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“The isolated man does not develop any intellectual power.
It isnecessaryforhimtobe immersed inanenvironmentofother
men,whosetechniquesheabsorbsduringthefirsttwentyyears
of his life. He may then perhaps do a little research of his own
and make a very few discoveries which are passed on to other
men. Fromthispointofviewthesearchfornewtechniquesmust
be regarded as carried out by the human community as awhole,
rather than by individuals”
—Alan Turing
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Abstract

Internet of Things (IoT) is one of the fast-expanding technologies nowadays, and promises to be revolutionary
for the near future. IoT systems are in fact an incredible convenience due to centralized and computerized control
of any electronic device. This technology allows various physical devices, home applications, vehicles, appliances,
etc., to be interconnected and exposed to the Internet. On the other hand, it entails the fundamental need to
protect the network from adversarial and unwanted alterations. To prevent such threats it is necessary to appeal
to Intrusion Detection Systems (IDS), which can be used in information environments to monitor identified
threats or anomalies. The most recent and efficient IDS applications involve the use of Machine Learning (ML)
techniques which can automatically detect and prevent malicious attacks, such as distributed denial-of-service
(DDoS), which represents a recurring thread to IoT networks in the last years.
The work presented on this thesis comes with double purpose: build and test different light Machine Learning
models which achieve great performance by running on resource-constrained devices; and at the same time we
present a novel Network-based Intrusion Detection System based on the latter devices which can automatically
detect IoT attack traffic. Our proposed system consists on deploying small low-powered devices to each compo-
nent of an IoT environmentwhere each device performsMachine Learning based IntrusionDetection at network
level. In this work we describe and train different light-MLmodels which are tested onRaspberry Pis and FPGAs
boards. The performance of such classifiers detecting benign and malicious traffic is presented and compared by
response time, accuracy, precision, recall, f1-score and ROC-AUC metrics. The aim of this work is to test these
machine learning models on recent datasets with the purpose of finding the most performing ones which can be
used for intrusion-defense over IoT environments characterized by high flexibility, easy-installation and efficiency.
The obtained results are above 0.99% of accuracy for different models and they indicate that the proposed system
can bring a remarkable layer of security. We show howMachine Learning applied to small low-cost devices is an
efficient and versatile combination characterized by a bright future ahead.
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1
Introduction

The relentless advancement of modern informatization has led Internet of Things (IoT) to play a remarkable role

in several aspects of our daily lives. The possibility of being able to manipulate a wide range of devices, all under

the control of a single centralized device, such as a smartphone, is making this market grow exponentially over the

last few years. IoT has a total potential economic impact of 3.9 trillion to 11.1 trillion dollars a year by 2025 [6].

IoT is one of the emerging trends of the current decade. According to Cisco, there will be 500 billion devices

connected to the internet by the year 2030 [7]. Automobile field sees the number of vehicles connected globally

growing over the hundreds of millions. In the context of the IoT, Things refers to a wide variety of devices. It

could be a simple sensor to a complex could server. Nowadays almost every electronic device can be connected

and capable of exchanging data, like smart bulbs, IP cameras, thermostats, appliances, homes and many other.

As well as in the high number of interconnected devices, IoT unfolds in several fields, other than homes and

automobile, including healthcare, entertainments, industrial appliances, sports, etc.

Deploying IoT applications, as stated in [8], could be a challenging task due to several reasons: (i) the general

complexity of a distributed computing system; (ii) the lack of general guidelines or frameworks that handle low

level communication and simplify high level implementation, as the elements that make up an IoT system are

hardware/devices, communication protocols, and interfaces [9]; (iii) several programming languages are involved,
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and (iv) the devices are connected to each other over different communication protocols. These problems have

led to a quick evolution in terms of introducing IoT programming frameworks that handle the aforementioned

challenges.

IoT is an incredibly innovative environment but very sensitive to safety problems, since attacks that jeopardize

the functioning of an IoT network can have devastating consequences if not stopped or prevented in time. In

the next years, business-to-business applications will probably capture more value than consumer uses, implying

IoT as large potential in developing economies. A dynamic industry is also evolving around IoT technology [6],

and like the house environments, all of these IoT networks need the best integrity, confidentiality and availability

protection considering the risks at stake.

The proliferation of insecure IoT devices has resulted in disastrous events in recent years. InOctober 2016, the

Mirai botnet with hundreds of thousands IoT devices targeted the server of Dyn, company that controls much of

the Internet’s DNS infrastructure, and brought down sites like Twitter, Netflix, Reddit, CNN and many others

[10]. It is thennoticebale that the role of protecting the security IoTnetworks is fundamental and requires the best

practice. Although traditional defense techniques which relate on authentication, encryption and access control

may be useful in some specific situation where the attacks are known, it emerged that IoT networks need other

layer of protection [11]. IntrusionDetection Systems (IDS) come to help and the deployment of thesemechanisms

is extremely significant for the protection of IoT networks. Intrusion Detection is a security service that monitors

and analyzes system events with the purpose of finding, and providing real-time or near real-time warning of

attempts to access system resources in an unauthorized manner [12]. IDSs monitor the state of software and

hardware running in a network and it is based on the assumption that the behavior of the intruder differs from

that of a legitimate user in ways that can be quantified.

Traditional Network Intrusion Detection Systems (NIDS) may be less efficient for IoT environments due to

constrained resource, limited power and connectivity [11] [13]. Another challenging aspect is that the defender

cannot expect that there will be an exact distinction between an attack and a normal use of resources by an autho-

rized user. Rather, we should expect that there will be some sort of overlap, and this could lead to an unwanted

situation. Machine Learning (ML) tools come to help over these situations where pure heuristic/algorithmic

and/or traditional IDS are not enough. Machine Learning andDeep Learning (DL)models are a leading technol-

ogy nowadays as extremely powerful tools that can fit in several fields and outperform common ”old” practices.

ML is one of today’s most rapidly growing technical fields which has several different applications such as com-

puter vision, speech recognition, natural language processing, robot control, etc. [14]. We will see that Neural

Networks (NN) and tree-based ensamblemodels trained to accomplish intrusion detection task over network traf-

fic are capable to reach 99% of accuracy or more in some scenarios. ML is a subfield of Artificial Intelligence (AI)
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that consists of various algorithms and techniques characterized by the ability to learn and improve automatically

from experience. Nowadays, everything that comes out of the world of technology has anML component within

it, and it is easy to see how this field of study is growing rapidly as it is changing the world by affecting various seg-

ments of our lives. Machine Learning is being applied tomany aspects ofmodern society. Intelligent technologies

such as IoT and cloud computing work together with ML tools to create ”smart” devices to improve the coexist

with intelligent humans. Another aspect of the impact of AI is in social media, where it is being applied to in-

creasingly improve feeds and user experience. It starts by collecting user data and then feeding it toML algorithms

that, for example, try to predict the type of posts a user would like to see. Health care is an area where AI plays an

important role, as it is used for faster diagnosis of patients. With the help of artificial intelligence, it is possible to

predict health problems, genetic problems and prevent diseases. Artificial intelligence is also used in education to

personalize the learning experience, business analysis and many other fields.

With the advancement of technology and the growing of IoT networks, there is a continuous search for highly

effective solutions in thefieldof information security [11]. Thepurposeof thiswork is topresent anewperspective

in thefield ofMachineLearning regarding theprotectionof IoTnetworks, which consists in theuse of small board

micro controllers, also called edge-devices. Theultimate goal is to develop and test differentMachineLearning light-

models that can fit into small-devices to be integrated and deployed alongside the components of an IoT network

with the aimof guaranteenetwork-basedprotection. EdgeMLcanbedefined as afieldofMachineLearningwhich

aims to bring ML applications on devices that are cheap, as well as resource and power-constrained. TinyML

[15], instead, can be viewed as a sub-field that focuses onUltra-Low-PowerMicro-controllers. Embedded devices

which can performML tasks represents a huge scale revolution in system security applications although they come

with the tradeoffs of requiring optimization and maximization of hardware, software, data science, and machine

learning.

Pipeline

The pipeline of this work starts from the data collection of network traffic of an IoTNetwork under the assump-

tion that packets passing through these kind of networks are distinct from the ones coming by other internet

connected devices. In particular, devices as smartphones, laptops and servers generate a different traffic with re-

spect to IoT components that are more likely to have a repetitive and flat network flow [16]. The analyzed traffic

is pre-processed and it follows a features extraction over the data with the aim of tracking the best features to

lead the MLmodels to perform at their best. IoT common network traffic and different attacks to IoT networks

are taken into consideration as dataset, mostly Denial-of-Service and Distributed-Denial-of-Service attacks, they

will be explained in section IV. Machine Learning models are trained to classify the network traffic as benign or
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malicious and they will alert the system if any malicious packet is encountered. Different kind of classfiers are

compared in this work, includingNeural Networks,Decision Trees andRandom Forests. ML models are installed

into Raspberry Pi’s and FPGA’s, with the aim of build a network-based IDSwhich is device-independent and can

guarantee a remarkable protection to the whole IoT environment. This work leverages on the assumption that

the malicious traffic is not always blocked at gateway level, but it can flow device-wise. It is also assumed that an

adversary may have access to the internal IoT network. The latter assumptions allow our Network-Based IDS to

significantly rise the level of protection of an IoT network.

Contributions

The main contributions of this work are:

• The development and performance evaluation of a series of light machine learning classifiers for IDS
applications over IoT environments. The performance ismeasured in terms of keymetrics, i.e., accuracy,
precision, recall, area under the receiver operating characteristic curve and samples processed per second.
The classifiers are deployed on Raspberry Pi and FPGA board and tested on novel collected datasets.
Furthermore the feature importance is analyzed and most influential of them are studied individually.

• IMAT, a Network-based Intrusion Detection System is proposed. It is characterized by a high degree of
flexibility which allows it to be distributed easily in IoT environments. The system is based on limited-
resources and high flexibility devices as Raspberry Pi and FPGA and it aims to overcome limitations of
classic Network-based IDS. Specifically, the challenging integration among different natures of devices
and the resource-consumption inhibits the performance of the hostwhere the IDS resides. Furthermore,
it is proven how the system adds an additional layer of security in a smart IoT environment.
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Thesis Organization

This thesis is organized as follows. The related works composed by different recent and performing intrusion

detection systems applied to the IoT field are presented in Chapter 2. In Chapter 3 an overview about Internet

of Things security and Intrusion Detection System is exposed. Furthermore, the Machine Learning models that

are used in this work are also described. In Chapter 4, the complete pipeline of the proposed work, problems,

and assumedmethodology is presented. Two datasets are used to conduct the experiments and realize the feature

analysis. Architecture and parameters chosen of the different ML models are following explained in the same

Chapter as the deployment of such models into the FPGA and Raspberry boards. Subsequently, in Chapter 5,

the results of the performed experiments are presented with relative discussions. Chapter 6 concludes the thesis

and propose future works.
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2
RelatedWorks

Simple threshold-based techniques are prone to incorrectly classifying normal traffic as anomalous traffic and are

unable to adapt to the evolving nature of attacks. More sophisticated anomaly detection algorithms, particularly

those using machine learning, can help minimize false positives. Such approaches include deep neural networks,

which promise to outperform traditional machine learning techniques for sufficiently large datasets.

