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Abstract

VonWillebrand disease is an inherited disease that affects the blood clotting process

and impacts on 1% of the world’s population. Caused by a von Willebrand factor (vWF)

deficiency and/or dysfunction, it differs in typologies with intra and inter-individual vari-

ability, and is complex to diagnose. Research shows how the use of mathematical models

capable of representing the fundamental physiological mechanisms can aid the diagnosis.

This study aims to give a new perspective to solve the mechanistic models of vWD. This

allows the automatic detection of the disease, a quantitative evaluation of vWF multimers

distribution, elucidating the critical pathways involved in the recognition and characteri-

zation of the disease.

The Laplace Transformwas used to solve and analyze the differential equation model

for vWD. This method converts differential equations into algebraic equations and de-

fines new parameters within the Laplace domain. Parameters determined in the Laplace

domain were identified using clinical patient data. Principal component analysis (PCA)

transformed the parameters identified into a smaller number of principal components to

distinguish healthy subjects from vWD patients. The results show that the parameters pro-

vide new multimers information that was not visible in the original mathematical model.

The PCAmodel identified 70% of the cases of patients with vWD.
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Introduction

The von Willebrand disease (vWD) is one of the most common hereditary diseases

that affect the blood clotting process. It is caused by a deficiency or malfunction of the von

Willebrand factor (vWF), a large multimer present in the coagulation process. Mutations

allow to classify the disease in different types and this creates complexity in the diagnosis

process. The typical symptoms of this disease include bleeding from mucous membranes

and minor skin lesions, reaching almost 1% of the world’s population.

There are research showing the use of a mathematical model able to represent the

multimers physiological mechanisms to aid with the diagnosis. These models are a set of

differential equations used to describe multimers profile through time. This study aims to

provide a new perspective to solve these mathematical models. The strategy includes the

use of Laplace transform technique to solve and analyze the vWD model. This method

converts differential equations into algebraic equations and defines new parameters within

the Laplace domain. Simulations with the software Simulink (a Matlab® tool) will check

the new model and parameters defined within the Laplace domain.

Themathematical model must represent the real system precisely and accurately. The

values of the parameters that best fit the real data establish the model quality. Therefore,

the model in the Laplace domain must have the new parameters identified in order to

reach out the experimental data. The estimated parameters must provide new information

regarding the vWFmultimers distribution, disease recognition and characterization. To do

that, optimization conditions and techniques will be considered to the parameter identifi-

cation process, providing access to the estimability and identifiability of the model.

The presence of a lot of parameters and variables can create complications when ex-

tracting process information, especially in this study aimed to use the model parameters to

reach knowledge on the disease diagnosis. The principal components analysis (PCA) is a

tool for data compression and information extraction through finding variables combina-

tions that describe major trends in the data. This way, the vWD model parameters can be

described in fewer principal components that can be used to help create a diagnosis and

achieve this work objectives. The main results obtained, and the criticisms found will be

summarized, with considerations about possible future works.
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Chapter 1

von Willebrand disease

It is essential to begin this study by explaining the von Willebrand disease (vWD),

including the discussion about the von Willebrand factor and its role in the bleed coagu-

lation process. The Chapter starts by analysing the haemostasis and coagulation cascade,

followed by the description of the vonWillebrand factor role in thementioned biochemical

processes and the types of diseases it could lead to. This Chapter concludes with a discus-

sion on diagnosis for von Willebrand disease and reinforcing this work objectives.

1.1 Introduction

The von Willebrand disease (vWD) is an inherited bleeding disorder discovered for

the first time on a 5-year-old girl in 1924 by Dr. Erik von Willebrand in Finland. By

examining the girl and members of her family, von Willebrand submitted in 1926 an un-

recorded inherited bleeding disorder. At that time he did not have the tools to understand

the illness source, but he recognized the symptoms and solved the anemia and bleeding

disorder, caused by the disease, with blood transfusions. Only in the 1950’s it was dis-

covered that a deficiency or dysfunction of a plasma protein was the cause of the bleeding

disorder discovered by Dr. von Willebrand. This protein, named von Willebrand Factor

(vWF), mediates the adhesion of platelets at spots of vascular wound, it also binds and

stabilizes the blood clotting factor VIII (FVIII) (NHLBI, 2007).

Later, gene sequencing allowed to recognize a greater number of vWD cases and

to find variant forms of vWF abnormality. The disease has been reported around many

countries, but it is unknown how many people have it, because of diagnose procedure

discrepancies and the symptoms might mislead for another bleeding disorder. This high-

lights the need to improve the vWD clinical data, laboratory diagnostic knowledge and

tools (NHLBI, 2007). The prevalence reports published by Rodeghiero et al. (1987) and

(NHLBI, 2007) revealed a prevalence rate varying between 0.6 and 1.3 percent of the

world population suffering from vWD.

3
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1.2 Hemostasis

After a vascular wound, in order to keep the blood inside the damaged blood vessel,

the human body triggers the mechanism called hemostasis (or haemostasis), which is a

process that causes the bleeding to stop. The hemostasis happens by forming a clot to curb

hemorrhage by a synchronous and sequential process involving blood vessels, platelets,

coagulation factors and fibrinolytic factors. The hemostasis process is divided in the fol-

lowing steps: vascular contraction, platelet plug formation, blood clotting followed by an

eventual fibrous tissue growth in the clot for closure.

Immediately after injuring the blood vessel, the vascular wall trauma causes the

smooth musculature of this wall to contract, in order to reduce temporarily the blood flow

through the damaged vessel. Then a mechanical block caused by platelet adhesion begins,

when platelets, which normally float in the plasma, bond to the wound area. After that,

agglomerated platelets become pointed and sticky and bind to the exposed collagen and

endothelial coating, causing the release of granules that contain several active platelet fac-

tors. Such effect triggers the von Willebrand factor from plasma into traumatized tissue.

All of that stimulate the platelets aggregation, thus forming a platelet cap. The collagen

and exposed tissue engages a mixture of proteins and phospholipids that act to assemble

a fibrin protein network that stabilizes the platelet cap and forms a clot. The fibrin is the

end product of a series of enzyme reactions called coagulation cascade (Hall and Guyton,

2015). Figure 1.1 illustrates the described steps precisely.

Figure 1.1. Figure illustrating the platelet plug formation (Silverthorn et al., 2016).
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1.2.1 Blood coagulation cascade

The coagulation is the third major step in hemostasis, where the blood fluid forms a

gelatinous clot. The beginning of the coagulation process divides into two pathways that

eventually converge into a common one: an intrinsic pathway that starts in the blood when

damaged tissue exposes collagen, and an extrinsic pathway that starts with the trauma of

the vascular wall and surrounding tissues. At each step, an enzyme converts an inactive

precursor into an active enzyme, often with the help of calcium, membrane phospholipids,

or other factors. The intrinsic and extrinsic pathway factors interact like a net, instead of

a simple cascade (Silverthorn et al., 2016).

The intrinsic pathway, also known as contact activation, uses proteins already present

in plasma. Exposure of damaged vascular wall collagen to the blood alters Factor XII and

platelets. Factor XII becomes Factor XII activated and, simultaneously, the trauma also

damages the platelets, due to its adhesion to collagen causing the release of platelet phos-

pholipids which contain lipoprotein called platelet Factor III that also has participation in

later coagulation reactions. The Factor XII with Calcium activates the Factor XI and the

Factor XI activates the Factor IX. The Factor IX along with platelet phospholipids, trau-

matized platelet Factor III and Factor VIII (carried by vWF) activates the Factor X (Hall

and Guyton, 2015).

The extrinsic pathway begins when the damaged tissues expose the tissue factor, also

called Factor III. The extrinsic pathway is also called the cellular lesion pathway or via

the tissue factor. The tissue factor combines with the blood coagulation factor VII and,

in the ions calcium presence , acts enzymeatically on the Factor X to form the Factor X

activated (Hall and Guyton, 2015).

Activation of the Factor X happens in the intrinsic and extrinsic pathway. The Factor

X activated immediately combines with Factor V and with tissue phospholipids to form

the prothrombin activator complex. The prothrombin activator, with ion calcium (Ca++)

presence, causes prothrombin (present in plasma) convert to thrombin. Thrombin causes

polymerisation of fibrinogen molecules in fibrin fibers. Fibrin fibers permeate the platelet

buffer and keep erythrocytes within its mesh. Active factor XIII converts fibrin into a

cross-linked polymer, which stabilizes the clot. Figure 1.2 extracted from Silverthorn et al.

(2016) summarizes the blood coagulation process described by showing both the intrinsic

and extrinsic pathways merging into the common pathway to produce fibrin fiber.

1.3 von Willebrand Factor

The endothelial andmegakaryocytes cells synthesize the vonWillebrand factor (vWF).

It circulates as a multimer, a protein complex formed by several subunits, of order size of

500 - 20,000 kDaltons, depending on the number of monomers. In plasma, vWF multi-
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Figure 1.2. Figure summarizing the Blood Coagulation Cascade (Silverthorn et al.,

2016).

mers are eliminated with a half-life of 12 - 20 hours by an independent size mechanism.

The endothelial cells produce vWF to keep constant the basal plasma concentration and

to stored in Weibel-Palade bodies in case of released caused by vascular injury or phar-

macological stimulation response, increasing the level of vWF in the plasma. The first

synthesized vWF units have multimers with ultra large molecular weight. A specific pro-

tein called ADAMTS13 (A Disintegrin-like And Metalloprotease domain with Throm-

boSpondin type I motifs) cleaves the ultra large molecular weight multimers (ULMW)

into high molecular weight (HMW) and low molecular weight multimers (LMW) (Sadler,

2008).

The von Willebrand factor acts in two moments of homeostasis; in the platelet ad-

hesion with the damaged vasculature and as a protein carrier for Factor VIII during the

coagulation process. The interaction between platelet and damaged vessel are more effi-

cient with ULMW and HMWmultimers, because the vWF binds to the collagen exposed

in the damaged region creating a binding site for the platelet receptor, serving as aggre-
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Figure 1.3. Scheme of vWF biosynthesis in the endothelial cell, where ER stands for

endoplasmatic reticulum andWP for Weibel-Palade bodies, which store the synthezied

vWFmultimers, on the right shows the synthesis and polymerization steps (Schneppen-

heim and Budde, 2008) .

gator of platelet and damage vessels. The vWF allows platelets adhesion through their

superficial binding glycoprotein Ib (GPIb). Once bonded, the platelets are then activated,

passing from the disc shape to the spherical shape with high surface area.

When the vWF acts as Factor VIII carrier, it creates a FVIII-vWF complex, which

circulates in plasma as a loosely coiled protein complex that does not interact strongly

with platelets or endothelial cells under basal conditions. In regard of this functionality,

the multimers size is not relevant. Additionally, the vWF also protects the Factor VIII from

protein C and S action, increasing the stability and half-life of the factor (Schneppenheim

and Budde, 2008).

Figure 1.4 illustrates the vWF functions. The top image shows the vWF as FVIII car-

rier where the FVIII-vWF complex are circulating in plasma. The middle image shows the

vWF interaction with platelets and damage vessel. The bottom image shows the clotting

and platelet aggregation to stop bleeding.

1.4 von Willebrand disease

The disease is the result of a decrease in the vWF levels or a vWF compromised

functionality. Some factors influence the vWF levels: age, ethnic group, blood type and
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Figure 1.4. Figure to illustrate the vWF function. The top image shows the vWF as

FVIII carrior, the middle image shows the vWF as platelet and damage vessel adhe-

sion, and the bottom image shows the clotting and platelet aggregation to stop bleed-

ing.(NHLBI, 2007)

hormones. While the vWF synthesis rate remains constant betweenABO groups, survival

rate reduces if the subject belongs to group O, compared to non-O subjects Gallinaro et al.

(2008). The vWD is a very heterogeneous disease characterized by a strong variability

classified in types: Type 1, Type 2, Type 3 and Vicenza.

Type 1 is characterized by a partial quantitative deficiency, type 2 by a qualitative

deficiency, and type 3 by a total deficiency. vWD type 2 divides into four variants (2A,

2B, 2M, 2N), depending on the qualitative deficiency. Type Vicenza is a specific variation

commonly classified under type 1 or type 2M, depending on laboratory test interpretation.

According to NHLBI (2007), about 75 percent of symptomatic persons who have vWD

are from type 1 and the remaining 25 percent are from type 2, divided between the variants

and the prevalence for type 3 is unknown.

1.4.1 vWD type 1

Type 1 vWD includes partial quantitative deficiency of vWF, attributed to a decrease

in vWF plasma concentration. They do not show multimers functional abnormalities or

any type of selective reduction in large multimers. According to NHLBI (2007), labora-

tory analysis shows reductions in the antigen vWF protein concentration (VWF:Ag) and

collage binding (VWF: RCo). Most people who have type 1 vWD result in normal FVIII

and the gels of the vWF multimers do not show a significant decrease in vWF large mul-

timers.
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Severe type 1 deficiency relates to the vWFmutations that interfere with intracellular

transport of pro-vWF 35-39 dimeric, affecting the release of vWF into the blood. Other

deficiency relates to vWF mutations that promote rapid multimers clearance from circula-

tion. People with these mutations usually have low plasma vWF concentration. Increased

vWF clearance explains patients who show exaggerated and brief responses to DDAVP

administration.

It is difficult to identify vWD type 1 when vWF plasma concentration is not con-

siderably low, and is also close to the lower end of the normal range. Type 1 lacks a

qualitative criterion easily to recognise, it is advisable to rely on qualitative decreases in

protein concentration, instead. On the basis of vWF levels, the healthy population covers a

large range of values and depends on a lot of factors. The symptoms of moderate bleeding

are very common in the healthy population, associating bleeding symptoms with a vWF

moderately low-level may coincide and be mistakenly correlated with vWD.

1.4.2 vWD type 2

Type 2Arefers to qualitative variants caused by a reduced concentration of vWFmul-

timers with high molecular weight, affecting the vWF platelet adhesion. The vWF antigen

and FVIII levels might be normal but the functionality can be compromised, which is rep-

resented by vWF:RCo. The abnormality might associate with the assembly or secretion

of large multimers or by the increase of proteolytic degradation.

The vWD sub type 2B includes vWF variants with increased affinity for platelet gly-

coprotein Ib. This variant of the disease does not hold the synthesis of large multimers, but

after secretionmultimers spontaneously bind to platelets and are cleaved byADAMTS-13.

This platelet binding characterize the increased interaction of mutant vWF with platelet

glycoprotein Ib. Thus, most patients with vWD sub type 2B have a lower plasma concen-

tration of ultra large vWF multimers and show a high rate of proteolysis.

