then

ρsys [v′, v]η = ρsys [v′, v]ηin e−Γ , (4.71)

with

Γ =

ˆ η

ηin

dη′
γ

2

ˆ
d3xd3yCR (x,y) [A (x)−A′ (x)] [A (y)−A′ (y)] , (4.72)

if we adopt a local form of correlation function8 i.e

CR (x,y) ≡ Trenv
[
ρ̃env (t) R̃ (x) R̃ (y)

]
= CR (x) δ(3) (x− y) , (4.73)

then we can easily see that the Lindblad term causes the system density matrix to take the form of

classical Gaussian distribution in in A (x) ,with a time dependent width controlled by γCR (x). There-

for if this width shrinks at late times then the ρsys [v′, v]η evolves into diagonal one with probabilities

set by the initial density matrix

Pη [v] ≡ ρsys [v, v]η = ρsys [v, v]ηin = |Ψ [v (ηin, x)]|2 . (4.74)

8Actually this is strong condition which is taken here just to show the pure to mixed states transition, however, in
the rest of thesis we will work with (4.65) where CR (x,y)depends of the speration.
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These solutions describe the decoherence of the initial state into the classical stochastic ensemble for

the variables {v} that diagonalize the interactions with the decohering environment for a decoherence

induces preferred basis |v〉.

4.1.4 What if the system and environment initial states were correlated?

Among the key assumptions in the derivation of Lindblad equation was assuming that our system and

its environment states were uncorrelated, or not entangled, as re�ected by equation (4.12), so we would

like to ask what if they were correlated?

The partial answer to this question is available in several papers, and we will brie�y summarize the

main results obtained in [5] which could easily be compared to the result presented in this thesis. In [5]

the authors assumed the state of primordial scalar perturbations to be entangled with an environment

made of an external scalar �eld, minimally coupled to gravity and with no other interactions. This last

point is what makes their work provide only a partial answer to our question, because their system and

its environment evolve freely, i.e there are no interactions in the Hamiltonian between them. Therefore,

it would be interesting to study a model that contains both cases, namely an initial correlated states

which continue to interact as they evolve.

The action of the two scalar �elds ϕ and ψ that make our system and environment, respectively,

is given by

S = − 1
2

´
d4x
√
−g
[
gµν∂µϕ∂νϕ+m

2
ϕϕ

2+gµν∂µψ∂νψ+M
2ψ2

]
, (4.75)

since we will study our system in Schrodinger picture, then, we will need the Hamiltonian to solve the

Schrodinger functional equation later on,

H =
1

2

ˆ
d3x

[
P 2
ϕ

a2
+
P 2
ψ

a2
+ a2

(
(∇ϕ)

2
+ a2m2

ϕϕ
2
)

+ a2
(

(∇ψ)
2

+ a2M2ψ2
)]

, (4.76)

where the conjugate momenta Pϕand Pψ are de�ned by

Pϕ =
∂L
∂ϕ′

, Pψ =
∂L
∂ψ′

, (4.77)

The sate of the total system is described by the wave functional Ψ [{ϕk} {ψk} ; η] where the �elds are

Fourier transformed similarly to (1.35), we will adopt the following representation of �eld momentum

operators

P̂ϕ = −i δ

δϕ−k
, P̂ψ = −i δ

δψ−k
, (4.78)
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and since we have

Ĥ =

ˆ
d3k

(
Ĥϕ + Ĥψ

)
, (4.79)

Ĥϕ,k =
P̂ϕ,kP̂ϕ,−k

2a2 + a2
(
k2 + a2m2

ϕ

)
ϕ̂kϕ̂−k

Ĥψ,k =
P̂ψ,kP̂ψ,−k

2a2 + a2
(
k2 + a2m2

ϕ

)
ψ̂kψ̂−k

, (4.80)

then we see that the di�erent Fourier modes evolve interdependently and do not interact with each

other so we can write

Ψ [{ϕk} {ψk} ; η] =
∏
k

Ψk

[
ϕ̂k, ψ̂k; η

]
, (4.81)

in spite of no interactions in Ĥ between ϕ and ψ, we cannot factorize Ψk

[
ϕ̂k, ψ̂k; η

]
into two pieces

depending only on ϕ̂k and ψ̂k separately because we want to consider an initial entangled state. Since

Ĥ is a quadratic Hamiltonian, then, an intuitive choice of the state of the total system is the nearest

to a Gaussian state

Ψk

[
ϕ̂k, ψ̂k; η

]
= Nk (η) exp

[
− 1

2

(
Ωϕk (η)ϕk (ηin)ϕ−k (ηin) + Ωψk (η)ψk (ηin)ψ−k (ηin)

)
+Ck (η) (ϕk (ηin)ψ−k (ηin) + ψk (ηin)ϕ−k (ηin))]

, (4.82)

it is interesting to notice the similar structure of this state with the one considered in (1.88),where the

state above would correspond to a four mode (±k for each �eld) squeezed state, generalizing the usual

two mode squeezed state description of a single �eld in de Sitter space given by (1.88). The parameter

Ck (η) is the one that serves to impose initial correlated state between the two �elds through imposing

Ck (ηin) 6= 0. Following the same steps done in (1.2.2) we can obtain the equations of motion for

the various parameters Nk (η), Ωϕk (η), Ωψk (η),Ck (η). Obviously we expect to get modi�ed equations

with respect to the ones obtained in (1.2.2) due to the presence of entanglement parameter. Therefore

a modi�ed expression for Ωϕk (η)would imply a modi�cation of the power spectrum since they are

proportional as could be seen through equation (1.105).

The modi�ed power spectrum obtained in [5]

Pϕ =42
ϕ ≡

k3

2π2
〈ϕkϕ−k〉 , (4.83)

exhibited an oscillatory behavior which is justi�ed by the fact that the initial state of in�aton was

deviated from the Bunch Davies vacuum due to the initial entanglement. This last puts the in�aton

in a mixture of energy eigenstates which resulted in oscillations, see �gure(4.2), therefore, the size of

those last is controlled by the amount of deviation from Bunch Davies vacuum.

It is worth to mention that the authors treated the same problem in a di�erent paper [14], but this
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Figure 4.2: The power spectrum 42
ϕ versus q, for di�erent values of the entanglement parameter

λq = 0, 0.1, 0.3using ϕ nearly massless and ψ massless. The non-entangled curve is straight, and
increasing the entanglement introduces increasing amplitudes of oscillatory behavior on top of the
straight piece.[5]

time the environment was made of the primordial tensor �uctuations and they obtained interesting

results which could explain some CMB anomalies, namely the large scale anomalies.

4.2 Decoherence of scalar perturbations

As mentioned previously, an e�cient way of verifying, or falsifying, an early universe model is by

computing their various correlation functions and confront them with the excellent data collected so

far which made cosmology enters the precision era. The excellent observational constraints on power

spectrum of primordial scalar perturbations serve to constrain any decoherence induced correction, and

this will help us by turn to constrain the set of possible environments and reveal important hints about

early universe physics. Same line of thoughts apply to higher order correlation functions, namely non

guassianities, but unfortunately the experimental bounds on them are not yet good enough to serve

to constrain cosmological decoherence models.

In the computation of decoherence induced corrections to the various scalar correlation functions

there are two approaches distinguished by the form of system interaction operator Â considered in

(4.63). The �rst is the one adopted by J.martin et al in [53, 52] where they considered either linear

or quadratic interaction operator i.e Â = v̂ or Â = v̂2, while our approach is based on considering the

operator Â =
∑
n α

n−1v̂n up to certain order9. Our approach does not only generalize the work of

9During computations with our approach, we will stop at the leading order that gives non vanishing correction to the
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J.Martin et al, but it leads also to important new results as we will see.

To compute the correlation functions there are two methods:

1. Either, we solve the evolution equation (4.63) and obtain an explicit expression of the system

density matrix ρ̂sys , then we use it to compute the correlation function O = f [v̂, p̂] through

obtaining its expectation value

O ≡
〈
Ô
〉

= Trsys

(
Ôρ̂sys

)
. (4.84)

However, in most of the cases it is highly challenging to solve (4.63) exactly and the only case

that this is doable with reasonable easiness is the linear case Â ∝ v̂. Where, in that case, the

Lindblad term is quadratic in v just as the free Hamiltonian is, and we obtain Gaussian density

matrix with a width controlled by the environment.

2. But apart from the linear case it is better to pursue the second method in computing the cor-

relation functions, which consists in solving directly the equation of motion governing
〈
Ô
〉
.

Therefore, using (4.63) and (4.84) we obtain

d
〈
Ô
〉

dη
=

〈
∂Ô

∂η

〉
− i
〈[
Ô, Ĥv

]〉
− γ

2

ˆ
d3xd3yCR (x,y)

〈[[
Ô, Â (x)

]
, Â (y)

]〉
. (4.85)

For the linear case Â ∝ v̂ we will compute the power spectrum using both of previous methods and

show that they are equivalent, however for higher order correlation functions we will use solely the

second method. Please notice that by the word �method� we refer to the way of computing the

correlation functions, while the word �approach� refers to the choice adopted regarding the system

interaction operators Â (x), either that of J.Martin et al or our choice.

4.2.1 J.Martin et al approach

4.2.1.1 Computation of power spectrum with linear interaction

First Method Considering a linear interaction with environment Â (x) =v̂ (x) then (4.63) be-

comes

dρ̂sys
dη

= i
[
ρ̂sys, Ĥsys

]
− γ

2

ˆ
d3xd3yCR (x,y) [[ρ̂sys, v̂ (x)] , v̂ (y)] , (4.86)

de�ning the Fourier transform

v̂ (x) =
1

(2π)
3/2

ˆ
d3kv̂ke

ik.x , (4.87)

correlation function considered, except for the case of power spectrum we will consider also next leading order to show
that the computations done by J.martin et all were missing a contribution.
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CR (x,y) =
1

(2π)
3/2

ˆ
d3kC̃R (|k|) eik.(x−y) , (4.88)

in this last we used the fact that due to homogeneity and isotropy assumption about environment we

have

CR (x,y) = CR (|x− y|) . (4.89)

Now substituting (4.65) for the environmental correlation function gives

C̃R (|k|) =

√
2

π

C̄R
k3

[
sin

(
klE
a

)
− klE

a
cos

(
klE
a

)]
, (4.90)

this last can itself be be approximated by a top hat function

C̃R (|k|) =

√
2

π

C̄RlE
k3a3

Θ

(
klE
a

)
, (4.91)

We have shown that in the free case the evolution equation of ρ̂ gets decoupled into a set of equations

(4.8) governing the evolution of each Fourier mode independently of others, redoing the same steps

with the Lindblad non linear term

− γ

2
(2π)

3/2
ˆ
d3kC̃R (|k|)

〈[[
Ô, v̂k

]
, v̂−k

]〉
, (4.92)

using (4.3), in addition tov̂k =
(
v̂Rk + iv̂Ik

)
/
√

2 with v̂Rk = v̂R−k and v̂I−k = −v̂I−k, one obtains 10

´
d3xd3yCR (x,y) [[ρ̂sys, v̂ (x)] , v̂ (y)] = (2π)

3/2 ´
dkC̃R (|k|) [[ρ̂sys, v̂k] , v̂k]

= (2π)
3/2 ´

dkC̃R (|k|)
([[
ρ̂Rk , v̂

R
k

]
, v̂Rk

]
ρ̂Ik + ρ̂Rk

[[
ρ̂Ik, v̂

R
k

]
, v̂Rk

])
×
∏

k′ 6=k

∏
s=R,I

ρ̂sk′

,

(4.93)

so combining this last result with (4.8) one obtains

dρ̂sk
dη

= −i
[
Ĥk, ρ̂

s
k

]
− γ

2
(2π)

3/2
C̃R (|k|) [[ρ̂sk, v̂

s
k] , v̂sk] , (4.94)

Notice that a particular comoving scale appears in the interaction term, indeed, in order for (4.160)

( or equivalently (4.165)) to have the correct dimension, γC̃R (|k|) must be homogeneous to the square

10In what follows we omit the sub index�sys� in Fourier space to lighten up the notation.
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of a comoving wavenumber which we de�ne it as

kγ =

√
2

π
C̄R

γ∗l3E
3a3
∗
, (4.95)

this scale will be very important to constrain the interaction strength between the system and envi-

ronment through the comparison of decoherence induced corrections with observations.

The next move is to project (4.94) on the eigenvecotrs |vsk〉 of v̂sk and solve the equation. Using the

Hamiltonian expression (1.93)

d
〈
v
s,(1)
k

∣∣∣ρ̂sk∣∣∣vs,(2)k

〉
dη =

{
i
2

[
∂2

∂v
s,(1)
k

2
− ∂2

∂v
s,(2)
k

2
+

]
− i

2ω
2
[
v
s,(1)2

k − vs,(2)2

k

]

−γ2 (2π)
3/2

C̃R (|k|)
[
v
s,(1)
k − vs,(2)

k

]2}〈
v
s,(1)
k

∣∣∣ ρ̂sk ∣∣∣vs,(2)
k

〉 , (4.96)

if the matrix element
〈
v
s,(1)
k

∣∣∣ ρ̂sk ∣∣∣vs,(2)
k

〉
is seen as function of v

s,(1)
k , v

s,(2)
k and η then the above

equation is a linear second order partial di�erential equation which could be transformed into set of

�rst order partial di�erential equations by the change of variable

X = v
s,(1)
k − vs,(2)

k andY = v
s,(1)
k + v

s,(2)
k , (4.97)

the details of this transformation in addition to their solution through the use of method of

characteristics could be found in appendix C of [53]. The solution of (4.96) is given by

〈
v
s,(1)
k

∣∣∣ ρ̂sk ∣∣∣vs,(2)
k

〉
= (2π)−1/2√

|vk|2+Jk
exp

− v
s,(1)2

k +v
s,(2)2

k +i|vk|2
′
[
v
s,(2)2

k −vs,(1)
2

k

]
4(|vk|2+Jk)


× exp

{
−
[
v
s,(2)
k −vs,(1)k

]2
2(|vk|2+Jk)

(
IkJk −K2

k + |v′k|
2 Jk + |vk|2 Ik − |vk|2

′
Kk
)

− iKk
2(|vk|2+Jk)

[
v
s,(2)2

k − vs,(1)2

k

]}
, (4.98)

the prime in previous equation refers to derivative with respect to η. The quantities Ik, Jk and Kk
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are de�ned as

Ik (η) = 4 (2π)
3/2 ´ η

−∞ dη′γ (η′) C̃R (|k| , η′) Im2
[
vk (η′) v∗

′

k (η)
]

Jk (η) = 4 (2π)
3/2 ´ η

−∞ dη′γ (η′) C̃R (|k| , η′) Im2 [vk (η′) v∗k (η)]

K (η) = 4 (2π)
3/2 ´ η

−∞ dη′γ (η′) C̃R (|k| , η′) Im2
[
vk (η′) v∗

′

k (η)
]
Im
[
vk (η′) v∗

′

k (η)
]
, (4.99)

needless to remind that vk (η)in the previous equations is the solution of Mukhanov-Sasaki equation

with initial conditions set in Bunch Davies vacuum. By using (4.3) the equation (4.98) would

represent a full solution of Lindblad equation. Notice that as consequence of considering linear

interaction the state is still Gaussian which reduces to the two mode squeezed state in the limit γ = 0

i.e no interaction with environment〈
v
s,(1)
k

∣∣∣ ρ̂sk ∣∣∣vs,(2)
k

〉
= Ψs

k

(
v
s,(1)
k

)
Ψs∗

k

(
v
s,(2)
k

)
, (4.100)

with the wavefunction Ψs
k (v) ∝ e

i
v′k
2vk

v2
. A �nal comment is to notice that the diagonal elements are

a�ected by the environment since they involve Jk (η), therefore we predict that the correction

induced by decoherence to the power spectrum will be ∝ Jk (η).