2.1 Anomaly-based & Specification-based
Anomaly-based IDS works by comparing a current system activity against the normal registered behaviour. Any-

thing that is not conformed to the normal behaviour is considered as malicious activity. This approach is char-

acterized by efficiently detecting new attacks. Specification-based detection has the same goal of anomaly-based

detection with the only difference that a human expert should manually contribute to define the rules of each

specification.

LH Chang et al. [17] suggested a lightweight distributed IDS based on analysis of node’s consumed in IPv6
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over Low-PowerWireless PAN(6LowPAN).The sensor nodeswith unusual energy consumption are identified as

malicious attackers. The results show that the IDS scheme accurately and effectively recognize malicious attacks,

in particular with DoS attack with a detection rate of 100%.

Hosseinpour et al. [18] implemented a distributed lightweight real-time IDS based on Artificial Immune Sys-

tem (AIS) which consists on an a combination of three layer: cloud, fog and edge computing. The cloud layer is

used to train the detectors. In the fog layer the intrusion alerts are analyzed and in the edge layer the detectors are

deployed in physical devices. The system has been evaluated on KDD-Cup99 dataset and SSH Brute Force from

ISCX dataset obtaining an accuracy of 98.35%.

Hodo et al. [19] proposed an Artificial Neural Network (ANN) to prevent IoT threat, in particular DoS

and DDoS attacks. The multi-level perceptron, a type of supervised ANN, has been trained with 2313 internet

packet traces samples. The testing results showed an accuracy of 99.4% with 496 samples. The system obtained

good results even though more attacks should be taken into account for future developments.

M Nobakht et al. [20] proposed an anomaly host-based intrusion detection framework. The system is called

IoT-IDMand provides a network-level protection for devices in smart home environments. The framework takes

benefit of a Software Defined Networking (SDN) architecture with machine learning techniques to detect com-

promised hosts. The authors deployed the OpenFlow protocol which is a network standard to deploy SDN im-

plementation. IoT-IDMmonitors the network activities of smart devices within the home and analyzes whether

there is any suspicious activity. The system is characterized by great flexibility on choosing a machine learning

algorithm, on the other hand it has the drawback that it can only inspect IoT devices that do not overload the

SDN controller.

Lopez-Martin et al. [21] presented an unsupervised anomaly NIDS for IoT based on Conditional Variational

AutoEncoder (CVAE). This method is unique due to its ability to carry out feature reconstruction, i.e., it can

retrieve missing features information from incomplete training datasets which is the greatest advantage of using

VAEs. In the best scenario they obtained 99% of accuracy tested on a refined version of NSL-KDD dataset. ID-

CVAE is a suitable option for IoT systems due to the efficiency in computation time, flexibility and accuracy.

Bin Jia et al. [22] implemented an hybrid heterogeneous multiclassifier ensemble to detect DDos attacks and

they designed an heuristic detection algorithm based on Singular Value Decomposition (SVD) to build their de-

tection system. They constructed the component classifiers of the model based on Bagging, Random Forest, and

K-NN algorithms. The system is tested on KDDCUP 1999 dataset and shows excellent results in terms of accu-

racy, TNR and precision. On the other hand the used dataset is considerably old.

Kozik et al. [23] deployed a distributed detection system based on Extreme Learning Machine (ELM) classi-

fiers. The scheme uses HPC cluster resources available over the cloud for time-consuming and computationally-

expensive classifier training tasks. The idea is based on the fact that edge devices are capable of running pre-built
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classificationmodels but they lack in storage andprocessing capabilities. ELMsobtainbetter generalizationperfor-

mance compared to other classifiers as the edge computing can be exploited in order to performing traffic analysis

with sophisticated models. The performance is evaluated on CTU dataset and in general the system obtained

satisfactory precision and accuracy values together with quite low error rates.

Doshi et al. [24] demonstrated in their work that by exploiting network traffic characteristics it is possible to

build an efficient detection mechanism for IoT smart environments. The anomaly detection system is based on

machine learningmodels, in particular neural networks, which can automatically detect sources of DDoS attacks.

The system involves flow-based intrusion detection which only inspects the packet header and does not analyze

the packet payload. All five algorithms used in for the experiments obtained a test accuracy higher than 0.99 from

data collected on their own setup.

Ge et al. [25] developed and trained feed-forward neural networks models for binary and multi-class classi-

fication. Their goal was to build a model capable of recognizing a set of malicious attacks such as DoS, DDoS,

reconnaissance and information theft against IoT devices. Algorithms are trained and tested on a recent realistic

network traffic dataset, BoT-IoT. The classifier obtained an accuracy of around 0.99 for binary and multi-class

classification, and 0.98 for normal traffic classification.

Hasan et al. [26] tested the performance of different Machine Learning models on the DS2OS traffic traces

dataset which is composed by normal traffic and various malicious attacks traffic. The authors used Logistic Re-

gression (LR), Support Vector Machine (SVM), Decision Tree (DT), Random Forest (RF) and Artificial Neural

Network (ANN) with the aim of detecting attack traffic and build an anomaly-based IDS. The results showed

that RF performs better, in general, with an accuracy of 99.4%.

Almiani et al. [27] presented a full-automated anomaly-based IDS for Fog security against malicious cyber-

attacks which is based on a Recurrent Neural Network (RNN). The RNNwas trained by an adaptive version of

back-propagation algorithm for enhanced prediction capability of the normal and malicious classification. Their

model is designed to be implemented for Fog computing security for IoT devices protection. The authors tested

the model using a balanced version of the dataset NSL-KDD. Even if the IDS does not obtain extremely high

results it is capable of efficiently working in real-time smart environments.

Hussein et al. [28] proposed an anomaly-based IDS based on hybrid feature selection techniques for Random

Forest. Themodel canbeused todetect intrusions in IoTenvironmentswithhighperformance and accuracy. The

efficient results are based on the fact that the highest-ranked attributes are selected in spite of the less-significant

ones which are reduced. This implies a reduction on the execution time and an improvement on the accuracy.

The trained classifier is tested on IoTID20 dataset and achieved accuracy approaches 100% for the binary target

prediction, 98.7% for category, the accuracy ranges from 78.1% to 95.2% for the sub-category target prediction.

Sarhan et al. [29] implemented ahierarchical blockchain-based federated learning framework todeploy a secure
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and privacy-preserved IoT IDS. Their HBFL novel framework aim to a collaborative detection of IoT intrusions

adopting a cloud-fog-edge topology. The authors wanted to underline the importance of sharing cyber-threat

intelligence between inter-organisational IoT environments to improve security capabilities. ML-based Intrusion

Detection framework is based on a hierarchical federated learning architecture and it is tested on KDD-CUP

dataset obtaining an average classification accuracy of roughly 0.99% in the best scenario.

Le et al. [30] organized the network into small clusters with a similar number of nodes. Each cluster has

a cluster head, which is a node that had direct communication with all the cluster members. A specification-

based IDS instance is placed in each cluster head with the aim ofmonitoring the cluster members by sniffing their

communication. In this way the save of resources is consistent. According to their experimentation, the true

positive rates are very high and in some cases could reach 100%.
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2.2 Signature-based
Signature-based IDSs are based on matching signature to recognize malicious traffic or intrusions. Although this

approach is effective at detecting know threats, it struggles to identify new and/or variants of known attacks.

Kasinathan et al. [31] [32] focused their studies into the attacks detection for 6LoWPAN networks. The

authors proposed a centralized architecture aimed to detect DoS attack where the probes sniff network traffic

and send the data to the main NIDS. When the collected traffic matches an attack signature an alert is launched.

This solution overcomes SVELTE [33] limitations since the IDS mechanism does not depend on the network

architecture so it cannot be affected by DoS attacks against the IoT network. The proposed framework DEMO

is flexible and real-word applicable for most IoT environments.

Jun et al. [34] proposed a signature-based IDS for IoT systems based on Complex Event Processing (CEP).

CEP is an emerging technique which efficiently filters and processes real-time events characterized by a good re-

sponse to large volumes of messages with low latency. The system workflow starts by collecting network traffic

and event usage from IoT devices. Data are processed and the system performs security events detection using

Event ProcessingRepository (EPR) andCEP engine. The IDS provides good real-time performance even though

it is power-consuming at CPU level.

To address the problem of integrating security objects in IoT devices due to their limited-power capacity and

resources, Oh et al. [35] implemented a lightweight security signature-based IDS. The system is based on a novel

malicious pattern-matching engine. The main goal of the limited-memory system is to heavily reduce the com-

putational cost of comparison between packet payloads and attack signatures in order to work properly in IoT

devices and environments which are resource-constrained.
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2.3 Hybrid Approaches
Raza et al. [33] designed SVELTE, the first IoT Intrusion Detection System. SVELTE is a real-time hybrid IDS

which aims to offer an efficient tradeoff between storage cost of the signature-based method and the computing

cost of the anomaly-based method. The system deploys lightweight IDS modules in resource-constrained nodes

meanwhile resource-intensive IDSmodules are left to the Border Router (BR). SVELTEwas implemented in the

Contiki OS and obtained 90% of TPR for a lossy-network configuration and almost 100% for a lossless-network

configuration. The downside is that DoS attacks can violate the system if they affect IDS nodes.

Midi et al. [36] implemented Kalis, an hybrid IoT IDS which is able to choose automatically the detection

techniques depending on collected network’s features. The system is the first approach which does not target a

single protocol. Kalis can be placed as a standalone tool on a separate external device. The performance assessment

of the systemwas carried out on a real-world IoT scenario. Kalis obtained a detection rate of 91%with an accuracy

of 100%.

Anthi et al. [37] described the initial stages of developing a novel hybrid-based IDS for the IoT called Pulse.

The system employsMachine Learning (ML) algorithms and it is capable of successfully identifying network scan-

ning probing and simple forms of Denial of Service (DoS) attacks. Pulse consists of two main phases. The first

phase consists on building a real IoT smart-home testbed where the normal activities were monitored for each

device connected on the IoT network. In the second phase, malicious activities were involved to these devices

creating anomaly network traffic. These phases fed a supervised machine learning technique with proper train-

ing data which composed the core of the intrusion detection model. Results showed that the model is better at

detecting probing attacks (from 95.5% of precision for Intense/Regular scan to 97.7% for Quick Plus scan) than

it is for flood-type attacks (80.8% of precision for SYN Flood and 81% for UDP Flood).
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Considerations

As previously stated, the best performing IDS are anomaly-based which are dependent on machine learning tech-

niques and they achieve remarkable results in the area of network-level security for IoT environments. However,

most of systems have been tested on rather old datasets even though the advancement of malware such as differ-

ent attacks on smart and industrial networks is continuously advancing. Furthermore, most recent IDS systems

are centralized and placed in a single network node or cloud-based, and this can still pose a security threat if an

attacker manages to access the internal network and bypass the single centralized intrusion detection system or

the connection between IoT devices and cloud-based system fails.