The vWD type 2M includes impaired interaction of vWF with platelet GPIb or with

connective tissue causing decreased platelet and vWF adhesion. This variation does not

substantially affect multimer assembly but a mutation in vWF domain A1 shows impair

binding of vWF to collagen. Laboratory analysis shows type 2M and type 2A are very

similar, being differentiated by multimer gel electrophoresis. Type 2N includes vWF with

flawed FVIII binding, which is commonly mistaken for haemophilia, because presents

normal values for vWF:Ag and vWF:RCo (Silverthorn et al., 2016).

1.4.3 vWD type 3

vWD type 3 characterizes complete deficiency of vWF.According to NHLBI (2007),

usually the vWF:RCo, vWF:CB and vWF:Ag are lower than 5 IU/dL, considered unde-
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tectable vWF levels, and FVIII levels are lower than 10 IU/dL, and patients rarely have

a measurable response after DDAVP desmopressin administration. The terminology ”Se-

vere vWD” has been used for vWD type 3 and sometimes for symptomatic vWD type 1

characterized by very low vWF levels, but these conditions are almost always clinically

distinct.

1.4.4 vWD type Vicenza

This variant is often classified under type 1 or type 2M, but despite this the vWD type

Vicenza has an extreme increase of vWF clearance, causing a markedly short half-life of

vWF plasma concentration. vWD Vicenza has vWF:RCo and vWF:Ag levels decreased

proportionately.

Increased clearance can explain the ultra-large multimer distribution for vWD type

Vicenza. A faster clearance rate means shorter time for VWF multimer circulates in

plasma, thus less opportunity to be cleaved by ADAMTS-13. Consequently, increased

clearance shifts vWF multimer plasma distribution toward ultra-large multimers and few

smaller sub units (NHLBI, 2007) (Sadler, 2008).

1.5 Diagnosis

The diagnosis of vWD includes the personal history and the quantitative data, and it

segments in three conditions: bleeding history; family history of hemorrhagic disorder;

and laboratory tests demonstrating a quantitative and /or qualitative defect of the vWF.

Prior to laboratory analysis, which is long and stressful, it is recommended a first evalua-

tion on the patient history for excessive bleeding and any family history.

Preliminary laboratory evaluation of haemostasis includes platelet count, partial throm-

boplastin time, prothrombin time and evaluation of fibrinogen or thrombin time. If the

history of the subject shows a hemorrhagic disorder or abnormal coagulating activity,

it is better to proceed with a vWD investigation, which starts by measuring indicators

that highlight the disease: the amount of vWF in plasma measured from the vWF anti-

gen (VWF:Ag); the vWF functionality measured by the dosage of the ristocetin co-factor

(VWF:RCo) and dosage of the coagulant factor FVIII (FVIII:C). When all dosage lev-

els decrease, vWD type 1 is suspected. When there is a disproportionate decrease in

vWF:RCo or FVIII, type 2 is suspected and the virtual absence of vWF:Ag suggest vWD

type 3 (NHLBI, 2007). Figure 1.5 shows the electrophoresed image for multimer patterns

in vWD.

The vWF:Ag gives a measure of the vWF plasma antigen concentration, this indica-

tor provides the overall plasma vWF concentration, independent of the size of the vWF

multimers, and is generally based on the ELISAmethod (Enzyme-Linked ImmunoSorbent
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NP 1 2A 2B 2A 3

Figure 1.5. Figure shows the electrophoresed image for multimer patterns in vWD

type 1, type 2A (two unrelated patient), type 2B, type 3, and a normal person(NP)

(Marder et al., 2013) .

Assay).

The vWF:RCo test measures ristocetin cofactor activity, testing the vWF functional-

ity to interact with platelets. This test takes a long time to perform and causes thrombo-

cytopenia, because the vWF adheres to platelets generating an aggregate, which removes

the platelets from the circulation. For these reasons, researchers replace the vWF:RCo test

for the vWF collagen test (vWF:CB) (Sadler, 2008).

The vWF:CB measures the vWF ability to bind to endothelial collagen type I and III.

This depends on the multimeric size of the vWF, with larger multimers having a greater

affinity for collagen than smaller ones. Multimers of higher molecular weight are the most

active and this test provides indications on the large multimers concentration.

The results of these indicators tests are expressed in international units per deciliter

(U/dL). The DDAVP (desmopressin, 1-desamino-8-D-arginine vasopressin) is a drug used

to treat vWD by promoting the release of vWF. The DDAVP induces the release of vWF

from endothelial cellsWeibel-Palade bodies. So desmopressin is used in laboratory tests to

analyse the vWF indicators. Since patients with vWD type 1 don’t have vWF functionality

problems, they have a high response to DDAVP, while those with vWD type 2 or vWD
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type 3 tend to not respond. In addition, plasma vWF assays during DDAVP administration

is useful to resolve preliminary diagnostic ambiguities and in helping to classify the vWD

types.

1.6 Study objectives

This Chapter has described the vWF importance for the coagulation system and how

mutations and dysfunctions in this protein can cause qualitative and quantitative disorders.

These mutations cause dominant effects and produce distinct vWD phenotype. As already

seen, changes in vWF release can cause quantitative defects (type 1), as well as qualitative

defects that causes binding systems inactive, or regulate platelet affinities, causing other

phenotypes correlated with platelet and factor VIII (type 2).

The objective of this study is to help recognize vWD by modeling the vWD plasma

concentration. In order to fulfil this task it is important to have a reliable mathematical

model based on the patient’s physiology that quantitatively decreases the vWF multimer

plasma distribution over time. A good mathematical model provides information to better

understand complex physiological phenomena and generate new tools for disease diagno-

sis.

The aim of this thesis is to develop, through a well-known mathematical model, a

new approach to assess the von Willebrand disease. A new mathematical approach is

evaluated to access whether using the Laplace transform is possible to provide a different

way of analyse existing vWF models. In the Laplace domain, transfer functions and pa-

rameters constructed from the original model serve as indicators for a different physical

interpretation of the kinetic parameters present in the mathematical model. And with that,

analyze if new indicators, that help track down the disease and mutations, might emerge.

The Laplace transform simplifies the mathematical model resolution, allowing to share

information and use a simpler software for the disease diagnosis process.



Chapter 2

Model development in the Laplace

domain

This Chapter introduces the Laplace transform and the transfer functions related to

it. Then, the Chapter presents the von Willebrand factor pharmacokinetic models and

previous studies on the disease modeling. Subsequently, it manipulates the von Wille-

brand Factor models to the Laplace transform in order to put it in a transfer function

form. The Chapter concludes by validating the transfer functions with simulations using

Matlab®.

2.1 Introduction

A mathematical model is a useful tool to describe a real process phenomenon. It

gives an abstract representation and a physical insight of a process. The development

of a mathematical model requires requires some simplifications and assumptions to re-

duce the complexity of the real process, specially for systems in the physiological field.

A good model can represent the dynamic behavior while being no more complex than

necessary.

Solving a mathematical model in order to represent the output variable in the time

domain can be a considerable effort. Commonly, models are constructed by linear ordinary

differential equations (ODEs). The Laplace Transform is a technique to solve and analyze

linear differential equation models by converting them into algebraic equations.

With the aim of expressing the physiological behavior of the von Willebrand Factor

(vWF) in the plasma, described in the previous Chapter, Galvanin et al. (2014) stated that a

good model representation must describe the real pathways of vWF concentration varying

in time. Thus, it is possible to recognize the different types of vWD through the multimers

distribution in time. Awell represented model should also have parameters consistent with

the actual process and easy to obtain with the clinical data available.

Galvanin et al. (2014) cites three main mechanism steps during the clinical treatment

to diagnose the vWD using the DDAVP vasopressin test. After the drug administration

there are:

13
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• release of the SUL (superultra large) multimers of the vWF;

• proteolysis of the SUL into smaller multimers by the enzime ADAMTS13;

• clearance of plasma multimers, which occurs on the liver and is independent of the

multimer dimension;

2.2 Laplace transform

The Laplace transform is a mathematical tool used to solve and reduce the effort

required to analyze linear differential equations. The technique transforms differential

equations of a real variable t (often time) to algebraic equations of a complex variable s.

Seborg et al. (2017) define the Laplace transform of a function as:

F(s) = L [ f (t)] =
∫∞

0
f (t)e−st dt (2.1)

In Equation (2.1), F(s) is the representation of the Laplace transform of the generic

function of time f (t), using the so called LaplaceOperatorL. Once in the Laplace domain,

the algebraic equations (that formerly were differential equations) can now be easily ma-

nipulated. On the other hand, the inverse Laplace transform L−1, defined by Seborg et al.

(2017) in Equation (2.2), operates on the F(s) function and converts it back to f (t) func-

tion. Thereby, generically, differential equations can be manipulated and solved.

f (t) = L−1 [F(s)] (2.2)

Since the Laplace transform involves integration, it is natural for the transform to

inherit properties of the integral. One of these properties is linearity, so the Laplace trans-

form is a linear operator and satisfies the superposition principle described in Equations

(2.3) and (2.4):

L [k · x(t)] = k · X(s) (2.3)

L [ax(t) + by(t)] = L [ax(t)] + L [by(t)] = aX(s) + bY(s) (2.4)

2.2.1 Transfer functions

Within the Laplace domain, a transfer function ties two process variables, a dependent

output variable and an independent input variable. Figure 2.1 shows a scheme represent-

ing this connection. Thereby, input and output assume a cause-effect relationship. For a

continuous-time linear system, the transfer function is the ratio between the output and

input variables in the Laplace domain.

A general linear n th-order differential equation forms a general transfer function
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u(t) x(t)

U(s) X(s)

System of differential 
equations

System of transfer 
functions

Laplace transform

Figure 2.1. Block diagram representing the Laplace transform of a time-dependent

system differential equation into Laplace domain to form a system transfer function

G(s) represented in Equation (2.5). The letters ’m’ and ’n’ represent the order of the

transfer function, the condition n > m is necessary to ensure the the model is physical

realizable.

X(s)
U(s)

= G(s) =
bmsm + bm−1sm−1 + bm−2sm−2 + · · · + b1s1 + bo

ansn + an−1sn−1 + an−2an−2 + · · · + a1s1 + ao
(2.5)

At time t = 0 the system is at steady-state and, in this situation, Equation (2.5)

becomes G(s) = bo/ao = K , where K defines the transfer function steady-state gain.

Factoring Equation (2.5) by isolating the steady-state gain and the other constants, the

parameter τ rises denoting a time constant, well represented by Equation (2.6).

X(s)
U(s)

= G(s) =
K(τas + 1)(τbs + 1) · · ·

(τ1s + 1)(τ2s + 1) · · ·
(2.6)

Equation (2.6) provides new process information. The time-constants τi and the

steady-state gain K provide information about process behaviour, like response speed and

shape.

Transfer functions display multiplicative properties for connected processes. For ex-

ample, suppose two processes with transfer functions G1(s) and G2(s) configured in se-

ries. The input U(s) connected to G1(s) produces an output X1(s), which is the input

to G2(s), and produces the output X2(s). So the transfer function between the original

input U(s) and the output X2(s) can be obtained by multiplying G2(s) by G1(s). This

arrangment can be written in equation form, as reported in Equation (2.7) and (2.8).

X1(s) = G1(s) · U(s) (2.7)
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X2(s) = G2(s) · X1(s) = G2(s) · G1(s) · U(s) (2.8)

2.3 von Willebrand factor pharmacokinetic model

The models are based on the clinical data of vWF antigen (vWF:Ag) and colla-

gen binding (vWF:CB) measurements followed by the subcutaneous administration of

DDAVP vasopressin. The measures of vWF:Ag represent the total concentration of the

vWF regardless of the size of the multimeric units. Meanwhile vWF:CB indicates the

concentration of high molecular weight multimers in the plasma.

Two models propose the study of the behavior on the average profiles of vWF:Ag

and vWF:CB, and the multimers related to these variables. The analysis in this Chapter

is based on the model presented by Ferrari et al. (2018), which is a simplification of the

model presented by Galvanin et al. (2014). Both of them worked with similar variables

and parameters and will be discussed further.

2.3.1 Model proposed by Galvanin et al. (2014)

The first model proposed by Galvanin et al. (2014) is composed of four equations.

The model assumes that at the basal state only multimers with high and low molecular

weight are present. It also assumes that super ultra large (SUL) multimers cannot be mea-

sured directly from experimental measurements, and their release is a consequence of

DDAVP injection. The experimental measurement of vWF:Ag is given by the sum of the

UL, H and L multimers, and the experimental measurement of vWF:CB is given by the

sum of the UL and H multimers. Figure 2.2 shows a scheme of the model variables and

parameters represented by Equations (2.9), (2.10), (2.11) and (2.12), where the circular

blocks represent the mechanism steps.

Figure 2.2 shows circular blocks representing themultimers SUL, UL, H and Lmech-

anism step, with the arrows representing the kinetics process between them. The parame-

ter described as D represents the effect of DDAVP dose injection phase which causes the

release of different multimeric species. The rectangular dotted line represents the vWF

antigen concentration (yAg) as the sum of the UL, H and L multimers and the rectangular

dashed line represents the collagen binding concentration (yCB) as the sum of the UL and

H multimers.

dxSUL

dt
= koDe−ko(t−tmax) − k1(xSUL − xSUL

b )

− k2(xSUL − xSUL
b ) − k3(xSUL − xSUL

b ) (2.9)
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D

L

k0

UL k5

ke ke

y CB y Ag( vWF:Ag )( vWF:CB )

ke

Hk4

SUL

k1 k2 k3

k6

Figure 2.2. Scheme presented by Galvanin et al. (2014) to represent the pharmacoKi-

netics model, along with the vWF antigen (vWF:Ag) and collagen binding (vWF:CB)

represented in the picture by the dotted and the dashed rectangles respectively. The

circular blocks represent the multimers mechanism step. The D block represents the

DDAVP dose injection step which causes the release of different multimeric species.

The arrows indicate the kinetics involved.

dxUL

dt
= k1(xSUL − xSUL

b ) − k4(xUL − xUL
b )

− ke(xUL − xUL
b ) − k6(xUL − xUL

b ) (2.10)

dxH

dt
= k2(xSUL − xSUL

b ) + k4(xUL − xUL
b ) − k5(xH − xH

b ) − ke(xH − xH
b ) (2.11)

dxL

dt
= k3(xSUL − xSUL

b ) + k5(xH − xH
b ) − ke(xL − xL

b ) + k6(xL − xL
b ) (2.12)

Equations (2.9), (2.10), (2.11) and (2.12) represent respectively the distribution of

SUL, UL, H and L units in the blood plasma. The xSUL [U] represents the amount of

super ultra large multimers, xUL [U] represents the amount of ultra large multimers, xH

[U] represents the amount of high multimers, xL [U] represents the amount of low mul-
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timers. D [U] represents the release of SUL multimers, tmax [min] represents the time of

maximum response, which is the time where the vWF antigen (vWF:Ag) and collagen

binding (vWF:CB) concentration curves achieve the maximum value. k0 [min−1] is the

kinetic parameter at the release step, and k1 [min−1], k2 [min−1], k3 [min−1], k4 [min−1],

k5 [min−1] and k6 [min−1] are the proteolysis kinetic parameters. And ke [min−1] is the

clearance kinetic parameter. Subscript “b” describes the initial basal condition.