Having found the explicit expression of density matrix, we turn now to compute the power spectrum

of �eld amplitude v that is de�ned by

Pvv (k) =
〈
|v̂k|2

〉
=
〈

(v̂sk)
2
〉

= Trsys

[
(v̂sk)

2
ρ̂sys

]
=

ˆ
dv̂sk 〈vsk| ρ̂sk |vsk〉 (v̂sk)

2
, (4.101)

this last integral is Gaussian and could be performed easily to yield

Pvv (k) = |v̂k|2 + Jk (η) , (4.102)

we recover the standard result, Pvv (k) = |v̂k|2, in case of absence of environment Jk (η) = 0. The

dimensionless curvature power spectrum Pζ , that is of interest for us, is obtained from (4.102) by using

(1.30) which leads to

Pζ =
k3

2π2

1

2a2Mplε1
Pvv (k) = Pζ |standard (1 +4Pk) , (4.103)

with

4Pk =
Jk
|v̂k|2

, (4.104)
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Second method We now compute the power spectrum using the alternative method based on

solving the equation (4.85); this method will be the standard one for computing correlation functions

for quadratic interactions, with environment, and beyond.

Fourier transforming (4.85) and considering the various two point correlation functions
〈
Ôk1

Ôk2

〉
with Ôki = v̂kior p̂ki we obtain

d〈v̂k1
v̂k2〉

dη = 〈v̂k1
p̂k2
〉+ 〈p̂k1

v̂k2
〉

d〈v̂k1
p̂k2〉

dη = 〈p̂k1 p̂k2〉 − ω2 (k2) 〈v̂k1 v̂k2〉

d〈p̂k1
v̂k2〉

dη = 〈p̂k1
p̂k2
〉 − ω2 (k1) 〈v̂k1

v̂k2
〉

d〈p̂k1
p̂k2〉

dη = −ω2 (k2) 〈p̂k1 v̂k2〉 − ω2 (k1) 〈v̂k1 p̂k2〉+ γ (2π)
3/2

C̃R (|k1|) δ (k1 + k2)

, (4.105)

even though the environment a�ects only 〈p̂k1
p̂k2
〉 through the term ∝ γ, but the equations of various

correlation functions in (4.105) are coupled together, so 〈v̂k1
v̂k2
〉 is also a�ected. In addition, the

presence of δ (k1 + k2) in the extra term induced by interaction with environment implies that this

last preserves the statistical homogeneity, and since environmental correlator preserves isotropy, then

the above system admits homogeneous and isotopic solutions Poo′ (k) that are solely functions of

modulus k. The equations (4.105) form a closed system of equations that could be reduced into a

single third order di�erential equation

p′′′vv + 4ω2p′vv + 4ωω′pvv = S1 , (4.106)

where S1 is a source function given by

S1 (k, η) = 2 (2π)
3/2

γC̃R (k) , (4.107)

indeed we can check that the solution obtained by the �rst method (4.102) does satisfy (4.106). In

case we considered Â (x) = p̂ (x) instead of v̂, then equation (4.106) would remain valid but with a

di�erent source function

S1 (k, η) = (2π)
3/2

[(
γC̃R

)′′
+ 2ω2γC̃R

]
, (4.108)

The decoherence induced correction 4Pk The �nal step in our analysis is the computation

of 4Pk given by (4.104), with Jk de�ned in (4.99). We adopt the slow roll regime solutions concerning

mode functions that are involved in Jk, and are given in terms of Bessel functions with index ν =
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3
2 + ε∗1 + ε∗2, where the �rst and second slow roll parameters (ε∗1, ε

∗
2) are computed Horizon exit of pivot

scale k∗. The details of computing Jk could be found in appendix C of [53], and here will just state

two approximations which were adopted by the authors to get the corrections that we will write in a

moment. We will also use them to compute the various correlation functions with our approach for

the scalar case, in addition to tonsorial case. The approximations consist in

• The �rst limit uses the Markovian approximation that requires the environment autocorrelation

time tc to be very short compared to the typical time scale over which the system evolves ∼ H−1.

Assuming the environment correlation time tc and length lE to be of the same order tc ∼ lE then

HlE � 1 , (4.109)

• The second limit is to evaluate the corrections at the end of in�ation i.e −kη → 0, when the

modes of observational interest today are outside horizon.

Therefore, using these two approximations and remembering that the coupling system-environment

was conventionally assumed to be of the form (4.64), we obtain the corrections 4Pk as function of p

that gives the dominant contribution. We, �rst, write the most general form of it11

4Pk |i ' Ai (k)

[
1 + Biε∗1 + Ciε∗2 + (Diε∗1 + Eiε∗1) ln

(
k

k∗

)]
, (4.110)

1. If p > 3 + 2+2ν
1+ε∗1

A1 (k) =
(
kγ
k∗

)2 (
k
k∗

)3 (
η
η∗

)2+2ν−(p−3)(1+ε∗1)
2

(p−2)(p−5)(p−8)

B1 = 2γE + ln (4)− 7 + 1
2−p + 3

8−p + 2
5−p

C1 = γE + ln (2)− 2 + 6
(p−2)(p−8) , D1 = 2, E1 = 1

. (4.111)

11Notice that this the slow roll expanded solution of the exact one, within the two limits discussed above.
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2. If 3 + 1
1+ε∗1

< p < 3 + 2+2ν
1+ε∗1

A2 (k) =
(
kγ
k∗

)2 (
k
k∗

)p−5
(6−p)π

26−p(p−2) sin(πp/2)Γ(p−3)

B2 = −2 (p−1)(p−3)
(p−4)(p−2) −

1
2 (p− 5)ψ

(
4− p

2

)
− ψ

(
−2 + p

2

)
− 1

2 (p− 3)ψ
(
− 3

2 + p
2

)
C2 = γE + ln (2)− 2 + 6

(p−2)(p−8) , D2 = p− 3, E2 = 0

. (4.112)

3. Finally if p < 3 + 1
1+ε∗1

A3 (k) =
(
kγ
k∗

)2 (
k
k∗

)p−5
(H∗lE)p−4

2(p−4)

B3 = 3− p+ 1
4−p + ln (H∗lE)

C3 = 0, D3 = 2, E3 = 0

, (4.113)

where γE = 0.5777 is the Euler-Masheroni constant and ψ (z)is the digamma function. Notice that

the second and third corrections settle to stationary values at late times, while the �rst one is time

dependent and continues to grow on large scales at late times as is revealed from the factor

(
η

η∗

)2+2ν−(p−3)(1+ε∗1)

, (4.114)

in A1 (k).

The accuracy of the two limits taken above, namely HlE � 1 and the limit −kη → 0, could be

checked by integrating numerically the correction 4Pk = Jk
|v̂k|2

. As could be seen in (4.3), the two

results �t perfectly.

The high accurate CMB measurements revealed a quasi scale independent power spectrum, while

we see a scale dependent corrections, except for p = 5, so we need to constraint the scale dependent

branch of power spectrum to be beyond our observational scales. To this end, we de�ne a transition

scale kt that marks the breakdown of scale independence and having correction of order unity i.e

Ai (kt) ∼ 1, Therefore form (4.111, 4.112, 4.113) we get
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kt
k∗
|1 '

(
kγ
k∗

)− 2
3

exp
{
4N∗

3

[
p− 3− 2+2ν

1+ε∗1

]}
kt
k∗
|2 '

(
kγ
k∗

)− 2
p−5

kt
k∗
|2 '

(
kγ
k∗

)− 2
p−5

(H∗lE)
− p−4
p−5

, (4.115)

where 4N∗corresponds to number of e folds between the Hubble crossing of pivot scale k∗and the end

of in�ation i.e Nend −N∗.

Figure 4.3: Comparison of exact and approximated corrections to power spectrum for di�erent values
of p ( black lines represent the exact results and colored lines represent the approximated ones). The
vertical dotted lines refer to the position of kt. [53]

Depending on whether the corrections grow for large values of k or small ones, we will require in this

last case kt
k∗
� 1, while for the former we require kt

k∗
� 1. For example, in case oneA1 (k) ∝ k3,therefore
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we want this scale dependent correction to be outside observable window, thus

kγ
k∗
|1 � e−

1
2 (p−8+3ε∗1−ε

∗
2)4N∗ , (4.116)

Similarly for the cases 2 and 3
kγ
k∗
|2 � 1 , (4.117)

kγ
k∗
|3 � (H∗lE)

4−p
2 , (4.118)

Those upper constraints on kγ are very important, since they constrain, through (4.95), the interaction

of system with environment to be very small, we will obtain also lower constraints on kγ later on by

requiring decoherence of cosmological perturbations to take place.

The only case where no constraint on kγ was obtained is for p = 5, where the correction to power

spectrum is scale independent. We will show below that having a massive scalar �eld as environment

gives for linear interaction exactly this value, p = 5, which is an interesting observation.

4.2.1.2 J.Martin model of a heavy massive scalar �eld as environment

Interesting results emerge for this type of environment. Indeed, we get scale independent corrections

for power spectrum in case of linear, or quadratic, interaction with system i.e Â = v̂ or Â = v̂2

for p = 5 and p = 3, respectively. In addition, considering such example will enable us to see how

the approximations and the parameters appearing in Lindblad equation can related to microphysical

quantities. Let us consider the action describing a scalar �eld ϕ, our system, interacting with heavy

massive scalar �eld ψ representing an environment

S = −
ˆ

d4x
√
−g
[

1

2
gµν∂µϕ∂νϕ+ V (ϕ) + λµ4−n−m 〈ψm〉st ϕ

n +
1

2
gµν∂µψ∂νψ +

M2

2
ψ2 + λµ4−n−mϕn (ψm − 〈ψm〉st)

]
,

(4.119)

we can de�ne an e�ective potential for ϕ as

Veff (ϕ) = V (ϕ) + λµ4−n−m 〈ψm〉st ϕ
n . (4.120)

The reason behind adding adding and subtracting λµ4−n−m 〈ψm〉st ϕn is to satisfy the condition (4.38)

in the derivation of Lindblad equation, namely the quantum mean value of the interacting term vanishes

in the stationary con�guration of the environment, where in our case

Ĥint = λµ4−n−ma4

ˆ
d3xϕn (ψm − 〈ψm〉st) . (4.121)
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De�ning v (η,x) = a (η)ϕ ((η,x)), and assuming Veff (ϕ) = m2ϕ2/2,then in Fourier space

Sϕ =
1

2

ˆ
dη

1

2

ˆ
d3k

[
v̂′kv̂
∗′
k +

(
k2 − a′′

a
+m2a2

)
v̂kv̂
∗
k

]
, (4.122)

so if m = 0 we get the action of curvature perturbations in case we ignore metric perturbations, so

by identifying v (η,x) with Mukhanov Sasaki variable in uniform gauge then we can identify ϕ with

in�aton and the system be curvature perturbations. So in terms of MS variable (4.121) could be

rewritten as

Ĥint = λµ4−n−ma4−n
ˆ

d3xvn (ψm − 〈ψm〉st) , (4.123)

making an indenti�cation with the Ĥint adopted in (4.10) to derive Lindblad equation we get

Â = v̂n

R̂ = ψ̂m −
〈
ψ̂m
〉
st

g = λµ4−n−ma4−n

, (4.124)

we see that indeed the coupling is time dependent as claimed in adopting the ansatz

γ = γ∗

(
a

a∗

)p
. (4.125)

Given that in the derivation of Lindblad equation we de�ned γ = 2g2τc, where τc = tc/a, then (4.125)

is satis�ed if
γ∗ = 2tcλ

2µ8−2n−2ma7−2n
∗ , (4.126)

p = 7− 2n , (4.127)

from this last we see that for n = 1 we get p = 5 which is exactly the value that gives a scale

independent correction to power spectrum, similarly, for quadratic interaction n = 2 we will see that

the correction is scale independent for p = 3 which is again satis�ed by (4.127).

Remarque: It is important to mention that with our choice Â =
∑
n α

n−1v̂n, we will show

in the next section that the scale independent corrections are not exclusively related to having a

massive scalar �eld as environment but is related to the order n in α from which the correction is

obtained. Consequently, there is a possibility to have scale independent corrections of power spectrum

for environments other than massive scalar �eld.
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4.2.1.3 D.Boyanovsky model of a massless scalar �eld as environment

Before proceeding with the implications of considering a massive scalar �eld as environment in the

model adopted by J.Martin et al, it is worth to mention that a similar work was done by D.Boyanovsky

in [15]. In this work he considered the action for ϕ representing the system, in�aton, and ψ representing

the environment

S = −
´

d4x
√
−g
[

1
2g
µν∂µϕ∂νϕ+ 1

2

(
m2
ϕ + ξϕR

)
ϕ2

+ 1
2g
µν∂µψ∂νψ + 1

2

(
M2 + ξψR

)
ψ2 + λϕ

(
ψ2 −

〈
ψ2
〉
st

)] , (4.128)

where R is the Ricci scalar and ξϕ/ψ = 0, 1
6 represent the minimal and conformal coupling respectively.

Following the same previous steps to derive the Lindblad equation including the assumptions made

along the way, Boyanovsky obtained a master equation that enabled him to study the e�ect of external

scalar �eld on curvature power spectrum using the second method above to derive the equations of

motion for Pvv. However, there are some di�erences with respect to the previous model of J.Martin

et al in terms of computations and �nal results :

• Boyanovsky expanded the system interaction operator Â in terms of creation and annihilation

operators
(
âk, â

†
−k

)
in order to study to the evolution of number operators

N̂k =
〈
â†kâk

〉
= Trsys

(
ρ̂sysâ

†
kâk

)
, (4.129)

and

M̂k = 〈âkâ−k〉 = Trsys (ρ̂sysâkâ−k) , (4.130)

which re�ect the particle production and and production of correlated pairs of particles. This

production is coming purely from interaction with environment and independently from the

production we saw in �rst chapter that is coming from interaction with classical spacetime

as re�ected by the Hamiltonian of the system seen in (1.44). Particle production is sign of

classicality, where highly populated �elds are considered macroscopic �elds, and the particles

populating them could easily turn into classical rather than quantum since it is hard to preserve

quantum coherence between large number of particles.

• The second and main di�erence, is that Boyanovsky considered an explicit expression for the

environment correlator by assuming ψ to be massless conformally couple scalar �led to gravity.

Where the correlator expression he obtained for CR (η,x; η′,y) was made of two parts: a local one,

as for J.Martin et all, and a non local one. It is exactly this non local part of the environment

correlator which causes the power spectrum to decay at late times, where he obtained for its
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expression

Pζ (k, η) =
H2

8π2ε∗1M
2
pl

e
λ2

6π2H2 [ln(−kη0) ln(−kη)− 1
2 ln2(−kη)] , (4.131)

with −kη → 0. Though it seems from a �rst glance that there is strong decay, we have to re-

member that Lindblad equation was derived perturbatively, so the fact that λ2

H2 � 1 is enough to

make the decay marginally observable for for scales of cosmological interest today. For λ
H = 0.1,

ln (−kη0) ≈ 50 and ln (−kηf ) = 10, the power spectrum suppression is > 10% which is very

small. For the usefulness of comparing the results of the two models, we reproduce the brief

conclusion drawn by Boyanovsky after this result: �Therefore, although the power spectrum de-

cays as a consequence of the interaction with the environmental degrees of freedom, it is likely

that these corrections are of marginal observational relevance, at least within the model studied

here. However, this important observational fact notwithstanding, there is the noteworthy and

fundamental aspect that the amplitude of the perturbation does not freeze out but decays after

crossing the Hubble radius. These results ... also point(s) out that not only the power spectrum

does not freeze-out after �horizon crossing� but that the time dependence is associated with a vio-

lation of scale invariance even when in absence of interactions the power spectrum is exactly scale

invariant.�We notice that, also, in the case of the results obtained under the model of J.Martin

et al we found regimes where the power spectrum corrections were time dependent and/or scale

dependent, which seems to be a general feature of the interaction of our perturbations with their

environment.

4.2.1.4 Decoherence induced Corrections to observables ns and r

Among the most important observables that CMB measurements tend to obtain are the spectral index

ns and tensor to scalar ratio r. Where we remind that the former measures the deviation from scale

independence in curvature power spectrum Pζ ∝ kns−1, while the second measures ratio between

tensor and curvature power spectra r = Ph
Pζ . The measurement of the two parameters serve to verify,

or falsify, the di�erent in�ationary potentials, in addition, the parameter r helps to set the energy scale

at which in�ation took place which would be a huge step toward and beyond standard model theory.