These reasons paved the way for a search for machine learning models capable of achieving excellent perfor-

mance with recent datasets, i.e., containing malicious attacks collected in the past few years. And consequently,

base an IDS on such models that adds an additional and reliable layer of security at the network level.
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References Method Detection Placement
LHChang et al. [17] IDS over 6LowPAN Anomaly Distributed

Hosseinpour
et al. [18]

Lightweight IDS
based on AIS Anomaly Distributed

Hodo et al. [19] ANN Anomaly Centralized

Nobakht et al. [20] Host-based IDS
based on OpenFlow Anomaly -

Lopez-Martin
et al. [21] CVAE Anomaly -

Bin Jia et al. [22] Hybrid Heterogeneous
Multiclassifier Anomaly -

Kozik et al. [23] IDS based on ELM Anomaly Centralized
Doshi et al. [24] NN Anomaly Centralized
Ge et al. [25] NN Anomaly -

Hasan et al. [26] LR, SVM, DT,
RF, ANN Anomaly Distributed

Almiani et al. [27] Automated IDS
based on RNN Anomaly -

Hussein et al. [28] Hybrid feature
selection for RF Anomaly -

Sarhan et al. [29] HBFL Anomaly -
Kasinathan

et al. [31] [32] DEMO Signature Centralized

Jun et al .[34] IDS based on CEP Signature Centralized
Oh et al. [35] Lightweight IDS Signature Distributed
Le et al. [30] Cluster organization Specification Hybrid
Raza et al. [33] SVELTE Hybrid Hybrid
Midi et al .[36] Kalis Hybrid Hybrid
Anthi et al. [37] Pulse Hybrid -

Table 2.1: Related works table.
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3
Background

In this chapter we present a review of the main tools and components involved in this work. The environment

security of IoT networks and the features of intrusion detection systems are described first. The architecture of

themachine learningmodels used is as follows. We also cover techniques and frameworks used to deploymachine

learning algorithms into a real-world application.

3.1 IoT Security and Intrusion Detection
The Internet of Things is growing fast and it is widening its fields of application. IoT systems are well character-

ized for the heterogeneity and diversity of the devices involved. As well as the mixture of devices deployed, several

protocols are involved to make the IoT networks functional and reliable. Despite the widespread use of IoT net-

works, they are quite different from a normal network. In particular, IoT systems are constrained in terms of

computational capability and complexity, they are heavily distributed and heterogeneous thus, a centralized tra-

ditional solution may not be always suitable [11].
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The topic of security involves several aspects and features of IoT networks. As the IoT devices keep evolving

the need of a human touch in the network is decreasing. This fact implies that different IoT devices communicate

with each other autonomously [38]. Many of them can directly control other devices based on the conditions of

the environment or any sensible signal they are programmed to respond to. Furthermore, due to many kinds of

new devices being released with insufficient safety checks beforehand, it has been found that in 2015 more than

90% of IoT device firmware had security vulnerabilities leading to protocol security problems [39]. On the other

hand, one of the most alarming limitation of IoT is the low capacity and constrained conditions of the devices.

In fact, several kinds of lightweight devices are involved in an IoT network, especially sensors, which have lim-

ited computational power and storage. It is easy to infer that due to these limitations, most IoT devices are not

equipped with efficient defense mechanisms (e.g. memory isolation, address space randomization, encryption

and authentication algorithms [38]). Furthermore, another serious threat, due in part to IoT networks’ fast and

wide proliferation, are DoS or DDoS started by a botnet. We mentioned Mirai botnet in Sect. 1 as it has been a

vehicle to perform one of the most powerful DDoS attack in the history of technology [40]. Alternative versions

ofMirai have been created and distributed in the last years. It is important to point out the fact that these different

versions can still be harmful and can cause serious problems as stated by Zhou et al. [38]. It is clear that if such a

malware whose intrusion method is well known can still cause damage then the security practice in IoT devices

still lacks consistency.

IntrusionDetection Systems aim to identifymalware, malicious access or any kind of attack to defend internal

networks. They represent one major research problem in cyber security and as there are several risks concerning

networks there are different systems built to secure an environment from external attacks [41]. The aim of IDSs is

to provide a wall of defense as they can be used to detect and analyze types of malicious network communications

and computer systems usage, whereas conventional firewalls cannot perform this task.
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There are several different kinds of Intrusion Detection Systems, and the most common way they can be clas-

sified is in three main groups [42] [12]:

• Network-Based Intrusion Detection (NIDS): is the most common solution in the market. Network-
based IDSs are deployed in anetworknode to analyze incomingnetwork traffic that regardsmultiple host
nodes. They are mainly installed into sensors which run in stealth-mode, in order to make it difficult to
find them for an attacker [42].

• Host-Based Intrusion Detection (HIDS): works on individual device or computer level. The fact that
they monitor a single component makes themmore precise in the analysis and they can detect elements
that network-based IDSs often miss. Host-Based IDS are more difficult to maintain, as they require
host-specific configuration and inhibit the performance of the device. While NIDSs work by inspecting
network traffic and derived features, HIDSs can also use other features such as system calls, file access,
resource consumption, etc.

• Application-Based Intrusion Detection: can be considered as an extension of Host-Based IDS with
the only difference of analyzing events at software level. It is prominent the fact that they monitor the
real-time actions of physical users even thoughApp-Based IDSs can sometimes bemore vulnerable then
classic Host-Based IDSs.

Motivatedby an increasingnumber of vulnerabilities, attacks, and information leaks, IoTdevicemanufactures,

cloud providers, and researchers are working to design security systems and protocols, to explore new vulnerabil-

ities and to seek effective ways to protect data privacy.
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3.2 Machine Learning

The machine learning models used and studied in this work will now be explained. They are different kinds of

NeuralNetworks, DecisionTrees andRandomForests. As stated above, in general, the best performing and state-

of-art models in the Machine Learning and Deep Learning field are high resources-consuming. For the purpose

of this work, the research and use of light-MLmodels is fundamental to efficiently deploy them on cheap and low

power consumption devices.

3.2.1 Neural Networks and Convolutional Neural

Networks

In 1943,McCulloch andPitts proposed thefirst artificial neuronmodel, also called perceptron. Thismodel, shown

in Fig. 3.1, is characterized by important features that have paved the way for modern machine learning and deep

learning. Specifically, synapses are represented by a set of weighted wi inputs. The membrane of the cell that

collects electrical charge is represented by a summation of input signals and an activation function (also called

transfer function, initially a threshold function) that decides whether the neuron ”spikes” for current inputs. The

sum of weights and the threshold activation function are exposed below:

netj =
n∑

i=1

wij · xi (3.1)

oj =

1 if netj ≥ θj
0 if netj < θj .

(3.2)

The sum is used as input into an activation function as shown in Fig. 3.1 and the final output oj is obtained

after the activation function, where θj is the threshold value.

A single neuron is not particularly useful on its own, it only reacts according to the value of its transfer function.

However, by grouping and structuring a collection of single neurons into a proper neural network, it is possible

to create a model which can learn and adjust the weights on its own accordingly to produce a desired result or

accomplish various tasks.
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Figure 3.1: A diagram model of an artificial neuron as proposed by McCulloch and Pitts in 1943.

Neural Networks (NN) are networks composed of artificial neurons connected to each other and divided into

layerswhose structure is inspired by the humanbrain [43]. Each connection can transmit a signal to other neurons

and the output of each neuron is computed by some non-linear function. The connections between nodes are

called edgeswhich have aweight that are adjusted in the learning process and they represents the ”intensity” of that

connection. Typically, the neurons are organized intomultiple layers (DeepNeuralNetwork) and neurons of one

layer connect only to neurons of the immediately preceding and immediately following layers. Training a Neural

Network consists of processing examples, each associated with a label (in the supervised-learning scenario), and is

usually conducted by determining the difference between the processed output of the network and a target output

(which represents the correct result) and consequently adjusting the weights. Following a training phase, the

models identify an underlying pattern between the data. Feed forward neural networks are typically represented

by composing together many different functions. In the following example, f1 is the first layer, f2 is the second

layer, and f3 is the output layer of the network:

f(x) = f3(f2(f1(x))) . (3.3)

More specifically, a layer is a function of the preceding one. In the general case we can describe a layer as follows:

hi = gi(Wi · hi−1 + bi) . (3.4)

W indicates thematrix of theweights, b the bias, i the number of layer and h and g functions. Neural network is an

extremely powerful and flexible tool which can be deployed to perform several tasks like classification, regression,

prediction, clustering and many other [43]. By theUniversal Approximation Theorem [44], we know that a large
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enoughMultilayer Perceptron (MLP), which is a fully connected class of feedforward neural network, will be able

to represent any function. We are not guaranteed, however, that the training algorithm will be able to learn that

function.

DeepNeuralNetwork (DNN) andDeepConvolutionalNeuralNetworks (DCNN, or simplyCNN) are part

of the sub-field of Machine Learning, called Deep Learning (DL). Deep learning allows complex mathematical

models that are composed of multiple processing layers to learn representations of data with multiple levels of

abstraction [45]. This field is making outstanding advances in solving problems which seemed impassable until

recently. Convolutional Neural Network are a class of ANN specialized for processing grid-like structures.

CNNs differ from other ANNs for the usage of amathematical operation called convolution in place of general

matrix multiplication in at least one of their layers. Inputs in CNNs are tensors with a specific shape that could

be one-dimensional, two-dimensional or three-dimensional. After the convolutional layer, the input becomes ab-

stracted to a feature map, also called an activation map. CNNs are mostly applied to visual imagery tasks for the

fact that they are specifically designed to process grid-like/pixel data and furthermore, the convolution provides a

means for working with samples of different size [44]. The main properties of Convolutional Neural Networks

are that it works with inputs of variable size and the convolution is not equivariant to scale change and rotation.

Sparse interactions and parameter sharing (i.e. instead of learning a separate set of parameters for each location, it

learns only one set) imply efficiency and much fewer weights compared to fully connected neural networks.

Figure 3.2: Example of 1D Convolution Neural Network.
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3.2.2 Decision Tree

Decision Tree (DT) is a non-parametric supervised learning tree-like model that is mostly used for classification

and regression problems [3]. The goal of Decision Tree is to create a model that can correctly predict the value

of a target by learning simple inferred decision rules. A tree is composed of different nodes, and those nodes are

selected (in accordance with a criterion) looking for the optimum split of the features. The most commonly used

criterias areGini and Entropy:

GiniIndex = 1−
∑
i
p2i (3.5)

Entropy = −
∑
i
p2i · log2(pi) (3.6)

where pi is the probability of the class i. Gini impurity measures the regularity at which any sample of the

dataset will be mislabelled when it is randomly labeled, meanwhile, the Entropy depicts the disorder of the fea-

tures with the target [46]. In general, the Gini criterion is faster due to its less expensive computation.