Equations (2.13) and (2.14) represent the vWF antigen (vWF:Ag) and collagen bind-

ing (vWF:CB) concentrations, respectively, by the variables yAg and yCB [U/dL]. Equa-

tion (2.15) represents a correction made by Galvanin et al. (2014) to the yCB in order to

adjust the different affinity multimers have to collagen binding for distinct vWD types.

Castaldello (2016) also refers to this correction in order to avoid numerical problems con-

sidering the experimental measurements variability.

yAg =
(xUL + xH + xL)

Vd
(2.13)

yCB =
(xUL + xH)

Vd
(2.14)

yCB′

= αyCB y
Ag
b

yCB
b

(2.15)

According to Menache et al. (1996), Equation (2.16) defines the parameter Vd used

in Equation (2.13) and (2.14) as the distribution volume expressed in dL. BW corresponds

to the patient’s body weight in kg.

Vd = 0.4 · BW (2.16)

Summarizing, the release of SUL step is represented by the parameters D, k0, and

tmax; the proteolysis of the multimers SUL, UL and H step is represented by the kinetic

parameters k1, k2, k3, k4, k5 and k6; the clearance step is represented by the kinetic pa-

rameter ke. The correction proposed in Equation (2.15) adds parameters α and yCB
b .

2.3.2 Model proposed by Ferrari et al. (2018)

The model proposed by Ferrari et al. (2018), described by Equations (2.17) and

(2.18), is a simplified version of the model proposed by Galvanin et al. (2014). In this

case the SUL is not taken under consideration given the measurement limitation. Also

the Ultra Large and High molecular weight multimers (UL+HMW) were considered to-

gether as one unit; this way the proteolysis happens only between the UL+HMW and the
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LMW. Figure 2.3 shows the scheme made by Ferrari et al. (2018) to illustrate the model

process.

D Lk0 UL+H k1

ke ke

yCB yAg ( vWF:Ag )( vWF:CB )

Figure 2.3. Scheme presented by Ferrari et al. (2018) to represent the pharmacoki-

netic model and the mutlimers distribution, along with the vWF antigen (VWF:Ag) and

collagen binding (VWF:CB) measuremnts represented in the picture by the dashed line

Figure 2.3 is an adapted scheme of the first one proposed by Galvanin et al. (2014).

In the same way, the circular blocks represent the Ultra Large and High molecular weight

multimers (UL+H) and Lowmolecular weight multimers (L), with the arrows representing

the kinetics process between them. The circular block with parameter D represents the

effect of DDAVP dose injection phase, which causes the release of multimeric species.

The rectangular dotted line represents the vWF antigen concentration (yAg) as the sum of

UL+H and L multimers, and the rectangular dashed line represents the collagen binding

concentration (yCB) as the amount of the UL+H multimers.

dxUL+HMW

dt
= koDe−ko(t−tmax) − (k1 + ke)(xUL+HMW − xUL+HMW

b ) (2.17)

dxLMW

dt
= k1(xUL+HMW − xUL+HMW

b ) − ke(xLMW − xLMW
b ) (2.18)

Equations (2.17) and (2.18) represent respectively the amount of UL+HMW and

LMW multimers in the blood plasma. The xUL+HMW [U] represents the amount of ul-

tra large and high multimers, xLMW [U] represents the amount of low multimers. D [U]

represents the multimers release, tmax [min] represents the time of maximum response,

which is the time where the vWF antigen (VWF:Ag) and collagen binding (VWF:CB)

concentration curves achieve the maximum value. The k0 [min−1] is the release kinetic

parameter, k1 [min−1] is the proteolysis kinetic parameter and ke [min−1] is the clearance

kinetic parameter. Subscript “b” describes the initial basal condition.

The vWF antigen (vWF:Ag) and collagen binding (vWF:CB) concentrations are rep-
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resented in Equations (2.19) and (2.20) respectively by the variables yAg and yCB

yAg =
(xUL+H + xL)

Vd
(2.19)

yCB =
xUL+H

Vd
(2.20)

yCB′

= αyCB y
Ag
b

yCB
b

(2.21)

Equation (2.21) represents the same correction made by Galvanin et al. (2014) for

yCB. According to Menache et al. (1996), Equation (2.22) defines parameter Vd [dL] as

the distribution volume, where BW [kg] corresponds to the patient’s body weight.

Vd = 0.4 · BW (2.22)

In this model proposed by Ferrari et al. (2018), the same parameters D, k0, and tmax

describe the release stage; but only the kinetic parameter k1 represents the proteolysis of

the multimers UL+HMW into LMW; and the kinetic parameter ke represents the clearance

stage. The correction proposed in Equation (2.21) also adds the parameters α and yCB
b .

This way, the model proposed by Ferrari et al. (2018) reduces the number of parameters

from 12 to 7.

2.4 Analysis of previous studies on the von Willebrand factor

models

Some authors have proposed solutions to the parameter identification for the models

presented previously. According to Monte (2013), the initial clinical data were available

as von Willebrand factor antigen (vWF:Ag) and collagen binding (vWF:CB) obtained

after subcutaneous administration of vasopressin DDAVP. Data are from distinct groups

of individuals of different ages and body weight, including healthy subjects of blood type

O (HO) and non-O (HnonO) and individuals affected by vWD of type 1, 2A, 2B and

Vicenza.

For the Galvanin model, Monte (2013) and Castaldello (2016) used the maximum

likelihood technique to estimate the parameter vector set θ = [ ko k1 k2 k3 k4 k5 k6
ke D tmax α yCB

b ]. The method of maximum likelihood selects the set of values of the

model parameters that maximizes the likelihood function. This maximizes the relation

between the proposed model and the experimental data. In order to minimize the vari-

ability between data, both of them worked with an ”average subject”, meaning that each
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vWD type have a vWF:Ag and vWF:CB concentration profile made from the average

of the points collected at the same time from all the individual subjects of vWD type. In

other words, each vWD type has an unique vWF:Ag and vWF:CB average subject profile,

which was used to estimate the parameter set.

The maximum likelihood technique was also used to estimate the Ferrari model pa-

rameters. Castaldello (2016) worked with the average subject and used the parameter set

θ = [ ko k1 ke D α yCB
b D/tmax]. In another way, Ferrari et al. (2018) worked with

the parameter set θ = [ ko k1 ke D α yCB
b tmax] and used the maximum likelihood

technique to predict the parameters for each single individual. Then the parameters for

each vWD type was presented by calculating the mean value of the estimated parameters

among each type of vWD individuals.

Table 2.1 shows the values of the parameters found by Ferrari et al. (2018) and

Castaldello et al. (2018). Even though both studies estimated the parameters in different

ways, the kinetic parameters show minor difference between them, which is a reference

for vWD type identification. However the D and tmax values between the Ferrari et al.

(2018) and Castaldello et al. (2018) differ very much. Castaldello et al. (2018) found that

the value of tmax is not always the same for the vWF:Ag, and vWF:CB and its value has

low influence on the other parameters. This justifies the use of the D/tmax in the param-

eter set and explains the differences. Nevertheless this work, from now on, will use the

parameters values estimated by Ferrari et al. (2018).

Table 2.1. Parameters obtained by Ferrari et al. (2018) and Castaldello et al. (2018),

for healthy groups HO and HnonO, and vWD type 2B, 2A and Vicenza. The number

in parenthesis below the group’s name indicates the quantity of patients available for

each group.

Parameters
Ferrari et al. (2018) Castaldello et al. (2018)

HO HnonO 2B 2A Vicenza HO HnonO 2B Vicenza

(subjects) (24) (18) (8) (3) (9) (24) (18) (8) (9)

k0 [min−1] 0.0264 0.0287 0.0177 0.0152 0.0666 0.0264 0.0285 0.0136 0.0423

k1 [min−1] 0.0006 0.0002 0.0047 0.0042 0.0015 0.0003 0.0001 0.0020 0.0013

ke [min−1] 0.0015 0.0007 0.0032 0.0013 0.0082 0.0014 0.0007 0.0037 0.0098

D[U] 568 425 597 649 271 141 168 194 199

α 1.01 0.94 0.20 0.06 0.31 0.98 0.97 0.18 0.73

yCB
b

[U/dL] 49.30 77.90 26.10 23.60 2.38 49.97 84.64 24.53 5.10

tmax [min] 60 75 127 135 46.7 110 109 214 65

At this point, it is possible to distinguish the parameters: the ones related with the

release of multimers after DDAVP administration, D, tmax and ko; the one related with

proteolysis, k1; and the one related with clearance of multimers, ke. In Table 2.1, is possi-

ble to see the difference between the parameters from the healthy group HO and HnonO,

and patients with vWD type 2A, 2B and Vicenza. Each type has some characteristics and
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it is related with the parameters.

Even though there are some differences between the healthy group HO and HnonO,

Ferrari et al. (2018) reported that only the values of ke and D are statistically significantly

different. For HO patients, the bigger values of ke is in accordance with a report cited in

Ferrari et al. (2018) about a shorter VWF survival in subjects with the O blood group. In

groups 2A and 2B an accelerated proteolysis activity is expected, which is evident since

k1 parameter is bigger than the others. The Vicenza group presents a shorter multimers

half-life, which is evident by the ke parameter.

2.5 The von Willebrand model in the Laplace domain

It is possible to apply the Laplace transform (2.1) in the Ferrari model equations

(2.17) and (2.18), providing an alternative functional tool to analyze the behavior of the

multimers system in the plasma.

2.5.1 Deviation variables

For the sake of simplifying, the following multimeric variables presented in Equa-

tions (2.17) and (2.18) will be addressed in the terms of deviation variables. A deviation

variable is represented by the variable minus the variable steady-state value. In this con-

text the steady-state is portrayed by the basal state.

• x′ULH = (xUL+HMW − xUL+HMW
b ) [U]

• x′L = (xLMW − xLMW
b ) [U]

being the subscript ULH assigned for UL+HMW variables, the subscript L assigned

for LMW variables, the subscript b assigned for basal values and the apostrophe repre-

senting the deviation variable. The following Equations (2.23) represent Equation (2.18)

in terms of deviation variables.

dx′ULH

dt
= koDe−ko(t−tmax) + (k1 + ke)x′ULH (2.23a)

1

(k1 + ke)

dx′ULH

dt
+ x′ULH =

koDe−ko(t−tmax)

(k1 + ke)
(2.23b)

τULH

dx′ULH

dt
+ x′ULH = u(t) (2.23c)
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where τULH = 1
(k1+ke)

, and u(t) = koDe−ko(t−tmax)

(k1+ke)
. As described previously, D has unit

[U] and ko, k1 and ke has unit [min
-1]. A dimensional analysis shows u(t) having unit

[U] (like x′ULH) and τULH having unit [min]. The following Equations (2.24) represent

Equation (2.18) in terms of deviation variables.

dx′L
dt

= k1x′UL+H − kex′L (2.24a)

1

ke

dx′L
dt

+ x′L =
k1
ke

x′ULH (2.24b)

τL
dx′L
dt

+ x′L =
k1
ke

x′ULH (2.24c)

Equation (2.24c) introduces the new parameter τL = 1
ke
[min].

2.5.2 Laplace transform

The next step consists of applying the Laplace transform to Equations (2.23c) and

(2.24c) with the intention to put them in the Laplace domain, and find the transfer function

that relates u(t) with x′(t). The Laplace transform of the derivative term follows the steps

described in Equation (2.25).

L

[
dx(t)
dt

]
=

∫∞

0

(
dx(t)
dt

)
e−stdt

=

∫∞

0
x(t)e−st sdt =

[
x(t)e−st ]∞

0

= sL [x(t)] − x(0)

= sX(s) − x(0)

(2.25)

It was defined that at the steady state the multimers variables are at basal state. So at

t = 0, x′ULH(0) = (xUL+HMW
b − xUL+HMW

b ) = 0. The Laplace transform Equation (2.25)

in terms of the deviation variables becomes:

L

[
τ
dx′(t)
dt

]
= τ(sX′(s) − x′(0)) = τsX′(s) (2.26)

The parameter τULH and τL of Equation (2.23c) and (2.24c) will follow the definition

from Equation (2.3). The defined release term u(t) from Equation (2.23c) became:
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L

[
koDe−ko(t−tmax)

(k1 + ke)

]
=

koDekotmax

(k1 + ke)
·

∫∞

0
e−kote−stdt

=
koDekotmax

(k1 + ke)
·

∫∞

0
e−(s+ko)tdt

=
koDekotmax

(k1 + ke)
·

[
−

1

(s + ko)
· e−(s+ko)t

]∞
0

=
koDekotmax

(k1 + ke)
·

[
−0 +

1

(s + ko)
· e0

]
=

koDekotmax

(k1 + ke)
·

1

(s + ko)
= U(s)

(2.27)

So the term u(t) in the Laplace domain has the form of Equation (2.28):

U(s) =
koDekotmax

(k1+ke)

(s + ko)
(2.28a)

U(s) =
Dekotmax

(k1+ke)

( 1
ko

s + 1)
(2.28b)

U(s) =
KU

(τU s + 1)
(2.28c)

Equation (2.28c) introduces the new parameters KU = Dekotmax

(k1+ke)
[U.min] (The expo-

nential factor is unitless, the parameter D has unit [U] and (k1 + ke) has unit [min
-1]) and

τU = 1
ko
[min]. The Laplace transform takes place by replacing Equations (2.26), (2.27)

with Equation (2.17) and (2.18). Equation (2.29) shows the result of Equation (2.23c) and

the algebraic manipulation at the Laplace domain.