Naturally we would be curious to ask how decoherence could a�ect this two parameters. Therefore,

to answer this question we adopt the value p = 5 which gives a scale independent correction to power

spectrum with a massive scalar �eld as environment for12 p = 5 − 6mε∗1. Considering the standard

12We remind here that m is the power of ψ in (4.123).
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power spectrum expanded in slow roll parameters

Pζ |standard =
H2
∗

8π2ε∗1M
2
pl

[
1− 2 (C + 1) ε∗1 − Cε∗2 − (2ε∗1 + ε∗2) ln

(
k
k∗

)]
, (4.132)

where C = γE + ln 2− 2 ' −0.7296, so considering this expression in addition to (4.103 ) and (4.112)

one obtains

Pζ =
H2
∗

(
1+π

6

k2γ

k2∗

)
8π2ε∗1M

2
pl

{
1− F

(
k
k∗
,
kγ
k∗
, ε∗1, ε

∗
2

)}
, (4.133)

where F (. . .) is a function of its arguments, whose explicit expression could be found in [53]. The new

expression has two distinct features, �rst it di�ers from the standard one by the additional dependence

on
kγ
k∗
. In [53] it was assumed that if the tensor perturbations were not a�ected by the environment

then the standard expression of r, namely r |standard = 16ε∗1, would be modi�ed into

r =
r |standard
1 + π

6

k2γ
k2∗

, (4.134)

this expression will have important consequences in the limit
kγ
k∗

not negligibly small, we remind that

in the case p ' 5 there are no upper constraints on
kγ
k∗

because the correction to power spectrum is

scale independent. Before discussing how ns is also modi�ed, we want to mention that the assumption

that tensor modes are not a�ected by the environment will turn out to be not accurate, where will

show later that the environment does modify the tensor power spectrum and we will provide a detailed

computations regarding that. But for the moment let us stick to the assumption made by the authors

in [53] and see what they obtained. Using the de�nition of ns ≡ 1 +
d lnPζ

dk and the modi�ed power

spectrum we obtain the modi�cation to the standard ns |standard = 1− 2ε∗1 − ε∗2 as

ns = ns |standard −
π
6

k2γ
k2∗

1 + π
6

k2γ
k2∗

(6m− 2) ε∗1 , (4.135)

for
kγ
k∗
� 1

ns = ns |standard − (6m− 2) ε∗1 , (4.136)

Having found the modi�ed ns and r, we turn now to see how some in�ationary models predictions could

be modi�ed with respect to data, the results could be seen in �gure (4.4). We see that Starobinsky

model, Higgs potential

V (ϕ) ∝
[
1− exp

(
−
√

2/3ϕ/Mpl

)]2
, (4.137)

predictions are not a�ected that much be decoherence, because this potential already predicts small
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Figure 4.4: Spectral index and tensor to scalar ratio for di�erent potentials, Higgs in�ation (HI), Power
law in�ation (PLI), and Natural in�ation (NI). The blue color refers to standard results and the other

colors to modi�ed values as function of m for
kγ
k∗

= 1. the black lined represent the one and two sigma
contours from Planck 2015 data.[53]

ε∗1 so modi�cations are very small. Concerning natural in�ation potential

V (ϕ) ∝ 1 + cos

(
ϕ

f

)
, (4.138)

decoherence worsen its predictions which already disfavored by data, since this model predicts too

small spectral index. Finally, the potential which decoherence works in its favor, the most, is the

power law one

V (ϕ) ∝ exp (−αϕ/Mpl) , (4.139)

where this model was disfavored by data, but thanks to decoherence we see that the strongest the

interaction with environment is, then the best potential has chances to �t data for some values of its

free parameters.

4.2.1.5 Computation of power spectrum with quadratic interaction

In the case of quadratic interactions we are obliged to adopt the second method in computing deco-

herence induced corrections to power spectrum, simply because for Â = v̂2 the di�erent modes will be

interacting and the Lindblad equation cannot be decoupled into a set of equations, one for each mode

as in (4.94). Therefore, it could not be solved entirely to have explicit expression of system density

matrix ρ̂sys.



CHAPTER 4. DECOHERENCE OF PRIMORDIAL PERTURBATIONS 102

Using

v̂2 (x) =
1

(2π)
3

ˆ
d3k′d3pv̂k′ v̂p−k′e

ip.x , (4.140)

to Fourier transform (4.85) gives

d
〈
Ô
〉

dη
=

〈
∂Ô

∂η

〉
−i
〈[
Ô, Ĥv

]〉
− γ

2 (2π)
3/2

ˆ
d3kd3p1d

3p2C̃R (|k|)×
〈[[

Ô, v̂p1
v̂k−p1

]
, v̂p2

v̂−k−p2

]〉
,

(4.141)

with this equation we can obtain a set of equations similar to what we did in linear case

d〈v̂k1
v̂k2〉

dη = 〈v̂k1
p̂k2
〉+ 〈p̂k1

v̂k2
〉

d〈v̂k1
p̂k2〉

dη = 〈p̂k1 p̂k2〉 − ω2 (k2) 〈v̂k1 v̂k2〉

d〈p̂k1
v̂k2〉

dη = 〈p̂k1
p̂k2
〉 − ω2 (k1) 〈v̂k1

v̂k2
〉

d〈p̂k1
p̂k2〉

dη = −ω2 (k2) 〈p̂k1 v̂k2〉 − ω2 (k1) 〈v̂k1 p̂k2〉

+ 4γ

(2π)3/2

´
d3kC̃R (|k|) 〈v̂k+k1 v̂−k+k2〉

, (4.142)

notice that even if we do not see the delta function δ (k1 + k2), which indicates that Lindblad contri-

bution is still preserving statistical homogeneity, we have to remember that Lindblad equation is valid

only at leading order in γ. Therefore, we have to use the standard power spectrum derived from the

free theory which is proportional to δ (k1 + k2) . This guarantees that the solution that is obtained at

the �rst iteration is statistically homogeneous. Since it sources the equation at the second iteration,

the solution is again statistically homogeneous, and so on up to higher orders.

Combining the above equations into a single third order di�erential equation gives

p′′′vv + 4ω2p′vv + 4ωω′pvv = S2 , (4.143)

where S2 is the source function given by

S2 (k, η) = α2 8γ

(2π)
3/2

ˆ
d3k′C̃R (k′)Pvv (|k′ + k|) , (4.144)

form this last we see that, indeed, the modes are coupled, so it is di�cult to solve it in full generality,
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however, at leading order in γ we use the free theory to compute S2 which rends it a �xed function in

time and the equation (4.144) could be solved. In order to �nd the solution, we go back to the linear

case to get a hint; indeed, we notice that the source function S1 enters the solution in special way as

could be seen through second equation in (4.99). Therefore, by analogy we trust our intuition and

suggest that the following function

Sk (η) = − 2

W 2

ηˆ

η0

dη′S2 (k, η′) Im2 [vk (η′) v∗k (η)] , (4.145)

does solve the di�erential equation (4.144), whereW is the Wronskian, v′k (η) v∗k (η)−vk (η) v∗′k (η) = i.

It is worth to mention that the solution obtained is unique and independent of the mode function

vk (η) choice, because those last are distinguished by the initial conditions13while is easy to see that

Sk (η0) = S ′k (η0) = S ′′k (η0) = 0. We can check that the the suggested solution (4.145) does indeed

solve (4.143) by using the Mukhanov Sasaki equation v′′k+ω2vk = 0 in addition to vk =
(
vRk + ivIk

)
/
√

2.

The full solution is the obtained after adding the solution of the homogeneous equation p′′′vv +

4ω2p′vv + 4ωω′pvv = 0 which gives the standard solution, so that the �nal result is

Pvv (k) = |v̂k|2 + Sk , (4.146)

in this solution we use the Bunch Davies normalized mode functions. Calculating the source term and

substituting it in previous equation, and using again equation (4.103) to de�ne 4Pk but now

4Pk =
Sk
|v̂k|2

, (4.147)

we obtain14 the following corrections as function of p

• For p > 6

∆Pk =
1

9π2
k2
γ

(
k

k∗

)3(
η

η∗

)6−p
[

1

p2
− 2

(p− 3)
2 +

1

(p− 6)
2 + 8

18

p (p− 3) (p− 6)
ln

(
ηIR
η

)]
, (4.148)

ηIR is an IR cuto� in the integral (4.145) and k∗ refers to a pivot scale; ln
(
ηIR
η

)
= N −NIR gives

the number of e-folds elapsed since the beginning of in�ation. We notice that in this regime the power

spectrum correction scales as k3, in addition to be not frozen on large scales and continues to increase,

leading to a very large enhancement of the correction to the standard power spectrum at late time.

13Solving Mukhanov Sasaki equation to get vk (η), requires to �x initial conditions which for us is Bunch Davies
vacuum.

14More details on computation steps could be found in [53].
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• For 2 < p < 6

∆Pk = 2p+1
√

2(p−4)
8πΓ (p−1)sin(πp/2)k

2
γ

(
k
k∗

)p−3 [
ln
(
ηIR
η∗

)
+ 1

p−4 −
2(p−1)
p(p−2)

−π2 cot
(
πp
2

)
+ ln (2)− ψ (p− 2) + ln

(
k
k∗

)] , (4.149)

ψ is the digamma function. In this case we obtain a scale invariant correction for p = 3, which

again gives a possibility for a massive scalar �eld to be the environment, though probably not

the only one that could give p = 3.

• For p < 2

∆Pk =
(H∗lE)

p−2

2π2 (2− p)
β2k2

γ

(
k

k∗

)p−3 [
1

2− p
+N∗ −NIR + ln (H∗lE) + ln

(
k

k∗

)]
, (4.150)

notice that in this case the power spectrum freezes on small scales,

• For p = 2 and p = 6 which are singular we have

∆Pk |p=2 = 1
48π2 β

2k2
γ

(
k
k∗

)−1 [
12− π2 + 12C (2 + C)− 12 ln2 (H∗lE) + 24 [C + 1− ln (H∗lE)]

×
[
2 (N∗ −NIR) + ln

(
k
k∗

)]]
∆Pk |p=6 = 1

432π2 β
2k2
γk

2
γ

(
k
k∗

)3 [
2π2 − 21− 12C (1 + 2C)− 12 (3 + 4C) (N −NIR) + 12 (1 + 4C) (N −N∗)

+24 (N −N∗) [2 (N −NIR)− (N −N∗)]− 12 ln
(
k
k∗

) [
1 + 4 (C +N∗ −NIR) 2 ln

(
k
k∗

)]]
,

(4.151)

where C is a constant

By requiring the scale dependent corrections to be outside our observation window so we get an upper

bound on the interaction strength with environment, as in the linear case.
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4.2.1.6 Decoherence before the end of in�ation

By requiring decoherence to take place before the end of in�ation we could obtain lower bounds on

kγ , but we emphasize that this requirement is not mandatory. In other words, decoherence could

take place after end of in�ation, but it must occur before recombination to allow for a classical CMB

�uctuations. But how can we impose such constraint?

In order to impose decoherence of primordialperturbations by the end on in�ation we need to de�ne

a parameter which quanti�es how much decoherence took place. To this end, we de�ne the purity of

state

Tr
(
ρ̂s2k
)

=
´ +∞
−∞ dv

s,(1)
k

´ +∞
−∞ dv

s,(2)
k

∣∣∣〈vs,(1)
k |ρ̂sk| v

s,(2)
k

〉∣∣∣2 = 1√
1+4δk

δk ≡ IkJk −K2
k + |vk|2 Ik + |v′k|

2 Jk − |vk|2′Kk

, (4.152)

so if δk � 1 then Tr
(
ρ̂s2k
)
' 1 and the state is still pure, while for δk � 1 we have Tr

(
ρ̂s2k
)
� 1

and the state is highly mixed. To get (4.152) we used the explicit expression of ρ̂sk that was obtained

only in linear case, so how can we �nd δk in case of quadratic interactions and higher orders, where

no explicit expression of ρ̂sk is available?

The detailed argument and computations could be found in [53], but the idea, brie�y, is to take

advantage of the Lindblad equation. As case in point in linear case

dTr
(
ρ̂s2k
)

dη
= 2Tr

(
ρ̂sk
dρ̂sk
dη

)
= −γ2 (2π)

3/2
γC̃R (k)Tr (ρ̂sk [v̂sk, [v̂

s
k, ρ̂

s
k]]) , (4.153)

with further considerations this last equation could be integrated and an expression for δk could be

obtained using

Tr
(
ρ̂s2k
)

=
1√

1 + 4δk
(4.154)

Going back to the linear case and computing the explicit expression of δk and requiring it to be

large by the end of in�ation leads to lower bounds on kγ/k∗ which is necessary for decoherence to

occur before the end of in�ation. as follow

kγ
k∗
�


(H∗lE)

1−(p−3)(1+ε∗1)
2 if p < 3 + 2−2ν

1+ε∗1

e

(
1−ν
1+ε∗1

− p−3
2

)
4N∗

if p > 3 + 2−2ν
1+ε∗1

Combining those lower bounds with the upper bounds obtained previously by requiring the scale

independence of the various corrections, we �nd the range of possible values for
kγ
k∗

which satisfy both

requirements, the results are summarized in �gure (4.5)
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Figure 4.5: Regions in parameter space (p,
kγ
k∗

) where decoherence and quasi scale invariance can or

cannot be realized. The light grey region corresponds to values of p and
kγ
k∗

where the interaction

strength with the environment, parameterized by
kγ
k∗

is too small to lead to decoherence. The medium
grey region is where it is too large to preserve quasi scale invariance, and the dark grey region is where
both problems occur (no decoherence and scale invariance breaking). The colored region corresponds
to parameters where perturbations decohere and scale invariance is preserved. The color code, indi-
cated by the vertical bar, quanti�es how many e-folds since Hubble crossing it takes before complete
decoherence is reached. Here decoherence is supposed to occur for δk ≥ 10, and scale independence
is preserved if |ns − n̄s| < 5σns , where n̄s = 0.96 and σns ' 0.006 are the mean value and standard
deviation of the Planck spectral index measurement.[53]

The special thing in this Figure is the thin vertical line around p = 5, where this line re�ects that

the correction for p = 5 is scale invariant and kγ/k∗could take large values.

4.2.1.7 Computation of bispectrum

Cosmology has entered the precision era! we are aiming now to measure non guassianities in CMB, or

at least constrain them, in order to be able to test some degenerate in�ationary models regarding their

predictions of power spectrum. Having said that, we will naturally be interested in quantifying how

decoherence could a�ect those non guassianities, but surprisingly we �nd out that decoherence could

by itself generate non guassianities even if they were zero in the free theory which is a very interesting

observation. We will be interested in bispectrum but we can also �nd a computations of trispectrum

in [52].
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Using the Lindblad equation (4.85), and choosing a linear interaction Â = v̂ we can easily see that

no bispectrum correction could arise from the Lindblad term, and generally non Guassianities from

the free theory remain una�ected. Simply, because, as we showed previously, for linear interactions

the the system density matrix ρ̂sys remain Gaussian (see equation (4.98)), we can also see the reason

behind the vanishing bispectrum thorough

− γ

2

ˆ
d3kC̃R (k)

〈[[
Ô, v̂k

]
, v̂−k

]〉
, (4.155)

where if we consider three point correlator with less than two �led momentum p̂k, as 〈v̂k1
v̂k2

v̂k3〉, or
〈v̂k1

v̂k2
p̂k3〉, then the term gives zero because of the vanishing commutator [v̂k, v̂k′ ] = 0. While if

we consider correlators with two momentum �led or three, i.e 〈v̂k1
p̂k2

p̂k3〉 and 〈p̂k1
p̂k2

p̂k3〉 ,then we

will end up wit either 〈v̂k〉or 〈p̂k〉, both of which gives zero due to
〈
âk ± â†−k

〉
= 0. Regarding the

trispectrum and when consider the connected terms, we �nd out that the corrections cancel out and

we end up with unmodi�ed trispectrum.