The fact thatDT is a simple and efficientmodelmakes it suitable on resource constrained device. Although the

accuracy obtained byDTs is not, in general, as high as theRandomForest’s accuracy, DTs are extremely fast at test

time and they can process hundreds of thousands of networks packet features per second. Thus, this model is a

good candidate for an intrusiondetection application at network level. Furthermore,DecisionTrees are incredibly

fast on training phase, and this fact opens the training-on-device and incremental-learning possibility on small

controllers. Incremental models may be very powerful as they fit to data in a quick and efficient way, whichmeans

they can adapt to changes in real time processing [47].

3.2.3 Random Forest

RandomForest (RF) is a supervisedmachine learningmodel that, as DecisionTree, is widely used in classification

and regression tasks [3]. A Random Forest is based on an ensemble technique called Boostrap Aggregation (or

Bagging). The algorithm consists on repeatedly taking (with replacement) a number of random records from the

dataset where individual decision trees are constructed for each sample. Each decision tree will generate an output

and the final result consists on majority voting or averaging, for classification and regression respectively. Due to

the fact that Random Forest is an ensamble method composed of a multitude of individual classifiers it is slower

than a single decision tree but better avoids overfitting and in general, is a more stable model.
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Ensembles are based on the concept that a multitude of single entities working together for the same purpose

will achieve better results than a single model. RF is based on the same idea: several relatively unrelated decision

trees are used to accomplish the same task as a committee.

The low correlation between themodels of such an algorithm, which is one of its most important features, can

be compared to an investment portfolio in the economic sphere [48]. Since different types of stocks and bonds are

collected in one portfolio, the uncorrelated models of RFs in the aggregate perform better than the results taken

individually. Consequently, even if some trees in the ensamble are wrong, many others obtain correct values and

thus protect the final result from individual errors.

Figure 3.3: Random Forest’s voting outcome example [1].

3.2.4 AdaBoost

AdaBoost stands for Adaptive Boosting [3]. It is a boosting-technique that aims at combining multiple weak

classifiers to build one strong classifier. AdaBoost is an EnsambleMethod, in particular, it belongs to the category

of Boostingmethods. These algorithms try to build a strong predictivemodel from themistakes of several weaker

models. It happens that a single classifiermaynot be very precisewith a task, butwithmultipleweak classifiers that

progressively learn from each others’ wrongly classified objects, it is possible to build one strong and consistent

model. The AdaBoost’s pseudo-code Alg. 3.1 is presented below. The final classifier (i.e. the output of the

algorithm) is based on a linear combination of the weak classifiers.
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Algorithm 3.1 AdaBoost Pseudocode
Require: (x1, y1), ..., (xn, yn), xi ∈ X, yi ∈ Y = {−1,+1}
Require: Set of base learners ▷ i.e. weak classifiers

Initially set uniform example weightsD1(i) = 1
m

for t = 1...T ▷ for each weak classifier
Train base_learner using distributionDt
Test base_learner on all data
Set learnerweight with a weighted error
Update example weights based on ensemble predictions

end for
Output← sign(

∑T
i αt · ht(x))

▷with h(x)weak hypothesis, and α coefficient

3.2.5 Extremely Randomized Trees
Extremely Randomized Tree (ETC or ET) is an estimator that fits different randomized Decision Trees [3], also

calledExtraTrees, on various sub-samples of the dataset. It is a tree-induction algorithm for performing supervised

classification or regression. The output is based on averaging results to efficiently improve the final accuracy and

to help preventing over-fitting. The algorithm proposed by Geurts et. al. [49], for a numerical attribute, selects

its cut-point completely at random. At each tree node, the random selection is combined with a random choice

of a certain number of attributes among which the best one is chosen. In this way, the method randomly choose

a single attribute and cut-point at each node in the extreme case, and hence builds totally randomized trees.

ExtremelyRandomizedTrees, unlike other tree-based ensemblemodels, apply complete training samples in or-

der to grow the trees and in themeantimeminimizing bias and variance. The splitting procedure of ETCdepends

on three important parameters:

• The number of features selected at each node.

• The minimum training set size for splitting a node.

• The number of trees in the ensemble.

Although extremely random forest and normal random forest perform almost the same, in the case of optimal

feature selection ETC is in general computationally faster than RF.

23



3.2.6 TabNet
Attentive Interpretable Tabular Learning [2], or TabNet, is a novel high-performance and interpretable canonical

deep tabular data learning architecture that uses sequential attention to choose which features to reason from at

each decision step with the result of more efficient learning. TabNet outperforms different tabular learning mod-

els on various datasets for classification and regression tasks.

TabNet’s architecture is divided in an encoder composed by different feature transformers, attentive transform-

ers and feature masking as well as a decoder which is composed by feature transformers. TabNet’s features make

it remarkable for an intrusion detection task where the dataset is based on tabular network data, as it inputs raw

data without any preprocessing and its training via gradient descent enables large flexibility. Although the com-

plexity introduced by the the attention-transformer and the feature-transformer in Tabnet’s architecture leads its

deployment challenging to very small micro-controllers, it performs extremely well for medium-sized controllers.

Figure 3.4: TabNet’s Encoder‐Decoder Architecture [2].
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3.3 Raspberry Pi
The Raspberry Pi is a small but powerful single-board computers (SBC) developed by the Raspberry Pi Founda-

tion [50]. Raspberry Pi it is to all intents and purposes a computer and thanks to its reduced power consumption

and versatility it has thousands of different applications.

There are three series ofRaspberry Pi, they feature Broadcom systemon a chip (SoC)with an integratedARM-

compatible CPU and on-chip GPU, while Raspberry Pi Pico has a RP2040 system on-chip with an integrated

ARM-compatible CPU. Raspberry’s hardware has evolved through several versions that includes different kind

of processors, graphic-units, network support and other features. The first generationRaspberry Pi, theModel B,

was released in February 2012 and has developed into several families, such as the Raspberry Pi 2, Zero, 3, 4, and

Raspberry Pico. The Zero features small size and reduced input/output (I/O) capabilities, while the Pico was the

firstRaspberry Pi board based on a singlemicro-controller chip, theRP2040, designed byRaspberry Pi in theUK.

As the Raspberry Pi Foundation says “It’s capable of doing everything you’d expect a desktop computer to do

[...]. TheRaspberry Pi has the ability to interactwith the outsideworld, andhas beenused in awide array of digital

maker projects, frommusicmachines and parent detectors toweather stations and tweeting birdhouseswith infra-

red cameras“. Raspberry Pi board is an extremely flexible and useful option to test different Machine Learning

models in a low-power and limited-resources environment. Raspberry Pi kernel follows behind the main Linux

Kernel and the Debian-based OS’s running on the Raspberry Pi allow to easily install and runMachine Learning

and Deep Learning libraries such as PyTorch [51] and Scikit-learn [3]. In particular, Raspberry Pi 3 Model B is

used in this work. A comparison between different Raspberry’s generation models is shown in table 3.1.
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Specifications Raspberry Pi
Model B

Raspberry Pi 3
Model B

CPU BCM2835 SoC
ARM1176JZF-S

BCM2837 Soc
ARMCortex-A53

CPU Speed 700MHz 1.2 GHz

CPUCores 1 4

RAM 512MB 1024MB

Power
Requirements

5V @ 700 mA 5V@ 2.5A

Table 3.1: Comparison between the specifications of the Raspberry Pi which was released in 2012 and Raspberry Pi 3, shown
in Fig. 3.5 which it was released in 2016.

Figure 3.5: Raspberry Pi 3B board.
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3.4 FPGA
Field-Programmable Gate Array (FPGA), it is an integrated-circuit (IC) that allows to design custom digital cir-

cuits [52]. They can be reprogrammed to desired application or functionality requirements. Because of the FP-

GAs flexibility, it is possible to implement entire processors using its digital logic and this follows that FPGAs are

an ideal fit for many different markets such as aerospace, automotive, industrial andmany others. FPGAs contain

an array of programmable logic blocks and a hierarchy of links allowing blocks to be wired together. It is possible

to configure the individual cells to operate in certain ways and then connect the cells together to form the basis of

digital circuits. Logic blocks can be configured to perform complex combinational functions and inmost FPGAs,

logic blocks also include memory elements, which may be flip-flops or more complete blocks of memory. FPGAs

have a remarkable role in embedded system as they integrate extremely well with other hardware devices. Further-

more, as we will see from the results in the next chapters, FPGAs designed to perform intrusion detection in an

IoT network are notably fast and capable of processing hundreds of thousands of packets per second. FPGAs

provide great flexibility and remarkable performance.

In this work we used a PYNQ-Z2 board which is an FPGA development board. PYNQ is an open-source

project designed by Xilinx [52] which makes it easier to use Xilinx platforms providing Jupyter-based framework

with Python API. PYNQ enables designers to exploit the benefits of programmable logic and microprocessors to

build high performance applications. PYNQ can be used with ZYNQ or other accelerators boards, in particular

in the PYNQ-Z2 the XC7Z020-1CLG400C chip is used. Specifically, ZYNQ-7000 SoC [52] devices integrate a

single or dual core ARMCortex-A9 based Processing System (PS) and 28 nm Xilinx Programmable Logic (PL).

Furthermore, the PYNQ-Z2 board features 512MB DDR3 of RAM, 1G Ethernet controller, 4 push-buttons,

2 slide switches, 6 LEDs, 2 Pmod ports and a RaspberryPi and an Arduino header. The systems which can be

created by the ZYNQ accelerator are characterized by parallel hardware execution, real-time signal processing, low

latency control, high bandwidth IO and real-time signal processing.

We are able to implement and run machine learning models, in particular neural networks, into the PYNQ-

Z2 board with the help of the framework FINN [53] which is following presented. At the moment, FINN is

open-source and publicly available *.

*https://github.com/Xilinx/finn
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3.4.1 FINN
FINN is an experimental tool designed by Xilinx Research Lab in order to implement Deep Learning model on

FPGAs. In particular, FINN builds a streaming architecture where each layer has its own engine and each layer

can be executed as soon as the previous layer has generated the data. FINN targets Quantized Neural Networks

(QNNs) trained in PyTorch with the help of Brevitas [54] which is an helpful Python library to create quantized

models. Brevitas also comes with a set of tools to manage the quantization properties and the functionality to

export the QNNs to FINN.

The workflow of FINN starts once a suitable QNN has been trained, tested and exported to an ONNX rep-

resentation. FINN will transform the initial QNN into synthesizable High-Level Synthesis (HLS) layers using

different transformations. In particular, FINN’s pipeline starts by preparing the model to facilitate the tuning

of the layers which is based on setting up the graph model correctly and removing floating point operators. The

layers are then turned into HLS and grouped in aDataflow Partition which contains HLS layers suitable for the

further processing. Once the sythesizable model is completely ready, FINN uses Xilinx’s software called Vivado

and/or Vitis to generate the final HLS code, bitstream and driver used to deploy the starting model on hardware.