τULH sX′
ULH(s) + X′

ULH(s) = U(s) (2.29a)

X′
ULH(s)(τULH s + 1) = U(s) (2.29b)

X′
ULH(s)

U(s)
=

1

(τULH s + 1)
(2.29c)

Equation (2.29c) introduces, in the form of a transfer function, the parameter τULH =
1

(k1+ke)
[min] representing the time constant. Equation (2.30) shows the Laplace transform

and the algebraic manipulation for Equation (2.24c).
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τL sX′
L(s) + X′

L(s) =
k1
ke

X′
ULH(s) (2.30a)

X′
L(s)(τL s + 1) =

k1
ke

X′
ULH(s) (2.30b)

X′
L(s) =

k1
ke

(τL s + 1)
· X′

UL+H(s) (2.30c)

X′
L(s) =

k1
ke

(τL s + 1)
·

1

(τULH s + 1)
· U(s) (2.30d)

X′
L(s)

U(s)
=

KL

(τL s + 1)
·

1

(τULH s + 1)
(2.30e)

Equation (2.30e) introduces, in the form of a transfer function, the new parameters

KL and τL , where KL = k1
ke
[unitless] represents a steady-state gain and τL = 1

ke
[min]

represents a time constant.

2.5.3 von Willebrand model in the Laplace domain

Equations (2.31), (2.32), (2.33), (2.34) and (2.35) summarize the newly constructed

parameters.

τU =
1

ko
[min] (2.31)

τULH =
1

k1 + ke
[min] (2.32)

τL =
1

ke
[min] (2.33)

KU =
Dekotmax

k1 + ke
[U.min] (2.34)

KL =
k1
ke

[unitless] (2.35)

Equations (2.36), (2.37) and (2.38) summarize the input U(s) and the transfer func-

tions GULH(s) and GL(s).

U(s) =
KU

(τU s + 1)
(2.36)
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GULH(s) =
1

(τULH s + 1)
(2.37)

GL(s) =
KL

(τL s + 1)
(2.38)

U(s) represents the input function; GULH(s) and GL(s) represent the transfer func-

tions connectingU(s) and X′
ULH and X′

L respectively. Hence, Equations (2.39) and (2.40)

represent , respectively, Equations (2.17) and (2.18) in the Laplace domain.

X′
ULH(s) = GULH(s) · U(s) (2.39)

X′
L(s) = GULH(s) · GL(s) · U(s) (2.40)

D Lk0 UL+H k1

ke ke

yCB yAg ( vWF:Ag )( vWF:CB )

U(s)
X’ULH (s)

GULH(s) GL(s) X’L (s)

a)

b)

Figure 2.4. Figure a) shows the model scheme already presented in Figure 2.3 pre-

sented by Ferrari et al. (2018) to represent the model and the multimers distribution.

Figure b) shows the block diagram representing the Laplace transform from equations

2.39 and 2.40. GULH and GL represent the transfer functions, U(s) represents the
input function. The X ′

ULH and X ′
L represent the deviation variables for the multimers

units in the s domain.

Figure 2.4a shows the mechanism representation of the model proposed by Ferrari

et al. (2018) defined previously by Equations (2.17) and (2.18). This model presents the

parameters ko, k1 and ke meaning the rate of multimers reaction in the biological mech-

anism. That is, these parameters (and the compartmental model representation) indicate

the rate at which multimers vary. The parameters arrows in Figure 2.4a indicate how the

multimers reaction mechanism works.

Figure 2.4b shows the block diagram for the model in the Laplace domain. In this

case, the transfer functions (shown in the Figure as blocks) characterizes how fast the mul-

timer concentration changes, regardless of the mechanism behind the change. The transfer

function parameters characterize themultimers dynamics behavior. The time constant pro-
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vides information about system response swiftness, in other words, how themultimers will

respond to changes in the process input. For instance, the system creates an initial mul-

timers pulse, so τULH and τL provide information about the system returning to the basal

state. The transfer functionGULH models the UL+HMWmultimers behavior through time

providing the amount UL+HMWmultimers by the arrow X’ULH . Since LMWmultimers

are formed by UL+HMW proteolysis, X’ULH enters the transfer function GL modeling

the LMW multimers behavior through time, providing the amount LMW multimers by

the arrow X’L . While the kinetic model and its constants present information about the

multimers rate of reaction mechanism. The model in the Laplace domain gives informa-

tion about UL+HMW and LMWmultimers response facing a stimulus.

Table 2.2 summarizes the parameters estimated by Ferrari et al. (2018) converted

in the form of new parameters defined by Equations (2.31), (2.32), (2.33), (2.34) and

(2.35).

In the biological process, the input function U(s) shows the parameters KU and τU

being different from each patient. So the input U(s) stands for the multimers release

induced by DDAVP, represented by the following parameters: KU embodies the kinetic

parameters ko, D and tmax which correlate with the multimers release rate, giving the

increase of multimers in the plasma and τU embodies the kinetic parameters ko which

correlates the multimers time release.

Table 2.2. Parameters defined by Equations (2.31), (2.32), (2.33), (2.34) and (2.35),

with specific equations, units and values for the healthy groupsHO,HnonO, vWD types

1, 2A, 2B and Vicenza. The number in parenthesis below the group’s name indicates

the quantity of patients available for each group.

Parameters
Equations Unit

HO HnO 1 2B 2A Vicenza

(subjects) (24) (19) (51) (8) (3) (9)

KU Deko tmax/(k1 + ke) [U.min] ·105 12.9 39.9 3.01 7.12 3.83 6.28

KB
k1/ke Unitless 0.41 0.34 0.29 1.46 0.17 0.18

τU 1/ko [min] 38 35 36 56 49 15

τULH
1/(k1 + ke) [min] 466 1063 556 126 483 103

τL 1/ke [min] 658 1420 714 310 565 122

The first transfer function GULH stands for the UL+HMW multimers combining

clearance and proteolysis. This process is represented by the parameter τA embodying

the kinetic parameters k1 and ke, representing the consumption of multimers by the pro-

teolysis and clearance process. Consequently, vWD types 2A, 2B and Vicenza show the

lower values of τA influencing the total amount of multimers in the plasma.

After the release of ultra large multimers in the plasma, the ADAMTS-13 protein

starts breaking the multimers into smaller units. The transfer function GL represents the

LMWmultimers and the transfer function steady state gain KL is the ratio between k1 and
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ke, the direct proportionality with proteolysis constitutes the consumption of UL+LMW

into LMW, while the clearance is the normal multimers decrease. A large value of KL

means that proteolysis prevails on clearance, resulting in a shortage of UL+HMWmulti-

mers. This peculiarity is typical of vWD type 2B, which in turn has the largest value of

KL (KL = 1.46). τL is the time constant, which is the inverse of clearance kinetics and the

vWD type Vinceza has the lowest value τL = 310 , which represent a very fast clearance

for this type of vWD.

2.6 Model validation in the Laplace domain

In order to validate the model in the Laplace domain, Equations (2.39) and (2.40)

developed in this chapter were implemented in Simulink® tool from the software Matlab®

vR2019b. The simulation was conducted using as reference the parameters shown in Table

2.2. Figure 2.5 shows the image of the model construct in Simulink® to validate the model

in the Laplace domain.

Figure 2.5. Image of the model construct with Simulink® software to validate the

Ferrari et al. (2018) equation in the Laplace domain

The results obtained from the model of Figure 2.5 are represented in graphs in Figure

2.6, showing the multimeric patterns for healthy patient with blood type O and for patient

with vWD type 2B, 2A and Vicenza. The Figure 2.6 is divided in two, where Figure 2.6a

shows the graphics published by Ferrari et al. (2018) and Figure 2.6b shows the graphics

made by mathematical simulation in Laplace Domain using Simulink® software.

As already mentioned, Ferrari et al. (2018) estimated the parameters for each patient 
and later calculated the average parameter for each vWD type. Hence, it is assumed the 
published graphs at Figure 2.6a refers to single subjects parameters. The simulation, in-
stead, uses the published parameters (which is known to be the patients average values 
for each class) and creates the graphics in Figure 2.6b. This justify the small differences 
between the graphics from Figure 2.6a and Figure 2.6b, but still validates the methodology 
in order to use Laplace transform to solve the ordinary differential Equations (2.17) and 
(2.18). To fix this parameter differences it is important to consider a new parameter iden-
tification in the Laplace domain. The parameters defined in the Laplace domain can bring 
a new point of view in order to discriminate the von Willebrand Disease types. Besides, 
developing the model in the Laplace domain simplifies the equation resolution and allows
news opportunities for the von Willebrand disease diagnosis.
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vWD Type 2B

vWD Type 2A

vWD Type Vicenza

Healthy O

(a)

vWD Type 2B

Healthy O

vWD Type 2A

vWD Type Vicenza

(b)

Figure 2.6. (a) Graphics obtained by Ferrari et al. (2018) with patients data and the 
model proposed; (b) Graphics obtained at the Laplace domain with Simulink® using 
the Ferrari et al. (2018) published parameters.
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Parameter identification methodology

This Chapter describes the parameter identification methodology used in the model

presented in the previous Chapter. The parameter identification uses optimization tech-

niques on the model to reach out the experimental data. Therefore, this Chapter begins by

presenting the experimental data available and the optimization techniques used by previ-

ous research. Then, it presents the conditions and functions used in the model within the

Laplace domain to identify its parameters. The Chapter concludes with the presentation

of the results obtained with the parameterization.

3.1 Analysis of experimental data available

The Department of Cardiology, Thoracic and Vascular Sciences of the University of

Padova provided the vWF data of 114 patients, presented as vWF antigen (vWF:Ag) and

vWF collagen binding (vWF:CB) measurements. The data is divided between healthy

people with blood type O (24 patients), healthy people with blood type non-O (19 pa-

tients), patients with vWD type 1 (51 patients), patients with vWD type 2A (3 patients),

patients with vWD type 2B (8 patients) and patients with vWD type Vicenza (9 patients).

This information and data were compiled from previous studies made by Monte (2013),

Galvanin et al. (2014) and Castaldello (2016).

The vWF:Ag measurement determines the total amount of vWF in the plasma, inde-

pendently of multimers size, and vWF:CB measurement determines the multimers with

high molecular weight. The measurements were made after the subcutaneous adminis-

tration of 3 µg/kgbody weight of desmopressin (DDAVP). Then, ten samples were collected

to measure the vWF concentration within the 24 hour time frame. The collection points

were made at pre-established time (0, 0.25, 0.5, 1, 2, 3, 4, 6, 8 and 24h) after the DDAVP

administration.

The mechanism proposed by Galvanin et al. (2014) and Ferrari et al. (2018) models

after the DDAVP administration starts with the release of ultra large and high molecular

weight multimers. Then, the enzime ADAMTS13 causes the proteolysis of high molecu-

lar weight multimers into smaller species, and finally occurs the clearance of multimers,

which is independent of multimers size.

31
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The measured data for each group (healthy O, healthy non-O, vWD type 1, vWD

type 2A, vWD type 2B and vWD type Vicenza) are presented in graphs in Appendix A.

Figure 3.1 shows the average value for collected samples in each pre-established time

discriminated by group, this average defines the average subject for each group. Figure

3.1a shows the values for vWF antigen (yAg) and Figure 3.1b shows the values for vWF

collage binding (yCB).

Healthy patients with blood type O and non-O present in the plasma similar concen-

trations for vWF antigen and collage binding, representing a normal multimers distribu-

tion. Indeed, the values of vWF:Ag and vWF:CB of these patients are almost equivalent,

as can be seen in Figure 3.1. Also, it is noticeable how healthy non-O patients have higher

vWF concentrations as compared to healthy O patients.
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Figure 3.1. Graphics of mean values for vWF measurements collected at predefined

times, separated within each study group. The dots represent the mean values and the

error bar shows the variance of those values inside the group. Figure (a) shows the

graphic for vWF Antigen (vWF:Ag) concentration expressed as yAg by the time after

the DDAVP administration and Figure (b) shows the graphic for vWF collage binding

(vWF:CB) concentration expressed as ycB by the time after the DDAVP administra-

tion.

vWD type 1 is known for partial quantitative deficiency of vWF. The concentration

level of vWF in plasma is low, but the remaining vWF works normally. Figure 3.1 shows

a smaller concentration for type 1 in both graphics, considering the healthy patients as ref-

erence. vWD type 1 has high variability, caused by different types of mutations, resulting

in an extra difficulty to distinguish type 1 patients with other types.

Meanwhile vWD type 2 has quality deficiency for vWF multimers. For instance,

type 2B has multimers with high affinity for platelet receptors and high protheolysis rate,

causing the high molecular weight multimers elimination. Figure 3.1b shows this effect

by the lack of collage binding concentration (YCB) and Figure 3.1a shows a higher vWF

antigen concentration (Y Ag). Type 2A is known for multimers assembly and release inter-
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ference, causing low level of multimers with high molecular weight. Figure 3.1b shows

indeed lower level of vWF:CB, presented as triangle points.

The vWD type Vicenza has mutation which causes a high clearance rate. Indeed Fig-

ure 3.1 shows very short levels of both vWF:Ag and vWF:CB (100 U/dL at most) and a

fast response after the DDAVP administration (return to basal values after only 4/5 hours).

This type of mutation shows a characteristic profile where the released multimers level

drops rapidly, as a result of rapid elimination. Since the clearance mechanism is indepen-

dent of multimers size, both charts in Figure 3.1 show similar profiles for vWF.

3.2 Previous parameter identification

Acrucial step in process modeling is investigate the model parameters and its viabil-

ity. Figure 3.2 shows a scheme for the steps in model formulation process (McLean and

McAuley, 2012). After specifying a model within its hypotheses it is required to consider

how well the model fits the observed data. The fitting procedure is made by finding the

values of the parameters of a model that best fits the data, a procedure called parameter

estimation. That is, the use of experimental data to predict parameter values that will make

the model represent the real system precisely and accurately. Thus, the reliability of the

model is directly related to the estimation of parameters. There are several tools and tech-

niques to estimate model parameters and it is reasonable to review the mechanism used

by previous work.

According to Myung (2003) there are two general methods of estimating parameters:

one is the least-squares estimation (LSE), the other is the maximum likelihood estimation

(MLE). The first is linked to many familiar statistical concepts, such as linear regression,

error of the sum of squares and quadratic mean root deviation. This method does not

require distributional assumptions. On the other hand, the MLE is a standard approach for

parameter estimation and statistical inference. TheMLE has optimal estimation properties

like efficiency, consistency (true value of the parameter that generate the data recovered)

and sufficiency (complete information on the parameter).

Both Ferrari et al. (2018) and Castaldello et al. (2018) used the MLE method for the

parameter estimation of the model from Equation (2.17) and (2.18). Ferrari et al. (2018)

used the parameter set θ = [ ko k1 ke D α yCB
b tmax] and performed the estimation

using the commercial software gPROMS®, assuming that measurements have equal and

normally distributed deviation. The parameters were determined for each individual and

the initial guess was determined using a preliminary parameter estimation for the average

concentration profile. Given the high number of parameters, an iterative procedure was

applied to help convergence. This procedure consisted of two steps, being step zero the

estimation of all parameters, step one the estimation of kinetic parameters (ko, k1 and

ke ) keeping fixed all the other corrective parameters obtained in the previous step (D,
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Derive Model’s 
equations

Solve equations using 
initial guesses for 
parameters

Use data to estimate 
model parameters

Test model fit and 
predictive ability

Good
results ? Revise modelConduct more 

Experiments

Use the model

No No

Yes

Figure 3.2. Steps in model formulation (McLean and McAuley, 2012)

α, yCB
b and tmax), and step two the estimation of corrective parameters keeping fixed the

kinetic parameters obtained in the previous step. Steps 1 and 2 are repeated iteratively

until there is no significant differences between them.