Now, we need to consider more complicated interactions, so choosing the quadratic interaction

Â = v̂2 and implement it again in (4.85 we get a set of eight equations that represent the various〈
Ôk1

Ôk2
Ôk3

〉
which could be built from Ôk = v̂kor p̂k. But the correlators which get modi�ed by the

Lindblad term, marked by ()︸︷︷︸, are proportional to the initial bispectrum coming from the free theory

, which is zero in our case15, for example

d〈v̂k1
p̂k2

p̂k3〉
dη = 〈p̂k1

p̂k2
p̂k3〉 − ω2 (k2) 〈v̂k1

v̂k2
p̂k3〉 − ω2 (k3) 〈v̂k1

p̂k2
v̂k3〉

+
4γ

(2π)
3/2

ˆ
d3kC̃R (|k|) 〈v̂k1 v̂k2−kv̂k+k3〉︸ ︷︷ ︸,

, (4.156)

on the other hand, the Lindblad equation is valid only at leading term in γ, therefore, we cannot use in

the previous equation the bispectrum generated by decoherence since we will be at γ2order where we

can no more rely on Lindblad equation.

Having found a vanishing bispectrum we pass to trispectrum which does receive corrections as was

shown in detail in [52]. This last result leaded the authors to conclude saying:

�It is interesting to notice that decoherence is one of the rare examples where the bispec-

trum is perturbatively suppressed compared to the trispectrum, which therefore contains

the relevant signal�

However, we will show that their conclusion was not accurate, where using their model

of decoherence with a di�erent choice of system interaction operator Âwe will obtain a

bispectrum which is not only di�erent from zero, but is dominant with respect trispectrum!

15Because we are considering quadratic Hamiltonian (1.2.1) that does not contain cubic and higher corrections.
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4.2.2 Our approach

As mentioned previously, the results obtained J.Martin et al were based on restrict choices of Â, namely

of of monomial type v̂ and v̂2 or generally v̂n. Their choice leaded them to interesting results but still

restrict, so we have extended their approach such that their model becomes more interesting. But our

extension implied also that some of their general conclusions need to be scrutinized again under the

light of results obtained by our approach.

The approach we will adopt is to consider a system interaction operator of the from

Â =
∑
n

αn−1v̂n , (4.157)

up to certain order n. There are several physical processes which could give rise to such form of

interaction. For the bispectrum we will stop at the order n = 2 that represents the leading order for

which bispectrum does receive non vanishing corrections. After dealing with bispectrum, we will go

back to the power spectrum and show that the computations made by J.Martin et al for quadratic

interaction were missing a contribution in the Lindblad term which does not show up, except if we

consider more general choice of Â, as we did. This last observation is applicable also to their trispectrum

computations.

4.2.2.1 Computation of bispectrum

First let us discuss brie�y how does our choice of Â reproduce and generalize the results obtained by

J.Martin et al in [53][52], and most importantly the reason behind obtaining non vanishing bispectrum

in contrast to them.

Considering again the previously derived Lindblad equation

d
〈
Ô
〉

dη
=

〈
∂Ô

∂η

〉
− i
〈[
Ô, Ĥv

]〉
− γ

2

ˆ
d3xd3yCR (x,y)

〈[[
Ô, Â (x)

]
, Â (y)

]〉
, (4.158)

but now with our choice of system interaction operator as

Â (x) = v̂ + αv̂2 (4.159)

where α is coupling constant with dimension [momntum]
−1

which is introduced for the sake of dimen-
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sions homogeneity . Substituting (4.159) in (4.158) gives

d〈Ô〉
dη =

〈
∂Ô
∂η

〉
− i
〈[
Ô, Ĥv

]〉
− γ

2

´
d3xd3yCR (x,y)

〈[[
Ô, v̂ (x) + αv̂2 (x)

]
, v̂ (y) + αv̂2 (y)

]〉
=

〈
∂Ô
∂η

〉
− i
〈[
Ô, Ĥv

]〉
− γ

2

´
d3xd3yCR (x,y)

{〈[[
Ô, v̂ (x)

]
, v̂ (y)

]〉∣∣∣
+ α2

〈[[
Ô, v̂2 (x)

]
, v̂2 (y)

]〉
+ α

∣∣∣〈[[Ô, v̂ (x)
]
, v̂2 (y)

]
+
[[
Ô, v̂2 (x)

]
, v̂ (y)

]〉}
︸ ︷︷ ︸

,

(4.160)

from this equation we can see how our interaction contains all results derived in [52, 53]. In order to

obtain their results, it is su�cient for their linear case to set α = 0, where for this type of interaction

only power spectrum receives correction while all the other correlation functions remain untouched.

Then, to get the pure quadratic contribution for power spectrum correction we can add dimensionless

constant in front of v̂ in Â (x) and set it to zero for that purpose, though in perturbative approach

it is more legitimate to consider the quadratic order within linear one, since this last usually gives

the dominant contribution16. In case of trispectrum we do not need this constant since there is no

correction to it from linear order, and same for the last term of the real, non unitary, part of (4.160)

∝ α
〈[[

Ô, v̂ (x)
]
, v̂2 (y)

]
+
[[
Ô, v̂2 (x)

]
, v̂ (y)

]〉
, (4.161)

marked with · · ·︸︷︷︸, since it gives corrections proportional to to the initial bispectrum which is zero in

our case17. However, it is this last term (4.143) that makes our bispectrum receives non vanishing

correction at leading order in γ, and it is there thanks to the new choice of interaction operator Â

which enables cross terms of the type
[[
Ô, v̂k (x)

]
, v̂l (y)

]
to show up with k 6= l. We remind that

in [52] it was found that the last term in (4.160) referring to pure quadratic interaction does give

corrections to bispectrum but they are proportional to the initial bispectrum which is zero, while our

interaction operator gives corrections proportional to the power spectrum which is obviously di�erent

from zero in the free theory. Having said that, and since we are focusing on bispectrum in this section

we will keep only the new term in Lindblad equation so that we start the Fourier transform operation

16We will see in the next section that adopting an interaction operator Â (x) = v̂+αv̂2 +α2v̂3, will induce a correction
to both, the power spectrum and trispectrum, of the same order in α as that of pure pure quadratic contribution

α2
〈[[

Ô, v̂2 (x)
]
, v̂2 (y)

]〉
, namely of order α2. Those additional corrections come from α2

[[
Ô, v̂3 (x)

]
, v̂ (y)

]
and

α2
[[
Ô, v̂ (x)

]
, v̂3 (y)

]
and were not considered in [53] because they show up only if we consider the most general form

of system interaction operator mentioned above, thus we must consider also those extra corrections to get a complete
and accurate result, we will come back to this point soon.

17It is worth to remind that we we are considering the free Hamiltonian, thus there are no initial non guassianities.
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from

d
〈
Ô
〉

dη
=

〈
∂Ô

∂η

〉
−i
〈[
Ô, Ĥv

]〉
−γα

2

ˆ
d3xd3yCR (x,y)

{〈[[
Ô, v̂ (x)

]
, v̂2 (y)

]
+
[[
Ô, v̂2 (x)

]
, v̂ (y)

]〉}
.

(4.162)

Fourier transforming this last using (4.140) and (4.88), leads to

d〈Ô〉
dη =

〈
∂Ô
∂η

〉
− i
〈[
Ô, Ĥv

]〉
− γα

2

´
d3kd3pC̃R (|k|)

{〈[[
Ô, v̂k

]
, v̂pv̂k−p

]
+

[[
Ô, v̂pv̂k−p

]
, v̂−k

]}〉 , (4.163)

making the variable change −k→ k in the �rst term inside integral which does not a�ect the environ-

ment correlation function since it depends only on modulus, and then using the commutators property

for A, B, C being three operators

[[A,B] , C] = [[A,C] , B] if [B,C] = 0 , (4.164)

equation becomes(4.163)

d
〈
Ô
〉

dη
=

〈
∂Ô

∂η

〉
− i
〈[
Ô, Ĥv

]〉
− γα

ˆ
d3kd3pC̃R (|k|)

〈[[
Ô, v̂pv̂k−p

]
, v̂−k

]〉
, (4.165)

this last is the main equation that will enable us to get the di�erential equations satis�ed by each

bispectrum which amounts to be eight equations, before giving those last notice that a particular

comoving scale appears in the interaction term, indeed, in order for (4.160) ( or equivalently (4.165))

to have the correct dimension, γC̃R (|k|) must be homogeneous to the square of a comoving wavenumber

which we de�ne it as

kγ =

√
2

π
C̄R

γ∗lE
3a3
∗
, (4.166)

Using the commutation relation derived before

[v̂p, p̂k] = iδ(3) (p + k) , (4.167)

, and after some straightforward computation we obtain
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d〈v̂k1
v̂k2

v̂k3〉
dη = 〈v̂k1

v̂k2
p̂k3〉+ 〈v̂k1

p̂k2
v̂k3〉+ 〈p̂k1

v̂k2
v̂k3〉

d〈v̂k1
v̂k2

p̂k3〉
dη = 〈v̂k1

p̂k2
p̂k3〉+ 〈p̂k1

p̂k2
v̂k3〉 − ω2 (k3) 〈v̂k1

v̂k2
v̂k3〉

d〈v̂k1
p̂k2

v̂k3〉
dη = 〈v̂k1

p̂k2
p̂k3〉+ 〈v̂k1

p̂k2
p̂k3〉 − ω2 (k2) 〈v̂k1

v̂k2
v̂k3〉

d〈p̂k1
v̂k2

v̂k3〉
dη = 〈p̂k1

p̂k2
v̂k3〉+ 〈p̂k1

p̂k2
v̂k3〉 − ω2 (k1) 〈v̂k1

v̂k2
v̂k3〉

d〈v̂k1
p̂k2

p̂k3〉
dη = 〈p̂k1

p̂k2
p̂k3〉 − ω2 (k2) 〈v̂k1

v̂k2
p̂k3〉 − ω2 (k3) 〈v̂k1

p̂k2
v̂k3〉

+ 2γα
(
C̃R (|k2|) + C̃R (|k3|)

)
〈v̂k1 v̂k2+k3〉

d〈p̂k1
v̂k2

p̂k3〉
dη = 〈p̂k1

p̂k2
p̂k3〉 − ω2 (k1) 〈v̂k1

v̂k2
p̂k3〉 − ω2 (k3) 〈p̂k1

p̂k2
v̂k3〉

+ 2γα
(
C̃R (|k1|) + C̃R (|k3|)

)
〈v̂k2

v̂k1+k3
〉

d〈p̂k1
p̂k2

v̂k3〉
dη = 〈p̂k1 p̂k2 p̂k3〉 − ω2 (k1) 〈v̂k1 p̂k2 v̂k3〉 − ω2 (k2) 〈p̂k1 v̂k2 v̂k3〉

+ 2γα
(
C̃R (|k1|) + C̃R (|k2|)

)
〈v̂k3

v̂k1+k2
〉

d〈p̂k1
p̂k2

p̂k3〉
dη = −ω2 (k1) 〈v̂k1

p̂k2
p̂k3〉 − ω2 (k2) 〈p̂k1

v̂k2
p̂k3〉 − ω2 (k3) 〈p̂k1

p̂k2
v̂k3〉

+ 2γαC̃R (|k1|) [〈p̂k2 v̂k1+k3〉+ 〈p̂k3 v̂k1+k2〉] + 2γαC̃R (|k2|)

× [〈p̂k1 v̂k2+k3〉+ 〈p̂k3 v̂k1+k2〉] + 2γαC̃R (|k3|) [〈p̂k1 v̂k2+k3〉+ 〈p̂k2 v̂k1+k3〉]

,

(4.168)

combining those eight educations into single equation for 〈v̂k1
v̂k2

v̂k3〉 yields an equation of order eight

which is not too illuminating, so to get a simpler equation of lower order we adopt the equilateral

con�guration limit in which all the momenta k1, k2, k3 have the same modulus k = |k| so ω2 (ki) ≡
ω2(k) and C̃R (|ki|) = C̃R (|k|) = C̃R (k), doing so, the order of equation could be reduced into an

equation of order four as we will see now. For the rest we will adopt the notation 〈v̂k1
v̂k2

v̂k3〉 ≡ Bvvv,
〈v̂k1

v̂k2
p̂k3〉 = Bvvp...etc, since we are interested in the bispectrum of curvature perturbations Bvvv

then the strategy now is to di�erentiate this expression and use the other equations in (4.168) in order
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to obtain a closed di�erential equation in Bvvv, let us show how it works18

d2Bvvv
dη2 = 2 [Bvpp +Bpvp +Bppv]− 3ω2Bvvv

d3Bvvv
dη3 = 6Bppp − 4ω2 [Bvvp +Bvpv +Bpvv]− 3ω2 dBvvv

dη − 6ωω′Bvvv

+4γαC̃R (k) [〈v̂k1 v̂k2+k3〉+ 〈v̂k2 v̂k1+k3〉+ 〈v̂k3 v̂k1+k2〉]

d4Bvvv
dη4 = −14ω2 [Bvpp +Bpvp +Bppv]− 8ωω′ [Bvvp +Bvpv +Bpvv]

+12ω2Bvvv − 12ωω′ dBvvvdη − 3ω2 d2Bvvv
dη2 − 6ω′2Bvvv − 6ωω′′Bvvv

+24γαC̃R (k) [〈p̂k1
v̂k2+k3

〉+ 〈p̂k2
v̂k1+k3

〉+ 〈p̂k3
v̂k1+k2

〉]

+4α
(
γC̃R (k)

)′
[〈v̂k1 v̂k2+k3〉+ 〈v̂k2 v̂k1+k3〉+ 〈v̂k3 v̂k1+k2〉]

+4γαC̃R (k) d
dη [〈v̂k1

v̂k2+k3
〉+ 〈v̂k2

v̂k1+k3
〉+ 〈v̂k3

v̂k1+k2
〉]

, (4.169)

notice from the the �rst equation in (4.169) that

Bvpp +Bpvp +Bppv =
1

2

(
d2Bvvv
dη2

+ 3ω2Bvvv

)
, (4.170)

so substituting it in in fourth derivative equation of Bvvv in addition to using the �rst equation in

(4.168) we get our �nal di�erential equation

d4Bvvv
dη4

+ 10ω2 d
2Bvvv
dη2

+ 20ωω′
dBvvv
dη

+
[
9ω2 + 6ω′2 + 6ωω′′

]
Bvvv = S (k, η) , (4.171)

18In those equations primes denote derivatives with respect to conformal time, we adopted this convention to lighten
up equations.
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where at leading order in γ, the source function S (k, η) is given by

S (k, η) = 24γαC̃R (k) [Re 〈p̂k1
v̂k2+k3

〉+ Re 〈p̂k2
v̂k1+k3

〉+ Re 〈p̂k3
v̂k1+k2

〉]

+4α
(
γC̃R (k)

)′
[〈v̂k1

v̂k2+k3
〉+ 〈v̂k2

v̂k1+k3
〉+ 〈v̂k3

v̂k1+k2
〉]

+4γαC̃R (k) d
dη [〈v̂k1

v̂k2+k3
〉+ 〈v̂k2

v̂k1+k3
〉+ 〈v̂k3

v̂k1+k2
〉]

, (4.172)

An important remark is that the term involving γ is not explicitly proportional to δ (k1 + k2 + k3),

where the presence of delta function ensures the three Fourier modes of the bispectrum closes triangle,

but remember that the system is solved through a perturbative expansion in γ, during the �rst iteration

the Lindblad term contains the correlators 〈p̂k1
v̂k2+k3

〉 ...,〈v̂k1
v̂k2+k3

〉 ... evaluated in the free theory,

which are proportional to δ (k1 + k2 + k3)thus we retrieve our delta function, thus the correlators

become 〈p̂kv̂−k〉 , 〈v̂kv̂−k〉 so (4.172) becomes

S (k, η) = 72γαC̃R (k)Re 〈p̂kv̂−k〉+ 12α
(
γC̃R (k)

)′
〈v̂kv̂−k〉+ 12γαC̃R (k) d

dη 〈v̂kv̂−k〉 , (4.173)

. Our result (4.171) endorses the conjecture made in [52] stated as �One can even conjecture that any

correlator must obey a linear di�erential equation with a source term that describes the interaction

with the environment�.

The analogy between our equation (4.171) and the one of power spectrum and trispectrum derived

in [53, 52], makes us suggest that n exact solution of it is given by

Bvvv =
4

3W 3

ηˆ

−∞

dη′S (k, η′) Im3 [vk (η′) v∗k (η)] , (4.174)

indeed using the Mukhanov Sasaki equation v′′k +ω2vk = 0 in addition to vk =
(
vRk + ivIk

)
/
√

2, we can

check in straightforward but lengthy computation that (4.174) provides an exact solution to (4.171).