Figure 3.6: PYNQ‐Z2 FPGA board.
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4
Proposed Approach

In this section the architecture, concept, design principles and the pipeline of the conducted experiments of the

proposed work are presented. We first state the objectives as a problem formulation. We describe the network

traffic datasets, the importance of the features and the different metrics involved in the tests. Then we show how

the chosen Machine Learning models, exposed in Sect. 3, are built and deployed to the Raspberry Pis and to the

FPGA in order to perform the Intrusion Detection task. The experiments’ results and the related considerations

are shown at the end of this section.

4.1 Problem Formulation
Themain objective of the proposedwork is to build different lightMachine Learningmodels which are trained to

correctly classify between benign andmalicious network traffic and test them into small and resource-constrained

devices. The search for such models is mainly based on the accuracy in performing the intrusion detection task

(i.e., detectingmalicious packets) and the number of samples themodel is able to process per second. This way, we

present a set of classifiers trained to recognize different kinds of recent attacks to an IoT network and implement
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them into Raspberry Pis and FPGAs.

Consistent research has been conducted on wide appliances for network-security, but these do not scale well

to light-weight systems such as Internet of Things environments. In the overall picture, we propose a flexible and

efficient Network-Based Intrusion Detection system aimed to efficiently defend an IoT network from malicious

attacks. Specifically, different small controllers (i.e. Raspberry Pi’s and/or FPGAs) are deployed and integrated to

the single IoT devices into the LAN to guarantee protection from malicious attacks. The architecture is shown

in Fig. 4.1. Network traffic analysis combined with machine learning techniques is an effective method of identi-

fying abnormal activities in an IoT environment for real-time alerting. We assume that any device on the network

can exchange data with all the other connected devices and the victim of an attack may be any device which be-

longs to the LAN.

On the other hand, wewant to overcome some limitations of IntrusionDetection system. In particularNIDSs

mayhave difficulty processing all packets in a large or busy network and the integration of an IDS system to a single

device may be hard to manage as different architectures must cooperate efficiently without any interference. The

idea of the proposed work is to introduce a high level of flexibility and autonomy in the IDS to overcome these

limitations. The IDSdevices involved in theproposedmethod standout for their capability of integrationbetween

devices of different architectures. Furthermore they are characterized by low-power, low-resource consumption

and they can run autonomously. In this way the performance of the IoT devices will not be affected and at the

same time they will be defended against malicious attacks.

4.2 Proposed Framework

We now give an overview to the computation pipeline performed by the proposed IDS that goes from the traffic

capture to the binary classification between benign andmalicious traffic as shown in Fig. 4.2. The single steps are

following described.

4.2.1 Traffic Capture
The first step of the workflow consists of real-time and always running traffic capturing. Raw network data which

includes ingoing and outgoing packets can be collected and processed with different tools such as Zeek [55] and
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Figure 4.1: Proposed network‐based intrusion detection system applied architecture.

Wireshark [56]. With the purpose of testing, in our experiments we used two different datasets, TON [5] and

IoT-23 [57]. They both provide huge amount of network traffic collected in packet capture (pcap) formats and

CSV files for TON and conn.log.labeled files for IoT-23 which is the Zeek conn.log file obtained by running the

Zeek network analyser.

4.2.2 Feature Extraction

After the network capturing we extract the relevant fields from each single network packet. In particular, each

field corresponds to a feature. We do not consider aggregations of packets related to devices or time, but we com-

pute features on the single packet.

Feature extraction is a key step for the final efficiency and accuracy of Machine Learning models, as they to-
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Figure 4.2: Workflow of the proposed framework, starting from the data collection to the classification.

tally depend on the quality and quantity of information provided. It is therefore necessary to search for features

characterized by a high degree of entropy, that is, which contain high amounts of information. In the field ofMa-

chine Learning, especially during a classification task, the best features are those that contain the key information

that characterizes a sample. In other words, these features give a remarkable help to the correct classification of a

sample. Therefore, we try to extract generic packets features of the traffic instead of focusing of the characteristic

of the single attacks or the specific behavior of an infected IoT device. In particular we concentrate on header

fields in the IP packet, which include the size of the packet, IPv4 and TCP/UDP related information. In the next

section we will list the features selected for each dataset and the consequent reasons.

4.2.3 Feature Processing

This is a crucial step before feeding the data into an ML model. It is well known that the results and success of

a machine learning algorithm are highly dependent on the data provided. Pre-processing consists of different

procedures to make acceptable and optimize the input data to a machine learning algorithm. In particular, these
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models are discrete entities based onmathematical algorithms and procedures, requiring purely numerical data in

order to function.

In general, the datasets are composed of different types of data (e.g. integers, floats, doubles, binary, strings,

etc.), the data can often be proportioned between themhaving large dimensions or being too small. Non-numeric

inputs need to be mapped to numbers or to be converted in one-hot-encoded values and normalized in order for

the features to contribute equally. Data normalization is one of the pre-processing approaches and it is very impor-

tant for improving data quality and subsequently the performance of ML algorithms [58]. It consists on either

scaling or transforming data with the aim of making an equal contribution of each feature.

We did not use one-hot encoding in our work as it would have dramatically increased the size of the data sets

used inhibiting the performance of the resource-limited devices employed. Instead, we mapped non-numeric

values to numbers and applied data normalization for pure numeric features.

4.2.4 Training and Classification
The last part of the IDS pipeline consists on the classification of the collected data between benign andmalignant

traffic. This classification phase is preceded by a training phase of the Machine Learning model used. In this

phase we take the processed data from the training network traffic of the Dataset into a model for training. The

resulting trainedmodel is deployed as IDS classifierwhennew traffic comes. In ourworkwe have selected different

MLmodels to test in different compositions, i.e. in different architectures. In the classification phase, the classifier

takes as input the processed data and outputs whether this packet belongs to traffic considered malicious or not.

4.3 Datasets

In this work we used two different datasets, i.e. TON_IoT (Network) Dataset [5] and IoT-23 Dataset [57]. We

chose these datasets as they are the most recent data collections with malicious and benign IoT network traffic.

These datasets bring significant information at the level of malware families that even modern security solutions

are unfamiliar with. Both TON_IoT and IoT-23 contain different kind of attacks (such as DoS, DDoS, ran-

somware, etc.) related to IoT networks and they are extremely useful to validate and test Machine Learning mod-

els which accomplish Intrusion Detection tasks.
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TON_IoTdatasets are a new collections of Industry4.0, Internet ofThings and Industrial IoTnew generation

data. They were collected from large-scale realistic network designed at the Cyber Range and IoT Labs, School of

Engineering and Information technology (SEIT), UNSWCanberra. The testbed was designed based on interact-

ing network, IoT devices and systems. The environment is composed by three layers with the aim ofmimicing the

implementation of recent real world IoT networks. Specifically, the edge layer which involves the physical devices,

the fog layer and the cloud layer which consists on the cloud services configured online in the testbed. The mali-

cious scenarios involved nine different attack categories launched against vulnerable IoT applications, operations

systems and network systems. The attacks categories are listed in table 4.1. Several heterogeneous sources of data

are included into the dataset, in particular belonging to sensors, operation systems and network traffic. In our

work we focus on the network traffic records (i.e. packets), which are extracted with Zeek [55]. The TON-IoT

dataset comes with the extracted traffic flow in CSV format. The authors also provided a Training and Test col-

lection which consists on a smaller portion of the dataset for ease of use on Machine Learning field application.

In our work we used the Training and Testing portion split of TON Dataset. The composition of the network

traffic data are shown in table 4.1.

The IoT-23 dataset [57] is a recent collection of network traffic fromdifferent IoT devices. Datawere captured

in the Stratosphere Laboratory, AIC group, FEL, CTU University in Czech Republic. The dataset is composed

of 23 different network captures, also called sessions, with 20malware and 3 benign network traffic captures. Dur-

ing the collection of the data, different malicious scenarios were executed related to a specific malware which

performed different actions in a Raspberry Pi. On the other hand, the benign traffic was collected using three real

physical devices. In particular, a Philips HUE smart LED lamp, an Amazon Echo home personal assistant and

a Somfy smart door-lock. The devices were not simulated and this implies that the collection is characterized by

the real network behaviour. We used different scenarios of IoT-23 dataset that are shown in the table 4.2. The

dataset, for each capture, contains a series of .pcap files and conn.log.labeled files, which are the Zeek conn.log files

obtained by running Zeek network analyser using the original pcap file. In out experiments, we derived a CSV

file, containing the chosen features with the related data, starting from the conn.log.labeled files using the zeek-cut

tool provided by Zeek.
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Labels All Network Data Training and Testing

Backdoor 508,116 20,000

DDoS 6,165,008 20,000

DoS 3,375,328 20,000

Injection 452,659 20,000

MIMT 1,052 1,043

Password 1,718,568 20,000

Ransomware 72,805 20,000

Scanning 7,140,161 20,000

XSS 2,108,944 20,000

Normal 796,380 300,000

Total 22,339,021 461,043

Table 4.1: Statistics of Network Records of TON_IoT dataset [5]. In particular, the attacks collected are Backdoor, Distributed
Denial of Service and normal DoS, Injection attacks Man‐In‐The‐Middle, Password stealing attacks, Ransomware, Scanning
and Cross‐Site‐Scripting (XSS).

Labels 1-1 8-1 34-1 35-1 44-1

Benign 469,275 2,181 1,923 8,262,389 211

DDos - - 14,394 2,185,302 1

C&C 8 8,222 6,706 81 14

C&C-FD - - - 12 11

PortScan 539,465 - 122 - -

Attack - - - 3 -

Total 1,008,748 10,403 23,145 10,447,787 237

Table 4.2: IoT‐23 Dataset scenarios used in our work. FD stands for FileDownload, PortScan is the short for PartOfHori‐
zontalPortScan and HB is the short of HeartBeat. In details, FileDownload label indicates that a file is being downloaded to
the infected device. Attack label refers to some kind of attacks which try to exploit flaws such as telnet login, brute force,
command injection etc.
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The IoT23 scenarios contain different kind of attacks and consequently a considerable amount of information.

From the IoT23-35-1 scenario we extracted a subset where the number of entries has been reduced to avoid data

imbalance, composed by 1, 048, 484 benign samples and 895, 929 malicious samples. Furthermore, we tested

IoT23-44-1 scenario with the aim of observing how the selectedMLmodels can perform with extremely reduced

amount of data.

From TON and IoT-23 datasets we extracted a subset of features that we used to train the Machine Learn-

ing models. In particular, we concentrated the extrapolated information on features concerning the connection

activity and the statistical activity related to the network and transport layer. Although there are multiple charac-

teristics which can be derived from individual network packets, we have focused on the most consistent informa-

tion. Specifically, during the traffic analysis it is possible that some protocols are not present in the layers, or the

tool used to capture the traffic fails to gather certain non-essential characteristics. We have excluded information

regarding DNS, SSL, HTTP activity, focusing more on addresses, ports, amount of bytes transmitted, amount

of packets transmitted, duration of transmission and protocol used. From both BOT and IoT-23 dataset we ex-

tracted 14 features. The chosen features, shown in Table 4.3, are the same for both datasets even if they appear

with different names. It should be noted that even if the features chosen for both TON and IoT-23 are the same,

the testbeds are different as are the types of attacks collected in the datasets. Consequently the samples will have

different characteristics.