Castaldello et al. (2018) also used the MLE method for the parameter estimation and

performed the estimation using the commercial software gPROMS®. The parameter set

was defined as θ = [ ko k1 ke D α yCB
b D/tmax]. In a similar way, two step iterative

procedure was used for the parameter identification. But differently from Ferrari et al.

(2018) research, the parameter tmax was obtained in step 0 and not used in the iterative

procedures, because it was observed that generally it does not vary significantly between

steps. Instead of identifying the parameter of each subject, Castaldello et al. (2018) used

the average subject as representative of the corresponding group. The parameter was also

normalized allowing to search the values around the unit improving the robustness of the

numerical method. The parameter normalization reduces differences between variables

groups, since removing the influence of units makes the contribution of each of them

equal in the calculation process. Concerning the parameter estimation, this work used the

LSE method.
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3.3 Considerations prior parameter identification

There are some considerations regarding the parameter identification process. Pa-

rameter estimation is based on experimental data of the model variables and sometimes it

can be very tricky to find the optimum parameters that allows the model to fit satisfactorily

experimental data. Usually, it is possible to discard a prior certain intervals of parameters

values, narrowing down the search. For instance, in the model to quantify a person vWF

multimers, negative values are unacceptable.

The concepts of estimability and identifiability also needs to be taken into consider-

ation during parameter estimation. Estimability defines whether the model parameters

can be determined from the available data and identifiability defines whether exists a

unique solution from the optimization process. The process uniqueness has a great impor-

tance because independently from the initial parameters guess the identified parameters

are unique.

It is necessary that the simulations satisfactorily describe the actual behavior of the

biological system, including the multimers distributions and the values of antigen and col-

lagen of each patient. In order to do that, model parameters shall be correctly identified.

In the meantime, there are uncertainties regarding the knowledge of the parameters. These

uncertainties exist for several reasons, such as: lack of data, variations in measured values

over equipment errors and normal variations in vWF antigen and collagen binding num-

bers. The level of vWF in plasma may vary according to age, blood group, epinephrine,

infamous mediators and endocrine hormones (menstrual cycle). For instance, the vWF

increases with age, with acute stress or inflammation and increases three to five times the

normal level during the third trimester of pregnancy. The vWF is reduced by hypothy-

roidism and rarely by auto antibodies to vWF.

The parameter identification is made by reducing the residuals. A residual is a mea-

sure of how well a line fits an individual data point. They are called ”errors”, not because

something is wrong, but because some difference exist between the measured value and

the model. The residual is the vertical distance between a data point and the model. Each

data point has one residual. They are positive if they are above the regression line and neg-

ative if they are below the regression line. If the regression line actually passes through

the point, the residual at that point is zero.

The residual defined as e can also be expressed in Equation (3.1). The e is the differ-

ence between the predicted value ŷ and the observed value y.
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Residual = Observed value – predicted value (3.1a)

e = y – ŷ (3.1b)

One of the techniques to perform parameter identification is the non-linear least-

squares. The technique is based on an output error criterion where an existing estimate of

the parameters is iteratively improved until the model response is sufficiently close to the

measured values, that is when the objective function assumes a value within the imposed

tolerance. The criterion used in this approach is generally the residuals minimization.

This technique has several optimization algorithms to perform the minimization of errors.

In general, an algorithm starts from initial estimates of parameters and improves it iter-

atively until the system model response is sufficiently close to that of the observations.

In Simulink® the function ”lsqnonlin” uses the the non-linear least-squares technique for

optimization.

3.3.1 Nonlinear least-squares optimization function

According to Dennis (2013) the nonlinear least-squares curve fitting solver has the

form of Equation 3.2.

min
x

f (x) =
m∑

i=1

fi(x)2 (3.2)

where f (x) represents the objective function, fi(x) represent the residuals functions

and the index i indicates the particular data points. Residuals are the difference between the

measured value and the calculated value using the model in consideration. The function is

called nonlinear least-squares because indeed it tracks the minimum of the sum of squares

of these residuals functions.

Nonlinear models are more difficult to fit than linear models because they demand

an iterative approach that is summarized in the following the steps: determination of an

initial guess for the each parameter, non linear models are sensitive to the starting point, so

defining the initial guess is a crucial step. Generation of a fitted curve using the current set

of parameter coefficients. Adjustment of the coefficients and determination of whether the

fit improves. This step depends on the fitting algorithm. Matlab Tutorial (2019) indicates

two algorithm methodologies. Finally, the process returns to the generation of the fitted

curve and does not stop until the specified converge criteria is met.

Matlab Tutorial (2019) indicates theTrust-region and Levenberg-Marquardt as fitting

algorithms. Trust-region algorithm must be used if it is necessary to specify coefficient

constraints, this algorithm solves difficult nonlinear problems more efficiently than other.
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Levenberg-Marquardt algorithm has been used for many years and it work for a wide range

of nonlinear models, but it does not allow to create coefficient constraints to improve the

fit.

The function ”lsqnonlin” (nonlinear least-squares) was chosen to identify the model

parameters, because considering the available functionswithin theOptimization tool pack-

age present in Simulink, this was the most robust, it works faster and presented lower

residual values.

3.4 Optimization procedure at Laplace domain

The model constructed in the last Chapter was based on the multimers deviation vari-

ables. But the measured experimental data are in the form of vWF antigen and vWF col-

lage binding. To identify the parameters using the non linear least-square function, the

model constructed in Simulink must have the same output variables that were collected

experimentally. Therefore, the model needed a modification to convert the deviation vari-

ables into vWF:Ag and vWF:CB. In order to do that, Equations (2.19), (2.20) and (2.21)

were entered in the Simulink model.

Figure 3.3. Figure extract from Simulink to show the constructed model used to sim-

ulate the vWF model.

The first step is convert the deviation variables back to the original variable form,

to do that the deviation variable are added to their baseline values, defined by Equations

(3.3) and (3.4). Equations (3.5) and (3.6) convert the multimers variable into vWF antigen

and vWF collage binding variables. Where Vd has the constant value of 0.4, BW is the

patient body weight and Y Ag
b is the vWF antigen collect at time zero. Inside Equation

(3.6) there are also the correction parameters α andYCB
b to be estimated. Figure 3.3 shows

the Simulink image to simulate the model, where the blocks YAg and YCB represent the

functions created to convert the deviation variables into vWF antigen and collage binding

respectively.

xUL+HMW
b = YCB

b · Vd · BW (3.3)



38 Chapter 3

xLMW
b = Y Ag

b · Vd · BW − xUL+HMW
b (3.4)

Y Ag =
(x′L + xLMW

b ) + (x′ULH + xUL+HMW
b )

Vd · BW
(3.5)

YCB =
(x′ULH + xUL+HMW

b )

Vd · BW
· α ·

Y Ag
b

YCB
b

(3.6)

The parameter identification through Simulink software starts by opening the pa-

rameter estimation application inside the Simulink Design Optimization toolbox. Once

opened some general optionsmust be defined, as explained before, the optimizationmethod

chosen was non linear least squares and the algorithm was Trust region reflective. The

Parameter tolerance used was 0.001, the function tolerance was 0.001 and the maximum

interactions was left 100. Then a new experiment was created by adding the experimental

data collected from the patient. To conclude the configuration of the parameter estimation,

initial conditions were entered.

3.4.1 Parameter set definition

The parameter set defined for identification was θ = [Ku τU τULH KL τL YCB
b α].

The parameters Ku, τU , τULH , KL and τL are the parameters defined in §2.5 and summa-

rized in Equations (2.31), (2.32), (2.33), (2.34) and (2.35). The YCB
b and α are considered

because represents the parameters used to correct the values of the variable YCB. This

adjustment was made in order to explain the different multimers affinity with collagen

observed for different types of vWD. Galvanin et al. (2014) proposed this correction in

Equation (2.15) and Ferrari et al. (2018) also used it, described in equation (2.21).

It is necessary to normalize parameters to avoid that their units or dimensions affect

the estimation. Furthermore, the parameter normalization allows to search the values in

the neighborhood of the unit, improving the robustness of the numerical method. By doing

so, it is certain that each parameter contributes equally in the calculation process. In order

to do that each parameter value needs to be divided by its initial value. For instance,

Equation 3.7 shows the normalization for Ku, where Ko
u represents the initial value and K′

u

represents the parameters to be identified.

Ku = K′
u · Ko

u (3.7)
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3.4.2 Initial guess

Parameter identification process requires an initial parameter guess. Literature search

or industrial information should be conducted to obtain reasonable initial parameter val-

ues, or ranges of values for similar systems. This parameter estimation step often causes

the most difficulties for the modeller. Poor initial guesses for parameters can result in

convergence to local optima rather than the best set of parameter values. Other estimation

problems can result from limited or noisy data, parameters with small influence on model

predictions, and correlated effects of parameters.

A non linear function with many coefficients to be optimized together may become

very sensitive to the starting point for the minimization process. The greater the number

of parameters the model has to improve, the greater the complexity of the optimization

process, so the initial value of the parameters is of utmost importance.

Table 3.1. Parameters obtained by Ferrari et al. (2018) converted in the Laplace

Parameters for healthy groups HO, considered as initial guess for the process of pa-

rameter identification

Ko
U [U.min] Ko

L τo
U
[min] τo

ULH
[min] τo

L
[min] YCBo

b
α

HO 12.9 ·105 0.41 38 466 658 49.3 1.0

The previously mentioned researches have already found the parameters values for

each vWD group. To identify the parameters within the Laplace domain, it is ideal to use

the value already estimated by Ferrari et al. (2018), since it’s the same model, just another

condition. It is important to start a optimization process from the same point for all kind

of subjects, regardless of the vWD condition. Thus, by identifying parameters of a new

patient using the proposed model and starting from the same reference point, it is possible

to compare this new patient data with those present in the database, and then possibly

make a diagnose. So Table 3.1 shows the initial values used to identify the parameter for

all patients in the database, this is the value estimated by Ferrari et al. (2018) for healthy

patients with blood type O.

3.5 Validation of parameter identification

In order to identify the parameters set that best fits the model into experimental data,

the Simulink optimization function conduct several simulations iteratively until achieve-

ment of the lowest objective function value. The simulations graphs provide a visual

evaluation of the parameters quality. Meanwhile, the objective function and its residual

show a quantitative evaluation.

The parameters were identified for each average subject and for all single patients pre-

sented in the database. The average subject data were calculated from the measurements
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average, for each group studied, for each pre-established time collection point. Table 3.2

shows the parameters values for each studied group, putting together the parameter values

estimated in previous studies, converted into parameters used in the Laplace domain, the

parameters for the average subject and the parameter average value with their variance for

each patient within the group.

Figure 3.4 shows the objective function values of the parameter identification process

for all patients. The objective function is the sum of the squares of the residual values. The

residual values are normalized in order to have all the values between 0 and 1. Figure 3.4

shows that quantitatively themodel fits well with the experimental data, since the objective

function values is around 0.1. Patient 51, in particular, has vWD type 1 and presents

the highest objective function value, close to 0.5. That happens because this patient in

particular has very low values of vWF:Ag and vWF:CB, an average value of 4 U/dL, so

small variations produce high residual values compared to the measured values.

vWD type 1 is represented in Table 3.2 and other graphs to show its general behavior.

However, it is a vWD type without a multimers qualitative mutation and many mutations

within the group. This means that there is no well-defined pattern within the group. Be-

cause of that, it is difficult to interpret and compare it with other vWD types. Therefore it

must be confronted separately, dividing between blood types and its various types of type

1 inside mutations.

Figure 3.4. Objective function value for the parameter identification for all patients.
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3.5.1 Average subject

The average subject is formed by the mean measured values and might present a con-

centration profile that differ from some patients within its group. Figure 3.5 presents the

average subject simulated graphs. Figure 3.5a and 3.5b shows, respectively, the graphics

for the vWF antigen and collage binding, where the dots are the measured value and the

line are simulated data, and Figure 3.5c and 3.5d shows, respectively, the low molecular

weight multimers (LMW) and ultra large and high molecular weight (UL+HMW) values

calculated using the estimated correction factor parameter for each group, where the dots

are the calculated value and the line are simulated data. Figure 3.5 shows that visually all

the simulations have a good fit to the measured data.

Ahigh τi (i stands for ULH or L) value correspond to a slow system response, without

forming any peaks. But as τi value decreases, and the system response becomes faster,

a peak formation becomes more evident and noticeable, meaning the multimers number

come back to the basal state faster. Taking into consideration groups HO, HnO, 2B and

Vicenza, the healthy groups HO and HnO presents the highest values for τULH and τL .

That happens because healthy people are expected to keep their vWF level higher for

longer. Healthy patients with blood type O and non-O present in the plasma multimers

with higher number for ultra large and high molecular weight multimers. For the low

molecular weight multimers, although the vWD type 2B group presents the highest peak,

the values for Healthy patients stay constant high through time.

Figure 3.5c shows a peak for the LMWmultimers simulation for the groupsHO,HnO,

2B, Vicenza and type 1, while type 2A has a more flat profile. The vWD 2A has a muta-

tion that interferes with the assembly and release of UL+HMWmultimers, so UL+HMW

multimers graph has the lowest growth peak during release. This explain LMW multi-

mers not having a value peak after release. The vWD 2B has a low UL+HMW plasma

concentration caused by increased affinity for platelet and high LMW plasma concentra-

tion caused by high rate of proteolysis, Figures 3.5c and 3.5d show this behaviour by the

highest LMWmultimer peak and the highest KL value for this group.

The vWDVicenza are known for high elimination rate for both UL+HMWand LMW

multimers, presenting the lowest τL and τULH values. Figure 3.5 shows for all graphics

that vWD Vicenza presents a peak that returns to the starting point very fast, consistent

with the fact that it presents a mutation that creates a high multimers elimination rate.

Causing a low multimers number at basal state and a very fast response for induced vWF

release.
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(a) (b)

(c) (d)

Figure 3.5. The graphics show the simulations (lines) using the model estimated pa-

rameters for each group in order to compare it with the measured values (dots). Figure

a) and b) the dots represents mean measured values. Figure c) and d) the dots repre-

sents the multimers calculated value using vWF:Ag and vWF:CB mean measurements.