It is worth to mention that the bispectrum we obtained is purely caused by decoherence, because we

started with the quadratic Hamiltonian for the system which induces vanishing non guassianities.

Computing the integral (4.174) will lead us to discuss the non linearity-parameter fNL characteriz-

ing the amplitude of bispectrum, which is de�ned as the ratio between the bispectrum in the equilateral
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con�guration to the square of power spectrum of curvature perturbation [8, 23]

fNL =
5

18

Bζζζ
(
k3
)

P 2
ζ (k)

, (4.175)

where Pζ(k)= H2

4εM2
plk

3 = Pvv
2εM2

pla
2 is the dimensionless power spectrum of the curvature perturbation

related to MS variable by ζ = v√
2εMpla

, therefore our fNL could expressed as

fNL =
5

18

√
2εMplaBvvv

(
k3
)

P 2
vv(k)

=
10

27W 3

√
2εMpla

∆2
v(k)

ηˆ

−∞

dη′S (k, η′) Im3 [vk (η′) v∗k (η)] , (4.176)

Let us remind some de�nitions which will be needed to evaluate (4.174), �rst we will put ourselves in

the de-Sitter limit thus the scale factor is given by a =-1/(Hη) and vk (η) by

vk (η) =
e−ikη√

2k

(
1− i

kη

)
, (4.177)

suing this last we get

Im3 [vk (η′) v∗k (η)] =
cos(k(η−η′))

2k

(
1
kη −

1
kη′

)
+

sin(k(η−η′))
2k

(
1 + 1

k2ηη′

)
〈v̂kv̂−k〉 = 1

2k

[
1 + 1

(−kη)2

]
Re 〈p̂kv̂−k〉 = 1

2(−kη)3

, (4.178)

reminding also

C̃R (k) =

√
2

π
C̄R

lE
3a3

Θ

(
klE
a

)
, (4.179)

γ = γ∗

(
a

a∗

)p
, (4.180)

from using k∗ = a∗H∗and the fact that H ' H∗ ' constant then (4.173) could be written as

Bvvv = B(1)
vvv +B(2)

vvv +B(3)
vvv , (4.181)
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where 19with the change of variable z = kη′ we get

B
(1)
vvv = 7α

k2γ
k4∗

(
k
k∗

)p−7 ´ kη
−∞ dz

{
Θ (−zHlE) (−z)−p

×
[
cos (kη − z)

(
1
kη −

1
z

)
+ sin (kη − z)

(
1 + 1

kηz

)]3}

B
(2)
vvv = α

k2γ
k4∗

(
k
k∗

)p−7

HlE
´ kη
−∞ dz

{
δ (1 + zHlE) (−z)3−p

(
1 + 1

(−z)2

)

×
[
cos (kη − z)

(
1
kη −

1
z

)
+ sin (kη − z)

(
1 + 1

kηz

)]3}

B
(3)
vvv = α

k2γ
k4∗

(
k
k∗

)p−7

(p− 3)
´ kη
−∞ dz

{
Θ (−zHlE) (−z)2−p

(
1 + 1

(−z)2

)

×
[
cos (kη − z)

(
1
kη −

1
z

)
+ sin (kη − z)

(
1 + 1

kηz

)]3}

, (4.182)

Notice that due to the presence of the Θ (−zHlE) in the �rst and third integral sets a lower bound on

our variable z (zmin =− (HlE)
−1
) and this ensures that the those integrals are �nite, it is also obvious

that the presences of delta function in second integral is due to the derivative of Heaviside function.

The above integrals are not exactly analytically computable, but the fact that we are interested on

super Horizon modes −kη → 0 will help to simplify them, the behavior of the correlators can be

obtained by identifying the region in the integration domain from where the integral receives its main

contribution.

1-For B
(1)
vvv we see that for20 0 < pthe main contribution is always coming from the upper bound

where −kη � 1 and −z � 1 ( with HlE � 1) thus we can expand the integrand in this limit and

B
(1)
vvv becomes

B
(1)
vvv = −7α

k2γ
k4∗

(
k
k∗

)p−7 ´ kη
−(HlE)−1 dz

(z − kη)
3

(−z)p
, (4.183)

19Notice that the in B
(2)
vvv we have δ (1 + zHlE) instead of δ (zHlE) and this is due to our de�nition of top hat function

as being non zero if −zHlE < 1, therefore we shifted the argument and used the de�nition of the derivative of Heaviside
function.

20Supposing p positive is due the fact that classicalization of our perturbations becomes more e�cient as our modes
exit horizon, which is equivalent to saying that decoherence becomes more e�cient through the increasing coupling. (this
argument needs to be discussed with professors).
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For p 6= 1, 2, 3, 4, which are singular cases to be computed apart, the above integral gives for 4 > p

B
(1)
vvv = −7α

k2γ
k4∗

(
k
k∗

)p−7

(−kη)
4−p

[
1
p−4 −

3
p−3 + 3

p−2 −
1
p−1

]
= −7α

k2γ
k4∗

(
k
k∗

)p−7

(−kη)
4−p 3p−4

(p−4)(p−3)(p−2)(p−1)

, (4.184)

• For p = 1, (4.183) gives

B(1)
vvv = 7α

k2
γ

k4
∗

(
k

k∗

)−6

(kη)
3

(
ln (|kη|)− 11

6

)
, (4.185)

• For p = 2, (4.183) gives

B(1)
vvv = 21α

k2
γ

k4
∗

(
k

k∗

)−5

(kη)
2

(
ln (|kη|)− 1

2

)
, (4.186)

• For p = 3, (4.183) gives

B(1)
vvv = +21α

k2
γ

k4
∗

(
k

k∗

)−4

(kη)

(
ln (|kη|) +

1

2

)
, (4.187)

• For p = 4, (4.183) gives

B(1)
vvv = 7α

k2
γ

k4
∗

(
k

k∗

)−3(
ln (|kη|) +

11

6

)
, (4.188)

we see that in in the singular cases and in super horizon limit the �rst term ∝ln (|kη|) gives the
largest contribution , we notice also that in all cases, singular and non singular, B

(1)
vvv ∝ k−3.

2- For B
(2)
vvv the delta function rends the integration task simple where considering only the dominant

terms for in the limit −kη � 1 and (HlE)
−1 � 1 we get

B
(2)
vvv = α

k2γ
k4∗

(
k
k∗

)p−7
1

(kη)3
(HlE)

p−2
cos3 (HlE)

−1 , (4.189)

3- For B
(3)
vvv in the case p > 2 and we �nd ourselves again in the limit where the main contribution
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comes from the upper bound thus for −kη � 1, −z � 1 B
(3)
vvv could be written as

B
(3)
vvv = −αk

2
γ

k4∗

(
k
k∗

)p−7

(p− 3)
´ kη
−(HlE)−1 dz

(z − kη)
3 (
z2 + 1

)
(−z)p

, (4.190)

which gives

B
(3)
vvv = −αk

2
γ

k4∗

(
k
k∗

)p−7

(p− 3)

{
(kη)

6−p
[

1

p− 6
− 3

p− 5
+

3

p− 4
− 1

p− 3

]
+ (kη)

4−p
[

1
p−4 −

3

p− 3
+

3

p− 2
− 1

p− 1

]}
, (4.191)

simplifying this last we get

B(3)
vvv = −6α

k2
γ

k4
∗

(
k

k∗

)p−7 [
(−kη)

6−p 1

(p− 6) (p− 5) (p− 4)
+ (−kη)

4−p 1

(p− 4) (p− 2) (p− 1)

]
,

(4.192)

as in the previous case we got some singular cases which need to be computed apart

• For p = 4 (4.190) gives

B
(3)
vvv = −αk

2
γ

k4∗

(
k
k∗

)−3 ´ kη
−(HlE)−1 dz

(z − kη)
3 (
z2 + 1

)
z4

= −αk
2
γ

k4∗

(
k
k∗

)−3 [
(kη)

2 (
3 ln (|kη|)− 5

2

)
+ ln (|kη|)− 17

6

] , (4.193)

• For p = 5 (4.190) gives

B
(3)
vvv = 2α

k2γ
k4∗

(
k
k∗

)−3 ´ kη
−(HlE)−1 dz

(z − kη)
3 (
z2 + 1

)
z5

= −2α
k2γ
k4∗

(
k
k∗

)−3 [
3 (kη)

(
7
2 + ln (|kη|)

)
+ 1

4kη

] , (4.194)
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• For p = 6 (4.190) gives

B
(3)
vvv = −3α

k2γ
k4∗

(
k
k∗

)−3 ´ kη
−(HlE)−1 dz

(z − kη)
3 (
z2 + 1

)
z6

= 3α
k2γ
k4∗

(
k
k∗

)−3 [
ln (|kη|) + 3

2 + 17
60

1
(kη)2

] , (4.195)

Now we turn to the cases p = 2 , 1

p = 2 given by

B
(3)
vvv = −αk

2
γ

k4∗

(
k
k∗

)−5 ´ kη
−(HlE)−1 dz

{(
1 + 1

(−z)2

)

×
[
cos (kη − z)

(
1
kη −

1
z

)
+ sin (kη − z)

(
1 + 1

kηz

)]3} , (4.196)

we see two contributions to the above integral B
(3)
vvv = B

(3)
vvv |1 +B

(3)
vvv |2 , the �rst is dominated by the

upper bound therefore expanding the integrand again around −kη � 1, −z � 1 leads to

B
(3)
vvv |1 = α

k2γ
k4∗

(
k
k∗

)−5 ´ kη
−(HlE)−1 dz

(z − kη)
3

z2

= −3α
k2γ
k4∗

(
k
k∗

)−5

(kη)
2

[
ln (|kη|)− 1

2

] , (4.197)

second contibution is given by

B
(3)
vvv |2 = α

k2γ
k4∗

(
k
k∗

)−5 ´ kη
−(HlE)−1 dz

(
cos (z − kη)

(
1

kη
− 1

z

)
− sin (z − kη)

(
1 +

1

zkη

))3

,

(4.198)

this last could be computed exactly, and since the antiderivative is too involved we will pick only the

leading terms

B
(3)
vvv |2 = α

k2γ
k4∗

(
k
k∗

)−5
[

3
4

Si(−(HlE)−1)
(kη)3

− 11
16
Ci(−kη)

(kη)3

]
, (4.199)

where Ci (x) and Si (x)are the CosIntegral and SinIntegral, respectively, Thus we see that in the limit
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kη → 0 the B
(3)
vvv |1 is subdominant with respect to B

(3)
vvv |2 , therefore we may safely conclude that

B
(3)
vvv = α

k2γ
k4∗

(
k
k∗

)−5
[

3
4

Si(−(HlE)−1)
(kη)3

− 11
16
Ci(−kη)

(kη)3

]
. (4.200)

Finally we compute B
(3)
vvv for p = 1 which is given by

B
(3)
vvv = 2α

k2γ
k4∗

(
k
k∗

)−6 ´ kη
−(HlE)−1 dz

{(
z − 1

z

)
×
[
cos (kη − z)

(
1
kη −

1
z

)
+ sin (kη − z)

(
1 + 1

kηz

)]3} , (4.201)

the �rst integral could be computed exactly, but again for simplicity we write down the leading terms

´ kη
−(HlE)−1 dzz

[
cos (kη − z)

(
1
kη −

1
z

)
+ sin (kη − z)

(
1 + 1

kηz

)]3
' 16

9
cos(HlE)−1

(kη)3
− 5

6
(HlE)−1 sin(HlE)−1

(kη)3
, (4.202)

the second integral receives its main contribution from the upper bound thus as usual expanding the

integrand in the limit −kη � 1,−z � 1 we end up with

´ kη
−(HlE)−1 dz

(z − a)
3

z
' (kη)

3 [ 5
3 − ln (|kη|)

] , (4.203)

so in total, and considering only the leading term in (4.203), namely the one ∝ ln (|kη|), which becomes

now subdominant it the total B
(3)
vvv

B
(3)
vvv = 2α

k2γ
k4∗

(
k
k∗

)−6 [
16
9

cos(HlE)−1

(kη)3
− 5

6
(HlE)−1 sin(HlE)−1

(kη)3
− (kη)

3
ln (|kη|)

]
, (4.204)

Having �nished the computations of of the di�erent B
(i)
vvv, we substitute the results found for the

di�erent values of p in (4.176) in order to obtain the decoherence induced fNL.
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• p = 1, in this case the contribution coming from B
(1)
vvv is negligible compared to the other two

fNL =
10

9

√
2εαk2

γ

Mpl

H

(
k

k∗

)−3
[

5

6

(HlE)
−1

sin (HlE)
−1

(kη)
3 − 16

9

cos (HlE)
−1

(kη)
3 − (HlE)

−1
cos3 (HlE)

−1

]
,

(4.205)

• p = 2, in this case the contribution coming from B
(1)
vvv is negligible compared to the other two

fNL =
10

9

√
2εαk2

γ

Mpl

H

(
k

k∗

)−2 [
cos3 (HlE)

−1
+

3

4
Si
(
− (HlE)

−1
)
− 11

16
Ci (−kη)

]
, (4.206)

• p = 3, in this case the contribution coming from both B
(1)
vvv and B

(3)
vvv is negligible compared to

the B
(2)
vvv, thus we get

fNL = −10

9

√
2εαk2

γ

(
k

k∗

)−1
Mpl

H
HlE cos3 (HlE)

−1
, (4.207)

• p = 4, in this case also B
(2)
vvv gives the dominant contribution

fNL = −10

9

√
2εαk2

γ

Mpl

H
(HlE)

2
cos3 (HlE)

−1
, (4.208)

it is quite remarkable that we obtained a scale invariant bispectrum for p = 4 which was an

expected result for the following reason:

The scale invariance was also obtained in [53, 52] for both power spectrum and trispectrum. Where it

was obtained for a value p = 5 in case of linear interaction thus the term of Lindblad equation (4.158)

γ

2

ˆ
d3xd3yCR (x,y)

〈[[
Ô, Â (x)

]
, Â (y)

]〉
, (4.209)

what gives the corrections was ∝
(
Â (x)

)2

= v̂2, while they obtained the scale invariance for p = 3

for the case of pure quadratic interaction thus (4.209) is ∝
(
Â (x)

)2

= v̂4, while we in our case we

considered Â (x) = v̂+αv̂2, and we noticed that the correction to bispectrum was coming from a term

in (4.209) that is ∝ v̂3as could be seen in (4.165), thus comparing the powers of v̂ and values of p we

see it a logical and expected to get this scale invariance in our case for p = 4. Notice also that f localNL is

suppressed by the slow roll parameter ε, in addition to HlE � 1 and possibly also by by the coupling

α which is supposed to be small.

• p = 5

fNL = −10

9

√
2εαk2

γ

Mpl

H

k

k∗
(HlE)

3
cos3 (HlE)

−1
, (4.210)
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• p = 6

fNL = −10

9

√
2εαk2

γ

Mpl

H

(
k

k∗

)2
[

(HlE)
3

cos3 (HlE)
−1 − 7

60
η +

17

20

(
k

k∗

)−1

η

]
, (4.211)

for p > 6, taking into account only the leading terms we get

fNL =− 10

9

√
2εαk2

γ

Mpl

H
k6η3

(
k

k∗

)p−7
[

1

(kη)
3 (HlE)

p−2
cos3 (HlE)

−1

+ − (−kη)
4−p 3p− 4

(p− 4) (p− 3) (p− 2) (p− 1)
− 6 (kη)

4−p 1

(p− 4) (p− 2) (p− 1)

]
, (4.212)

4.2.2.2 Additional correction to power spectrum

As we already mentioned in the previous section J.Martin et al in [52, 53] considered the corrections in-

duced by decoherence for two cases of system interaction operator, linear Â (x) = v̂ and pure quadratic

Â (x) = v̂2, and when it comes to the power spectrum, Pvv, they obtained non zero corrections for

both cases. However, as we stated before, we should consider a system interaction operator which is

expanded perturbatively in v̂ with an expansion coupling α, and by doing so we realize that actually

there is a correction which must be considered along the pure quadratic one in order to have a consis-

tent and accurate result, because they are both of the same order in α, namely second order, in what

follows we show this last point and compute the additional correction that must be added to the ones

already obtained in [53].