Another determining factor that we have taken into consideration to achieve good performance using devices

with limited resources is the amount of features extracted. Each feature, in fact, will have to be subjected to a

pre-processing and consequently will use a part of the processing capacity of the device. And the same goes for

the memory of the single devices involved.
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TON IoT-23

No. Name Type Name Type

1 ts Time ts Time

2 src_port Number id.orig_p Number

3 dst_port Number id.resp_p Number

4 proto String proto String

5 service String service String

6 duration Number duration Number

7 src_bytes Number orig_bytes Number

8 dst_bytes Number resp_bytes Number

9 conn_state String conn_state String

10 missed_bytes Number missed_bytes Number

11 src_pkts Number orig_pkts Number

12 src_ip_bytes Number orig_ip_bytes Number

13 dst_pkts Number resp_pkts Number

14 dst_ip_bytes Number resp_ip_bytes Number

Table 4.3: Features chosen, from TON and IoT‐23 dataset, which have been used to train the different Machine Learning
algorithms. In total, 14 features have been chosen and the table shows the type of each feature.
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4.4 Feature Analysis
Wenow evaluate the importance of the single features for the performance of our anomaly detection by exploring

and describing their role. We analyze why they are relevant to differentiating benign traffic frommalicious traffic.

With the following features, our goal is to be able to understand the behavior of the network in an attacking or

normal situation.

• Timestamp: of connection between flow identifiers. Timestamps are employed in network devices for
various purposes for example: logs, measuring delays, monitoring the performance and in addition, they
are attached to network packets for analysis purposes. Fig. 4.3 depicts the importance of this feature
employed into the Random Forest.

• Port: refers the TCP/UDP ports of interest of a packet.

• Protocol: normal traffic and malicious traffic have varying protocol distribution. DoS attack traffic is
usually characterized by the fact that TCP packets outnumber UDP packets as shown in Fig. 4.4 and
Fig. 4.5.

• Service: refers to protocols detected dynamically, such as DNS, HTTP, SSL, DHCP, SMB, FTP , IRC
etc. FromFig. 4.6 and Fig. 4.7 it is possible to notice that heir distribution can be significant in detecting
anomalies.

• Duration: is the time of the packet connections, which is calculated by subtracting the time of last
packet seen and the time of first packet seen. In general, malicious entries have approximately 75% less
connection duration than non-malicious traffic entries.

• Source andDestination bytes: byteswhich are respectively originated or responded frompayloadbytes
of TCP sequence numbers. The distribution of packet sizes differs significantly between malicious and
normal traffic. For instance, malicious packets in TON dataset have in general 15 times the amount of
source and destination bytes compared to the normal traffic.

• Connection State: specifically describe the state of the connection by indicating if the connection is
established, attempted, terminated, rejected, etc.

• Missed bytes: is defined as the number of missing bytes in content gaps.

• Source and Destination packets: number of packets which is estimated from source or destination
systems.

• Source and Destination IP bytes: refer to the number of IP bytes which is the total length of IP header
field of source or destination systems.
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Figure 4.3: The plot depicts the Feature Importance for a Random Forest. In particular, Feature importances are provided by
the fitted attribute related to the Random Forest, obtained with scikit‐learn [3]. Feature Importances are computed as the
mean and standard deviation of accumulation of the impurity decrease within each tree, which is represented by the y axis.
In this model (Random Forest) it is possible to see that the timestamp feature is very important for the correct classification
of data. In the x axis the features are represented numerically as they are shown in Table 4.3.
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Figure 4.4: The chart represents feature statistics for normal traffic protocol distribution on TON Dataset. The protocols are
TCP, UDP and ICMP. It is possible to notice how evenly TCP and UDP packets are divided in a normal traffic condition.

Figure 4.5: The chart represents feature statistics for malicious traffic protocol distribution on TON Dataset. It is clear from
the images that the protocol represents an important feature since most of the malicious packets captured in TON Dataset
are TCP packets. On the other hand, very few malicious packets are ICMP and UDP packets have reduced from 54.3% to
6.4%.
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Figure 4.6: Service distribution of benign packets. The chart depicts a comparison of feature statistics for benign traffic on
TON Dataset. It can be seen that most of the service types are DNS and HTTP.

Figure 4.7: Service feature distribution ofmalicious packets. The chart depicts a comparison of feature statistics for malicious
attack traffic on TONDataset. It is noticed themajority ofHTTP andDNS packets and the difference in usage between normal
and attack purposes. Comparedwith benign traffic, it is noticeable that there aremoreHTTP packets and fewer DNS packets.
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4.5 Experimental Setup
The training and validation of the chosenMachine Learning models has been carried out on a machine operated

on 64-bit Ubuntu 18 and equipped with Intel Core i5-10210U four core CPU having 1.60 GHz base frequency

and 4.20GHz as max turbo frequency. Afterwards, the saved trained models are transferred to Raspberry and

FPGA ready to perform inference to new input data.

Classifiers are implemented in Python programming language (version 3.8) via several popular machine learn-

ing libraries, especially PyTorch [51] and Scikit-learn [3], which is also used to derive the performance and statis-

tical results. The model architectures used and their parameters are listed below.

Neural NetworksModels

The description of the NNs built and used follows. To give a better understanding of the behaviour of such

models we experimented with the difference between a small NN and a bigger size NN, both for the complete

feed-forward network and convolutional network.

• NN1 (small_NN): fully connected NN composed of 3 hidden layers, with 64, 256, 64 neurons respec-
tively. There are 14 input features and the output layer has 2 neurons (binary classification). ReLU is
used as activation function.

• NN2: smaller fully connected neural network composed by one hidden layers of 64 neurons. Input
layer has 14 neurons and the output layer 2.

• CNN1 (small_CNN): it is composed by 1 convolutional layer characterized by 1 input channel and 16
output channels, kernel size of 2 and stride of 1 and a fully connected layer with 96 input neurons and
2 output neurons with ReLU as activation function.

• CNN2: more advancedCNNcomposedby2 convolutional layers and2 fully connected layers. Thefirst
convolutional layer has 1 input channel, 8 output channels, kernel size of 3 and stride of 1. The second
convolutional layer has 8 input and 16 output channels, kernel of 3 and stride 1. The fully connect layers
have 64 and 2 neurons respectively. ReLU is used as activation function.

• Quantized-NN: is composed by 3 layers. The hidden layer is composed of 64 neurons and the quanti-
zation is done with 8 bits using ReLU as activation function. This model is needed for the deployment
on the FPGA.
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Tree-basedModels

• Decision Tree (DT): for the performance assessment the criterion is set to entropy, and the maximum
depth of the tree is set to 24, according to the best parameters of the grid search.

• Random Forest (RF): the parameters are 100 estimators, i.e. the number of trees included in the en-
semble. The maximum depth of trees is set to 26 and gini as function to measure the quality of a split.

• AdaBoost: the number of estimators chosen are 100, with a learning rate of 0.1 and SAMME.R as a
boosting algorithm [59]. The base estimator is a Decision Tree initialized with a maximum depth of 1.

• Extremely Random Forest (ET): according to the grid search we set the number of estimators equals
to 80, gini as a criterion and no maximum depth.

• TabNet: the width of the decision prediction layer is set to 32 as the width of the attention embedding
for each mask, they should be set as the same value according to the authors [2]. We set 4 as number of
steps in the architecture, then the number of independent Gated Linear Units layers at each step is set
to 3 as the number of shared Gated Linear Units.

Grid Search

For Decision Trees, RF, AdaBoost, Extremely Randomized Trees we used GridSearchCV to find the best hy-

perparameters. Specifically, Grid Search is a model hyperparameter optimization technique which exhaustively

considers all parameter combinations to find the best performing one. Tree-based models have the ability to pro-

cess a large number of samples per second, so we can search for the highest performing hyper parameters (which

generally increase model heaviness) even at the cost of sacrificing some classification speed in exchange for higher

accuracy. As a result we leverage the decision of the final hyperparameters between bandwidth and accuracy.

Activation Function and Loss Function

An activation function (or transfer function), as stated in Chapter 3 is used to determine the output of a node in a

neural network according to a mapping (E.g.: the resulting values are between -1 and 1.). On the other hand, the

function used to evaluate a candidate solution is referred to as the objective function. In optimization problems,

as with neural networks, we seek to minimize the error, meaning that the algorithm is searching for a solution

with the lowest amount of loss. The objective function (also called cost function or loss function) is a method of

evaluating the performance of an algorithm: if the predictions are wrong, the loss function will output a higher
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number while if the model makes correct predictions the loss function will output a low value.

In this workReLU (RectifiedLinearUnit) is used as activation function andCross Entropy Loss is used as objec-

tive function for neural networks. Cross-entropy measures the difference between two probability distributions

for a given random variable or set of events and it is widely used as a loss function when optimizing classification

models.

ReLU is defined as : f(x) = x+max(0, x). Cross-entropy for binary classification is defined by Equation 4.1.

For multiclass classification, cross-entropy is defined by Equation 4.2. Where y is the binary indicator if the class

label i is the correct classification for the observation o.M is the number of classes and p is the predictedprobability

observation o is of class i.

−(y · log(p) + (1y)log(1p)) (4.1)

−
M∑
i=1

yo,i · log(po,i) (4.2)
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Optimization function

An optimization function is used to change the characteristics of neural networks such as weights and learning rate

in order to reduce the loss and increase the general accuracy of the model. In our work we used Adam (Adaptive

Moment Estimation) optimizer [4] for all the neural networks and forTabNet. Adamuses themomentumof first

and second order and it works by reaching the minimum in a slower way but with more precision. The learning

rate set for TabNet is 0.02 and 0.01 for all the neural networks. Adam realizes the benefits of bothAdaGrad and

RMSProp so its efficiency is remarkable when working with large problem involving several parameters. Adam’s

features are notable for low memory requirements, computational efficiency, ease of implementation, and adapt-

ability to problems with sparse gradients. Intuitively, Adam is a combination of the gradient descent with momen-

tum and RMSProp algorithm. In Figure 4.8 it is possible to see a comparison of Adam to other optimization

algorithms.

Figure 4.8: Comparison of Adam to other optimization algorithms (AdaGrad, RMSProp, SGDNesterov, AdaDelta) training a
multilayer perceptron [4].
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Regularization

At first, the two fully-connected neural networks and the two convolutional neural networks have been tested

with different regularisation techniques including Dropout, L1, L2 regularization. Regularization basically adds

a penalty asmodel complexity increases and this is howL1 andL2work. When computing the newweight vectors,

L1 regularization penalizes the absolute value of the weight and this implies that extreme values, both positive and

negative, are penalized. L1Regularization induces sparsity by driving weights to zero and consequently removing

the corresponding features from themodel [60]. L2 Regularization, also called weight decay, penalizes the square

of the weight. L2 Regularization has a smaller impact on less extreme weights than on those with high values. It

can be interpreted intuitively as a reduction of the weights by a certain percentage each time. Dropout on the

other hand, is a regularization method that approximates training a large number of neural networks with differ-

ent architectures. In particular, during the training phase, some number of layer outputs are randomly ignored

(dropped).