Figure a) shows the graphic for vWF Antigen (vWF:Ag) concentration expressed as

yAg [U/dL] by the time after the DDAVP administration. Figure b) shows the graphic

for vWF collage binding (vWF:CB) concentration expressed as ycB [U/dL] by the

time after the DDAVP administration. Figure c) shows the graphic for low molecular

weight multimers expressed as XL [U] by the time after the DDAVP administration.

Figure d) shows the graphic for Ultra Large and High molecular weight multimers

expressed as XULH [U] by the time after the DDAVP administration. estimated.
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3.5.2 Identifiability analysis

Table 3.2 shows the parameters of the average subject, the average of each patient

and the ones obtained in previous studies for each group. It is noticeable the similarity

between them, having the same magnitude order and no substantial difference, with the

exception of τL .

The previous Chapter defines τL = 1/ke. In Ferrari et al. (2018) model the parameter

ke is the multimers elimination rate. According to Lenting et al. (2004) the multimers bi-

ological elimination mechanism is independent of size. Because of that, the parameter ke

is present for both UL+HMW and LMW multimers. Therefore, in the previous studies,

the ke estimated value must be good to fit both multimers groups. At the Laplace domain,

the τL determines the behavior of LMW multimers and the τULH determines the behavior

of UL+HMWmultimers. Therefore, what was previously predicted to work in both mul-

timers profiles, in the Laplace domain, parameter τL should fit for LMW multimers and

τULH should fit for UL+HMWmultimers.

Figure 3.6. Figure shows three different simulations with three values for tauL . Fig-

ure a) presents the vWF:Ag profile, Figure b) presents the vWF:CB profile, Figure c)

presents the LMW multimer profile and Figure d) presents the UL+HMW multimer

profile.

Table 3.2 presents different values of τL within the same group. This raises questions

about the identifiability for this parameter. To assess this, Figure 3.6 shows three simu-

lations with three different values for τL , and the other parameters constant, with values
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equal to the ones in Table 3.2 subject Vicenza from Ferrari et al. (2018). It shows that τL

does not influence the values of XULH and YCB, so the graphs in Figure 3.6b and 3.6d do

not change. However, Figure 3.6c shows that changes in the value of τL clearly change the

values of XL , but have no significant changes to the values of Y Ag. That happens because,

Y Ag is calculated with the sum of the multimers XULH and XL . The XULH multimer has

values much larger than XL . Thus, the variable Y Ag is much less sensitive to variations in

XL , and as consequence also parameter τL has little influence. Because the experimental

data is measured in Y Ag and YCB it became a problem to identify τL .

In order to control whether other parameters also have this sensitivity problem, a sim-

ulation was conducted with a healthy subject data (as an example, patient 4) considering

three scenarios of different initial guess parameters. Case 1 used as initial value the esti-

mated parameters of the average subject of the HO group. Case 2 used as initial value the

one previously considered in Table 3.1. Case 3 used as initial value the estimated param-

eters of the average subject of the Vicenza group. Table 3.3 shows the normalized values

used as initial guess for each case, and the values found after the parameters identification.

Table 3.3 and Figure 3.7 show that τL and KL parameters have an identifiability problem,

meanwhile the other parameters show consistent values. The similarity in the objective

function values in Table 3.3 highlights the identifiability problem.

Table 3.3. Table showing the values for estimated parameters considering different

initial guess.

Initial Guess

KU τU τULH KL τL yCB
b

α

Case 1 1.114 0.893 1.379 0.560 0.060 0.937 0.924

Case 2 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Case 3 0.193 0.571 0.208 0.879 0.014 0.078 0.639

Parameter Identified

KU · 105 τU τULH KL τL yCB
b

α Objective function

Case 1 28 29 1032 0.07 108.23 25.9 0.62 0.171

Case 2 27 30 962 0.97 1545.1 25.1 0.61 0.161

Case 3 30 30 1070 0.07 113.78 24.5 0.59 0.169

The identifiability problem may results from inappropriate model structure or insuf-

ficient experimental data. By looking at Figure 3.7a and 3.7b the model curve fits well

the measured values, meaning a well structured model. But converting the measured val-

ues of vWF:Ag and vWF:CB into XL and XULH multimers, Figure 3.7c shows that the

distribution of values does not have a profile as expected, so it is difficult to find KL and

τL parameters, revealing that, besides the sensitivity problem, there is also an issue in the

experimental data. This is quite evident when finding the parameters of each patient indi-

vidually, but for the average subject this problem is not so evident. There are several other

tests to assess the identifiability of nonlinear models, but global identifiability tests are

difficult to implement and are usually restricted to small systems (McLean and McAuley,
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2012). Even though these two parameters are not reliable, there are still five parameters

to work with.

a) b)

c) d)

Figure 3.7. Figure shows three different parameter estimation scenarios for the

Healthy Person 4 blood type O. For each estimation case, Figure a) presents the

vWF:Ag profile, Figure b) presents the vWF:CB profile, Figure c) presents the LMW

multimer profile and Figure d) presents the UL+HMW multimer profile. The dots for

Figures a) and b) are the measured values, and the dots for Figures c) and d) are the

multimers values calculated with the measured values.



Chapter 4

von Willebrand disease classification

based on principal component analysis

This chapter aims to work with the parameters identified in the previous chapter in

order to understand their correlation with the vWD. First, the available parameters and the

concept of principal component analysis are described. In order to diagnose the vWD, dif-

ferent strategies of modelling the principal component analysis are presented. The Chapter

concludes with the work results and projections for future studies.

4.1 Optimized parameters available

The parameters identified for each patient are in Table B.1, B.2 B.3 and B.4 of Ap-

pendix B, separated by groups. The next step is to verify the possibility to describe and

diagnose the disease using the identified parameters. In order to do that each group must

have a significant number of samples. The healthy blood type O and non-O groups have

together data from 43 people. The vWD type 2B has data from eight people and vWD type

Vicenza has data from nine people. These groups (HO, HnO, 2B andVicenza) present suf-

ficient samples to find a pattern within the estimated parameters. The vWD type 2A has

data from three people, which does not give much information about the variability of

the parameters found for this group. As already discussed, type 1 has very wide vari-

ability within the group. Even though there is a large number of people in the database

(51), there are many mutations within the group. This means that there is no well-defined

pattern within the group and will not be considered.

The previous chapter identified the parameters KU , τU , τULH , KL , τL , YCB
b and α

within the model in the Laplace domain. However, the parameters KL and τL present

an identifiability problem, but parameters KU , τU , τULH , Y
CB
b and α have coherent values.

Therefore, the total data available to discriminate the vWD lacks two parameters, but there

are still five parameters and each one has information and variability for each group.

It is difficult to do a graphical representation of five parameters together. Working

with a system of many dimensions makes it difficult to visualize the data or discriminate

it between groups. To solve this issue, a principal components analysis (PCA) model

47
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helps to project these parameters on another plane with less dimensions without losing

information. In this way it is easier to clarify and distinguish each one of the groups,

opening the possibility of vWD diagnosis.

4.2 Principal components analysis

Principal components analysis (PCA) is a tool for data compression and information

extraction. PCAfinds combinations of variables that describemajor trends in the data. The

technique that uses linear algebra principles to transform possibly correlated variables into

a smaller number of variables is called principal components (PC). It is useful when the

data is presented in a matrix with many dimensions and a graphical representation is not

possible. In general, PCA seeks to reduce the number of dimensions of the original data

set by projecting it in a new plane.

Mathematically, according to Wise et al. (2006), PCA relies upon an eigenvector

decomposition of the covariance (or correlation) matrix of the process variables. For a

given data matrix X with m rows and n columns, where each variable is a column and

each sample is a row, PCA decomposes X as the sum of r components, formed by ti and

pi. r is the rank of the matrix X and must be less than or equal to the smaller dimension

of X (r ≤ min(m, n)):

X = t1p
T
1 + t2p

T
2 + · · · + trp

T
r (4.1)

The ti vectors are the scores and contain information on how the samples relate to

each other. The pi vectors are the loadings and contain information on how the variables

relate to each other. Generally, the PCA model is truncated after k components and the

remaining small variance factors are consolidated into a residual matrix E, as described

by Equation (4.2):

X = t1p
T
1 + t2p

T
2 + t3p

T
3 + E (4.2)

Many times each variable works in different unit, so the columns of X must be au-

toscaled. That means, adjust the mean to zero and the variance to unit by dividing each

column by its standard deviation. In the PCA decomposition, the pi vectors are eigen-

vectors of the covariance matrix. Equation (4.3) shows that each eigenvector pi has a

eigenvalue λi associated with.

cov (X)pi = λipi (4.3)
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where the covariance matrix of X is defined as

cov (X) =
XTX

m − 1
(4.4)

Equation (4.5) shows that the score vector ti is the linear combination of the original

X variables defined by pi.

Xpi = ti (4.5)

where λi are a measure of the amount of variance described by the ti, pi pair. Another

way to look is variance as information. Because these pairs are in descending order of λi,

the first pair captures the largest amount of variance. Generally, data can be adequately

described using far fewer factors than original variables. Thus, the data overload problem

can be solved by observing fewer scores than original variables, with no significant loss of

information. In this thesis context, the parameter identified will be used as variables for the

PCA model. So PCA turns up the combinations of variables that predicts the distinction

of patients in their studied groups.

Figure 4.1 exemplify how the PCA model works by showing the values of three

variables. The plotted samples lie on a plane and are enclosed by an ellipse. It is also

apparent that the samples vary more along one axis of the ellipse than along the other. The

PCAmodel with two principal components adequately describes all the variation for this

case: the first describes the direction of the greatest variation (themain ellipse axis) and the

second describes the direction of second greatest variation, (the minor ellipse axis).

The statistical SPE and T2 values measures the PCA model quality. The squared

prediction error (SPE) is the sum of squares of each row (samples) of E (in the Equation

(4.2)) using Equation (4.6).

SPEi = eie
T
i (4.6)

where ei is the i
th row of E. The SPE statistic indicates how well each sample conforms

to the PCAmodel. It is a measure of the difference, or residual, between a sample and its

projection into the k principal components retained in the model. Such contributions can

be useful in identifying the variables which contribute most to the sum-squared residual

error of a sample. Because the PCAmodel captures some variables more effectively than

others, the residual variance may vary widely between variables.

Figure 4.1 shows SPE as ameasure of the distance off the plane containing the ellipse,

the Euclidean distance of the data point from the plane formed by the two-component

model. The sample on the upper left side of Figure 4.1 presents a large SPE value. The
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Figure 4.1. Figure exemplifying the PCAmodel for a dataset divided by three variables

(Wise et al., 2006)

SPE limit defines a distance of the plane that is considered unusual based on the data used

to form the PCAmodel.

The sum of normalized squared scores, known as T2 statistic, is a measure of the

variation in each sample within the PCAmodel.

T2
i = tiλ

−1tTi (4.7)

where ti refers to the ith row of Tk , the m by k matrix of k scores vectors from the PCA

model, and λ is a diagonal matrix containing the eigenvalues corresponding to k eigen-

vectors retained in the model. Figure 4.1 show a large T2 value on the upper right side. T2

is a measure of the distance from the multivariate mean (the intersection of the PCs in the

figure) to the projection of the sample onto the two principal components. The T2 limit

defines an ellipse on the plane within which the data normally project.

4.3 PCA model from parameters estimated in the Laplace do-

main

The PCA model was created using a matrix with 60 rows (24 healthy person with

blood type O, 19 healthy person with blood type non-O, 8 patients with vWD type 2B

and 9 patients with vWDVicenza) and 5 columns (parameters KU , tauU , tauULH , Y
CB
b and

α). The PLS_ToolboxAnalysis developed by Eigenvector Research® and available to use
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with Matlab® was used to create the PCAmodel.

Before starting the calculation routine, the data has to be loaded in the software and

preprocessed to adjust the units of the columns. Since every column has its own units,

they have to be scaled to the same variation magnitude. After initiating the PCA model

calculation, the number of principal components (PC) to be retained in the model must be

analyzed and that step follows a few rules of thumb (Wise et al., 2006). Table 4.1 lists the

eigenvalues, the percentage of the variance, the cumulative variance and the root-mean-

square error of cross-validation (RMSECV) that each PC captures. Figure 4.2a shows

the graphical representation for eigenvalues by the number of principal components and

Figure 4.2b shows the graphical representation for RMSECV values by the number of

principal components.

Table 4.1. List of eigenvalues, variance percentage, cumulative variance percentage

and RMSECV values that each principal component of the PCA model captures

PC Eigenvalue % Variance % Variance Cumulative RMSECV

1 2.59 51.79 51.79 0.926

2 1.07 21.33 73.12 1.096

3 0.73 14.55 87.67 1.759

4 0.37 7.48 95.15 26.07

5 0.24 4.85 100.0 26.07

a) b)

Figure 4.2. Graphical representation for Eigenvalues that each principal component

captured from the PCA model made with the data matrix of 60 patients

If the plot of eigenvalues shows a “knee” in the line, a sudden jump in the values,

the point where that happens indicates to be an appropriate number of PCs for the model.

In addition, eigenvalues can be interpreted as the number of original variables each PC

is worth. Therefore, a component with an eigenvalue less than one probably does not

describes any systematic variance in the system, and should likely not be included in the
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model. Eigenvalues greater than 2 usually describe systematic variation, but less than that

must be evaluated. It is also possible to choose the number of PCs based on root-mean-

square error of cross-validation (RMSECV).When a component that describes the system

with a large variance is added to the model, the error decreases. On the other hand, when a

component that describes the systemwith a small variance is added, the error increases. As

a rule of thumb, the point where the RMSECV value rises corresponds to the appropriate

number of PCs for the model (Wise et al., 2006).

According to the rules presented, Figure 4.2a has inconclusive graphical representa-

tion to the eigenvalues, not showing a sudden jump in the values. But Figure 4.2b presents

a sudden rise in the RMSECV value after the third component. Confronting Table 4.1, the

third component presents eigenvalues less than 1, but it it still has 14% variance and added

with the first and second components captures more than 87% of the variance in the data,

which suggests that the data are fairly well correlated. This way, the model follows the

next steps with a three principal components, capturing over 87% of the variation, leaving

13% non-deterministic variance in the system.

Figure 4.3. Scores plot from Principal Components Analysis for Component 1 and 2,

divided into classes..

Similar patients must have similar component scores, creating clusters. So it is ex-

pected that people with the same characteristics aggregate in the same score cluster. The

scores’plot shows the relationship between samples, putting patients with same vWD con-

dition close to each other. Figure 4.3 shows the scores for the first and second component
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and Figure 4.4 shows the scores for the first and third component. Figure 4.3 shows that

variables which load most significantly into the first PC are KU , τULH and YCB
b . These

variables are the furthest from zero in the right direction on the plot, and since they are on

the same side they are positively correlated with each other. Then τU and α are closer to

zero for the first component and further from zero for the second PC, suggesting that they

have opposite correlation with each other for the second component.