Since we are interested in corrections up to order α2, we adopt the system interaction operator

Â (x) = v̂ + αv̂2 + α2v̂3 (4.213)
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and (4.158) becomes up to second order in α

d〈Ô〉
dη =

〈
∂Ô
∂η

〉
− i
〈[
Ô, Ĥv

]〉
− γ

2

´
d3xd3yCR (x,y)

〈[[
Ô, v̂ (x) + αv̂2 (x) + α2v̂3 (x)

]
, v̂ (y) + αv̂2 (y) + α2v̂3 (y)

]〉
=

〈
∂Ô
∂η

〉
− i
〈[
Ô, Ĥv

]〉
− γ

2

´
d3xd3yCR (x,y)

{〈[[
Ô, v̂ (x)

]
, v̂ (y)

]〉
+

α
〈[[

Ô, v̂ (x)
]
, v̂2 (y)

]
+
[[
Ô, v̂2 (x)

]
, v̂ (y)

]〉

+ α2

(〈[[
Ô, v̂2 (x)

]
, v̂2 (y)

]〉
+
〈[[

Ô, v̂ (x)
]
, v̂3 (y)

]
+
[[
Ô, v̂3 (x)

]
, v̂ (y)

]〉
︸ ︷︷ ︸

)}

+

,

(4.214)

from this last equation we can see in the last line that the pure quadratic interaction term
〈[[

Ô, v̂2 (x)
]
, v̂2 (y)

]〉
is accompanied by a cross term coming from a combination of the linear and cubic interaction〈[[

Ô, v̂ (x)
]
, v̂3 (y)

]
+
[[
Ô, v̂3 (x)

]
, v̂ (y)

]〉
. It is this last term that was missing in the computa-

tions done in [53], so now we want to compute the correction induced by it to Pvv. Fortunately enough

that all what we will need to do at the end is to add this correction to linear and quadratic ones,

because as we will see in a moment the solution to the equation of evolution of Pvv is linear in sources

functions which by turn are promotional within a numerical factor to those real terms in (4.214).

Before doing the computations we need to Fourier transform (4.214) using again (4.88) and for

cubic terms we use

v̂3 (x) =
1

(2π)
9/2

ˆ
d3pd3p1d

3p2d
3v̂p1

v̂p2
v̂p−p1−p2

eip.x (4.215)

using also (4.164) and noticing that the term linear in α in (4.214) gives vanishing contribution to the

correction of Pvv, then the Fourier transform is given by

d〈Ô〉
dη =

〈
∂Ô
∂η

〉
− i
〈[
Ô, Ĥv

]〉
− γ

2 (2π)
3/2 ´

d3kC̃R (|k|)
〈[[

Ô, v̂k

]
, v̂−k

]〉
− α2 γ

2(2π)3/2

´
d3kd3p1d

3p2C̃R (|k|)

×
(〈[[

Ô, v̂p1
v̂k−p1

]
, v̂p2

v̂−k−p2

]〉
+ 2

〈[[
Ô, v̂k

]
, v̂p1

v̂p2
v̂−k−p1−p2

]〉) ,

(4.216)
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the next step is to derive the equations governing the various two-point correlators

d〈v̂k1
v̂k2〉

dη = 〈v̂k1 p̂k2〉+ 〈p̂k1 v̂k2〉

d〈v̂k1
p̂k2〉

dη = 〈p̂k1
p̂k2
〉 − ω2 (k2) 〈v̂k1

v̂k2
〉

d〈p̂k1
v̂k2〉

dη = 〈p̂k1 p̂k2〉 − ω2 (k1) 〈v̂k1 v̂k2〉

d〈p̂k1
p̂k2〉

dη = −ω2 (k2) 〈p̂k1
v̂k2
〉 − ω2 (k1) 〈v̂k1

p̂k2
〉+ γ (2π)

3/2
C̃R (|k1|) δ (k1 + k2) + α2 γ

(2π)3/2

×

4
´
d3kC̃R (|k|) 〈v̂k+k1 v̂−k+k2〉+ 3

(
C̃R (|k1|) + C̃R (|k2|)

)ˆ
d3k 〈v̂kv̂k1+k2−k〉︸ ︷︷ ︸



,

(4.217)

the term marked with ︸︷︷︸ is the new contribution to power spectrum correction which was not con-

sidered in [53]. It worth to mention that though decoherence e�ect appears only in the correlator

〈p̂k1
p̂k2
〉but it a�ects all the correlators since they are governed by coupled system of equations as is

obvious from (4.217). Another point to mention, which we already discussed it in the case of bispec-

trum, is the appearance of δ (k1 + k2) in the linear contribution to 〈p̂k1
p̂k2
〉 which insures that the

interaction with the environment preserves statistical homogeneity, but we don not see the delta func-

tion in the last two terms ∝ α2, however remember that this term is also ∝ γ and the system is solved

through a perturbative expansion in γ, during the �rst iteration the last two Lindblad terms contain

the correlators 〈v̂k+k1
v̂−k+k2

〉and 〈v̂kv̂k1+k2−k〉, respectively, in the free theory which are proportional

to δ (k1 + k2) This guarantees that the solution that is obtained at the �rst iteration is statistically ho-

mogeneous. In addition we adopted the case C̃R (k) ≡ C̃R (k) i.e an isotropic environmental correlation
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function. thus the system for isotropic solutions then reduces to

dPvv(k)
dη = Pvp (k) + Ppv (k)

dPvp(k)
dη =

dPpv(k)
dη = Ppp (k)− ω2 (k)Pvv (k)

dPpp(k)
dη = −ω2 (k) (Pvp (k) + Ppv (k)) + γ (2π)

3/2
C̃R (k) + α2 γ

(2π)3/2

×
[
4
´
d3k′C̃R (k′)Pvv (|k′ + k|) + 6C̃R (k)

´
d3k′Pvv (|k′|)

]
, (4.218)

as was done in the bispectrum case, one can combine the above equations in order to get a single

di�erential equation for pvv only, this time of third order, and it is given by

p′′′vv + 4ω2p′vv + 4ωω′pvv = S1 + S2 + S3 , (4.219)

where S1 is a source function coming from the linear contribution to the correction and is given by

S1 = 2 (2π)
3/2

γC̃R (k) , (4.220)

while S2 and S3 are source functions belonging the pure quadratic interaction correction and mixed

term between linear and cubic interaction, respectively, and are functions of time that involve the

power spectrum pvv itself evaluated at all scales, namely

S2 (k, η) = α2 8γ

(2π)3/2

´
d3k′C̃R (k′)Pvv (|k′ + k|)

S3 (k, η) = α2 12γ

(2π)3/2
C̃R (k)

´
d3k′Pvv (|k′|)

, (4.221)

again using the intuition we have cherished based on previous computations, both those in [53, 52] and

that of bispectrum, we introduce the following functions which will constitute a solution to (4.219)

p
(i)
vv = − 2

W 2

´ η
−∞ dη′Si (k, η′) Im2 [vk (η′) v∗k (η)] , (4.222)
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with i = 1, 2, 3. So the general solution to (4.219) is given by

pvv = vk (η) v∗k (η) + p(1)
vv + p(2)

vv + p(3)
vv , (4.223)

where the �rst term is the standard result, i.e without decoherence; p
(1)
vv and p

(2)
vv have already been

computed in [53], and the aim now is to compute p
(3)
vv which represents the new correction we obtained

however before starting it is useful to make a comparison between p
(2)
vv and p

(3)
vv computations since they

belong to same order in α. We have seen that the authors in [53] when they came to computation

of p
(2)
vv , which di�ers from p

(3)
vv by the fact that in the former's source function is inside integral while

in the last is outside of it, they made an approximation in the limit kη → 0 and HlE � 1 which we

remind quickly here21

S2 (k, η) =
´
d3k′C̃R (k′)Pvv (|k′ + k|)

' 4πα2 8γ

(2π)3/2
C̃R (k)

´ 1
η

− 1
η
IR

dk′k′2Pvv (k′)

= α2 8γ

(2π)1/2η2
C̃R (k) ln

(
ηIR
η

)
= 3

2S3 (k, η)

, (4.224)

where η
IR

is an IR cuto� to make the integral �nite. Thus from (4.224) we deduce that there is no

need to compute p
(3)
vv it is related to p

(2)
vv , therefore the overall correction at order α2 is given by 5

2p
(2)
vv

so this factor of 5/2 represents the correction brought by considering the system interaction operator

(4.213) instead of a pure quadratic one. The second important fact to be deduced from (4.224) is

that p
(3)
vv will represent a scale independent correction to standard power spectrum for22 p = 3 since

it was shown in [53] that p
(2)
vv is scale independent for this value of p, and this endorses once again the

analysis made after the result (4.208), where this time despite that p
(2)
vv and p

(3)
vv are originated from

di�erent terms in (4.216), α2
〈[[

Ô, v̂p1
v̂k−p1

]
, v̂p2

v̂−k−p2

]〉
and α2

〈[[
Ô, v̂k

]
, v̂p1

v̂p2
v̂−k−p1−p2

]〉
,

respectively, but both are ∝ v4 thus should share the same value of p for which they become scale

independent. We can take this analysis further and claim that for correction of the order αn induced

by the the Lindblad term

− γ

2

ˆ
d3xd3yCR(x,y)

〈[[
Ô, Â (x)

]
, Â (y)

]〉
, (4.225)

21All those details of computation concerning p
(1)
vv and p

(2)
vv would be already discussed and reproduced in full detail in

a chapter prior to this one in the thesis, thus there is no need to reproduce them here since the aim of those notes is
just to keep track of computations.

22we remind here that p is the free parameter introduced in (4.180) .
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in
d〈Ô〉
dη , then the corresponding correction is scale invariant for

p = 5− n , (4.226)

this last claim is valid, at least, in all the computations made so far, namely power spectrum, bispectrum

and trispectrum.

Notice that the same line of thoughts should be applied to the case of trispectrum which receives its

�rst non vanishing correction at the order α2, so in addition the pure quadratic interaction computed

in [52], we must add the new term marked with ︸︷︷︸ in (4.214).

4.2.3 Conclusion of the scalar part

Finally, we conclude by emphasizing on the fact that all the correlation functions receive corrections

at leading order in γ in contrast to conclusion drawn in [52][53]. In addition, we attract the attention

to the fact that the highest the order of correlation function is, then the the highest is the order of

α at which it receives its �rst non vanishing corrections, which by turn implies their suppression, i.e

corrections, as we increase the order of correlation functions. In particular, we saw in this work that

the �rst non vanishing correction to power spectrum, bispectrum, and trispectrum was found at the

order α0, α1, and α2, respectively. Finally, we found that the scale independence of the decoherence

induced corrections is related to the order in α from which it receives its correction, and having a

massive scalar �eld as environment doe not give necessarily a scale independent correction as could be

seen clearly through the case of bispectrum.

4.3 Decoherence of tensor perturbations

The aim of this sections is to compute the decoherence induced corrections to tensor power spectrum,

and according to our knowledge this is the �rst time to consider the e�ects of decoherence on tensor

modes. Since the ultimate goal is to compare the e�ect of the interaction with environment on the

scalar and tensor perturbations, in addition, to the computation of corrected tensor to scalar ratio,

we will apply the same Lindblad equation (4.158) to the tensor perturbations which represent, now,

our system. The Lindblad equation (4.158) was derived in full generality regardless of the nature of

the system, however, we should bear in mind that the environment should satisfy some properties and

conditions encoded in the correlation function

CR (x,y) = TrE (ρER (x)R (y)) . (4.227)

We introduce the following Fourier expansion of of tensor perturbations hij(η,x), which will be
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useful in later computations,

hij (x) =
1

(2π)
3/2

ˆ
d3khij (k) eik.x , (4.228)

with

hij (k) =
∑

λ=+,×

hλ (k) eλij with e
λ
ije

λ′

ij = 2δλλ
′
, (4.229)

where we adopted the well-known case that k is aligned along z-direction i.e k ≡ k(0, 0, 1) and the

polarization tensors are given by

e+ =

 1 0 0

0 −1 0

0 0 0

 and e× =

 0 1 0

1 0 0

0 0 0

 , (4.230)

and for canonical normalization, we introduce

vλ =
aMpl√

2
hλ . (4.231)

Now,we have to choose the Ĥint between the tensor perturbations and the environment where we adopt

the following of form of Hint
Ĥint =

ˆ
d3xA (η,x)⊗ E (η,x) . (4.232)

• The �rst obvious choice is to have linear interaction in tensor perturbations since it is expected

to give dominant contribution thus

A (η,x) = hij (η,x) , (4.233)

in that case and in order the contract the spatial indices in hijthe environment interaction

operator should be of the form

E (η,x) ≡ Eij (η,x) , (4.234)

to make contact with previous computations we take the case where indices refer to derivatives23

thus let us put it as 24

Eij (η,x) = ∂i∂jR (η,x) , (4.235)

23Note that by doing so we are not excluding an evironment made of tensor �eld since we can for example Eij (η,x) =
∂i∂j

(
χklχ

kl
)

24Of course there is an implicit summation in indices iand j.
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or

Eij (η,x) = ∂iR1 (η,x) ∂jR2 (η,x) , (4.236)

as case in point if we consider a scalar �eld ϕ as environment25 then possible interactions are

Hint ∝ hij∂i∂jϕ, hijϕ∂i∂jϕ, hij∂iϕ∂jϕ...etc . (4.237)

We adopt this convention remembering that the environment states with respect to which we are

taking trace are usually considered to be the Bunch Davies vacuum[15, 32]which are homogeneous

and isotropic. Using the linearity of trace, then we can exchange between trace and derivatives

in

CE (x,y) = TrE (ρEE (x)E (y)) , (4.238)

thus26

CE (x,y) = ∂xi∂
x
j ∂

y
m∂

y
nTrE (ρER (x)R (y)) = ∂xi ∂

x
j ∂

y
m∂

y
nCR(x,y) , (4.239)

where we will preserve the convention adopted in [53] that is given by (4.65).

We will show in a moment that at linear order in hij the tensor power spectrum does not receive

a correction due to fact that hij is transversal i.e ∂
ihij = 0 .

• Since the linear order gives vanishing correction to power spectrum, we consider the second choice

of A (η,x) consisting in a quadratic interaction

A (η,x) = hij (η,x)hij (η,x) , (4.240)

therefore in that case by relabeling (4.238) we have

CE (x,y) ≡ CR (x,y) , (4.241)

we will see that in this case the results will di�er slightly from the curvature power spectrum case.

However, it is still important to emphasize on the fact that curvature power spectrum receives

corrections already for an A (η,x) linear in Mukhanov Sasaki variable while for the tensor case

it starts to receive corrections only at quadratic order. This last remark implies that tensor

corrections are suppressed with respect to those of curvature case, the same as the standard

tensor power spectrum is suppressed with respect to curvature one.

25Which is the case we have mostly in mind but, still, there is possibility of having tensor �eld as environment with
an interaction operator of the form shown in previous footnote.

26By ∂xi we mean ∂
∂xi

,and same for others.
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4.3.1 Linear interaction

For A (η,x) = hij (η,x)and using our convention in (4.239), then (4.158) is given by 27

d
〈
Ô
〉

dη
=

〈
∂Ô

∂η

〉
− i
〈[
Ô, Ĥh

]〉
− γ

2

ˆ
d3xd3y∂xi ∂

x
j ∂

y
k∂

y
l CR (x,y)

〈[[
Ô, hij (x)

]
, hkl (y)

]〉
, (4.242)

where for a tensor perturbations system Ĥv is given by

Ĥh =
M2
pla

2

8

ˆ
d3x

[
h′2ij + (∇hij)2

]
, (4.243)

As in scalar case, we prefer to work in Fourier space so transforming this last equation using (4.229)

leads to

d
〈
Ô
〉

dη
=

〈
∂Ô

∂η

〉
− i
〈[
Ô, Ĥh

]〉
− γ

2

ˆ
d3kkikjkmknpC̃R (|k|)

〈[[
Ô, hij (k)

]
, hmn (−k)

]〉
, (4.244)

however, since ∂ihij = 0
in Fourier−−−−−−−→
space

kihij = 0 , therefore we see that the real, non unitary, part of

Lindblad equitation induced by interaction with environment vanishes so the tensor power spectrum

remains unchanged.