Although regularisation is proven effective for preventing overfitting, the classification accuracy of ourmodels

did not further improve. Overfitting may occur when large neural networks are trained on relatively small data

sets, resulting in the model learning the statistical noise of the training set, leading to poor performance when the

model is evaluated on the test set (i.e., on new samples). The neural networks are trained on dataset of millions

of samples and they are able to generalize very well on them, this implies that the overfitting problem doesn’t

influence our models on this task.

Experiments

In order to run the experiments, the trained and saved models are transferred to the Raspberry Pi running Pi OS

Lite ready to perform inference. In particular, the board is a Raspberry Pi Model 3B [50] which is equipped with

1.2 GHz BCM2837 Soc ARM Cortex-A53 CPU with 4 cores, 1024 MB of RAM and a power requirement of

5V at 2.5A.

On the other hand, to run our chosenmodels into an FPGA the pipeline follows a different way. As previously

stated in Chapter 3, with the help of the framework FINN [53] we are able to run neural networks into an FPGA.

We tested the quantized neural network (previously called Quant-NN) on the PYNQ-Z2 FPGA board. Fig. 4.9

shows how FINN interprets the quantized neural network during its workflow. PYNQ is an open-source project

designed by Xilinx [52] which makes it easier to use Xilinx platforms providing Jupyter-based framework with
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Python API. PYNQ-Z2 features 512MB DDR3 of RAM and it is equipped with a 650MHz dual-core Cortex-

A9 processor.

Figure 4.9: Trained model block representation which depicts the different layers of the Quantized Neural Network used
during FINN workflow.
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4.6 EvaluationMetrics
The chosenMLmodels are evaluated with different metrics. Accuracy is defined as the total number of correctly

classified instances over the total number of instances in the dataset. The most descriptive metrics are accuracy,

precision, recall and f1-score. Specifically, the precision represents the ability of a classifier not to label as positive

a sample that is negative. It is a good measure to state when the costs of false positive is high. Recall (or True

Positive Rate - TPR), is intuitively the ability of the classifier to recognize all the positive samples. When there

is an high cost associated with False Negative the recall should be the metric to use to select the best model as in

this task the False Positives represents false alarms, while False Negatives are missed attacks. The F1-score, on the

other hand, can be interpreted as a harmonic mean of the precision and recall. F1-score is a function of Precision

and Recall which they give a equal relative contribution and it is used to seek a balance between the precision and

recall metrics. Another important performancemeasurement consists on the plot of TPR against the FPR,which

depicts the Receiver Operating Characteristics (ROC) curve. ROC is a probability curve and the Area Under the

Curve (AUC) identifies the degree of separability which tells how good is the model on distinguishing between

different classes. The ROC curve is plotted with TPR against the FPR and an example of the plot can be seen in

Figure 4.10. We also evaluate our models under howmany samples they can process per second.

Figure 4.10: The ROC curve is plotted on a graph with the True Positive Rate ( or Sensitivity) on the y axis and False Positive
Rate (or 1 ‐ Specificity) on the x axis.
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The functions of the key metrics presented above are shown in Tab. 4.4 where TP, TN, FN and FP are follow-

ing explained and they are graphically represented in the confusion matrix in Figure 4.11.

• True-Positive (TP): number of samples that are in the normal class in the dataset and are correctly pre-
dicted in the benign class.

• True-Negative (TN): number of samples that are in the malicious class in the dataset and are correctly
predicted in the malicious class.

• False-Negative (FN): number of samples that are in the normal class in the dataset and are incorrectly
predicted in the malicious class.

• False-Positive(FP): number of samples that are in the malicious class in the dataset and are incorrectly
predicted in the normal class.

Figure 4.11: Confusion matrix structure.

On the other hand, the evaluation metrics for the FPGA board assessment are mainly related to the electronic

components. Specifically we are interested in the resource utilization of the following components:

• LookUp Table

• LUT-RAM
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Accuracy TP+TN
TP+TN+FP+FN

Precision TP
TP+FP

Recall (TPR) TP
TP+FN

False Positive Rate (FPR) FP
FP+TN

F-1 Score 2 · Precision · Recall
Precision + Recall

Table 4.4: Key evaluation metrics for the experiments.

• Flip-Flop

• Block RAM

• IO

• Global Buffer

LookUp Table (LUT) consists of a block of SRAM and it is basically a table which determines what will be the

output for any given input. LUT in resource utilization refers to all the LUTs used in the design. The LUT in

the SLICEMutilized in the design used as distributed RAM/ROMor shift register is referred as LUTRAM [61].

While the logic is created in the LUTs Flip-flops are used to create registers, which store data. BUFG is the global

buffer and BRAM stands for Block Random Access Memory which are used for storing large amounts of data

inside of your FPGA. IO refers to Input/Output capacity.

The comparison of different Machine Learning models has always been a challenging task [62]. An ML algo-

rithm may obtain very good performance over one dataset whereas may show poor results over another similar

dataset and the reasons for this can be many. Therefore, it turned out to be difficult to find a solution in some

cases, especially when using deep learning models with a very complex architecture. However, in general, this

fact mostly depends on the type of the features and the characteristics of the machine learning algorithms. Con-

sequently, it is hard to decide with confidence which model is best for a given problem, mostly due to the fact

that in this case we add the lightness of the model as a determining factor. We therefore use several datasets for a

better confidence andwe take into account the fact that all models can be easily interchanged in the final intrusion

detection system.
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5
Results

In this section, we carry out a detailed performance analysis and we discuss the results of Neural Network and

tree-based ensemble classifiers described in the previous paragraph. Benchmarking of all the models is performed

on TON and IOT23 datasets. The results obtained are compared and analyzed with the aim of assessing which

are the most suitable classifiers for IDS system in IoT environment and document models’ behaviour with recent

IoT traffic datasets. The Machine Learning models are trained to recognize malicious packets in a supervised

learning way. The main reason for choosing supervised learning is that the traffic characteristics can be effectively

used to train ML models for further predictions even if the other ML approach like unsupervised learning can

also be used to perform a similar task like clustering. Besides accuracy, which is one of the most significant met-

rics, an important requirement for machine learning models in real world information security applications is to

have an extremely low false positive rate, as we do not want the normal operation of an IoT network to be inter-

rupted/alarmed by false positives.

We start by evaluating the results for theTONand IOT23datasets by comparing tree-based andneural network-

based models in two separate groups. Table 5.1 and 5.2 show the results obtained in terms of key metrics for the

TON dataset and similarly Table 5.3 and 5.4 for IOT-23. Among the various evaluation metrics, the time it takes
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a classifier to process samples per second was also measured. This measure is useful for determining a model’s

ability to smoothly handle large amounts of incoming data, which is useful for quickly recognizing attacks such

as DoS andDDoS. Themeasure is computed by dividing the total number of test instances by total time taken by

amodel to classify all the test instances. Furthermore, tree-basedmodels were trained in the Raspberry Pi itself, as

being lighter than neural networks, and their training times were measured. This value is useful for hypothesizing

possible on-device-training for such models, directly on deployed devices (i.e. Raspberry Pi’s), with the goal of

improving performance over time and user privacy, and without requiring users to update the device software.

The following results refer to the experiments carried out on the Raspberry Pi 3B. Next, the results of the tests

carried out by implementing a neural network in the FPGA are exhibited.

Results Table 1: TON Dataset - Neural Networks

Models Accuracy Precision Recall F1-score ROC-AUC score Samples/Second

NN small 0.9893 0.9789 0.9904 0.9846 0.9895 2,336

NN 0.9889 0.9826 0.9858 0.9842 0.9882 1,810

CNN small 0.9473 0.9530 0.8937 0.9224 0.9349 2,398

CNN 0.9815 0.9921 0.9545 0.9729 0.9752 2,088

TabNet 0.9868 0.9744 0.9882 0.9813 0.9871 743

Table 5.1: Results of neural networks models and TabNet for TON Dataset.
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Results Table 2: TON Dataset - DT & Ensamble Models

Models N° Est. Acc. Prec. Recall F1 ROC-AUC Samples/s Train [s]

DT - 0.9999 0.9998 0.9998 0.9999 0.9998 2,311,528 15.87

RF 20 0.9998 0.9997 0.9998 0.9998 0.9998 122,221 116.81

RF 100 0.9998 0.9997 0.9998 0.9997 0.9998 18,247 573.40

AB 20 0.9989 0.9986 0.9985 0.9985 0.9988 41,893 110.25

AB 100 0.9997 0.9996 0.9995 0.9996 0.9996 7,940 561.32

ET 20 0.9998 0.9997 0.9998 0.9997 0.9998 51,809 103.66

ET 80 0.9998 0.9997 0.9998 0.9997 0.9998 19,312 396.65

Table 5.2: Results of Decision Tree and ensemble models for TON Dataset. The number of estimators is also shown as the
training time.
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Table 5.1 shows the value of all relevant metrics concerning neural networks models previously described on

TON dataset. CNN_small and NN_small refer to a ”smaller” version of CNN and NN respectively. As men-

tioned in the previous chapter, we ran several tests with different sized networks to highlight the performance

difference in the Raspberry, which is a resource-limited device. It is possible to notice from the results tables, how

the performance changes according to the size of the neural network. In particular, more than the accuracy and

precision, the number of samples processed per second is the parameter with the greatest oscillation; except for

CNN_smallwhich achieves rather below average results even if it is slightly faster in processing compared to other

neural networks. This value is of particular interest to us since, having to deal with devices with limited resources,

if you use a model that is too heavy, it would not be able to process all the incoming traffic, having to discard the

packets.

It is evident from these results that CNNs do not perform as well as the two feed-forward NN and TabNet,

which achieve almost the same accuracy (98.9%, 98.2% and 98.6% respectively). NN_small obtains the best accu-

racy, recall, F1-score and ROC-AUC score among the neural networks models. This is probably due to the fact

that the complexity introduced by a greater number of neurons is not essential for obtaining better results with

this kind of features. Theworst performance in terms of keymetrics is obtained by small_CNN, even if it achieves

the highest value of samples processed per second.

On the other hand, it is evidenced by Table 5.2 that tree-based models perform enormously better than neu-

ral networks using this dataset on classifying malicious samples. Furthermore, it is observed that Decision Tree

outperforms other classifiers in terms of execution speed and overall performance. DT obtained almost perfect

classification accuracy (99.99%) and F1-score (99.99%) and at the same time it is capable of processing roughly 2.3

millions of samples per secondwhich is almost 20 timesmore thanRandom Forest, that on his side, obtains excel-

lent results, and 1000 times faster than the fastest neural network tested (i.e.: CNN_small). Tree-based ensemble

models perform very similarly, except for AdaBoost which is slightly worse with respect to the others.