Figure 4.4. Scores plot from Principal Components Analysis for Component 1 and 3,

divided into classes.

A sample with high values for KU , τULH and YCB
b tends to move the score towards

the right for the first component. Healthy people with blood type O place around zero for

both components, meaning that it is a default group. Healthy people with blood type non-O

place around zero for the second component, and positively for the first component, which

it has already been demonstrated as the group with the highest multimers values, thereby

it has high values for KU , τULH and YCB
b . Alpha is the correction to adjust the values

for collage binding vWF. Patients with vWD type 2B have low values of YCB and the

highest contrast between vWF:Ag and vWF:CB, so they are negatively related with alpha.

Patients with vWD type Vicenza show negative values for the first component, but for the

second component, the scores are around zero divided between negatives and positives.

The Vicenza type has low values for both vWF:Ag and vWF:CB profiles, especially for

τULH . Thereby having a negative value for the first component.

Figure 4.3 and 4.4 show, for the first component, different clusters between healthy
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subjects and those suffering from vWD. But the second and third components show no

distinction between group values. Especially for 2B and Vicenza samples, the clusters

overlap creating a difficulty to divide the vWD type. Therefore, modeling the PCA with

the parameters identified in the Laplace domain can simply determine whether a subject

is healthy or not, but does not provide a clear separation between vWD groups.

Even though there is a separation for the first component, the scores between the

healthy and unhealthy subjects are close, so it is necessary to assess how reliable the model

is to diagnose a healthy subject from those who suffer from vWD. To do that, a different

strategy is considered. It was used only healthy people data to construct the PCAmodel.

Since it is easier (for the future) to collect data from people not suffering from vWD. Then,

by applying the patients’ data into the model, it is possible to verify whether the patient

conforms to the healthy model.

4.4 PCA model from healthy people parameters estimated in

the Laplace domain

With the aim to verify whether a person suffers from vWD or not a PCAmodel was

made with healthy people parameters identified in the Laplace domain. Similarly de-

scribed in the previous section, this PCAmodel was created with 43 healthy subjects (24

with blood type O and 19 with blood type non-O). Therefore, the matrix loaded to cre-

ate the model was composed of 43 rows and 5 columns (parameters KU , tauU , tauULH ,

YCB
b and α). It must be considered that in order to have a robust model it is easier to

obtain more data to calibrate the model with healthy people. Table 4.2 shows the eigen-

values, variance, cumulative variance, and RMSECV values for the PCA model. Figure

4.5a shows the graphical representation for eigenvalues by the number of principal com-

ponents and Figure 4.5b shows the graphical representation for RMSECV values by the

number of principal components.

Table 4.2. List of eigenvalues, variance percentage, cumulative variance percentage

and RMSECV values that each principal component of the PCA model made with only

healthy people.

PC Eigenvalue % Variance % Variance Cumulative RMSECV

1 2.31 46.17 46.17 1.404

2 1.27 25.35 71.51 1.466

3 0.87 17.40 88.92 1.888

4 0.34 6.81 95.73 33.89

5 0.22 4.27 100.0 33.89

Using the same rules discussed earlier, Figure 4.5a presents two angles that could

determine the number of components: the first component and the fourth component.

However, Table 4.2 shows that the first component alone does not capture much of the total
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a) b)

Figure 4.5. Graphical representation for Eigenvalues that each principal component

captured from the PCA model made with the data matrix of 43 healthy people

data variance and the fourth captures a lot of information that is not important to describe

the model. Figure 4.5b shows that the value of RMSECV rises after the third component,

so the fourth and fifth components describes such small variance that the error increases.

The third component has an eigenvalue of 0.87, but still gets 17% of variance and together

with the first and second components it captures 89% of accumulated variation, leaving

only 11% variance non-deterministic variance in the system. Therefore, in this case the

model is developed with three principal components

4.5 Discriminating the von Willebrand Disease using the PCA

model

APCAmodel using the parameters identified in the Laplace domain from only healthy

people (which will be referenced from now on as healthy PCAmodel) will provide simi-

lar scores and information for each person. As already seen, patients suffering from vWD

have characteristics that create differences in the parameters identified in the Laplace do-

main. Thereby, by entering the parameters of a unhealthy patient into the healthy PCA

model, the score should place outside the confidence level for healthy people. This way,

by projecting the vWD patients into the healthy PCAmodel, it is possible to evaluate how

many patients place outside the confidence level and verify how reliable this model is to

diagnose the vWD. Therefore, eight vWD type 2B patients, nine vWD type Vicenza and

three vWD type 2A was projected into the healthy PCA model. For this scenario, each

sample is evaluated individually, so the amount of patients does not matter, allowing to

consider patients with vWD type 2A.

When project new data to an existing model the SPE plot is usually the most sig-
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nificant graphic representation. This plot tells if the new samples are fit by the existing

model. Therefore it can tell whether the new data fit as a healthy person or not. The SPE

limit defines a distance within the plane that is considered unusual based on the data used

to form the PCA model. Figure 4.6 shows SPE plot of the new samples (vWD type 2A,

2B and Vicenza) and the samples used to calibrate the model (healthy people blood type

O and nonO). Note that the 95% confidence level line has been added to the plot.

Figure 4.6. SPE values for new samples (vWD type 2A, 2B and Vicenza) and the

samples used to calibrate the model (healthy people blood type O and nonO, described

in the legend as HO and HnO respectively) from the data set presented previously. The

blue traced line shows the 95% confidence level.

Figure 4.6 shows that 6 patients (1 with vWD type 2A, and 5 with vWD typeVicenza)

out of 20 are below the confidence limit line. That means the model predicts the disease

in 70% of cases with 95% confidence. However, being more specific all the patients with

vWD 2B are above the confidence line, and only 30% of the Vicenza cases are above the

confidence line. The same happens for T2 values, Figure 4.7 shows the T2 plot of the

new samples (vWD type 2A, 2B and Vicenza) and the samples used to calibrate the model

(healthy people blood type O and nonO).

The T2 is a measure of the variation in each sample within the PCAmodel. How far

the sample distance from the multivariate mean (the intersection of the PCs). Also in this

case 6 patients (1 with vWD type 2A, and 5 with vWD type Vicenza) of 20 are below the

confidence level line. In both Figure 4.6 and 4.7 there are some calibration data for HO and

HnO above the 95% confidence level. This influences the model robustness, considering
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Figure 4.7. T2 values for new samples (vWD type 2A, 2B and Vicenza) and the samples

used to calibrate the model (healthy people blood type O and nonO, described in the

legend as HO and HnO respectively) from the data set presented previously. The blue

traced line shows the 95% confidence level.

this samples as possibles outliers. Another way to evaluate how the PCAmodel performs

with the new data is by plotting the components scores. Figure 4.8 shows the scores for

the first and second component and Figure 4.9 shows the scores for the first and third

component and Figure 4.10 shows the scores for the second and third component.

Figure 4.8 shows 13 out of 20 samples inside the confidence level for scores on the

first and second component. Figure 4.9 shows 7 out of 20 samples inside the confidence

level for scores on the first and third component. Especially the first component, the scores

for the new data are detached from healthy people scores, but still close enough to be inside

the confidence level. The second and third components scores are more distributed, as in

Figure 4.10. Figure 4.10 shows 5 out of 20 samples inside the confidence level for scores

on the third and second component, 4 samples for vWD type Vicenza and 1 sample for

vWD type 2A. Figure 4.11 shows the percentage variance each component captures by

variable. Second and third component capture essentially the same variables τU and YCB
b .

As already noted, vWD 2B are more sensible to these variables indeed explaining why

any sample of this group is below the confidence level line.

The SPE defines a distance on the plane based on the data used to form the PCA

model. This means that by adding more data, SPE values may change. There are still

common variations within healthy people, for instance the blood type O and non-O show
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a significant difference of vWF measured values, which reflects in the PCAmodel. Other

variations like, epinephrine, infamous mediators and endocrine hormone cycles can create

outliers for healthy people. Therefore, it is important to maintain a large database, because

this provides a robust PCAmodel to help diagnose people suffering from vWD. This can

rise the reliability of the PCAmodel to diagnose the vWD disease.

Figure 4.8. Scores plot for the first and second components from the PCAmodel made

with healthy people samples and applied new data with patients with vWD.

a) b)

Figure 4.9. Scores plot for the first and third components from the PCA model made

with healthy people samples and applied new data with patients with vWD.
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Figure 4.10. Scores plot for the second and third components from the PCA model

made with healthy people samples and applied new data with patients with vWD.

Figure 4.11. Variance captured for each variable in three component model made with

healthy people.

4.6 Prospective for future work

The Laplace transform was able to solve the mathematical model developed by Fer-

rari et al. (2018). Simulations using Simulink software provides accurate results. This

allows the creation of new study scenarios, such as the simulation of a treatment for a

patient with low multimer response, defining the amount of DDAVP needed to achieve

normal vWF conditions. For instance, for a vWD type Vicenza that has high elimination
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rate, a simulation can define the frequency of application in order to maintain the multi-

mers levels.

The parameters defined in the Laplace domain have information on the behavior of

ultra large and small multimers. For instance, the time constants provide insight into mul-

timers response after DDAVPT induction. Even if the model presents a problem for the

parameter τL , it still shows differences in the speed of response for large and small multi-

mers. It opens a question about the multimers elimination mechanism. An opportunity to

study a way to identify the parameter using measured data for the low molecular weight

multimers.

The PCAmodel, the introduction of more healthy people data could build a more ro-

bust model by decreasing the presence of outlier. Furthermore, a higher SPE confidence

level could increase the reliability of the model as a tool for the diagnosis process of vWD.

This database does not provide much information about the blood type from patients suf-

fering from vWD. The healthy PCA model can be separated according to blood type to

help diagonsis the vWD.



Conclusions

The vonWillebrand disease (vWD) is a hereditary diseases that affect the blood clot-

ting process. This disease affects 1% of the world’s population and the diagnosis process is

very complex. This work purpose is to use the Laplace transform to solve the vWD math-

ematical model in order to give a new perspective for the vWD diagnosis protocol.

The use of Laplace transform solved the vWD model developed by Ferrari et al.

(2018). The projection of the model into the Laplace domain converted differential equa-

tions into algebraic equations, allowing to construct new parameters. The model pro-

posed by Ferrari et al. (2018) shows multimers rate of reaction mechanism, indicating the

rate at which multimers vary. The model in the Laplace domain gives information about

UL+HMW and LMWmultimers response facing a stimulus, defining how the multimers

behave over time until return to the basal state. The multimers graphical representation

for the model simulated with the software Simulink (a Matlab® tool) provided accurate

results. This made it possible to use Simulink to identified the parameters in the Laplace

domain, by using the experimental data, in order to have a well defined model.

The model in the Laplace domain had the parameters identified in order to reach out

the experimental data. Optimization techniques provided information about the process

estimability and identifiability of the model. Parameters KL and τL showed an identifia-

bility problem caused by lowmodel sensitivity and lack of experimental data. Despite this

problem, another five parameters were identified with success, still giving good model fit

with the experimental data available.

The principal components analysis (PCA) provides instrument to work with many

parameters and variables. By creating a PCA model with identified parameters, for the

groups 2B, Vicenza, healthy blood type O and healthy blood type non-O, it was not pos-

sible to detect a significant difference between the samples scores clusters. An alternative

strategy was proposed to get around the problem: a PCAmodel based on healthy people

data was created. When projecting a individual data into the healthy PCA it is possible to

say with a certain level of confidence if they are affected or not by the disease. Hence the

model was able to distinguish 70% of the 20 vWD patients presented in the database. Even

if it is not an expected result, there is still room for improvement of this strategy.
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Nomenclature

D = multimers release amount [U]

GL(s) = low multimer transfer function in the Laplace domain

GULH(s) = ultra large and high multimer transfer function in the Laplace domain

kO = release kinetic parameter [min-1]

k1 = proteolysis kinetic parameter [min-1]

k2 = proteolysis kinetic parameter [min-1]

k3 = proteolysis kinetic parameter [min-1]

k4 = proteolysis kinetic parameter [min-1]

k5 = proteolysis kinetic parameter [min-1]

k6 = proteolysis kinetic parameter [min-1]

ke

KL

KU

t
tmax

U(s)
Vd

xSUL

xSUL
b

xUL

xUL
b

xH

xH
b

xL

= clearance kinetic parameter [min-1]
= parameter constant gain in the Laplace domain 
= input parameter in the Laplace domain [U.min] 
= time

= time of maximum response [min]
= input function in the Laplace domain
= volume distribution [dL]
= super ultra large multimers [U]
= super ultra large multimers at basal state [U] 
= ultra large multimers [U]
= ultra large multimers at basal state [U]
= high multimers [U]
= high multimers at basal state [U]
= low multimers [U]

xL
b = low multimers at basal state [U]

xUL+HMW = ultra large and high molecular weight multimers [U]

xUL+HMW
b

xLMW

xUL+HMW
b

x′ULH

x′L
yAg

y
Ag
b
yCB

yCB
b

= ultra large and high molecular weight multimers at basal state [U]
= low molecular weight multimers [U]
= low molecular weight multimers at basal state [U]
= ultra large and high molecular weight multimers deviation variable [U] 
= low molecular weight multimers deviation variable [U]
= vWF antigen concentration [U/dL]
= vWF antigen concentration at basal state [U/dL]
= vWF collagen binding concentration [U/dL]
= vWF collagen binding concentration at basal state [U/dL]
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Acronyms

ABO = blood group classification system

ADAMTS13 = enzyme metalloprotease

BW = body weight

DAE = differential algebraic equation

DDAVP = desmovasopressin (1-desamino-8-d-arginine vasopressin)

ELISA = enzyme-linked immuno sorbent assay method

FVIII = coagulation factor VIII

GpIb = platelet binding gycoprotein Ib

HMW = high molecular weigh multimers

LMW = low molecular weigh multimers

LSE = least squares estimation

MLE = maximum likelihood estimation

PC = principal component

PCA = principal component analysis

RMSECV = root-mean-square error of cross-validation

ODE = ordinary differential equation

SUL = super ultra large

vWD = von Willebrand disease

vWF = von Willebrand factor

vWF:Ag = von Willebrand factor antigen

vWF:CB = von Willebrand factor collagen binding

vWF:Rc = von Willebrand factor activity of the ristocetin cofactor

vWF:FVIII = activity of the FVIII with vWF

ULMW = ultra large molecular weight multimers

UL+HMW = ultra large and high molecular weight multimers

Greek letters

α = correction factor

λ = eigenvalue

τ = time constant (min)

τ = time constant (min)

τ = time constant (min)

L = laplace operator

θi = i-th parameter
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Matrix and Vectors

E = residual matrix

ei = i-th vector row from E

p = loadings vector or eigenvector

θ = model parameter vector

t = scores vectors

X = Matrix of data
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FigureA.1. Graphic showing as dots the measured data for healthy people with blood

type O, and as line the average data value for each establish time, Figure a) shows the

antigen vWF concentration (vWF:Ag) asY Ag and Figure b) shows the collage binding

vWF concentration (vWF:CB) as YB.