4.3.2 Quadratic interaction

The result obtained in previous section pushes us toward next order in hij (η,x), so having (4.240)

and (4.241), Lindblad equation is given by

d
〈
Ô
〉

dη
=

〈
∂Ô

∂η

〉
− i
〈[
Ô, Ĥh

]〉
− γξ2

2

ˆ
d3xd3yCR(x,y)

〈[[
Ô, hijh

ij (x)
]
, hmnh

mn (y)
]〉

, (4.245)

where ξ2 is an expansion constant will serve later to set up the right dimensions. Fourier transforming

last equation and using therefore (4.245) is now given by

d
〈
Ô
〉

dη
=

〈
∂Ô

∂η

〉
−i
〈[
Ô, Ĥv

]〉
−β2 γ

2 (2π)
3/2

∑
λλ′

ˆ
d3kd3p1d

3p2C̃R (|k|)
〈[[

Ô, v̂λp1
v̂λk−p1

]
, v̂λ

′

p2
v̂λ
′

−k−p2

]〉
,

(4.246)

where now

Ĥv =
1

2

∑
λ

ˆ
d3k

[
P̂λk P̂

λ
−k + ω2v̂λk v̂

λ
−k

]
withω2 = k2 − a′′

a
, (4.247)

27The indices of hij are raised and lowered by δij so we do not sharply distinguish the upper and lower indices of hij
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we de�ned also

β =
2ξ

M2
pl

, (4.248)

where β is coupling constant with dimension [momntum]
−1

so that we can preserve the de�nition

made in (4.166) for kγ which has a dimension of momentum. It may seem that there is a missing

factor of a−4 in the real part of (4.246) but actually it has been absorbed in the de�nition of γ given

in (4.180). This last step was made because, on the one hand, we want to compute the decoherence

corrected tensor to scalar ratio, r, and for this purpose we need to adopt the same conventions of scalar

case regarding parameters, and on the other hand for scalar case we considered an interaction system

operator A (η,x) directly proportional to Mukhanov Sasaki variable rather than in�aton �uctuation

or metric scalar �uctuation so the a relating the two was already absorbed in the de�nition (4.180).

(this point will be more clear in the thesis, because, again, to grasp it fully it is needed to see the full

derivation of Lindblad equation done in [53]).

Having derived the Lindblad equation governing the expectation values of our system observables,

all what remains to do is to derive the equations obeyed by the di�erent correlators, as was done in

(4.217). However, this time we should add the polarization indices to (4.167) thus we use the relation[
v̂sp, p̂

λ
k

]
= iδsλδ(3) (p + k) , so following the same steps as before we obtain the following system of

equations

d〈v̂sk1
v̂sk2
〉

dη =
〈
v̂sk1

p̂sk2

〉
+
〈
p̂sk1

v̂sk2

〉
d〈v̂sk1

p̂sk2
〉

dη =
〈
p̂sk1

p̂sk2

〉
− ω2 (k2)

〈
v̂sk1

v̂sk2

〉
d〈p̂sk1

v̂sk2
〉

dη =
〈
p̂sk1

p̂sk2

〉
− ω2 (k1)

〈
v̂sk1

v̂sk2

〉
d〈p̂sk1

p̂sk2
〉

dη = −ω2 (k2)
〈
p̂sk1

v̂sk2

〉
− ω2 (k1)

〈
v̂sk1

p̂sk2

〉
+β2 4γ

(2π)3/2

´
d3kC̃R (|k|)

〈
v̂sk+k1

v̂s−k+k2

〉
+

, (4.249)

apart from the polarization indices and the expansion constant ( β VS α in scalar case), the previous

system of equations does not di�er from the scalar case, therefore, all what we need to do is to

exchange α by β in the solutions of scalar case and multiply the result by 2 to account for the two

possible polarizations (+,×). The tensor power spectrum pvv =
∑
s

〈
v̂sk1

v̂sk2

〉
, is governed by

p′′′vv + 4ω2p′vv + 4ωω′pvv = S (k, η) , (4.250)
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with

S (k, η) = β2 16

(2π)
3/2

ˆ
d3k′C̃R (k′)Pvv (|k′ + k|) , (4.251)

which admits as solution.

pvv =
∑
s

vsk (η′) vs∗k (η) + 2
∑
s

ηˆ

−∞

dη′S (k, η′) Im2 [vs
k (η′) vs∗

k (η)] , (4.252)

where the �rst term is the the standard result while the second term is the correction induced by

interaction with environment. Since we are interested in the power spectrum of tensor perturbations

h and not the variable v, and in order to facilitate the task of computing the corrected tensor to scalar

ratio r then, as was done for scalar case in [53], we adopt the following notation for the dimensionless

tensor power spectrum PT 28

PT =
k3

2π2

2pvv
M2
pla

2
= PT |standard [1 + ∆PT ] , (4.253)

with ∆PT =
2
∑
s

´ η
−∞ dη′S(k,η′)Im2[vs

k(η′)vs∗
k (η)]∑

s v
s
k(η′)vs∗k (η)

PT |standard = 8
M2
pl

(
H
2π

)2 ( k
aH

)−2ε ' 8
M2
pl

(
H
2π

)2 , (4.254)

∆PT =
2
∑
s

´ η
−∞ dη′S (k, η′) Im2 [vs

k (η′) vs∗
k (η)]∑

s v
s
k (η′) vs∗k (η)

, (4.255)

The computation of the integral in (4.252) was already done in [53] for curvature perturbations, so

we need just to make the modi�cations already mentioned above to get the results corresponding to

tensor case 29. We will report the expressions ∆PT as function of parameter p de�ned in (4.180). We

have three regimes in addition to two singular cases,

• for p > 6

∆PT =
1

9π2
β2k2

γ

(
k

k∗

)3(
η

η∗

)6−p
[

1

p2
− 2

(p− 3)
2 +

1

(p− 6)
2 + 8

18

p (p− 3) (p− 6)
ln

(
ηIR
η

)]
(4.256)

ηIR is an IR cuto� in the integral (4.252) and k∗ refers to a pivot scale; ln
(
ηIR
η

)
= N −NIR gives

the number of e-folds elapsed since the beginning of in�ation. We notice that in this regime the power

spectrum correction scales as k3, in addition to be not frozen on large scales and continues to increase,

leading to a very large enhancement of the correction to the standard power spectrum at late time.

28By total we mean the standard result plus the correction induced y decoherence.
29as I told you last time, the thesis will be written from scratch and the scalar case will be treated fully before tensors

case . So the reader of thesis will be more comfortable passing through the tensor case.
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• For 2 < p < 6

∆PT = 2p+1
√

2(p−4)
8πΓ (p−1)sin(πp/2)β

2k2
γ

(
k
k∗

)p−3 [
ln
(
ηIR
η∗

)
+ 1

p−4 −
2(p−1)
p(p−2)

−π2 cot
(
πp
2

)
+ ln (2)− ψ (p− 2) + ln

(
k
k∗

)] , (4.257)

ψ is the digamma function. In this case we obtain a scale invariant correction for p = 3 which

was also the case for the correction of curvature power spectrum coming from the quadratic

interaction i.e p
(2)
vv + p

(3)
vv in (4.223). However, it is worth to notice that, in contrast to tensor

case, the dominant correction to curvature power spectrum is coming from the linear interaction30

that is scale invariant for p = 5. Therefore at leading order, the scale invariant corrections to

the scalar and tensor power spectra correspond to di�erent values of p. ( I think when it comes

to compute the tensor to scalar ratio, I will pick up only the scale invariant corrections even if

they belong to di�erent orders and di�erent values of p)

• For p < 2

∆PT =
(H∗lE)

p−2

2π2 (2− p)
β2k2

γ

(
k

k∗

)p−3 [
1

2− p
+N∗ −NIR + ln (H∗lE) + ln

(
k

k∗

)]
, (4.258)

notice that in this case the power spectrum freezez on small scales,

• For p = 2 and p = 6 which are singular we have

∆PT |p=2 = 1
48π2 β

2k2
γ

(
k
k∗

)−1 [
12− π2 + 12C (2 + C)− 12 ln2 (H∗lE) + 24 [C + 1− ln (H∗lE)]

×
[
2 (N∗ −NIR) + ln

(
k
k∗

)]]
∆PT |p=6 = 1

432π2 β
2k2
γk

2
γ

(
k
k∗

)3 [
2π2 − 21− 12C (1 + 2C)− 12 (3 + 4C) (N −NIR) + 12 (1 + 4C) (N −N∗)

+24 (N −N∗) [2 (N −NIR)− (N −N∗)]− 12 ln
(
k
k∗

) [
1 + 4 (C +N∗ −NIR) 2 ln

(
k
k∗

)]]
,

(4.259)

30We have showed above that the linear interaction gives vanishing correction to tensor power spectrum.
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where C is a constant.

4.3.3 Decoherence induced Corrections to the observable r

We presented previously the computations made by J.Martin et al to get the decoherence

induced corrections to ns and r. However, in their computations of r they assumed the

tensor power spectrum Ph to remain una�ected by the environment which is an inaccurate

assumption according to the computations we just carried out. Therefore, our aim now is

to give the decoherence corrected expression of r taking into account our results regarding

the e�ect of environment on tensor modes.

The problem that we can face once we come to compute the corrected r, is the fact

that the scale independence of the leading terms of decoherence induced corrections to the

scalar and tensor power spectra correspond to di�erent values of p, namely p = 5and p = 3,

respectively. However, it is important to remember that scalar corrections are dominant

with respect to tensor ones, since those last receive their �rst non vanishing correction

only at quadratic level. Therefore, if we restrict ourselves to linear interactions, then, the

decoherence corrected r is still given by (4.134) that we reproduce here

r =
r |standard
1 + π

6

k2γ
k2∗

. (4.260)

However if we consider the leading corrections of both power spectra, scalar and tensor,

regardless of their order, then, the previous equation will be modi�ed. Since scalar power

spectrum has been well con�rmed to be scale independent, at least up to certain sensitivity,

then ,we choose the value for which its correction is also scale independent31, namely p = 5.

Therefore, for the chosen value of p, the tensor power spectrum correction is blue titled

with a spectral index32 nT ≈ 2, as seen from (4.257), and is given up to leading order by

∆PT ≈ β2k2
γ

(
k
k∗

)2 [
ln
(
ηIR
η∗

)
+ ln

(
k
k∗

)]
, (4.261)

knowing that a blue tilted tensor power spectrum could be of observation interest for us,

though research is centered around an nT ≈ 0.5. But we need to remember that (4.261)

represents a correction of second order in β, therefore, the the spectral index nT ≈ 2 could

31This reasoning could be not fully accurate, since the measured scale independent scalar power spectrum could be
merely the leading order and if we increase the measurements sensitivity we will detect weak scale dependence which
re�ects the decoherence e�ect for p 6= 5.

32Notice that with a value of p = 5 we get also a scale dependent Bispectrum as could be seen form (4.210), where we
have fNL ∝ k

k∗
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be perceived as smaller. Substituting (4.261) in (4.253) yields

PT ≈ PT |standard

[
1 +

4
√

2

3
β2k2

γ

(
k

k∗

)2 [
ln

(
ηIR
η∗

)
+ ln

(
k

k∗

)]]
, (4.262)

Through this last equation we can infer that decoherence rends the tensor to scalar

ratio, weakly, scale dependent; weakly because the correction is proportional to β2 which

is assumed to be a small perturbative expansion parameter, the same as is α in the scalar

case (see equation (4.157)). So combining (4.133) with (4.262) leads us to the decoherence

corrected r

r = r |standard
1 + β2k2

γ

(
k
k∗

)2 [
ln
(
ηIR
η∗

)
+ ln

(
k
k∗

)]
1 + π

6

k2γ
k2∗

, (4.263)

a high precise measurement of, either or both , the tensor power spectrum PT and ten-

sor to scalar ratio r will induce tight constraints on interaction strength, encoded in kγ ,

between the primordial �uctuations and their environment. Those constraints could, sub-

sequently, be compared with those obtained from the scalar correlation functions, both,

power spectrum and bispectrum.



Conclusion

In this thesis we discussed possible signatures of a quantum origin of the universe and addressed the

question of the quantum to classical transition in the early universe. In particular, we aimed to the

identi�cation of observational connections between the quantum initial state and the classical universe

we observe today, in addition, we aimed to the complete in�ation formalism with a model that accounts

for the quantum to classical transition of the primordial quantum �uctuations.

In chapter 1 we motivated the problem addressed by the thesis, namely, the lack of a rigid under-

standing for the quantum to classical transition in the early universe. We, �rst, showed the equivalence

of Heisenberg and Schrodinger picture in the study of primordial �uctuations and how squeezing for-

malism relates the two pictures. Then we explained why the cosmological observables measured up

to date are insensitive to weather the universe originated quantumly or classically. In particular, we

explained how the squeezing of modes, along considering stochastic initial conditions, can justify the

exchange of quantum expectations values with classical stochastic averages. However, we argued that

this two ingredients are insu�cient, neither, to explain how the transition from quantum �uctua-

tions into classical ones took place in the early universe, nor, to explain how an inhomogeneous and

anisotropic state, i.e our universe, can emerge out of an initial homogeneous and isotropic state. We

came out of this chapter with the conclusion that, indeed, there is a missing chapter in our understand-

ing of the early universe. The �lling of this missing chapter requires some cosmological observables that

could probe the origin of universe and remove degeneracy among early universe models. In addition,

it requires a model which could explain quantum to classical transition in the early universe.

Chapter 2 served to address the �rst part of the missing chapter, where, we tried to investigate

the possibility of implementing a Bell experiment on a cosmological level. First, we aimed at taking

advantage of CMB and see weather there is a possibility of building an experimental protocol that

contains all the ingredients of a Bell set up. We showed that, even with a vanishing decaying mode,

the Cosmological counterpart of Bell inequalities built out of GKMR pseudo spin operators could be

maximally violated, Equ (2.15). However, such violation could not be measured due to the impossibility

of measuring the extremely suppressed decaying mode which, by turn, implies that out of a single

observable, in our case is q̂k , we cannot infer the values of, at least, two pseudo spins. where, no

matter how the pseudo spins were de�ned we get only one of them commuting with q̂k. The hope now
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is to �nd a way to realize a cosmological experiment of Leggett-Garg inequality proposal, since this last

makes use of only one pseudo-spin component which is measured at di�erent times. But, fortunately,

we can �nd other alternatives have cosmological Bell experiments, where we summarized a baroque

model, suggested by Maldecena, showing that the universe could have carried out a Bell experiment

during its evolution and the outcomes are registered somewhere in the �uctuations of a primordial �eld

that is still there in the universe. Maldecena Model is unlikely to, really, describe what happened in

the early universe. However, it shows, at least in principle, the possibility for a self realization of Bell

experiment in early universe. We concluded this chapter by discussing another alternative for probing

the origin of universe, namely, non Gaussianities. Where we saw that weather the universe originated

quantumly or classically would leave prints on the shape of three point functions. In particular, the

absence of physical momenta, as poles, in bispectrum expression for the case of a quantum origin of

the universe.

Adopting the in�ationary scenario of a quantum origin for the universe, we discussed in chapter

3 dynamical collapse models as, �rst, possible alternative to have a better understanding of how

the transition from a primordial quantum �uctuations into classic ones took place. As their name

reveals, there are several models under the hat of collapse models, we presented the work done so

far in promoting two of them in cosmological context. The �rst consisted in QMUPL, where we

saw that considering a constant collapse parameter does not produce insightful results due to the

lack of ampli�cation mechanism which is a key feature of collapse models. Then, we adopted scale

dependent collapse parameter, given by the ansatz (3.22 and 3.27), through which we succeeded to get

a Wigner function localized in the �led amplitude direction, in addition to a scale independent power

spectrum provided that the model free parameters are subject to the constraints (3.31). However, any

cosmological constraints on collapse parameter from cosmological QMUPL could not be compared to

those obtained from laboratory experiments due to mass dimension di�erences in the two cases. In

order to overcome such obstacle, there was a need for a cosmological CSL model that uses mass/energy

density operator as collapse operator. We saw that adopting one of the gauge invariant de�nitions

of such operator, leaded to a cosmological CSL model whose prediction clash with the high precise

cosmological data. Therefore cosmology ruled out such CSL model, but there could be others which

�t the data.