Furthermore, a comparison is made between the different ensembles in terms of number of estimators to show

the difference in classification speed and training speed. DT also had the best performance for these latter metrics.

In fact, this model is extremely suitable for classifying network traffic with the pre-processing used. Random

Forest, Adaboost, and Extra Trees, on the other hand, perform slightly worse, and it is possible to see a noticeable

difference in the processing speed of the samples. Regarding TON dataset, the model that prevails in each field

is Decision Tree while both CNNs get the worst results. It is thus inferred that 1D convolution applied in this

context of tabular network traffic does not obtain the same results as feed-forward NN and tree-based models

which are entirely suitable for this task.
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Results Table 3: IOT-23 Dataset - Neural Networks

Models Accuracy Precision Recall F1-score ROC-AUC score Samples/Second

NN small 0.9977 0.9954 0.9998 0.9976 0.9977 1,568

NN 0.9984 0.9969 9.9997 0.9983 0.9984 1,250

CNN small 0.9954 0.9941 0.9963 0.9952 0.9953 1,524

CNN 0.9961 0.9955 0.9964 0.9960 0.9961 1,063

TabNet 0.9957 0.9973 0.9939 0.9956 0.9957 258

Table 5.3: Results of neural networks models and TabNet for IoT‐23 Dataset.

Results Table 4: IOT-23 Dataset - DT & Ensamble Models

Models N° Est. Acc. Prec. Recall F1 ROC-AUC Samples/s Train [s]

DT - 0.9999 0.9999 1.0 0.9999 0.9999 153,991 164.57

RF 20 0.9999 0.9999 0.9999 0.9999 0.9999 72,101 698.52

AB 20 0.9967 0.9954 0.9979 0.9966 0.9967 36,102 665.36

ET 20 0.9997 0.9994 0.9999 0.9997 0.9997 67,681 540.91

Table 5.4: Results of Decision Tree and ensemble models for IoT‐23 Dataset. The number of estimators is also shown as the
training time.
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Regarding the IoT-23 dataset, similar to the TON results, the largest Neural Network is the best performing

among the neural network-basedmodels with an accuracy of 99.84% as shown in Table 5.3. This models achieves

the best F1-score and ROC-AUC score among the neural networks. In general, on IoT all the models obtain

great results and this fact implies that the scenarios selected and used to test the different classifiers, the malicious

packets aremore easily recognizable than those of TON, even if the difference does not correspond to a large order

of magnitude. The results of neural networks in Table 5.3 and Table 5.5, except for TabNet, are conducted with

10% of the training set. That is 298, 695 samples for time reasons, since these models are rather slow compared

to tree-based models and the amount of training samples is sufficient for those models to perform as if they were

trained with the entire training set.

Table 5.4 presents the results of tree-based models. Decision Tree and Random Forest are the best performing

models, obtaining results which are practically perfect with an accuracy, precision, recall, F1-score and AUC of

at least 99.99%. It thus translates that the packets in the IOT23 dataset are more easily classified than the traffic

captured by TON, even for tree-based classifiers. Even in this scenario the least performing model is the smaller

CNNwhile DT and the ensamble models obtained the the best results.

With Table 5.5 and Table 5.6 we want to give a term of comparison with the training time and the testing time

on the Raspberry. TheRaspberry Pi 3B has a CPUwhile the PCwhere we conducted these tests is equippedwith

a CPU.
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Results Table 5: training times and testing times on the PC on TON

Models CNN_small CNN NN_small NN TabNet

Training Time [s] 160 203 160 438 310

Samples/s 43,721 38,727 44,097 33,781 42,561

Table 5.5: Training times and samples per second of neural networks models performed on the local machine on TON dataset.
All the models are tested with the parameters presented in the previous chapter.

Results Table 6: training times and testing times on the PC for TON

Models DT RF AdaBoost ET

Training Time [s] 1.1 6.3 7 4.3

Samples/s 17,196,522 823,905 586,933 691,297

Table 5.6: Training times and samples per second of tree‐based models performed on the local machine on TON dataset. All
the tree‐based models are tested with the parameters exposed in the previous chapter and 20 estimators.
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Results Table 7: training times and testing times on the PC for IoT-23

Models CNN_small CNN NN_small NN TabNet

Training Time [s] 130 166 136 401 1,798

Samples/s 45,493 42,202 47,037 29,836 159,326

Table 5.7: Training times and samples per second of neural networks models performed on the local machine on IoT‐23
dataset. All the models are tested with the parameters presented in the previous chapter.

Results Table 8: training times and testing times on the PC for IoT-23

Models DT RF AdaBoost ET

Training Time [s] 8.8 88 67 32

Samples/s 38,436,350 3,269,013 1,793,039 2,394,340

Table 5.8: Training times and samples per second of tree‐based models performed on the local machine on IoT‐23 dataset.
All the tree‐based models are tested with the parameters exposed in the previous chapter and 20 estimators.

Subsequently, Fig. 5.1 andFig. 5.2 graphically show the results obtained for bothTONdataset under accuracy,

F1-score andAUCmetrics. Likewise Fig. 5.3 and Fig. 5.4 for IoT-23 dataset. The results suggest that the encoded

belief over hypothesis carried by neural network depth characteristic is less effective in this scenario than the piece-

wise constant approximation view introduced by tree-like models where decision rules are inferred from the data

features.
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Figure 5.1: Comparison of the statistical results of the models on TON Dataset. The chart includes neural network based
models. The considered metrics are accuracy, f1‐score and AUC‐ROC measure.

Figure 5.2: Comparison of the statistical results of the models on TON Dataset. The considered metrics are accuracy, f1‐
score and AUC‐ROC measure. It is clear by the plot that the tree‐based models perform much better than the others.
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Figure 5.3: Comparison of the statistical results of the models on IOT‐23 Dataset. The chart includes neural network based
models. The considered metrics are accuracy, f1‐score and AUC‐ROC measure.

Figure 5.4: Comparison of the statistical results of the tree‐based models on IOT‐23 Dataset. The considered metrics are
accuracy, f1‐score and AUC‐ROC measure. The chart show the better performance of tree‐based models even in this sce‐
nario.
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Table 5.9 shows the results of the Quantized Neural Networks trained locally and then implemented on the

PYNQ-Z2 FPGA board. As can be seen from Table 5.10, which exhibits the percentage utilization of the physi-

cal components of the FPGA board and the measured values of latency, bandwidth, frequency, and power con-

sumption, this device is characterized by extraordinarily fast processing of input data. The difference between

the bandwidth measured during the simulation and the bandwidth measured directly on the device turns out to

be less probably due to software overhead. It is possible to notice that the utilization of LUT, FF and BRAM

is quite low, and combined with a clock frequency of 100 MHz achieves extremely low latency. This translates

in a generally good accuracy for an 8-bit quantized model, which is 97.47% and 99.81% for TON and IOT23,

respectively.

Results Table 9: Quantized Neural Network first tested on PC

Models Accuracy Precision Recall F1-score ROC-AUC

Quant-NN (TON) 0.9747 0.9798 0.9468 0.9630 0.9682

Quant-NN (IOT-23) 0.9981 0.9964 0.9998 0.9981 0.9981

Table 5.9: Results of the quantized neural network for TON and IoT‐23 dataset.

It is observed that DT outperforms other classifiers in terms of any key metrics, as well as RF and ET, for

both TON and IOT23. We can firmly state that tree-based models obtain the best results as they are they are the

best candidates for the IDS system. These results are probably due to the tabular nature of the network traffic

alongside the pre-processing applied to the chosen features which favors tree-based algorithms. Furthermore the

average number of samples per second processed by these models is significantly higher than the other classifiers

considered. The experimental tests demonstrate how the chosen lightweight classifiers obtained excellent result

at distinguishing network traffic as benign or malicious within a wide group of different attacks, and how they

can be easily integrated into resource-limited devices such as Raspberry Pi and FPGAs. Real-time efficiency of an

IDS hardly depends on the dataset used in the training phase. Therefore, to ensure the best security, it is necessary

to use a dataset that contains traffic patterns related to recent types of malicious attacks. The datasets we used,

TON and IOT23, are suitable choices for this purpose and it can be seen from the exposed results that the chosen

models show promising performance.
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Results Table 10: FPGA PYNQ-Z2 Performance Metrics

Resource Utilization Available Utilization (%)

LUT 17,030 53,200 32.01%

LUTRAM 56 17,400 0.32%

FF 6,090 106,400 5.72%

BRAM 5.5 140 3.93%

IO 46 125 36.80%

BUFG 1 32 3.13%

Bandwidth (simulation) [samples/s] 1438,848

Latency [μs] 2.56

Frequency [MHz] 100

Power est. [W] 0.503

Bandwidth (PYNQ) [samples/s] 717,529

Table 5.10: Performance metrics obtained on PYNQ‐Z2 for both simulation and physical test.
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6
Conclusion

In this work, a study on anomaly-based intrusion detection system suitable for securing IoT environment against

malicious attacks is carried out. We documented the performance assessment of different machine learning clas-

sification algorithms including neural networks, decision tree, random forests, adaboost, extremely randomized

trees and TabNet. All the classifiers are bench-marked on recent IoT datasets containing different kind of attacks,

TON and IOT-23. The optimal parameters of the models are obtained using a grid search algorithm combined

with a study on the features importance. The performance of all the classifiers has been measured in terms of

accuracy, precision, recall and area under the receiver operating characteristic curve. Moreover, the models are

evaluated from the perspective of processing speed.

The experiments are carried out in aRaspberry Pi 3B and a PYNQ-Z2 FPGAboard and from the performance

results it is concluded that DT, RF, and ET show the best trade-of between prominent metrics and processing

time. We showed how these models achieve extremely good results on classifying network traffic processed as

tabular data. They are therefore a suitable choice for building IoT specific IDS. Based on these assessments, we

propose a network-based intrusion detection system that consists of attaching such light-weight board to the sin-

gle components of an IoT network. We demonstrate that the combination of RasPI or FPGAwithML classifiers
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is capable of achieving great results in terms of detection accuracy and response time. By deploying such IDS,

the performance of the single IoT devices is not affected, and due to the high flexibility the IDS devices can be

hybridly-placed in the IoT environment introducing an additional layer of security againstmalicious attacks. The

proposed system is trustworthy since even if a centralized IDS or cloud computing fails, the internal security of

individual devices is not affected. This property proves useful in industrial IoT, where the consequences of a fail-

ure to protect the individual device can have more serious consequences. In addition, the versatile design allows

ordinary model updates via on-device training, in order to adapt to emerging attacks which implies constant ad-

vancement of the network security status.

As futurework the IDSdesign canbe implementedusingmore complexMLmodels by testing its capabilities in

even lighter low-powered devices. Moreover, the evaluation of such IDS with different datasets and the extension

to Incremental Learning could open the door to the IDSs of the future.
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