67

0

50

100

150

200

250

300

350

400

450

500

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Y
 A

g
[U

/d
L

]

Time after DDAVP [h]

0

50

100

150

200

250

300

350

400

450

500

-2 0 2 4 6 8 10 12 14 16 18 20 22 24 26

Y
 C

B
[U

/d
L

]

Time after DDAVP [h]

FigureA.2. Graphic showing as dots the measured data for healthy people with blood

type non-O, and as line the average data value for each establish time, Figure a) shows

the antigen vWF concentration (vWF:Ag) as Y Ag and Figure b) shows the collage

binding vWF concentration (vWF:CB) as YB.
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FigureA.3. Graphic showing as dots the measured data for patients with vWD type 2A, 
and as line the average data value for each establish time, Figure a) shows the antigen 
vWF concentration (vWF:Ag) as Y Ag and Figure b) shows the collage binding vWF 
concentration (vWF:CB) as Y B.
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FigureA.4. Graphic showing as dots themeasured data for patients with vWD type 2B,

and as line the average data value for each establish time, Figure a) shows the antigen

vWF concentration (vWF:Ag) as Y Ag and Figure b) shows the collage binding vWF

concentration (vWF:CB) as YB.
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Figure A.5. Graphic showing as dots the measured data for patients with vWD type

Vicenza, and as line the average data value for each establish time, Figure a) shows the

antigen vWF concentration (vWF:Ag) asY Ag and Figure b) shows the collage binding

vWF concentration (vWF:CB) as YB.
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FigureA.6. Graphic showing as dots the measured data for patients with vWD type 1,

and as line the average data value for each establish time, Figure a) shows the antigen

vWF concentration (vWF:Ag) as Y Ag and Figure b) shows the collage binding vWF

concentration (vWF:CB) as YB.
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Table B.1. List of parameters estimated for patients carrying vWD type 2

Patient vWD Mutation Ku τu τULH KL τL YCB
b

α Objec

95 Type 2 A2 0.698 0.947 0.580 6.954 0.682 0.379 7.126 0.166

96 Type 2 A1 0.469 1.171 0.907 0.196 0.000 0.421 0.671 0.437

97 Type 2 A1 0.174 1.944 0.854 2.776 4.920 0.093 0.140 0.448

98 Type 2 A1 (Acquired) 3.971 0.775 15.09 2.630 5.000 0.565 1.405 0.450

99 Type 2 B 0.225 0.440 0.741 9.442 0.060 0.547 6.288 0.278

100 Type 2 B 0.355 0.548 0.566 3.644 0.095 0.133 1.129 0.172

101 Type 2 B 0.060 0.190 0.163 22.813 0.270 0.153 1.020 0.357

102 Type 2 B 0.311 0.655 0.826 6.423 0.034 0.441 2.144 0.156

103 Type 2 B 0.532 2.483 0.202 0.818 0.167 0.234 0.594 0.279

104 Type 2 B 0.371 0.580 0.686 2.655 0.071 0.647 2.295 0.174

105 Type 2 B 0.562 6.235 0.509 3.434 0.053 0.323 2.191 0.421

106 Type 2 B 0.603 4.204 0.336 0.835 0.098 0.495 1.094 0.533

Table B.2. List of parameters estimated for patients carrying vWD type Vicenza

Patient vWD Ku τu τULH KL τL YCB
b

α Objec

107 Vicenza 0.140 0.557 0.127 0.913 0.016 0.125 0.106 0.102

108 Vicenza 0.146 2.467 0.209 0.200 0.000 0.086 0.135 0.940

109 Vicenza 0.235 0.346 0.188 1.282 0.031 0.085 0.150 0.115

110 Vicenza 0.122 0.384 0.161 1.905 0.024 0.111 0.127 0.166

111 Vicenza 0.324 0.541 0.182 0.482 0.056 0.087 0.109 0.193

112 Vicenza 0.554 0.382 0.307 0.259 0.019 0.047 0.184 0.377

113 Vicenza 0.156 1.481 0.121 0.446 0.001 0.124 0.188 0.975

114 Vicenza 0.090 1.268 0.113 2.854 0.257 0.038 0.116 0.308

115 Vicenza 0.158 1.368 0.113 0.785 0.092 0.111 0.084 0.653

71



72

Table B.3. List of parameters estimated for healthy people with blood type O and

nonO

Patient Blood type vWD Ku τu τULH KL τL YCB
b

α Objec

1 O Healthy 0.881 1.722 1.433 0.669 0.121 1.016 1.058 0.040

2 O Healthy 0.922 1.606 2.529 1.054 0.012 1.377 1.331 0.056

3 O Healthy 1.389 1.160 1.122 3.048 1.016 0.933 1.163 0.085

4 O Healthy 2.030 0.817 2.042 1.468 2.000 0.561 0.843 0.161

5 O Healthy 0.704 1.108 0.854 1.562 0.196 1.917 1.738 0.108

6 O Healthy 0.277 0.524 0.739 11.38 1.613 0.684 0.412 0.088

7 O Healthy 0.943 0.582 1.362 0.612 0.060 0.852 0.740 0.124

8 O Healthy 0.278 1.485 0.673 2.164 0.432 1.021 0.973 0.113

9 O Healthy 0.498 1.168 1.084 1.358 0.335 0.664 0.678 0.022

10 O Healthy 0.747 1.394 0.991 0.780 0.047 0.579 0.725 0.023

11 O Healthy 2.297 1.794 1.422 0.155 0.000 2.110 2.210 0.037

12 O Healthy 1.793 1.008 1.374 0.147 1.196 1.094 0.948 0.056

13 O Healthy 0.660 1.087 0.738 0.451 0.892 0.604 0.644 0.050

14 O Healthy 0.866 0.694 1.183 0.412 0.040 0.724 0.664 0.027

15 O Healthy 1.076 1.186 0.897 0.109 0.000 0.975 0.917 0.027

16 O Healthy 0.378 0.166 0.875 1.350 0.034 0.723 0.679 0.015

17 O Healthy 1.740 1.561 1.369 1.082 0.271 0.690 0.686 0.057

18 O Healthy 1.455 0.658 1.672 0.151 0.000 1.133 1.052 0.057

19 O Healthy 0.804 0.990 0.698 0.979 1.113 0.768 0.672 0.037

20 O Healthy 0.702 1.208 0.394 2.511 0.849 0.762 0.791 0.105

21 O Healthy 1.072 0.629 1.524 0.661 0.037 0.492 0.477 0.024

22 O Healthy 3.217 1.358 1.977 0.394 2.000 0.936 1.187 0.064

23 O Healthy 0.760 1.173 1.188 0.311 0.000 1.424 1.109 0.034

24 O Healthy 0.682 0.804 0.947 1.736 0.001 1.256 0.837 0.137

25 nonO Healthy 1.531 1.393 1.623 0.980 0.327 1.169 1.417 0.178

26 nonO Healthy 2.732 1.098 0.878 0.852 0.696 1.986 1.928 0.301

27 nonO Healthy 2.295 1.115 2.182 0.308 0.003 1.172 1.357 0.431

28 nonO Healthy 3.851 0.649 2.711 0.279 2.909 0.813 1.015 0.355

29 nonO Healthy 1.668 1.058 1.920 1.787 5.000 1.149 1.181 0.217

30 nonO Healthy 1.819 1.445 3.006 0.350 0.566 1.306 1.336 0.404

31 nonO Healthy 1.875 0.901 1.861 0.853 5.000 1.536 1.374 0.647

32 nonO Healthy 2.838 1.117 2.165 2.724 2.775 2.002 1.980 0.364

33 nonO Healthy 2.163 0.981 1.554 0.112 0.429 1.027 1.042 0.858

34 nonO Healthy 3.701 1.267 1.748 1.133 1.049 1.812 1.798 0.329

35 nonO Healthy 3.568 1.279 2.422 0.000 5.000 1.100 0.990 0.519

36 nonO Healthy 1.218 0.830 6.790 4.610 0.026 1.006 1.050 0.109

37 nonO Healthy 1.465 1.046 1.973 3.756 4.998 1.216 1.314 0.199

38 nonO Healthy 3.606 1.284 2.838 0.480 0.559 1.365 1.122 0.350

39 nonO Healthy 56.71 0.699 22.76 0.857 0.031 3.204 2.817 0.365

40 nonO Healthy 1.211 1.315 2.465 1.065 0.000 0.986 0.993 0.301

41 nonO Healthy 4.513 0.886 4.277 0.361 0.489 1.808 1.869 0.924

42 nonO Healthy 4.084 0.362 2.829 1.217 0.003 2.637 2.210 0.343

43 nonO Healthy 3.085 0.463 2.034 2.780 4.994 1.411 1.600 0.530
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Table B.4. List of parameters estimated for patients carring vWD type 1

Patient Blood Mutation Ku τu τULH KL τL YCB
b

α Objec

44 O no mutation 0.526 0.475 0.852 0.615 0.080 0.303 0.292 0.232

45 O p.P2063S 0.801 0.573 1.323 0.402 0.917 0.432 0.584 0.606

46 A p.R1145C 0.596 0.588 1.084 2.067 0.917 0.409 0.523 0.326

47 O p.P2063S 0.563 5.153 0.428 2.846 0.965 0.547 0.693 0.397

48 A c.7056C>T 0.073 2.387 0.199 20.67 0.168 0.821 0.488 0.656

49 A p.R1819 0.215 0.757 0.694 0.823 0.191 0.169 0.242 0.173

50 A no mutation 0.717 0.594 0.936 0.000 4.994 0.525 0.559 0.385

51 B p.C2362F 2.346 0.567 359.7 0.000 4.668 0.046 0.082 1.036

52 A p.R854Q 0.654 2.962 0.365 0.865 1.141 0.388 0.347 0.522

53 O no mutation 0.264 0.809 0.502 3.383 4.997 0.466 0.400 0.157

54 O no mutation 1.933 1.046 1.213 0.554 0.046 0.579 0.595 0.628

55 RNE 0.674 1.100 1.285 1.075 0.196 0.299 0.289 0.234

56 RNE 0.290 1.951 0.159 1.162 0.578 0.172 0.193 0.606

57 A no mutation 0.601 1.449 0.664 0.186 0.613 0.417 0.459 0.278

58 O no mutation 1.017 1.660 0.740 0.607 0.010 0.554 0.486 0.287

59 O c.1534-3C>A 1.132 1.998 1.554 0.633 0.031 0.786 0.758 0.303

60 O c.1534-3C>A 0.102 1.246 1.455 0.111 0.000 0.080 0.122 0.373

61 O c.1534-3C>A 2.007 0.827 1.996 2.954 5.000 0.541 0.839 0.469

62 O c.1534-3C>A 0.135 1.890 1.522 2.878 5.000 0.037 0.083 0.239

63 O p.C2362F 0.421 0.874 1.064 0.946 0.126 0.444 0.427 0.317

64 O p.C2362F 0.552 1.700 0.514 1.399 0.562 0.511 0.691 0.502

65 O p.C2362F 0.535 1.375 1.215 1.315 0.156 0.378 0.331 0.144

66 O p.C2362F 0.426 1.439 0.993 0.470 0.214 0.413 0.409 0.255

67 O RNE 0.795 0.936 0.717 0.313 0.017 0.748 0.695 0.397

68 O no mutation 0.803 8.863 0.104 0.749 0.023 0.356 0.408 0.198

69 O p.P2063S 0.284 0.874 0.583 0.663 0.000 0.560 0.502 0.211

70 O no mutation 0.672 0.330 1.103 1.455 0.537 0.403 0.567 0.521

71 O no mutation 0.526 0.627 0.657 0.000 5.000 0.534 0.568 0.633

72 B p.C1130F 0.374 0.839 0.391 3.116 0.772 0.184 0.364 0.149

73 O p.G2705R 0.391 1.395 0.751 0.920 0.012 0.663 0.499 0.462

74 O p.G2705R 0.464 0.538 1.651 2.748 0.027 0.571 0.354 0.573

75 O no mutation 1.774 0.964 0.998 3.792 5.000 0.434 0.564 0.131

76 O p.C524Y 0.077 0.846 0.570 0.358 0.000 0.222 0.210 0.315

77 A RNE 3.644 1.101 1.921 0.993 5.000 0.843 0.917 0.622

78 O p.P2063S omo 0.795 1.026 1.209 0.652 0.004 0.586 0.597 0.284

79 O p.P2063S 1.821 0.579 1.765 0.497 0.729 0.498 0.590 0.301

80 p.R1564W 0.619 1.687 0.801 0.890 0.006 0.687 0.670 0.322

81 B p.C2362F 0.486 1.609 0.907 2.169 0.697 0.343 0.381 0.196

82 O RNE 0.859 1.070 1.133 0.608 0.000 0.639 0.616 0.342

83 RNE 0.364 2.105 0.297 6.779 2.756 0.263 0.209 0.220

84 RNE 0.178 0.929 0.400 3.830 0.208 0.244 0.184 0.131

85 O p.R670C 0.843 0.548 1.194 1.287 0.055 0.427 0.485 0.111

86 O no mutation 1.780 0.226 2.019 1.447 0.008 0.912 0.846 0.263

87 O no mutation 0.720 1.509 0.644 1.550 0.355 0.265 0.369 0.202

88 A p.C2362F 0.598 2.438 0.654 4.613 2.043 0.469 0.533 0.158

89 O c.1534-3C>A 1.016 0.792 1.323 0.000 5.000 0.300 0.419 0.664

90 O p.C1130F 0.194 0.837 0.315 1.951 0.701 0.188 0.386 0.065

91 O c.1534-3C>A omo 0.211 1.198 1.107 1.142 1.586 0.174 0.200 0.297

92 O c.1534-3C>A 1.400 1.165 1.132 3.005 0.998 0.933 1.163 0.329

93 A p.E2539X 1.119 1.037 1.884 0.918 0.011 0.587 0.557 0.320

94 A p.E2539X 1.398 1.286 2.268 0.624 0.504 0.547 0.695 0.066

Appendix B
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