The �nal chapter contained the original and most important results of the thesis, where we dis-

cussed decoherence in cosmological context. We presented the derivation of Lindblad equation (4.63)

that represents the corner stone of this chapter; we saw how general it was apart from some assump-

tions made along the way which constrained the environment properties. Using the aforementioned

equation, J.Martin et al derived the decoherence induced corrections to scalar power spectrum and

higher order correlation functions, where they considered , solely, a linear ( or quadratic) interaction

with environment. In what follows we summarize their main results and conclusions which will, sub-

sequently, be confronted with the conclusions we obtained through our own approach regarding the



CHAPTER 4. DECOHERENCE OF PRIMORDIAL PERTURBATIONS 137

form of interaction with environment. J.Martin used the corrected scalar power spectrum to extract

the new corrected scalar spectral index ns and tensor to scalar ration r, assuming tensor modes to be

una�ected by environment, their results are given by Eqs (4.134) and (4.135), respectively. Through

the new observables (ns, r) they showed that power law in�ation model could be back into agreement

with data, as could be seen in �gure (4.4). Another important result by J.Martin et al, is their con-

clusion that getting a scale independent spectra, both power spectrum and trispectrum, is related to

having a massive scalar �eld as environment. Their �nal important result was obtaining vanishing

bispectrum but non vanishing trispectrum, which made them conclude that decoherence is one of the

rare cases where the former is suppressed with respect to the last. This last result motivated us to

adopt the new interaction operator given by (4.157) which leaded us to following new results:

1. First of all, through (4.157) we are able not only to reproduce all the results obtained by J.Martin

et all, as could be seen thorough (4.160), but we also showed in 4.2.2.2 that there was missing

terms in their computations of power spectrum and trispectrum due to the restricted form of

interactions considered by them, .

2. We showed in 4.2.2.1 that decoherence does induce non vanishing bispectrum, moreover, it is

dominant with respect to trispectrum in contrast to the conclusion drawn by J.Martin et all.

In particular, we concluded that the highest the order of correlation function is, then the the

highest is the order of α at which it receives its �rst non vanishing corrections which by turn

implies their suppression, i.e corrections, as we increase the order of correlation functions.

3. We conjectured that obtaining a scale independent decoherence induced corrections of a given

correlation function is related to the order in α from which the correction is received, indepen-

dently from having a massive scalar �eld as environment. Moreover, a massive scalar �eld as

environment does not give necessarily a scale independent correction as could be seen clearly

through the case of bispectrum.

Another important original part of the thesis consisted in computing decoherence e�ects on primordial

tensor perturbations, which could be the �rst computations of its kind. We have shown, in 4.3.1, that

by considering a linear interaction, decoherence does not a�ect tensor �uctuations. Where we saw that

transversality property causes decoherence corrections to vanish. Therefore, we passed to the next

order and considered a quadratic interaction which indeed modi�es tensor power spectrum. This last

modi�cation implies by turn that the tensor to scalar ratio r needs to be recomputed, taking this time

into account the aforementioned tensor modi�cation. However, we saw that scalar and tensor power

spectra corrections were scale independent for di�erent values of the free parameter p. So adopting the

value that makes scalar correction scale independent leads to a blue titled tensor correction, therefore,

we get a weakly scale dependent tensor to scalar ratio given by (4.263).

The work done in this thesis shows that the question of quantum to classical transition in the early
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universe is not a mere foundational question, but its answer could contain important observational

signatures which could bring new insights into our current standard predictions.



Future prospects

The work done in this thesis could be extended in various ways, and here we list main possible

extensions:

• We discussed in chapter 3 the corrections induced by collapse models to scalar power spectrum.

A �rst possible extension would be to investigate the e�ect of collapse models on tensor pertur-

bations and see how the tensor to scalar ration r would be modi�ed, then after, comparing it

with the one derived through considering decoherence e�ects, given by (4.263). A second possible

extension, is to compute the corrections induced by collapse models into higher order correlation

functions, both scalar and tensor. To this end, we can take advantage of the method adopted in

[54] to compute the corrections to power spectrum where the starting point is to cast the CSL

equation into a Lindblad equation given by [72]

dρ̂

dη
= i
[
ρ̂, Ĥ

]
− γ

2m2
0

ˆ
d3xa3

[[
ρ̂, Ĉ (x)

]
, Ĉ (x)

]
, (4.264)

with Ĉ (x) being the collapse operator. Notice the similarity between this last equation and

equation (4.63) that we used to compute decoherence induced corrections to the various correla-

tion function. Therefore, we can inspire from computations done 4.2.2.1 in addition to those in

[52] to tackle non Guassianities under the framework of collapse models.

• We computed in this thesis decoherence corrections to tensor power spectrum, so an obvious

possible extension is to compute also the corrections induced to higher order correlation functions,

especially the bispectrum.

• We can use all the aforementioned possible results to constrain the interaction strength between

system and environment in the case of decoherence, or to constrain the collapse parameter in

case of collapse models.

• Another quite interesting extension, that already we mentioned in 4.1.4, is to assume an initial

state of primordial perturbations that is entangled with an environment which is made of some
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other degrees of freedom, for example we can readopt the state (4.82)

Ψk

[
ϕ̂k, ψ̂k; η

]
= Nk (η) exp

[
− 1

2

(
Ωϕk (η)ϕk (ηin)ϕ−k (ηin) + Ωψk (η)ψk (ηin)ψ−k (ηin)

)
+Ck (η) (ϕk (ηin)ψ−k (ηin) + ψk (ηin)ϕ−k (ηin))]

,

(4.265)

in case of a massive scalar �eld as environment; obviously, we can consider other possibilities.

However and in contrast to the work we presented in 4.1.4 that was done in [5, 14] , we should add

interactions between the two parts in their total Hamiltonian so that they continue to interact

as they evolve, namely,

Ĥtot = Ĥϕ + Ĥψ + Ĥint . (4.266)

This kind of extension merges the work in [5, 14, 13] with a part of the work done in chapter 4.



Appendix

The aim of this appendix is twofold, �rst, to give some more details on the derivation of CSL equation

(3.32) and, second, to introduce some concepts of decoherence that we used in chapter 4.

The CSL master equation

We reproduce the arguments and assumptions made in [54, 55] to promote the standard CSL equation

into a cosmological context. We start with the standard modi�ed Schrodinger equation that describes

a non relativistic system[31]

dΨ (x, t) =

[
−iĤdt+ 1

m0

√
γ

m0

∑
i

(
Ĉi −

〈
Ĉi

〉)
dWi (t)

− γ
2m2

0

∑(
Ĉi −

〈
Ĉi

〉)2

dt

]
Ψ (x, t)

, (4.267)

where Ĉi is the collapse operator to be chosen with three components i = x, y, z, and m0 is a reference

mass usually taken to be the mass of a nucleon; the dimension of collapse parameter γ depends on

the choice of Ĉi. The stochastic noise dWi (t) satis�es E [dWi (t) dWj (t′)] = δijδ (t− t′), where E [· · · ]
refers to stochastic average.

As �rst for promoting previous equation into cosmology, we consider �eld a v (x) that is described

by a wavefunctional Ψ [v (x)], then, in the absence of a fully relativistic version for (4.267) we present

some plausible assumptions which would lead us into an cosmological extension of (4.267).

We �rst assume that the Hamiltonian in is simply the Hamiltonian in (1.2.1) obtained from the

theory of relativistic perturbations. Next, to make a direct contact between (4.267 and a �eld version

of it, we can view space-like sections as an in�nite grid of discrete points. In this case, the functional

can be interpreted as an ordinary function of an in�nite number of variables ζi, Ψ [· · · , vi, vj , · · · ],
where vi = v (xi) is the value of the �eld at each point of the grid. Therefore, instead of dealing with a

three-dimensional index i as before, we now deal with an in�nite-dimensional one. As a consequence,

we can write an equation similar to (4.267) for Ψ [vi] where, now, the operators Ĥand Ĉ are functions
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of �eld amplitude v̂ and it conjugate �momentum� p̂i = −i∂/∂ζi. Then, taking the continuous limit∑
i

→
´

d3xp and passing from the physical coordinates xp to the comoving ones x, related by xp = ax,

we arrive at

dΨ (x, t) =
[
−iĤdt+ 1

m0

√
γ
a3

´
d3xa3

(
Ĉ (x)−

〈
Ĉ (x)

〉)
dWt (x)

− γ
2m2

0

´
d3xa3

(
Ĉ (x)−

〈
Ĉ (x)

〉)2

dt

]
Ψ (x, t)

, (4.268)

where the stochastic functions in the two coordinate systems are related by dWt (x) = a−3/2dWt (xp)

as could be seen through

E
[
dWt (xp) dWt′

(
x′p
)]

= δ(3) (ax− ax′) δ (t− t′) dt2 = a−3δ (x− x′) δ (t− t′) dt2 , (4.269)

We still need to show that, indeed, in Fourier space each mode obeys the equation we used in the

main text (3.36). As we mentioned previously working with at linear order of perturbations and with

quadratic Hamiltonian rend Fourier space a very helpful tool to simplify computations. However, the

only worry that we may have, now, comes from the non linear and stochastic terms in (4.268) which

could cause the modes to couple. But no concern about that, indeed, if we recall that Hamiltonian

could be decomposed as in (1.91) with

Ĥ =

ˆ
R3+

d3k
∑
s=R,I

Ĥsk , (4.270)

in addition, we use the Fourier transform

Ĉ (x) = (2π)
−3/2

ˆ
dkĈ (k) e−ik.x , (4.271)

then this leads to

dΨR,I
k (t) =

[
−iĤR,I

k dt+
1

m0

√
γa3

(
ĈR,Ik −

〈
ĈR,Ik

〉)
dWR,I

t − γa3

2m2
0

((
ĈR,Ik −

〈
ĈR,Ik

〉))2

dt

]
ΨR,I

k (t) ,

(4.272)

which is the CSL equation we used in the main text. In order to get a hint of how stochastic term

do not induce mode coupling we adopt a simpler version and consider Ĥ = Ĥ (x,p) = Ĥ (x1, p1) +

Ĥ (x2, p2)+Ĥ (x3, p3)in addition to Ĉi = Ci (x̂, p̂) = Ci (x̂i, p̂i), notice in this last that the dependence

of Ĉi is, solely, on (x̂i, p̂i) and not (x̂j , p̂j) for j 6= i. Then, using the decomposition Ψ =
∏
i

Ψi (xi)we

can show that
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dΨi =
[
−iĤidt+ 1

m0

√
γ
a3

´
d3xa3

(
Ĉi −

〈
Ĉi

〉)
dWi (t)

− γ
2m2

0

´
d3xa3

((
Ĉi −

〈
Ĉi

〉))2

dt

]
Ψi

, (4.273)

where we used the fact that

〈
Ĉi

〉
≡
〈

Ψi

∣∣∣Ĉi∣∣∣Ψi

〉
=

〈∏
j

Ψj

∣∣∣Ĉi∣∣∣∏
k

Ψk

〉
=

〈∏
j 6=i

Ψj

∣∣∣∣∣∣
∏
k 6=i

Ψk

〉〈
Ψi

∣∣∣Ĉi∣∣∣Ψi

〉
=
〈

Ψi

∣∣∣Ĉi∣∣∣Ψi

〉
.

(4.274)

We see that we can have independent equation for each Ψi.

Useful concepts of quantum decoherence

We used in the main text several concepts upon which the thesis generally, and particularly chapter

4, are heavily based. Therefore, we will brie�y present those notions under the framework of quantum

decoherence, we will follow closely [68].

Decoherence basic idea to consider that the openness of quantum systems, i.e., their interaction

with the environment, is essential to explaining how quantum systems 33 become e�ectively classical.

There are two main consequences for the interaction with environment

1. The disappearance of QM coherence which is the source of QM e�ects we observe such as the

interference e�ect from which the name decoherence was coined.

2. The dynamical de�nition of physical observable properties of the system, the selection of a set

of robust preferred states, formally observable of the system.

It is worth to mention that decoherence is neither an extraneous theory distinct from quantum mechan-

ics itself nor something that we could freely choose to include or neglect. Decoherence is a ubiquitous

e�ect in nature, with far-reaching and fascinating consequences that must be taken into account in

order to arrive at a realistic description of physical systems. From this last remark we can see why

decoherence must be considered in the physics of early universe.

We shall adopt the widely accepted notion that a quantum state vector (expressed, for example,

as a ket |ψi〉in the standard Dirac notation) provides a complete description of the physical state of

an individual system. To re�ect the �completeness� of such quantum states, they are commonly called

pure in contrast to the so-called mixed states which are simply classical ensembles of pure states. We

33Assuming that quantum mechanics is a universal physical theory, all systems.
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can also de�ne the density operator ρ̂ corresponding to such a pure state |Ψ〉 as

ρ̂ = |Ψ〉 〈Ψ| , (4.275)

which is simply the projection operator onto the state |Ψ〉. So if we express the state as superposition
of states |Ψ〉 =

∑
i ci |ψi〉 then the density operator is given by

ρ̂ =
∑
ij

cic
∗
j |ψi〉 〈ψj | , (4.276)

the terms i 6= j embody the coherence between the di�erent components. Accordingly, they are

usually referred to as interference terms, or o�-diagonal terms (since these terms correspond to the

o�-diagonal elements in the matrix representation of ρ̂ in the basis {|ψi〉). Now, having an operator Ô

with eigenstates given by |oi〉, then

Tr
(
ρ̂Ô
)

=
∑
i

〈oi| ρ̂Ô |oi〉 =
∑
i

oi |〈Ψ |oi 〉|2 =
〈
Ô
〉
, (4.277)

which represents the expectation value of the operator O. This correspondence between the mathe-

matical rule of the trace and the expectation value is known as the trace rule.

We may also describe our system by a mixed state. A mixed state expresses insu�cient information

about the state of the system, in the sense that the system is (before the measurement) in one of the

pure states |ψi〉 (which do not need to be orthogonal) but the observer simply does not know in which.

Therefore we can only ascribe probabilities 0 ≤ pi to each of the states |ψi〉. The density matrix

associated to a mixed state is given by

ρ̂ =
∑
i

pi |ψi〉 〈ψi| , (4.278)

We can view this density matrix as a classical probability distribution of pure-state density matrices

ρ̂i = |ψi〉 〈ψi| with probabilities given by pi.

It is important to notice that a mixed state must is clearly distinct from a pure-state, writing this

as superposition of the form

|Ψ〉 =
∑
i

√
pi |ψi〉 , (4.279)

we have yields

ρ̂ = |Ψ〉 〈Ψ| =
∑
i

pi |ψi〉 〈ψi|+
∑
i 6=j

√
pipj |ψi〉 〈ψj | , (4.280)

the last term distinguishes the density matrix of a mixed state from that of a superposition of pure-

states, which represents the interference between the di�erent components. In addition, a pure state
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satis�es

ρ̂ = ρ̂2 , (4.281)

this last relation gives us a hint on how to quantify the purity of a given state, or its mixedness. Where,

a simple and commonly used measure is the so-called purity of the density matrix, de�ned as

ξ = Tr
(
ρ̂2
)
, (4.282)

where if ρ̂ represents a pure state then ξ = 1 by virtue of (4.281). While for a mixed state we have

ξ < 1 . (4.283)

Another a criterion to distinguish a pure and mixed state is the Von Neumann entropy

S (ρ̂) = −Tr (ρ̂logρ̂) , (4.284)

but in chapter 4 we used the former de�nition, namely (4.282).

Having two systems S and E which are entangled and the state of the composite system could well

be pure one so it is completely known but the observer has only access to the system S, then the object

that contains, exhaustively and correctly, all information (i.e., all measurement statistics) that can be

extracted by the observer of system S is the reduced density matrix de�ned by

ρ̂S = TrE ρ̂ , (4.285)

Here the subscript �E� means that the trace is to be performed using an orthonormal basis of the

Hilbert space HE of E only. Accordingly, the operation �TrE � is also referred to as the partial trace

over E and may be interpreted as an �averaging� over the degrees of freedom of the unobserved system

E . Obviously, for our case the system S represents the primordial �uctuations while E refers to their

environment.
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